code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse('9.1.0'): __lowerCAmelCase : int ={ 'linear': PIL.Image.Resampling.BILINEAR, 'bilinear': PIL.Image.Resampling.BILINEAR, 'bicubic': PIL.Image.Resampling.BICUBIC, 'lanczos': PIL.Image.Resampling.LANCZOS, 'nearest': PIL.Image.Resampling.NEAREST, } else: __lowerCAmelCase : Union[str, Any] ={ 'linear': PIL.Image.LINEAR, 'bilinear': PIL.Image.BILINEAR, 'bicubic': PIL.Image.BICUBIC, 'lanczos': PIL.Image.LANCZOS, 'nearest': PIL.Image.NEAREST, } def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Any = (images / 2 + 0.5).clamp(0 , 1 ) __SCREAMING_SNAKE_CASE : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __SCREAMING_SNAKE_CASE : Any = numpy_to_pil(lowercase__ ) return images def _UpperCamelCase ( lowercase__ ): if images.ndim == 3: __SCREAMING_SNAKE_CASE : str = images[None, ...] __SCREAMING_SNAKE_CASE : Optional[int] = (images * 255).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __SCREAMING_SNAKE_CASE : List[str] = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: __SCREAMING_SNAKE_CASE : str = [Image.fromarray(lowercase__ ) for image in images] return pil_images
696
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
1
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=None , lowercase__=None ): if attention_mask is None: __SCREAMING_SNAKE_CASE : Tuple = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = OPTConfig SCREAMING_SNAKE_CASE__ : Optional[Any] = {} SCREAMING_SNAKE_CASE__ : Dict = '''gelu''' def __init__( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any]=13 , lowerCAmelCase__ :List[Any]=7 , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Optional[int]=99 , lowerCAmelCase__ :int=16 , lowerCAmelCase__ :str=2 , lowerCAmelCase__ :List[Any]=4 , lowerCAmelCase__ :List[Any]=4 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Any=0.1 , lowerCAmelCase__ :Any=20 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :int=16 , ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = parent __SCREAMING_SNAKE_CASE : Any = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : Tuple = is_training __SCREAMING_SNAKE_CASE : Tuple = use_labels __SCREAMING_SNAKE_CASE : Tuple = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Any = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Any = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = eos_token_id __SCREAMING_SNAKE_CASE : int = pad_token_id __SCREAMING_SNAKE_CASE : List[Any] = bos_token_id __SCREAMING_SNAKE_CASE : Optional[int] = embed_dim __SCREAMING_SNAKE_CASE : Optional[int] = word_embed_proj_dim __SCREAMING_SNAKE_CASE : str = False def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __SCREAMING_SNAKE_CASE : int = tf.concat([input_ids, eos_tensor] , axis=1 ) __SCREAMING_SNAKE_CASE : Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=lowerCAmelCase__ , **self.config_updates , ) __SCREAMING_SNAKE_CASE : Any = prepare_opt_inputs_dict(lowerCAmelCase__ , lowerCAmelCase__ ) return config, inputs_dict def __magic_name__( self :Any , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = TFOPTModel(config=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[int] = input_ids[:1, :] __SCREAMING_SNAKE_CASE : List[str] = inputs_dict['''attention_mask'''][:1, :] __SCREAMING_SNAKE_CASE : Tuple = 1 # first forward pass __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) __SCREAMING_SNAKE_CASE : str = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __SCREAMING_SNAKE_CASE : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __SCREAMING_SNAKE_CASE : Any = output_from_no_past[:, -3:, random_slice_idx] __SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase__ , lowerCAmelCase__ , rtol=1E-3 ) @require_tf class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : str = (TFOPTForCausalLM,) if is_tf_available() else () SCREAMING_SNAKE_CASE__ : Union[str, Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : List[Any] = False SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Dict = False SCREAMING_SNAKE_CASE__ : List[Any] = 10 def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = TFOPTModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ ) def __magic_name__( self :str ) -> Optional[int]: self.config_tester.run_common_tests() def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ): if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(lowerCAmelCase__ , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __SCREAMING_SNAKE_CASE : Dict = model_class(config=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __SCREAMING_SNAKE_CASE : int = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = _get_word_embedding_weight(lowerCAmelCase__ , model.get_input_embeddings() ) __SCREAMING_SNAKE_CASE : str = _get_word_embedding_weight(lowerCAmelCase__ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , lowerCAmelCase__ ) # check that weights remain the same after resizing __SCREAMING_SNAKE_CASE : int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __SCREAMING_SNAKE_CASE : Optional[int] = False self.assertTrue(lowerCAmelCase__ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __SCREAMING_SNAKE_CASE : Any = False self.assertTrue(lowerCAmelCase__ ) def _UpperCamelCase ( lowercase__ ): return tf.constant(lowercase__ , dtype=tf.intaa ) @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = 99 def __magic_name__( self :Optional[Any] ) -> str: __SCREAMING_SNAKE_CASE : Dict = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __SCREAMING_SNAKE_CASE : List[str] = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __SCREAMING_SNAKE_CASE : Any = input_ids.shape[0] __SCREAMING_SNAKE_CASE : int = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) __SCREAMING_SNAKE_CASE : List[str] = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __SCREAMING_SNAKE_CASE : str = tf.not_equal(lowerCAmelCase__ , model.config.pad_token_id ) with tf.GradientTape(): __SCREAMING_SNAKE_CASE : List[Any] = model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ).last_hidden_state __SCREAMING_SNAKE_CASE : str = (1, 11, 512) self.assertEqual(output.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-3 ) ) __SCREAMING_SNAKE_CASE : Optional[int] = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = xla_generate(lowerCAmelCase__ , lowerCAmelCase__ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=4E-2 ) ) @require_tf @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Any ) -> Tuple: super().setUp() __SCREAMING_SNAKE_CASE : Dict = '''facebook/opt-350m''' def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : Tuple = TFOPTForCausalLM.from_pretrained(self.path_model ) __SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(self.path_model ) __SCREAMING_SNAKE_CASE : List[Any] = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __SCREAMING_SNAKE_CASE : List[str] = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __SCREAMING_SNAKE_CASE : Any = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) __SCREAMING_SNAKE_CASE : Any = tf.function(lowerCAmelCase__ , jit_compile=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-4 ) ) @require_tf @slow class _lowercase ( unittest.TestCase ): '''simple docstring''' @property def __magic_name__( self :str ) -> Tuple: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : List[Any] = '''facebook/opt-125m''' __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __SCREAMING_SNAKE_CASE : Optional[int] = [] __SCREAMING_SNAKE_CASE : Tuple = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __SCREAMING_SNAKE_CASE : List[str] = model.generate(lowerCAmelCase__ , max_length=10 ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : str = '''facebook/opt-350m''' __SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = '''left''' # use different length sentences to test batching __SCREAMING_SNAKE_CASE : Any = [ '''Hello, my dog is a little''', '''Today, I''', ] __SCREAMING_SNAKE_CASE : int = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' , padding=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = inputs['''input_ids'''] __SCREAMING_SNAKE_CASE : int = model.generate(input_ids=lowerCAmelCase__ , attention_mask=inputs['''attention_mask'''] ) __SCREAMING_SNAKE_CASE : int = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids __SCREAMING_SNAKE_CASE : Any = model.generate(input_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids __SCREAMING_SNAKE_CASE : Any = model.generate(input_ids=lowerCAmelCase__ , max_length=model.config.max_length - num_paddings ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , [non_padded_sentence, padded_sentence] ) def __magic_name__( self :Tuple ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''facebook/opt-350m''' __SCREAMING_SNAKE_CASE : Any = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] __SCREAMING_SNAKE_CASE : int = [] __SCREAMING_SNAKE_CASE : int = GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = TFOPTForCausalLM.from_pretrained(lowerCAmelCase__ ) for prompt in self.prompts: __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer(lowerCAmelCase__ , return_tensors='''tf''' ).input_ids __SCREAMING_SNAKE_CASE : Optional[int] = model.generate(lowerCAmelCase__ , max_length=10 ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) predicted_outputs += generated_string self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
696
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
1
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
1
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) __SCREAMING_SNAKE_CASE : int = len(lowercase__ ) __SCREAMING_SNAKE_CASE : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) __SCREAMING_SNAKE_CASE : list = [] for char_count in range(lowercase__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(lowercase__ ) if __name__ == "__main__": print(alternative_string_arrange('AB', 'XYZ'), end=' ')
696
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
1
import warnings from ..trainer import Trainer from ..utils import logging __lowerCAmelCase : List[str] =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Optional[Any]=None , **lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCAmelCase__ , ) super().__init__(args=lowerCAmelCase__ , **lowerCAmelCase__ )
696
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
1
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowercase : '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Dict=7 , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=True , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Dict=99 , lowerCAmelCase__ :Any=64 , lowerCAmelCase__ :Tuple=32 , lowerCAmelCase__ :List[Any]=5 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Optional[int]=37 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :List[Any]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Union[str, Any]=512 , lowerCAmelCase__ :Dict=16 , lowerCAmelCase__ :List[str]=2 , lowerCAmelCase__ :Optional[Any]=0.02 , lowerCAmelCase__ :List[str]=3 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Optional[Any]=None , ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Any = seq_length __SCREAMING_SNAKE_CASE : List[Any] = is_training __SCREAMING_SNAKE_CASE : Dict = use_input_mask __SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids __SCREAMING_SNAKE_CASE : Optional[int] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : int = embedding_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Tuple = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : List[str] = num_choices __SCREAMING_SNAKE_CASE : Dict = scope def __magic_name__( self :str ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : Dict = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : int = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE : Tuple = None __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : List[str] = None if self.use_labels: __SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size] , self.num_choices ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__( self :Optional[int] ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : Tuple = MobileBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = MobileBertForNextSentencePrediction(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertForPreTraining(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , next_sentence_label=lowerCAmelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __magic_name__( self :Dict , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : Union[str, Any] = MobileBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.num_labels __SCREAMING_SNAKE_CASE : Optional[int] = MobileBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int ) -> int: __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : List[Any] = MobileBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = self.num_choices __SCREAMING_SNAKE_CASE : str = MobileBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __SCREAMING_SNAKE_CASE : Optional[int] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__( self :Optional[int] ) -> str: __SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) : Union[str, Any] = config_and_inputs __SCREAMING_SNAKE_CASE : List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : Optional[int] = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def __magic_name__( self :str , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Any=False ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__( self :Optional[int] ) -> Dict: __SCREAMING_SNAKE_CASE : int = MobileBertModelTester(self ) __SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__( self :Tuple ) -> Tuple: self.config_tester.run_common_tests() def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase__ ) def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> Any: __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase__ ) def __magic_name__( self :Any ) -> List[str]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase__ ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase__ ) def _UpperCamelCase ( lowercase__ ): return torch.tensor( lowercase__ , dtype=torch.long , device=lowercase__ , ) __lowerCAmelCase : Any =1e-3 @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : Any = MobileBertModel.from_pretrained('''google/mobilebert-uncased''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = _long_tensor([[101, 7_110, 1_005, 1_056, 2_023, 11_333, 17_413, 1_029, 102]] ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Dict = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor( [ [ [-2.4_7_3_6_5_2_6E0_7, 8.2_6_9_1_6_5_6E0_4, 1.6_5_2_1_8_3_8E0_5], [-5.7_5_4_1_7_0_4E-0_1, 3.9_0_5_6_0_2_2E0_0, 4.4_0_1_1_5_0_7E0_0], [2.6_0_4_7_3_5_9E0_0, 1.5_6_7_7_6_5_2E0_0, -1.7_3_2_4_1_8_8E-0_1], ] ] , device=lowerCAmelCase__ , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE __SCREAMING_SNAKE_CASE : Optional[int] = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
696
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
1
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( 'The `image_to_image.py` script is outdated. Please use directly `from diffusers import' ' StableDiffusionImg2ImgPipeline` instead.' )
696
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
1
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Any =get_tests_dir('fixtures/test_sentencepiece_bpe.model') class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = BartphoTokenizer SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = True def __magic_name__( self :Dict ) -> Dict: super().setUp() __SCREAMING_SNAKE_CASE : str = ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] __SCREAMING_SNAKE_CASE : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : Tuple = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''monolingual_vocab_file'''] ) with open(self.monolingual_vocab_file , '''w''' , encoding='''utf-8''' ) as fp: for token in vocab_tokens: fp.write(f'''{token} {vocab_tokens[token]}\n''' ) __SCREAMING_SNAKE_CASE : Tuple = BartphoTokenizer(lowerCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Tuple: kwargs.update(self.special_tokens_map ) return BartphoTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :str , lowerCAmelCase__ :List[str] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Any = '''This is a là test''' __SCREAMING_SNAKE_CASE : Optional[Any] = '''This is a<unk><unk> test''' return input_text, output_text def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[int] = BartphoTokenizer(lowerCAmelCase__ , self.monolingual_vocab_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE : Tuple = '''This is a là test''' __SCREAMING_SNAKE_CASE : List[Any] = '''▁This ▁is ▁a ▁l à ▁t est'''.split() __SCREAMING_SNAKE_CASE : Dict = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : Optional[int] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ )
696
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'allenai/longformer-base-4096': 'https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json', 'allenai/longformer-large-4096': 'https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json', 'allenai/longformer-large-4096-finetuned-triviaqa': ( 'https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json' ), 'allenai/longformer-base-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json' ), 'allenai/longformer-large-4096-extra.pos.embd.only': ( 'https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json' ), } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = '''longformer''' def __init__( self :List[Any] , lowerCAmelCase__ :Union[List[int], int] = 512 , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :int = 1 , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :int = 30_522 , lowerCAmelCase__ :int = 768 , lowerCAmelCase__ :int = 12 , lowerCAmelCase__ :int = 12 , lowerCAmelCase__ :int = 3_072 , lowerCAmelCase__ :str = "gelu" , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :int = 512 , lowerCAmelCase__ :int = 2 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :float = 1E-1_2 , lowerCAmelCase__ :bool = False , **lowerCAmelCase__ :Union[str, Any] , ) -> Optional[int]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_window __SCREAMING_SNAKE_CASE : str = sep_token_id __SCREAMING_SNAKE_CASE : Tuple = bos_token_id __SCREAMING_SNAKE_CASE : Any = eos_token_id __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : str = max_position_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = onnx_export class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Optional[Any] , lowerCAmelCase__ :"PretrainedConfig" , lowerCAmelCase__ :str = "default" , lowerCAmelCase__ :"List[PatchingSpec]" = None ) -> Tuple: super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = True @property def __magic_name__( self :Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Any = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def __magic_name__( self :str ) -> Mapping[str, Mapping[int, str]]: __SCREAMING_SNAKE_CASE : Optional[Any] = super().outputs if self.task == "default": __SCREAMING_SNAKE_CASE : List[Any] = {0: '''batch'''} return outputs @property def __magic_name__( self :str ) -> float: return 1E-4 @property def __magic_name__( self :Union[str, Any] ) -> int: # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :"PreTrainedTokenizerBase" , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :int = -1 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[TensorType] = None , ) -> Mapping[str, Any]: __SCREAMING_SNAKE_CASE : int = super().generate_dummy_inputs( preprocessor=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , seq_length=lowerCAmelCase__ , is_pair=lowerCAmelCase__ , framework=lowerCAmelCase__ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __SCREAMING_SNAKE_CASE : Optional[int] = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __SCREAMING_SNAKE_CASE : str = 1 return inputs
696
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available __lowerCAmelCase : List[Any] ={ 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
1
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __lowerCAmelCase : List[str] =random.Random() def _UpperCamelCase ( lowercase__ , lowercase__=1.0 , lowercase__=None , lowercase__=None ): if rng is None: __SCREAMING_SNAKE_CASE : Tuple = global_rng __SCREAMING_SNAKE_CASE : str = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowercase ( unittest.TestCase ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=7 , lowerCAmelCase__ :Any=400 , lowerCAmelCase__ :Optional[int]=2_000 , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Tuple=160 , lowerCAmelCase__ :Any=8 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=4_000 , lowerCAmelCase__ :Union[str, Any]=False , lowerCAmelCase__ :str=True , ) -> int: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = min_seq_length __SCREAMING_SNAKE_CASE : Dict = max_seq_length __SCREAMING_SNAKE_CASE : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __SCREAMING_SNAKE_CASE : Optional[Any] = padding_value __SCREAMING_SNAKE_CASE : Optional[Any] = sampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = return_attention_mask __SCREAMING_SNAKE_CASE : List[str] = do_normalize __SCREAMING_SNAKE_CASE : Any = feature_size __SCREAMING_SNAKE_CASE : List[str] = chunk_length __SCREAMING_SNAKE_CASE : Any = hop_length def __magic_name__( self :Optional[int] ) -> Tuple: return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :List[str]=False , lowerCAmelCase__ :List[str]=False ) -> List[str]: def _flatten(lowerCAmelCase__ :Union[str, Any] ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: __SCREAMING_SNAKE_CASE : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size __SCREAMING_SNAKE_CASE : str = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __SCREAMING_SNAKE_CASE : Any = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = WhisperFeatureExtractor if is_speech_available() else None def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = WhisperFeatureExtractionTester(self ) def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[Any] = feat_extract_first.save_pretrained(lowerCAmelCase__ )[0] check_json_file_has_correct_format(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_extraction_class.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE : Dict = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract_first.mel_filters __SCREAMING_SNAKE_CASE : List[Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : List[str] = os.path.join(lowerCAmelCase__ , '''feat_extract.json''' ) feat_extract_first.to_json_file(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.feature_extraction_class.from_json_file(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = feat_extract_first.to_dict() __SCREAMING_SNAKE_CASE : int = feat_extract_second.to_dict() __SCREAMING_SNAKE_CASE : Any = feat_extract_first.mel_filters __SCREAMING_SNAKE_CASE : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Union[str, Any]: # Tests that all call wrap to encode_plus and batch_encode_plus __SCREAMING_SNAKE_CASE : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __SCREAMING_SNAKE_CASE : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] __SCREAMING_SNAKE_CASE : List[str] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size __SCREAMING_SNAKE_CASE : Tuple = feature_extractor(lowerCAmelCase__ , padding='''max_length''' , return_tensors='''np''' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input __SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(speech_inputs[0] , return_tensors='''np''' ).input_features __SCREAMING_SNAKE_CASE : int = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' ).input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched __SCREAMING_SNAKE_CASE : str = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_features __SCREAMING_SNAKE_CASE : Any = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __SCREAMING_SNAKE_CASE : str = [floats_list((1, x) )[0] for x in (800, 800, 800)] __SCREAMING_SNAKE_CASE : Dict = np.asarray(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_features __SCREAMING_SNAKE_CASE : Optional[Any] = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test truncation required __SCREAMING_SNAKE_CASE : List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] __SCREAMING_SNAKE_CASE : Optional[Any] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] __SCREAMING_SNAKE_CASE : Any = [x[: feature_extractor.n_samples] for x in speech_inputs] __SCREAMING_SNAKE_CASE : Tuple = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs_truncated] __SCREAMING_SNAKE_CASE : List[Any] = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_features __SCREAMING_SNAKE_CASE : int = feature_extractor(lowerCAmelCase__ , return_tensors='''np''' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: import torch __SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.rand(100 , 32 ).astype(np.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __SCREAMING_SNAKE_CASE : Union[str, Any] = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) __SCREAMING_SNAKE_CASE : str = feature_extractor.pad([{'''input_features''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __magic_name__( self :str , lowerCAmelCase__ :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech __SCREAMING_SNAKE_CASE : str = ds.sort('''id''' ).select(range(lowerCAmelCase__ ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def __magic_name__( self :str ) -> List[str]: # fmt: off __SCREAMING_SNAKE_CASE : Dict = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on __SCREAMING_SNAKE_CASE : List[Any] = self._load_datasamples(1 ) __SCREAMING_SNAKE_CASE : List[str] = WhisperFeatureExtractor() __SCREAMING_SNAKE_CASE : int = feature_extractor(lowerCAmelCase__ , return_tensors='''pt''' ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCAmelCase__ , atol=1E-4 ) ) def __magic_name__( self :Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __SCREAMING_SNAKE_CASE : List[str] = self._load_datasamples(1 )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue __SCREAMING_SNAKE_CASE : int = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCAmelCase__ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ ) - 1 ) < 1E-3 ) )
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
1
from random import shuffle import tensorflow as tf from numpy import array def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = int(lowercase__ ) assert noofclusters < len(lowercase__ ) # Find out the dimensionality __SCREAMING_SNAKE_CASE : Tuple = len(vectors[0] ) # Will help select random centroids from among the available vectors __SCREAMING_SNAKE_CASE : Optional[Any] = list(range(len(lowercase__ ) ) ) shuffle(lowercase__ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. __SCREAMING_SNAKE_CASE : Dict = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION __SCREAMING_SNAKE_CASE : List[Any] = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points __SCREAMING_SNAKE_CASE : str = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase__ ) ] ##These nodes will assign the centroid Variables the appropriate ##values __SCREAMING_SNAKE_CASE : Tuple = tf.placeholder('''float64''' , [dim] ) __SCREAMING_SNAKE_CASE : List[Any] = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) __SCREAMING_SNAKE_CASE : Optional[Any] = [tf.Variable(0 ) for i in range(len(lowercase__ ) )] ##These nodes will assign an assignment Variable the appropriate ##value __SCREAMING_SNAKE_CASE : int = tf.placeholder('''int32''' ) __SCREAMING_SNAKE_CASE : Tuple = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase__ , lowercase__ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input __SCREAMING_SNAKE_CASE : Union[str, Any] = tf.placeholder('''float''' , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors __SCREAMING_SNAKE_CASE : str = tf.reduce_mean(lowercase__ , 0 ) ##Node for computing Euclidean distances # Placeholders for input __SCREAMING_SNAKE_CASE : Any = tf.placeholder('''float''' , [dim] ) __SCREAMING_SNAKE_CASE : Tuple = tf.placeholder('''float''' , [dim] ) __SCREAMING_SNAKE_CASE : List[str] = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase__ , lowercase__ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input __SCREAMING_SNAKE_CASE : int = tf.placeholder('''float''' , [noofclusters] ) __SCREAMING_SNAKE_CASE : List[str] = tf.argmin(lowercase__ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. __SCREAMING_SNAKE_CASE : Tuple = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase__ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. __SCREAMING_SNAKE_CASE : Optional[Any] = 100 for _ in range(lowercase__ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase__ ) ): __SCREAMING_SNAKE_CASE : int = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. __SCREAMING_SNAKE_CASE : Optional[int] = [ sess.run(lowercase__ , feed_dict={va: vect, va: sess.run(lowercase__ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input __SCREAMING_SNAKE_CASE : Tuple = sess.run( lowercase__ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase__ ): # Collect all the vectors assigned to this cluster __SCREAMING_SNAKE_CASE : Dict = [ vectors[i] for i in range(len(lowercase__ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location __SCREAMING_SNAKE_CASE : Tuple = sess.run( lowercase__ , feed_dict={mean_input: array(lowercase__ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments __SCREAMING_SNAKE_CASE : Any = sess.run(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = sess.run(lowercase__ ) return centroids, assignments
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
1
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): # Initialise PyTorch model __SCREAMING_SNAKE_CASE : str = BertConfig.from_json_file(lowercase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = BertForPreTraining(lowercase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(lowercase__ , lowercase__ , lowercase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowercase__ ) if __name__ == "__main__": __lowerCAmelCase : List[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __lowerCAmelCase : Any =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
1
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''Speech2TextFeatureExtractor''' SCREAMING_SNAKE_CASE__ : Tuple = '''Speech2TextTokenizer''' def __init__( self :Tuple , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] ) -> Tuple: super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = self.feature_extractor __SCREAMING_SNAKE_CASE : int = False def __call__( self :int , *lowerCAmelCase__ :Dict , **lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase__ , **lowerCAmelCase__ ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) __SCREAMING_SNAKE_CASE : Optional[int] = kwargs.pop('''raw_speech''' ) else: __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''audio''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = kwargs.pop('''sampling_rate''' , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = kwargs.pop('''text''' , lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: __SCREAMING_SNAKE_CASE : List[str] = args[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.feature_extractor(lowerCAmelCase__ , *lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None: __SCREAMING_SNAKE_CASE : Any = self.tokenizer(lowerCAmelCase__ , **lowerCAmelCase__ ) if text is None: return inputs elif audio is None: return encodings else: __SCREAMING_SNAKE_CASE : str = encodings['''input_ids'''] return inputs def __magic_name__( self :Union[str, Any] , *lowerCAmelCase__ :Tuple , **lowerCAmelCase__ :List[str] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :int , *lowerCAmelCase__ :Optional[int] , **lowerCAmelCase__ :Optional[Any] ) -> int: return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @contextmanager def __magic_name__( self :Optional[int] ) -> Union[str, Any]: warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) __SCREAMING_SNAKE_CASE : int = True __SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer yield __SCREAMING_SNAKE_CASE : Dict = self.feature_extractor __SCREAMING_SNAKE_CASE : Any = False
696
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'microsoft/beit-base-patch16-224-pt22k': ( 'https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = '''beit''' def __init__( self :Optional[Any] , lowerCAmelCase__ :int=8_192 , lowerCAmelCase__ :str=768 , lowerCAmelCase__ :Optional[Any]=12 , lowerCAmelCase__ :List[str]=12 , lowerCAmelCase__ :int=3_072 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :Optional[int]=0.0 , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :Dict=1E-1_2 , lowerCAmelCase__ :Dict=224 , lowerCAmelCase__ :Optional[Any]=16 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :str=False , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :Any=False , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Optional[int]=0.1 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :int=[3, 5, 7, 11] , lowerCAmelCase__ :Union[str, Any]=[1, 2, 3, 6] , lowerCAmelCase__ :str=True , lowerCAmelCase__ :Any=0.4 , lowerCAmelCase__ :Union[str, Any]=256 , lowerCAmelCase__ :str=1 , lowerCAmelCase__ :int=False , lowerCAmelCase__ :List[Any]=255 , **lowerCAmelCase__ :str , ) -> str: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : int = intermediate_size __SCREAMING_SNAKE_CASE : Dict = hidden_act __SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE : str = image_size __SCREAMING_SNAKE_CASE : Dict = patch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : Any = use_mask_token __SCREAMING_SNAKE_CASE : int = use_absolute_position_embeddings __SCREAMING_SNAKE_CASE : Tuple = use_relative_position_bias __SCREAMING_SNAKE_CASE : Union[str, Any] = use_shared_relative_position_bias __SCREAMING_SNAKE_CASE : Dict = layer_scale_init_value __SCREAMING_SNAKE_CASE : Dict = drop_path_rate __SCREAMING_SNAKE_CASE : List[str] = use_mean_pooling # decode head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : int = out_indices __SCREAMING_SNAKE_CASE : Any = pool_scales # auxiliary head attributes (semantic segmentation) __SCREAMING_SNAKE_CASE : Tuple = use_auxiliary_head __SCREAMING_SNAKE_CASE : Optional[Any] = auxiliary_loss_weight __SCREAMING_SNAKE_CASE : str = auxiliary_channels __SCREAMING_SNAKE_CASE : List[str] = auxiliary_num_convs __SCREAMING_SNAKE_CASE : str = auxiliary_concat_input __SCREAMING_SNAKE_CASE : int = semantic_loss_ignore_index class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = version.parse('''1.11''' ) @property def __magic_name__( self :Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __magic_name__( self :Tuple ) -> float: return 1E-4
696
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class _lowercase ( A__ ): '''simple docstring''' @require_torch def __magic_name__( self :Any ) -> Optional[int]: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __SCREAMING_SNAKE_CASE : Optional[int] = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' __SCREAMING_SNAKE_CASE : Optional[int] = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' __SCREAMING_SNAKE_CASE : List[str] = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache __SCREAMING_SNAKE_CASE : Dict = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(lowerCAmelCase__ ) BertModel.from_pretrained(lowerCAmelCase__ ) BertTokenizer.from_pretrained(lowerCAmelCase__ ) pipeline(task='''fill-mask''' , model=lowerCAmelCase__ ) # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE : Union[str, Any] = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE : Optional[int] = '''1''' __SCREAMING_SNAKE_CASE : str = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __magic_name__( self :Optional[Any] ) -> Optional[Any]: # python one-liner segments # this must be loaded before socket.socket is monkey-patched __SCREAMING_SNAKE_CASE : str = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' __SCREAMING_SNAKE_CASE : Optional[Any] = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' __SCREAMING_SNAKE_CASE : Optional[int] = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(lowerCAmelCase__ ) BertModel.from_pretrained(lowerCAmelCase__ ) BertTokenizer.from_pretrained(lowerCAmelCase__ ) pipeline(task='''fill-mask''' , model=lowerCAmelCase__ ) # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE : str = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed __SCREAMING_SNAKE_CASE : Dict = self.get_env() __SCREAMING_SNAKE_CASE : Any = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __magic_name__( self :List[Any] ) -> str: # this test is a bit tricky since TRANSFORMERS_OFFLINE can only be changed before # `transformers` is loaded, and it's too late for inside pytest - so we are changing it # while running an external program # python one-liner segments # this must be loaded before socket.socket is monkey-patched __SCREAMING_SNAKE_CASE : Tuple = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' __SCREAMING_SNAKE_CASE : Optional[Any] = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' __SCREAMING_SNAKE_CASE : Optional[int] = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE : Optional[int] = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed __SCREAMING_SNAKE_CASE : Tuple = self.get_env() __SCREAMING_SNAKE_CASE : List[str] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network __SCREAMING_SNAKE_CASE : List[str] = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE : Dict = '''1''' __SCREAMING_SNAKE_CASE : List[Any] = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : Any = ''' from transformers import pipeline ''' __SCREAMING_SNAKE_CASE : Optional[Any] = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' __SCREAMING_SNAKE_CASE : Optional[int] = self.get_env() __SCREAMING_SNAKE_CASE : List[str] = '''1''' __SCREAMING_SNAKE_CASE : List[Any] = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] __SCREAMING_SNAKE_CASE : str = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = ''' from transformers import AutoModel ''' __SCREAMING_SNAKE_CASE : Optional[Any] = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network __SCREAMING_SNAKE_CASE : Union[str, Any] = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed __SCREAMING_SNAKE_CASE : str = self.get_env() __SCREAMING_SNAKE_CASE : Dict = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files __SCREAMING_SNAKE_CASE : str = '''1''' __SCREAMING_SNAKE_CASE : Any = subprocess.run(lowerCAmelCase__ , env=lowerCAmelCase__ , check=lowerCAmelCase__ , capture_output=lowerCAmelCase__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
696
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __lowerCAmelCase : int ='Run commands across TPU VMs for initial setup before running `accelerate launch`.' def _UpperCamelCase ( lowercase__=None ): if subparsers is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = subparsers.add_parser('''tpu-config''' , description=_description ) else: __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description ) # Core arguments __SCREAMING_SNAKE_CASE : Dict = parser.add_argument_group( '''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' ) config_args.add_argument( '''--config_file''' , type=lowercase__ , default=lowercase__ , help='''Path to the config file to use for accelerate.''' , ) config_args.add_argument( '''--tpu_name''' , default=lowercase__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , ) config_args.add_argument( '''--tpu_zone''' , default=lowercase__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , ) __SCREAMING_SNAKE_CASE : List[str] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' ) pod_args.add_argument( '''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , ) pod_args.add_argument( '''--command_file''' , default=lowercase__ , help='''The path to the file containing the commands to run on the pod on startup.''' , ) pod_args.add_argument( '''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , ) pod_args.add_argument( '''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , ) pod_args.add_argument( '''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , ) pod_args.add_argument( '''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' ) if subparsers is not None: parser.set_defaults(func=lowercase__ ) return parser def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(lowercase__ ): __SCREAMING_SNAKE_CASE : str = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: __SCREAMING_SNAKE_CASE : Union[str, Any] = defaults.command_file if not args.command and defaults.commands is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = defaults.commands if not args.tpu_name: __SCREAMING_SNAKE_CASE : List[Any] = defaults.tpu_name if not args.tpu_zone: __SCREAMING_SNAKE_CASE : int = defaults.tpu_zone if args.accelerate_version == "dev": __SCREAMING_SNAKE_CASE : Dict = '''git+https://github.com/huggingface/accelerate.git''' elif args.accelerate_version == "latest": __SCREAMING_SNAKE_CASE : List[str] = '''accelerate -U''' elif isinstance(parse(args.accelerate_version ) , lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('''You must specify either a command file or a command to run on the pod.''' ) if args.command_file: with open(args.command_file , '''r''' ) as f: __SCREAMING_SNAKE_CASE : List[str] = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate __SCREAMING_SNAKE_CASE : Optional[Any] = ['''cd /usr/share'''] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command __SCREAMING_SNAKE_CASE : str = '''; '''.join(lowercase__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess __SCREAMING_SNAKE_CASE : List[str] = ['''gcloud'''] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {' '.join(lowercase__ )}''' ) return subprocess.run(lowercase__ ) print('''Successfully setup pod.''' ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = tpu_command_parser() __SCREAMING_SNAKE_CASE : str = parser.parse_args() tpu_command_launcher(lowercase__ )
696
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
1
from ....configuration_utils import PretrainedConfig from ....utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : str ={ 'Visual-Attention-Network/van-base': ( 'https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json' ), } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''van''' def __init__( self :Tuple , lowerCAmelCase__ :int=224 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Dict=[7, 3, 3, 3] , lowerCAmelCase__ :Optional[Any]=[4, 2, 2, 2] , lowerCAmelCase__ :Optional[int]=[64, 128, 320, 512] , lowerCAmelCase__ :Any=[3, 3, 12, 3] , lowerCAmelCase__ :List[str]=[8, 8, 4, 4] , lowerCAmelCase__ :Any="gelu" , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Any=1E-6 , lowerCAmelCase__ :Union[str, Any]=1E-2 , lowerCAmelCase__ :Union[str, Any]=0.0 , lowerCAmelCase__ :Any=0.0 , **lowerCAmelCase__ :int , ) -> Optional[int]: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = image_size __SCREAMING_SNAKE_CASE : Dict = num_channels __SCREAMING_SNAKE_CASE : List[str] = patch_sizes __SCREAMING_SNAKE_CASE : Any = strides __SCREAMING_SNAKE_CASE : str = hidden_sizes __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : int = mlp_ratios __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[Any] = layer_scale_init_value __SCREAMING_SNAKE_CASE : Any = drop_path_rate __SCREAMING_SNAKE_CASE : str = dropout_rate
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
1
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : Optional[Any] =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = XLMProphetNetTokenizer SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = True def __magic_name__( self :List[str] ) -> Any: super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE : Optional[Any] = XLMProphetNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__( self :Dict ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = '''[PAD]''' __SCREAMING_SNAKE_CASE : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''[PAD]''' ) self.assertEqual(vocab_keys[1] , '''[CLS]''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(lowerCAmelCase__ ) , 1_012 ) def __magic_name__( self :List[Any] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def __magic_name__( self :Tuple ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = XLMProphetNetTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''[UNK]''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''[UNK]''', '''.''', ] , ) @cached_property def __magic_name__( self :Any ) -> Tuple: return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' ) @slow def __magic_name__( self :Optional[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = '''Hello World!''' __SCREAMING_SNAKE_CASE : Any = [35_389, 6_672, 49, 2] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def __magic_name__( self :int ) -> Dict: # fmt: off __SCREAMING_SNAKE_CASE : List[str] = {'''input_ids''': [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
1
from __future__ import annotations def _UpperCamelCase ( lowercase__ ): if len(lowercase__ ) == 0: return [] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = min(lowercase__ ), max(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = int(max_value - min_value ) + 1 __SCREAMING_SNAKE_CASE : list[list] = [[] for _ in range(lowercase__ )] for i in my_list: buckets[int(i - min_value )].append(lowercase__ ) return [v for bucket in buckets for v in sorted(lowercase__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -1_0, 1_5, 2, -2]) == [-1_0, -2, 0, 1, 2, 1_5]
696
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __lowerCAmelCase : Any ={ # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class _lowercase : '''simple docstring''' def __init__( self :Tuple , lowerCAmelCase__ :int = 14 ) -> None: if group not in primes: raise ValueError('''Unsupported Group''' ) __SCREAMING_SNAKE_CASE : int = primes[group]['''prime'''] __SCREAMING_SNAKE_CASE : Optional[Any] = primes[group]['''generator'''] __SCREAMING_SNAKE_CASE : int = int(hexlify(urandom(32 ) ) , base=16 ) def __magic_name__( self :Optional[int] ) -> str: return hex(self.__private_key )[2:] def __magic_name__( self :int ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = pow(self.generator , self.__private_key , self.prime ) return hex(lowerCAmelCase__ )[2:] def __magic_name__( self :str , lowerCAmelCase__ :int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :str ) -> str: __SCREAMING_SNAKE_CASE : str = int(lowerCAmelCase__ , base=16 ) if not self.is_valid_public_key(lowerCAmelCase__ ): raise ValueError('''Invalid public key''' ) __SCREAMING_SNAKE_CASE : str = pow(lowerCAmelCase__ , self.__private_key , self.prime ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() @staticmethod def __magic_name__( lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase__ , (prime - 1) // 2 , lowerCAmelCase__ ) == 1 ) @staticmethod def __magic_name__( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :int = 14 ) -> str: __SCREAMING_SNAKE_CASE : Union[str, Any] = int(lowerCAmelCase__ , base=16 ) __SCREAMING_SNAKE_CASE : Dict = int(lowerCAmelCase__ , base=16 ) __SCREAMING_SNAKE_CASE : int = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''Invalid public key''' ) __SCREAMING_SNAKE_CASE : Tuple = pow(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return shaaaa(str(lowerCAmelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
696
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
1
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __lowerCAmelCase : int =None __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Dict ={ 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 __lowerCAmelCase : int ={ 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : int = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE__ : Optional[int] = TaTokenizer SCREAMING_SNAKE_CASE__ : List[int] = [] def __init__( self :str , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :List[Any]="</s>" , lowerCAmelCase__ :Any="<unk>" , lowerCAmelCase__ :Any="<pad>" , lowerCAmelCase__ :Dict=100 , lowerCAmelCase__ :Dict=None , **lowerCAmelCase__ :Optional[int] , ) -> Optional[int]: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: __SCREAMING_SNAKE_CASE : str = [f'''<extra_id_{i}>''' for i in range(lowerCAmelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens __SCREAMING_SNAKE_CASE : List[Any] = len(set(filter(lambda lowerCAmelCase__ : bool('''extra_id_''' in str(lowerCAmelCase__ ) ) , lowerCAmelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids''' ''' tokens''' ) super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , extra_ids=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_file __SCREAMING_SNAKE_CASE : Optional[Any] = False if not self.vocab_file else True __SCREAMING_SNAKE_CASE : Tuple = extra_ids @staticmethod def __magic_name__( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[int] ) -> Optional[int]: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: __SCREAMING_SNAKE_CASE : Optional[Any] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( '''This tokenizer was incorrectly instantiated with a model max length of''' f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' ''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with''' ''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on''' f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' ''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please''' ''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , lowerCAmelCase__ , ) return max_model_length def __magic_name__( self :List[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) logger.info(f'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : str = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: __SCREAMING_SNAKE_CASE : List[Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : List[Any] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __magic_name__( self :Tuple ) -> Optional[int]: return list( set(filter(lambda lowerCAmelCase__ : bool(re.search(r'''<extra_id_\d+>''' , lowerCAmelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def __magic_name__( self :List[str] ) -> Dict: return [self.convert_tokens_to_ids(lowerCAmelCase__ ) for token in self.get_sentinel_tokens()]
696
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
1
def _UpperCamelCase ( lowercase__ , lowercase__ ): return price * (1 + tax_rate) if __name__ == "__main__": print(f"""{price_plus_tax(1_0_0, 0.2_5) = }""") print(f"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
696
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = DownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = '''down''' def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = ResnetDownsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = '''down''' def __magic_name__( self :str ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = AttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''down''' def __magic_name__( self :Union[str, Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = CrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = '''down''' def __magic_name__( self :Any ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[Any] = 32 return init_dict, inputs_dict def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = '''down''' @property def __magic_name__( self :Tuple ) -> Union[str, Any]: return super().get_dummy_input(include_encoder_hidden_states=lowerCAmelCase__ ) def __magic_name__( self :str ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __magic_name__( self :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : Any = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = SkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = '''down''' @property def __magic_name__( self :str ) -> Tuple: return super().get_dummy_input(include_skip_sample=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Tuple = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = AttnSkipDownBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = '''down''' @property def __magic_name__( self :str ) -> Optional[int]: return super().get_dummy_input(include_skip_sample=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = DownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = '''down''' @property def __magic_name__( self :Any ) -> List[Any]: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Any = { '''in_channels''': 32, '''out_channels''': 32, } __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict def __magic_name__( self :Union[str, Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[int] = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = AttnDownEncoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Tuple = '''down''' @property def __magic_name__( self :str ) -> Any: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = { '''in_channels''': 32, '''out_channels''': 32, } __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = UNetMidBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Dict = '''mid''' def __magic_name__( self :Dict ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = { '''in_channels''': 32, '''temb_channels''': 128, } __SCREAMING_SNAKE_CASE : List[Any] = self.dummy_input return init_dict, inputs_dict def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[str] = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = UNetMidBlockaDCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = '''mid''' def __magic_name__( self :Optional[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Optional[int] = 32 return init_dict, inputs_dict def __magic_name__( self :Optional[int] ) -> int: __SCREAMING_SNAKE_CASE : int = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = '''mid''' @property def __magic_name__( self :List[str] ) -> Optional[int]: return super().get_dummy_input(include_encoder_hidden_states=lowerCAmelCase__ ) def __magic_name__( self :int ) -> str: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE : List[str] = 32 return init_dict, inputs_dict def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = UpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : int = '''up''' @property def __magic_name__( self :Union[str, Any] ) -> List[Any]: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE : Tuple = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = ResnetUpsampleBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''up''' @property def __magic_name__( self :str ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : List[Any] = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = CrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[Any] = '''up''' @property def __magic_name__( self :Optional[Any] ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Tuple = 32 return init_dict, inputs_dict def __magic_name__( self :Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = SimpleCrossAttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : List[str] = '''up''' @property def __magic_name__( self :Optional[int] ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ , include_encoder_hidden_states=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = super().prepare_init_args_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Dict = 32 return init_dict, inputs_dict def __magic_name__( self :List[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : int = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = AttnUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Union[str, Any] = '''up''' @property def __magic_name__( self :Any ) -> str: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __magic_name__( self :Optional[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = SkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : Any = '''up''' @property def __magic_name__( self :str ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = AttnSkipUpBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : str = '''up''' @property def __magic_name__( self :Union[str, Any] ) -> Tuple: return super().get_dummy_input(include_res_hidden_states_tuple=lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = UpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : int = '''up''' @property def __magic_name__( self :List[str] ) -> Union[str, Any]: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = {'''in_channels''': 32, '''out_channels''': 32} __SCREAMING_SNAKE_CASE : Any = self.dummy_input return init_dict, inputs_dict def __magic_name__( self :Any ) -> Any: __SCREAMING_SNAKE_CASE : Union[str, Any] = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(lowerCAmelCase__ ) class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = AttnUpDecoderBlockaD # noqa F405 SCREAMING_SNAKE_CASE__ : int = '''up''' @property def __magic_name__( self :List[str] ) -> str: return super().get_dummy_input(include_temb=lowerCAmelCase__ ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Dict = {'''in_channels''': 32, '''out_channels''': 32} __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_input return init_dict, inputs_dict def __magic_name__( self :Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(lowerCAmelCase__ )
696
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
1
def _UpperCamelCase ( lowercase__ ): return str(lowercase__ ) == str(lowercase__ )[::-1] def _UpperCamelCase ( lowercase__ ): return int(lowercase__ ) + int(str(lowercase__ )[::-1] ) def _UpperCamelCase ( lowercase__ = 10000 ): __SCREAMING_SNAKE_CASE : int = [] for num in range(1 , lowercase__ ): __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : List[str] = num while iterations < 50: __SCREAMING_SNAKE_CASE : Any = sum_reverse(lowercase__ ) iterations += 1 if is_palindrome(lowercase__ ): break else: lychrel_nums.append(lowercase__ ) return len(lowercase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
696
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
1
import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class _lowercase : '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict=13 , lowerCAmelCase__ :List[str]=7 , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :int=99 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=5 , lowerCAmelCase__ :Union[str, Any]=4 , lowerCAmelCase__ :List[str]=37 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :Dict=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :str=512 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :List[str]=0.02 , lowerCAmelCase__ :Any=3 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Tuple=None , ) -> int: __SCREAMING_SNAKE_CASE : Dict = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : str = is_training __SCREAMING_SNAKE_CASE : str = use_input_mask __SCREAMING_SNAKE_CASE : List[str] = use_token_type_ids __SCREAMING_SNAKE_CASE : str = use_labels __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Any = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Dict = num_attention_heads __SCREAMING_SNAKE_CASE : str = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : str = type_vocab_size __SCREAMING_SNAKE_CASE : Tuple = type_sequence_label_size __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Tuple = num_labels __SCREAMING_SNAKE_CASE : List[Any] = num_choices __SCREAMING_SNAKE_CASE : int = scope __SCREAMING_SNAKE_CASE : Union[str, Any] = vocab_size - 1 def __magic_name__( self :int ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : str = None if self.use_input_mask: __SCREAMING_SNAKE_CASE : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __SCREAMING_SNAKE_CASE : str = None if self.use_labels: __SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__( self :Optional[int] ) -> Dict: return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : str = True return config, input_ids, input_mask, token_labels def __magic_name__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : str = GPTNeoXModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : Optional[Any] = True __SCREAMING_SNAKE_CASE : str = GPTNeoXModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> str: __SCREAMING_SNAKE_CASE : int = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = self.num_labels __SCREAMING_SNAKE_CASE : str = GPTNeoXForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : Any = self.num_labels __SCREAMING_SNAKE_CASE : List[str] = GPTNeoXForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE : int = self.num_labels __SCREAMING_SNAKE_CASE : int = GPTNeoXForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[int] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : Dict = GPTNeoXForCausalLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() # first forward pass __SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , use_cache=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : str = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = output_from_no_past['''hidden_states'''][0] __SCREAMING_SNAKE_CASE : Optional[int] = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , past_key_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , )['''hidden_states'''][0] # select random slice __SCREAMING_SNAKE_CASE : Any = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def __magic_name__( self :List[str] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs __SCREAMING_SNAKE_CASE : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : List[str] = (GPTNeoXForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : str = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Union[str, Any] = False def __magic_name__( self :str ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = GPTNeoXModelTester(self ) __SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=64 , num_attention_heads=8 ) def __magic_name__( self :Any ) -> str: self.config_tester.run_common_tests() def __magic_name__( self :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> List[Any]: # This regression test was failing with PyTorch < 1.3 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() __SCREAMING_SNAKE_CASE : List[Any] = None self.model_tester.create_and_check_model_as_decoder(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*lowerCAmelCase__ ) def __magic_name__( self :Tuple ) -> Dict: __SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> Any: __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ ) def __magic_name__( self :Dict ) -> int: __SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __magic_name__( self :Any ) -> int: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __magic_name__( self :Dict , lowerCAmelCase__ :Any ) -> List[str]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs_for_common() __SCREAMING_SNAKE_CASE : Dict = ids_tensor([1, 10] , config.vocab_size ) __SCREAMING_SNAKE_CASE : Any = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : List[str] = GPTNeoXModel(lowerCAmelCase__ ) original_model.to(lowerCAmelCase__ ) original_model.eval() __SCREAMING_SNAKE_CASE : List[Any] = original_model(lowerCAmelCase__ ).last_hidden_state __SCREAMING_SNAKE_CASE : Dict = original_model(lowerCAmelCase__ ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __SCREAMING_SNAKE_CASE : int = {'''type''': scaling_type, '''factor''': 10.0} __SCREAMING_SNAKE_CASE : Dict = GPTNeoXModel(lowerCAmelCase__ ) scaled_model.to(lowerCAmelCase__ ) scaled_model.eval() __SCREAMING_SNAKE_CASE : Tuple = scaled_model(lowerCAmelCase__ ).last_hidden_state __SCREAMING_SNAKE_CASE : Any = scaled_model(lowerCAmelCase__ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-5 ) ) @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' @slow def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Any = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: __SCREAMING_SNAKE_CASE : List[Any] = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __SCREAMING_SNAKE_CASE : Dict = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' __SCREAMING_SNAKE_CASE : List[str] = model.generate(**lowerCAmelCase__ , do_sample=lowerCAmelCase__ , max_new_tokens=20 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.batch_decode(lowerCAmelCase__ )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
696
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
1
import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig __lowerCAmelCase : Optional[int] ={ 'facebook/maskformer-swin-base-ade': ( 'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json' ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } __lowerCAmelCase : int =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''maskformer''' SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''mask_feature_size'''} SCREAMING_SNAKE_CASE__ : Tuple = ['''resnet''', '''swin'''] SCREAMING_SNAKE_CASE__ : List[str] = ['''detr'''] def __init__( self :List[Any] , lowerCAmelCase__ :int = 256 , lowerCAmelCase__ :int = 256 , lowerCAmelCase__ :float = 0.1 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[Dict] = None , lowerCAmelCase__ :Optional[Dict] = None , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :float = 1.0 , lowerCAmelCase__ :float = 1.0 , lowerCAmelCase__ :float = 1.0 , lowerCAmelCase__ :float = 20.0 , lowerCAmelCase__ :Optional[bool] = None , **lowerCAmelCase__ :Optional[Any] , ) -> int: if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __SCREAMING_SNAKE_CASE : Any = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = backbone_config.pop('''model_type''' ) __SCREAMING_SNAKE_CASE : Dict = CONFIG_MAPPING[backbone_model_type] __SCREAMING_SNAKE_CASE : List[str] = config_class.from_dict(lowerCAmelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __SCREAMING_SNAKE_CASE : List[str] = DetrConfig() else: # verify that the decoder is supported __SCREAMING_SNAKE_CASE : Dict = ( decoder_config.pop('''model_type''' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = CONFIG_MAPPING[decoder_type] __SCREAMING_SNAKE_CASE : int = config_class.from_dict(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = backbone_config __SCREAMING_SNAKE_CASE : Union[str, Any] = decoder_config # main feature dimension for the model __SCREAMING_SNAKE_CASE : Optional[Any] = fpn_feature_size __SCREAMING_SNAKE_CASE : int = mask_feature_size # initializer __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : int = init_xavier_std # Hungarian matcher && loss __SCREAMING_SNAKE_CASE : Union[str, Any] = cross_entropy_weight __SCREAMING_SNAKE_CASE : List[Any] = dice_weight __SCREAMING_SNAKE_CASE : Optional[Any] = mask_weight __SCREAMING_SNAKE_CASE : str = use_auxiliary_loss __SCREAMING_SNAKE_CASE : Dict = no_object_weight __SCREAMING_SNAKE_CASE : Tuple = output_auxiliary_logits __SCREAMING_SNAKE_CASE : Any = self.decoder_config.encoder_attention_heads __SCREAMING_SNAKE_CASE : List[str] = self.decoder_config.num_hidden_layers super().__init__(**lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] , lowerCAmelCase__ :PretrainedConfig , lowerCAmelCase__ :PretrainedConfig , **lowerCAmelCase__ :Any ) -> Tuple: return cls( backbone_config=lowerCAmelCase__ , decoder_config=lowerCAmelCase__ , **lowerCAmelCase__ , ) def __magic_name__( self :Optional[int] ) -> Dict[str, any]: __SCREAMING_SNAKE_CASE : str = copy.deepcopy(self.__dict__ ) __SCREAMING_SNAKE_CASE : List[str] = self.backbone_config.to_dict() __SCREAMING_SNAKE_CASE : Optional[Any] = self.decoder_config.to_dict() __SCREAMING_SNAKE_CASE : Any = self.__class__.model_type return output
696
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
1
import itertools import string from collections.abc import Generator, Iterable def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = iter(lowercase__ ) while True: __SCREAMING_SNAKE_CASE : List[str] = tuple(itertools.islice(lowercase__ , lowercase__ ) ) if not chunk: return yield chunk def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __SCREAMING_SNAKE_CASE : Optional[int] = '''''' if len(lowercase__ ) < 2: return dirty for i in range(len(lowercase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(lowercase__ ) & 1: clean += "X" return clean def _UpperCamelCase ( lowercase__ ): # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) __SCREAMING_SNAKE_CASE : str = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __SCREAMING_SNAKE_CASE : Optional[Any] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(lowercase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(lowercase__ ) return table def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Dict = generate_table(lowercase__ ) __SCREAMING_SNAKE_CASE : int = prepare_input(lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase__ , 2 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(lowercase__ ) , 5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = divmod(table.index(lowercase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = generate_table(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(lowercase__ , 2 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = divmod(table.index(lowercase__ ) , 5 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = divmod(table.index(lowercase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
696
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Optional[int] ={ 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] =['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any =['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] =[ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Tuple =[ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __lowerCAmelCase : List[str] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :str ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE : str = ['''''', '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __SCREAMING_SNAKE_CASE : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __SCREAMING_SNAKE_CASE : List[str] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] __SCREAMING_SNAKE_CASE : Optional[Any] = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Any = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } __SCREAMING_SNAKE_CASE : List[Any] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Any , **lowerCAmelCase__ :int ) -> Tuple: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowerCAmelCase__ ) def __magic_name__( self :List[str] , **lowerCAmelCase__ :str ) -> Optional[int]: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token='''!''' , **lowerCAmelCase__ ) def __magic_name__( self :Dict , **lowerCAmelCase__ :List[Any] ) -> List[str]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__( self :Optional[int] ) -> Tuple: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :List[Any] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE : Optional[Any] = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__( self :Any ) -> int: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor(do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> int: __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer() __SCREAMING_SNAKE_CASE : str = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : int = image_processor(lowerCAmelCase__ , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : Tuple = processor(images=lowerCAmelCase__ , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __magic_name__( self :Tuple ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_image_processor() __SCREAMING_SNAKE_CASE : int = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = '''lower newer''' __SCREAMING_SNAKE_CASE : Tuple = processor(text=lowerCAmelCase__ , return_tensors='''np''' ) __SCREAMING_SNAKE_CASE : int = tokenizer(lowerCAmelCase__ , return_tensors='''np''' ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = self.get_image_processor() __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[int] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = '''lower newer''' __SCREAMING_SNAKE_CASE : int = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : str = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[str] = '''google/owlvit-base-patch32''' __SCREAMING_SNAKE_CASE : Dict = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = ['''cat''', '''nasa badge'''] __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[Any] = '''google/owlvit-base-patch32''' __SCREAMING_SNAKE_CASE : Dict = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = [['''cat''', '''nasa badge'''], ['''person''']] __SCREAMING_SNAKE_CASE : int = processor(text=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 16 __SCREAMING_SNAKE_CASE : Dict = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = '''google/owlvit-base-patch32''' __SCREAMING_SNAKE_CASE : str = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = ['''cat''', '''nasa badge'''] __SCREAMING_SNAKE_CASE : Optional[int] = processor(text=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = 16 __SCREAMING_SNAKE_CASE : Any = inputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[Any] = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask'''] ) self.assertEqual(inputs['''input_ids'''].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __magic_name__( self :List[Any] ) -> List[str]: __SCREAMING_SNAKE_CASE : str = self.get_image_processor() __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE : Optional[Any] = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ['''query_pixel_values''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__( self :Optional[int] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_image_processor() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Dict = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE : Tuple = processor.batch_decode(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
696
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = KandinskyVaaInpaintPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image'''] SCREAMING_SNAKE_CASE__ : Tuple = [ '''image_embeds''', '''negative_image_embeds''', '''image''', '''mask_image''', ] SCREAMING_SNAKE_CASE__ : List[Any] = [ '''generator''', '''height''', '''width''', '''latents''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE__ : int = False @property def __magic_name__( self :int ) -> Any: return 32 @property def __magic_name__( self :List[str] ) -> List[Any]: return 32 @property def __magic_name__( self :Dict ) -> Tuple: return self.time_input_dim @property def __magic_name__( self :List[str] ) -> List[str]: return self.time_input_dim * 4 @property def __magic_name__( self :List[Any] ) -> int: return 100 @property def __magic_name__( self :Optional[Any] ) -> Optional[Any]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''in_channels''': 9, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __SCREAMING_SNAKE_CASE : int = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def __magic_name__( self :Dict ) -> Any: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__( self :Optional[int] ) -> List[Any]: __SCREAMING_SNAKE_CASE : str = self.dummy_unet __SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_movq __SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler( num_train_timesteps=1_000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Dict = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__( self :int , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Any=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image __SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : int = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create mask __SCREAMING_SNAKE_CASE : Optional[Any] = np.ones((64, 64) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : int = 0 if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''image''': init_image, '''mask_image''': mask, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 2, '''guidance_scale''': 4.0, '''output_type''': '''np''', } return inputs def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = '''cpu''' __SCREAMING_SNAKE_CASE : str = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = self.pipeline_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : str = output.images __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] print(f'''image.shape {image.shape}''' ) assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :Any ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __SCREAMING_SNAKE_CASE : List[Any] = np.ones((768, 768) , dtype=np.floataa ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''a hat''' __SCREAMING_SNAKE_CASE : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaInpaintPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : List[str] = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() __SCREAMING_SNAKE_CASE : Any = pipeline( image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
696
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
1
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _lowercase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = MODEL_FOR_MASKED_LM_MAPPING SCREAMING_SNAKE_CASE__ : Any = TF_MODEL_FOR_MASKED_LM_MAPPING def __magic_name__( self :str ) -> List[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : str = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) __SCREAMING_SNAKE_CASE : List[str] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-0_5, '''token''': 38_015, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-0_5, '''token''': 25_506, '''token_str''': ''' accuser'''}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-0_5, '''token''': 38_015, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-0_5, '''token''': 25_506, '''token_str''': ''' accuser''', }, ] , ) __SCREAMING_SNAKE_CASE : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-0_5, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-0_5, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-0_5, '''token''': 2_941, '''token_str''': ''' Te'''}, ] , ) @require_torch def __magic_name__( self :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-0_5, '''token''': 35_676, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-0_5, '''token''': 16_416, '''token_str''': '''ELS'''}, ] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-0_5, '''token''': 35_676, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-0_5, '''token''': 16_416, '''token_str''': '''ELS'''}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-0_5, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-0_5, '''token''': 2_941, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-0_5, '''token''': 13_606, '''token_str''': ''' Clara'''}, ] , ) __SCREAMING_SNAKE_CASE : List[Any] = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ , decimals=6 ) , [ [ { '''score''': 2.2E-0_5, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-0_5, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-0_5, '''token''': 35_676, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-0_5, '''token''': 16_416, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def __magic_name__( self :Any ) -> int: __SCREAMING_SNAKE_CASE : Tuple = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() __SCREAMING_SNAKE_CASE : int = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) @slow @require_torch def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Any = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(lowerCAmelCase__ ) @slow @require_tf def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(lowerCAmelCase__ ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[str] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 610, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 1_573, '''token_str''': ''' Chris'''}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 2_201, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 12_790, '''token_str''': ''' Lyon''', }, ] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 3_499, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 13_606, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 2_941, '''token_str''': ''' Te'''}, ] , ) @require_torch def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Dict = None self.run_pipeline_test(lowerCAmelCase__ , [] ) @require_tf def __magic_name__( self :Optional[int] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Tuple = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) __SCREAMING_SNAKE_CASE : str = None __SCREAMING_SNAKE_CASE : Tuple = None self.run_pipeline_test(lowerCAmelCase__ , [] ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]: if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def __magic_name__( self :Any , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[int] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = fill_masker.tokenizer __SCREAMING_SNAKE_CASE : Union[str, Any] = fill_masker.model __SCREAMING_SNAKE_CASE : Any = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( lowerCAmelCase__ , [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ] , ) __SCREAMING_SNAKE_CASE : Optional[int] = fill_masker([f'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( lowerCAmelCase__ , [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( lowerCAmelCase__ , [ [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ], [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ], ] , ) with self.assertRaises(lowerCAmelCase__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(lowerCAmelCase__ ): fill_masker('''This is''' ) self.run_test_top_k(lowerCAmelCase__ , lowerCAmelCase__ ) self.run_test_targets(lowerCAmelCase__ , lowerCAmelCase__ ) self.run_test_top_k_targets(lowerCAmelCase__ , lowerCAmelCase__ ) self.fill_mask_with_duplicate_targets_and_top_k(lowerCAmelCase__ , lowerCAmelCase__ ) self.fill_mask_with_multiple_masks(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.get_vocab() __SCREAMING_SNAKE_CASE : List[str] = sorted(vocab.keys() )[:2] # Pipeline argument __SCREAMING_SNAKE_CASE : List[str] = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , targets=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase__ , [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ] , ) __SCREAMING_SNAKE_CASE : Any = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(lowerCAmelCase__ ) ) # Call argument __SCREAMING_SNAKE_CASE : Tuple = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase__ ) self.assertEqual( lowerCAmelCase__ , [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ] , ) __SCREAMING_SNAKE_CASE : List[str] = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(lowerCAmelCase__ ) ) # Score equivalence __SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = [top_mask['''token_str'''] for top_mask in outputs] __SCREAMING_SNAKE_CASE : Tuple = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase__ ) == set(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[str] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowerCAmelCase__ ) , nested_simplify(lowerCAmelCase__ ) ) # Raises with invalid with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets='''''' ) def __magic_name__( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Dict = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , top_k=2 ) __SCREAMING_SNAKE_CASE : Dict = fill_masker(f'''This is a {tokenizer.mask_token}''' ) self.assertEqual( lowerCAmelCase__ , [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ] , ) __SCREAMING_SNAKE_CASE : Tuple = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ] , ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , nested_simplify(lowerCAmelCase__ ) ) def __magic_name__( self :str , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : List[str] = tokenizer.get_vocab() __SCREAMING_SNAKE_CASE : Optional[int] = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) # top_k=2, ntargets=3 __SCREAMING_SNAKE_CASE : List[str] = sorted(vocab.keys() )[:3] __SCREAMING_SNAKE_CASE : str = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=lowerCAmelCase__ ) # If we use the most probably targets, and filter differently, we should still # have the same results __SCREAMING_SNAKE_CASE : List[str] = [el['''token_str'''] for el in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x["score"] , reverse=lowerCAmelCase__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowerCAmelCase__ ).issubset(lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=lowerCAmelCase__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(lowerCAmelCase__ ) , nested_simplify(lowerCAmelCase__ ) ) def __magic_name__( self :Dict , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : Any = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = tokenizer.get_vocab() # String duplicates + id duplicates __SCREAMING_SNAKE_CASE : Dict = sorted(vocab.keys() )[:3] __SCREAMING_SNAKE_CASE : Optional[int] = [targets[0], targets[1], targets[0], targets[2], targets[1]] __SCREAMING_SNAKE_CASE : Tuple = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=lowerCAmelCase__ , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowerCAmelCase__ ) , 3 ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = FillMaskPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( lowerCAmelCase__ , [ [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ], [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ], [ {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, {'''sequence''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ ), '''token''': ANY(lowerCAmelCase__ ), '''token_str''': ANY(lowerCAmelCase__ )}, ], ] , )
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
1
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor __lowerCAmelCase : List[str] =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' def __init__( self :Optional[Any] , *lowerCAmelCase__ :List[str] , **lowerCAmelCase__ :Optional[Any] ) -> None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
1
def _UpperCamelCase ( lowercase__ ): # noqa: E741 __SCREAMING_SNAKE_CASE : Dict = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : List[str] = [0] * n __SCREAMING_SNAKE_CASE : int = [False] * n __SCREAMING_SNAKE_CASE : Union[str, Any] = [False] * n def dfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if parent == root: out_edge_count += 1 __SCREAMING_SNAKE_CASE : List[Any] = True __SCREAMING_SNAKE_CASE : int = at for to in l[at]: if to == parent: pass elif not visited[to]: __SCREAMING_SNAKE_CASE : Optional[Any] = dfs(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: __SCREAMING_SNAKE_CASE : Optional[int] = True # AP found via cycle if at == low[to]: __SCREAMING_SNAKE_CASE : Optional[int] = True else: __SCREAMING_SNAKE_CASE : Optional[Any] = min(low[at] , lowercase__ ) return out_edge_count for i in range(lowercase__ ): if not visited[i]: __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : int = dfs(lowercase__ , lowercase__ , -1 , lowercase__ ) __SCREAMING_SNAKE_CASE : Any = out_edge_count > 1 for x in range(len(lowercase__ ) ): if is_art[x] is True: print(lowercase__ ) # Adjacency list of graph __lowerCAmelCase : List[Any] ={ 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowerCAmelCase : Any ={ 'configuration_bridgetower': [ 'BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BridgeTowerConfig', 'BridgeTowerTextConfig', 'BridgeTowerVisionConfig', ], 'processing_bridgetower': ['BridgeTowerProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[int] =['BridgeTowerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST', 'BridgeTowerForContrastiveLearning', 'BridgeTowerForImageAndTextRetrieval', 'BridgeTowerForMaskedLM', 'BridgeTowerModel', 'BridgeTowerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_bridgetower import ( BRIDGETOWER_PRETRAINED_CONFIG_ARCHIVE_MAP, BridgeTowerConfig, BridgeTowerTextConfig, BridgeTowerVisionConfig, ) from .processing_bridgetower import BridgeTowerProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_bridgetower import BridgeTowerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bridgetower import ( BRIDGETOWER_PRETRAINED_MODEL_ARCHIVE_LIST, BridgeTowerForContrastiveLearning, BridgeTowerForImageAndTextRetrieval, BridgeTowerForMaskedLM, BridgeTowerModel, BridgeTowerPreTrainedModel, ) else: import sys __lowerCAmelCase : str =_LazyModule(__name__, globals()['__file__'], _import_structure)
696
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = ['''input_features''', '''attention_mask'''] def __init__( self :Any , lowerCAmelCase__ :Tuple=80 , lowerCAmelCase__ :Dict=16_000 , lowerCAmelCase__ :Optional[Any]=0.0 , lowerCAmelCase__ :Union[str, Any]=10 , lowerCAmelCase__ :Tuple=25 , lowerCAmelCase__ :List[str]="hamming_window" , lowerCAmelCase__ :List[Any]=3_2768.0 , lowerCAmelCase__ :str=0.97 , lowerCAmelCase__ :int=1.0 , lowerCAmelCase__ :str=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :Dict=False , **lowerCAmelCase__ :Any , ) -> List[Any]: super().__init__(feature_size=lowerCAmelCase__ , sampling_rate=lowerCAmelCase__ , padding_value=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = feature_size __SCREAMING_SNAKE_CASE : str = sampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = padding_value __SCREAMING_SNAKE_CASE : Optional[int] = hop_length __SCREAMING_SNAKE_CASE : int = win_length __SCREAMING_SNAKE_CASE : Dict = frame_signal_scale __SCREAMING_SNAKE_CASE : Any = preemphasis_coeff __SCREAMING_SNAKE_CASE : Tuple = mel_floor __SCREAMING_SNAKE_CASE : Union[str, Any] = normalize_means __SCREAMING_SNAKE_CASE : Any = normalize_vars __SCREAMING_SNAKE_CASE : Optional[int] = win_function __SCREAMING_SNAKE_CASE : str = return_attention_mask __SCREAMING_SNAKE_CASE : Optional[Any] = win_length * sampling_rate // 1_000 __SCREAMING_SNAKE_CASE : int = hop_length * sampling_rate // 1_000 __SCREAMING_SNAKE_CASE : Dict = optimal_fft_length(self.sample_size ) __SCREAMING_SNAKE_CASE : Optional[int] = (self.n_fft // 2) + 1 def __magic_name__( self :int , lowerCAmelCase__ :np.array ) -> np.ndarray: if self.win_function == "hamming_window": __SCREAMING_SNAKE_CASE : Any = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : int = window_function(window_length=self.sample_size , name=self.win_function ) __SCREAMING_SNAKE_CASE : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __SCREAMING_SNAKE_CASE : int = spectrogram( one_waveform * self.frame_signal_scale , window=lowerCAmelCase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowerCAmelCase__ , preemphasis=self.preemphasis_coeff , mel_filters=lowerCAmelCase__ , mel_floor=self.mel_floor , log_mel='''log''' , ) return msfc_features.T def __magic_name__( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :List[Any] ) -> Any: # make sure we normalize float32 arrays if self.normalize_means: __SCREAMING_SNAKE_CASE : Dict = x[:input_length].mean(axis=0 ) __SCREAMING_SNAKE_CASE : Any = np.subtract(lowerCAmelCase__ , lowerCAmelCase__ ) if self.normalize_vars: __SCREAMING_SNAKE_CASE : Union[str, Any] = x[:input_length].std(axis=0 ) __SCREAMING_SNAKE_CASE : Any = np.divide(lowerCAmelCase__ , lowerCAmelCase__ ) if input_length < x.shape[0]: __SCREAMING_SNAKE_CASE : Optional[int] = padding_value # make sure array is in float32 __SCREAMING_SNAKE_CASE : int = x.astype(np.floataa ) return x def __magic_name__( self :int , lowerCAmelCase__ :List[np.ndarray] , lowerCAmelCase__ :Optional[np.ndarray] = None ) -> List[np.ndarray]: __SCREAMING_SNAKE_CASE : Tuple = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowerCAmelCase__ , lowerCAmelCase__ , self.padding_value ) for x, n in zip(lowerCAmelCase__ , lowerCAmelCase__ )] def __call__( self :Optional[int] , lowerCAmelCase__ :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase__ :Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[int] = None , **lowerCAmelCase__ :int , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) __SCREAMING_SNAKE_CASE : Any = isinstance(lowerCAmelCase__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = is_batched_numpy or ( isinstance(lowerCAmelCase__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase__ , np.ndarray ): __SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(lowerCAmelCase__ , dtype=np.floataa ) elif isinstance(lowerCAmelCase__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Dict = raw_speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : Union[str, Any] = [raw_speech] # extract fbank features __SCREAMING_SNAKE_CASE : str = [self._extract_mfsc_features(lowerCAmelCase__ ) for one_waveform in raw_speech] # convert into correct format for padding __SCREAMING_SNAKE_CASE : Any = BatchFeature({'''input_features''': features} ) __SCREAMING_SNAKE_CASE : Optional[int] = self.pad( lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) # make sure list is in array format __SCREAMING_SNAKE_CASE : str = padded_inputs.get('''input_features''' ) if isinstance(input_features[0] , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [np.asarray(lowerCAmelCase__ , dtype=np.floataa ) for feature in input_features] __SCREAMING_SNAKE_CASE : Any = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __SCREAMING_SNAKE_CASE : str = [np.asarray(lowerCAmelCase__ , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: __SCREAMING_SNAKE_CASE : Tuple = ( np.array(lowerCAmelCase__ , dtype=np.intaa ) if self._get_padding_strategies(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __SCREAMING_SNAKE_CASE : Dict = self.normalize( padded_inputs['''input_features'''] , attention_mask=lowerCAmelCase__ ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : Dict = padded_inputs.convert_to_tensors(lowerCAmelCase__ ) return padded_inputs
696
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
1
from datetime import datetime as dt import os from github import Github __lowerCAmelCase : Dict =[ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Dict = g.get_repo('''huggingface/transformers''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : List[Any] = sorted([comment for comment in issue.get_comments()] , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
696
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
1
from math import factorial def _UpperCamelCase ( lowercase__ = 100 ): return sum(map(lowercase__ , str(factorial(lowercase__ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
696
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Optional[Any] ) -> str: super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(3 , 4 ) __SCREAMING_SNAKE_CASE : str = nn.BatchNormad(4 ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(4 , 5 ) def __magic_name__( self :Optional[int] , lowerCAmelCase__ :Tuple ) -> Any: return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> str: __SCREAMING_SNAKE_CASE : List[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , model.state_dict() ) __SCREAMING_SNAKE_CASE : List[str] = os.path.join(lowerCAmelCase__ , '''index.json''' ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(lowerCAmelCase__ , f'''{key}.dat''' ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) # TODO: add tests on the fact weights are properly loaded def __magic_name__( self :int ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[Any] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: __SCREAMING_SNAKE_CASE : str = torch.randn(2 , 3 , dtype=lowerCAmelCase__ ) with TemporaryDirectory() as tmp_dir: __SCREAMING_SNAKE_CASE : Tuple = offload_weight(lowerCAmelCase__ , '''weight''' , lowerCAmelCase__ , {} ) __SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(lowerCAmelCase__ , '''weight.dat''' ) self.assertTrue(os.path.isfile(lowerCAmelCase__ ) ) self.assertDictEqual(lowerCAmelCase__ , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(lowerCAmelCase__ ).split('''.''' )[1]}} ) __SCREAMING_SNAKE_CASE : List[Any] = load_offloaded_weight(lowerCAmelCase__ , index['''weight'''] ) self.assertTrue(torch.equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = ModelForTest() __SCREAMING_SNAKE_CASE : int = model.state_dict() __SCREAMING_SNAKE_CASE : List[Any] = {k: v for k, v in state_dict.items() if '''linear2''' not in k} __SCREAMING_SNAKE_CASE : Optional[int] = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = OffloadedWeightsLoader(state_dict=lowerCAmelCase__ , save_folder=lowerCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase__ , weight_map[key] ) ) __SCREAMING_SNAKE_CASE : Dict = {k: v for k, v in state_dict.items() if '''weight''' in k} __SCREAMING_SNAKE_CASE : Union[str, Any] = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = OffloadedWeightsLoader(state_dict=lowerCAmelCase__ , save_folder=lowerCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase__ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) # Duplicates are removed __SCREAMING_SNAKE_CASE : Optional[int] = OffloadedWeightsLoader(state_dict=lowerCAmelCase__ , save_folder=lowerCAmelCase__ ) # Every key is there with the right value self.assertEqual(sorted(lowerCAmelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCAmelCase__ , weight_map[key] ) ) def __magic_name__( self :str ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} __SCREAMING_SNAKE_CASE : Union[str, Any] = extract_submodules_state_dict(lowerCAmelCase__ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(lowerCAmelCase__ , {'''a.1''': 0, '''a.2''': 2} ) __SCREAMING_SNAKE_CASE : Optional[Any] = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} __SCREAMING_SNAKE_CASE : List[str] = extract_submodules_state_dict(lowerCAmelCase__ , ['''a.1''', '''a.2'''] ) self.assertDictEqual(lowerCAmelCase__ , {'''a.1.a''': 0, '''a.2.a''': 2} )
696
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
1
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _lowercase ( A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] SCREAMING_SNAKE_CASE__ : List[str] = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE__ : Optional[Any] = False @property def __magic_name__( self :List[str] ) -> Optional[Any]: return 32 @property def __magic_name__( self :Any ) -> Any: return 32 @property def __magic_name__( self :int ) -> str: return self.time_input_dim @property def __magic_name__( self :Optional[int] ) -> str: return self.time_input_dim * 4 @property def __magic_name__( self :Dict ) -> Dict: return 100 @property def __magic_name__( self :Dict ) -> Dict: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } __SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def __magic_name__( self :int ) -> Optional[int]: return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __magic_name__( self :List[Any] ) -> str: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**self.dummy_movq_kwargs ) return model def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : int = self.dummy_unet __SCREAMING_SNAKE_CASE : Any = self.dummy_movq __SCREAMING_SNAKE_CASE : List[Any] = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } __SCREAMING_SNAKE_CASE : List[Any] = DDIMScheduler(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int]=0 ) -> Any: __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image __SCREAMING_SNAKE_CASE : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create hint __SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : int = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Tuple = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def __magic_name__( self :Optional[int] ) -> Any: __SCREAMING_SNAKE_CASE : Optional[Any] = '''cpu''' __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = output.images __SCREAMING_SNAKE_CASE : int = pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array( [0.5498_5034, 0.5550_9365, 0.5256_1504, 0.557_0494, 0.559_3818, 0.526_3979, 0.5028_5643, 0.506_9846, 0.5119_6736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Dict ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :List[Any] ) -> int: __SCREAMING_SNAKE_CASE : Any = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) __SCREAMING_SNAKE_CASE : List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) __SCREAMING_SNAKE_CASE : Dict = init_image.resize((512, 512) ) __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 255.0 __SCREAMING_SNAKE_CASE : List[str] = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = '''A robot, 4k photo''' __SCREAMING_SNAKE_CASE : Dict = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : int = pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = pipe_prior( lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.85 , generator=lowerCAmelCase__ , negative_prompt='''''' , ).to_tuple() __SCREAMING_SNAKE_CASE : Dict = pipeline( image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , hint=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
696
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
1
import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ='T5Config' def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros_like(lowercase__ ) __SCREAMING_SNAKE_CASE : Tuple = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __SCREAMING_SNAKE_CASE : List[str] = shifted_input_ids.at[:, 0].set(lowercase__ ) __SCREAMING_SNAKE_CASE : Dict = jnp.where(shifted_input_ids == -100 , lowercase__ , lowercase__ ) return shifted_input_ids class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''mt5''' SCREAMING_SNAKE_CASE__ : Tuple = MTaConfig class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''mt5''' SCREAMING_SNAKE_CASE__ : Optional[Any] = MTaConfig class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''mt5''' SCREAMING_SNAKE_CASE__ : int = MTaConfig
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
1
from math import isqrt def _UpperCamelCase ( lowercase__ ): return all(number % divisor != 0 for divisor in range(2 , isqrt(lowercase__ ) + 1 ) ) def _UpperCamelCase ( lowercase__ = 10**6 ): __SCREAMING_SNAKE_CASE : str = 0 __SCREAMING_SNAKE_CASE : Dict = 1 __SCREAMING_SNAKE_CASE : str = 7 while prime_candidate < max_prime: primes_count += is_prime(lowercase__ ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
696
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
1
from sklearn.metrics import matthews_corrcoef import datasets __lowerCAmelCase : List[str] ='\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n' __lowerCAmelCase : Dict ='\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results[\'matthews_correlation\'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric("matthews_correlation")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results[\'matthews_correlation\'], 2))\n -0.25\n' __lowerCAmelCase : Optional[Any] ='\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :str ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=[ '''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html''' ] , ) def __magic_name__( self :Any , lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Union[str, Any]=None ) -> int: return { "matthews_correlation": float(matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ , sample_weight=lowerCAmelCase__ ) ), }
696
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
1
__lowerCAmelCase : str ={ 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = set() # keep track of all the paths to be checked __SCREAMING_SNAKE_CASE : Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue __SCREAMING_SNAKE_CASE : List[Any] = queue.pop(0 ) # get the last node from the path __SCREAMING_SNAKE_CASE : Optional[int] = path[-1] if node not in explored: __SCREAMING_SNAKE_CASE : Dict = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: __SCREAMING_SNAKE_CASE : int = list(lowercase__ ) new_path.append(lowercase__ ) queue.append(lowercase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowercase__ ) # in case there's no path between the 2 nodes return [] def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 __SCREAMING_SNAKE_CASE : int = [start] __SCREAMING_SNAKE_CASE : Dict = set(lowercase__ ) # Keep tab on distances from `start` node. __SCREAMING_SNAKE_CASE : Union[str, Any] = {start: 0, target: -1} while queue: __SCREAMING_SNAKE_CASE : str = queue.pop(0 ) if node == target: __SCREAMING_SNAKE_CASE : List[str] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowercase__ ) queue.append(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
696
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Union[str, Any] =logging.get_logger(__name__) def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __SCREAMING_SNAKE_CASE : Any = 128 elif "12-12" in model_name: __SCREAMING_SNAKE_CASE : List[str] = 12 __SCREAMING_SNAKE_CASE : Dict = 12 elif "14-14" in model_name: __SCREAMING_SNAKE_CASE : Tuple = 14 __SCREAMING_SNAKE_CASE : List[Any] = 14 elif "16-16" in model_name: __SCREAMING_SNAKE_CASE : List[str] = 16 __SCREAMING_SNAKE_CASE : Tuple = 16 else: raise ValueError('''Model not supported''' ) __SCREAMING_SNAKE_CASE : List[Any] = '''huggingface/label-files''' if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE : Dict = 35 __SCREAMING_SNAKE_CASE : Any = '''speech-commands-v2-id2label.json''' else: __SCREAMING_SNAKE_CASE : Tuple = 527 __SCREAMING_SNAKE_CASE : Union[str, Any] = '''audioset-id2label.json''' __SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(open(hf_hub_download(lowercase__ , lowercase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : str = {int(lowercase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[Any] = idalabel __SCREAMING_SNAKE_CASE : Any = {v: k for k, v in idalabel.items()} return config def _UpperCamelCase ( lowercase__ ): if "module.v" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: __SCREAMING_SNAKE_CASE : Tuple = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _UpperCamelCase ( lowercase__ , lowercase__ ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : int = orig_state_dict.pop(lowercase__ ) if "qkv" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = int(key_split[3] ) __SCREAMING_SNAKE_CASE : Any = config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : int = val[:dim, :] __SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : int = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : List[Any] = val[:dim] __SCREAMING_SNAKE_CASE : int = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Any = val return orig_state_dict def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(lowercase__ , lowercase__ ) @torch.no_grad() def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__=False ): __SCREAMING_SNAKE_CASE : Optional[Any] = get_audio_spectrogram_transformer_config(lowercase__ ) __SCREAMING_SNAKE_CASE : Any = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict __SCREAMING_SNAKE_CASE : Tuple = model_name_to_url[model_name] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.hub.load_state_dict_from_url(lowercase__ , map_location='''cpu''' ) # remove some keys remove_keys(lowercase__ ) # rename some keys __SCREAMING_SNAKE_CASE : Optional[int] = convert_state_dict(lowercase__ , lowercase__ ) # load 🤗 model __SCREAMING_SNAKE_CASE : Union[str, Any] = ASTForAudioClassification(lowercase__ ) model.eval() model.load_state_dict(lowercase__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __SCREAMING_SNAKE_CASE : Optional[int] = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 __SCREAMING_SNAKE_CASE : List[str] = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 __SCREAMING_SNAKE_CASE : int = 1024 if '''speech-commands''' not in model_name else 128 __SCREAMING_SNAKE_CASE : List[str] = ASTFeatureExtractor(mean=lowercase__ , std=lowercase__ , max_length=lowercase__ ) if "speech-commands" in model_name: __SCREAMING_SNAKE_CASE : List[str] = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) __SCREAMING_SNAKE_CASE : Any = dataset[0]['''audio''']['''array'''] else: __SCREAMING_SNAKE_CASE : Tuple = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = torchaudio.load(lowercase__ ) __SCREAMING_SNAKE_CASE : int = waveform.squeeze().numpy() __SCREAMING_SNAKE_CASE : Any = feature_extractor(lowercase__ , sampling_rate=16000 , return_tensors='''pt''' ) # forward pass __SCREAMING_SNAKE_CASE : Dict = model(**lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __SCREAMING_SNAKE_CASE : Any = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , lowercase__ , atol=1e-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(lowercase__ ).mkdir(exist_ok=lowercase__ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase__ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(lowercase__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Any =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
696
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image __lowerCAmelCase : Union[str, Any] =['text', 'image', 'audio'] def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3000 ) ) elif isinstance(lowercase__ , lowercase__ ): inputs.append(create_inputs(lowercase__ ) ) else: raise ValueError(F'''Invalid type requested: {input_type}''' ) return inputs def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : List[str] = [] for output in outputs: if isinstance(lowercase__ , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(lowercase__ , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(lowercase__ , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(F'''Invalid output: {output}''' ) return output_types @is_tool_test class _lowercase : '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Tuple: self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) __SCREAMING_SNAKE_CASE : Tuple = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __SCREAMING_SNAKE_CASE : int = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __magic_name__( self :Union[str, Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = create_inputs(self.tool.inputs ) __SCREAMING_SNAKE_CASE : Optional[int] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: __SCREAMING_SNAKE_CASE : str = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) , self.tool.outputs ) def __magic_name__( self :Optional[Any] ) -> str: self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def __magic_name__( self :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = create_inputs(self.tool.inputs ) __SCREAMING_SNAKE_CASE : Any = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Any = [outputs] self.assertEqual(len(lowerCAmelCase__ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ , self.tool.outputs ): __SCREAMING_SNAKE_CASE : int = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :str ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = create_inputs(self.tool.inputs ) __SCREAMING_SNAKE_CASE : Any = [] for _input, input_type in zip(lowerCAmelCase__ , self.tool.inputs ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __SCREAMING_SNAKE_CASE : Optional[int] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : List[Any] = [outputs] self.assertEqual(len(lowerCAmelCase__ ) , len(self.tool.outputs ) )
696
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
1
def _UpperCamelCase ( lowercase__ , lowercase__ = False ): if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3317044064679887385961981 and not allow_probable: raise ValueError( '''Warning: upper bound of deterministic test is exceeded. ''' '''Pass allow_probable=True to allow probabilistic test. ''' '''A return value of True indicates a probable prime.''' ) # array bounds provided by analysis __SCREAMING_SNAKE_CASE : List[Any] = [ 2047, 1373653, 25326001, 3215031751, 2152302898747, 3474749660383, 341550071728321, 1, 3825123056546413051, 1, 1, 318665857834031151167461, 3317044064679887385961981, ] __SCREAMING_SNAKE_CASE : Tuple = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(lowercase__ , 1 ): if n < _p: # then we have our last prime to check __SCREAMING_SNAKE_CASE : Union[str, Any] = primes[:idx] break __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: __SCREAMING_SNAKE_CASE : List[str] = False for r in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = pow(lowercase__ , d * 2**r , lowercase__ ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): __SCREAMING_SNAKE_CASE : int = True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def _UpperCamelCase ( ): assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(838201 ) assert miller_rabin(838207 ) # 1_373_653 assert not miller_rabin(17316001 ) assert miller_rabin(17316017 ) # 25_326_001 assert not miller_rabin(3078386641 ) assert miller_rabin(3078386653 ) # 3_215_031_751 assert not miller_rabin(1713045574801 ) assert miller_rabin(1713045574819 ) # 2_152_302_898_747 assert not miller_rabin(2779799728307 ) assert miller_rabin(2779799728327 ) # 3_474_749_660_383 assert not miller_rabin(113850023909441 ) assert miller_rabin(113850023909527 ) # 341_550_071_728_321 assert not miller_rabin(1275041018848804351 ) assert miller_rabin(1275041018848804391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(79666464458507787791867 ) assert miller_rabin(79666464458507787791951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(552840677446647897660333 ) assert miller_rabin(552840677446647897660359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
696
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
1
def _UpperCamelCase ( lowercase__ = 1000000 ): __SCREAMING_SNAKE_CASE : List[Any] = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , lowercase__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
696
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
1
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} SCREAMING_SNAKE_CASE__ : List[str] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) SCREAMING_SNAKE_CASE__ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :Dict ) -> Dict: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Tuple = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : List[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :str , lowerCAmelCase__ :Union[str, Any]=0 ) -> List[Any]: if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Tuple = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : int = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = 2 __SCREAMING_SNAKE_CASE : Optional[Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase__ , device=torch.device(lowerCAmelCase__ ) , ) __SCREAMING_SNAKE_CASE : Any = floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) __SCREAMING_SNAKE_CASE : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __magic_name__( self :Tuple ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __magic_name__( self :Dict ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __magic_name__( self :int ) -> List[str]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = StableDiffusionControlNetImgaImgPipeline SCREAMING_SNAKE_CASE__ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def __magic_name__( self :Optional[int] ) -> List[str]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase__ :Tuple ): if isinstance(lowerCAmelCase__ , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __SCREAMING_SNAKE_CASE : List[Any] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Any = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Optional[int] = MultiControlNetModel([controlneta, controlneta] ) __SCREAMING_SNAKE_CASE : Optional[Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Any=0 ) -> List[str]: if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : str = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = 2 __SCREAMING_SNAKE_CASE : Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase__ , device=torch.device(lowerCAmelCase__ ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase__ , device=torch.device(lowerCAmelCase__ ) , ), ] __SCREAMING_SNAKE_CASE : List[str] = floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ).resize((64, 64) ) __SCREAMING_SNAKE_CASE : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def __magic_name__( self :Optional[Any] ) -> int: __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Tuple = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 10.0 __SCREAMING_SNAKE_CASE : Optional[Any] = 4 __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = steps __SCREAMING_SNAKE_CASE : Union[str, Any] = scale __SCREAMING_SNAKE_CASE : List[str] = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = steps __SCREAMING_SNAKE_CASE : Optional[Any] = scale __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = steps __SCREAMING_SNAKE_CASE : List[str] = scale __SCREAMING_SNAKE_CASE : Tuple = pipe(**lowerCAmelCase__ , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = steps __SCREAMING_SNAKE_CASE : int = scale __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def __magic_name__( self :Any ) -> Optional[int]: return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __magic_name__( self :Union[str, Any] ) -> Tuple: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : int = self.pipeline_class(**lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase__ ) except NotImplementedError: pass @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :Optional[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : int = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) __SCREAMING_SNAKE_CASE : Any = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase__ , controlnet=lowerCAmelCase__ ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : str = '''evil space-punk bird''' __SCREAMING_SNAKE_CASE : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) __SCREAMING_SNAKE_CASE : List[str] = pipe( lowerCAmelCase__ , lowerCAmelCase__ , control_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) __SCREAMING_SNAKE_CASE : Tuple = output.images[0] assert image.shape == (512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
696
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
1
from __future__ import annotations import math def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if not scores: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] return ( max( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) if is_max else min( minimax(depth + 1 , node_index * 2 , lowercase__ , lowercase__ , lowercase__ ) , minimax(depth + 1 , node_index * 2 + 1 , lowercase__ , lowercase__ , lowercase__ ) , ) ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Any = [90, 23, 6, 33, 21, 65, 123, 34423] __SCREAMING_SNAKE_CASE : Dict = math.log(len(lowercase__ ) , 2 ) print(F'''Optimal value : {minimax(0 , 0 , lowercase__ , lowercase__ , lowercase__ )}''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
696
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : Dict ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : Optional[Any] =[ 'small', 'small-base', 'medium', 'medium-base', 'intermediate', 'intermediate-base', 'large', 'large-base', 'xlarge', 'xlarge-base', ] __lowerCAmelCase : int ={ 'vocab_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt', 'funnel-transformer/small-base': 'https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt', 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt', 'funnel-transformer/large-base': 'https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt', 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'funnel-transformer/small': 'https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json', 'funnel-transformer/small-base': ( 'https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json' ), 'funnel-transformer/medium': 'https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json', 'funnel-transformer/medium-base': ( 'https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate': ( 'https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json' ), 'funnel-transformer/intermediate-base': ( 'https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json' ), 'funnel-transformer/large': 'https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json', 'funnel-transformer/large-base': ( 'https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json' ), 'funnel-transformer/xlarge': 'https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json', 'funnel-transformer/xlarge-base': ( 'https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json' ), }, } __lowerCAmelCase : Optional[Any] ={f"""funnel-transformer/{name}""": 5_1_2 for name in _model_names} __lowerCAmelCase : Optional[Any] ={f"""funnel-transformer/{name}""": {'do_lower_case': True} for name in _model_names} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : int = FunnelTokenizer SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : int = 2 def __init__( self :List[str] , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :int=None , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Dict="<unk>" , lowerCAmelCase__ :Union[str, Any]="<sep>" , lowerCAmelCase__ :Optional[int]="<pad>" , lowerCAmelCase__ :Tuple="<cls>" , lowerCAmelCase__ :Union[str, Any]="<mask>" , lowerCAmelCase__ :Union[str, Any]="<s>" , lowerCAmelCase__ :List[Any]="</s>" , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :str=None , lowerCAmelCase__ :int="##" , **lowerCAmelCase__ :int , ) -> int: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , clean_text=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , wordpieces_prefix=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : Dict = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : List[Any] = do_lower_case __SCREAMING_SNAKE_CASE : List[Any] = strip_accents __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Dict = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=None ) -> List[str]: __SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : List[Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Any = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :str , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : Tuple = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCAmelCase : int =logging.get_logger(__name__) __lowerCAmelCase : int ={ 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''roberta-prelayernorm''' def __init__( self :List[str] , lowerCAmelCase__ :int=50_265 , lowerCAmelCase__ :Any=768 , lowerCAmelCase__ :Dict=12 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Union[str, Any]=3_072 , lowerCAmelCase__ :Dict="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Optional[int]=2 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :str=1E-1_2 , lowerCAmelCase__ :Dict=1 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :List[Any]=2 , lowerCAmelCase__ :int="absolute" , lowerCAmelCase__ :int=True , lowerCAmelCase__ :List[str]=None , **lowerCAmelCase__ :Tuple , ) -> List[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Optional[Any] = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class _lowercase ( A__ ): '''simple docstring''' @property def __magic_name__( self :Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE : Optional[int] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __SCREAMING_SNAKE_CASE : Union[str, Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
696
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _UpperCamelCase ( lowercase__ = True , *lowercase__ , **lowercase__ ): if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) __SCREAMING_SNAKE_CASE : int = False if main_process_only: __SCREAMING_SNAKE_CASE : Union[str, Any] = PartialState().local_process_index == 0 return _tqdm(*lowercase__ , **lowercase__ , disable=lowercase__ )
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
1
import colorsys from PIL import Image # type: ignore def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : Any = x __SCREAMING_SNAKE_CASE : Optional[int] = y for step in range(lowercase__ ): # noqa: B007 __SCREAMING_SNAKE_CASE : Dict = a * a - b * b + x __SCREAMING_SNAKE_CASE : int = 2 * a * b + y __SCREAMING_SNAKE_CASE : Dict = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _UpperCamelCase ( lowercase__ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _UpperCamelCase ( lowercase__ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase__ , 1 , 1 ) ) def _UpperCamelCase ( lowercase__ = 800 , lowercase__ = 600 , lowercase__ = -0.6 , lowercase__ = 0 , lowercase__ = 3.2 , lowercase__ = 50 , lowercase__ = True , ): __SCREAMING_SNAKE_CASE : Union[str, Any] = Image.new('''RGB''' , (image_width, image_height) ) __SCREAMING_SNAKE_CASE : str = img.load() # loop through the image-coordinates for image_x in range(lowercase__ ): for image_y in range(lowercase__ ): # determine the figure-coordinates based on the image-coordinates __SCREAMING_SNAKE_CASE : str = figure_width / image_width * image_height __SCREAMING_SNAKE_CASE : Any = figure_center_x + (image_x / image_width - 0.5) * figure_width __SCREAMING_SNAKE_CASE : Union[str, Any] = figure_center_y + (image_y / image_height - 0.5) * figure_height __SCREAMING_SNAKE_CASE : List[str] = get_distance(lowercase__ , lowercase__ , lowercase__ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: __SCREAMING_SNAKE_CASE : Optional[int] = get_color_coded_rgb(lowercase__ ) else: __SCREAMING_SNAKE_CASE : List[str] = get_black_and_white_rgb(lowercase__ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __lowerCAmelCase : Union[str, Any] =get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
696
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __lowerCAmelCase : List[str] =['gpt2'] __lowerCAmelCase : int ='gpt2' if is_tf_available(): class _lowercase ( tf.Module ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Any ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = tokenizer __SCREAMING_SNAKE_CASE : Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = TFGPTaLMHeadModel.from_config(lowerCAmelCase__ ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name='''text''' ),) ) def __magic_name__( self :int , lowerCAmelCase__ :List[str] ) -> List[str]: __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenized['''input_ids'''].to_tensor() __SCREAMING_SNAKE_CASE : List[str] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __SCREAMING_SNAKE_CASE : str = self.model(input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )['''logits'''] return outputs @require_tf @require_keras_nlp class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Optional[int]: super().setUp() __SCREAMING_SNAKE_CASE : Optional[int] = [GPTaTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __SCREAMING_SNAKE_CASE : int = [TFGPTaTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __SCREAMING_SNAKE_CASE : Tuple = [ '''This is a straightforward English test sentence.''', '''This one has some weird characters\rto\nsee\r\nif those\u00E9break things.''', '''Now we\'re going to add some Chinese: 一 二 三 一二三''', '''And some much more rare Chinese: 齉 堃 齉堃''', '''Je vais aussi écrire en français pour tester les accents''', '''Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ''', ] __SCREAMING_SNAKE_CASE : int = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def __magic_name__( self :Optional[int] ) -> Union[str, Any]: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __SCREAMING_SNAKE_CASE : List[Any] = tokenizer([test_inputs] , return_tensors='''tf''' ) __SCREAMING_SNAKE_CASE : List[str] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __SCREAMING_SNAKE_CASE : Optional[Any] = python_outputs[key].numpy() __SCREAMING_SNAKE_CASE : Any = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase__ , tf.intaa ) == tf_outputs_values ) ) @slow def __magic_name__( self :Dict ) -> Optional[int]: for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE : Optional[int] = tf.function(lowerCAmelCase__ ) for test_inputs in self.test_sentences: __SCREAMING_SNAKE_CASE : int = tf.constant(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = compiled_tokenizer(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def __magic_name__( self :List[str] ) -> List[str]: for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE : int = ModelToSave(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = model.serving(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __SCREAMING_SNAKE_CASE : Dict = Path(lowerCAmelCase__ ) / '''saved.model''' tf.saved_model.save(lowerCAmelCase__ , lowerCAmelCase__ , signatures={'''serving_default''': model.serving} ) __SCREAMING_SNAKE_CASE : int = tf.saved_model.load(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = loaded_model.signatures['''serving_default'''](lowerCAmelCase__ )['''output_0'''] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def __magic_name__( self :List[str] ) -> Optional[Any]: for tf_tokenizer in self.tf_tokenizers: __SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE : Dict = tf_tokenizer(lowerCAmelCase__ ) # Build model with some sample inputs __SCREAMING_SNAKE_CASE : str = tf_tokenizer.get_config() __SCREAMING_SNAKE_CASE : int = TFGPTaTokenizer.from_config(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = model_from_config(lowerCAmelCase__ ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def __magic_name__( self :int ) -> str: for tf_tokenizer in self.tf_tokenizers: # for the test to run __SCREAMING_SNAKE_CASE : str = 123_123 for max_length in [3, 5, 1_024]: __SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor([self.test_sentences[0]] ) __SCREAMING_SNAKE_CASE : Dict = tf_tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = out['''input_ids'''].numpy().shape[1] assert out_length == max_length
696
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None SCREAMING_SNAKE_CASE__ : torch.FloatTensor = None SCREAMING_SNAKE_CASE__ : Optional[Tuple[torch.FloatTensor]] = None SCREAMING_SNAKE_CASE__ : Optional[Tuple[torch.FloatTensor]] = None class _lowercase ( A__ ): '''simple docstring''' def __init__( self :str , lowerCAmelCase__ :List[Any]=1 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :Optional[Any]=2 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Union[str, Any]="cls" , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :Union[str, Any]=True , **lowerCAmelCase__ :Any , ) -> Tuple: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = project_dim __SCREAMING_SNAKE_CASE : Optional[Any] = pooler_fn __SCREAMING_SNAKE_CASE : List[Any] = learn_encoder __SCREAMING_SNAKE_CASE : List[str] = use_attention_mask class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = [r'''pooler''', r'''logit_scale'''] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [r'''position_ids''', r'''predictions.decoder.bias'''] SCREAMING_SNAKE_CASE__ : List[Any] = '''roberta''' SCREAMING_SNAKE_CASE__ : Any = RobertaSeriesConfig def __init__( self :Tuple , lowerCAmelCase__ :str ) -> List[str]: super().__init__(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = XLMRobertaModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) __SCREAMING_SNAKE_CASE : List[str] = getattr(lowerCAmelCase__ , '''has_pre_transformation''' , lowerCAmelCase__ ) if self.has_pre_transformation: __SCREAMING_SNAKE_CASE : str = nn.Linear(config.hidden_size , config.project_dim ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __magic_name__( self :Any , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[torch.Tensor] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> Dict: __SCREAMING_SNAKE_CASE : str = return_dict if return_dict is not None else self.config.use_return_dict __SCREAMING_SNAKE_CASE : Optional[Any] = self.base_model( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , output_attentions=lowerCAmelCase__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=lowerCAmelCase__ , ) if self.has_pre_transformation: __SCREAMING_SNAKE_CASE : List[Any] = outputs['''hidden_states'''][-2] __SCREAMING_SNAKE_CASE : List[str] = self.pre_LN(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = self.transformation_pre(lowerCAmelCase__ ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __SCREAMING_SNAKE_CASE : List[str] = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=lowerCAmelCase__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
696
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowerCAmelCase : Optional[int] =logging.get_logger(__name__) if is_vision_available(): import PIL class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''pixel_values'''] def __init__( self :Dict , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Union[int, float] = 1 / 255 , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :bool = True , **lowerCAmelCase__ :str , ) -> None: super().__init__(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = size if size is not None else {'''shortest_edge''': 224} __SCREAMING_SNAKE_CASE : int = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = crop_size if crop_size is not None else {'''height''': 224, '''width''': 224} __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ , param_name='''crop_size''' ) __SCREAMING_SNAKE_CASE : Optional[int] = do_resize __SCREAMING_SNAKE_CASE : List[Any] = size __SCREAMING_SNAKE_CASE : Tuple = resample __SCREAMING_SNAKE_CASE : Dict = do_center_crop __SCREAMING_SNAKE_CASE : Any = crop_size __SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale __SCREAMING_SNAKE_CASE : Any = rescale_factor __SCREAMING_SNAKE_CASE : Optional[int] = do_normalize __SCREAMING_SNAKE_CASE : Dict = image_mean if image_mean is not None else OPENAI_CLIP_MEAN __SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else OPENAI_CLIP_STD __SCREAMING_SNAKE_CASE : Optional[Any] = do_convert_rgb def __magic_name__( self :List[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :str , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __SCREAMING_SNAKE_CASE : Dict = get_resize_output_image_size(lowerCAmelCase__ , size=size['''shortest_edge'''] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Dict , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Dict[str, int] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Dict , ) -> np.ndarray: __SCREAMING_SNAKE_CASE : str = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[int, float] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :Optional[int] , ) -> Any: return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :np.ndarray , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Union[float, List[float]] , lowerCAmelCase__ :Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase__ :List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] , lowerCAmelCase__ :ImageInput , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Dict[str, int] = None , lowerCAmelCase__ :PILImageResampling = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :int = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :float = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :Optional[Union[float, List[float]]] = None , lowerCAmelCase__ :bool = None , lowerCAmelCase__ :Optional[Union[str, TensorType]] = None , lowerCAmelCase__ :Optional[ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase__ :List[str] , ) -> PIL.Image.Image: __SCREAMING_SNAKE_CASE : Any = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : List[Any] = size if size is not None else self.size __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(lowerCAmelCase__ , param_name='''size''' , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : List[Any] = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : Optional[Any] = get_size_dict(lowerCAmelCase__ , param_name='''crop_size''' , default_to_square=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Any = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : str = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : Union[str, Any] = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : Tuple = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __SCREAMING_SNAKE_CASE : Union[str, Any] = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __SCREAMING_SNAKE_CASE : str = [convert_to_rgb(lowerCAmelCase__ ) for image in images] # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Optional[int] = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: __SCREAMING_SNAKE_CASE : List[Any] = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: __SCREAMING_SNAKE_CASE : str = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: __SCREAMING_SNAKE_CASE : int = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : Tuple = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] __SCREAMING_SNAKE_CASE : int = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
696
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ : Dict = { """tokenizer_file""": { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ : str = { """gpt-neox-20b""": 20_48, } class lowerCamelCase_ ( lowerCamelCase ): a__ = VOCAB_FILES_NAMES a__ = PRETRAINED_VOCAB_FILES_MAP a__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ = ['''input_ids''', '''attention_mask'''] def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase="<|endoftext|>" , __lowerCAmelCase=False , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , **__lowerCAmelCase , ) __magic_name__ :Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowerCAmelCase ) != add_prefix_space: __magic_name__ :List[str] = getattr(__lowerCAmelCase , pre_tok_state.pop('''type''' ) ) __magic_name__ :List[str] = add_prefix_space __magic_name__ :List[str] = pre_tok_class(**__lowerCAmelCase ) __magic_name__ :Any = add_prefix_space def A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" __magic_name__ :Optional[Any] = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A ( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[int] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ) + [self.eos_token_id] ) if len(__lowerCAmelCase ) > self.model_max_length: __magic_name__ :Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class __lowerCamelCase (_a ): _lowercase = """fnet""" def __init__( self: Optional[Any],A_: str=3_2000,A_: Optional[Any]=768,A_: str=12,A_: List[str]=3072,A_: Union[str, Any]="gelu_new",A_: Optional[int]=0.1,A_: List[str]=512,A_: Optional[Any]=4,A_: Optional[int]=0.0_2,A_: Optional[Any]=1E-12,A_: int=False,A_: Any=512,A_: Optional[Any]=3,A_: List[Any]=1,A_: Tuple=2,**A_: Any,): '''simple docstring''' super().__init__(pad_token_id=A_,bos_token_id=A_,eos_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = max_position_embeddings __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = initializer_range __UpperCamelCase = type_vocab_size __UpperCamelCase = layer_norm_eps __UpperCamelCase = use_tpu_fourier_optimizations __UpperCamelCase = tpu_short_seq_length
1
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
0
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=13 , __lowerCAmelCase : int=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=99 , __lowerCAmelCase : Any=24 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : str=6 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : int=5_12 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=10_00 , ) -> Tuple: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = scope _A = range_bbox def snake_case_ ( self : int ) -> str: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A = bbox[i, j, 3] _A = bbox[i, j, 1] _A = t if bbox[i, j, 2] < bbox[i, j, 0]: _A = bbox[i, j, 2] _A = bbox[i, j, 0] _A = t _A = None if self.use_input_mask: _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : str ) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , ) -> Dict: _A = LiltModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , ) -> Tuple: _A = self.num_labels _A = LiltForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , ) -> int: _A = LiltForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Dict ) -> Dict: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( _A , _A , _A , unittest.TestCase): """simple docstring""" a__ : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a__ : Optional[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) a__ : Optional[int] = False a__ : Any = False def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Optional[int]: return True def snake_case_ ( self : Tuple ) -> Optional[int]: _A = LiltModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def snake_case_ ( self : Optional[Any] ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case_ ( self : Any ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case_ ( self : Optional[int] ) -> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) def snake_case_ ( self : int ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) @slow def snake_case_ ( self : Optional[int] ) -> List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = LiltModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch @slow class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : str ) -> Tuple: _A = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__lowerCAmelCase ) _A = torch.tensor([[1, 2]] , device=__lowerCAmelCase ) _A = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__lowerCAmelCase ) # forward pass with torch.no_grad(): _A = model(input_ids=__lowerCAmelCase , bbox=__lowerCAmelCase ) _A = torch.Size([1, 2, 7_68] ) _A = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=__lowerCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __lowerCAmelCase , atol=1E-3 ) )
2
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): def UpperCAmelCase_ ( self , A_ , A_ )-> Optional[Any]: '''simple docstring''' return F'''gaussian_noise_s={seed}_shape={"_".join([str(A_ ) for s in shape] )}.npy''' def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' super().tearDown() gc.collect() def UpperCAmelCase_ ( self , A_=0 , A_=(4, 4, 64, 64) , A_=False )-> List[str]: '''simple docstring''' UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ ) return image def UpperCAmelCase_ ( self , A_=False , A_="CompVis/stable-diffusion-v1-4" )-> Union[str, Any]: '''simple docstring''' UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase = 'bf16' if fpaa else None UpperCamelCase , UpperCamelCase = FlaxUNetaDConditionModel.from_pretrained( A_ , subfolder='unet' , dtype=A_ , revision=A_ ) return model, params def UpperCAmelCase_ ( self , A_=0 , A_=(4, 77, 768) , A_=False )-> Optional[int]: '''simple docstring''' UpperCamelCase = jnp.bfloataa if fpaa else jnp.floataa UpperCamelCase = jnp.array(load_hf_numpy(self.get_file_format(A_ , A_ ) ) , dtype=A_ ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=A_ ) UpperCamelCase = self.get_latents(A_ , fpaa=A_ ) UpperCamelCase = self.get_encoder_hidden_states(A_ , fpaa=A_ ) UpperCamelCase = model.apply( {'params': params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample assert sample.shape == latents.shape UpperCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase = jnp.array(A_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(A_ , A_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Any: '''simple docstring''' UpperCamelCase , UpperCamelCase = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=A_ ) UpperCamelCase = self.get_latents(A_ , shape=(4, 4, 96, 96) , fpaa=A_ ) UpperCamelCase = self.get_encoder_hidden_states(A_ , shape=(4, 77, 1024) , fpaa=A_ ) UpperCamelCase = model.apply( {'params': params} , A_ , jnp.array(A_ , dtype=jnp.intaa ) , encoder_hidden_states=A_ , ).sample assert sample.shape == latents.shape UpperCamelCase = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) UpperCamelCase = jnp.array(A_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(A_ , A_ , atol=1e-2 )
3
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
0
"""simple docstring""" from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase ,lowerCAmelCase = analyze_text(_UpperCAmelCase ) lowerCAmelCase = list(' ' + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase = sum(single_char_strings.values() ) # one length string lowerCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase = single_char_strings[ch] lowerCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(_UpperCAmelCase ) # entropy formula. # print entropy print(F'{round(-1 * my_fir_sum ):.1f}' ) # two len string lowerCAmelCase = sum(two_char_strings.values() ) lowerCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase = cha + cha if sequence in two_char_strings: lowerCAmelCase = two_char_strings[sequence] lowerCAmelCase = int(_UpperCAmelCase ) / all_sum my_sec_sum += prob * math.loga(_UpperCAmelCase ) # print second entropy print(F'{round(-1 * my_sec_sum ):.1f}' ) # print the difference between them print(F'{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}' ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str ): lowerCAmelCase = Counter() # type: ignore lowerCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_UpperCAmelCase ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def _SCREAMING_SNAKE_CASE (): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
4
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
0
'''simple docstring''' import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=_SCREAMING_SNAKE_CASE ) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = field(default='''text-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) _lowercase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) _lowercase : ClassVar[Features] = Features({'''labels''': ClassLabel} ) _lowercase : str = "text" _lowercase : str = "labels" def _lowercase ( self , _lowercase ): """simple docstring""" if self.label_column not in features: raise ValueError(F'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , _lowercase ): raise ValueError(F'Column {self.label_column} is not a ClassLabel.' ) _lowerCAmelCase = copy.deepcopy(self ) _lowerCAmelCase = self.label_schema.copy() _lowerCAmelCase = features[self.label_column] _lowerCAmelCase = label_schema return task_template @property def _lowercase ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
5
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
0
from ..utils import DummyObject, requires_backends class UpperCamelCase_ ( metaclass=UpperCamelCase__ ): lowerCamelCase_ = ["torch", "scipy"] def __init__( self :str , *__A :Union[str, Any] , **__A :str ) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch""", """scipy"""] ) @classmethod def _snake_case ( cls :List[str] , *__A :Union[str, Any] , **__A :str ) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch""", """scipy"""] ) @classmethod def _snake_case ( cls :Any , *__A :Union[str, Any] , **__A :Optional[int] ) -> Any: """simple docstring""" requires_backends(cls , ["""torch""", """scipy"""] )
6
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
0
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = ['''input_ids''', '''attention_mask'''] def __init__( self : List[Any] , _UpperCAmelCase : Optional[int]="</s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : Optional[Any]="<pad>" , _UpperCAmelCase : Any=125 , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Union[str, Any] , ): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _A = [F'''<extra_id_{i}>''' for i in range(_UpperCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _A = len(set(filter(lambda _UpperCAmelCase : bool('extra_id' in str(_UpperCAmelCase ) ) , _UpperCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) _A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else pad_token _A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else eos_token _A = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else unk_token super().__init__( eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , extra_ids=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , **_UpperCAmelCase , ) _A = extra_ids _A = 2**8 # utf is 8 bits # define special tokens dict _A = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } _A = len(self.special_tokens_encoder ) _A = len(_UpperCAmelCase ) for i, token in enumerate(_UpperCAmelCase ): _A = self.vocab_size + i - n _A = {v: k for k, v in self.special_tokens_encoder.items()} @property def lowerCAmelCase_ ( self : int ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_UpperCAmelCase )) + [1] return ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] ): if len(_UpperCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = self._add_eos_if_not_present(_UpperCAmelCase ) if token_ids_a is None: return token_ids_a else: _A = self._add_eos_if_not_present(_UpperCAmelCase ) return token_ids_a + token_ids_a def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str ): _A = [chr(_UpperCAmelCase ) for i in text.encode('utf-8' )] return tokens def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ): if token in self.special_tokens_encoder: _A = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: _A = self.added_tokens_encoder[token] elif len(_UpperCAmelCase ) != 1: _A = self.unk_token_id else: _A = ord(_UpperCAmelCase ) + self._num_special_tokens return token_id def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Optional[Any] ): if index in self.special_tokens_decoder: _A = self.special_tokens_decoder[index] else: _A = chr(index - self._num_special_tokens ) return token def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] ): _A = b'' for token in tokens: if token in self.special_tokens_decoder: _A = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: _A = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: _A = token.encode('utf-8' ) elif token in self.added_tokens_encoder: _A = token.encode('utf-8' ) else: _A = bytes([ord(_UpperCAmelCase )] ) bstring += tok_string _A = bstring.decode('utf-8' , errors='ignore' ) return string def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): return ()
7
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
0
'''simple docstring''' import math class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase=0): # a graph with Node 0,1,...,N-1 '''simple docstring''' __A : List[str] = n __A : List[str] = [ [math.inf for j in range(0 , _UpperCAmelCase)] for i in range(0 , _UpperCAmelCase) ] # adjacency matrix for weight __A : List[str] = [ [math.inf for j in range(0 , _UpperCAmelCase)] for i in range(0 , _UpperCAmelCase) ] # dp[i][j] stores minimum distance from i to j def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Tuple = w def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' for k in range(0 , self.n): for i in range(0 , self.n): for j in range(0 , self.n): __A : List[str] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' return self.dp[u][v] if __name__ == "__main__": lowercase__ : Tuple = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
8
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
import os import numpy import onnx def A ( __UpperCamelCase , __UpperCamelCase ) -> int: A__ = a.name A__ = b.name A__ = '' A__ = '' A__ = a == b A__ = name_a A__ = name_b return res def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(__UpperCamelCase , __UpperCamelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , __UpperCamelCase , __UpperCamelCase ) _graph_replace_input_with(node_proto.attribute[1].g , __UpperCamelCase , __UpperCamelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: for n in graph_proto.node: _node_replace_input_with(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: A__ = list(model.graph.initializer ) A__ = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A__ = inits[i].name A__ = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , __UpperCamelCase , __UpperCamelCase ) def A ( __UpperCamelCase ) -> Tuple: A__ = os.path.dirname(__UpperCamelCase ) A__ = os.path.basename(__UpperCamelCase ) A__ = onnx.load(os.path.join(__UpperCamelCase , __UpperCamelCase ) ) A__ = list(model.graph.initializer ) A__ = set() A__ = {} A__ = [] A__ = 0 for i in range(len(__UpperCamelCase ) ): if i in dup_set: continue for j in range(i + 1 , len(__UpperCamelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(__UpperCamelCase ) dup_set.add(__UpperCamelCase ) A__ = inits[j].data_type A__ = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('unexpected data type: ' , __UpperCamelCase ) total_reduced_size += mem_size A__ = inits[i].name A__ = inits[j].name if name_i in dup_map: dup_map[name_i].append(__UpperCamelCase ) else: A__ = [name_j] ind_to_replace.append((j, i) ) print('total reduced size: ' , total_reduced_size / 1_024 / 1_024 / 1_024 , 'GB' ) A__ = sorted(__UpperCamelCase ) _remove_dup_initializers_from_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) A__ = 'optimized_' + model_file_name A__ = os.path.join(__UpperCamelCase , __UpperCamelCase ) onnx.save(__UpperCamelCase , __UpperCamelCase ) return new_model
9
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
0
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self : List[str] , _A : Any , _A : List[Any]=7 , _A : int=3 , _A : Tuple=30 , _A : Union[str, Any]=400 , _A : List[str]=True , _A : Union[str, Any]=None , _A : int=True , _A : Optional[int]=[0.5, 0.5, 0.5] , _A : Optional[Any]=[0.5, 0.5, 0.5] , _A : List[str]=True , _A : Union[str, Any]=1 / 255 , _A : Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p _UpperCamelCase = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_pad def UpperCamelCase_ ( self : Union[str, Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCamelCase_ ( self : int , _A : Tuple , _A : Union[str, Any]=False ): if not batched: _UpperCamelCase = image_inputs[0] if isinstance(_A , Image.Image ): _UpperCamelCase , _UpperCamelCase = image.size else: _UpperCamelCase , _UpperCamelCase = image.shape[1], image.shape[2] if w < h: _UpperCamelCase = int(self.size['''shortest_edge'''] * h / w ) _UpperCamelCase = self.size['''shortest_edge'''] elif w > h: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = int(self.size['''shortest_edge'''] * w / h ) else: _UpperCamelCase = self.size['''shortest_edge'''] _UpperCamelCase = self.size['''shortest_edge'''] else: _UpperCamelCase = [] for image in image_inputs: _UpperCamelCase , _UpperCamelCase = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) _UpperCamelCase = max(_A , key=lambda _A : item[0] )[0] _UpperCamelCase = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = DeformableDetrImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any ): _UpperCamelCase = DeformableDetrImageProcessingTester(self ) @property def UpperCamelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , '''image_mean''' ) ) self.assertTrue(hasattr(_A , '''image_std''' ) ) self.assertTrue(hasattr(_A , '''do_normalize''' ) ) self.assertTrue(hasattr(_A , '''do_resize''' ) ) self.assertTrue(hasattr(_A , '''do_rescale''' ) ) self.assertTrue(hasattr(_A , '''do_pad''' ) ) self.assertTrue(hasattr(_A , '''size''' ) ) def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , _A ) _UpperCamelCase = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCamelCase_ ( self : Optional[Any] ): pass def UpperCamelCase_ ( self : int ): # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) _UpperCamelCase = image_processing(_A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Optional[int] ): # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(_A , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCamelCase_ ( self : Dict ): # Initialize image_processing _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched _UpperCamelCase = image_processing(_A , return_tensors='''pt''' ).pixel_values _UpperCamelCase , _UpperCamelCase = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCamelCase_ ( self : Optional[int] ): # prepare image and target _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''image_id''': 3_9769, '''annotations''': target} # encode them _UpperCamelCase = DeformableDetrImageProcessor() _UpperCamelCase = image_processing(images=_A , annotations=_A , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) _UpperCamelCase = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels _UpperCamelCase = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) ) @slow def UpperCamelCase_ ( self : List[str] ): # prepare image, target and masks_path _UpperCamelCase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: _UpperCamelCase = json.loads(f.read() ) _UpperCamelCase = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target} _UpperCamelCase = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them _UpperCamelCase = DeformableDetrImageProcessor(format='''coco_panoptic''' ) _UpperCamelCase = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='''pt''' ) # verify pixel values _UpperCamelCase = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , _A ) _UpperCamelCase = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area _UpperCamelCase = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _A ) ) # verify boxes _UpperCamelCase = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _A ) _UpperCamelCase = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _A , atol=1e-3 ) ) # verify image_id _UpperCamelCase = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _A ) ) # verify is_crowd _UpperCamelCase = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _A ) ) # verify class_labels _UpperCamelCase = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _A ) ) # verify masks _UpperCamelCase = 82_2873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _A ) # verify orig_size _UpperCamelCase = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _A ) ) # verify size _UpperCamelCase = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _A ) )
10
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor lowercase_ = logging.get_logger(__name__) class __A ( A ): '''simple docstring''' def __init__(self , *A , **A ) -> None: """simple docstring""" warnings.warn( '''The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use CLIPImageProcessor instead.''' , A , ) super().__init__(*A , **A )
11
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
0
def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' if divisor % 5 == 0 or divisor % 2 == 0: return 0 lowercase__ : Optional[int] = 1 lowercase__ : Dict = 1 while repunit: lowercase__ : List[Any] = (10 * repunit + 1) % divisor repunit_index += 1 return repunit_index def UpperCamelCase ( lowercase_ = 1_00_00_00 ) -> int: '''simple docstring''' lowercase__ : Union[str, Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowercase_ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(f'''{solution() = }''')
12
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
'''simple docstring''' import sys from collections import defaultdict class UpperCAmelCase_ : """simple docstring""" def __init__( self ) -> int: __lowerCamelCase : Any = [] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ ) -> Any: return self.node_position[vertex] def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: __lowerCamelCase : Optional[int] = pos def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowerCamelCase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowerCamelCase : Optional[Any] = 2 * start + 1 else: __lowerCamelCase : int = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowerCamelCase , __lowerCamelCase : Optional[Any] = heap[smallest_child], positions[smallest_child] __lowerCamelCase , __lowerCamelCase : int = ( heap[start], positions[start], ) __lowerCamelCase , __lowerCamelCase : str = temp, tempa __lowerCamelCase : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE_ ) self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: __lowerCamelCase : Any = position[index] while index != 0: __lowerCamelCase : Union[str, Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowerCamelCase : Union[str, Any] = heap[parent] __lowerCamelCase : Any = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE_ ) else: __lowerCamelCase : Tuple = val __lowerCamelCase : List[str] = temp self.set_position(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) break __lowerCamelCase : Tuple = parent else: __lowerCamelCase : Union[str, Any] = val __lowerCamelCase : Tuple = temp self.set_position(SCREAMING_SNAKE_CASE_ , 0 ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: __lowerCamelCase : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE_ , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: __lowerCamelCase : Any = positions[0] __lowerCamelCase : Union[str, Any] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE_ , 0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) return temp def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> str: __lowerCamelCase : List[Any] = Heap() __lowerCamelCase : Optional[int] = [0] * len(UpperCAmelCase_ ) __lowerCamelCase : str = [-1] * len(UpperCAmelCase_ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowerCamelCase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowerCamelCase : Tuple = [] for vertex in range(len(UpperCAmelCase_ ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase_ ) heap.node_position.append(UpperCAmelCase_ ) __lowerCamelCase : Tuple = [] __lowerCamelCase : Dict = 1 __lowerCamelCase : str = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowerCamelCase : Any = 0 __lowerCamelCase : Any = distance heap.heapify(UpperCAmelCase_ , UpperCAmelCase_ ) for _ in range(1 , len(UpperCAmelCase_ ) ): __lowerCamelCase : List[Any] = heap.delete_minimum(UpperCAmelCase_ , UpperCAmelCase_ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowerCamelCase : Union[str, Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase_ )] ): __lowerCamelCase : Dict = distance heap.bottom_to_top( UpperCAmelCase_ , heap.get_position(UpperCAmelCase_ ) , UpperCAmelCase_ , UpperCAmelCase_ ) __lowerCamelCase : str = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Tuple = int(input("""Enter number of edges: """).strip()) A__ : str = defaultdict(list) for _ in range(edges_number): A__ : Optional[int] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
13
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __UpperCAmelCase ( ) -> str: """simple docstring""" _a : Optional[Any] = ArgumentParser('''Accelerate CLI tool''' ,usage='''accelerate <command> [<args>]''' ,allow_abbrev=__a ) _a : Dict = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__a ) env_command_parser(subparsers=__a ) launch_command_parser(subparsers=__a ) tpu_command_parser(subparsers=__a ) test_command_parser(subparsers=__a ) # Let's go _a : str = parser.parse_args() if not hasattr(__a ,'''func''' ): parser.print_help() exit(1 ) # Run args.func(__a ) if __name__ == "__main__": main()
14
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
from __future__ import annotations def UpperCamelCase ( __magic_name__ : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase__ = len(__magic_name__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase__ = array[0] lowercase__ = False lowercase__ = 1 lowercase__ = [] while not is_found and i < array_length: if array[i] < pivot: lowercase__ = True lowercase__ = [element for element in array[i:] if element >= array[i]] lowercase__ = longest_subsequence(__magic_name__ ) if len(__magic_name__ ) > len(__magic_name__ ): lowercase__ = temp_array else: i += 1 lowercase__ = [element for element in array[1:] if element >= pivot] lowercase__ = [pivot, *longest_subsequence(__magic_name__ )] if len(__magic_name__ ) > len(__magic_name__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
15
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __A : Tuple = ( '4S 3H 2C 7S 5H', '9D 8H 2C 6S 7H', '2D 6D 9D TH 7D', 'TC 8C 2S JH 6C', 'JH 8S TH AH QH', 'TS KS 5S 9S AC', 'KD 6S 9D TH AD', 'KS 8D 4D 9S 4S', # pair '8C 4S KH JS 4D', # pair 'QH 8H KD JH 8S', # pair 'KC 4H KS 2H 8D', # pair 'KD 4S KC 3H 8S', # pair 'AH 8S AS KC JH', # pair '3H 4C 4H 3S 2H', # 2 pairs '5S 5D 2C KH KH', # 2 pairs '3C KH 5D 5S KH', # 2 pairs 'AS 3C KH AD KH', # 2 pairs '7C 7S 3S 7H 5S', # 3 of a kind '7C 7S KH 2H 7H', # 3 of a kind 'AC KH QH AH AS', # 3 of a kind '2H 4D 3C AS 5S', # straight (low ace) '3C 5C 4C 2C 6H', # straight '6S 8S 7S 5H 9H', # straight 'JS QS 9H TS KH', # straight 'QC KH TS JS AH', # straight (high ace) '8C 9C 5C 3C TC', # flush '3S 8S 9S 5S KS', # flush '4C 5C 9C 8C KC', # flush 'JH 8H AH KH QH', # flush '3D 2H 3H 2C 2D', # full house '2H 2C 3S 3H 3D', # full house 'KH KC 3S 3H 3D', # full house 'JC 6H JS JD JH', # 4 of a kind 'JC 7H JS JD JH', # 4 of a kind 'JC KH JS JD JH', # 4 of a kind '2S AS 4S 5S 3S', # straight flush (low ace) '2D 6D 3D 4D 5D', # straight flush '5C 6C 3C 7C 4C', # straight flush 'JH 9H TH KH QH', # straight flush 'JH AH TH KH QH', # royal flush (high ace straight flush) ) __A : Union[str, Any] = ( ('2H 3H 4H 5H 6H', 'KS AS TS QS JS', 'Loss'), ('2H 3H 4H 5H 6H', 'AS AD AC AH JD', 'Win'), ('AS AH 2H AD AC', 'JS JD JC JH 3D', 'Win'), ('2S AH 2H AS AC', 'JS JD JC JH AD', 'Loss'), ('2S AH 2H AS AC', '2H 3H 5H 6H 7H', 'Win'), ('AS 3S 4S 8S 2S', '2H 3H 5H 6H 7H', 'Win'), ('2H 3H 5H 6H 7H', '2S 3H 4H 5S 6C', 'Win'), ('2S 3H 4H 5S 6C', '3D 4C 5H 6H 2S', 'Tie'), ('2S 3H 4H 5S 6C', 'AH AC 5H 6H AS', 'Win'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H AS', 'Loss'), ('2S 2H 4H 5S 4C', 'AH AC 5H 6H 7S', 'Win'), ('6S AD 7H 4S AS', 'AH AC 5H 6H 7S', 'Loss'), ('2S AH 4H 5S KC', 'AH AC 5H 6H 7S', 'Loss'), ('2S 3H 6H 7S 9C', '7H 3C TH 6H 9S', 'Loss'), ('4S 5H 6H TS AC', '3S 5H 6H TS AC', 'Win'), ('2S AH 4H 5S 6C', 'AD 4C 5H 6H 2C', 'Tie'), ('AS AH 3H AD AC', 'AS AH 2H AD AC', 'Win'), ('AH AC 5H 5C QS', 'AH AC 5H 5C KS', 'Loss'), ('AH AC 5H 5C QS', 'KH KC 5H 5C QS', 'Win'), ('7C 7S KH 2H 7H', '3C 3S AH 2H 3H', 'Win'), ('3C 3S AH 2H 3H', '7C 7S KH 2H 7H', 'Loss'), ('6H 5H 4H 3H 2H', '5H 4H 3H 2H AH', 'Win'), ('5H 4H 3H 2H AH', '5H 4H 3H 2H AH', 'Tie'), ('5H 4H 3H 2H AH', '6H 5H 4H 3H 2H', 'Loss'), ('AH AD KS KC AC', 'AH KD KH AC KC', 'Win'), ('2H 4D 3C AS 5S', '2H 4D 3C 6S 5S', 'Loss'), ('2H 3S 3C 3H 2S', '3S 3C 2S 2H 2D', 'Win'), ('4D 6D 5D 2D JH', '3S 8S 3H TC KH', 'Loss'), ('4S 6C 8S 3S 7S', 'AD KS 2D 7D 7C', 'Loss'), ('6S 4C 7H 8C 3H', '5H JC AH 9D 9C', 'Loss'), ('9D 9H JH TC QH', '3C 2S JS 5C 7H', 'Win'), ('2H TC 8S AD 9S', '4H TS 7H 2C 5C', 'Win'), ('9D 3S 2C 7S 7C', 'JC TD 3C TC 9H', 'Loss'), ) __A : List[Any] = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', True), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', False), ('AS 3S 4S 8S 2S', True), ) __A : int = ( ('2H 3H 4H 5H 6H', True), ('AS AH 2H AD AC', False), ('2H 3H 5H 6H 7H', False), ('KS AS TS QS JS', True), ('8H 9H QS JS TH', True), ) __A : Any = ( ('2H 4D 3C AS 5S', True, [5, 4, 3, 2, 1_4]), ('2H 5D 3C AS 5S', False, [1_4, 5, 5, 3, 2]), ('JH QD KC AS TS', False, [1_4, 1_3, 1_2, 1_1, 1_0]), ('9D 3S 2C 7S 7C', False, [9, 7, 7, 3, 2]), ) __A : List[Any] = ( ('JH AH TH KH QH', 0), ('JH 9H TH KH QH', 0), ('JC KH JS JD JH', 7), ('KH KC 3S 3H 3D', 6), ('8C 9C 5C 3C TC', 0), ('JS QS 9H TS KH', 0), ('7C 7S KH 2H 7H', 3), ('3C KH 5D 5S KH', 2), ('QH 8H KD JH 8S', 1), ('2D 6D 9D TH 7D', 0), ) __A : str = ( ('JH AH TH KH QH', 2_3), ('JH 9H TH KH QH', 2_2), ('JC KH JS JD JH', 2_1), ('KH KC 3S 3H 3D', 2_0), ('8C 9C 5C 3C TC', 1_9), ('JS QS 9H TS KH', 1_8), ('7C 7S KH 2H 7H', 1_7), ('3C KH 5D 5S KH', 1_6), ('QH 8H KD JH 8S', 1_5), ('2D 6D 9D TH 7D', 1_4), ) def __a ( ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = randrange(len(A__ ) ), randrange(len(A__ ) ) SCREAMING_SNAKE_CASE = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def __a ( A__ : int = 100 ): return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize("hand, expected" , A__ ) def __a ( A__ : str , A__ : List[Any] ): assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , A__ ) def __a ( A__ : Optional[Any] , A__ : int ): assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , A__ ) def __a ( A__ : Any , A__ : List[str] , A__ : Any ): SCREAMING_SNAKE_CASE = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , A__ ) def __a ( A__ : Optional[int] , A__ : str ): assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , A__ ) def __a ( A__ : str , A__ : Optional[int] ): assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , A__ ) def __a ( A__ : Union[str, Any] , A__ : str , A__ : Optional[Any] ): assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def __a ( A__ : List[Any] , A__ : Optional[Any] , A__ : List[Any] ): assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def __a ( ): SCREAMING_SNAKE_CASE = [PokerHand(A__ ) for hand in SORTED_HANDS] SCREAMING_SNAKE_CASE = poker_hands.copy() shuffle(A__ ) SCREAMING_SNAKE_CASE = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def __a ( ): # Test that five high straights are compared correctly. SCREAMING_SNAKE_CASE = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def __a ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. SCREAMING_SNAKE_CASE = PokerHand("2C 4S AS 3D 5C" ) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def __a ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = os.path.abspath(os.path.dirname(A__ ) ) SCREAMING_SNAKE_CASE = os.path.join(A__ , "poker_hands.txt" ) with open(A__ ) as file_hand: for line in file_hand: SCREAMING_SNAKE_CASE = line[:14].strip() SCREAMING_SNAKE_CASE = line[15:].strip() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = PokerHand(A__ ), PokerHand(A__ ) SCREAMING_SNAKE_CASE = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
16
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : def __init__( self : str , __A : Tuple , __A : Tuple=13 , __A : List[str]=7 , __A : List[str]=True , __A : Any=True , __A : List[str]=True , __A : Optional[int]=True , __A : Union[str, Any]=99 , __A : str=16 , __A : Optional[Any]=36 , __A : Union[str, Any]=6 , __A : Optional[int]=6 , __A : Optional[int]=6 , __A : List[str]=37 , __A : Optional[int]="gelu" , __A : List[str]=0.1 , __A : List[str]=0.1 , __A : Tuple=512 , __A : List[str]=16 , __A : int=2 , __A : Tuple=0.0_2 , __A : Optional[int]=3 , __A : List[Any]=4 , __A : int=None , ): __A : Optional[int] = parent __A : str = batch_size __A : List[Any] = seq_length __A : Union[str, Any] = is_training __A : Dict = use_input_mask __A : str = use_token_type_ids __A : List[Any] = use_labels __A : Optional[int] = vocab_size __A : Dict = embedding_size __A : Optional[int] = hidden_size __A : Optional[Any] = num_hidden_layers __A : Optional[Any] = num_hidden_groups __A : List[Any] = num_attention_heads __A : Optional[Any] = intermediate_size __A : List[Any] = hidden_act __A : Tuple = hidden_dropout_prob __A : str = attention_probs_dropout_prob __A : Dict = max_position_embeddings __A : Optional[int] = type_vocab_size __A : Dict = type_sequence_label_size __A : List[str] = initializer_range __A : Optional[int] = num_labels __A : Tuple = num_choices __A : Union[str, Any] = scope def lowerCAmelCase_ ( self : Union[str, Any] ): __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __A : Any = None if self.use_input_mask: __A : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __A : Dict = None if self.use_token_type_ids: __A : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __A : Optional[Any] = None __A : Dict = None __A : List[str] = None if self.use_labels: __A : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __A : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices ) __A : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Dict ): return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def lowerCAmelCase_ ( self : int , __A : Dict , __A : Dict , __A : str , __A : Optional[int] , __A : Optional[Any] , __A : str , __A : int ): __A : List[Any] = AlbertModel(config=__A ) model.to(__A ) model.eval() __A : int = model(__A , attention_mask=__A , token_type_ids=__A ) __A : Dict = model(__A , token_type_ids=__A ) __A : int = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase_ ( self : Union[str, Any] , __A : str , __A : Tuple , __A : Union[str, Any] , __A : Any , __A : Union[str, Any] , __A : Tuple , __A : List[Any] ): __A : int = AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() __A : Any = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , sentence_order_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def lowerCAmelCase_ ( self : List[Any] , __A : Dict , __A : int , __A : Optional[int] , __A : Optional[int] , __A : Any , __A : Dict , __A : Optional[int] ): __A : List[str] = AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() __A : Tuple = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : List[str] , __A : Optional[int] , __A : Any , __A : Union[str, Any] , __A : int , __A : Any , __A : Optional[Any] , __A : Union[str, Any] ): __A : List[str] = AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() __A : str = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Optional[int] , __A : Tuple , __A : str , __A : Tuple , __A : List[str] , __A : int , __A : List[Any] , __A : Optional[Any] ): __A : Dict = self.num_labels __A : Optional[Any] = AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() __A : str = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : Any , __A : List[Any] , __A : Tuple , __A : Optional[Any] , __A : Optional[int] , __A : str , __A : Tuple , __A : str ): __A : Any = self.num_labels __A : Optional[int] = AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() __A : Optional[int] = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , __A : List[Any] , __A : Any , __A : Optional[int] , __A : Optional[int] , __A : Union[str, Any] , __A : Dict , __A : int ): __A : Dict = self.num_choices __A : List[str] = AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() __A : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __A : Union[str, Any] = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : List[Any] = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) : List[str] = config_and_inputs __A : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( _lowercase , _lowercase , unittest.TestCase ): _lowercase : Optional[Any] = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) _lowercase : List[str] = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : str = True def lowerCAmelCase_ ( self : Any , __A : Optional[Any] , __A : Optional[Any] , __A : Tuple=False ): __A : List[str] = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): __A : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) __A : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def lowerCAmelCase_ ( self : Dict ): __A : Optional[Any] = AlbertModelTester(self ) __A : Optional[int] = ConfigTester(self , config_class=__A , hidden_size=37 ) def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : List[str] ): __A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def lowerCAmelCase_ ( self : Optional[Any] ): __A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def lowerCAmelCase_ ( self : int ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def lowerCAmelCase_ ( self : int ): __A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def lowerCAmelCase_ ( self : Optional[int] ): __A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def lowerCAmelCase_ ( self : Union[str, Any] ): __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def lowerCAmelCase_ ( self : Tuple ): __A : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A : Optional[int] = type self.model_tester.create_and_check_model(*__A ) @slow def lowerCAmelCase_ ( self : int ): for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A : int = AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowerCAmelCase_ ( self : List[str] ): __A : Dict = AlbertModel.from_pretrained("""albert-base-v2""" ) __A : Union[str, Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __A : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): __A : Any = model(__A , attention_mask=__A )[0] __A : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) __A : Any = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1e-4 ) )
17
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : list , SCREAMING_SNAKE_CASE_ : int = 0 ): '''simple docstring''' _lowerCAmelCase = length or len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _lowerCAmelCase , _lowerCAmelCase = list_data[i + 1], list_data[i] _lowerCAmelCase = True return list_data if not swapped else bubble_sort(SCREAMING_SNAKE_CASE_ , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
18
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : str =logging.get_logger(__name__) __lowerCAmelCase : Any ={ # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = '''megatron-bert''' def __init__( self :int , lowerCAmelCase__ :int=29_056 , lowerCAmelCase__ :Dict=1_024 , lowerCAmelCase__ :Optional[int]=24 , lowerCAmelCase__ :str=16 , lowerCAmelCase__ :Optional[int]=4_096 , lowerCAmelCase__ :Optional[Any]="gelu" , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :List[str]=512 , lowerCAmelCase__ :Any=2 , lowerCAmelCase__ :int=0.02 , lowerCAmelCase__ :Tuple=1E-1_2 , lowerCAmelCase__ :Tuple=0 , lowerCAmelCase__ :Optional[int]="absolute" , lowerCAmelCase__ :List[str]=True , **lowerCAmelCase__ :Tuple , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : List[Any] = type_vocab_size __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = position_embedding_type __SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
696
0
"""simple docstring""" from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ['audio_values', 'audio_mask'] def __init__( self , __a=20_48 , __a=1 , __a=[16, 16] , __a=1_28 , __a=4_41_00 , __a=86 , __a=20_48 , __a=0.0 , **__a , ) -> Optional[int]: '''simple docstring''' super().__init__( feature_size=__a , sampling_rate=__a , padding_value=__a , **__a , ) _UpperCamelCase = spectrogram_length _UpperCamelCase = num_channels _UpperCamelCase = patch_size _UpperCamelCase = feature_size // self.patch_size[1] _UpperCamelCase = n_fft _UpperCamelCase = sampling_rate // hop_length_to_sampling_rate _UpperCamelCase = sampling_rate _UpperCamelCase = padding_value _UpperCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=__a , min_frequency=0.0 , max_frequency=2_2050.0 , sampling_rate=__a , norm='''slaney''' , mel_scale='''slaney''' , ).T def UpperCAmelCase ( self , __a) -> np.ndarray: '''simple docstring''' _UpperCamelCase = spectrogram( __a , window_function(self.n_fft , '''hann''') , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel='''dB''' , db_range=80.0 , ) _UpperCamelCase = log_spec[:, :-1] _UpperCamelCase = log_spec - 20.0 _UpperCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0) + 1.0 return log_spec def __call__( self , __a , __a = None , __a = True , __a = None , __a = False , __a = False , **__a , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( '''This feature extractor is set to support sampling rate''' F''' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled''' F''' with {self.sampling_rate} and not {sampling_rate}.''') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') _UpperCamelCase = isinstance(__a , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''') _UpperCamelCase = is_batched_numpy or ( isinstance(__a , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: _UpperCamelCase = [np.asarray([speech] , dtype=np.floataa).T for speech in raw_speech] elif not is_batched and not isinstance(__a , np.ndarray): _UpperCamelCase = np.asarray(__a , dtype=np.floataa) elif isinstance(__a , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): _UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: _UpperCamelCase = [np.asarray([raw_speech]).T] # Convert audio signals to log mel spectrograms, truncate by time axis _UpperCamelCase = [ self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , __a): _UpperCamelCase = [np.asarray(__a , dtype=np.floataa) for feature in audio_features] # Create audio attention mask _UpperCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]) # The maximum number of audio patches in a batch if return_attention_mask: _UpperCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0] for feature in audio_features ] _UpperCamelCase = np.array(__a).astype(np.floataa) # convert into correct format for padding _UpperCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _UpperCamelCase = np.ones([len(__a), 1, max_time_len, self.feature_size]).astype(np.floataa) _UpperCamelCase = padded_audio_features * self.padding_value for i in range(len(__a)): _UpperCamelCase = audio_features[i] _UpperCamelCase = feature # return as BatchFeature if return_attention_mask: _UpperCamelCase = {'''audio_values''': padded_audio_features, '''audio_mask''': audio_mask} else: _UpperCamelCase = {'''audio_values''': padded_audio_features} _UpperCamelCase = BatchFeature(data=__a , tensor_type=__a) return encoded_inputs
19
import os import sys import unittest __lowerCAmelCase : List[Any] =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __lowerCAmelCase : Optional[Any] =os.path.join(git_repo_path, 'src', 'transformers') __lowerCAmelCase : Optional[Any] ='\n{0} = None\n' __lowerCAmelCase : Tuple ='\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n' __lowerCAmelCase : Dict ='\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n' class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Tuple ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = find_backend(''' _import_structure["models.albert"].append("AlbertTokenizerFast")''' ) self.assertIsNone(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tokenizers_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tokenizers''' ) __SCREAMING_SNAKE_CASE : Dict = find_backend(''' if not is_tensorflow_text_available():''' ) self.assertEqual(lowerCAmelCase__ , '''tensorflow_text''' ) __SCREAMING_SNAKE_CASE : Tuple = find_backend(''' if not (is_sentencepiece_available() and is_tokenizers_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers''' ) __SCREAMING_SNAKE_CASE : Any = find_backend( ''' if not (is_sentencepiece_available() and is_tensorflow_text_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tensorflow_text''' ) __SCREAMING_SNAKE_CASE : List[str] = find_backend( ''' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):''' ) self.assertEqual(lowerCAmelCase__ , '''sentencepiece_and_tokenizers_and_vision''' ) def __magic_name__( self :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , lowerCAmelCase__ ) self.assertIn('''tensorflow_text''' , lowerCAmelCase__ ) self.assertIn('''sentencepiece_and_tokenizers''' , lowerCAmelCase__ ) # Likewise, we can't assert on the exact content of a key self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertModel''' , objects['''tf'''] ) self.assertIn('''FlaxBertModel''' , objects['''flax'''] ) self.assertIn('''BertModel''' , objects['''torch'''] ) self.assertIn('''TFBertTokenizer''' , objects['''tensorflow_text'''] ) self.assertIn('''convert_slow_tokenizer''' , objects['''sentencepiece_and_tokenizers'''] ) def __magic_name__( self :Optional[Any] ) -> List[Any]: __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_object('''CONSTANT''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , '''\nCONSTANT = None\n''' ) __SCREAMING_SNAKE_CASE : List[str] = create_dummy_object('''function''' , '''\'torch\'''' ) self.assertEqual( lowerCAmelCase__ , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''' ) __SCREAMING_SNAKE_CASE : int = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' __SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('''FakeClass''' , '''\'torch\'''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' __SCREAMING_SNAKE_CASE : List[Any] = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']} ) self.assertEqual(dummy_files['''torch'''] , lowerCAmelCase__ )
696
0
def _lowercase( __a : list[int] ): if not nums: # Makes sure that the list is not empty raise ValueError('List is empty' ) a__ =sum(__a ) / len(__a ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(__a ) if __name__ == "__main__": import doctest doctest.testmod()
20
import math from numpy import inf from scipy.integrate import quad def _UpperCamelCase ( lowercase__ ): if num <= 0: raise ValueError('''math domain error''' ) return quad(lowercase__ , 0 , lowercase__ , args=(lowercase__) )[0] def _UpperCamelCase ( lowercase__ , lowercase__ ): return math.pow(lowercase__ , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
696
0
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Dict = TypeVar("DatasetType", Dataset, IterableDataset) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = "first_exhausted" , ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(lowerCamelCase ): if not isinstance(lowerCamelCase , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowerCamelCase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase ).__name__}." ) if i == 0: __magic_name__ , __magic_name__ : List[str] =( (Dataset, IterableDataset) if isinstance(lowerCamelCase , lowerCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"{stopping_strategy} is not supported. Please enter a valid stopping_strategy." ) if dataset_type is Dataset: return _interleave_map_style_datasets( lowerCamelCase , lowerCamelCase , lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , stopping_strategy=lowerCamelCase ) else: return _interleave_iterable_datasets( lowerCamelCase , lowerCamelCase , lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , stopping_strategy=lowerCamelCase ) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase = None , lowerCamelCase = None , lowerCamelCase = 0 , ): if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(lowerCamelCase ): if not isinstance(lowerCamelCase , (Dataset, IterableDataset) ): if isinstance(lowerCamelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} " """is an empty dataset dictionary.""" ) raise ValueError( F"Dataset at position {i} has at least one split: {list(lowerCamelCase )}\n" F"Please pick one to interleave with the other datasets, for example: dataset['{next(iter(lowerCamelCase ) )}']" ) raise ValueError( F"Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(lowerCamelCase ).__name__}." ) if i == 0: __magic_name__ , __magic_name__ : List[Any] =( (Dataset, IterableDataset) if isinstance(lowerCamelCase , lowerCamelCase ) else (IterableDataset, Dataset) ) elif not isinstance(lowerCamelCase , lowerCamelCase ): raise ValueError( F"Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects." ) if dataset_type is Dataset: return _concatenate_map_style_datasets(lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , axis=lowerCamelCase ) else: return _concatenate_iterable_datasets(lowerCamelCase , info=lowerCamelCase , split=lowerCamelCase , axis=lowerCamelCase )
21
def _UpperCamelCase ( lowercase__ , lowercase__ , lowercase__ ): if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(lowercase__ , lowercase__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate __SCREAMING_SNAKE_CASE : int = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __SCREAMING_SNAKE_CASE : Union[str, Any] = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
696
0
'''simple docstring''' import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _snake_case : Any = logging.get_logger(__name__) class A ( _a ): lowercase_ = 'AutoTokenizer' lowercase_ = ['tokenizer'] lowercase_ = { 'semantic_prompt': 1, 'coarse_prompt': 2, 'fine_prompt': 2, } def __init__( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=None ) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase_ ) _a = speaker_embeddings @classmethod def __lowerCAmelCase ( cls : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any]="speaker_embeddings_path.json" , **lowerCAmelCase_ : Any ) -> str: """simple docstring""" if speaker_embeddings_dict_path is not None: _a = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , subfolder=kwargs.pop('''subfolder''' , lowerCAmelCase_ ) , cache_dir=kwargs.pop('''cache_dir''' , lowerCAmelCase_ ) , force_download=kwargs.pop('''force_download''' , lowerCAmelCase_ ) , proxies=kwargs.pop('''proxies''' , lowerCAmelCase_ ) , resume_download=kwargs.pop('''resume_download''' , lowerCAmelCase_ ) , local_files_only=kwargs.pop('''local_files_only''' , lowerCAmelCase_ ) , use_auth_token=kwargs.pop('''use_auth_token''' , lowerCAmelCase_ ) , revision=kwargs.pop('''revision''' , lowerCAmelCase_ ) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) _a = None else: with open(lowerCAmelCase_ ) as speaker_embeddings_json: _a = json.load(lowerCAmelCase_ ) else: _a = None _a = AutoTokenizer.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) return cls(tokenizer=lowerCAmelCase_ , speaker_embeddings=lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any]="speaker_embeddings_path.json" , lowerCAmelCase_ : Dict="speaker_embeddings" , lowerCAmelCase_ : bool = False , **lowerCAmelCase_ : List[str] , ) -> str: """simple docstring""" if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ , '''v2''' ) , exist_ok=lowerCAmelCase_ ) _a = {} _a = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": _a = self._load_voice_preset(lowerCAmelCase_ ) _a = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['''repo_or_path'''] , lowerCAmelCase_ , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=lowerCAmelCase_ , ) _a = os.path.join(lowerCAmelCase_ , F'{prompt_key}_{key}.npy' ) _a = tmp_dict with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , '''w''' ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) super().save_pretrained(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : str = None , **lowerCAmelCase_ : Union[str, Any] ) -> Any: """simple docstring""" _a = self.speaker_embeddings[voice_preset] _a = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) _a = get_file_from_repo( self.speaker_embeddings.get('''repo_or_path''' , '''/''' ) , voice_preset_paths[key] , subfolder=kwargs.pop('''subfolder''' , lowerCAmelCase_ ) , cache_dir=kwargs.pop('''cache_dir''' , lowerCAmelCase_ ) , force_download=kwargs.pop('''force_download''' , lowerCAmelCase_ ) , proxies=kwargs.pop('''proxies''' , lowerCAmelCase_ ) , resume_download=kwargs.pop('''resume_download''' , lowerCAmelCase_ ) , local_files_only=kwargs.pop('''local_files_only''' , lowerCAmelCase_ ) , use_auth_token=kwargs.pop('''use_auth_token''' , lowerCAmelCase_ ) , revision=kwargs.pop('''revision''' , lowerCAmelCase_ ) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) _a = np.load(lowerCAmelCase_ ) return voice_preset_dict def __lowerCAmelCase ( self : int , lowerCAmelCase_ : Optional[dict] = None ) -> Any: """simple docstring""" for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self : Union[str, Any] , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Dict="pt" , lowerCAmelCase_ : Dict=2_56 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Union[str, Any]=False , **lowerCAmelCase_ : int , ) -> str: """simple docstring""" if voice_preset is not None and not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): _a = self._load_voice_preset(lowerCAmelCase_ ) else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not voice_preset.endswith('''.npz''' ): _a = voice_preset + '''.npz''' _a = np.load(lowerCAmelCase_ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) _a = BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) _a = self.tokenizer( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding='''max_length''' , max_length=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) if voice_preset is not None: _a = voice_preset return encoded_text
22
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Tuple = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
696
0
import numpy class _a : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase ) -> None: UpperCamelCase_ = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. UpperCamelCase_ = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. UpperCamelCase_ = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. UpperCamelCase_ = numpy.random.rand(3 , 1 ) # Real output values provided. UpperCamelCase_ = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. UpperCamelCase_ = numpy.zeros(output_array.shape ) def _UpperCAmelCase ( self ) -> numpy.ndarray: UpperCamelCase_ = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _UpperCAmelCase ( self ) -> None: UpperCamelCase_ = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) UpperCamelCase_ = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) UpperCamelCase_ = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> None: for iteration in range(1 , iterations + 1 ): UpperCamelCase_ = self.feedforward() self.back_propagation() if give_loss: UpperCamelCase_ = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def _UpperCAmelCase ( self , _UpperCAmelCase ) -> int: UpperCamelCase_ = input_arr UpperCamelCase_ = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) UpperCamelCase_ = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case (__lowercase): return 1 / (1 + numpy.exp(-value)) def _snake_case (__lowercase): return (value) * (1 - (value)) def _snake_case (): UpperCamelCase_ = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. UpperCamelCase_ = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa) # Calling neural network class. UpperCamelCase_ = TwoHiddenLayerNeuralNetwork( input_array=__lowercase , output_array=__lowercase) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=__lowercase , iterations=10 , give_loss=__lowercase) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa)) if __name__ == "__main__": example()
23
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCAmelCase : int ={ 'return_dict': False, 'output_hidden_states': True, 'output_attentions': True, 'torchscript': True, 'torch_dtype': 'float16', 'use_bfloat16': True, 'tf_legacy_loss': True, 'pruned_heads': {'a': 1}, 'tie_word_embeddings': False, 'is_decoder': True, 'cross_attention_hidden_size': 1_2_8, 'add_cross_attention': True, 'tie_encoder_decoder': True, 'max_length': 5_0, 'min_length': 3, 'do_sample': True, 'early_stopping': True, 'num_beams': 3, 'num_beam_groups': 3, 'diversity_penalty': 0.5, 'temperature': 2.0, 'top_k': 1_0, 'top_p': 0.7, 'typical_p': 0.2, 'repetition_penalty': 0.8, 'length_penalty': 0.8, 'no_repeat_ngram_size': 5, 'encoder_no_repeat_ngram_size': 5, 'bad_words_ids': [1, 2, 3], 'num_return_sequences': 3, 'chunk_size_feed_forward': 5, 'output_scores': True, 'return_dict_in_generate': True, 'forced_bos_token_id': 2, 'forced_eos_token_id': 3, 'remove_invalid_values': True, 'architectures': ['BertModel'], 'finetuning_task': 'translation', 'id2label': {0: 'label'}, 'label2id': {'label': '0'}, 'tokenizer_class': 'BertTokenizerFast', 'prefix': 'prefix', 'bos_token_id': 6, 'pad_token_id': 7, 'eos_token_id': 8, 'sep_token_id': 9, 'decoder_start_token_id': 1_0, 'exponential_decay_length_penalty': (5, 1.0_1), 'suppress_tokens': [0, 1], 'begin_suppress_tokens': 2, 'task_specific_params': {'translation': 'some_params'}, 'problem_type': 'regression', } @is_staging_test class _lowercase ( unittest.TestCase ): '''simple docstring''' @classmethod def __magic_name__( cls :Optional[Any] ) -> Any: __SCREAMING_SNAKE_CASE : str = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __magic_name__( cls :List[str] ) -> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : int = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Tuple = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , repo_id='''test-config''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :int ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : Any = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id='''valid_org/test-config-org''' , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __magic_name__( self :Dict ) -> Optional[int]: CustomConfig.register_for_auto_class() __SCREAMING_SNAKE_CASE : Tuple = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __SCREAMING_SNAKE_CASE : Optional[Any] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''' , trust_remote_code=lowerCAmelCase__ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :List[str] ) -> Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __SCREAMING_SNAKE_CASE : Optional[Any] = c.n_embd + 1 # int __SCREAMING_SNAKE_CASE : Optional[Any] = c.resid_pdrop + 1.0 # float __SCREAMING_SNAKE_CASE : Dict = not c.scale_attn_weights # bool __SCREAMING_SNAKE_CASE : Optional[int] = c.summary_type + '''foo''' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCAmelCase__ , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(lowerCAmelCase__ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(lowerCAmelCase__ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(lowerCAmelCase__ , c.summary_type , '''mismatch for key: summary_type''' ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = PretrainedConfig() __SCREAMING_SNAKE_CASE : str = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCAmelCase__ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __SCREAMING_SNAKE_CASE : List[Any] = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCAmelCase__ , lowerCAmelCase__ )] if len(lowerCAmelCase__ ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f''' {', '.join(lowerCAmelCase__ )}.''' ) def __magic_name__( self :Union[str, Any] ) -> List[Any]: with self.assertRaises(lowerCAmelCase__ ): # config is in subfolder, the following should not work without specifying the subfolder __SCREAMING_SNAKE_CASE : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __SCREAMING_SNAKE_CASE : List[str] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[Any]: # A mock response for an HTTP head request to emulate server down __SCREAMING_SNAKE_CASE : Union[str, Any] = mock.Mock() __SCREAMING_SNAKE_CASE : List[Any] = 500 __SCREAMING_SNAKE_CASE : Union[str, Any] = {} __SCREAMING_SNAKE_CASE : Optional[Any] = HTTPError __SCREAMING_SNAKE_CASE : str = {} # Download this model to make sure it's in the cache. __SCREAMING_SNAKE_CASE : Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=lowerCAmelCase__ ) as mock_head: __SCREAMING_SNAKE_CASE : Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def __magic_name__( self :Union[str, Any] ) -> List[Any]: # This test is for deprecated behavior and can be removed in v5 __SCREAMING_SNAKE_CASE : Optional[int] = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def __magic_name__( self :str ) -> List[str]: __SCREAMING_SNAKE_CASE : int = AutoConfig.from_pretrained('''bert-base-cased''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = 2 json.dump(configuration.to_dict() , open(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __SCREAMING_SNAKE_CASE : List[Any] = ['''config.42.0.0.json'''] __SCREAMING_SNAKE_CASE : Tuple = 768 configuration.save_pretrained(lowerCAmelCase__ ) shutil.move(os.path.join(lowerCAmelCase__ , '''config.4.0.0.json''' ) , os.path.join(lowerCAmelCase__ , '''config.42.0.0.json''' ) ) __SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 768 ) def __magic_name__( self :List[str] ) -> Union[str, Any]: # This repo has two configuration files, one for v4.0.0 and above with a different hidden size. __SCREAMING_SNAKE_CASE : Union[str, Any] = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __SCREAMING_SNAKE_CASE : int = '''v4.0.0''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCAmelCase__ , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __SCREAMING_SNAKE_CASE : List[str] = '''v3.0.0''' __SCREAMING_SNAKE_CASE : Any = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(old_configuration.hidden_size , 768 )
696
0
'''simple docstring''' from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowerCAmelCase ( __lowerCAmelCase): def __init__( self , __SCREAMING_SNAKE_CASE = 101 ) -> List[str]: '''simple docstring''' __snake_case = length def __len__( self ) -> Any: '''simple docstring''' return self.length def __getitem__( self , __SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return i class lowerCAmelCase : def __call__( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' return {"input_ids": torch.tensor(__SCREAMING_SNAKE_CASE ), "labels": torch.tensor(__SCREAMING_SNAKE_CASE )} class lowerCAmelCase ( nn.Module): def __init__( self ) -> Tuple: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. __snake_case = nn.Linear(120 , 80 ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Optional[int]: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowerCAmelCase ( __lowerCAmelCase): @require_torch_neuroncore def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = F'''--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __snake_case = self.get_auto_remove_tmp_dir() __snake_case = F'''--output_dir {output_dir}'''.split() __snake_case = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowerCAmelCase ( __lowerCAmelCase): @require_torch_multi_gpu def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' __snake_case = F'''--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py '''.split() __snake_case = self.get_auto_remove_tmp_dir() __snake_case = F'''--output_dir {output_dir}'''.split() __snake_case = ['''torchrun'''] + distributed_args + args execute_subprocess_async(__SCREAMING_SNAKE_CASE , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py UpperCAmelCase_ : Union[str, Any] = HfArgumentParser((TrainingArguments,)) UpperCAmelCase_ : Tuple = parser.parse_args_into_dataclasses()[0] logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ F"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_0_1, 4_0, 7]: UpperCAmelCase_ : int = DummyDataset(dataset_length) def _UpperCamelCase (_lowerCamelCase : EvalPrediction )-> Dict: '''simple docstring''' __snake_case = list(range(len(_lowerCamelCase ) ) ) __snake_case = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' f'''{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}''' ) return {"success": success} UpperCAmelCase_ : Union[str, Any] = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) UpperCAmelCase_ : List[str] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase_ : List[str] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase_ : Any = 2 UpperCAmelCase_ : List[str] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) UpperCAmelCase_ : Optional[int] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) UpperCAmelCase_ : str = None
24
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Any ={ 'configuration_llama': ['LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LlamaConfig'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int =['LlamaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] =['LlamaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str =[ 'LlamaForCausalLM', 'LlamaModel', 'LlamaPreTrainedModel', 'LlamaForSequenceClassification', ] if TYPE_CHECKING: from .configuration_llama import LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP, LlamaConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama import LlamaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_llama_fast import LlamaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_llama import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaPreTrainedModel else: import sys __lowerCAmelCase : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
696
0
import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a_ = logging.get_logger(__name__) class _UpperCamelCase ( __A ): '''simple docstring''' def __init__( self : List[str] , *a : Optional[int] , **a : Dict ) -> None: """simple docstring""" warnings.warn( "The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use LayoutLMv2ImageProcessor instead." , a , ) super().__init__(*a , **a )
25
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : List[Any] ={ 'google/switch-base-8': 'https://huggingface.co/google/switch-base-8/blob/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = '''switch_transformers''' SCREAMING_SNAKE_CASE__ : Optional[int] = ['''past_key_values'''] SCREAMING_SNAKE_CASE__ : str = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self :Optional[int] , lowerCAmelCase__ :Union[str, Any]=32_128 , lowerCAmelCase__ :int=768 , lowerCAmelCase__ :Optional[Any]=64 , lowerCAmelCase__ :List[str]=2_048 , lowerCAmelCase__ :Optional[int]=64 , lowerCAmelCase__ :Union[str, Any]=12 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Tuple=12 , lowerCAmelCase__ :Optional[int]=3 , lowerCAmelCase__ :Optional[int]=12 , lowerCAmelCase__ :Optional[Any]=8 , lowerCAmelCase__ :Tuple=False , lowerCAmelCase__ :List[Any]=0.01 , lowerCAmelCase__ :Any="float32" , lowerCAmelCase__ :int=False , lowerCAmelCase__ :int=32 , lowerCAmelCase__ :Optional[Any]=128 , lowerCAmelCase__ :Optional[Any]=0.1 , lowerCAmelCase__ :str=1E-6 , lowerCAmelCase__ :Tuple=0.001 , lowerCAmelCase__ :List[Any]=0.001 , lowerCAmelCase__ :Union[str, Any]=1.0 , lowerCAmelCase__ :Tuple="relu" , lowerCAmelCase__ :Dict=True , lowerCAmelCase__ :Optional[int]=False , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]=0 , lowerCAmelCase__ :Union[str, Any]=1 , **lowerCAmelCase__ :List[str] , ) -> Tuple: __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Optional[int] = d_kv __SCREAMING_SNAKE_CASE : Tuple = d_ff __SCREAMING_SNAKE_CASE : Tuple = num_sparse_encoder_layers __SCREAMING_SNAKE_CASE : List[Any] = num_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __SCREAMING_SNAKE_CASE : Optional[Any] = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: __SCREAMING_SNAKE_CASE : List[Any] = self.num_layers // self.num_sparse_encoder_layers else: __SCREAMING_SNAKE_CASE : Tuple = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: __SCREAMING_SNAKE_CASE : Dict = self.num_decoder_layers # HACK: this will create 0 sparse layers __SCREAMING_SNAKE_CASE : List[Any] = num_heads __SCREAMING_SNAKE_CASE : List[Any] = num_experts __SCREAMING_SNAKE_CASE : Tuple = expert_capacity __SCREAMING_SNAKE_CASE : List[Any] = router_bias __SCREAMING_SNAKE_CASE : Optional[Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f'''`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}''' ) __SCREAMING_SNAKE_CASE : List[Any] = router_dtype __SCREAMING_SNAKE_CASE : Optional[Any] = router_ignore_padding_tokens __SCREAMING_SNAKE_CASE : int = relative_attention_num_buckets __SCREAMING_SNAKE_CASE : Any = relative_attention_max_distance __SCREAMING_SNAKE_CASE : Union[str, Any] = dropout_rate __SCREAMING_SNAKE_CASE : Dict = layer_norm_epsilon __SCREAMING_SNAKE_CASE : int = initializer_factor __SCREAMING_SNAKE_CASE : List[str] = feed_forward_proj __SCREAMING_SNAKE_CASE : Any = use_cache __SCREAMING_SNAKE_CASE : Union[str, Any] = add_router_probs __SCREAMING_SNAKE_CASE : int = router_z_loss_coef __SCREAMING_SNAKE_CASE : List[str] = router_aux_loss_coef __SCREAMING_SNAKE_CASE : Dict = self.feed_forward_proj.split('''-''' ) __SCREAMING_SNAKE_CASE : Optional[int] = act_info[-1] __SCREAMING_SNAKE_CASE : Optional[Any] = act_info[0] == '''gated''' if len(lowerCAmelCase__ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase__ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __SCREAMING_SNAKE_CASE : List[Any] = '''gelu_new''' super().__init__( pad_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ , )
696
0
'''simple docstring''' from __future__ import annotations def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[int]: # noqa: E741 """simple docstring""" while r - l > 1: __snake_case : str = (l + r) // 2 if v[m] >= key: __snake_case : Any = m else: __snake_case : Union[str, Any] = m # noqa: E741 return r def _a ( _lowerCamelCase ) -> int: """simple docstring""" if len(_lowerCamelCase ) == 0: return 0 __snake_case : Optional[Any] = [0] * len(_lowerCamelCase ) __snake_case : Dict = 1 __snake_case : Any = v[0] for i in range(1 , len(_lowerCamelCase ) ): if v[i] < tail[0]: __snake_case : List[str] = v[i] elif v[i] > tail[length - 1]: __snake_case : Any = v[i] length += 1 else: __snake_case : Optional[Any] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
26
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[List[np.ndarray], torch.FloatTensor] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
696
0
import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin __A : Optional[Any] = 1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class lowerCamelCase: '''simple docstring''' def __init__( self , snake_case_ , snake_case_=16 , snake_case_=13 , snake_case_=7 , snake_case_=14 , snake_case_=10 , snake_case_=19 , snake_case_=5 , snake_case_=4 , snake_case_=True , snake_case_=16 , snake_case_=2 , snake_case_=4 , snake_case_=4 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=[1, 2, 3, 4, 5] , snake_case_=25 , snake_case_=5 , ): _A = d_model _A = parent _A = batch_size _A = prediction_length _A = context_length _A = cardinality _A = num_time_features _A = lags_sequence _A = embedding_dimension _A = is_training _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = context_length _A = prediction_length + label_length _A = label_length _A = moving_average _A = autocorrelation_factor def lowerCAmelCase__ ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def lowerCAmelCase__ ( self , snake_case_ ): _A = config.context_length + max(config.lags_sequence ) _A = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _A = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _A = floats_tensor([self.batch_size, _past_length] ) _A = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _A = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _A = floats_tensor([self.batch_size, config.prediction_length] ) _A = { 'past_values': past_values, 'static_categorical_features': static_categorical_features, 'past_time_features': past_time_features, 'past_observed_mask': past_observed_mask, 'future_time_features': future_time_features, 'future_values': future_values, } return inputs_dict def lowerCAmelCase__ ( self ): _A = self.get_config() _A = self.prepare_autoformer_inputs_dict(snake_case_ ) return config, inputs_dict def lowerCAmelCase__ ( self ): _A, _A = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self , snake_case_ , snake_case_ ): _A = AutoformerModel(config=snake_case_ ).to(snake_case_ ).eval() _A = model(**snake_case_ ) _A = outputs.encoder_last_hidden_state _A = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _A = model.get_encoder() encoder.save_pretrained(snake_case_ ) _A = AutoformerEncoder.from_pretrained(snake_case_ ).to(snake_case_ ) _A, _A, _A, _A, _A = model.create_network_inputs(**snake_case_ ) _A, _A = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _A = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _A = encoder(inputs_embeds=snake_case_ )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _A = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _A = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _A = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _A = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _A = model.get_decoder() decoder.save_pretrained(snake_case_ ) _A = AutoformerDecoder.from_pretrained(snake_case_ ).to(snake_case_ ) _A = decoder( trend=snake_case_ , inputs_embeds=snake_case_ , encoder_hidden_states=snake_case_ , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __magic_name__ = (AutoformerForPrediction,) if is_torch_available() else () __magic_name__ = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False __magic_name__ = False def lowerCAmelCase__ ( self ): _A = AutoformerModelTester(self ) _A = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) _A, _A = model_class.from_pretrained(snake_case_ , output_loading_info=snake_case_ ) self.assertEqual(info['missing_keys'] , [] ) def lowerCAmelCase__ ( self ): _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*snake_case_ ) @unittest.skip(reason='Model has no tokens embeddings' ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): _A = inspect.signature(getattr(snake_case_ , 'forward' ) ) # The main input is the name of the argument after `self` _A = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(snake_case_ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = [ 'past_values', 'past_time_features', 'past_observed_mask', 'static_categorical_features', 'static_real_features', 'future_values', 'future_time_features', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('future_observed_mask' ) expected_arg_names.extend( [ 'decoder_attention_mask', 'head_mask', 'decoder_head_mask', 'cross_attn_head_mask', 'encoder_outputs', 'past_key_values', 'output_hidden_states', 'output_attentions', 'use_cache', 'return_dict', ] ) self.assertListEqual(arg_names[: len(snake_case_ )] , snake_case_ ) def lowerCAmelCase__ ( self ): _A, _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True _A = getattr(self.model_tester , 'seq_length' , snake_case_ ) _A = getattr(self.model_tester , 'decoder_seq_length' , snake_case_ ) _A = getattr(self.model_tester , 'encoder_seq_length' , snake_case_ ) _A = getattr(self.model_tester , 'd_model' , snake_case_ ) _A = getattr(self.model_tester , 'num_attention_heads' , snake_case_ ) _A = d_model // num_attention_heads for model_class in self.all_model_classes: _A = True _A = False _A = True _A = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _A = True _A = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) _A = outputs.encoder_attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _A = len(snake_case_ ) _A = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(snake_case_ , snake_case_ ) # decoder attentions _A = outputs.decoder_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _A = outputs.cross_attentions self.assertIsInstance(snake_case_ , (list, tuple) ) self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(snake_case_ ) model.to(snake_case_ ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(snake_case_ , snake_case_ ) ) self.assertEqual(out_len + 2 , len(snake_case_ ) ) _A = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(snake_case_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def lowerCAmelCase__ ( self ): super().test_retain_grad_hidden_states_attentions() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE="train-batch.pt" ) -> Any: """simple docstring""" _A = hf_hub_download(repo_id='hf-internal-testing/tourism-monthly-batch' , filename=_SCREAMING_SNAKE_CASE , repo_type='dataset' ) _A = torch.load(_SCREAMING_SNAKE_CASE , map_location=_SCREAMING_SNAKE_CASE ) return batch @require_torch @slow class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self ): _A = AutoformerModel.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(snake_case_ ) _A = prepare_batch() with torch.no_grad(): _A = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , future_values=batch['future_values'] , future_time_features=batch['future_time_features'] , )[0] _A = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase__ ( self ): _A = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(snake_case_ ) _A = prepare_batch('val-batch.pt' ) with torch.no_grad(): _A = model( past_values=batch['past_values'] , past_time_features=batch['past_time_features'] , past_observed_mask=batch['past_observed_mask'] , static_categorical_features=batch['static_categorical_features'] , ).encoder_last_hidden_state _A = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , snake_case_ ) _A = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=snake_case_ ) self.assertTrue(torch.allclose(output[0, :3, :3] , snake_case_ , atol=snake_case_ ) ) def lowerCAmelCase__ ( self ): _A = AutoformerForPrediction.from_pretrained('huggingface/autoformer-tourism-monthly' ).to(snake_case_ ) _A = prepare_batch('val-batch.pt' ) with torch.no_grad(): _A = model.generate( static_categorical_features=batch['static_categorical_features'] , past_time_features=batch['past_time_features'] , past_values=batch['past_values'] , future_time_features=batch['future_time_features'] , past_observed_mask=batch['past_observed_mask'] , ) _A = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , snake_case_ ) _A = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=snake_case_ ) _A = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , snake_case_ , rtol=1E-1 ) )
27
from datetime import datetime import requests def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[int] = '''https://downloadgram.net/wp-json/wppress/video-downloader/video?url=''' __SCREAMING_SNAKE_CASE : Tuple = requests.get(base_url + url ).json()[0]['''urls'''][0]['''src'''] return requests.get(lowercase__ ).content if __name__ == "__main__": __lowerCAmelCase : int =input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Union[str, Any] =f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4""" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(f"""Done. Video saved to disk as {file_name}.""")
696
0
'''simple docstring''' import operator as op UpperCamelCase_ = "scaler.pt" UpperCamelCase_ = "pytorch_model" UpperCamelCase_ = "random_states" UpperCamelCase_ = "optimizer" UpperCamelCase_ = "scheduler" UpperCamelCase_ = "pytorch_model.bin" UpperCamelCase_ = "pytorch_model.bin.index.json" UpperCamelCase_ = "model.safetensors" UpperCamelCase_ = "model.safetensors.index.json" UpperCamelCase_ = "1.10.2" UpperCamelCase_ = "py38" UpperCamelCase_ = "4.17.0" UpperCamelCase_ = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] UpperCamelCase_ = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] UpperCamelCase_ = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] UpperCamelCase_ = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] UpperCamelCase_ = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] UpperCamelCase_ = "2.0.1" UpperCamelCase_ = ["pdsh", "standard", "openmpi", "mvapich"] UpperCamelCase_ = ["default", "reduce-overhead", "max-autotune"] UpperCamelCase_ = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCamelCase_ = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] UpperCamelCase_ = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] UpperCamelCase_ = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
28
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _lowercase ( A__ , A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = StableDiffusionInstructPixaPixPipeline SCREAMING_SNAKE_CASE__ : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width''', '''cross_attention_kwargs'''} SCREAMING_SNAKE_CASE__ : Any = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE__ : Any = IMAGE_TO_IMAGE_IMAGE_PARAMS SCREAMING_SNAKE_CASE__ : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def __magic_name__( self :int ) -> Optional[int]: torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) __SCREAMING_SNAKE_CASE : str = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = CLIPTextModel(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __magic_name__( self :Tuple , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[Any]=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = image.cpu().permute(0 , 2 , 3 , 1 )[0] __SCREAMING_SNAKE_CASE : List[Any] = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert('''RGB''' ) if str(lowerCAmelCase__ ).startswith('''mps''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''image_guidance_scale''': 1, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Any = self.get_dummy_components() __SCREAMING_SNAKE_CASE : List[Any] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : int = np.array([0.7526, 0.3750, 0.4547, 0.6117, 0.5866, 0.5016, 0.4327, 0.5642, 0.4815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = '''french fries''' __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.7511, 0.3642, 0.4553, 0.6236, 0.5797, 0.5013, 0.4343, 0.5611, 0.4831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = [inputs['''prompt''']] * 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(inputs['''image'''] ).astype(np.floataa ) / 255.0 __SCREAMING_SNAKE_CASE : int = torch.from_numpy(lowerCAmelCase__ ).unsqueeze(0 ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image / 2 + 0.5 __SCREAMING_SNAKE_CASE : Optional[Any] = image.permute(0 , 3 , 1 , 2 ) __SCREAMING_SNAKE_CASE : Any = image.repeat(2 , 1 , 1 , 1 ) __SCREAMING_SNAKE_CASE : List[Any] = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5812, 0.5748, 0.5222, 0.5908, 0.5695, 0.7174, 0.6804, 0.5523, 0.5579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Union[str, Any] ) -> Dict: __SCREAMING_SNAKE_CASE : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Union[str, Any] = EulerAncestralDiscreteScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule='''scaled_linear''' ) __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = sd_pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : List[str] = [round(lowerCAmelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(''','''.join([str(lowerCAmelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.7417, 0.3842, 0.4732, 0.5776, 0.5891, 0.5139, 0.4052, 0.5673, 0.4986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __magic_name__( self :Tuple ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __magic_name__( self :str ) -> List[Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = VaeImageProcessor(do_resize=lowerCAmelCase__ , do_normalize=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = pipe(**self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) )[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = components['''vae'''] __SCREAMING_SNAKE_CASE : Tuple = self.get_dummy_inputs_by_type(lowerCAmelCase__ , input_image_type='''pt''' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __SCREAMING_SNAKE_CASE : Optional[int] = vae.encode(inputs[image_param] ).latent_dist.mode() __SCREAMING_SNAKE_CASE : Dict = pipe(**lowerCAmelCase__ )[0] __SCREAMING_SNAKE_CASE : List[Any] = np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCAmelCase__ , 1E-4 , '''passing latents as image input generate different result from passing image''' ) @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__( self :int , lowerCAmelCase__ :Dict=0 ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg''' ) __SCREAMING_SNAKE_CASE : Dict = { '''prompt''': '''turn him into a cyborg''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''image_guidance_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def __magic_name__( self :Dict ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.5902, 0.6015, 0.6027, 0.5983, 0.6092, 0.6061, 0.5765, 0.5785, 0.5555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Any ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = self.get_inputs() __SCREAMING_SNAKE_CASE : int = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6578, 0.6817, 0.6972, 0.6761, 0.6856, 0.6916, 0.6428, 0.6516, 0.6301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Optional[int] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : str = self.get_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**lowerCAmelCase__ ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.3828, 0.3834, 0.3818, 0.3792, 0.3865, 0.3752, 0.3792, 0.3847, 0.3753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __magic_name__( self :Dict ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = 0 def callback_fn(lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor ) -> None: __SCREAMING_SNAKE_CASE : Dict = True nonlocal number_of_steps number_of_steps += 1 if step == 1: __SCREAMING_SNAKE_CASE : Any = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : Tuple = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2463, -0.4644, -0.9756, 1.5176, 1.4414, 0.7866, 0.9897, 0.8521, 0.7983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __SCREAMING_SNAKE_CASE : Union[str, Any] = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __SCREAMING_SNAKE_CASE : List[str] = latents[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = np.array([-0.2644, -0.4626, -0.9653, 1.5176, 1.4551, 0.7686, 0.9805, 0.8452, 0.8115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : Dict = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() pipe(**lowerCAmelCase__ , callback=lowerCAmelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __magic_name__( self :List[str] ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __SCREAMING_SNAKE_CASE : int = StableDiffusionInstructPixaPixPipeline.from_pretrained( '''timbrooks/instruct-pix2pix''' , safety_checker=lowerCAmelCase__ , torch_dtype=torch.floataa ) __SCREAMING_SNAKE_CASE : Optional[int] = pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __SCREAMING_SNAKE_CASE : Dict = self.get_inputs() __SCREAMING_SNAKE_CASE : List[Any] = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __magic_name__( self :int ) -> Tuple: __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : int = inputs['''image'''].resize((504, 504) ) __SCREAMING_SNAKE_CASE : Optional[int] = '''timbrooks/instruct-pix2pix''' __SCREAMING_SNAKE_CASE : str = StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Any = pipe(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = output.images[0] __SCREAMING_SNAKE_CASE : str = image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __SCREAMING_SNAKE_CASE : str = np.array([0.2726, 0.2529, 0.2664, 0.2655, 0.2641, 0.2642, 0.2591, 0.2649, 0.2590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
696
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A_ = {"""configuration_plbart""": ["""PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PLBartConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = ["""PLBartTokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ """PLBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """PLBartForCausalLM""", """PLBartForConditionalGeneration""", """PLBartForSequenceClassification""", """PLBartModel""", """PLBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys A_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
29
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : torch.FloatTensor SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None def _UpperCamelCase ( lowercase__ , lowercase__=0.999 , lowercase__="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(lowercase__ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(lowercase__ ): return math.exp(t * -12.0 ) else: raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' ) __SCREAMING_SNAKE_CASE : List[Any] = [] for i in range(lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = i / num_diffusion_timesteps __SCREAMING_SNAKE_CASE : List[Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(lowercase__ ) / alpha_bar_fn(lowercase__ ) , lowercase__ ) ) return torch.tensor(lowercase__ , dtype=torch.floataa ) class _lowercase ( A__ , A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = 1 @register_to_config def __init__( self :Dict , lowerCAmelCase__ :int = 1_000 , lowerCAmelCase__ :float = 0.0001 , lowerCAmelCase__ :float = 0.02 , lowerCAmelCase__ :str = "linear" , lowerCAmelCase__ :Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :int = 0 , lowerCAmelCase__ :str = "epsilon" , lowerCAmelCase__ :float = 1.0 , **lowerCAmelCase__ :int , ) -> Union[str, Any]: if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase__ ) is not None: __SCREAMING_SNAKE_CASE : Optional[int] = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase__ , standard_warn=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = kwargs['''set_alpha_to_one'''] if trained_betas is not None: __SCREAMING_SNAKE_CASE : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "linear": __SCREAMING_SNAKE_CASE : str = torch.linspace(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. __SCREAMING_SNAKE_CASE : List[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase__ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule __SCREAMING_SNAKE_CASE : Optional[Any] = betas_for_alpha_bar(lowerCAmelCase__ ) else: raise NotImplementedError(f'''{beta_schedule} does is not implemented for {self.__class__}''' ) __SCREAMING_SNAKE_CASE : Optional[int] = 1.0 - self.betas __SCREAMING_SNAKE_CASE : int = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. __SCREAMING_SNAKE_CASE : int = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution __SCREAMING_SNAKE_CASE : Any = 1.0 # setable values __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Tuple = torch.from_numpy(np.arange(0 , lowerCAmelCase__ ).copy().astype(np.intaa ) ) def __magic_name__( self :List[str] , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[int] = None ) -> torch.FloatTensor: return sample def __magic_name__( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, torch.device] = None ) -> List[str]: if num_inference_steps > self.config.num_train_timesteps: raise ValueError( f'''`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:''' f''' {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle''' f''' maximal {self.config.num_train_timesteps} timesteps.''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = num_inference_steps __SCREAMING_SNAKE_CASE : Union[str, Any] = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 __SCREAMING_SNAKE_CASE : Optional[int] = (np.arange(0 , lowerCAmelCase__ ) * step_ratio).round().copy().astype(np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) self.timesteps += self.config.steps_offset def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :int , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: # 1. get previous step value (=t+1) __SCREAMING_SNAKE_CASE : Optional[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process __SCREAMING_SNAKE_CASE : Any = self.alphas_cumprod[timestep] __SCREAMING_SNAKE_CASE : str = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) __SCREAMING_SNAKE_CASE : int = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": __SCREAMING_SNAKE_CASE : List[Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 __SCREAMING_SNAKE_CASE : List[Any] = model_output elif self.config.prediction_type == "sample": __SCREAMING_SNAKE_CASE : List[str] = model_output __SCREAMING_SNAKE_CASE : Optional[Any] = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": __SCREAMING_SNAKE_CASE : Dict = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output __SCREAMING_SNAKE_CASE : Tuple = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or''' ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: __SCREAMING_SNAKE_CASE : Dict = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Dict = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf __SCREAMING_SNAKE_CASE : Any = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __len__( self :Optional[int] ) -> List[Any]: return self.config.num_train_timesteps
696
0
import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_, UpperCAmelCase_ : Optional[int] = emb.weight.shape UpperCAmelCase_ : Union[str, Any] = nn.Linear(_lowercase , _lowercase , bias=_lowercase ) UpperCAmelCase_ : str = emb.weight.data return lin_layer def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Dict = torch.load(_lowercase , map_location='''cpu''' ) UpperCAmelCase_ : Tuple = mam_aaa['''args'''] or mam_aaa['''cfg''']['''model'''] UpperCAmelCase_ : int = mam_aaa['''model'''] remove_ignore_keys_(_lowercase ) UpperCAmelCase_ : Optional[int] = state_dict['''encoder.embed_tokens.weight'''].shape[0] UpperCAmelCase_ : Any = MaMaaaConfig( vocab_size=_lowercase , max_position_embeddings=1024 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , ) UpperCAmelCase_ : List[str] = state_dict['''decoder.embed_tokens.weight'''] UpperCAmelCase_ : Union[str, Any] = MaMaaaForConditionalGeneration(_lowercase ) model.model.load_state_dict(_lowercase , strict=_lowercase ) UpperCAmelCase_ : Any = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __a = parser.parse_args() __a = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
30
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=A__ ) class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) SCREAMING_SNAKE_CASE__ : str = "text" SCREAMING_SNAKE_CASE__ : str = "summary" @property def __magic_name__( self :Union[str, Any] ) -> Dict[str, str]: return {self.text_column: "text", self.summary_column: "summary"}
696
0
import cva import numpy as np class lowerCamelCase_ : '''simple docstring''' def __init__( self : Any , _lowerCAmelCase : float , _lowerCAmelCase : int ): if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ = k SCREAMING_SNAKE_CASE_ = window_size else: raise ValueError('invalid k value' ) def __str__( self : Dict ): return str(self.k ) def lowerCAmelCase_ ( self : str , _lowerCAmelCase : str ): SCREAMING_SNAKE_CASE_ = cva.imread(_lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = img.shape SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = img.copy() SCREAMING_SNAKE_CASE_ = cva.cvtColor(_lowerCAmelCase , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = np.gradient(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = dx**2 SCREAMING_SNAKE_CASE_ = dy**2 SCREAMING_SNAKE_CASE_ = dx * dy SCREAMING_SNAKE_CASE_ = 0.04 SCREAMING_SNAKE_CASE_ = self.window_size // 2 for y in range(_lowerCAmelCase , h - offset ): for x in range(_lowerCAmelCase , w - offset ): SCREAMING_SNAKE_CASE_ = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ = wxx + wyy SCREAMING_SNAKE_CASE_ = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = HarrisCorner(0.04, 3) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
31
def _UpperCamelCase ( lowercase__ = 10**9 ): __SCREAMING_SNAKE_CASE : List[str] = 1 __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[str, Any] = 0 __SCREAMING_SNAKE_CASE : Dict = 0 __SCREAMING_SNAKE_CASE : Any = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE : Dict = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(f"""{solution() = }""")
696
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def A__ ( ) -> Tuple: """simple docstring""" _UpperCAmelCase = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=SCREAMING_SNAKE_CASE_ ) env_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) launch_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) tpu_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) test_command_parser(subparsers=SCREAMING_SNAKE_CASE_ ) # Let's go _UpperCAmelCase = parser.parse_args() if not hasattr(SCREAMING_SNAKE_CASE_ , '''func''' ): parser.print_help() exit(1 ) # Run args.func(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
32
def _UpperCamelCase ( lowercase__ , lowercase__ ): __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = len(lowercase__ ) __SCREAMING_SNAKE_CASE : List[str] = [[False for _ in range(m + 1 )] for _ in range(n + 1 )] __SCREAMING_SNAKE_CASE : str = True for i in range(lowercase__ ): for j in range(m + 1 ): if dp[i][j]: if j < m and a[i].upper() == b[j]: __SCREAMING_SNAKE_CASE : Union[str, Any] = True if a[i].islower(): __SCREAMING_SNAKE_CASE : Union[str, Any] = True return dp[n][m] if __name__ == "__main__": import doctest doctest.testmod()
696
0
from collections import deque def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: snake_case__ = len(__lowerCAmelCase ) snake_case__ = deque() snake_case__ = [False for _ in range(__lowerCAmelCase )] snake_case__ = [-1 for _ in range(__lowerCAmelCase )] snake_case__ = index_of[:] def strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): snake_case__ = index # the number when this node is seen snake_case__ = index # lowest rank node reachable from here index += 1 stack.append(__lowerCAmelCase ) snake_case__ = True for w in g[v]: if index_of[w] == -1: snake_case__ = strong_connect(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: snake_case__ = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: snake_case__ = [] snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) while w != v: snake_case__ = stack.pop() snake_case__ = False component.append(__lowerCAmelCase ) components.append(__lowerCAmelCase ) return index snake_case__ = [] for v in range(__lowerCAmelCase ): if index_of[v] == -1: strong_connect(__lowerCAmelCase , 0 , __lowerCAmelCase ) return components def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: snake_case__ = [[] for _ in range(__lowerCAmelCase )] for u, v in edges: g[u].append(__lowerCAmelCase ) return g if __name__ == "__main__": # Test lowerCamelCase__ : Tuple = 7 lowerCamelCase__ : Optional[Any] = [0, 0, 1, 2, 3, 3, 4, 4, 6] lowerCamelCase__ : Optional[int] = [1, 3, 2, 0, 1, 4, 5, 6, 5] lowerCamelCase__ : int = [(u, v) for u, v in zip(source, target)] lowerCamelCase__ : List[str] = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
33
from scipy.stats import pearsonr import datasets __lowerCAmelCase : str ='\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n' __lowerCAmelCase : Tuple ='\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric("pearsonr")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n [\'p-value\', \'pearsonr\']\n >>> print(round(results[\'pearsonr\'], 2))\n -0.74\n >>> print(round(results[\'p-value\'], 2))\n 0.15\n' __lowerCAmelCase : Optional[int] ='\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): '''simple docstring''' def __magic_name__( self :Optional[int] ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''float''' ), '''references''': datasets.Value('''float''' ), } ) , reference_urls=['''https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'''] , ) def __magic_name__( self :Tuple , lowerCAmelCase__ :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> int: if return_pvalue: __SCREAMING_SNAKE_CASE : int = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ ) return {"pearsonr": results[0], "p-value": results[1]} else: return {"pearsonr": float(pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] )}
696
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = ['''input_features''', '''is_longer'''] def __init__( self , lowerCamelCase_=6_4 , lowerCamelCase_=4_8_0_0_0 , lowerCamelCase_=4_8_0 , lowerCamelCase_=1_0 , lowerCamelCase_=1_0_2_4 , lowerCamelCase_=0.0 , lowerCamelCase_=False , lowerCamelCase_ = 0 , lowerCamelCase_ = 1_4_0_0_0 , lowerCamelCase_ = None , lowerCamelCase_ = "fusion" , lowerCamelCase_ = "repeatpad" , **lowerCamelCase_ , ) -> Optional[Any]: super().__init__( feature_size=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , padding_value=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = top_db UpperCamelCase = truncation UpperCamelCase = padding UpperCamelCase = fft_window_size UpperCamelCase = (fft_window_size >> 1) + 1 UpperCamelCase = hop_length UpperCamelCase = max_length_s UpperCamelCase = max_length_s * sampling_rate UpperCamelCase = sampling_rate UpperCamelCase = frequency_min UpperCamelCase = frequency_max UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase_ , min_frequency=lowerCamelCase_ , max_frequency=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , norm=lowerCamelCase_ , mel_scale='''htk''' , ) UpperCamelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCamelCase_ , min_frequency=lowerCamelCase_ , max_frequency=lowerCamelCase_ , sampling_rate=lowerCamelCase_ , norm='''slaney''' , mel_scale='''slaney''' , ) def UpperCAmelCase__ ( self) -> Dict[str, Any]: UpperCamelCase = copy.deepcopy(self.__dict__) UpperCamelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> np.ndarray: UpperCamelCase = spectrogram( lowerCamelCase_ , window_function(self.fft_window_size , '''hann''') , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCamelCase_ , log_mel='''dB''' , ) return log_mel_spectrogram.T def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: UpperCamelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1)) , 3) if len(ranges[1]) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] if len(ranges[2]) == 0: # if the audio is too short, we just use the first chunk UpperCamelCase = [0] # randomly choose index for each part UpperCamelCase = np.random.choice(ranges[0]) UpperCamelCase = np.random.choice(ranges[1]) UpperCamelCase = np.random.choice(ranges[2]) UpperCamelCase = mel[idx_front : idx_front + chunk_frames, :] UpperCamelCase = mel[idx_middle : idx_middle + chunk_frames, :] UpperCamelCase = mel[idx_back : idx_back + chunk_frames, :] UpperCamelCase = torch.tensor(mel[None, None, :]) UpperCamelCase = torch.nn.functional.interpolate( lowerCamelCase_ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=lowerCamelCase_) UpperCamelCase = mel_shrink[0][0].numpy() UpperCamelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0) return mel_fusion def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": UpperCamelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad UpperCamelCase = len(lowerCamelCase_) - max_length UpperCamelCase = np.random.randint(0 , overflow + 1) UpperCamelCase = waveform[idx : idx + max_length] UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters_slaney)[None, :] elif truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters) UpperCamelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed UpperCamelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. UpperCamelCase = np.stack([mel, mel, mel, mel] , axis=0) UpperCamelCase = False else: UpperCamelCase = self._random_mel_fusion(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented') else: UpperCamelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": UpperCamelCase = int(max_length / len(lowerCamelCase_)) UpperCamelCase = np.stack(np.tile(lowerCamelCase_ , n_repeat + 1))[:max_length] if padding == "repeatpad": UpperCamelCase = int(max_length / len(lowerCamelCase_)) UpperCamelCase = np.stack(np.tile(lowerCamelCase_ , lowerCamelCase_)) UpperCamelCase = np.pad(lowerCamelCase_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0) if truncation == "fusion": UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters) UpperCamelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0) else: UpperCamelCase = self._np_extract_fbank_features(lowerCamelCase_ , self.mel_filters_slaney)[None, :] return input_mel, longer def __call__( self , lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , lowerCamelCase_ = None , **lowerCamelCase_ , ) -> BatchFeature: UpperCamelCase = truncation if truncation is not None else self.truncation UpperCamelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.') else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''') UpperCamelCase = isinstance(lowerCamelCase_ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}') UpperCamelCase = is_batched_numpy or ( isinstance(lowerCamelCase_ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowerCamelCase_ , np.ndarray): UpperCamelCase = np.asarray(lowerCamelCase_ , dtype=np.floataa) elif isinstance(lowerCamelCase_ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): UpperCamelCase = raw_speech.astype(np.floataa) # always return batch if not is_batched: UpperCamelCase = [np.asarray(lowerCamelCase_)] # convert to mel spectrogram, truncate and pad if needed. UpperCamelCase = [ self._get_input_mel(lowerCamelCase_ , max_length if max_length else self.nb_max_samples , lowerCamelCase_ , lowerCamelCase_) for waveform in raw_speech ] UpperCamelCase = [] UpperCamelCase = [] for mel, longer in padded_inputs: input_mel.append(lowerCamelCase_) is_longer.append(lowerCamelCase_) if truncation == "fusion" and sum(lowerCamelCase_) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer UpperCamelCase = np.random.randint(0 , len(lowerCamelCase_)) UpperCamelCase = True if isinstance(input_mel[0] , lowerCamelCase_): UpperCamelCase = [np.asarray(lowerCamelCase_ , dtype=np.floataa) for feature in input_mel] # is_longer is a list of bool UpperCamelCase = [[longer] for longer in is_longer] UpperCamelCase = {'''input_features''': input_mel, '''is_longer''': is_longer} UpperCamelCase = BatchFeature(lowerCamelCase_) if return_tensors is not None: UpperCamelCase = input_features.convert_to_tensors(lowerCamelCase_) return input_features
34
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer __lowerCAmelCase : List[str] =logging.get_logger(__name__) __lowerCAmelCase : int ={'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCAmelCase : int ={ 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } __lowerCAmelCase : Optional[int] ={'mobilebert-uncased': 5_1_2} __lowerCAmelCase : Union[str, Any] ={} class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : List[str] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : List[Any] = MobileBertTokenizer def __init__( self :Tuple , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Any=None , lowerCAmelCase__ :List[Any]=True , lowerCAmelCase__ :List[Any]="[UNK]" , lowerCAmelCase__ :List[Any]="[SEP]" , lowerCAmelCase__ :List[Any]="[PAD]" , lowerCAmelCase__ :List[Any]="[CLS]" , lowerCAmelCase__ :Any="[MASK]" , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Tuple=None , **lowerCAmelCase__ :List[str] , ) -> Optional[Any]: super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , lowerCAmelCase__ ) != do_lower_case or normalizer_state.get('''strip_accents''' , lowerCAmelCase__ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , lowerCAmelCase__ ) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE : int = getattr(lowerCAmelCase__ , normalizer_state.pop('''type''' ) ) __SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case __SCREAMING_SNAKE_CASE : str = strip_accents __SCREAMING_SNAKE_CASE : Dict = tokenize_chinese_chars __SCREAMING_SNAKE_CASE : Union[str, Any] = normalizer_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = do_lower_case def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[Any]=None ) -> Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __magic_name__( self :List[str] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]: __SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] __SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]: __SCREAMING_SNAKE_CASE : int = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ ) return tuple(lowerCAmelCase__ )
696
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase ( _UpperCAmelCase ): lowerCamelCase : Optional[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase : List[Any] = '''ViTImageProcessor''' lowerCamelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Dict , _lowercase : Dict=None , _lowercase : List[str]=None , **_lowercase : Any ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _lowercase , ) SCREAMING_SNAKE_CASE__ : str = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE__ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_lowercase , _lowercase ) def __call__( self : Optional[Any] , _lowercase : List[Any]=None , _lowercase : str=None , _lowercase : int=None , _lowercase : Dict=None , **_lowercase : Dict ): if text is None and visual_prompt is None and images is None: raise ValueError('''You have to specify either text, visual prompt or images.''' ) if text is not None and visual_prompt is not None: raise ValueError('''You have to specify exactly one type of prompt. Either text or visual prompt.''' ) if text is not None: SCREAMING_SNAKE_CASE__ : Tuple = self.tokenizer(_lowercase , return_tensors=_lowercase , **_lowercase ) if visual_prompt is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if images is not None: SCREAMING_SNAKE_CASE__ : str = self.image_processor(_lowercase , return_tensors=_lowercase , **_lowercase ) if visual_prompt is not None and images is not None: SCREAMING_SNAKE_CASE__ : Optional[Any] = { '''pixel_values''': image_features.pixel_values, '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: SCREAMING_SNAKE_CASE__ : Dict = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: SCREAMING_SNAKE_CASE__ : Any = { '''conditional_pixel_values''': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_lowercase ) , tensor_type=_lowercase ) def lowercase__ ( self : int , *_lowercase : List[Any] , **_lowercase : Optional[Any] ): return self.tokenizer.batch_decode(*_lowercase , **_lowercase ) def lowercase__ ( self : Dict , *_lowercase : Union[str, Any] , **_lowercase : Union[str, Any] ): return self.tokenizer.decode(*_lowercase , **_lowercase ) @property def lowercase__ ( self : int ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _lowercase , ) return self.image_processor_class @property def lowercase__ ( self : Optional[Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _lowercase , ) return self.image_processor
35
import os def _UpperCamelCase ( lowercase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = len(grid[0] ) __SCREAMING_SNAKE_CASE : str = len(lowercase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : Any = 0 __SCREAMING_SNAKE_CASE : Dict = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(lowercase__ ): for j in range(n_rows - 3 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] __SCREAMING_SNAKE_CASE : Union[str, Any] = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: __SCREAMING_SNAKE_CASE : Any = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) __SCREAMING_SNAKE_CASE : Optional[int] = max( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if max_product > largest: __SCREAMING_SNAKE_CASE : Tuple = max_product return largest def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Optional[int] = [] with open(os.path.dirname(lowercase__ ) + '''/grid.txt''' ) as file: for line in file: grid.append(line.strip('''\n''' ).split(''' ''' ) ) __SCREAMING_SNAKE_CASE : str = [[int(lowercase__ ) for i in grid[j]] for j in range(len(lowercase__ ) )] return largest_product(lowercase__ ) if __name__ == "__main__": print(solution())
696
0
def lowercase ( __A : int = 10 ) -> str: '''simple docstring''' if not isinstance(__A , __A ) or n < 0: raise ValueError("""Invalid input""" ) snake_case : Dict = 10**n snake_case : Optional[int] = 2_8433 * (pow(2 , 783_0457 , __A )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(f'''{solution(10) = }''')
36
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _lowercase ( A__ ): '''simple docstring''' def __magic_name__( self :List[Any] ) -> Any: __SCREAMING_SNAKE_CASE : List[Any] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''tf_padding''' ) ) self.parent.assertTrue(hasattr(lowerCAmelCase__ , '''depth_multiplier''' ) ) class _lowercase : '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :List[Any]=13 , lowerCAmelCase__ :Optional[Any]=3 , lowerCAmelCase__ :Optional[Any]=32 , lowerCAmelCase__ :Dict=0.25 , lowerCAmelCase__ :Optional[int]=8 , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Union[str, Any]=1_024 , lowerCAmelCase__ :Any=32 , lowerCAmelCase__ :Tuple="relu6" , lowerCAmelCase__ :str=0.1 , lowerCAmelCase__ :Dict=0.02 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :int=True , lowerCAmelCase__ :int=10 , lowerCAmelCase__ :Union[str, Any]=None , ) -> str: __SCREAMING_SNAKE_CASE : Any = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : List[Any] = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = image_size __SCREAMING_SNAKE_CASE : Optional[int] = depth_multiplier __SCREAMING_SNAKE_CASE : Dict = min_depth __SCREAMING_SNAKE_CASE : List[str] = tf_padding __SCREAMING_SNAKE_CASE : List[Any] = int(last_hidden_size * depth_multiplier ) __SCREAMING_SNAKE_CASE : List[str] = output_stride __SCREAMING_SNAKE_CASE : Any = hidden_act __SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = use_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = is_training __SCREAMING_SNAKE_CASE : Optional[int] = num_labels __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Optional[int] = scope def __magic_name__( self :List[str] ) -> int: __SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = None __SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_labels: __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __SCREAMING_SNAKE_CASE : Any = self.get_config() return config, pixel_values, labels, pixel_labels def __magic_name__( self :Union[str, Any] ) -> Optional[Any]: return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = MobileNetVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.num_labels __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__( self :List[Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = self.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = config_and_inputs __SCREAMING_SNAKE_CASE : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _lowercase ( A__ , A__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE__ : Optional[Any] = ( {'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : str = False SCREAMING_SNAKE_CASE__ : Tuple = False def __magic_name__( self :Any ) -> Dict: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaModelTester(self ) __SCREAMING_SNAKE_CASE : Optional[int] = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> int: self.config_tester.run_common_tests() @unittest.skip(reason='''MobileNetV1 does not use inputs_embeds''' ) def __magic_name__( self :Dict ) -> Optional[Any]: pass @unittest.skip(reason='''MobileNetV1 does not support input and output embeddings''' ) def __magic_name__( self :List[Any] ) -> List[Any]: pass @unittest.skip(reason='''MobileNetV1 does not output attentions''' ) def __magic_name__( self :Any ) -> Dict: pass def __magic_name__( self :Any ) -> List[Any]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Any = model_class(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __SCREAMING_SNAKE_CASE : Union[str, Any] = [*signature.parameters.keys()] __SCREAMING_SNAKE_CASE : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__( self :Any ) -> Tuple: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__( self :Union[str, Any] ) -> Tuple: def check_hidden_states_output(lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Union[str, Any] ): __SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = outputs.hidden_states __SCREAMING_SNAKE_CASE : Optional[int] = 26 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : str = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __SCREAMING_SNAKE_CASE : List[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __magic_name__( self :List[str] ) -> List[Any]: for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE : Optional[Any] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class _lowercase ( unittest.TestCase ): '''simple docstring''' @cached_property def __magic_name__( self :Optional[int] ) -> Union[str, Any]: return ( MobileNetVaImageProcessor.from_pretrained('''google/mobilenet_v1_1.0_224''' ) if is_vision_available() else None ) @slow def __magic_name__( self :Tuple ) -> Optional[int]: __SCREAMING_SNAKE_CASE : List[str] = MobileNetVaForImageClassification.from_pretrained('''google/mobilenet_v1_1.0_224''' ).to(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.default_image_processor __SCREAMING_SNAKE_CASE : int = prepare_img() __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __SCREAMING_SNAKE_CASE : int = model(**lowerCAmelCase__ ) # verify the logits __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([-4.1739, -1.1233, 3.1205] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
696
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self : str , lowerCamelCase__ : str , lowerCamelCase__ : str=2 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : int=3 , lowerCamelCase__ : Tuple=32 * 8 , lowerCamelCase__ : Union[str, Any]=32 * 8 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Optional[int]=64 , ): a__ : List[str] = parent a__ : List[Any] = batch_size a__ : Any = is_training a__ : Optional[Any] = use_auxiliary_loss a__ : Dict = num_queries a__ : Any = num_channels a__ : List[Any] = min_size a__ : Dict = max_size a__ : Dict = num_labels a__ : str = hidden_dim a__ : int = hidden_dim def _UpperCamelCase( self : Union[str, Any] ): a__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) a__ : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) a__ : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() a__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() a__ : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCamelCase( self : Union[str, Any] ): a__ : Dict = MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ : str = self.num_queries a__ : Tuple = self.num_labels a__ : Optional[int] = [1, 1, 1, 1] a__ : Dict = self.num_channels a__ : int = 64 a__ : Optional[Any] = 128 a__ : Optional[int] = self.hidden_dim a__ : Dict = self.hidden_dim a__ : Optional[Any] = self.hidden_dim return config def _UpperCamelCase( self : Optional[Any] ): a__, a__, a__, a__, a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ): a__ : Any = output.encoder_hidden_states a__ : Optional[Any] = output.pixel_decoder_hidden_states a__ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=False ): with torch.no_grad(): a__ : List[str] = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) a__ : List[str] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict ): a__ : str = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): a__ : Tuple = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) a__ : int = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) a__ : Optional[Any] = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowercase = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : List[Any] ): a__ : Dict = MaskaFormerModelTester(self ) a__ : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() def _UpperCamelCase( self : int ): a__, a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _UpperCamelCase( self : Optional[Any] ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _UpperCamelCase( self : Dict ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _UpperCamelCase( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Tuple ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCamelCase( self : int ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[str] = [*signature.parameters.keys()] a__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ : Union[str, Any] = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = (self.model_tester.min_size,) * 2 a__ : Tuple = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase__ ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase__ ), "class_labels": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } a__ : int = self.model_tester.get_config() a__ : Any = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Optional[int] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Any = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__ : Union[str, Any] = self.all_model_classes[1] a__, a__, a__, a__, a__ : List[str] = self.model_tester.prepare_config_and_inputs() a__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : int = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Optional[int] ): a__ : str = self.all_model_classes[1] a__, a__, a__, a__, a__ : int = self.model_tester.prepare_config_and_inputs() a__ : Optional[Any] = True a__ : str = True a__ : Any = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) a__ : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase : Any = 1E-4 def UpperCamelCase_ ( ) -> str: a__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : str ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCamelCase( self : str ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCamelCase( self : Dict ): a__ : Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) a__ : List[Any] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Optional[Any] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) a__ : Dict = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ : str = model(**lowerCamelCase__ ) a__ : str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) a__ : List[str] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) a__ : Tuple = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _UpperCamelCase( self : List[Any] ): a__ : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() a__ : List[Any] = self.default_image_processor a__ : str = prepare_img() a__ : Union[str, Any] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) a__ : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) # masks_queries_logits a__ : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) a__ : Optional[int] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] a__ : int = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits a__ : Any = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) a__ : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _UpperCamelCase( self : str ): a__ : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() a__ : List[Any] = self.default_image_processor a__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) a__ : Any = inputs["pixel_values"].to(lowerCamelCase__ ) a__ : List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["mask_labels"]] a__ : List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["class_labels"]] with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
37
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
'''simple docstring''' from math import factorial def UpperCamelCase__ ( __magic_name__ : int = 1_00 ) -> int: '''simple docstring''' return sum(int(__magic_name__ ) for x in str(factorial(__magic_name__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
38
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Dict ={ 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = '''canine''' def __init__( self :Any , lowerCAmelCase__ :List[Any]=768 , lowerCAmelCase__ :Any=12 , lowerCAmelCase__ :str=12 , lowerCAmelCase__ :Optional[int]=3_072 , lowerCAmelCase__ :str="gelu" , lowerCAmelCase__ :Union[str, Any]=0.1 , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :int=16_384 , lowerCAmelCase__ :Tuple=16 , lowerCAmelCase__ :List[Any]=0.02 , lowerCAmelCase__ :int=1E-1_2 , lowerCAmelCase__ :int=0 , lowerCAmelCase__ :List[Any]=0xe000 , lowerCAmelCase__ :List[str]=0xe001 , lowerCAmelCase__ :str=4 , lowerCAmelCase__ :Any=4 , lowerCAmelCase__ :Union[str, Any]=8 , lowerCAmelCase__ :Optional[int]=16_384 , lowerCAmelCase__ :Any=128 , **lowerCAmelCase__ :Optional[Any] , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads __SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act __SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob __SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Dict = initializer_range __SCREAMING_SNAKE_CASE : int = type_vocab_size __SCREAMING_SNAKE_CASE : List[Any] = layer_norm_eps # Character config: __SCREAMING_SNAKE_CASE : Tuple = downsampling_rate __SCREAMING_SNAKE_CASE : Optional[Any] = upsampling_kernel_size __SCREAMING_SNAKE_CASE : Any = num_hash_functions __SCREAMING_SNAKE_CASE : Optional[int] = num_hash_buckets __SCREAMING_SNAKE_CASE : List[str] = local_transformer_stride
696
0
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCAmelCase_ = logging.get_logger(__name__) class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , *_UpperCamelCase : str , **_UpperCamelCase : List[str] ) ->None: warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , _UpperCamelCase , ) super().__init__(*_UpperCamelCase , **_UpperCamelCase )
39
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : List[Any] =logging.get_logger(__name__) __lowerCAmelCase : Tuple ={ 'transfo-xl-wt103': 'https://huggingface.co/transfo-xl-wt103/resolve/main/config.json', } class _lowercase ( A__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = '''transfo-xl''' SCREAMING_SNAKE_CASE__ : List[str] = ['''mems'''] SCREAMING_SNAKE_CASE__ : List[Any] = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :str , lowerCAmelCase__ :Optional[int]=267_735 , lowerCAmelCase__ :Optional[int]=[20_000, 40_000, 200_000] , lowerCAmelCase__ :List[Any]=1_024 , lowerCAmelCase__ :List[str]=1_024 , lowerCAmelCase__ :Any=16 , lowerCAmelCase__ :Tuple=64 , lowerCAmelCase__ :Union[str, Any]=4_096 , lowerCAmelCase__ :Dict=4 , lowerCAmelCase__ :Optional[Any]=False , lowerCAmelCase__ :Dict=18 , lowerCAmelCase__ :Union[str, Any]=1_600 , lowerCAmelCase__ :Union[str, Any]=1_000 , lowerCAmelCase__ :Optional[Any]=True , lowerCAmelCase__ :Union[str, Any]=True , lowerCAmelCase__ :Optional[Any]=0 , lowerCAmelCase__ :Union[str, Any]=-1 , lowerCAmelCase__ :List[str]=True , lowerCAmelCase__ :List[str]=0.1 , lowerCAmelCase__ :str=0.0 , lowerCAmelCase__ :int=True , lowerCAmelCase__ :str="normal" , lowerCAmelCase__ :Tuple=0.01 , lowerCAmelCase__ :Union[str, Any]=0.01 , lowerCAmelCase__ :str=0.02 , lowerCAmelCase__ :Optional[Any]=1E-5 , lowerCAmelCase__ :Union[str, Any]=0 , **lowerCAmelCase__ :Optional[Any] , ) -> str: __SCREAMING_SNAKE_CASE : str = vocab_size __SCREAMING_SNAKE_CASE : Tuple = [] self.cutoffs.extend(lowerCAmelCase__ ) if proj_share_all_but_first: __SCREAMING_SNAKE_CASE : List[str] = [False] + [True] * len(self.cutoffs ) else: __SCREAMING_SNAKE_CASE : Tuple = [False] + [False] * len(self.cutoffs ) __SCREAMING_SNAKE_CASE : Union[str, Any] = d_model __SCREAMING_SNAKE_CASE : Union[str, Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_head __SCREAMING_SNAKE_CASE : Dict = d_inner __SCREAMING_SNAKE_CASE : Optional[Any] = div_val __SCREAMING_SNAKE_CASE : Optional[Any] = pre_lnorm __SCREAMING_SNAKE_CASE : List[str] = n_layer __SCREAMING_SNAKE_CASE : int = n_head __SCREAMING_SNAKE_CASE : str = mem_len __SCREAMING_SNAKE_CASE : Union[str, Any] = same_length __SCREAMING_SNAKE_CASE : str = attn_type __SCREAMING_SNAKE_CASE : Dict = clamp_len __SCREAMING_SNAKE_CASE : Tuple = sample_softmax __SCREAMING_SNAKE_CASE : Optional[int] = adaptive __SCREAMING_SNAKE_CASE : int = dropout __SCREAMING_SNAKE_CASE : Optional[Any] = dropatt __SCREAMING_SNAKE_CASE : int = untie_r __SCREAMING_SNAKE_CASE : Optional[int] = init __SCREAMING_SNAKE_CASE : List[str] = init_range __SCREAMING_SNAKE_CASE : Any = proj_init_std __SCREAMING_SNAKE_CASE : List[str] = init_std __SCREAMING_SNAKE_CASE : Tuple = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __magic_name__( self :str ) -> int: # Message copied from Transformer-XL documentation logger.info(f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __magic_name__( self :Tuple , lowerCAmelCase__ :int ) -> Dict: # Message copied from Transformer-XL documentation raise NotImplementedError( f'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
696
0