code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
from typing import TYPE_CHECKING from ...utils import _LazyModule __UpperCamelCase : int = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class a (_lowerCAmelCase ): """simple docstring""" __UpperCAmelCase : List[str] = (DDIMParallelScheduler,) __UpperCAmelCase : Tuple = (("eta", 0.0), ("num_inference_steps", 50)) def __snake_case ( self : int , **lowerCamelCase : Optional[Any] ) -> Optional[Any]: __snake_case : Any = { "num_train_timesteps": 1000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowerCamelCase ) return config def __snake_case ( self : Optional[Any] , **lowerCamelCase : List[str] ) -> Any: __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[int] = self.get_scheduler_config(**lowerCamelCase ) __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : List[Any] = 10, 0.0 __snake_case : Union[str, Any] = self.dummy_model() __snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for t in scheduler.timesteps: __snake_case : List[Any] = model(lowerCamelCase , lowerCamelCase ) __snake_case : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __snake_case ( self : Tuple ) -> Dict: for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=lowerCamelCase ) def __snake_case ( self : Dict ) -> int: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowerCamelCase ) __snake_case : Optional[int] = self.scheduler_classes[0] __snake_case : Optional[Any] = self.get_scheduler_config(steps_offset=1 ) __snake_case : List[str] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __snake_case ( self : List[Any] ) -> int: for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCamelCase , beta_end=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> str: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> List[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCamelCase ) def __snake_case ( self : Tuple ) -> List[Any]: for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowerCamelCase ) def __snake_case ( self : Tuple ) -> Any: for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowerCamelCase ) def __snake_case ( self : Dict ) -> List[str]: self.check_over_configs(thresholding=lowerCamelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowerCamelCase , prediction_type=lowerCamelCase , sample_max_value=lowerCamelCase , ) def __snake_case ( self : int ) -> Union[str, Any]: for t in [1, 10, 49]: self.check_over_forward(time_step=lowerCamelCase ) def __snake_case ( self : int ) -> List[Any]: for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowerCamelCase , num_inference_steps=lowerCamelCase ) def __snake_case ( self : Dict ) -> str: for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowerCamelCase , eta=lowerCamelCase ) def __snake_case ( self : Any ) -> Any: __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_47_71 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_24_60 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5 def __snake_case ( self : Dict ) -> List[Any]: __snake_case : Any = self.scheduler_classes[0] __snake_case : Dict = self.get_scheduler_config() __snake_case : Optional[int] = scheduler_class(**lowerCamelCase ) __snake_case , __snake_case : str = 10, 0.0 scheduler.set_timesteps(lowerCamelCase ) __snake_case : Dict = self.dummy_model() __snake_case : List[Any] = self.dummy_sample_deter __snake_case : int = self.dummy_sample_deter + 0.1 __snake_case : str = self.dummy_sample_deter - 0.1 __snake_case : Dict = samplea.shape[0] __snake_case : str = torch.stack([samplea, samplea, samplea] , dim=0 ) __snake_case : int = torch.arange(lowerCamelCase )[0:3, None].repeat(1 , lowerCamelCase ) __snake_case : Union[str, Any] = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) __snake_case : Any = scheduler.batch_step_no_noise(lowerCamelCase , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowerCamelCase ) __snake_case : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : List[Any] = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1E-2 assert abs(result_mean.item() - 0.49_82 ) < 1E-3 def __snake_case ( self : str ) -> Optional[int]: __snake_case : Union[str, Any] = self.full_loop() __snake_case : Dict = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1E-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1E-3 def __snake_case ( self : str ) -> Dict: __snake_case : Any = self.full_loop(prediction_type="v_prediction" ) __snake_case : Optional[int] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : int = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1E-2 assert abs(result_mean.item() - 0.06_84 ) < 1E-3 def __snake_case ( self : Dict ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 __snake_case : str = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : Dict = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1E-2 assert abs(result_mean.item() - 0.19_51 ) < 1E-3 def __snake_case ( self : Optional[Any] ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 __snake_case : Union[str, Any] = self.full_loop(set_alpha_to_one=lowerCamelCase , beta_start=0.01 ) __snake_case : Optional[Any] = torch.sum(torch.abs(lowerCamelCase ) ) __snake_case : Dict = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1E-2 assert abs(result_mean.item() - 0.19_41 ) < 1E-3
81
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging lowerCamelCase = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : int = 101 ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = length def __len__( self : int ) -> Union[str, Any]: '''simple docstring''' return self.length def __getitem__( self : int , _UpperCAmelCase : Optional[int] ) -> int: '''simple docstring''' return i class lowercase__ : '''simple docstring''' def __call__( self : int , _UpperCAmelCase : str ) -> Optional[int]: '''simple docstring''' return {"input_ids": torch.tensor(_UpperCAmelCase ), "labels": torch.tensor(_UpperCAmelCase )} class lowercase__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ) -> int: '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCAmelCase_ = nn.Linear(120 , 80 ) def lowercase__ ( self : Dict , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any]=None ) -> Any: '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_neuroncore def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F"""--output_dir {output_dir}""".split() UpperCAmelCase_ = ["torchrun"] + distributed_args + args execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_torch_multi_gpu def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' UpperCAmelCase_ = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() UpperCAmelCase_ = self.get_auto_remove_tmp_dir() UpperCAmelCase_ = F"""--output_dir {output_dir}""".split() UpperCAmelCase_ = ["torchrun"] + distributed_args + args execute_subprocess_async(_UpperCAmelCase , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py lowerCamelCase = HfArgumentParser((TrainingArguments,)) lowerCamelCase = parser.parse_args_into_dataclasses()[0] logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, " F"distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: lowerCamelCase = DummyDataset(dataset_length) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = list(range(len(lowerCAmelCase__ ) ) ) UpperCAmelCase_ = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " f"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} lowerCamelCase = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) lowerCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase = 2 lowerCamelCase = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) lowerCamelCase = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) lowerCamelCase = None
82
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
"""simple docstring""" import argparse from collections import defaultdict import yaml lowerCAmelCase__ = '''docs/source/en/_toctree.yml''' def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : int = defaultdict(A_ ) for doc in model_doc: counts[doc["local"]] += 1 _lowerCamelCase : List[Any] = [key for key, value in counts.items() if value > 1] _lowerCamelCase : List[str] = [] for duplicate_key in duplicates: _lowerCamelCase : Dict = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(A_ ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(A_, key=lambda A_ : s["title"].lower() ) def snake_case_ ( A_ : Union[str, Any]=False ): '''simple docstring''' with open(A_, encoding='''utf-8''' ) as f: _lowerCamelCase : Dict = yaml.safe_load(f.read() ) # Get to the API doc _lowerCamelCase : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _lowerCamelCase : Any = content[api_idx]['''sections'''] # Then to the model doc _lowerCamelCase : str = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _lowerCamelCase : List[str] = api_doc[model_idx]['''sections'''] _lowerCamelCase : Tuple = [(idx, section) for idx, section in enumerate(A_ ) if '''sections''' in section] _lowerCamelCase : Any = False for idx, modality_doc in modalities_docs: _lowerCamelCase : str = modality_doc['''sections'''] _lowerCamelCase : List[str] = clean_model_doc_toc(A_ ) if old_modality_doc != new_modality_doc: _lowerCamelCase : Any = True if overwrite: _lowerCamelCase : Optional[int] = new_modality_doc if diff: if overwrite: _lowerCamelCase : Any = model_doc _lowerCamelCase : Optional[Any] = api_doc with open(A_, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(A_, allow_unicode=A_ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
83
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase = logging.getLogger(__name__) class A_ : '''simple docstring''' def __init__( self ): lowercase = False def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case , snake_case , snake_case ): if not self.initialized: lowercase = RagRetriever( snake_case , question_encoder_tokenizer=snake_case , generator_tokenizer=snake_case , index=snake_case , init_retrieval=snake_case , ) lowercase = True def SCREAMING_SNAKE_CASE__ ( self ): self.retriever.index.init_index() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase , lowercase = self.retriever._main_retrieve(snake_case , snake_case ) return doc_ids, retrieved_doc_embeds class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case=None ): if index is not None and index.is_initialized() and len(snake_case ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( snake_case , question_encoder_tokenizer=snake_case , generator_tokenizer=snake_case , index=snake_case , init_retrieval=snake_case , ) lowercase = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(snake_case , snake_case , snake_case , snake_case ) for worker in self.retrieval_workers ] ) def SCREAMING_SNAKE_CASE__ ( self ): logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. lowercase = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] lowercase , lowercase = ray.get(random_worker.retrieve.remote(snake_case , snake_case ) ) else: lowercase , lowercase = self._main_retrieve(snake_case , snake_case ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(snake_case ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case=None , **snake_case ): return super(snake_case , cls ).get_tokenizers(snake_case , snake_case , **snake_case ) @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , snake_case=None , **snake_case ): lowercase = kwargs.pop('config' , snake_case ) or RagConfig.from_pretrained(snake_case , **snake_case ) lowercase = RagTokenizer.from_pretrained(snake_case , config=snake_case ) lowercase = rag_tokenizer.question_encoder lowercase = rag_tokenizer.generator if indexed_dataset is not None: lowercase = 'custom' lowercase = CustomHFIndex(config.retrieval_vector_size , snake_case ) else: lowercase = cls._build_index(snake_case ) return cls( snake_case , question_encoder_tokenizer=snake_case , generator_tokenizer=snake_case , retrieval_workers=snake_case , index=snake_case , )
84
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _a ( lowercase__ : List[Any] , lowercase__ : Dict ): '''simple docstring''' assert isinstance(lowercase__ , lowercase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _a ( lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = tmp_path / 'cache' SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TextDatasetReader(lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ ).read() _check_text_dataset(lowercase__ , lowercase__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def _a ( lowercase__ : str , lowercase__ : Optional[int] , lowercase__ : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = tmp_path / 'cache' SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'text': 'string'} SCREAMING_SNAKE_CASE__ : Optional[Any] = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : List[str] = ( Features({feature: Value(lowercase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : Dict = TextDatasetReader(lowercase__ , features=lowercase__ , cache_dir=lowercase__ ).read() _check_text_dataset(lowercase__ , lowercase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _a ( lowercase__ : Tuple , lowercase__ : Union[str, Any] , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = tmp_path / 'cache' SCREAMING_SNAKE_CASE__ : Tuple = {'text': 'string'} SCREAMING_SNAKE_CASE__ : List[str] = TextDatasetReader(lowercase__ , cache_dir=lowercase__ , split=lowercase__ ).read() _check_text_dataset(lowercase__ , lowercase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def _a ( lowercase__ : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] ): '''simple docstring''' if issubclass(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : List[Any] = text_path elif issubclass(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE__ : Tuple = [text_path] SCREAMING_SNAKE_CASE__ : int = tmp_path / 'cache' SCREAMING_SNAKE_CASE__ : str = {'text': 'string'} SCREAMING_SNAKE_CASE__ : Tuple = TextDatasetReader(lowercase__ , cache_dir=lowercase__ ).read() _check_text_dataset(lowercase__ , lowercase__ ) def _a ( lowercase__ : Union[str, Any] , lowercase__ : Optional[Any] , lowercase__ : List[str]=("train",) ): '''simple docstring''' assert isinstance(lowercase__ , lowercase__ ) for split in splits: SCREAMING_SNAKE_CASE__ : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def _a ( lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = tmp_path / 'cache' SCREAMING_SNAKE_CASE__ : Tuple = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE__ : Optional[Any] = TextDatasetReader({'train': text_path} , cache_dir=lowercase__ , keep_in_memory=lowercase__ ).read() _check_text_datasetdict(lowercase__ , lowercase__ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def _a ( lowercase__ : List[str] , lowercase__ : int , lowercase__ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" SCREAMING_SNAKE_CASE__ : Dict = {'text': 'string'} SCREAMING_SNAKE_CASE__ : int = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE__ : str = ( Features({feature: Value(lowercase__ ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE__ : str = TextDatasetReader({'train': text_path} , features=lowercase__ , cache_dir=lowercase__ ).read() _check_text_datasetdict(lowercase__ , lowercase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def _a ( lowercase__ : str , lowercase__ : List[Any] , lowercase__ : str ): '''simple docstring''' if split: SCREAMING_SNAKE_CASE__ : Any = {split: text_path} else: SCREAMING_SNAKE_CASE__ : int = 'train' SCREAMING_SNAKE_CASE__ : Optional[int] = {'train': text_path, 'test': text_path} SCREAMING_SNAKE_CASE__ : Union[str, Any] = tmp_path / 'cache' SCREAMING_SNAKE_CASE__ : List[str] = {'text': 'string'} SCREAMING_SNAKE_CASE__ : int = TextDatasetReader(lowercase__ , cache_dir=lowercase__ ).read() _check_text_datasetdict(lowercase__ , lowercase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
85
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
from jiwer import compute_measures import datasets __a :List[Any] = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' __a :Union[str, Any] = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' __a :str = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> wer = datasets.load_metric("wer")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _a ( datasets.Metric ): """simple docstring""" def __A ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[ "https://en.wikipedia.org/wiki/Word_error_rate", ] , ) def __A ( self : Dict , UpperCAmelCase : Dict=None , UpperCAmelCase : List[Any]=None , UpperCAmelCase : str=False ): if concatenate_texts: return compute_measures(UpperCAmelCase , UpperCAmelCase )["wer"] else: A_ = 0 A_ = 0 for prediction, reference in zip(UpperCAmelCase , UpperCAmelCase ): A_ = compute_measures(UpperCAmelCase , UpperCAmelCase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
86
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> dict[str, float]: """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
87
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowercase__ ( A_ ): __UpperCAmelCase = 42 class lowercase__ ( A_ ,A_ ): @register_to_config def __init__( self , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = ("DownEncoderBlock2D",) , SCREAMING_SNAKE_CASE = ("UpDecoderBlock2D",) , SCREAMING_SNAKE_CASE = (64,) , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = "silu" , SCREAMING_SNAKE_CASE = 3 , SCREAMING_SNAKE_CASE = 32 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 32 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 0.1_82_15 , SCREAMING_SNAKE_CASE = "group" , ) -> Tuple: super().__init__() # pass init params to Encoder _lowerCamelCase : List[str] = Encoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , down_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , double_z=SCREAMING_SNAKE_CASE , ) _lowerCamelCase : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowerCamelCase : Optional[Any] = nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1) _lowerCamelCase : str = VectorQuantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , beta=0.25 , remap=SCREAMING_SNAKE_CASE , sane_index_shape=SCREAMING_SNAKE_CASE) _lowerCamelCase : Union[str, Any] = nn.Convad(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 1) # pass init params to Decoder _lowerCamelCase : int = Decoder( in_channels=SCREAMING_SNAKE_CASE , out_channels=SCREAMING_SNAKE_CASE , up_block_types=SCREAMING_SNAKE_CASE , block_out_channels=SCREAMING_SNAKE_CASE , layers_per_block=SCREAMING_SNAKE_CASE , act_fn=SCREAMING_SNAKE_CASE , norm_num_groups=SCREAMING_SNAKE_CASE , norm_type=SCREAMING_SNAKE_CASE , ) @apply_forward_hook def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True) -> VQEncoderOutput: _lowerCamelCase : Optional[Any] = self.encoder(SCREAMING_SNAKE_CASE) _lowerCamelCase : Dict = self.quant_conv(SCREAMING_SNAKE_CASE) if not return_dict: return (h,) return VQEncoderOutput(latents=SCREAMING_SNAKE_CASE) @apply_forward_hook def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[str] = self.quantize(SCREAMING_SNAKE_CASE) else: _lowerCamelCase : int = h _lowerCamelCase : List[Any] = self.post_quant_conv(SCREAMING_SNAKE_CASE) _lowerCamelCase : Optional[int] = self.decoder(SCREAMING_SNAKE_CASE , quant if self.config.norm_type == """spatial""" else None) if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE) def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = True) -> Union[DecoderOutput, torch.FloatTensor]: _lowerCamelCase : Dict = sample _lowerCamelCase : Any = self.encode(SCREAMING_SNAKE_CASE).latents _lowerCamelCase : Optional[int] = self.decode(SCREAMING_SNAKE_CASE).sample if not return_dict: return (dec,) return DecoderOutput(sample=SCREAMING_SNAKE_CASE)
88
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": SCREAMING_SNAKE_CASE : List[Any] = "%20".join(argv[1:]) if len(argv) > 1 else quote(str(input("Search: "))) print("Googling.....") SCREAMING_SNAKE_CASE : Optional[Any] = F"https://www.google.com/search?q={query}&num=100" SCREAMING_SNAKE_CASE : Tuple = requests.get( url, headers={"User-Agent": str(UserAgent().random)}, ) try: SCREAMING_SNAKE_CASE : Tuple = ( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "yuRUbf"}) .find("a") .get("href") ) except AttributeError: SCREAMING_SNAKE_CASE : List[Any] = parse_qs( BeautifulSoup(res.text, "html.parser") .find("div", attrs={"class": "kCrYT"}) .find("a") .get("href") )["url"][0] webbrowser.open(link)
89
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __UpperCAmelCase = 16 __UpperCAmelCase = 32 def _snake_case ( A , A , A , A , A = 16 ) -> Optional[Any]: lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = DatasetDict( { '''train''': dataset['''train'''].select(A ), '''validation''': dataset['''train'''].select(A ), '''test''': dataset['''validation'''], } ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ = datasets.map( A , batched=A , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ = 8 else: lowerCAmelCase__ = None return tokenizer.pad( A , padding='''longest''' , max_length=A , pad_to_multiple_of=A , return_tensors='''pt''' , ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader( tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=A ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=A ) lowerCAmelCase__ = DataLoader( tokenized_datasets['''test'''] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader, test_dataloader def _snake_case ( A , A ) -> int: # New Code # lowerCAmelCase__ = [] # Download the dataset lowerCAmelCase__ = load_dataset('''glue''' , '''mrpc''' ) # Create our splits lowerCAmelCase__ = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator lowerCAmelCase__ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ = config['''lr'''] lowerCAmelCase__ = int(config['''num_epochs'''] ) lowerCAmelCase__ = int(config['''seed'''] ) lowerCAmelCase__ = int(config['''batch_size'''] ) lowerCAmelCase__ = evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation lowerCAmelCase__ = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: lowerCAmelCase__ = batch_size // MAX_GPU_BATCH_SIZE lowerCAmelCase__ = MAX_GPU_BATCH_SIZE set_seed(A ) # New Code # # Create our folds: lowerCAmelCase__ = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) lowerCAmelCase__ = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(A ): lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = get_fold_dataloaders( A , A , A , A , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler lowerCAmelCase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=100 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = accelerator.prepare( A , A , A , A , A ) # Now we train the model for epoch in range(A ): model.train() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.loss lowerCAmelCase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=A , references=A , ) lowerCAmelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" , A ) # New Code # # We also run predictions on the test set at the very end lowerCAmelCase__ = [] for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ = model(**A ) lowerCAmelCase__ = outputs.logits lowerCAmelCase__ , lowerCAmelCase__ = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(A , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: lowerCAmelCase__ = torch.cat(A , dim=0 ) lowerCAmelCase__ = torch.stack(A , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) lowerCAmelCase__ = metric.compute(predictions=A , references=A ) accelerator.print('''Average test metrics from all folds:''' , A ) def _snake_case ( ) -> List[str]: lowerCAmelCase__ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=A , default=A , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=A , default=3 , help='''The number of splits to perform across the dataset''' ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(A , A ) if __name__ == "__main__": main()
90
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
"""simple docstring""" _lowercase = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowercase = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def _snake_case ( snake_case__ : float , snake_case__ : str , snake_case__ : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: A = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(snake_case__ )}' ) raise ValueError(snake_case__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
91
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str = "cpu" , __magic_name__ : Union[str, None] = None ) -> None: lowercase : Dict =torch.load(__magic_name__ , map_location=__magic_name__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(__magic_name__ , torch.Tensor ): raise TypeError('''FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin''' ) lowercase : List[str] =v.half() if save_path is None: # overwrite src_path lowercase : Union[str, Any] =src_path torch.save(__magic_name__ , __magic_name__ ) if __name__ == "__main__": fire.Fire(convert)
92
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
"""simple docstring""" from __future__ import annotations from random import random from typing import Generic, TypeVar __A = TypeVar("""KT""") __A = TypeVar("""VT""") class _lowerCAmelCase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , __UpperCAmelCase = "root" , __UpperCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :List[str] = key lowerCAmelCase__ :List[Any] = value lowerCAmelCase__ :list[Node[KT, VT]] = [] def __repr__( self ): '''simple docstring''' return F"Node({self.key}: {self.value})" @property def snake_case ( self ): '''simple docstring''' return len(self.forward ) class _lowerCAmelCase ( Generic[KT, VT] ): """simple docstring""" def __init__( self , __UpperCAmelCase = 0.5 , __UpperCAmelCase = 1_6 ): '''simple docstring''' lowerCAmelCase__ :Node[KT, VT] = Node[KT, VT]() lowerCAmelCase__ :Optional[Any] = 0 lowerCAmelCase__ :Tuple = p lowerCAmelCase__ :List[Any] = max_level def __str__( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = list(self ) if len(__UpperCAmelCase ) == 0: return F"SkipList(level={self.level})" lowerCAmelCase__ :Union[str, Any] = max((len(str(__UpperCAmelCase ) ) for item in items) , default=4 ) lowerCAmelCase__ :Any = max(__UpperCAmelCase , 4 ) + 4 lowerCAmelCase__ :Tuple = self.head lowerCAmelCase__ :Any = [] lowerCAmelCase__ :List[Any] = node.forward.copy() lines.append(F"[{node.key}]".ljust(__UpperCAmelCase , '-' ) + '* ' * len(__UpperCAmelCase ) ) lines.append(' ' * label_size + '| ' * len(__UpperCAmelCase ) ) while len(node.forward ) != 0: lowerCAmelCase__ :Dict = node.forward[0] lines.append( F"[{node.key}]".ljust(__UpperCAmelCase , '-' ) + ' '.join(str(n.key ) if n.key == node.key else '|' for n in forwards ) ) lines.append(' ' * label_size + '| ' * len(__UpperCAmelCase ) ) lowerCAmelCase__ :Union[str, Any] = node.forward lines.append('None'.ljust(__UpperCAmelCase ) + '* ' * len(__UpperCAmelCase ) ) return F"SkipList(level={self.level})\n" + "\n".join(__UpperCAmelCase ) def __iter__( self ): '''simple docstring''' lowerCAmelCase__ :Any = self.head while len(node.forward ) != 0: yield node.forward[0].key lowerCAmelCase__ :str = node.forward[0] def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = 1 while random() < self.p and level < self.max_level: level += 1 return level def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ :int = [] lowerCAmelCase__ :Tuple = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: lowerCAmelCase__ :Any = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(__UpperCAmelCase ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Tuple = self._locate_node(__UpperCAmelCase ) if node is not None: for i, update_node in enumerate(__UpperCAmelCase ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: lowerCAmelCase__ :Optional[Any] = node.forward[i] else: lowerCAmelCase__ :str = update_node.forward[:i] def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :str = self._locate_node(__UpperCAmelCase ) if node is not None: lowerCAmelCase__ :Tuple = value else: lowerCAmelCase__ :Optional[Any] = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , __UpperCAmelCase ): update_vector.append(self.head ) lowerCAmelCase__ :int = level lowerCAmelCase__ :int = Node(__UpperCAmelCase , __UpperCAmelCase ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(__UpperCAmelCase ) else: lowerCAmelCase__ :Dict = new_node def snake_case ( self , __UpperCAmelCase ): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ :Union[str, Any] = self._locate_node(__UpperCAmelCase ) if node is not None: return node.value return None def __A () ->str: """simple docstring""" lowerCAmelCase__ :Optional[int] = SkipList() skip_list.insert('Key1' , 3 ) skip_list.insert('Key2' , 12 ) skip_list.insert('Key3' , 41 ) skip_list.insert('Key4' , -19 ) lowerCAmelCase__ :List[str] = skip_list.head lowerCAmelCase__ :Any = {} while node.level != 0: lowerCAmelCase__ :Optional[Any] = node.forward[0] lowerCAmelCase__ :Optional[int] = node.value assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 12 assert all_values["Key3"] == 41 assert all_values["Key4"] == -19 def __A () ->Dict: """simple docstring""" lowerCAmelCase__ :str = SkipList() skip_list.insert('Key1' , 10 ) skip_list.insert('Key1' , 12 ) skip_list.insert('Key5' , 7 ) skip_list.insert('Key7' , 10 ) skip_list.insert('Key10' , 5 ) skip_list.insert('Key7' , 7 ) skip_list.insert('Key5' , 5 ) skip_list.insert('Key10' , 10 ) lowerCAmelCase__ :str = skip_list.head lowerCAmelCase__ :List[Any] = {} while node.level != 0: lowerCAmelCase__ :int = node.forward[0] lowerCAmelCase__ :str = node.value if len(_SCREAMING_SNAKE_CASE ) != 4: print() assert len(_SCREAMING_SNAKE_CASE ) == 4 assert all_values["Key1"] == 12 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 10 def __A () ->int: """simple docstring""" lowerCAmelCase__ :List[Any] = SkipList() assert skip_list.find('Some key' ) is None def __A () ->Any: """simple docstring""" lowerCAmelCase__ :Dict = SkipList() skip_list.insert('Key2' , 20 ) assert skip_list.find('Key2' ) == 20 skip_list.insert('Some Key' , 10 ) skip_list.insert('Key2' , 8 ) skip_list.insert('V' , 13 ) assert skip_list.find('Y' ) is None assert skip_list.find('Key2' ) == 8 assert skip_list.find('Some Key' ) == 10 assert skip_list.find('V' ) == 13 def __A () ->Tuple: """simple docstring""" lowerCAmelCase__ :List[str] = SkipList() skip_list.delete('Some key' ) assert len(skip_list.head.forward ) == 0 def __A () ->Union[str, Any]: """simple docstring""" lowerCAmelCase__ :Dict = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('Key2' ) is None def __A () ->Optional[int]: """simple docstring""" lowerCAmelCase__ :List[str] = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 14 ) skip_list.insert('Key2' , 15 ) skip_list.delete('V' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) == 14 assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('X' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) == 12 assert skip_list.find('Key2' ) == 15 skip_list.delete('Key1' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) == 15 skip_list.delete('Key2' ) assert skip_list.find('V' ) is None assert skip_list.find('X' ) is None assert skip_list.find('Key1' ) is None assert skip_list.find('Key2' ) is None def __A () ->int: """simple docstring""" lowerCAmelCase__ :str = SkipList() skip_list.insert('Key1' , 12 ) skip_list.insert('V' , 13 ) skip_list.insert('X' , 142 ) skip_list.insert('Key2' , 15 ) skip_list.delete('X' ) def traverse_keys(_SCREAMING_SNAKE_CASE ): yield node.key for forward_node in node.forward: yield from traverse_keys(_SCREAMING_SNAKE_CASE ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __A () ->Optional[int]: """simple docstring""" def is_sorted(_SCREAMING_SNAKE_CASE ): return all(next_item >= item for item, next_item in zip(_SCREAMING_SNAKE_CASE , lst[1:] ) ) lowerCAmelCase__ :Optional[Any] = SkipList() for i in range(10 ): skip_list.insert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) skip_list.insert(-12 , -12 ) skip_list.insert(77 , 77 ) assert is_sorted(list(_SCREAMING_SNAKE_CASE ) ) def __A () ->Any: """simple docstring""" for _ in range(100 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __A () ->Optional[Any]: """simple docstring""" lowerCAmelCase__ :Optional[int] = SkipList() skip_list.insert(2 , '2' ) skip_list.insert(4 , '4' ) skip_list.insert(6 , '4' ) skip_list.insert(4 , '5' ) skip_list.insert(8 , '4' ) skip_list.insert(9 , '4' ) skip_list.delete(4 ) print(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() main()
93
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
'''simple docstring''' import math def lowercase_ ( ) -> None: """simple docstring""" lowercase : Union[str, Any] =input('''Enter message: ''' ) lowercase : List[Any] =int(input(F'Enter key [2-{len(__A ) - 1}]: ' ) ) lowercase : int =input('''Encryption/Decryption [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowercase : Union[str, Any] =encrypt_message(__A , __A ) elif mode.lower().startswith('''d''' ): lowercase : Dict =decrypt_message(__A , __A ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'Output:\n{text + "|"}' ) def lowercase_ ( __A : int , __A : str ) -> str: """simple docstring""" lowercase : Union[str, Any] =[''''''] * key for col in range(__A ): lowercase : Optional[Any] =col while pointer < len(__A ): cipher_text[col] += message[pointer] pointer += key return "".join(__A ) def lowercase_ ( __A : int , __A : str ) -> str: """simple docstring""" lowercase : Tuple =math.ceil(len(__A ) / key ) lowercase : Union[str, Any] =key lowercase : Optional[int] =(num_cols * num_rows) - len(__A ) lowercase : List[Any] =[''''''] * num_cols lowercase : Dict =0 lowercase : List[str] =0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): lowercase : Optional[int] =0 row += 1 return "".join(__A ) if __name__ == "__main__": import doctest doctest.testmod() main()
94
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
"""simple docstring""" def snake_case ( A__ = 50 ): UpperCAmelCase_ : Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 ,5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'{solution() = }')
95
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowerCamelCase = { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/config.json', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/config.json', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/config.json', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/config.json', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/config.json', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/config.json', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "albert" def __init__( self : str , __snake_case : Optional[int]=3_0_0_0_0 , __snake_case : Tuple=1_2_8 , __snake_case : Union[str, Any]=4_0_9_6 , __snake_case : List[Any]=1_2 , __snake_case : Optional[int]=1 , __snake_case : str=6_4 , __snake_case : Optional[int]=1_6_3_8_4 , __snake_case : Optional[Any]=1 , __snake_case : Optional[int]="gelu_new" , __snake_case : Union[str, Any]=0 , __snake_case : Any=0 , __snake_case : Tuple=5_1_2 , __snake_case : Tuple=2 , __snake_case : Optional[int]=0.02 , __snake_case : Any=1E-12 , __snake_case : Any=0.1 , __snake_case : Optional[Any]="absolute" , __snake_case : List[Any]=0 , __snake_case : Tuple=2 , __snake_case : List[Any]=3 , **__snake_case : Optional[Any] , ) -> Any: super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case ) __magic_name__: Tuple = vocab_size __magic_name__: int = embedding_size __magic_name__: Union[str, Any] = hidden_size __magic_name__: Tuple = num_hidden_layers __magic_name__: List[str] = num_hidden_groups __magic_name__: List[str] = num_attention_heads __magic_name__: List[Any] = inner_group_num __magic_name__: Tuple = hidden_act __magic_name__: int = intermediate_size __magic_name__: List[Any] = hidden_dropout_prob __magic_name__: Union[str, Any] = attention_probs_dropout_prob __magic_name__: List[str] = max_position_embeddings __magic_name__: Any = type_vocab_size __magic_name__: Optional[Any] = initializer_range __magic_name__: int = layer_norm_eps __magic_name__: Any = classifier_dropout_prob __magic_name__: int = position_embedding_type class __A ( SCREAMING_SNAKE_CASE_ ): @property def lowerCamelCase__ ( self : str ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": __magic_name__: str = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __magic_name__: List[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
96
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def a ( snake_case__: Optional[int] , snake_case__: Optional[Any] , snake_case__: int , snake_case__: Dict=5 ): '''simple docstring''' # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 lowercase_ = torch.tensor(tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) ).unsqueeze(0 ) # Batch size 1 lowercase_ = model(snake_case__ )[0] # The last hidden-state is the first element of the output tuple lowercase_ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowercase_ = logits[0, masked_index, :] lowercase_ = logits.softmax(dim=0 ) lowercase_ , lowercase_ = prob.topk(k=snake_case__ , dim=0 ) lowercase_ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(snake_case__ ) )] ) lowercase_ = tokenizer.mask_token lowercase_ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowercase_ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(snake_case__ ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(snake_case__ ) , snake_case__ ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(snake_case__ , snake_case__ ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __a = CamembertTokenizer.from_pretrained('camembert-base') __a = CamembertForMaskedLM.from_pretrained('camembert-base') model.eval() __a = 'Le camembert est <mask> :)' print(fill_mask(masked_input, model, tokenizer, topk=3))
97
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowercase__ : Dict = 2 class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , *, # begin keyword-only arguments lowerCAmelCase__ : str="<s>" , lowerCAmelCase__ : Dict="<pad>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Any="<unk>" , lowerCAmelCase__ : Optional[Any]=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = bos, unk, pad, eos _UpperCamelCase = [] _UpperCamelCase = [] _UpperCamelCase = {} _UpperCamelCase = self.add_symbol(lowerCAmelCase__ ) _UpperCamelCase = self.add_symbol(lowerCAmelCase__ ) _UpperCamelCase = self.add_symbol(lowerCAmelCase__ ) _UpperCamelCase = self.add_symbol(lowerCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(lowerCAmelCase__ ) _UpperCamelCase = len(self.symbols ) def __eq__( self : Union[str, Any] , lowerCAmelCase__ : Dict ) -> Any: '''simple docstring''' return self.indices == other.indices def __getitem__( self : List[Any] , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : Any ) -> List[str]: '''simple docstring''' return len(self.symbols ) def __contains__( self : Optional[int] , lowerCAmelCase__ : List[Any] ) -> List[Any]: '''simple docstring''' return sym in self.indices @classmethod def snake_case__ ( cls : Any , lowerCAmelCase__ : Tuple ) -> List[Any]: '''simple docstring''' _UpperCamelCase = cls() d.add_from_file(lowerCAmelCase__ ) return d def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : int=1 , lowerCAmelCase__ : Union[str, Any]=False ) -> str: '''simple docstring''' if word in self.indices and not overwrite: _UpperCamelCase = self.indices[word] _UpperCamelCase = self.count[idx] + n return idx else: _UpperCamelCase = len(self.symbols ) _UpperCamelCase = idx self.symbols.append(lowerCAmelCase__ ) self.count.append(lowerCAmelCase__ ) return idx def snake_case__ ( self : Dict , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return 0 def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] ) -> Union[str, Any]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): try: with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as fd: self.add_from_file(lowerCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(lowerCAmelCase__ ) ) return _UpperCamelCase = f.readlines() _UpperCamelCase = self._load_meta(lowerCAmelCase__ ) for line in lines[indices_start_line:]: try: _UpperCamelCase , _UpperCamelCase = line.rstrip().rsplit(''' ''' , 1 ) if field == "#fairseq:overwrite": _UpperCamelCase = True _UpperCamelCase , _UpperCamelCase = line.rsplit(''' ''' , 1 ) else: _UpperCamelCase = False _UpperCamelCase = int(lowerCAmelCase__ ) _UpperCamelCase = line if word in self and not overwrite: raise RuntimeError( '''Duplicate word found when loading Dictionary: \'{}\'. ''' '''Duplicate words can overwrite earlier ones by adding the ''' '''#fairseq:overwrite flag at the end of the corresponding row ''' '''in the dictionary file. If using the Camembert model, please ''' '''download an updated copy of the model file.'''.format(lowerCAmelCase__ ) ) self.add_symbol(lowerCAmelCase__ , n=lowerCAmelCase__ , overwrite=lowerCAmelCase__ ) except ValueError: raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' ) def a__ ( lowercase : Dict ) -> List[Any]: """simple docstring""" _UpperCamelCase = dict((re.sub(r'''@@$''', '''''', lowercase ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''', '''</w>''', lowercase ), v) for k, v in d.items() ) _UpperCamelCase = '''<s> <pad> </s> <unk>'''.split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] _UpperCamelCase = d[k] # restore return da def a__ ( lowercase : Any, lowercase : int ) -> Any: """simple docstring""" if not os.path.exists(lowercase ): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""" ) os.makedirs(lowercase, exist_ok=lowercase ) print(F"""Writing results to {pytorch_dump_folder_path}""" ) # handle various types of models _UpperCamelCase = os.path.join(lowercase, '''checkpoint.pt''' ) if not os.path.isfile(lowercase ): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""" ) _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' ) _UpperCamelCase = chkpt['''cfg''']['''model'''] # dicts _UpperCamelCase = os.path.join(lowercase, '''dict.txt''' ) if not os.path.isfile(lowercase ): raise ValueError(F"""path to the file {dict_file} does not exist!""" ) _UpperCamelCase = Dictionary.load(lowercase ) _UpperCamelCase = rewrite_dict_keys(src_dict.indices ) _UpperCamelCase = len(lowercase ) _UpperCamelCase = os.path.join(lowercase, VOCAB_FILES_NAMES['''vocab_file'''] ) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""" ) with open(lowercase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # merges_file (bpecodes) _UpperCamelCase = os.path.join(lowercase, '''bpecodes''' ) if not os.path.isfile(lowercase ): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""" ) _UpperCamelCase = os.path.join(lowercase, VOCAB_FILES_NAMES['''merges_file'''] ) shutil.copyfile(lowercase, lowercase ) # model config _UpperCamelCase = os.path.join(lowercase, '''config.json''' ) _UpperCamelCase = { '''activation_dropout''': args['''activation_dropout'''], '''architectures''': ['''BioGptForCausalLM'''], '''attention_probs_dropout_prob''': args['''attention_dropout'''], '''bos_token_id''': 0, '''eos_token_id''': 2, '''hidden_act''': args['''activation_fn'''], '''hidden_dropout_prob''': args['''dropout'''], '''hidden_size''': args['''decoder_embed_dim'''], '''initializer_range''': 0.0_2, '''intermediate_size''': args['''decoder_ffn_embed_dim'''], '''layer_norm_eps''': 1e-12, '''layerdrop''': args['''decoder_layerdrop'''], '''max_position_embeddings''': args['''max_target_positions'''], '''model_type''': '''biogpt''', '''num_attention_heads''': args['''decoder_attention_heads'''], '''num_hidden_layers''': args['''decoder_layers'''], '''pad_token_id''': 1, '''scale_embedding''': not args['''no_scale_embedding'''], '''tie_word_embeddings''': args['''share_decoder_input_output_embed'''], '''vocab_size''': src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""" ) with open(lowercase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # tokenizer config _UpperCamelCase = os.path.join(lowercase, lowercase ) _UpperCamelCase = { '''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''model_max_length''': 1024, '''pad_token''': '''<pad>''', '''special_tokens_map_file''': None, '''tokenizer_class''': '''BioGptTokenizer''', '''unk_token''': '''<unk>''', } print(F"""Generating {biogpt_tokenizer_config_file}""" ) with open(lowercase, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(lowercase, ensure_ascii=lowercase, indent=lowercase ) ) # model _UpperCamelCase = chkpt['''model'''] # remove unneeded keys _UpperCamelCase = [ '''decoder.version''', ] for k in ignore_keys: model_state_dict.pop(lowercase, lowercase ) _UpperCamelCase = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith('''output_projection.weight''' ): _UpperCamelCase = model_state_dict.pop(lowercase ) else: _UpperCamelCase = model_state_dict.pop(lowercase ) _UpperCamelCase = BioGptConfig.from_pretrained(lowercase ) _UpperCamelCase = BioGptForCausalLM(lowercase ) # check that it loads ok model_new.load_state_dict(lowercase ) # save _UpperCamelCase = os.path.join(lowercase, lowercase ) print(F"""Generating {pytorch_weights_dump_path}""" ) torch.save(lowercase, lowercase ) print('''Conversion is done!''' ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ : List[str] = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
98
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available SCREAMING_SNAKE_CASE = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
99
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : List[Any] = logging.get_logger(__name__) _A : str = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _A : int = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _A : Optional[Any] = { """gpt2""": 10_24, """gpt2-medium""": 10_24, """gpt2-large""": 10_24, """gpt2-xl""": 10_24, """distilgpt2""": 10_24, } class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = VOCAB_FILES_NAMES lowerCamelCase__ : Any = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ : Union[str, Any] = ["""input_ids""", """attention_mask"""] lowerCamelCase__ : Tuple = GPTaTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ): '''simple docstring''' super().__init__( A_ , A_ , tokenizer_file=A_ , unk_token=A_ , bos_token=A_ , eos_token=A_ , add_prefix_space=A_ , **A_ , ) SCREAMING_SNAKE_CASE__ = kwargs.pop('''add_bos_token''' , A_ ) SCREAMING_SNAKE_CASE__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , A_ ) != add_prefix_space: SCREAMING_SNAKE_CASE__ = getattr(A_ , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE__ = add_prefix_space SCREAMING_SNAKE_CASE__ = pre_tok_class(**A_ ) SCREAMING_SNAKE_CASE__ = add_prefix_space def lowercase_ ( self , *A_ , **A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def lowercase_ ( self , *A_ , **A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = kwargs.get('''is_split_into_words''' , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def lowercase_ ( self , A_ , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(A_ , add_special_tokens=A_ ) + [self.eos_token_id] ) if len(A_ ) > self.model_max_length: SCREAMING_SNAKE_CASE__ = input_ids[-self.model_max_length :] return input_ids
100
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ={ 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = """swin2sr""" _UpperCAmelCase = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase__=6_4 , lowerCAmelCase__=1 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8_0 , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=[6, 6, 6, 6, 6, 6] , lowerCAmelCase__=8 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=0.02 , lowerCAmelCase__=1E-5 , lowerCAmelCase__=2 , lowerCAmelCase__=1.0 , lowerCAmelCase__="1conv" , lowerCAmelCase__="pixelshuffle" , **lowerCAmelCase__ , ): """simple docstring""" super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : List[str] = patch_size SCREAMING_SNAKE_CASE_ : List[Any] = num_channels SCREAMING_SNAKE_CASE_ : Optional[int] = embed_dim SCREAMING_SNAKE_CASE_ : Optional[int] = depths SCREAMING_SNAKE_CASE_ : Any = len(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = num_heads SCREAMING_SNAKE_CASE_ : Any = window_size SCREAMING_SNAKE_CASE_ : str = mlp_ratio SCREAMING_SNAKE_CASE_ : Any = qkv_bias SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Any = drop_path_rate SCREAMING_SNAKE_CASE_ : str = hidden_act SCREAMING_SNAKE_CASE_ : List[str] = use_absolute_embeddings SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm_eps SCREAMING_SNAKE_CASE_ : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE_ : List[Any] = upscale SCREAMING_SNAKE_CASE_ : int = img_range SCREAMING_SNAKE_CASE_ : Optional[int] = resi_connection SCREAMING_SNAKE_CASE_ : List[Any] = upsampler
101
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
102
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any]=1_3 , __lowerCamelCase : Optional[Any]=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : Dict=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[Any]=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : int=False , __lowerCamelCase : Dict=2 , __lowerCamelCase : Tuple=9_9 , __lowerCamelCase : Optional[int]=0 , __lowerCamelCase : Tuple=3_2 , __lowerCamelCase : Tuple=5 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : Any=5_1_2 , __lowerCamelCase : str=1_2 , __lowerCamelCase : Any=2 , __lowerCamelCase : Any=0.0_2 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Optional[int]="last" , __lowerCamelCase : str=None , __lowerCamelCase : int=None , ): """simple docstring""" _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_lengths _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = gelu_activation _snake_case = sinusoidal_embeddings _snake_case = causal _snake_case = asm _snake_case = n_langs _snake_case = vocab_size _snake_case = n_special _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = summary_type _snake_case = use_proj _snake_case = scope def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_input_lengths: _snake_case = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , 2 ).float() _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def __UpperCAmelCase ( self : Optional[int] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , ): """simple docstring""" _snake_case = FlaubertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , lengths=__lowerCamelCase , langs=__lowerCamelCase ) _snake_case = model(__lowerCamelCase , langs=__lowerCamelCase ) _snake_case = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[Any] , ): """simple docstring""" _snake_case = FlaubertWithLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Dict , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict , ): """simple docstring""" _snake_case = FlaubertForQuestionAnsweringSimple(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase ) _snake_case = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Tuple , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[int] , ): """simple docstring""" _snake_case = FlaubertForQuestionAnswering(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase ) _snake_case = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , p_mask=__lowerCamelCase , ) _snake_case = model( __lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , cls_index=__lowerCamelCase , is_impossible=__lowerCamelCase , ) ((_snake_case) , ) = result_with_labels.to_tuple() _snake_case = model(__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase ) ((_snake_case) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : List[str] , __lowerCamelCase : str , ): """simple docstring""" _snake_case = FlaubertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase ) _snake_case = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __UpperCAmelCase ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Any , __lowerCamelCase : List[Any] , ): """simple docstring""" _snake_case = self.num_labels _snake_case = FlaubertForTokenClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = model(__lowerCamelCase , attention_mask=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : int , ): """simple docstring""" _snake_case = self.num_choices _snake_case = FlaubertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _snake_case = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _snake_case = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __UpperCAmelCase ( self : Dict ): """simple docstring""" _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): A__ : Optional[int] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) A__ : Any = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Tuple , __lowerCamelCase : int , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any]=False ): """simple docstring""" _snake_case = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) _snake_case = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _snake_case = FlaubertModelTester(self ) _snake_case = ConfigTester(self , config_class=__lowerCamelCase , emb_dim=3_7 ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__lowerCamelCase ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__lowerCamelCase ) def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__lowerCamelCase ) def __UpperCAmelCase ( self : str ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__lowerCamelCase ) def __UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__lowerCamelCase ) def __UpperCAmelCase ( self : int ): """simple docstring""" _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__lowerCamelCase ) @slow def __UpperCAmelCase ( self : int ): """simple docstring""" for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = FlaubertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @slow @require_torch_gpu def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _snake_case , _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return _snake_case = True _snake_case = model_class(config=__lowerCamelCase ) _snake_case = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) _snake_case = torch.jit.trace( __lowerCamelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__lowerCamelCase , os.path.join(__lowerCamelCase , '''traced_model.pt''' ) ) _snake_case = torch.jit.load(os.path.join(__lowerCamelCase , '''traced_model.pt''' ) , map_location=__lowerCamelCase ) loaded(inputs_dict['''input_ids'''].to(__lowerCamelCase ) , inputs_dict['''attention_mask'''].to(__lowerCamelCase ) ) @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Any ): """simple docstring""" _snake_case = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) _snake_case = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): _snake_case = model(__lowerCamelCase )[0] _snake_case = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCamelCase ) _snake_case = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 ) )
103
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCamelCase = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["""MobileNetV2FeatureExtractor"""] UpperCamelCase = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
104
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCamelCase__ : str = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : int=False , lowerCamelCase_ : Optional[Any]=True ) -> List[str]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: SCREAMING_SNAKE_CASE_ : Optional[int] = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) SCREAMING_SNAKE_CASE_ : Dict = config_class.from_json_file(lowerCamelCase_ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = True print(F'Building TensorFlow model from configuration: {config}' ) SCREAMING_SNAKE_CASE_ : List[Any] = model_class(lowerCamelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): SCREAMING_SNAKE_CASE_ : str = cached_file( lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: SCREAMING_SNAKE_CASE_ : Optional[int] = load_pytorch_checkpoint_in_tfa_model(lowerCamelCase_ , lowerCamelCase_ ) if compare_with_pt_model: SCREAMING_SNAKE_CASE_ : Dict = tf_model(tf_model.dummy_inputs , training=lowerCamelCase_ ) # build the network SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) SCREAMING_SNAKE_CASE_ : str = pt_model_class.from_pretrained( pretrained_model_name_or_path=lowerCamelCase_ , config=lowerCamelCase_ , state_dict=lowerCamelCase_ ) with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = pt_model(**pt_model.dummy_inputs ) SCREAMING_SNAKE_CASE_ : Optional[int] = pto[0].numpy() SCREAMING_SNAKE_CASE_ : List[str] = tfo[0].numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = np.amax(np.abs(np_pt - np_tf ) ) print(F'Max absolute difference between models outputs {diff}' ) assert diff <= 2E-2, F'Error, model absolute difference is >2e-2: {diff}' # Save pytorch-model print(F'Save TensorFlow model to {tf_dump_path}' ) tf_model.save_weights(lowerCamelCase_ , save_format='h5' ) def __UpperCAmelCase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Optional[Any]=False , lowerCamelCase_ : str=False , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : List[Any]=False , ) -> Dict: """simple docstring""" if args_model_type is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(MODEL_CLASSES.keys() ) else: SCREAMING_SNAKE_CASE_ : Dict = [args_model_type] for j, model_type in enumerate(lowerCamelCase_ , start=1 ): print('=' * 1_00 ) print(F' Converting model type {j}/{len(lowerCamelCase_ )}: {model_type}' ) print('=' * 1_00 ) if model_type not in MODEL_CLASSES: raise ValueError(F'Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.' ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: SCREAMING_SNAKE_CASE_ : List[Any] = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: SCREAMING_SNAKE_CASE_ : Optional[int] = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(lowerCamelCase_ , lowerCamelCase_ ) , start=1 ): print('-' * 1_00 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F' Skipping finetuned checkpoint {model_shortcut_name}' ) continue SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_shortcut_name elif only_convert_finetuned_models: print(F' Skipping not finetuned checkpoint {model_shortcut_name}' ) continue print( F' Converting checkpoint {i}/{len(lowerCamelCase_ )}: {model_shortcut_name} - model_type {model_type}' ) print('-' * 1_00 ) if config_shortcut_name in aws_config_map: SCREAMING_SNAKE_CASE_ : Optional[Any] = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) else: SCREAMING_SNAKE_CASE_ : List[str] = config_shortcut_name if model_shortcut_name in aws_model_maps: SCREAMING_SNAKE_CASE_ : Dict = cached_file(lowerCamelCase_ , lowerCamelCase_ , force_download=not use_cached_models ) else: SCREAMING_SNAKE_CASE_ : Any = model_shortcut_name if os.path.isfile(lowerCamelCase_ ): SCREAMING_SNAKE_CASE_ : Tuple = 'converted_model' convert_pt_checkpoint_to_tf( model_type=lowerCamelCase_ , pytorch_checkpoint_path=lowerCamelCase_ , config_file=lowerCamelCase_ , tf_dump_path=os.path.join(lowerCamelCase_ , model_shortcut_name + '-tf_model.h5' ) , compare_with_pt_model=lowerCamelCase_ , ) if remove_cached_files: os.remove(lowerCamelCase_ ) os.remove(lowerCamelCase_ ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') UpperCamelCase__ : str = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
105
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
import logging from transformers import PretrainedConfig __snake_case :int =logging.getLogger(__name__) __snake_case :Tuple ={ 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Dict = 'bertabs' def __init__( self : Optional[int] , __UpperCamelCase : int=30_522 , __UpperCamelCase : Tuple=512 , __UpperCamelCase : List[Any]=6 , __UpperCamelCase : Tuple=512 , __UpperCamelCase : Dict=8 , __UpperCamelCase : List[Any]=512 , __UpperCamelCase : Dict=0.2 , __UpperCamelCase : Optional[Any]=6 , __UpperCamelCase : Union[str, Any]=768 , __UpperCamelCase : List[Any]=8 , __UpperCamelCase : Optional[int]=2_048 , __UpperCamelCase : Tuple=0.2 , **__UpperCamelCase : Any , ) -> Union[str, Any]: super().__init__(**__UpperCamelCase ) A = vocab_size A = max_pos A = enc_layers A = enc_hidden_size A = enc_heads A = enc_ff_size A = enc_dropout A = dec_layers A = dec_hidden_size A = dec_heads A = dec_ff_size A = dec_dropout
106
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
'''simple docstring''' import baseaa def _SCREAMING_SNAKE_CASE ( __snake_case : str ): return baseaa.aaaencode(string.encode('utf-8' ) ) def _SCREAMING_SNAKE_CASE ( __snake_case : bytes ): return baseaa.aaadecode(__snake_case ).decode('utf-8' ) if __name__ == "__main__": import doctest doctest.testmod()
107
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
import os import sys __a: Union[str, Any] = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __a: Union[str, Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Union[str, Any]: return AutoConfig.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Any: return AutoTokenizer.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModel.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Tuple: return AutoModel.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Tuple: return AutoModelForCausalLM.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> Optional[Any]: return AutoModelForMaskedLM.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> List[str]: return AutoModelForSequenceClassification.from_pretrained(*__snake_case , **__snake_case ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _SCREAMING_SNAKE_CASE ( *__snake_case , **__snake_case ) -> List[Any]: return AutoModelForQuestionAnswering.from_pretrained(*__snake_case , **__snake_case )
108
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
'''simple docstring''' import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser a = logging.getLogger(__name__) torch.set_grad_enabled(False) a = "cuda" if torch.cuda.is_available() else "cpu" def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=" " ) -> List[str]: '''simple docstring''' __SCREAMING_SNAKE_CASE = text.split(__UpperCAmelCase ) return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__UpperCAmelCase ) , __UpperCAmelCase )] def __magic_name__ ( __UpperCAmelCase ) -> dict: '''simple docstring''' __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = [], [] for title, text in zip(documents["""title"""] , documents["""text"""] ): if text is not None: for passage in split_text(__UpperCAmelCase ): titles.append(title if title is not None else """""" ) texts.append(__UpperCAmelCase ) return {"title": titles, "text": texts} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> dict: '''simple docstring''' __SCREAMING_SNAKE_CASE = ctx_tokenizer( documents["""title"""] , documents["""text"""] , truncation=__UpperCAmelCase , padding="""longest""" , return_tensors="""pt""" )["""input_ids"""] __SCREAMING_SNAKE_CASE = ctx_encoder(input_ids.to(device=__UpperCAmelCase ) , return_dict=__UpperCAmelCase ).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' logger.info("""Step 1 - Create the dataset""" ) ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file" # You can load a Dataset object this way __SCREAMING_SNAKE_CASE = load_dataset( """csv""" , data_files=[rag_example_args.csv_path] , split="""train""" , delimiter="""\t""" , column_names=["""title""", """text"""] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files # Then split the documents into passages of 100 words __SCREAMING_SNAKE_CASE = dataset.map(__UpperCAmelCase , batched=__UpperCAmelCase , num_proc=processing_args.num_proc ) # And compute the embeddings __SCREAMING_SNAKE_CASE = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ) __SCREAMING_SNAKE_CASE = Features( {"""text""": Value("""string""" ), """title""": Value("""string""" ), """embeddings""": Sequence(Value("""float32""" ) )} ) # optional, save as float32 instead of float64 to save space __SCREAMING_SNAKE_CASE = dataset.map( partial(__UpperCAmelCase , ctx_encoder=__UpperCAmelCase , ctx_tokenizer=__UpperCAmelCase ) , batched=__UpperCAmelCase , batch_size=processing_args.batch_size , features=__UpperCAmelCase , ) # And finally save your dataset __SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset""" ) dataset.save_to_disk(__UpperCAmelCase ) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("""Step 2 - Index the dataset""" ) ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search __SCREAMING_SNAKE_CASE = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT ) dataset.add_faiss_index("""embeddings""" , custom_index=__UpperCAmelCase ) # And save the index __SCREAMING_SNAKE_CASE = os.path.join(rag_example_args.output_dir , """my_knowledge_dataset_hnsw_index.faiss""" ) dataset.get_index("""embeddings""" ).save(__UpperCAmelCase ) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class __a : __UpperCamelCase : str = field( default=str(Path(_snake_case ).parent / 'test_run' / 'dummy-kb' / 'my_knowledge_dataset.csv' ), metadata={'help': 'Path to a tab-separated csv file with columns \'title\' and \'text\''}, ) __UpperCamelCase : Optional[str] = field( default=_snake_case, metadata={'help': 'Question that is passed as input to RAG. Default is \'What does Moses\' rod turn into ?\'.'}, ) __UpperCamelCase : str = field( default='facebook/rag-sequence-nq', metadata={'help': 'The RAG model to use. Either \'facebook/rag-sequence-nq\' or \'facebook/rag-token-nq\''}, ) __UpperCamelCase : str = field( default='facebook/dpr-ctx_encoder-multiset-base', metadata={ 'help': ( 'The DPR context encoder model to use. Either \'facebook/dpr-ctx_encoder-single-nq-base\' or' ' \'facebook/dpr-ctx_encoder-multiset-base\'' ) }, ) __UpperCamelCase : Optional[str] = field( default=str(Path(_snake_case ).parent / 'test_run' / 'dummy-kb' ), metadata={'help': 'Path to a directory where the dataset passages and the index will be saved'}, ) @dataclass class __a : __UpperCamelCase : Optional[int] = field( default=_snake_case, metadata={ 'help': 'The number of processes to use to split the documents into passages. Default is single process.' }, ) __UpperCamelCase : int = field( default=16, metadata={ 'help': 'The batch size to use when computing the passages embeddings using the DPR context encoder.' }, ) @dataclass class __a : __UpperCamelCase : int = field( default=768, metadata={'help': 'The dimension of the embeddings to pass to the HNSW Faiss index.'}, ) __UpperCamelCase : int = field( default=128, metadata={ 'help': ( 'The number of bi-directional links created for every new element during the HNSW index construction.' ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) a = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) a , a , a = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: a = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
109
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : List[Any] = tau * frequency / samplerate snake_case_ : Any = sin(lowerCAmelCase__ ) snake_case_ : Any = cos(lowerCAmelCase__ ) snake_case_ : str = _sin / (2 * q_factor) snake_case_ : Optional[int] = (1 - _cos) / 2 snake_case_ : Union[str, Any] = 1 - _cos snake_case_ : Dict = 1 + alpha snake_case_ : int = -2 * _cos snake_case_ : List[str] = 1 - alpha snake_case_ : List[Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Optional[Any] = tau * frequency / samplerate snake_case_ : Union[str, Any] = sin(lowerCAmelCase__ ) snake_case_ : Optional[int] = cos(lowerCAmelCase__ ) snake_case_ : Dict = _sin / (2 * q_factor) snake_case_ : List[str] = (1 + _cos) / 2 snake_case_ : Any = -1 - _cos snake_case_ : str = 1 + alpha snake_case_ : List[str] = -2 * _cos snake_case_ : Any = 1 - alpha snake_case_ : Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Optional[Any] = tau * frequency / samplerate snake_case_ : List[str] = sin(lowerCAmelCase__ ) snake_case_ : Union[str, Any] = cos(lowerCAmelCase__ ) snake_case_ : Optional[int] = _sin / (2 * q_factor) snake_case_ : List[Any] = _sin / 2 snake_case_ : Any = 0 snake_case_ : Dict = -ba snake_case_ : Dict = 1 + alpha snake_case_ : Tuple = -2 * _cos snake_case_ : List[Any] = 1 - alpha snake_case_ : Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float = 1 / sqrt(2 ) ): '''simple docstring''' snake_case_ : Optional[int] = tau * frequency / samplerate snake_case_ : Dict = sin(lowerCAmelCase__ ) snake_case_ : Any = cos(lowerCAmelCase__ ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : Any = 1 - alpha snake_case_ : Union[str, Any] = -2 * _cos snake_case_ : Optional[Any] = 1 + alpha snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float , lowerCamelCase_ :float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : str = tau * frequency / samplerate snake_case_ : Dict = sin(lowerCAmelCase__ ) snake_case_ : Any = cos(lowerCAmelCase__ ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : List[Any] = 10 ** (gain_db / 40) snake_case_ : List[str] = 1 + alpha * big_a snake_case_ : Optional[int] = -2 * _cos snake_case_ : Tuple = 1 - alpha * big_a snake_case_ : Optional[int] = 1 + alpha / big_a snake_case_ : str = -2 * _cos snake_case_ : Optional[int] = 1 - alpha / big_a snake_case_ : Any = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float , lowerCamelCase_ :float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : List[str] = tau * frequency / samplerate snake_case_ : int = sin(lowerCAmelCase__ ) snake_case_ : int = cos(lowerCAmelCase__ ) snake_case_ : int = _sin / (2 * q_factor) snake_case_ : Dict = 10 ** (gain_db / 40) snake_case_ : Optional[Any] = (big_a + 1) - (big_a - 1) * _cos snake_case_ : Optional[Any] = (big_a + 1) + (big_a - 1) * _cos snake_case_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos snake_case_ : Tuple = (big_a - 1) + (big_a + 1) * _cos snake_case_ : Optional[Any] = 2 * sqrt(lowerCAmelCase__ ) * alpha snake_case_ : List[Any] = big_a * (pmc + aaa) snake_case_ : Union[str, Any] = 2 * big_a * mpc snake_case_ : List[str] = big_a * (pmc - aaa) snake_case_ : str = ppmc + aaa snake_case_ : int = -2 * pmpc snake_case_ : List[Any] = ppmc - aaa snake_case_ : Tuple = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( lowerCamelCase_ :int , lowerCamelCase_ :int , lowerCamelCase_ :float , lowerCamelCase_ :float = 1 / sqrt(2 ) , ): '''simple docstring''' snake_case_ : Tuple = tau * frequency / samplerate snake_case_ : Tuple = sin(lowerCAmelCase__ ) snake_case_ : Dict = cos(lowerCAmelCase__ ) snake_case_ : Optional[int] = _sin / (2 * q_factor) snake_case_ : Optional[Any] = 10 ** (gain_db / 40) snake_case_ : Union[str, Any] = (big_a + 1) - (big_a - 1) * _cos snake_case_ : Optional[int] = (big_a + 1) + (big_a - 1) * _cos snake_case_ : Optional[Any] = (big_a - 1) - (big_a + 1) * _cos snake_case_ : Union[str, Any] = (big_a - 1) + (big_a + 1) * _cos snake_case_ : int = 2 * sqrt(lowerCAmelCase__ ) * alpha snake_case_ : Optional[int] = big_a * (ppmc + aaa) snake_case_ : List[str] = -2 * big_a * pmpc snake_case_ : Tuple = big_a * (ppmc - aaa) snake_case_ : List[str] = pmc + aaa snake_case_ : Dict = 2 * mpc snake_case_ : Optional[Any] = pmc - aaa snake_case_ : List[str] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
334
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : int ): return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
440
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin _UpperCAmelCase : int = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _UpperCAmelCase : List[Any] = 25_00_04 _UpperCAmelCase : Dict = 25_00_20 @require_sentencepiece @require_tokenizers class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = MBartaaTokenizer __lowerCAmelCase = MBartaaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def __UpperCAmelCase ( self : List[str] ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing _A = MBartaaTokenizer(_a, src_lang='en_XX', tgt_lang='ro_RO', keep_accents=_a ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self : List[Any] ) -> str: _A = '<s>' _A = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ), _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ), _a ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '<s>' ) self.assertEqual(vocab_keys[1], '<pad>' ) self.assertEqual(vocab_keys[-1], '<mask>' ) self.assertEqual(len(_a ), 10_54 ) def __UpperCAmelCase ( self : List[Any] ) -> int: self.assertEqual(self.get_tokenizer().vocab_size, 10_54 ) def __UpperCAmelCase ( self : int ) -> Union[str, Any]: _A = MBartaaTokenizer(_a, src_lang='en_XX', tgt_lang='ro_RO', keep_accents=_a ) _A = tokenizer.tokenize('This is a test' ) self.assertListEqual(_a, ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ), [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]], ) _A = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( _a, [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'], ) _A = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual( _a, [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ], ) _A = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a, [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'], ) @slow def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: # fmt: off _A = {'input_ids': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a, model_name='facebook/mbart-large-50', revision='d3913889c59cd5c9e456b269c376325eabad57e2', ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _A = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart50', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _A = self.rust_tokenizer_class.from_pretrained(_a, **_a ) _A = self.tokenizer_class.from_pretrained(_a, **_a ) _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(_a ) _A = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) _A = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(_a, _a ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(_a ) _A = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a, _a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=True _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(_a, legacy_format=_a ) _A = tokenizer_p.save_pretrained(_a ) # Checks it save with the same files self.assertSequenceEqual(_a, _a ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(_a ) _A = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a, _a ) ) shutil.rmtree(_a ) # Save tokenizer rust, legacy_format=False _A = tempfile.mkdtemp() _A = tokenizer_r.save_pretrained(_a, legacy_format=_a ) _A = tokenizer_p.save_pretrained(_a ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _A = tokenizer_r.from_pretrained(_a ) _A = tokenizer_p.from_pretrained(_a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_a, _a ) ) shutil.rmtree(_a ) @require_torch @require_sentencepiece @require_tokenizers class lowercase_ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase = 'facebook/mbart-large-50-one-to-many-mmt' __lowerCAmelCase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] __lowerCAmelCase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] __lowerCAmelCase = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __UpperCAmelCase ( cls : Tuple ) -> int: _A = MBartaaTokenizer.from_pretrained( cls.checkpoint_name, src_lang='en_XX', tgt_lang='ro_RO' ) _A = 1 return cls def __UpperCAmelCase ( self : Optional[Any] ) -> str: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'], 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'], 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'], 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['mr_IN'], 25_00_38 ) def __UpperCAmelCase ( self : Any ) -> Tuple: _A = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens, _a ) def __UpperCAmelCase ( self : str ) -> Dict: self.assertIn(_a, self.tokenizer.all_special_ids ) _A = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] _A = self.tokenizer.decode(_a, skip_special_tokens=_a ) _A = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=_a ) self.assertEqual(_a, _a ) self.assertNotIn(self.tokenizer.eos_token, _a ) def __UpperCAmelCase ( self : Any ) -> List[str]: _A = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0], _a ) _A = 10 _A = self.tokenizer(_a, max_length=_a, truncation=_a ).input_ids[0] self.assertEqual(ids[0], _a ) self.assertEqual(ids[-1], 2 ) self.assertEqual(len(_a ), _a ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR'] ), [25_00_53, 25_00_01] ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: _A = tempfile.mkdtemp() _A = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_a ) _A = MBartaaTokenizer.from_pretrained(_a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids, _a ) @require_torch def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: _A = self.tokenizer(self.src_text, text_target=self.tgt_text, padding=_a, return_tensors='pt' ) _A = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __UpperCAmelCase ( self : Tuple ) -> int: _A = self.tokenizer( self.src_text, text_target=self.tgt_text, padding=_a, truncation=_a, max_length=len(self.expected_src_tokens ), return_tensors='pt', ) _A = shift_tokens_right(batch['labels'], self.tokenizer.pad_token_id ) self.assertIsInstance(_a, _a ) self.assertEqual((2, 14), batch.input_ids.shape ) self.assertEqual((2, 14), batch.attention_mask.shape ) _A = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens, _a ) self.assertEqual(2, batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id] ) def __UpperCAmelCase ( self : Any ) -> Dict: _A = self.tokenizer(self.src_text, padding=_a, truncation=_a, max_length=3, return_tensors='pt' ) _A = self.tokenizer( text_target=self.tgt_text, padding=_a, truncation=_a, max_length=10, return_tensors='pt' ) _A = targets['input_ids'] _A = shift_tokens_right(_a, self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1], 3 ) self.assertEqual(batch.decoder_input_ids.shape[1], 10 ) @require_torch def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: _A = self.tokenizer._build_translation_inputs( 'A test', return_tensors='pt', src_lang='en_XX', tgt_lang='ar_AR' ) self.assertEqual( nested_simplify(_a ), { # en_XX, A, test, EOS 'input_ids': [[25_00_04, 62, 30_34, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 25_00_01, }, )
107
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
from jiwer import compute_measures import datasets a_ : Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n' a_ : Dict = '\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n' a_ : int = '\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): """simple docstring""" def _UpperCAmelCase ( self ) -> int: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: if concatenate_texts: return compute_measures(_a , _a )["wer"] else: a__ = 0 a__ = 0 for prediction, reference in zip(_a , _a ): a__ = compute_measures(_a , _a ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
194
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def __A ( ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase : Any = HfArgumentParser(lowerCAmelCase__ ) _UpperCamelCase : int = parser.parse_args_into_dataclasses()[0] _UpperCamelCase : List[Any] = TensorFlowBenchmark(args=lowerCAmelCase__ ) try: _UpperCamelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] except ValueError as e: _UpperCamelCase : Optional[int] = "Arg --no_{0} is no longer used, please use --no-{0} instead." _UpperCamelCase : Union[str, Any] = " ".join(str(lowerCAmelCase__ ).split(" " )[:-1] ) _UpperCamelCase : int = "" _UpperCamelCase : Any = eval(str(lowerCAmelCase__ ).split(" " )[-1] ) _UpperCamelCase : Dict = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(lowerCAmelCase__ ) if len(lowerCAmelCase__ ) > 0: _UpperCamelCase : Optional[int] = full_error_msg + begin_error_msg + str(lowerCAmelCase__ ) raise ValueError(lowerCAmelCase__ ) benchmark.run() if __name__ == "__main__": main()
435
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
'''simple docstring''' def lowercase__( _UpperCamelCase : str )-> List[str]: """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowercase__( _UpperCamelCase : dict[int, list[int]] )-> list[tuple[int, int]]: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = len(lowerCAmelCase__ ) # No of vertices in graph _UpperCamelCase = [0] * n _UpperCamelCase = [False] * n def dfs(_UpperCamelCase : Dict , _UpperCamelCase : int , _UpperCamelCase : Any , _UpperCamelCase : Optional[int] ): _UpperCamelCase = True _UpperCamelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , id_ ) _UpperCamelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge _UpperCamelCase = min(low[at] , low[to] ) _UpperCamelCase = [] for i in range(lowerCAmelCase__ ): if not visited[i]: dfs(lowerCAmelCase__ , -1 , lowerCAmelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
138
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class __UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase : str = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True} ) lowercase : ClassVar[Features] = Features({"image": Image()} ) lowercase : ClassVar[Features] = Features({"labels": ClassLabel} ) lowercase : str = "image" lowercase : str = "labels" def UpperCamelCase_ ( self , _A ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _a ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _SCREAMING_SNAKE_CASE =copy.deepcopy(self ) _SCREAMING_SNAKE_CASE =self.label_schema.copy() _SCREAMING_SNAKE_CASE =features[self.label_column] _SCREAMING_SNAKE_CASE =label_schema return task_template @property def UpperCamelCase_ ( self ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
255
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : List[str] = {} class _a (__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 'llama' lowerCAmelCase_ : List[Any] = ['past_key_values'] def __init__( self ,__a=32_000 ,__a=4_096 ,__a=11_008 ,__a=32 ,__a=32 ,__a=None ,__a="silu" ,__a=2_048 ,__a=0.02 ,__a=1E-6 ,__a=True ,__a=0 ,__a=1 ,__a=2 ,__a=1 ,__a=False ,__a=None ,**__a ,) -> str: snake_case : List[str] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Tuple = intermediate_size snake_case : int = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case : Tuple = num_attention_heads snake_case : Any = num_key_value_heads snake_case : Optional[Any] = hidden_act snake_case : Any = initializer_range snake_case : List[str] = rms_norm_eps snake_case : Union[str, Any] = pretraining_tp snake_case : Optional[int] = use_cache snake_case : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,tie_word_embeddings=_a ,**_a ,) def snake_case_ ( self ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_a ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''' ) snake_case : str = self.rope_scaling.get("""type""" ,_a ) snake_case : str = self.rope_scaling.get("""factor""" ,_a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_a ,_a ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
116
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class snake_case__ ( unittest.TestCase ): def __lowerCAmelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : List[str] = f""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() UpperCAmelCase : List[Any] = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
595
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase ( __SCREAMING_SNAKE_CASE ): _a = DistilBertTokenizer _a = DistilBertTokenizerFast _a = True @slow def a__ ( self ) -> List[str]: _A : Tuple = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) _A : List[Any] = tokenizer.encode("""sequence builders""" , add_special_tokens=_a ) _A : Union[str, Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_a ) _A : Tuple = tokenizer.build_inputs_with_special_tokens(_a ) _A : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
307
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
"""simple docstring""" def lowercase__ ( lowerCAmelCase : int ) -> "list[int]": """simple docstring""" if upper_limit < 0: raise ValueError('Limit for the Catalan sequence must be ≥ 0' ) UpperCAmelCase = [0] * (upper_limit + 1) # Base case: C(0) = C(1) = 1 UpperCAmelCase = 1 if upper_limit > 0: UpperCAmelCase = 1 # Recurrence relation: C(i) = sum(C(j).C(i-j-1)), from j = 0 to i for i in range(2 , upper_limit + 1 ): for j in range(lowerCAmelCase__ ): catalan_list[i] += catalan_list[j] * catalan_list[i - j - 1] return catalan_list if __name__ == "__main__": print('''\n********* Catalan Numbers Using Dynamic Programming ************\n''') print('''\n*** Enter -1 at any time to quit ***''') print('''\nEnter the upper limit (≥ 0) for the Catalan number sequence: ''', end='''''') try: while True: SCREAMING_SNAKE_CASE_ = int(input().strip()) if N < 0: print('''\n********* Goodbye!! ************''') break else: print(F'The Catalan numbers from 0 through {N} are:') print(catalan_numbers(N)) print('''Try another upper limit for the sequence: ''', end='''''') except (NameError, ValueError): print('''\n********* Invalid input, goodbye! ************\n''') import doctest doctest.testmod()
373
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
'''simple docstring''' def UpperCAmelCase ( ): '''simple docstring''' return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] __A : str = generate_large_matrix() __A : Tuple = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' assert all(row == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for row in grid ) assert all(list(lowerCAmelCase__ ) == sorted(lowerCAmelCase__ , reverse=lowerCAmelCase__ ) for col in zip(*lowerCAmelCase__ ) ) def UpperCAmelCase ( lowerCamelCase_ :list[int] ): '''simple docstring''' snake_case_ : str = 0 snake_case_ : Union[str, Any] = len(lowerCAmelCase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: snake_case_ : Any = (left + right) // 2 snake_case_ : Tuple = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: snake_case_ : List[str] = mid + 1 else: snake_case_ : List[Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : List[Any] = 0 snake_case_ : str = len(grid[0] ) for i in range(len(lowerCAmelCase__ ) ): snake_case_ : Optional[Any] = find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCAmelCase__ ) * len(grid[0] )) - total def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def UpperCAmelCase ( lowerCamelCase_ :list[list[int]] ): '''simple docstring''' snake_case_ : List[Any] = 0 for row in grid: for i, number in enumerate(lowerCAmelCase__ ): if number < 0: total += len(lowerCAmelCase__ ) - i break return total def UpperCAmelCase ( ): '''simple docstring''' from timeit import timeit print("""Running benchmarks""" ) snake_case_ : List[Any] = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): snake_case_ : List[Any] = timeit(F'''{func}(grid=grid)''' , setup=lowerCAmelCase__ , number=5_00 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
334
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : Dict =logging.get_logger(__name__) __lowerCAmelCase : Optional[int] ={"vocab_file": "vocab.json"} __lowerCAmelCase : Optional[int] ={ "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } __lowerCAmelCase : List[Any] ={"mgp-str": 27} class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __lowercase = VOCAB_FILES_NAMES __lowercase = PRETRAINED_VOCAB_FILES_MAP __lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :List[Any] , lowercase_ :Tuple , lowercase_ :Tuple="[GO]" , lowercase_ :str="[GO]" , lowercase_ :Optional[Any]="[s]" , lowercase_ :List[str]="[GO]" , **lowercase_ :int )-> List[Any]: super().__init__( unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , **_a , ) with open(_a , encoding="utf-8" ) as vocab_handle: A__ = json.load(_a ) A__ = {v: k for k, v in self.vocab.items()} @property def UpperCAmelCase_ ( self :Union[str, Any] )-> Union[str, Any]: return len(self.vocab ) def UpperCAmelCase_ ( self :Optional[int] )-> Union[str, Any]: return dict(self.vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self :int , lowercase_ :Optional[Any] )-> Dict: A__ = [] for s in text: char_tokens.extend(_a ) return char_tokens def UpperCAmelCase_ ( self :str , lowercase_ :str )-> Tuple: return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self :List[str] , lowercase_ :str )-> Any: return self.decoder.get(_a ) def UpperCAmelCase_ ( self :Tuple , lowercase_ :int , lowercase_ :Union[str, Any] = None )-> List[str]: if not os.path.isdir(_a ): logger.error("Vocabulary path ({}) should be a directory".format(_a ) ) return A__ = os.path.join( _a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(_a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_a , ensure_ascii=_a ) + "\n" ) return (vocab_file,)
440
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : int ): _A = 0 while num > 0: digit_sum += num % 1_0 num //= 1_0 return digit_sum def _SCREAMING_SNAKE_CASE ( __snake_case : int = 1_0_0 ): _A = 1 _A = 2 for i in range(2 , max_n + 1 ): _A = pre_numerator _A = 2 * i // 3 if i % 3 == 0 else 1 _A = cur_numerator _A = e_cont * pre_numerator + temp return sum_digits(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{solution() = }''')
107
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import ( DiffusionPipeline, UnCLIPImageVariationPipeline, UnCLIPScheduler, UNetaDConditionModel, UNetaDModel, ) from diffusers.pipelines.unclip.text_proj import UnCLIPTextProjModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, load_image, require_torch_gpu, skip_mps from ..pipeline_params import IMAGE_VARIATION_BATCH_PARAMS, IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCamelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" _lowercase : Tuple = UnCLIPImageVariationPipeline _lowercase : Any = IMAGE_VARIATION_PARAMS - {'height', 'width', 'guidance_scale'} _lowercase : Any = IMAGE_VARIATION_BATCH_PARAMS _lowercase : Optional[int] = [ 'generator', 'return_dict', 'decoder_num_inference_steps', 'super_res_num_inference_steps', ] _lowercase : List[str] = False @property def _UpperCAmelCase ( self ) -> int: return 3_2 @property def _UpperCAmelCase ( self ) -> List[str]: return 3_2 @property def _UpperCAmelCase ( self ) -> Tuple: return self.time_input_dim @property def _UpperCAmelCase ( self ) -> Dict: return self.time_input_dim * 4 @property def _UpperCAmelCase ( self ) -> List[Any]: return 1_0_0 @property def _UpperCAmelCase ( self ) -> Union[str, Any]: a__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(_a ) @property def _UpperCAmelCase ( self ) -> List[str]: torch.manual_seed(0 ) a__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , num_hidden_layers=5 , num_attention_heads=4 , image_size=3_2 , intermediate_size=3_7 , patch_size=1 , ) return CLIPVisionModelWithProjection(_a ) @property def _UpperCAmelCase ( self ) -> Any: torch.manual_seed(0 ) a__ = { '''clip_embeddings_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''cross_attention_dim''': self.cross_attention_dim, } a__ = UnCLIPTextProjModel(**_a ) return model @property def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) a__ = { '''sample_size''': 3_2, # RGB in channels '''in_channels''': 3, # Out channels is double in channels because predicts mean and variance '''out_channels''': 6, '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': '''identity''', } a__ = UNetaDConditionModel(**_a ) return model @property def _UpperCAmelCase ( self ) -> Optional[int]: return { "sample_size": 6_4, "layers_per_block": 1, "down_block_types": ("ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D"), "up_block_types": ("ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D"), "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "in_channels": 6, "out_channels": 3, } @property def _UpperCAmelCase ( self ) -> int: torch.manual_seed(0 ) a__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model @property def _UpperCAmelCase ( self ) -> Tuple: # seeded differently to get different unet than `self.dummy_super_res_first` torch.manual_seed(1 ) a__ = UNetaDModel(**self.dummy_super_res_kwargs ) return model def _UpperCAmelCase ( self ) -> Tuple: a__ = self.dummy_decoder a__ = self.dummy_text_proj a__ = self.dummy_text_encoder a__ = self.dummy_tokenizer a__ = self.dummy_super_res_first a__ = self.dummy_super_res_last a__ = UnCLIPScheduler( variance_type='''learned_range''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) a__ = UnCLIPScheduler( variance_type='''fixed_small_log''' , prediction_type='''epsilon''' , num_train_timesteps=1_0_0_0 , ) a__ = CLIPImageProcessor(crop_size=3_2 , size=3_2 ) a__ = self.dummy_image_encoder return { "decoder": decoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "text_proj": text_proj, "feature_extractor": feature_extractor, "image_encoder": image_encoder, "super_res_first": super_res_first, "super_res_last": super_res_last, "decoder_scheduler": decoder_scheduler, "super_res_scheduler": super_res_scheduler, } def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=True ) -> Optional[int]: a__ = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_a ) ).to(_a ) if str(_a ).startswith('''mps''' ): a__ = torch.manual_seed(_a ) else: a__ = torch.Generator(device=_a ).manual_seed(_a ) if pil_image: a__ = input_image * 0.5 + 0.5 a__ = input_image.clamp(0 , 1 ) a__ = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() a__ = DiffusionPipeline.numpy_to_pil(_a )[0] return { "image": input_image, "generator": generator, "decoder_num_inference_steps": 2, "super_res_num_inference_steps": 2, "output_type": "np", } def _UpperCAmelCase ( self ) -> Tuple: a__ = '''cpu''' a__ = self.get_dummy_components() a__ = self.pipeline_class(**_a ) a__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = pipe(**_a ) a__ = output.images a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = pipe( **_a , return_dict=_a , )[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a__ = np.array( [ 0.99_97, 0.00_02, 0.99_97, 0.99_97, 0.99_69, 0.00_23, 0.99_97, 0.99_69, 0.99_70, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> str: a__ = '''cpu''' a__ = self.get_dummy_components() a__ = self.pipeline_class(**_a ) a__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = pipe(**_a ) a__ = output.images a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = pipe( **_a , return_dict=_a , )[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a__ = np.array([0.99_97, 0.00_03, 0.99_97, 0.99_97, 0.99_70, 0.00_24, 0.99_97, 0.99_71, 0.99_71] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Dict: a__ = '''cpu''' a__ = self.get_dummy_components() a__ = self.pipeline_class(**_a ) a__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = [ pipeline_inputs['''image'''], pipeline_inputs['''image'''], ] a__ = pipe(**_a ) a__ = output.images a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = [ tuple_pipeline_inputs['''image'''], tuple_pipeline_inputs['''image'''], ] a__ = pipe( **_a , return_dict=_a , )[0] a__ = image[0, -3:, -3:, -1] a__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (2, 6_4, 6_4, 3) a__ = np.array( [ 0.99_97, 0.99_89, 0.00_08, 0.00_21, 0.99_60, 0.00_18, 0.00_14, 0.00_02, 0.99_33, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> Dict: a__ = torch.device('''cpu''' ) class __UpperCamelCase : """simple docstring""" _lowercase : Optional[Any] = 1 a__ = self.get_dummy_components() a__ = self.pipeline_class(**_a ) a__ = pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) a__ = torch.Generator(device=_a ).manual_seed(0 ) a__ = pipe.decoder.dtype a__ = 1 a__ = ( batch_size, pipe.decoder.config.in_channels, pipe.decoder.config.sample_size, pipe.decoder.config.sample_size, ) a__ = pipe.prepare_latents( _a , dtype=_a , device=_a , generator=_a , latents=_a , scheduler=DummyScheduler() ) a__ = ( batch_size, pipe.super_res_first.config.in_channels // 2, pipe.super_res_first.config.sample_size, pipe.super_res_first.config.sample_size, ) a__ = pipe.prepare_latents( _a , dtype=_a , device=_a , generator=_a , latents=_a , scheduler=DummyScheduler() ) a__ = self.get_dummy_inputs(_a , pil_image=_a ) a__ = pipe( **_a , decoder_latents=_a , super_res_latents=_a ).images a__ = self.get_dummy_inputs(_a , pil_image=_a ) # Don't pass image, instead pass embedding a__ = pipeline_inputs.pop('''image''' ) a__ = pipe.image_encoder(_a ).image_embeds a__ = pipe( **_a , decoder_latents=_a , super_res_latents=_a , image_embeddings=_a , ).images # make sure passing text embeddings manually is identical assert np.abs(img_out_a - img_out_a ).max() < 1e-4 @skip_mps def _UpperCAmelCase ( self ) -> List[Any]: a__ = torch_device == '''cpu''' # Check is relaxed because there is not a torch 2.0 sliced attention added kv processor a__ = 1e-2 self._test_attention_slicing_forward_pass( test_max_difference=_a , expected_max_diff=_a ) @skip_mps def _UpperCAmelCase ( self ) -> int: a__ = torch_device == '''cpu''' a__ = True a__ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] self._test_inference_batch_single_identical( test_max_difference=_a , relax_max_difference=_a , additional_params_copy_to_batched_inputs=_a , ) def _UpperCAmelCase ( self ) -> Any: a__ = [ '''decoder_num_inference_steps''', '''super_res_num_inference_steps''', ] if torch_device == "mps": # TODO: MPS errors with larger batch sizes a__ = [2, 3] self._test_inference_batch_consistent( batch_sizes=_a , additional_params_copy_to_batched_inputs=_a , ) else: self._test_inference_batch_consistent( additional_params_copy_to_batched_inputs=_a ) @skip_mps def _UpperCAmelCase ( self ) -> int: return super().test_dict_tuple_outputs_equivalent() @skip_mps def _UpperCAmelCase ( self ) -> Tuple: return super().test_save_load_local() @skip_mps def _UpperCAmelCase ( self ) -> Optional[Any]: return super().test_save_load_optional_components() @slow @require_torch_gpu class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> int: a__ = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/unclip/cat.png''' ) a__ = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/unclip/karlo_v1_alpha_cat_variation_fp16.npy''' ) a__ = UnCLIPImageVariationPipeline.from_pretrained( '''kakaobrain/karlo-v1-alpha-image-variations''' , torch_dtype=torch.floataa ) a__ = pipeline.to(_a ) pipeline.set_progress_bar_config(disable=_a ) a__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) a__ = pipeline( _a , generator=_a , output_type='''np''' , ) a__ = output.images[0] assert image.shape == (2_5_6, 2_5_6, 3) assert_mean_pixel_difference(_a , _a , 1_5 )
194
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase_ : Union[str, Any] = pytest.mark.integration @require_faiss class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(_a ) for x in np.arange(30 ).tolist()]} ) return dset def snake_case__ ( self : List[Any] ) ->List[str]: '''simple docstring''' import faiss _UpperCamelCase : Optional[Any] = self._create_dummy_dataset() _UpperCamelCase : Optional[int] = dset.map( lambda lowercase__ , lowercase__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_a , keep_in_memory=_a ) _UpperCamelCase : List[str] = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) _UpperCamelCase , _UpperCamelCase : Dict = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def snake_case__ ( self : int ) ->Dict: '''simple docstring''' import faiss _UpperCamelCase : Optional[int] = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) _UpperCamelCase , _UpperCamelCase : int = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def snake_case__ ( self : List[Any] ) ->Any: '''simple docstring''' import faiss _UpperCamelCase : Tuple = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) _UpperCamelCase , _UpperCamelCase : str = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def snake_case__ ( self : int ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : int = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(_a , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def snake_case__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' from elasticsearch import Elasticsearch _UpperCamelCase : Tuple = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: _UpperCamelCase : List[Any] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) _UpperCamelCase : Optional[int] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} _UpperCamelCase : Optional[int] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=_a ) _UpperCamelCase , _UpperCamelCase : Optional[Any] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : List[Any] ) ->List[Any]: '''simple docstring''' import faiss _UpperCamelCase : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query _UpperCamelCase : int = np.zeros(5 , dtype=np.floataa ) _UpperCamelCase : Any = 1 _UpperCamelCase , _UpperCamelCase : Dict = index.search(_a ) self.assertRaises(_a , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries _UpperCamelCase : List[Any] = np.eye(5 , dtype=np.floataa )[::-1] _UpperCamelCase , _UpperCamelCase : int = index.search_batch(_a ) self.assertRaises(_a , index.search_batch , queries[0] ) _UpperCamelCase : List[Any] = [scores[0] for scores in total_scores] _UpperCamelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _a ) def snake_case__ ( self : str ) ->str: '''simple docstring''' import faiss _UpperCamelCase : Tuple = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) _UpperCamelCase : Union[str, Any] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_a ): _UpperCamelCase : int = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def snake_case__ ( self : Optional[int] ) ->List[Any]: '''simple docstring''' import faiss _UpperCamelCase : str = faiss.IndexFlat(5 ) _UpperCamelCase : Dict = FaissIndex(custom_index=_a ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def snake_case__ ( self : List[Any] ) ->str: '''simple docstring''' import faiss _UpperCamelCase : Tuple = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_a ) as tmp_file: index.save(tmp_file.name ) _UpperCamelCase : str = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) _UpperCamelCase : str = np.zeros(5 , dtype=np.floataa ) _UpperCamelCase : Dict = 1 _UpperCamelCase , _UpperCamelCase : List[Any] = index.search(_a ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __A ( UpperCAmelCase ) -> str: '''simple docstring''' import faiss _UpperCamelCase : List[str] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) _UpperCamelCase : List[str] = "index.faiss" _UpperCamelCase : Optional[int] = f'''mock://{index_name}''' index.save(lowerCAmelCase__ ,storage_options=mockfs.storage_options ) _UpperCamelCase : Optional[int] = FaissIndex.load(lowerCAmelCase__ ,storage_options=mockfs.storage_options ) _UpperCamelCase : Dict = np.zeros(5 ,dtype=np.floataa ) _UpperCamelCase : Any = 1 _UpperCamelCase , _UpperCamelCase : Any = index.search(lowerCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : Optional[Any] ) ->List[Any]: '''simple docstring''' from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: _UpperCamelCase : Tuple = Elasticsearch() _UpperCamelCase : List[str] = {"acknowledged": True} _UpperCamelCase : int = ElasticSearchIndex(es_client=_a ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query _UpperCamelCase : Dict = "foo" _UpperCamelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _UpperCamelCase , _UpperCamelCase : str = index.search(_a ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout _UpperCamelCase : List[Any] = "foo" _UpperCamelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} _UpperCamelCase , _UpperCamelCase : Tuple = index.search(_a , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries _UpperCamelCase : int = ["foo", "bar", "foobar"] _UpperCamelCase : List[str] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _UpperCamelCase , _UpperCamelCase : Dict = index.search_batch(_a ) _UpperCamelCase : Optional[int] = [scores[0] for scores in total_scores] _UpperCamelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a ) # batched queries with timeout _UpperCamelCase : Tuple = ["foo", "bar", "foobar"] _UpperCamelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} _UpperCamelCase , _UpperCamelCase : List[str] = index.search_batch(_a , request_timeout=30 ) _UpperCamelCase : List[Any] = [scores[0] for scores in total_scores] _UpperCamelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_a ) , 0 ) self.assertListEqual([1, 1, 1] , _a )
435
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
'''simple docstring''' class A_ : # Public class to implement a graph '''simple docstring''' def __init__( self , A_ , A_ , A_ ): _UpperCamelCase = row _UpperCamelCase = col _UpperCamelCase = graph def a ( self , A_ , A_ , A_ ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def a ( self , A_ , A_ , A_ ): # Checking all 8 elements surrounding nth element _UpperCamelCase = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order _UpperCamelCase = [-1, 0, 1, -1, 1, -1, 0, 1] _UpperCamelCase = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , _a ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , _a ) def a ( self ): # And finally, count all islands. _UpperCamelCase = [[False for j in range(self.COL )] for i in range(self.ROW )] _UpperCamelCase = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(_a , _a , _a ) count += 1 return count
138
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup UpperCAmelCase_ : List[Any] = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l=''' def _lowerCAmelCase(a : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: _SCREAMING_SNAKE_CASE =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): _SCREAMING_SNAKE_CASE =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() _SCREAMING_SNAKE_CASE =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('''Bangalore'''), 1): print(f"Job {i:>2} is {job[0]} at {job[1]}")
255
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class _a (__SCREAMING_SNAKE_CASE, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Dict = FlaxAutoencoderKL @property def snake_case_ ( self ) -> Union[str, Any]: snake_case : List[Any] = 4 snake_case : List[Any] = 3 snake_case : Tuple = (32, 32) snake_case : Union[str, Any] = jax.random.PRNGKey(0 ) snake_case : Dict = jax.random.uniform(_a ,((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def snake_case_ ( self ) -> Optional[Any]: snake_case : Optional[Any] = { """block_out_channels""": [32, 64], """in_channels""": 3, """out_channels""": 3, """down_block_types""": ["""DownEncoderBlock2D""", """DownEncoderBlock2D"""], """up_block_types""": ["""UpDecoderBlock2D""", """UpDecoderBlock2D"""], """latent_channels""": 4, } snake_case : int = self.dummy_input return init_dict, inputs_dict
116
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : Tuple = logging.get_logger(__name__) snake_case_ : Any = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class snake_case__ ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'ctrl' SCREAMING_SNAKE_CASE__ = ['past_key_values'] SCREAMING_SNAKE_CASE__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[str] , lowercase : Dict=24_65_34 , lowercase : Tuple=2_56 , lowercase : Optional[Any]=12_80 , lowercase : Tuple=81_92 , lowercase : Tuple=48 , lowercase : int=16 , lowercase : Tuple=0.1 , lowercase : Dict=0.1 , lowercase : int=1E-6 , lowercase : int=0.0_2 , lowercase : Union[str, Any]=True , **lowercase : int , ): '''simple docstring''' UpperCAmelCase : str = vocab_size UpperCAmelCase : Optional[Any] = n_positions UpperCAmelCase : Tuple = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : int = n_head UpperCAmelCase : Union[str, Any] = dff UpperCAmelCase : List[Any] = resid_pdrop UpperCAmelCase : Any = embd_pdrop UpperCAmelCase : Optional[Any] = layer_norm_epsilon UpperCAmelCase : Optional[Any] = initializer_range UpperCAmelCase : Tuple = use_cache super().__init__(**_a )
595
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,unittest.TestCase ): _a = StableDiffusionInpaintPipeline _a = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS _a = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _a = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess _a = frozenset([] ) def a__ ( self ) -> Tuple: torch.manual_seed(0 ) _A : Union[str, Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) _A : Tuple = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) _A : Dict = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _A : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) _A : Any = CLIPTextModel(_a ) _A : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _A : Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def a__ ( self , _a , _a=0 ) -> Tuple: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched _A : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) _A : List[str] = image.cpu().permute(0 , 2 , 3 , 1 )[0] _A : List[str] = Image.fromarray(np.uinta(_a ) ).convert("""RGB""" ).resize((64, 64) ) _A : Optional[Any] = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(_a ).startswith("""mps""" ): _A : Optional[int] = torch.manual_seed(_a ) else: _A : int = torch.Generator(device=_a ).manual_seed(_a ) _A : int = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def a__ ( self ) -> str: _A : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _A : Optional[Any] = self.get_dummy_components() _A : str = StableDiffusionInpaintPipeline(**_a ) _A : Any = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) _A : Any = self.get_dummy_inputs(_a ) _A : List[str] = sd_pipe(**_a ).images _A : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A : Any = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self ) -> Optional[int]: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def a__ ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> List[str]: _A : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _A : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _A : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _A : Tuple = """stabilityai/stable-diffusion-2-inpainting""" _A : List[str] = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : Tuple = """Face of a yellow cat, high resolution, sitting on a park bench""" _A : Optional[Any] = torch.manual_seed(0 ) _A : List[str] = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type="""np""" , ) _A : int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9e-3 def a__ ( self ) -> List[Any]: _A : List[Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _A : Optional[int] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _A : str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _A : List[str] = """stabilityai/stable-diffusion-2-inpainting""" _A : str = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() _A : List[Any] = """Face of a yellow cat, high resolution, sitting on a park bench""" _A : Optional[Any] = torch.manual_seed(0 ) _A : Any = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type="""np""" , ) _A : Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def a__ ( self ) -> List[str]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _A : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _A : Any = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _A : List[Any] = """stabilityai/stable-diffusion-2-inpainting""" _A : List[str] = PNDMScheduler.from_pretrained(_a , subfolder="""scheduler""" ) _A : Optional[int] = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _A : List[str] = """Face of a yellow cat, high resolution, sitting on a park bench""" _A : List[str] = torch.manual_seed(0 ) _A : List[Any] = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type="""np""" , ) _A : int = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
307
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
"""simple docstring""" from typing import Any def lowercase__ ( lowerCAmelCase : list , lowerCAmelCase : list , lowerCAmelCase : dict , lowerCAmelCase : dict , lowerCAmelCase : dict , ) -> list: """simple docstring""" _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step UpperCAmelCase = {} UpperCAmelCase = {} for state in states_space: UpperCAmelCase = observations_space[0] UpperCAmelCase = ( initial_probabilities[state] * emission_probabilities[state][observation] ) UpperCAmelCase = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): UpperCAmelCase = observations_space[o] UpperCAmelCase = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function UpperCAmelCase = '' UpperCAmelCase = -1 for k_state in states_space: UpperCAmelCase = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: UpperCAmelCase = probability UpperCAmelCase = k_state # Update probabilities and pointers dicts UpperCAmelCase = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) UpperCAmelCase = arg_max # The final observation UpperCAmelCase = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation UpperCAmelCase = '' UpperCAmelCase = -1 for k_state in states_space: UpperCAmelCase = probabilities[(k_state, final_observation)] if probability > max_probability: UpperCAmelCase = probability UpperCAmelCase = k_state UpperCAmelCase = arg_max # Process pointers backwards UpperCAmelCase = last_state UpperCAmelCase = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) UpperCAmelCase = pointers[previous, observations_space[o]] result.reverse() return result def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , ) -> None: """simple docstring""" _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('There\'s an empty parameter' ) def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : Any ) -> None: """simple docstring""" _validate_list(lowerCAmelCase__ , 'observations_space' ) _validate_list(lowerCAmelCase__ , 'states_space' ) def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : str ) -> None: """simple docstring""" if not isinstance(_object , lowerCAmelCase__ ): UpperCAmelCase = F"{var_name} must be a list" raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase = F"{var_name} must be a list of strings" raise ValueError(lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Any , ) -> None: """simple docstring""" _validate_dict(lowerCAmelCase__ , 'initial_probabilities' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , 'transition_probabilities' ) _validate_nested_dict(lowerCAmelCase__ , 'emission_probabilities' ) def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : str ) -> None: """simple docstring""" _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase__ ( lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : type , lowerCAmelCase : bool = False ) -> None: """simple docstring""" if not isinstance(_object , lowerCAmelCase__ ): UpperCAmelCase = F"{var_name} must be a dict" raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): UpperCAmelCase = F"{var_name} all keys must be strings" raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): UpperCAmelCase = 'nested dictionary ' if nested else '' UpperCAmelCase = F"{var_name} {nested_text}all values must be {value_type.__name__}" raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
373
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
'''simple docstring''' import argparse import torch from transformers import ( EncodecConfig, EncodecFeatureExtractor, EncodecModel, logging, ) # checkpoints downloaded from: # https://dl.fbaipublicfiles.com/encodec/v0/encodec_24khz-d7cc33bc.th # https://huggingface.co/facebook/musicgen-small/resolve/main/compression_state_dict.bin # https://dl.fbaipublicfiles.com/encodec/v0/encodec_48khz-7e698e3e.th logging.set_verbosity_info() __A : int = logging.get_logger('transformers.models.encodec') __A : Optional[int] = { 'quantizer.vq.layers.*._codebook.inited': 'quantizer.layers.*.codebook.inited', 'quantizer.vq.layers.*._codebook.cluster_size': 'quantizer.layers.*.codebook.cluster_size', 'quantizer.vq.layers.*._codebook.embed': 'quantizer.layers.*.codebook.embed', 'quantizer.vq.layers.*._codebook.embed_avg': 'quantizer.layers.*.codebook.embed_avg', } __A : Tuple = { 'encoder.model.0.conv.conv': 'encoder.layers.0.conv', 'encoder.model.1.block.1.conv.conv': 'encoder.layers.1.block.1.conv', 'encoder.model.1.block.3.conv.conv': 'encoder.layers.1.block.3.conv', 'encoder.model.1.shortcut.conv.conv': 'encoder.layers.1.shortcut.conv', 'encoder.model.3.conv.conv': 'encoder.layers.3.conv', 'encoder.model.4.block.1.conv.conv': 'encoder.layers.4.block.1.conv', 'encoder.model.4.block.3.conv.conv': 'encoder.layers.4.block.3.conv', 'encoder.model.4.shortcut.conv.conv': 'encoder.layers.4.shortcut.conv', 'encoder.model.6.conv.conv': 'encoder.layers.6.conv', 'encoder.model.7.block.1.conv.conv': 'encoder.layers.7.block.1.conv', 'encoder.model.7.block.3.conv.conv': 'encoder.layers.7.block.3.conv', 'encoder.model.7.shortcut.conv.conv': 'encoder.layers.7.shortcut.conv', 'encoder.model.9.conv.conv': 'encoder.layers.9.conv', 'encoder.model.10.block.1.conv.conv': 'encoder.layers.10.block.1.conv', 'encoder.model.10.block.3.conv.conv': 'encoder.layers.10.block.3.conv', 'encoder.model.10.shortcut.conv.conv': 'encoder.layers.10.shortcut.conv', 'encoder.model.12.conv.conv': 'encoder.layers.12.conv', 'encoder.model.13.lstm': 'encoder.layers.13.lstm', 'encoder.model.15.conv.conv': 'encoder.layers.15.conv', } __A : Optional[int] = { 'encoder.model.0.conv.norm': 'encoder.layers.0.norm', 'encoder.model.1.block.1.conv.norm': 'encoder.layers.1.block.1.norm', 'encoder.model.1.block.3.conv.norm': 'encoder.layers.1.block.3.norm', 'encoder.model.1.shortcut.conv.norm': 'encoder.layers.1.shortcut.norm', 'encoder.model.3.conv.norm': 'encoder.layers.3.norm', 'encoder.model.4.block.1.conv.norm': 'encoder.layers.4.block.1.norm', 'encoder.model.4.block.3.conv.norm': 'encoder.layers.4.block.3.norm', 'encoder.model.4.shortcut.conv.norm': 'encoder.layers.4.shortcut.norm', 'encoder.model.6.conv.norm': 'encoder.layers.6.norm', 'encoder.model.7.block.1.conv.norm': 'encoder.layers.7.block.1.norm', 'encoder.model.7.block.3.conv.norm': 'encoder.layers.7.block.3.norm', 'encoder.model.7.shortcut.conv.norm': 'encoder.layers.7.shortcut.norm', 'encoder.model.9.conv.norm': 'encoder.layers.9.norm', 'encoder.model.10.block.1.conv.norm': 'encoder.layers.10.block.1.norm', 'encoder.model.10.block.3.conv.norm': 'encoder.layers.10.block.3.norm', 'encoder.model.10.shortcut.conv.norm': 'encoder.layers.10.shortcut.norm', 'encoder.model.12.conv.norm': 'encoder.layers.12.norm', 'encoder.model.15.conv.norm': 'encoder.layers.15.norm', } __A : List[Any] = { 'decoder.model.0.conv.conv': 'decoder.layers.0.conv', 'decoder.model.1.lstm': 'decoder.layers.1.lstm', 'decoder.model.3.convtr.convtr': 'decoder.layers.3.conv', 'decoder.model.4.block.1.conv.conv': 'decoder.layers.4.block.1.conv', 'decoder.model.4.block.3.conv.conv': 'decoder.layers.4.block.3.conv', 'decoder.model.4.shortcut.conv.conv': 'decoder.layers.4.shortcut.conv', 'decoder.model.6.convtr.convtr': 'decoder.layers.6.conv', 'decoder.model.7.block.1.conv.conv': 'decoder.layers.7.block.1.conv', 'decoder.model.7.block.3.conv.conv': 'decoder.layers.7.block.3.conv', 'decoder.model.7.shortcut.conv.conv': 'decoder.layers.7.shortcut.conv', 'decoder.model.9.convtr.convtr': 'decoder.layers.9.conv', 'decoder.model.10.block.1.conv.conv': 'decoder.layers.10.block.1.conv', 'decoder.model.10.block.3.conv.conv': 'decoder.layers.10.block.3.conv', 'decoder.model.10.shortcut.conv.conv': 'decoder.layers.10.shortcut.conv', 'decoder.model.12.convtr.convtr': 'decoder.layers.12.conv', 'decoder.model.13.block.1.conv.conv': 'decoder.layers.13.block.1.conv', 'decoder.model.13.block.3.conv.conv': 'decoder.layers.13.block.3.conv', 'decoder.model.13.shortcut.conv.conv': 'decoder.layers.13.shortcut.conv', 'decoder.model.15.conv.conv': 'decoder.layers.15.conv', } __A : Optional[Any] = { 'decoder.model.0.conv.norm': 'decoder.layers.0.norm', 'decoder.model.3.convtr.norm': 'decoder.layers.3.norm', 'decoder.model.4.block.1.conv.norm': 'decoder.layers.4.block.1.norm', 'decoder.model.4.block.3.conv.norm': 'decoder.layers.4.block.3.norm', 'decoder.model.4.shortcut.conv.norm': 'decoder.layers.4.shortcut.norm', 'decoder.model.6.convtr.norm': 'decoder.layers.6.norm', 'decoder.model.7.block.1.conv.norm': 'decoder.layers.7.block.1.norm', 'decoder.model.7.block.3.conv.norm': 'decoder.layers.7.block.3.norm', 'decoder.model.7.shortcut.conv.norm': 'decoder.layers.7.shortcut.norm', 'decoder.model.9.convtr.norm': 'decoder.layers.9.norm', 'decoder.model.10.block.1.conv.norm': 'decoder.layers.10.block.1.norm', 'decoder.model.10.block.3.conv.norm': 'decoder.layers.10.block.3.norm', 'decoder.model.10.shortcut.conv.norm': 'decoder.layers.10.shortcut.norm', 'decoder.model.12.convtr.norm': 'decoder.layers.12.norm', 'decoder.model.13.block.1.conv.norm': 'decoder.layers.13.block.1.norm', 'decoder.model.13.block.3.conv.norm': 'decoder.layers.13.block.3.norm', 'decoder.model.13.shortcut.conv.norm': 'decoder.layers.13.shortcut.norm', 'decoder.model.15.conv.norm': 'decoder.layers.15.norm', } __A : str = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_DECODER, } __A : Dict = { **MAPPING_QUANTIZER, **MAPPING_ENCODER, **MAPPING_ENCODER_48K, **MAPPING_DECODER, **MAPPING_DECODER_48K, } __A : List[Any] = [] __A : Any = [] def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :List[Any] ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : Optional[Any] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: snake_case_ : Dict = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: snake_case_ : Any = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : Any = value elif weight_type == "weight_v": snake_case_ : List[str] = value elif weight_type == "bias": snake_case_ : Optional[int] = value elif weight_type == "running_mean": snake_case_ : Dict = value elif weight_type == "running_var": snake_case_ : Any = value elif weight_type == "num_batches_tracked": snake_case_ : List[Any] = value elif weight_type == "weight_ih_l0": snake_case_ : Dict = value elif weight_type == "weight_hh_l0": snake_case_ : Optional[int] = value elif weight_type == "bias_ih_l0": snake_case_ : Any = value elif weight_type == "bias_hh_l0": snake_case_ : Dict = value elif weight_type == "weight_ih_l1": snake_case_ : List[str] = value elif weight_type == "weight_hh_l1": snake_case_ : int = value elif weight_type == "bias_ih_l1": snake_case_ : int = value elif weight_type == "bias_hh_l1": snake_case_ : int = value else: snake_case_ : List[Any] = value logger.info(F'''{key + ("." + weight_type if weight_type is not None else "")} was initialized from {full_name}.''' ) def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Dict ): '''simple docstring''' for key in ignore_keys: if key.endswith(""".*""" ): if name.startswith(key[:-1] ): return True elif ".*." in key: snake_case_ , snake_case_ : Any = key.split(""".*.""" ) if prefix in name and suffix in name: return True elif key in name: return True return False def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Dict = [] if model_name == "encodec_24khz" or "encodec_32khz": snake_case_ : Any = MAPPING_24K elif model_name == "encodec_48khz": snake_case_ : Dict = MAPPING_48K else: raise ValueError(F'''Unsupported model: {model_name}''' ) for name, value in orig_dict.items(): if should_ignore(lowerCAmelCase__ , lowerCAmelCase__ ): logger.info(F'''{name} was ignored''' ) continue snake_case_ : Union[str, Any] = False for key, mapped_key in MAPPING.items(): if "*" in key: snake_case_ , snake_case_ : int = key.split(""".*.""" ) if prefix in name and suffix in name: snake_case_ : Dict = suffix if key in name: # HACK otherwise .embed gets initialized with .embed_avg too if key.endswith("""embed""" ) and name.endswith("""embed_avg""" ): continue snake_case_ : List[str] = True if "*" in mapped_key: snake_case_ : List[Any] = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2] snake_case_ : Union[str, Any] = mapped_key.replace("""*""" , lowerCAmelCase__ ) if "weight_g" in name: snake_case_ : Tuple = """weight_g""" elif "weight_v" in name: snake_case_ : Optional[Any] = """weight_v""" elif "weight_ih_l0" in name: snake_case_ : Dict = """weight_ih_l0""" elif "weight_hh_l0" in name: snake_case_ : Any = """weight_hh_l0""" elif "bias_ih_l0" in name: snake_case_ : Optional[Any] = """bias_ih_l0""" elif "bias_hh_l0" in name: snake_case_ : List[str] = """bias_hh_l0""" elif "weight_ih_l1" in name: snake_case_ : Any = """weight_ih_l1""" elif "weight_hh_l1" in name: snake_case_ : List[str] = """weight_hh_l1""" elif "bias_ih_l1" in name: snake_case_ : str = """bias_ih_l1""" elif "bias_hh_l1" in name: snake_case_ : Union[str, Any] = """bias_hh_l1""" elif "bias" in name: snake_case_ : List[str] = """bias""" elif "weight" in name: snake_case_ : Tuple = """weight""" elif "running_mean" in name: snake_case_ : Union[str, Any] = """running_mean""" elif "running_var" in name: snake_case_ : List[Any] = """running_var""" elif "num_batches_tracked" in name: snake_case_ : Optional[int] = """num_batches_tracked""" else: snake_case_ : str = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :List[Any] , lowerCamelCase_ :str , lowerCamelCase_ :Tuple , lowerCamelCase_ :Tuple=None , lowerCamelCase_ :int=None , ): '''simple docstring''' if config_path is not None: snake_case_ : List[str] = EncodecConfig.from_pretrained(lowerCAmelCase__ ) else: snake_case_ : Dict = EncodecConfig() if model_name == "encodec_24khz": pass # config is already correct elif model_name == "encodec_32khz": snake_case_ : str = [8, 5, 4, 4] snake_case_ : List[Any] = [2.2] snake_case_ : Any = 64 snake_case_ : Optional[Any] = 3_20_00 snake_case_ : Union[str, Any] = 20_48 snake_case_ : Dict = False snake_case_ : Tuple = False snake_case_ : Union[str, Any] = False elif model_name == "encodec_48khz": snake_case_ : List[Any] = [8, 5, 4, 2] snake_case_ : Optional[int] = [3.0, 6.0, 12.0, 24.0] snake_case_ : int = 4_80_00 snake_case_ : Optional[Any] = 2 snake_case_ : Tuple = False snake_case_ : Any = """time_group_norm""" snake_case_ : Any = True snake_case_ : Optional[Any] = 1.0 snake_case_ : List[str] = 0.01 else: raise ValueError(F'''Unknown model name: {model_name}''' ) snake_case_ : int = EncodecModel(lowerCAmelCase__ ) snake_case_ : Dict = EncodecFeatureExtractor( feature_size=config.audio_channels , sampling_rate=config.sampling_rate , chunk_length_s=config.chunk_length_s , overlap=config.overlap , ) feature_extractor.save_pretrained(lowerCAmelCase__ ) snake_case_ : str = torch.load(lowerCAmelCase__ ) if "best_state" in original_checkpoint: # we might have a training state saved, in which case discard the yaml results and just retain the weights snake_case_ : List[str] = original_checkpoint["""best_state"""] recursively_load_weights(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) if repo_id: print("""Pushing to the hub...""" ) feature_extractor.push_to_hub(lowerCAmelCase__ ) model.push_to_hub(lowerCAmelCase__ ) if __name__ == "__main__": __A : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model', default='encodec_24khz', type=str, help='The model to convert. Should be one of \'encodec_24khz\', \'encodec_32khz\', \'encodec_48khz\'.', ) parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __A : Optional[Any] = parser.parse_args() convert_checkpoint( args.model, args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
334
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def UpperCamelCase ( _lowerCamelCase : str ): A__ = {} A__ = tokenizer(example["content"] , truncation=lowerCAmelCase__ )["input_ids"] A__ = len(example["content"] ) / len(output["input_ids"] ) return output __lowerCAmelCase : Any =HfArgumentParser(PretokenizationArguments) __lowerCAmelCase : Optional[int] =parser.parse_args() if args.num_workers is None: __lowerCAmelCase : int =multiprocessing.cpu_count() __lowerCAmelCase : Tuple =AutoTokenizer.from_pretrained(args.tokenizer_dir) __lowerCAmelCase : List[Any] =time.time() __lowerCAmelCase : Union[str, Any] =load_dataset(args.dataset_name, split="train") print(f"""Dataset loaded in {time.time()-t_start:.2f}s""") __lowerCAmelCase : Any =time.time() __lowerCAmelCase : List[Any] =ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f"""Dataset tokenized in {time.time()-t_start:.2f}s""") __lowerCAmelCase : Optional[int] =time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"""Data pushed to the hub in {time.time()-t_start:.2f}s""")
440
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import argparse from collections import defaultdict def _SCREAMING_SNAKE_CASE ( __snake_case : int , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : str ): _A = F'{file}_{class_name}_{test_name}' done_test[_id] += 1 with open(lowerCAmelCase__ , 'r' ) as f: _A = f.readlines() _A = F'class {class_name}(' _A = F'{4 * " "}def {test_name}(' _A = F'{8 * " "}{correct_line.split()[0]}' _A = F'{1_6 * " "}{correct_line.split()[0]}' _A = False _A = False _A = False _A = False _A = 0 _A = 0 _A = [] for line in lines: if line.startswith(lowerCAmelCase__ ): _A = True elif in_class and line.startswith(lowerCAmelCase__ ): _A = True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): _A = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: _A = True if in_class and in_func and in_line: if ")" not in line: continue else: _A = True if in_class and in_func and in_line and insert_line: new_lines.append(F'{spaces * " "}{correct_line}' ) _A = _A = _A = _A = False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'w' ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : Dict=None ): if fail is not None: with open(lowerCAmelCase__ , 'r' ) as f: _A = {l.strip() for l in f.readlines()} else: _A = None with open(lowerCAmelCase__ , 'r' ) as f: _A = f.readlines() _A = defaultdict(lowerCAmelCase__ ) for line in correct_lines: _A , _A , _A , _A = line.split(';' ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": _UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''') parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None) _UpperCAmelCase : str = parser.parse_args() main(args.correct_filename, args.fail_filename)
107
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
from __future__ import annotations def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): a__ , a__ = array[indexa], array[indexa] def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if length > 1: a__ = int(length / 2 ) for i in range(lowerCAmelCase__ , low + middle ): comp_and_swap(lowerCAmelCase__ , lowerCAmelCase__ , i + middle , lowerCAmelCase__ ) bitonic_merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) bitonic_merge(lowerCAmelCase__ , low + middle , lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): if length > 1: a__ = int(length / 2 ) bitonic_sort(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , 1 ) bitonic_sort(lowerCAmelCase__ , low + middle , lowerCAmelCase__ , 0 ) bitonic_merge(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": a_ : Optional[Any] = input('Enter numbers separated by a comma:\n').strip() a_ : List[Any] = [int(item.strip()) for item in user_input.split(',')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('\nSorted array in ascending order is: ', end='') print(*unsorted, sep=', ') bitonic_merge(unsorted, 0, len(unsorted), 0) print('Sorted array in descending order is: ', end='') print(*unsorted, sep=', ')
194
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' import pytest lowerCAmelCase_ : Optional[Any] = """__dummy_dataset1__""" lowerCAmelCase_ : List[str] = """\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n""" @pytest.fixture def __A ( ) -> Any: '''simple docstring''' return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __A ( ) -> int: '''simple docstring''' return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __A ( UpperCAmelCase ,UpperCAmelCase ,UpperCAmelCase ) -> Any: '''simple docstring''' _UpperCamelCase : List[Any] = dataset_loading_script_name _UpperCamelCase : str = tmp_path / "datasets" / script_name script_dir.mkdir(parents=lowerCAmelCase__ ) _UpperCamelCase : Dict = script_dir / f'''{script_name}.py''' with open(lowerCAmelCase__ ,"w" ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ )
435
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
'''simple docstring''' import argparse import os import re snake_case_ : int = '''src/diffusers''' # Pattern that looks at the indentation in a line. snake_case_ : Union[str, Any] = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. snake_case_ : Any = re.compile(R'''^\s*\"([^\"]+)\":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. snake_case_ : Union[str, Any] = re.compile(R'''^\s*_import_structure\[\"([^\"]+)\"\]''') # Pattern that matches `"key",` and puts `key` in group 0. snake_case_ : Union[str, Any] = re.compile(R'''^\s*\"([^\"]+)\",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. snake_case_ : Tuple = re.compile(R'''\[([^\]]+)\]''') def lowercase__( _UpperCamelCase : Any )-> str: """simple docstring""" _UpperCamelCase = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def lowercase__( _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]="" , _UpperCamelCase : List[str]=None , _UpperCamelCase : int=None )-> List[Any]: """simple docstring""" _UpperCamelCase = 0 _UpperCamelCase = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 _UpperCamelCase = ["\n".join(lines[:index] )] else: _UpperCamelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). _UpperCamelCase = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: _UpperCamelCase = [lines[index + 1]] index += 1 else: _UpperCamelCase = [] else: blocks.append("\n".join(lowerCAmelCase__ ) ) _UpperCamelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append("\n".join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append("\n".join(lines[index:] ) ) return blocks def lowercase__( _UpperCamelCase : int )-> Tuple: """simple docstring""" def _inner(_UpperCamelCase : int ): return key(lowerCAmelCase__ ).lower().replace("_" , "" ) return _inner def lowercase__( _UpperCamelCase : int , _UpperCamelCase : Union[str, Any]=None )-> Tuple: """simple docstring""" def noop(_UpperCamelCase : Optional[int] ): return x if key is None: _UpperCamelCase = noop # Constants are all uppercase, they go first. _UpperCamelCase = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. _UpperCamelCase = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. _UpperCamelCase = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] _UpperCamelCase = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def lowercase__( _UpperCamelCase : Union[str, Any] )-> Any: """simple docstring""" def _replace(_UpperCamelCase : str ): _UpperCamelCase = match.groups()[0] if "," not in imports: return f"[{imports}]" _UpperCamelCase = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _UpperCamelCase = keys[:-1] return "[" + ", ".join([f"\"{k}\"" for k in sort_objects(lowerCAmelCase__ )] ) + "]" _UpperCamelCase = import_statement.split("\n" ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. _UpperCamelCase = 2 if lines[1].strip() == "[" else 1 _UpperCamelCase = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] _UpperCamelCase = sort_objects(lowerCAmelCase__ , key=lambda _UpperCamelCase : x[1] ) _UpperCamelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: _UpperCamelCase = _re_bracket_content.sub(_replace , lines[1] ) else: _UpperCamelCase = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: _UpperCamelCase = keys[:-1] _UpperCamelCase = get_indent(lines[1] ) + ", ".join([f"\"{k}\"" for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line _UpperCamelCase = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def lowercase__( _UpperCamelCase : str , _UpperCamelCase : Optional[int]=True )-> Optional[int]: """simple docstring""" with open(lowerCAmelCase__ , "r" ) as f: _UpperCamelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 _UpperCamelCase = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. _UpperCamelCase = main_blocks[block_idx] _UpperCamelCase = block.split("\n" ) # Get to the start of the imports. _UpperCamelCase = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: _UpperCamelCase = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. _UpperCamelCase = "\n".join(block_lines[line_idx:-1] ) _UpperCamelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. _UpperCamelCase = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend _UpperCamelCase = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. _UpperCamelCase = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. _UpperCamelCase = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] _UpperCamelCase = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda _UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. _UpperCamelCase = 0 _UpperCamelCase = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: _UpperCamelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. _UpperCamelCase = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f"Overwriting {file}." ) with open(lowerCAmelCase__ , "w" ) as f: f.write("\n".join(lowerCAmelCase__ ) ) def lowercase__( _UpperCamelCase : Tuple=True )-> int: """simple docstring""" _UpperCamelCase = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: _UpperCamelCase = sort_imports(os.path.join(lowerCAmelCase__ , "__init__.py" ) , check_only=lowerCAmelCase__ ) if result: _UpperCamelCase = [os.path.join(lowerCAmelCase__ , "__init__.py" )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f"Would overwrite {len(lowerCAmelCase__ )} files, run `make style`." ) if __name__ == "__main__": snake_case_ : Dict = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') snake_case_ : int = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
138
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
"""simple docstring""" import operator as op UpperCAmelCase_ : List[Any] = '''scaler.pt''' UpperCAmelCase_ : str = '''pytorch_model''' UpperCAmelCase_ : List[Any] = '''random_states''' UpperCAmelCase_ : Optional[int] = '''optimizer''' UpperCAmelCase_ : Union[str, Any] = '''scheduler''' UpperCAmelCase_ : List[Any] = '''pytorch_model.bin''' UpperCAmelCase_ : List[str] = '''pytorch_model.bin.index.json''' UpperCAmelCase_ : Tuple = '''model.safetensors''' UpperCAmelCase_ : str = '''model.safetensors.index.json''' UpperCAmelCase_ : str = '''1.10.2''' UpperCAmelCase_ : Optional[Any] = '''py38''' UpperCAmelCase_ : List[str] = '''4.17.0''' UpperCAmelCase_ : int = ['''ml.p3.16xlarge''', '''ml.p3dn.24xlarge''', '''ml.p4dn.24xlarge'''] UpperCAmelCase_ : Optional[int] = ['''FULL_SHARD''', '''SHARD_GRAD_OP''', '''NO_SHARD''', '''HYBRID_SHARD''', '''HYBRID_SHARD_ZERO2'''] UpperCAmelCase_ : Optional[Any] = ['''TRANSFORMER_BASED_WRAP''', '''SIZE_BASED_WRAP''', '''NO_WRAP'''] UpperCAmelCase_ : Any = ['''BACKWARD_PRE''', '''BACKWARD_POST''', '''NO_PREFETCH'''] UpperCAmelCase_ : Optional[int] = ['''FULL_STATE_DICT''', '''LOCAL_STATE_DICT''', '''SHARDED_STATE_DICT'''] UpperCAmelCase_ : int = '''2.0.1''' UpperCAmelCase_ : Dict = ['''pdsh''', '''standard''', '''openmpi''', '''mvapich'''] UpperCAmelCase_ : int = ['''default''', '''reduce-overhead''', '''max-autotune'''] UpperCAmelCase_ : Any = {'''>''': op.gt, '''>=''': op.ge, '''==''': op.eq, '''!=''': op.ne, '''<=''': op.le, '''<''': op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 UpperCAmelCase_ : List[Any] = [ '''nnodes''', '''nproc_per_node''', '''rdzv_backend''', '''rdzv_endpoint''', '''rdzv_id''', '''rdzv_conf''', '''standalone''', '''max_restarts''', '''monitor_interval''', '''start_method''', '''role''', '''module''', '''m''', '''no_python''', '''run_path''', '''log_dir''', '''r''', '''redirects''', '''t''', '''tee''', '''node_rank''', '''master_addr''', '''master_port''', ] UpperCAmelCase_ : Tuple = ['''DEEPSPEED''', '''MULTI_GPU''', '''FSDP''', '''MEGATRON_LM'''] UpperCAmelCase_ : List[Any] = ['''DEEPSPEED''', '''MULTI_XPU''', '''FSDP''']
255
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class _a (unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ,__a ) -> int: snake_case : List[Any] = 3 snake_case : Optional[int] = 250 snake_case : Union[str, Any] = ids_tensor((batch_size, length) ,_a ) snake_case : Optional[int] = torch.ones((batch_size, length) ,device=_a ,dtype=torch.float ) / length return input_ids, scores def snake_case_ ( self ) -> str: snake_case , snake_case : Tuple = self._get_tensors(5 ) snake_case : Tuple = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_a ,_a ) ) snake_case , snake_case : str = self._get_tensors(9 ) self.assertFalse(criteria(_a ,_a ) ) snake_case , snake_case : Optional[int] = self._get_tensors(10 ) self.assertTrue(criteria(_a ,_a ) ) def snake_case_ ( self ) -> Any: snake_case : Dict = MaxLengthCriteria(max_length=10 ) snake_case , snake_case : str = self._get_tensors(5 ) self.assertFalse(criteria(_a ,_a ) ) snake_case , snake_case : List[str] = self._get_tensors(9 ) self.assertFalse(criteria(_a ,_a ) ) snake_case , snake_case : List[Any] = self._get_tensors(10 ) self.assertTrue(criteria(_a ,_a ) ) def snake_case_ ( self ) -> Dict: snake_case : List[str] = MaxNewTokensCriteria(start_length=5 ,max_new_tokens=5 ) snake_case , snake_case : Tuple = self._get_tensors(5 ) self.assertFalse(criteria(_a ,_a ) ) snake_case , snake_case : str = self._get_tensors(9 ) self.assertFalse(criteria(_a ,_a ) ) snake_case , snake_case : Tuple = self._get_tensors(10 ) self.assertTrue(criteria(_a ,_a ) ) snake_case : List[str] = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length ,10 ) def snake_case_ ( self ) -> str: snake_case , snake_case : Optional[int] = self._get_tensors(5 ) snake_case : List[str] = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_a ,_a ) ) snake_case : Tuple = MaxTimeCriteria(max_time=0.1 ,initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_a ,_a ) ) def snake_case_ ( self ) -> Any: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,10 ) with self.assertWarns(_a ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) ,11 ) snake_case : List[Any] = validate_stopping_criteria(StoppingCriteriaList() ,11 ) self.assertEqual(len(_a ) ,1 )
116
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig snake_case_ : Union[str, Any] = { """facebook/maskformer-swin-base-ade""": ( """https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json""" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } snake_case_ : List[Any] = logging.get_logger(__name__) class snake_case__ ( __SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE__ = 'maskformer' SCREAMING_SNAKE_CASE__ = {'hidden_size': 'mask_feature_size'} SCREAMING_SNAKE_CASE__ = ['resnet', 'swin'] SCREAMING_SNAKE_CASE__ = ['detr'] def __init__( self : Optional[int] , lowercase : int = 2_56 , lowercase : Union[str, Any] = 2_56 , lowercase : Dict = 0.1 , lowercase : Union[str, Any] = False , lowercase : str = None , lowercase : Tuple = None , lowercase : Any = 0.0_2 , lowercase : int = 1.0 , lowercase : Any = 1.0 , lowercase : Optional[Any] = 1.0 , lowercase : List[Any] = 2_0.0 , lowercase : int = None , **lowercase : Optional[int] , ): '''simple docstring''' if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k UpperCAmelCase : Tuple = SwinConfig( image_size=3_84 , in_channels=3 , patch_size=4 , embed_dim=1_28 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(_a , _a ): UpperCAmelCase : Tuple = backbone_config.pop("model_type" ) UpperCAmelCase : Tuple = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase : int = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """ f"""Supported model types: {','.join(self.backbones_supported )}""" ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 UpperCAmelCase : Dict = DetrConfig() else: # verify that the decoder is supported UpperCAmelCase : str = ( decoder_config.pop("model_type" ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f"""Transformer Decoder {decoder_type} not supported, please use one of""" f""" {','.join(self.decoders_supported )}""" ) if isinstance(_a , _a ): UpperCAmelCase : Dict = CONFIG_MAPPING[decoder_type] UpperCAmelCase : List[Any] = config_class.from_dict(_a ) UpperCAmelCase : Dict = backbone_config UpperCAmelCase : List[Any] = decoder_config # main feature dimension for the model UpperCAmelCase : Any = fpn_feature_size UpperCAmelCase : Optional[int] = mask_feature_size # initializer UpperCAmelCase : Optional[int] = init_std UpperCAmelCase : str = init_xavier_std # Hungarian matcher && loss UpperCAmelCase : Any = cross_entropy_weight UpperCAmelCase : Dict = dice_weight UpperCAmelCase : Optional[Any] = mask_weight UpperCAmelCase : Union[str, Any] = use_auxiliary_loss UpperCAmelCase : Tuple = no_object_weight UpperCAmelCase : List[str] = output_auxiliary_logits UpperCAmelCase : Tuple = self.decoder_config.encoder_attention_heads UpperCAmelCase : str = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , lowercase : Optional[int] , lowercase : Optional[int] , **lowercase : List[Any] ): '''simple docstring''' return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) UpperCAmelCase : Tuple = self.backbone_config.to_dict() UpperCAmelCase : int = self.decoder_config.to_dict() UpperCAmelCase : List[Any] = self.__class__.model_type return output
595
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def lowerCAmelCase_ ( ): raise RuntimeError("""CUDA out of memory.""" ) class lowercase ( nn.Module ): def __init__( self ) -> Any: super().__init__() _A : int = nn.Linear(3 , 4 ) _A : Tuple = nn.BatchNormad(4 ) _A : Dict = nn.Linear(4 , 5 ) def a__ ( self , _a ) -> int: return self.lineara(self.batchnorm(self.lineara(_a ) ) ) class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: _A : Tuple = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(_a , [128, 64, 32, 16, 8] ) def a__ ( self ) -> Union[str, Any]: _A : Dict = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a , _a ): nonlocal batch_sizes batch_sizes.append(_a ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga _A , _A : Tuple = mock_training_loop_function("""hello""" ) self.assertListEqual(_a , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def a__ ( self ) -> List[str]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(_a ): pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def a__ ( self ) -> Any: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def a__ ( self ) -> Any: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(_a , _a , _a ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(_a ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1=\'hello\', arg2=\'world\')""" , cm.exception.args[0] ) def a__ ( self ) -> Tuple: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(_a ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(_a ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def a__ ( self ) -> List[Any]: _A : Optional[Any] = torch.cuda.memory_allocated() _A : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , _a ) _A : Optional[Any] = release_memory(_a ) self.assertEqual(torch.cuda.memory_allocated() , _a )
307
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) SCREAMING_SNAKE_CASE_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : __SCREAMING_SNAKE_CASE : str = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Model type selected in the list: " + ", ".join(__SCREAMING_SNAKE_CASE )} ) __SCREAMING_SNAKE_CASE : str = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) __SCREAMING_SNAKE_CASE : int = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=1_2_8 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) __SCREAMING_SNAKE_CASE : int = field( default=6_4 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) __SCREAMING_SNAKE_CASE : int = field( default=3_0 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) __SCREAMING_SNAKE_CASE : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached training and evaluation sets"} ) __SCREAMING_SNAKE_CASE : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) __SCREAMING_SNAKE_CASE : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) __SCREAMING_SNAKE_CASE : int = field( default=2_0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) __SCREAMING_SNAKE_CASE : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) __SCREAMING_SNAKE_CASE : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Optional[int] = 'train' __SCREAMING_SNAKE_CASE : Dict = 'dev' class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : SquadDataTrainingArguments __SCREAMING_SNAKE_CASE : List[SquadFeatures] __SCREAMING_SNAKE_CASE : Split __SCREAMING_SNAKE_CASE : bool def __init__( self , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = Split.train , lowercase_ = False , lowercase_ = None , lowercase_ = "pt" , ) -> List[Any]: UpperCAmelCase = args UpperCAmelCase = is_language_sensitive UpperCAmelCase = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a ): try: UpperCAmelCase = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) UpperCAmelCase = mode # Load data features from cache or dataset file UpperCAmelCase = 'v2' if args.version_2_with_negative else 'v1' UpperCAmelCase = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. UpperCAmelCase = cached_features_file + '.lock' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: UpperCAmelCase = time.time() UpperCAmelCase = torch.load(_a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. UpperCAmelCase = self.old_features['features'] UpperCAmelCase = self.old_features.get('dataset' , _a ) UpperCAmelCase = self.old_features.get('examples' , _a ) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" ' future run' ) else: if mode == Split.dev: UpperCAmelCase = self.processor.get_dev_examples(args.data_dir ) else: UpperCAmelCase = self.processor.get_train_examples(args.data_dir ) UpperCAmelCase , UpperCAmelCase = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) UpperCAmelCase = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ) -> List[Any]: return len(self.features ) def __getitem__( self , lowercase_ ) -> Union[str, Any]: # Convert to Tensors and build dataset UpperCAmelCase = self.features[i] UpperCAmelCase = torch.tensor(feature.input_ids , dtype=torch.long ) UpperCAmelCase = torch.tensor(feature.attention_mask , dtype=torch.long ) UpperCAmelCase = torch.tensor(feature.token_type_ids , dtype=torch.long ) UpperCAmelCase = torch.tensor(feature.cls_index , dtype=torch.long ) UpperCAmelCase = torch.tensor(feature.p_mask , dtype=torch.float ) UpperCAmelCase = torch.tensor(feature.is_impossible , dtype=torch.float ) UpperCAmelCase = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'token_type_ids': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: UpperCAmelCase = torch.tensor(feature.start_position , dtype=torch.long ) UpperCAmelCase = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
373
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
'''simple docstring''' import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __A : Dict = logging.get_logger(__name__) __A : Union[str, Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __A : Any = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int ): '''simple docstring''' for attribute in key.split(""".""" ): snake_case_ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if weight_type is not None: snake_case_ : List[str] = getattr(lowerCAmelCase__ , lowerCAmelCase__ ).shape else: snake_case_ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case_ : Any = value elif weight_type == "weight_g": snake_case_ : Optional[int] = value elif weight_type == "weight_v": snake_case_ : Dict = value elif weight_type == "bias": snake_case_ : Optional[Any] = value else: snake_case_ : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' snake_case_ : Optional[int] = [] snake_case_ : Dict = fairseq_model.state_dict() snake_case_ : str = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case_ : Union[str, Any] = None for name, value in fairseq_dict.items(): snake_case_ : str = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hf_model.config.feat_extract_norm == """group""" , ) snake_case_ : Dict = True elif name.split(""".""" )[0] == "proj": snake_case_ : Dict = fairseq_model.proj snake_case_ : int = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: snake_case_ : Dict = True if "*" in mapped_key: snake_case_ : Optional[Any] = name.split(lowerCAmelCase__ )[0].split(""".""" )[-2] snake_case_ : Optional[int] = mapped_key.replace("""*""" , lowerCAmelCase__ ) if "weight_g" in name: snake_case_ : Dict = """weight_g""" elif "weight_v" in name: snake_case_ : Any = """weight_v""" elif "bias" in name: snake_case_ : List[Any] = """bias""" elif "weight" in name: snake_case_ : Dict = """weight""" else: snake_case_ : Any = None set_recursively(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) continue if not is_used: unused_weights.append(lowerCAmelCase__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :int , lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ : List[str] = full_name.split("""conv_layers.""" )[-1] snake_case_ : Dict = name.split(""".""" ) snake_case_ : int = int(items[0] ) snake_case_ : int = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case_ : str = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case_ : Tuple = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case_ : Optional[int] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase__ ) def UpperCAmelCase ( lowerCamelCase_ :List[str] ): '''simple docstring''' snake_case_ , snake_case_ : Union[str, Any] = emb.weight.shape snake_case_ : Tuple = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) snake_case_ : Tuple = emb.weight.data return lin_layer def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] ): '''simple docstring''' with open(lowerCAmelCase__ , """r""" , encoding="""utf-8""" ) as f: snake_case_ : List[str] = f.readlines() snake_case_ : str = [line.split(""" """ )[0] for line in lines] snake_case_ : Dict = len(lowerCAmelCase__ ) snake_case_ : int = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(lowerCAmelCase__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :int , lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Any , lowerCamelCase_ :Any , ): '''simple docstring''' snake_case_ : List[str] = WavaVecaConfig.from_pretrained(lowerCAmelCase__ ) snake_case_ : Dict = SpeechaTextaConfig.from_pretrained( lowerCAmelCase__ , vocab_size=lowerCAmelCase__ , decoder_layers=lowerCAmelCase__ , do_stable_layer_norm=lowerCAmelCase__ ) snake_case_ : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , ) snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) snake_case_ : int = model[0].eval() # set weights for wav2vec2 encoder snake_case_ : Dict = WavaVecaModel(lowerCAmelCase__ ) snake_case_ : Dict = recursively_load_weights_wavaveca(model.encoder , lowerCAmelCase__ ) snake_case_ : str = SpeechaTextaForCausalLM(lowerCAmelCase__ ) snake_case_ , snake_case_ : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=lowerCAmelCase__ ) # set output linear layer unexpected_keys.remove("""embed_out""" ) snake_case_ : Optional[int] = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) snake_case_ : int = SpeechEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) snake_case_ : str = False # add projection layer snake_case_ : Dict = nn.Parameter(projection_layer.weight ) snake_case_ : Tuple = nn.Parameter(projection_layer.bias ) snake_case_ : Optional[int] = create_vocab_dict(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """vocab.json""" ) , """w""" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ : Union[str, Any] = SpeechaTextaTokenizer(os.path.join(lowerCAmelCase__ , """vocab.json""" ) ) tokenizer.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[str] = hf_wavavec.config.to_dict() snake_case_ : List[Any] = tokenizer.pad_token_id snake_case_ : Any = tokenizer.bos_token_id snake_case_ : Any = tokenizer.eos_token_id snake_case_ : List[str] = """speech_to_text_2""" snake_case_ : Any = """wav2vec2""" snake_case_ : Dict = SpeechEncoderDecoderConfig.from_dict(lowerCAmelCase__ ) hf_wavavec.save_pretrained(lowerCAmelCase__ ) feature_extractor.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __A : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-large-lv60', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/s2t-small-mustc-en-fr-st', type=str, help='Path to hf decoder s2t checkpoint config', ) parser.add_argument('--vocab_size', default=10_224, type=int, help='Vocab size of decoder') parser.add_argument('--num_decoder_layers', default=7, type=int, help='Number of decoder layers') __A : Optional[int] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
334
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
'''simple docstring''' def UpperCamelCase ( _lowerCamelCase : int = 10 , _lowerCamelCase : int = 10_00 , _lowerCamelCase : bool = True ): assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError("Invalid value for min_val or max_val (min_value < max_value)" ) return min_val if option else max_val def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int ): return int((number_a + number_a) / 2 ) def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int ): assert ( isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError("argument value for lower and higher must be(lower > higher)" ) if not lower < to_guess < higher: raise ValueError( "guess value must be within the range of lower and higher value" ) def answer(_lowerCamelCase : int ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print("started..." ) A__ = lower A__ = higher A__ = [] while True: A__ = get_avg(lowerCAmelCase__ , lowerCAmelCase__ ) last_numbers.append(lowerCAmelCase__ ) if answer(lowerCAmelCase__ ) == "low": A__ = number elif answer(lowerCAmelCase__ ) == "high": A__ = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def UpperCamelCase ( ): A__ = int(input("Enter lower value : " ).strip() ) A__ = int(input("Enter high value : " ).strip() ) A__ = int(input("Enter value to guess : " ).strip() ) guess_the_number(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
440
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
'''simple docstring''' import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu _UpperCAmelCase : Tuple = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: _UpperCAmelCase : Tuple = json.load(f) @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Tuple ) -> Optional[Any]: return FSMTTokenizer.from_pretrained(_a ) def __UpperCAmelCase ( self : Union[str, Any], UpperCamelCase__ : int ) -> Tuple: _A = FSMTForConditionalGeneration.from_pretrained(_a ).to(_a ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 26.0], ['ru-en', 22.0], ['en-de', 22.0], ['de-en', 29.0], ] ) @slow def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any] ) -> List[str]: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality _A = f'facebook/wmt19-{pair}' _A = self.get_tokenizer(_a ) _A = self.get_model(_a ) _A = bleu_data[pair]['src'] _A = bleu_data[pair]['tgt'] _A = tokenizer(_a, return_tensors='pt', truncation=_a, padding='longest' ).to(_a ) _A = model.generate( input_ids=batch.input_ids, num_beams=8, ) _A = tokenizer.batch_decode( _a, skip_special_tokens=_a, clean_up_tokenization_spaces=_a ) _A = calculate_bleu(_a, _a ) print(_a ) self.assertGreaterEqual(scores['bleu'], _a )
107
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
from decimal import Decimal, getcontext from math import ceil, factorial def __a ( __UpperCAmelCase ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError('''Undefined for non-integers''' ) elif precision < 1: raise ValueError('''Undefined for non-natural numbers''' ) a__ = precision a__ = ceil(precision / 14 ) a__ = 42_6880 * Decimal(1_0005 ).sqrt() a__ = 1 a__ = 1359_1409 a__ = Decimal(lowerCAmelCase__ ) for k in range(1 , lowerCAmelCase__ ): a__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": a_ : Optional[Any] = 50 print(f'The first {n} digits of pi is: {pi(n)}')
194
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase__ = Features({'''text''': Value('''string''' )} ) UpperCAmelCase__ = Features({} ) UpperCAmelCase__ = "text" @property def snake_case__ ( self : Optional[int] ) ->Optional[Any]: '''simple docstring''' return {self.text_column: "text"}
435
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Any = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} snake_case_ : List[Any] = { '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } snake_case_ : Optional[int] = { '''gpt-neox-20b''': 2048, } class A_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ['input_ids', 'attention_mask'] def __init__( self , A_=None , A_=None , A_=None , A_="<|endoftext|>" , A_="<|endoftext|>" , A_="<|endoftext|>" , A_=False , **A_ , ): super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , ) _UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , _a ) != add_prefix_space: _UpperCamelCase = getattr(_a , pre_tok_state.pop("type" ) ) _UpperCamelCase = add_prefix_space _UpperCamelCase = pre_tok_class(**_a ) _UpperCamelCase = add_prefix_space def a ( self , A_ , A_ = None ): _UpperCamelCase = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def a ( self , A_ ): _UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: _UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
138
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
"""simple docstring""" from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _lowerCAmelCase() -> List[Any]: _SCREAMING_SNAKE_CASE =ArgumentParser('''Transformers CLI tool''' , usage='''transformers-cli <command> [<args>]''' ) _SCREAMING_SNAKE_CASE =parser.add_subparsers(help='''transformers-cli command helpers''' ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase__ ) DownloadCommand.register_subcommand(lowerCAmelCase__ ) EnvironmentCommand.register_subcommand(lowerCAmelCase__ ) RunCommand.register_subcommand(lowerCAmelCase__ ) ServeCommand.register_subcommand(lowerCAmelCase__ ) UserCommands.register_subcommand(lowerCAmelCase__ ) AddNewModelCommand.register_subcommand(lowerCAmelCase__ ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase__ ) LfsCommands.register_subcommand(lowerCAmelCase__ ) PTtoTFCommand.register_subcommand(lowerCAmelCase__ ) # Let's go _SCREAMING_SNAKE_CASE =parser.parse_args() if not hasattr(lowerCAmelCase__ , '''func''' ): parser.print_help() exit(1 ) # Run _SCREAMING_SNAKE_CASE =args.func(lowerCAmelCase__ ) service.run() if __name__ == "__main__": main()
255
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
'''simple docstring''' def lowerCamelCase__ ( __lowercase ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) snake_case : List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
116
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : int = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys snake_case_ : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
595
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowercase ( __SCREAMING_SNAKE_CASE ): _a = 0 _a = False _a = 3.0 class lowercase ( unittest.TestCase ): def a__ ( self ) -> Any: # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def a__ ( self ) -> int: # If no defaults are changed, `to_kwargs` returns an empty dict. _A : Tuple = GradScalerKwargs(init_scale=1024 , growth_factor=2 ) AcceleratorState._reset_state() _A : str = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) _A : Dict = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def a__ ( self ) -> Optional[int]: _A : int = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": _snake_case = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) _snake_case = Accelerator(kwargs_handlers=[ddp_scaler]) _snake_case = torch.nn.Linear(100, 200) _snake_case = accelerator.prepare(model) # Check the values changed in kwargs _snake_case = "" _snake_case = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
307
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE : Any = 'open-llama' def __init__( self , lowercase_=1_0_0_0_0_0 , lowercase_=4_0_9_6 , lowercase_=1_1_0_0_8 , lowercase_=3_2 , lowercase_=3_2 , lowercase_="silu" , lowercase_=2_0_4_8 , lowercase_=0.0_2 , lowercase_=1E-6 , lowercase_=True , lowercase_=0 , lowercase_=1 , lowercase_=2 , lowercase_=False , lowercase_=True , lowercase_=0.1 , lowercase_=0.1 , lowercase_=True , lowercase_=True , lowercase_=None , **lowercase_ , ) -> Tuple: UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = hidden_size UpperCAmelCase = intermediate_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = initializer_range UpperCAmelCase = rms_norm_eps UpperCAmelCase = use_cache UpperCAmelCase = kwargs.pop( 'use_memorry_efficient_attention' , _a ) UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_dropout_prob UpperCAmelCase = use_stable_embedding UpperCAmelCase = shared_input_output_embedding UpperCAmelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , tie_word_embeddings=_a , **_a , ) def a_ ( self ) -> Any: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _a ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"got {self.rope_scaling}" ) UpperCAmelCase = self.rope_scaling.get('type' , _a ) UpperCAmelCase = self.rope_scaling.get('factor' , _a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(_a , _a ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}" )
373
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
'''simple docstring''' import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class __UpperCamelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): @register_to_config def __init__( self :Tuple ,_UpperCamelCase :int = 1_2_8 ,_UpperCamelCase :Optional[int] = 2_5_6 ,_UpperCamelCase :Union[str, Any] = 20_00.0 ,_UpperCamelCase :str = 7_6_8 ,_UpperCamelCase :Tuple = 1_2 ,_UpperCamelCase :List[Any] = 1_2 ,_UpperCamelCase :Union[str, Any] = 6_4 ,_UpperCamelCase :Dict = 2_0_4_8 ,_UpperCamelCase :Dict = 0.1 ,): super().__init__() snake_case_ : Optional[int] = nn.Sequential( nn.Linear(_a ,d_model * 4 ,bias=_a ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=_a ) ,nn.SiLU() ,) snake_case_ : Dict = nn.Embedding(_a ,_a ) snake_case_ : Dict = False snake_case_ : Tuple = nn.Linear(_a ,_a ,bias=_a ) snake_case_ : Union[str, Any] = nn.Dropout(p=_a ) snake_case_ : Dict = nn.ModuleList() for lyr_num in range(_a ): # FiLM conditional T5 decoder snake_case_ : Union[str, Any] = DecoderLayer(d_model=_a ,d_kv=_a ,num_heads=_a ,d_ff=_a ,dropout_rate=_a ) self.decoders.append(_a ) snake_case_ : Union[str, Any] = TaLayerNorm(_a ) snake_case_ : List[str] = nn.Dropout(p=_a ) snake_case_ : str = nn.Linear(_a ,_a ,bias=_a ) def a__ ( self :Optional[int] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Optional[Any] ): snake_case_ : Any = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def a__ ( self :int ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :str ,_UpperCamelCase :List[Any] ): snake_case_ , snake_case_ , snake_case_ : Union[str, Any] = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. snake_case_ : str = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) snake_case_ : int = self.conditioning_emb(_a ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) snake_case_ : Optional[int] = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. snake_case_ : Tuple = torch.broadcast_to( torch.arange(_a ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) snake_case_ : Optional[Any] = self.position_encoding(_a ) snake_case_ : int = self.continuous_inputs_projection(_a ) inputs += position_encodings snake_case_ : Tuple = self.dropout(_a ) # decoder: No padding present. snake_case_ : Union[str, Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. snake_case_ : int = [(x, self.encoder_decoder_mask(_a ,_a )) for x, y in encodings_and_masks] # cross attend style: concat encodings snake_case_ : str = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) snake_case_ : Tuple = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: snake_case_ : Tuple = lyr( _a ,conditioning_emb=_a ,encoder_hidden_states=_a ,encoder_attention_mask=_a ,)[0] snake_case_ : Dict = self.decoder_norm(_a ) snake_case_ : Any = self.post_dropout(_a ) snake_case_ : str = self.spec_out(_a ) return spec_out class __UpperCamelCase ( nn.Module ): def __init__( self :Union[str, Any] ,_UpperCamelCase :str ,_UpperCamelCase :str ,_UpperCamelCase :Tuple ,_UpperCamelCase :Dict ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :List[str]=1E-6 ): super().__init__() snake_case_ : Tuple = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_a ,d_kv=_a ,num_heads=_a ,dropout_rate=_a ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_a ,d_kv=_a ,num_heads=_a ,dropout_rate=_a ,layer_norm_epsilon=_a ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_a ,d_ff=_a ,dropout_rate=_a ,layer_norm_epsilon=_a ) ) def a__ ( self :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Optional[Any]=None ,_UpperCamelCase :List[str]=None ,_UpperCamelCase :Optional[int]=None ,_UpperCamelCase :List[Any]=None ,): snake_case_ : Dict = self.layer[0]( _a ,conditioning_emb=_a ,attention_mask=_a ,) if encoder_hidden_states is not None: snake_case_ : List[Any] = torch.where(encoder_attention_mask > 0 ,0 ,-1E1_0 ).to( encoder_hidden_states.dtype ) snake_case_ : Any = self.layer[1]( _a ,key_value_states=_a ,attention_mask=_a ,) # Apply Film Conditional Feed Forward layer snake_case_ : Optional[Any] = self.layer[-1](_a ,_a ) return (hidden_states,) class __UpperCamelCase ( nn.Module ): def __init__( self :Tuple ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Any ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Optional[int] ): super().__init__() snake_case_ : str = TaLayerNorm(_a ) snake_case_ : Tuple = TaFiLMLayer(in_features=d_model * 4 ,out_features=_a ) snake_case_ : int = Attention(query_dim=_a ,heads=_a ,dim_head=_a ,out_bias=_a ,scale_qk=_a ) snake_case_ : str = nn.Dropout(_a ) def a__ ( self :int ,_UpperCamelCase :int ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :List[Any]=None ,): # pre_self_attention_layer_norm snake_case_ : str = self.layer_norm(_a ) if conditioning_emb is not None: snake_case_ : Any = self.FiLMLayer(_a ,_a ) # Self-attention block snake_case_ : Any = self.attention(_a ) snake_case_ : Union[str, Any] = hidden_states + self.dropout(_a ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :int ,_UpperCamelCase :Dict ,_UpperCamelCase :Dict ,_UpperCamelCase :Tuple ,_UpperCamelCase :Tuple ,_UpperCamelCase :Tuple ): super().__init__() snake_case_ : Union[str, Any] = Attention(query_dim=_a ,heads=_a ,dim_head=_a ,out_bias=_a ,scale_qk=_a ) snake_case_ : List[str] = TaLayerNorm(_a ,eps=_a ) snake_case_ : int = nn.Dropout(_a ) def a__ ( self :List[str] ,_UpperCamelCase :int ,_UpperCamelCase :int=None ,_UpperCamelCase :str=None ,): snake_case_ : int = self.layer_norm(_a ) snake_case_ : Optional[int] = self.attention( _a ,encoder_hidden_states=_a ,attention_mask=attention_mask.squeeze(1 ) ,) snake_case_ : List[str] = hidden_states + self.dropout(_a ) return layer_output class __UpperCamelCase ( nn.Module ): def __init__( self :str ,_UpperCamelCase :Union[str, Any] ,_UpperCamelCase :Tuple ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :str ): super().__init__() snake_case_ : Dict = TaDenseGatedActDense(d_model=_a ,d_ff=_a ,dropout_rate=_a ) snake_case_ : List[Any] = TaFiLMLayer(in_features=d_model * 4 ,out_features=_a ) snake_case_ : Dict = TaLayerNorm(_a ,eps=_a ) snake_case_ : Optional[int] = nn.Dropout(_a ) def a__ ( self :List[str] ,_UpperCamelCase :Optional[int] ,_UpperCamelCase :str=None ): snake_case_ : Optional[Any] = self.layer_norm(_a ) if conditioning_emb is not None: snake_case_ : List[Any] = self.film(_a ,_a ) snake_case_ : Any = self.DenseReluDense(_a ) snake_case_ : str = hidden_states + self.dropout(_a ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :str ,_UpperCamelCase :List[str] ,_UpperCamelCase :Optional[Any] ,_UpperCamelCase :Union[str, Any] ): super().__init__() snake_case_ : Optional[int] = nn.Linear(_a ,_a ,bias=_a ) snake_case_ : List[Any] = nn.Linear(_a ,_a ,bias=_a ) snake_case_ : List[Any] = nn.Linear(_a ,_a ,bias=_a ) snake_case_ : Any = nn.Dropout(_a ) snake_case_ : int = NewGELUActivation() def a__ ( self :Tuple ,_UpperCamelCase :Dict ): snake_case_ : str = self.act(self.wi_a(_a ) ) snake_case_ : str = self.wi_a(_a ) snake_case_ : Any = hidden_gelu * hidden_linear snake_case_ : Dict = self.dropout(_a ) snake_case_ : Optional[Any] = self.wo(_a ) return hidden_states class __UpperCamelCase ( nn.Module ): def __init__( self :Union[str, Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :Dict=1E-6 ): super().__init__() snake_case_ : List[Any] = nn.Parameter(torch.ones(_a ) ) snake_case_ : Dict = eps def a__ ( self :Any ,_UpperCamelCase :Tuple ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 snake_case_ : str = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=_a ) snake_case_ : List[str] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: snake_case_ : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class __UpperCamelCase ( nn.Module ): def a__ ( self :int ,_UpperCamelCase :int ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_47_15 * torch.pow(_a ,3.0 )) )) class __UpperCamelCase ( nn.Module ): def __init__( self :Dict ,_UpperCamelCase :str ,_UpperCamelCase :str ): super().__init__() snake_case_ : List[Any] = nn.Linear(_a ,out_features * 2 ,bias=_a ) def a__ ( self :int ,_UpperCamelCase :Tuple ,_UpperCamelCase :Union[str, Any] ): snake_case_ : Union[str, Any] = self.scale_bias(_a ) snake_case_ , snake_case_ : str = torch.chunk(_a ,2 ,-1 ) snake_case_ : List[Any] = x * (1 + scale) + shift return x
334
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
'''simple docstring''' import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase = BertTokenizer __lowercase = BertTokenizerFast __lowercase = True __lowercase = True __lowercase = filter_non_english def UpperCAmelCase_ ( self :Dict )-> int: super().setUp() A__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCAmelCase_ ( self :Optional[int] , lowercase_ :Optional[int] )-> Optional[Any]: A__ = "UNwant\u00E9d,running" A__ = "unwanted, running" return input_text, output_text def UpperCAmelCase_ ( self :int )-> int: A__ = self.tokenizer_class(self.vocab_file ) A__ = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(_a , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase_ ( self :Tuple )-> Optional[Any]: if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = "UNwant\u00E9d,running" A__ = tokenizer.tokenize(_a ) A__ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) A__ = tokenizer.encode(_a , add_special_tokens=_a ) A__ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(_a ) A__ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing A__ = self.get_tokenizer(do_lower_case=_a ) A__ = self.get_rust_tokenizer(do_lower_case=_a ) A__ = "UNwant\u00E9d,running" A__ = tokenizer.tokenize(_a ) A__ = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) A__ = tokenizer.encode(_a , add_special_tokens=_a ) A__ = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(_a ) A__ = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def UpperCAmelCase_ ( self :List[str] )-> Union[str, Any]: A__ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def UpperCAmelCase_ ( self :str )-> Union[str, Any]: A__ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self :Union[str, Any] )-> int: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def UpperCAmelCase_ ( self :List[str] )-> Optional[int]: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self :int )-> Tuple: A__ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def UpperCAmelCase_ ( self :str )-> Union[str, Any]: A__ = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self :Tuple )-> str: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self :str )-> Tuple: A__ = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def UpperCAmelCase_ ( self :Dict )-> List[Any]: A__ = BasicTokenizer(do_lower_case=_a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def UpperCAmelCase_ ( self :int )-> List[str]: A__ = BasicTokenizer() A__ = "a\n\'ll !!to?\'d of, can\'t." A__ = ["a", "\'", "ll", "!", "!", "to", "?", "\'", "d", "of", ",", "can", "\'", "t", "."] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def UpperCAmelCase_ ( self :int )-> Optional[int]: A__ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] A__ = {} for i, token in enumerate(_a ): A__ = i A__ = WordpieceTokenizer(vocab=_a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def UpperCAmelCase_ ( self :List[str] )-> List[str]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def UpperCAmelCase_ ( self :List[Any] )-> List[str]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def UpperCAmelCase_ ( self :int )-> List[str]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def UpperCAmelCase_ ( self :Optional[Any] )-> Optional[int]: A__ = self.tokenizer_class.from_pretrained("bert-base-uncased" ) A__ = tokenizer.encode("sequence builders" , add_special_tokens=_a ) A__ = tokenizer.encode("multi-sequence build" , add_special_tokens=_a ) A__ = tokenizer.build_inputs_with_special_tokens(_a ) A__ = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [1_01] + text + [1_02] assert encoded_pair == [1_01] + text + [1_02] + text_a + [1_02] def UpperCAmelCase_ ( self :Dict )-> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) A__ = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) A__ = tokenizer_r.do_lower_case if hasattr(_a , "do_lower_case" ) else False A__ = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def UpperCAmelCase_ ( self :Dict )-> int: A__ = ["的", "人", "有"] A__ = "".join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ = True A__ = self.tokenizer_class.from_pretrained(_a , **_a ) A__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) A__ = tokenizer_p.encode(_a , add_special_tokens=_a ) A__ = tokenizer_r.encode(_a , add_special_tokens=_a ) A__ = tokenizer_r.convert_ids_to_tokens(_a ) A__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) A__ = False A__ = self.rust_tokenizer_class.from_pretrained(_a , **_a ) A__ = self.tokenizer_class.from_pretrained(_a , **_a ) A__ = tokenizer_r.encode(_a , add_special_tokens=_a ) A__ = tokenizer_p.encode(_a , add_special_tokens=_a ) A__ = tokenizer_r.convert_ids_to_tokens(_a ) A__ = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". A__ = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
440
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _UpperCAmelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name _UpperCAmelCase : List[str] = '''\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n''' def _SCREAMING_SNAKE_CASE ( __snake_case : str , __snake_case : List[str] , __snake_case : Any=8 ): _A = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _A = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowercase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Any, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], ) -> int: super().__init__() self.register_modules( unet=_a, scheduler=_a, movq=_a, ) _A = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : List[Any], UpperCamelCase__ : int, UpperCamelCase__ : Dict, UpperCamelCase__ : Any, UpperCamelCase__ : Tuple ) -> Optional[int]: if latents is None: _A = randn_tensor(_a, generator=_a, device=_a, dtype=_a ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _A = latents.to(_a ) _A = latents * scheduler.init_noise_sigma return latents def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : str=0 ) -> str: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device(f'cuda:{gpu_id}' ) _A = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_a, _a ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : int=0 ) -> str: if is_accelerate_available() and is_accelerate_version('>=', '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) _A = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to('cpu', silence_dtype_warnings=_a ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _A = None for cpu_offloaded_model in [self.unet, self.movq]: _A , _A = cpu_offload_with_hook(_a, _a, prev_module_hook=_a ) # We'll offload the last model manually. _A = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self : int ) -> Union[str, Any]: if not hasattr(self.unet, '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_a, '_hf_hook' ) and hasattr(module._hf_hook, 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_a ) def __call__( self : Optional[Any], UpperCamelCase__ : str, UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int] = 5_12, UpperCamelCase__ : Tuple = 5_12, UpperCamelCase__ : Tuple = 1_00, UpperCamelCase__ : Tuple = 4.0, UpperCamelCase__ : List[str] = 1, UpperCamelCase__ : List[Any] = None, UpperCamelCase__ : List[Any] = None, UpperCamelCase__ : str = "pil", UpperCamelCase__ : Optional[int] = True, ) -> Dict: _A = self._execution_device _A = guidance_scale > 1.0 if isinstance(_a, _a ): _A = torch.cat(_a, dim=0 ) _A = image_embeds.shape[0] * num_images_per_prompt if isinstance(_a, _a ): _A = torch.cat(_a, dim=0 ) if do_classifier_free_guidance: _A = image_embeds.repeat_interleave(_a, dim=0 ) _A = negative_image_embeds.repeat_interleave(_a, dim=0 ) _A = torch.cat([negative_image_embeds, image_embeds], dim=0 ).to(dtype=self.unet.dtype, device=_a ) self.scheduler.set_timesteps(_a, device=_a ) _A = self.scheduler.timesteps _A = self.unet.config.in_channels _A , _A = downscale_height_and_width(_a, _a, self.movq_scale_factor ) # create initial latent _A = self.prepare_latents( (batch_size, num_channels_latents, height, width), image_embeds.dtype, _a, _a, _a, self.scheduler, ) for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance _A = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _A = {'image_embeds': image_embeds} _A = self.unet( sample=_a, timestep=_a, encoder_hidden_states=_a, added_cond_kwargs=_a, return_dict=_a, )[0] if do_classifier_free_guidance: _A , _A = noise_pred.split(latents.shape[1], dim=1 ) _A , _A = noise_pred.chunk(2 ) _A , _A = variance_pred.chunk(2 ) _A = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _A = torch.cat([noise_pred, variance_pred_text], dim=1 ) if not ( hasattr(self.scheduler.config, 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _A , _A = noise_pred.split(latents.shape[1], dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step( _a, _a, _a, generator=_a, )[0] # post-processing _A = self.movq.decode(_a, force_not_quantize=_a )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _A = image * 0.5 + 0.5 _A = image.clamp(0, 1 ) _A = image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": _A = self.numpy_to_pil(_a ) if not return_dict: return (image,) return ImagePipelineOutput(images=_a )
107
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument a_ : Optional[int] = { '/attention/': '/0/SelfAttention/', '/self_attention/': '/0/SelfAttention/', '/encoder_decoder_attention/': '/1/EncDecAttention/', 'value': 'v', 'query': 'q', 'key': 'k', 'out': 'o', 'pre_self_attention_layer_norm': '0/layer_norm', 'pre_cross_attention_layer_norm': '1/layer_norm', 'pre_attention_layer_norm': '0/layer_norm', # previously 1, but seems wrong 'token_embedder': 'shared', 'encoder_norm': 'final_layer_norm', 'decoder_norm': 'final_layer_norm', 'relpos_bias/rel_embedding': 'block/0/layer/0/SelfAttention/relative_attention_bias/weight', 'router/router_weights/w/': 'router/classifier/', 'roer/roer_weights/w/': 'router/classifier/', 'logits_dense': 'lm_head', } def __a ( __UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model a__ = list(s_dict.keys() ) for key in keys: a__ = R'''.*/layers_(\d+)''' a__ = key if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): a__ = re.sub(R'''layers_(\d+)''' , R'''block/\1/layer''' , lowerCAmelCase__ ) a__ = R'''(encoder|decoder)\/''' if re.match(lowerCAmelCase__ , lowerCAmelCase__ ): a__ = re.match(lowerCAmelCase__ , lowerCAmelCase__ ).groups() if groups[0] == "encoder": a__ = re.sub(R'''/mlp/''' , R'''/1/mlp/''' , lowerCAmelCase__ ) a__ = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/1/layer_norm/''' , lowerCAmelCase__ ) elif groups[0] == "decoder": a__ = re.sub(R'''/mlp/''' , R'''/2/mlp/''' , lowerCAmelCase__ ) a__ = re.sub(R'''/pre_mlp_layer_norm/''' , R'''/2/layer_norm/''' , lowerCAmelCase__ ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: a__ = new_key.replace(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"{key} -> {new_key}" ) a__ = s_dict.pop(lowerCAmelCase__ ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a__ = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: a__ = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: a__ = s_dict[key].shape[0] a__ = s_dict[key] for idx in range(lowerCAmelCase__ ): a__ = expert_weihts[idx] print(f"{key} -> {key.replace('expert/' , 'nested fstring' )}" ) s_dict.pop(lowerCAmelCase__ ) return s_dict a_ : List[Any] = { 'NUM_ENCODER_LAYERS': 'num_layers', 'NUM_DECODER_LAYERS': 'num_decoder_layers', 'NUM_HEADS': 'num_heads', 'HEAD_DIM': 'd_kv', 'EMBED_DIM': 'd_model', 'MLP_DIM': 'd_ff', 'NUM_SELECTED_EXPERTS': 'num_selected_experts', 'NUM_ENCODER_SPARSE_LAYERS': 'num_sparse_encoder_layers', 'NUM_DECODER_SPARSE_LAYERS': 'num_sparse_decoder_layers', 'dense.MlpBlock.activations': 'feed_forward_proj', } def __a ( __UpperCAmelCase , __UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(lowerCAmelCase__ , '''r''' ) as f: a__ = f.read() a__ = re.findall(R'''(.*) = ([0-9.]*)''' , lowerCAmelCase__ ) a__ = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": a__ = float(lowerCAmelCase__ ) if '''.''' in value else int(lowerCAmelCase__ ) a__ = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' , lowerCAmelCase__ )[0] a__ = str(activation[1] ) a__ = num_experts a__ = SwitchTransformersConfig(**lowerCAmelCase__ ) return config def __a ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="./" , __UpperCAmelCase=8 ): # Initialise PyTorch model print(f"Loading flax weights from : {flax_checkpoint_path}" ) a__ = checkpoints.load_tax_checkpoint(lowerCAmelCase__ ) if gin_file is not None: a__ = convert_gin_to_config(lowerCAmelCase__ , lowerCAmelCase__ ) else: a__ = SwitchTransformersConfig.from_pretrained(lowerCAmelCase__ ) a__ = SwitchTransformersForConditionalGeneration(lowerCAmelCase__ ) a__ = flax_params['''target'''] a__ = flatten_dict(lowerCAmelCase__ , sep='''/''' ) a__ = rename_keys(lowerCAmelCase__ ) a__ = unflatten_dict(lowerCAmelCase__ , sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(lowerCAmelCase__ , lowerCAmelCase__ ) print(f"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--switch_t5x_checkpoint_path', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the' ' model architecture. If not provided, a `gin_file` has to be provided.' ), ) parser.add_argument( '--gin_file', default=None, type=str, required=False, help='Path to the gin config file. If not provided, a `config_file` has to be passed ', ) parser.add_argument( '--config_name', default=None, type=str, required=False, help='Config name of SwitchTransformers model.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output pytorch model.' ) parser.add_argument('--num_experts', default=8, type=int, required=False, help='Number of experts') a_ : Dict = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
194
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = ['pixel_values'] def __init__( self : Any , lowercase__ : int = True , lowercase__ : List[Any] = None , lowercase__ : str = None , lowercase__ : Optional[int] = PILImageResampling.BILINEAR , lowercase__ : Union[str, Any] = True , lowercase__ : List[str] = 1 / 255 , lowercase__ : Tuple = True , lowercase__ : Optional[int] = None , lowercase__ : Union[str, Any] = None , **lowercase__ : Tuple , ) ->Optional[int]: '''simple docstring''' super().__init__(**_a ) _UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 384} _UpperCamelCase : Any = get_size_dict(_a , default_to_square=_a ) _UpperCamelCase : Dict = do_resize _UpperCamelCase : Optional[int] = size # Default value set here for backwards compatibility where the value in config is None _UpperCamelCase : Optional[int] = crop_pct if crop_pct is not None else 224 / 256 _UpperCamelCase : Optional[Any] = resample _UpperCamelCase : Union[str, Any] = do_rescale _UpperCamelCase : Optional[Any] = rescale_factor _UpperCamelCase : Dict = do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Dict , lowercase__ : str , lowercase__ : str , lowercase__ : str , lowercase__ : int = PILImageResampling.BICUBIC , lowercase__ : Dict = None , **lowercase__ : str , ) ->Tuple: '''simple docstring''' _UpperCamelCase : Optional[Any] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(f'''Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}''' ) _UpperCamelCase : Optional[Any] = size["shortest_edge"] if shortest_edge < 384: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCamelCase : Optional[int] = int(shortest_edge / crop_pct ) _UpperCamelCase : Tuple = get_resize_output_image_size(_a , size=_a , default_to_square=_a ) _UpperCamelCase : Any = resize(image=_a , size=_a , resample=_a , data_format=_a , **_a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=_a , size=(shortest_edge, shortest_edge) , data_format=_a , **_a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( _a , size=(shortest_edge, shortest_edge) , resample=_a , data_format=_a , **_a ) def snake_case__ ( self : List[Any] , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Optional[Any] = None , **lowercase__ : str , ) ->Any: '''simple docstring''' return rescale(_a , scale=_a , data_format=_a , **_a ) def snake_case__ ( self : List[Any] , lowercase__ : Any , lowercase__ : str , lowercase__ : Dict , lowercase__ : str = None , **lowercase__ : Union[str, Any] , ) ->Union[str, Any]: '''simple docstring''' return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def snake_case__ ( self : List[str] , lowercase__ : Union[str, Any] , lowercase__ : Optional[int] = None , lowercase__ : Optional[int] = None , lowercase__ : List[str] = None , lowercase__ : Optional[int] = None , lowercase__ : List[Any] = None , lowercase__ : Dict = None , lowercase__ : Dict = None , lowercase__ : Optional[Any] = None , lowercase__ : Tuple = None , lowercase__ : str = None , lowercase__ : Dict = ChannelDimension.FIRST , **lowercase__ : str , ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : List[str] = crop_pct if crop_pct is not None else self.crop_pct _UpperCamelCase : str = resample if resample is not None else self.resample _UpperCamelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : Tuple = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Any = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : List[str] = image_std if image_std is not None else self.image_std _UpperCamelCase : Tuple = size if size is not None else self.size _UpperCamelCase : List[str] = get_size_dict(_a , default_to_square=_a ) _UpperCamelCase : int = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_resize and size["shortest_edge"] < 384 and crop_pct is None: raise ValueError("crop_pct must be specified if size < 384." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCamelCase : str = [to_numpy_array(_a ) for image in images] if do_resize: _UpperCamelCase : List[str] = [self.resize(image=_a , size=_a , crop_pct=_a , resample=_a ) for image in images] if do_rescale: _UpperCamelCase : Any = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: _UpperCamelCase : Union[str, Any] = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] _UpperCamelCase : Tuple = [to_channel_dimension_format(_a , _a ) for image in images] _UpperCamelCase : str = {"pixel_values": images} return BatchFeature(data=_a , tensor_type=_a )
435
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , A_ , A_=13 , A_=3 , A_=2_24 , A_=30 , A_=4_00 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ): _UpperCamelCase = size if size is not None else {"height": 18, "width": 18} _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = num_channels _UpperCamelCase = image_size _UpperCamelCase = min_resolution _UpperCamelCase = max_resolution _UpperCamelCase = do_resize _UpperCamelCase = size _UpperCamelCase = do_normalize _UpperCamelCase = image_mean _UpperCamelCase = image_std def a ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class A_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = ViTImageProcessor if is_vision_available() else None def a ( self ): _UpperCamelCase = EfficientFormerImageProcessorTester(self ) @property def a ( self ): return self.image_proc_tester.prepare_image_processor_dict() def a ( self ): _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_a , "image_mean" ) ) self.assertTrue(hasattr(_a , "image_std" ) ) self.assertTrue(hasattr(_a , "do_normalize" ) ) self.assertTrue(hasattr(_a , "do_resize" ) ) self.assertTrue(hasattr(_a , "size" ) ) def a ( self ): pass def a ( self ): # Initialize image_processor _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a ) for image in image_inputs: self.assertIsInstance(_a , Image.Image ) # Test not batched input _UpperCamelCase = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCamelCase = image_processor(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def a ( self ): # Initialize image_processor _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , numpify=_a ) for image in image_inputs: self.assertIsInstance(_a , np.ndarray ) # Test not batched input _UpperCamelCase = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCamelCase = image_processor(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) def a ( self ): # Initialize image_processor _UpperCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=_a , torchify=_a ) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor ) # Test not batched input _UpperCamelCase = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , ) # Test batched _UpperCamelCase = image_processor(_a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size["height"], self.image_proc_tester.size["width"], ) , )
138
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel UpperCAmelCase_ : Tuple = '''0.12''' # assumed parallelism: 8 @require_flax @is_staging_test class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' _SCREAMING_SNAKE_CASE =TOKEN HfFolder.save_token(_a ) @classmethod def UpperCamelCase_ ( cls ): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) _SCREAMING_SNAKE_CASE =FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(f"""{USER}/test-model-flax""" ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f"""{key} not identical""" ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =BertConfig( vocab_size=9_9 , hidden_size=3_2 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=3_7 ) _SCREAMING_SNAKE_CASE =FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f"""{key} not identical""" ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(model.params ) ) _SCREAMING_SNAKE_CASE =flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): _SCREAMING_SNAKE_CASE =(base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f"""{key} not identical""" ) def _lowerCAmelCase(a : str , a : Dict ) -> Optional[int]: _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =flatten_dict(modela.params ) _SCREAMING_SNAKE_CASE =flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1E-4: _SCREAMING_SNAKE_CASE =False return models_are_equal @require_flax class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _SCREAMING_SNAKE_CASE =FlaxBertModel(_a ) _SCREAMING_SNAKE_CASE ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE =BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) _SCREAMING_SNAKE_CASE =FlaxBertModel(_a ) _SCREAMING_SNAKE_CASE ='''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''bert''' _SCREAMING_SNAKE_CASE ='''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def UpperCamelCase_ ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE ='''bert''' _SCREAMING_SNAKE_CASE ='''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a ) _SCREAMING_SNAKE_CASE =FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
255
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
'''simple docstring''' from __future__ import annotations import math lowercase : Dict = """2020.9.26""" lowercase : List[str] = """xcodz-dot, cclaus, dhruvmanila""" def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if not all(isinstance(lowerCAmelCase__ , (float, int) ) for val in locals().values() ): snake_case : Tuple = F'''Input values must either be float or int: {list(locals().values() )}''' raise TypeError(lowerCAmelCase__ ) snake_case : Optional[Any] = ((x * distance) / (z + distance)) * scale snake_case : Any = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def lowerCamelCase__ ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise TypeError("""Axis must be a str""" ) snake_case : Optional[int] = locals() del input_variables["axis"] if not all(isinstance(lowerCAmelCase__ , (float, int) ) for val in input_variables.values() ): snake_case : str = ( """Input values except axis must either be float or int: """ F'''{list(input_variables.values() )}''' ) raise TypeError(lowerCAmelCase__ ) snake_case : Union[str, Any] = (angle % 360) / 450 * 180 / math.pi if axis == "z": snake_case : Optional[int] = x * math.cos(lowerCAmelCase__ ) - y * math.sin(lowerCAmelCase__ ) snake_case : List[Any] = y * math.cos(lowerCAmelCase__ ) + x * math.sin(lowerCAmelCase__ ) snake_case : str = z elif axis == "x": snake_case : Union[str, Any] = y * math.cos(lowerCAmelCase__ ) - z * math.sin(lowerCAmelCase__ ) snake_case : Tuple = z * math.cos(lowerCAmelCase__ ) + y * math.sin(lowerCAmelCase__ ) snake_case : Optional[Any] = x elif axis == "y": snake_case : str = x * math.cos(lowerCAmelCase__ ) - z * math.sin(lowerCAmelCase__ ) snake_case : List[str] = z * math.cos(lowerCAmelCase__ ) + x * math.sin(lowerCAmelCase__ ) snake_case : List[Any] = y else: raise ValueError("""not a valid axis, choose one of \'x\', \'y\', \'z\'""" ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F"""{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }""") print(F"""{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }""")
116
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
"""simple docstring""" snake_case_ : List[str] = 6_5_5_2_1 def lowercase_ ( _lowercase : str ): '''simple docstring''' UpperCAmelCase : List[Any] = 1 UpperCAmelCase : List[Any] = 0 for plain_chr in plain_text: UpperCAmelCase : int = (a + ord(lowerCAmelCase__ )) % MOD_ADLER UpperCAmelCase : Any = (b + a) % MOD_ADLER return (b << 16) | a
595
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class lowercase ( __SCREAMING_SNAKE_CASE ): _a = 'bridgetower_vision_model' def __init__( self , _a=768 , _a=12 , _a=3 , _a=16 , _a=288 , _a=1 , _a=1e-05 , _a=False , _a=True , _a=False , **_a , ) -> Any: super().__init__(**_a ) _A : List[Any] = hidden_size _A : List[Any] = num_hidden_layers _A : Tuple = num_channels _A : Optional[int] = patch_size _A : List[Any] = image_size _A : Optional[Any] = initializer_factor _A : Union[str, Any] = layer_norm_eps _A : List[str] = stop_gradient _A : Optional[int] = share_layernorm _A : List[str] = remove_last_layer @classmethod def a__ ( cls , _a , **_a ) -> Optional[int]: _A , _A : Tuple = cls.get_config_dict(_a , **_a ) if config_dict.get("""model_type""" ) == "bridgetower": _A : Optional[Any] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( __SCREAMING_SNAKE_CASE ): _a = 'bridgetower_text_model' def __init__( self , _a=5_0265 , _a=768 , _a=12 , _a=12 , _a=1 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=514 , _a=1 , _a=1e-05 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , **_a , ) -> Tuple: super().__init__(**_a ) _A : Optional[Any] = vocab_size _A : Any = hidden_size _A : Any = num_hidden_layers _A : Optional[Any] = num_attention_heads _A : List[Any] = hidden_act _A : List[Any] = initializer_factor _A : str = intermediate_size _A : Optional[Any] = hidden_dropout_prob _A : Optional[int] = attention_probs_dropout_prob _A : List[Any] = max_position_embeddings _A : Union[str, Any] = type_vocab_size _A : Any = layer_norm_eps _A : Dict = position_embedding_type _A : Tuple = use_cache _A : Optional[Any] = pad_token_id _A : List[Any] = bos_token_id _A : Optional[Any] = eos_token_id @classmethod def a__ ( cls , _a , **_a ) -> Optional[int]: _A , _A : Optional[int] = cls.get_config_dict(_a , **_a ) if config_dict.get("""model_type""" ) == "bridgetower": _A : int = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class lowercase ( __SCREAMING_SNAKE_CASE ): _a = 'bridgetower' def __init__( self , _a=True , _a="gelu" , _a=768 , _a=1 , _a=1e-05 , _a=False , _a="add" , _a=12 , _a=6 , _a=False , _a=False , _a=None , _a=None , **_a , ) -> Union[str, Any]: # TODO: remove this once the Hub files are updated. _A : int = kwargs.pop("""text_config_dict""" , _a ) _A : Any = kwargs.pop("""vision_config_dict""" , _a ) super().__init__(**_a ) _A : Optional[int] = share_cross_modal_transformer_layers _A : Union[str, Any] = hidden_act _A : Optional[int] = hidden_size _A : Union[str, Any] = initializer_factor _A : str = layer_norm_eps _A : str = share_link_tower_layers _A : Tuple = link_tower_type _A : Union[str, Any] = num_attention_heads _A : Dict = num_hidden_layers _A : Optional[int] = tie_word_embeddings _A : Union[str, Any] = init_layernorm_from_vision_encoder if text_config is None: _A : Optional[int] = {} logger.info("""`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.""" ) if vision_config is None: _A : Any = {} logger.info("""`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.""" ) _A : Tuple = BridgeTowerTextConfig(**_a ) _A : Optional[Any] = BridgeTowerVisionConfig(**_a ) @classmethod def a__ ( cls , _a , _a , **_a ) -> Any: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def a__ ( self ) -> Dict: _A : Tuple = copy.deepcopy(self.__dict__ ) _A : Any = self.text_config.to_dict() _A : Tuple = self.vision_config.to_dict() _A : List[Any] = self.__class__.model_type return output
307
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
"""simple docstring""" def lowercase__ ( lowerCAmelCase : list ) -> list: """simple docstring""" if len(lowerCAmelCase__ ) <= 1: return lst UpperCAmelCase = 1 while i < len(lowerCAmelCase__ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCAmelCase , UpperCAmelCase = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCAmelCase = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = input('''Enter numbers separated by a comma:\n''').strip() SCREAMING_SNAKE_CASE_ = [int(item) for item in user_input.split(''',''')] print(gnome_sort(unsorted))
373
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A : int = logging.get_logger(__name__) __A : List[str] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} __A : int = { 'vocab_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json' }, 'merges_file': { 'allegro/herbert-base-cased': 'https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt' }, } __A : Dict = {'allegro/herbert-base-cased': 514} __A : List[str] = {} class __UpperCamelCase ( __SCREAMING_SNAKE_CASE ): lowercase : Dict = VOCAB_FILES_NAMES lowercase : List[str] = PRETRAINED_VOCAB_FILES_MAP lowercase : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION lowercase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : List[Any] = HerbertTokenizer def __init__( self :Optional[Any] ,_UpperCamelCase :Tuple=None ,_UpperCamelCase :List[Any]=None ,_UpperCamelCase :Dict=None ,_UpperCamelCase :Union[str, Any]="<s>" ,_UpperCamelCase :Any="<unk>" ,_UpperCamelCase :Optional[int]="<pad>" ,_UpperCamelCase :Union[str, Any]="<mask>" ,_UpperCamelCase :str="</s>" ,**_UpperCamelCase :Tuple ,): super().__init__( _a ,_a ,tokenizer_file=_a ,cls_token=_a ,unk_token=_a ,pad_token=_a ,mask_token=_a ,sep_token=_a ,**_a ,) def a__ ( self :Union[str, Any] ,_UpperCamelCase :List[Any] ,_UpperCamelCase :List[Any] = None ): snake_case_ : Union[str, Any] = [self.cls_token_id] snake_case_ : List[str] = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self :Optional[int] ,_UpperCamelCase :int ,_UpperCamelCase :Optional[Any] = None ,_UpperCamelCase :List[Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a ,token_ids_a=_a ,already_has_special_tokens=_a ) if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def a__ ( self :Optional[int] ,_UpperCamelCase :Tuple ,_UpperCamelCase :str = None ): snake_case_ : Optional[int] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self :Union[str, Any] ,_UpperCamelCase :Dict ,_UpperCamelCase :Optional[int] = None ): snake_case_ : Dict = self._tokenizer.model.save(_a ,name=_a ) return tuple(_a )
334
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
'''simple docstring''' import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__( self :Dict , lowercase_ :str , lowercase_ :Optional[Any]=99 , lowercase_ :int=13 , lowercase_ :List[Any]=16 , lowercase_ :List[Any]=7 , lowercase_ :Union[str, Any]=True , lowercase_ :Tuple=True , lowercase_ :str=True , lowercase_ :Optional[Any]=False , lowercase_ :Any=True , lowercase_ :Union[str, Any]=2 , lowercase_ :Optional[int]=32 , lowercase_ :List[str]=4 , lowercase_ :Tuple=4 , lowercase_ :Tuple=30 , lowercase_ :Union[str, Any]=0 , lowercase_ :Optional[Any]=1 , lowercase_ :List[Any]=2 , lowercase_ :str=None , )-> int: A__ = parent A__ = batch_size A__ = decoder_seq_length # For common tests A__ = self.decoder_seq_length A__ = is_training A__ = use_attention_mask A__ = use_labels A__ = vocab_size A__ = d_model A__ = d_model A__ = decoder_layers A__ = decoder_layers A__ = decoder_ffn_dim A__ = decoder_attention_heads A__ = decoder_attention_heads A__ = eos_token_id A__ = bos_token_id A__ = pad_token_id A__ = decoder_start_token_id A__ = use_cache A__ = max_position_embeddings A__ = None A__ = decoder_seq_length A__ = 2 A__ = 1 def UpperCAmelCase_ ( self :int )-> Union[str, Any]: A__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A__ = None if self.use_attention_mask: A__ = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) A__ = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase_ ( self :int , lowercase_ :int , lowercase_ :Any , lowercase_ :Tuple , lowercase_ :List[str] , )-> str: A__ = True A__ = TrOCRDecoder(config=_a ).to(_a ).eval() A__ = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass A__ = model(_a , use_cache=_a ) A__ = model(_a ) A__ = model(_a , use_cache=_a ) self.parent.assertTrue(len(_a ) == len(_a ) ) self.parent.assertTrue(len(_a ) == len(_a ) + 1 ) A__ = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids A__ = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = model(_a )["last_hidden_state"] A__ = model(_a , past_key_values=_a )["last_hidden_state"] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() A__ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_a , _a , atol=1E-3 ) def UpperCAmelCase_ ( self :Dict )-> Dict: A__ = self.prepare_config_and_inputs() A__, A__, A__, A__ = config_and_inputs A__ = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): __lowercase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () __lowercase = (TrOCRForCausalLM,) if is_torch_available() else () __lowercase = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {} __lowercase = True __lowercase = False def UpperCAmelCase_ ( self :Any )-> Any: A__ = TrOCRStandaloneDecoderModelTester(self , is_training=_a ) A__ = ConfigTester(self , config_class=_a ) def UpperCAmelCase_ ( self :Any )-> Union[str, Any]: pass def UpperCAmelCase_ ( self :str )-> List[str]: pass def UpperCAmelCase_ ( self :str )-> List[Any]: pass def UpperCAmelCase_ ( self :Any )-> Any: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self :int )-> Optional[int]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_a ) def UpperCAmelCase_ ( self :Optional[int] )-> List[Any]: return @unittest.skip("The model doesn\'t support left padding" ) # and it's not used enough to be worth fixing :) def UpperCAmelCase_ ( self :str )-> Tuple: pass
440
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _UpperCAmelCase : Any = '''bert-base-cased''' _UpperCAmelCase : Union[str, Any] = '''google/pegasus-xsum''' _UpperCAmelCase : Optional[Any] = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] _UpperCAmelCase : str = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] _UpperCAmelCase : List[str] = '''patrickvonplaten/t5-tiny-random''' _UpperCAmelCase : Union[str, Any] = '''sshleifer/bart-tiny-random''' _UpperCAmelCase : Union[str, Any] = '''sshleifer/tiny-mbart''' _UpperCAmelCase : Optional[Any] = '''sshleifer/tiny-marian-en-de''' def _SCREAMING_SNAKE_CASE ( __snake_case : Path , __snake_case : list ): _A = '\n'.join(lowerCAmelCase__ ) Path(lowerCAmelCase__ ).open('w' ).writelines(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(lowerCAmelCase__ , F'{split}.source' ) , lowerCAmelCase__ ) _dump_articles(os.path.join(lowerCAmelCase__ , F'{split}.target' ) , lowerCAmelCase__ ) return tmp_dir class lowercase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) @slow def __UpperCAmelCase ( self : List[str], UpperCamelCase__ : Optional[int] ) -> List[Any]: _A = AutoTokenizer.from_pretrained(_a ) _A = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _A = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) _A = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) _A = 4 _A = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _A , _A = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _A = SeqaSeqDataset( _a, data_dir=_a, type_path='train', max_source_length=_a, max_target_length=_a, src_lang=_a, tgt_lang=_a, ) _A = DataLoader(_a, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_a, _a ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _A = shift_tokens_right(batch['labels'], tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : List[str] ) -> Union[str, Any]: _A = AutoTokenizer.from_pretrained(_a ) _A = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _A = max(len(tokenizer.encode(_a ) ) for a in ARTICLES ) _A = max(len(tokenizer.encode(_a ) ) for a in SUMMARIES ) _A = 4 _A = LegacySeqaSeqDataset( _a, data_dir=_a, type_path='train', max_source_length=20, max_target_length=_a, ) _A = DataLoader(_a, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __UpperCAmelCase ( self : int ) -> Any: _A = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _A = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _A = tmp_dir.joinpath('train.source' ).open().readlines() _A = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_a, _a, 1_28, _a ) _A = {x.name for x in tmp_dir.iterdir()} _A = {x.name for x in save_dir.iterdir()} _A = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_a ) < len(_a ) assert len(_a ) == 1 assert len(packed_examples[0] ) == sum(len(_a ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason='This test requires fairseq' ) def __UpperCAmelCase ( self : List[str] ) -> int: if not FAIRSEQ_AVAILABLE: return _A , _A , _A = self._get_dataset(max_len=64 ) _A = 64 _A = ds.make_dynamic_sampler(_a, required_batch_size_multiple=_a ) _A = [len(_a ) for x in batch_sampler] assert len(set(_a ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_a ) == len(_a ) # no dropped or added examples _A = DataLoader(_a, batch_sampler=_a, collate_fn=ds.collate_fn, num_workers=2 ) _A = [] _A = [] for batch in data_loader: _A = batch['input_ids'].shape _A = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _A = np.product(batch['input_ids'].shape ) num_src_per_batch.append(_a ) if num_src_tokens > (max_tokens * 1.1): failures.append(_a ) assert num_src_per_batch[0] == max(_a ) if failures: raise AssertionError(f'too many tokens in {len(_a )} batches' ) def __UpperCAmelCase ( self : Any ) -> int: _A , _A , _A = self._get_dataset(max_len=5_12 ) _A = 2 _A = ds.make_sortish_sampler(_a, shuffle=_a ) _A = DataLoader(_a, batch_size=_a, collate_fn=ds.collate_fn, num_workers=2 ) _A = DataLoader(_a, batch_size=_a, collate_fn=ds.collate_fn, num_workers=2, sampler=_a ) _A = tokenizer.pad_token_id def count_pad_tokens(UpperCamelCase__ : List[Any], UpperCamelCase__ : List[str]="input_ids" ): return [batch[k].eq(_a ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_a, k='labels' ) ) < sum(count_pad_tokens(_a, k='labels' ) ) assert sum(count_pad_tokens(_a ) ) < sum(count_pad_tokens(_a ) ) assert len(_a ) == len(_a ) def __UpperCAmelCase ( self : int, UpperCamelCase__ : Dict=10_00, UpperCamelCase__ : Union[str, Any]=1_28 ) -> List[Any]: if os.getenv('USE_REAL_DATA', _a ): _A = 'examples/seq2seq/wmt_en_ro' _A = max_len * 2 * 64 if not Path(_a ).joinpath('train.len' ).exists(): save_len_file(_a, _a ) else: _A = 'examples/seq2seq/test_data/wmt_en_ro' _A = max_len * 4 save_len_file(_a, _a ) _A = AutoTokenizer.from_pretrained(_a ) _A = SeqaSeqDataset( _a, data_dir=_a, type_path='train', max_source_length=_a, max_target_length=_a, n_obs=_a, ) return ds, max_tokens, tokenizer def __UpperCAmelCase ( self : Dict ) -> Optional[int]: _A , _A , _A = self._get_dataset() _A = set(DistributedSortishSampler(_a, 2_56, num_replicas=2, rank=0, add_extra_examples=_a ) ) _A = set(DistributedSortishSampler(_a, 2_56, num_replicas=2, rank=1, add_extra_examples=_a ) ) assert idsa.intersection(_a ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : List[str] ) -> Tuple: _A = AutoTokenizer.from_pretrained(_a, use_fast=_a ) if tok_name == MBART_TINY: _A = SeqaSeqDataset( _a, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path='train', max_source_length=4, max_target_length=8, src_lang='EN', tgt_lang='FR', ) _A = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _A = SeqaSeqDataset( _a, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path='train', max_source_length=4, max_target_length=8, ) _A = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_a ) == 1 if tok_name == BART_TINY else len(_a ) == 0
107
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
from timeit import timeit a_ : List[Any] = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def __a ( __UpperCAmelCase ): a__ = 0 a__ = len(lowerCAmelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def __a ( __UpperCAmelCase ): a__ = len(lowerCAmelCase__ ) // 2 a__ = len(lowerCAmelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowerCAmelCase__ ) ) def __a ( __UpperCAmelCase ): if len(lowerCAmelCase__ ) <= 2: return True if s[0] == s[len(lowerCAmelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def __a ( __UpperCAmelCase ): return s == s[::-1] def __a ( __UpperCAmelCase ): a__ = f"all({name}(key) is value for key, value in test_data.items())" a__ = f"from __main__ import test_data, {name}" a__ = 50_0000 a__ = timeit(stmt=lowerCAmelCase__ , setup=lowerCAmelCase__ , number=lowerCAmelCase__ ) print(f"{name:<35} finished {number:,} runs in {result:.5f} seconds" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'{key:21} {value}') print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
194
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
'''simple docstring''' from __future__ import annotations lowerCAmelCase_ : Tuple = list[tuple[int, int]] lowerCAmelCase_ : int = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowerCAmelCase_ : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Optional[int] , lowercase__ : List[Any] , lowercase__ : Dict , lowercase__ : List[str] , lowercase__ : Optional[Any] , ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = pos_x _UpperCamelCase : List[Any] = pos_y _UpperCamelCase : Any = (pos_y, pos_x) _UpperCamelCase : Union[str, Any] = goal_x _UpperCamelCase : Optional[Any] = goal_y _UpperCamelCase : str = g_cost _UpperCamelCase : Union[str, Any] = parent _UpperCamelCase : str = self.calculate_heuristic() def snake_case__ ( self : List[str] ) ->Tuple: '''simple docstring''' _UpperCamelCase : Union[str, Any] = abs(self.pos_x - self.goal_x ) _UpperCamelCase : Tuple = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Optional[Any] , lowercase__ : int ) ->Tuple: '''simple docstring''' return self.f_cost < other.f_cost class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : Dict , lowercase__ : Tuple ) ->List[str]: '''simple docstring''' _UpperCamelCase : List[str] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) _UpperCamelCase : str = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) _UpperCamelCase : Optional[Any] = [self.start] _UpperCamelCase : Tuple = [] _UpperCamelCase : Tuple = False def snake_case__ ( self : Optional[int] ) ->Union[str, Any]: '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _UpperCamelCase : Optional[Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: _UpperCamelCase : Optional[Any] = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) _UpperCamelCase : Optional[int] = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path _UpperCamelCase : Union[str, Any] = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def snake_case__ ( self : Any , lowercase__ : Dict ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Dict = [] for action in delta: _UpperCamelCase : Optional[Any] = parent.pos_x + action[1] _UpperCamelCase : Union[str, Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def snake_case__ ( self : List[str] , lowercase__ : Optional[int] ) ->List[Any]: '''simple docstring''' _UpperCamelCase : Any = node _UpperCamelCase : Any = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) _UpperCamelCase : Tuple = current_node.parent path.reverse() return path if __name__ == "__main__": lowerCAmelCase_ : List[str] = (0, 0) lowerCAmelCase_ : Tuple = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") lowerCAmelCase_ : Dict = GreedyBestFirst(init, goal) lowerCAmelCase_ : Union[str, Any] = greedy_bf.search() if path: for pos_x, pos_y in path: lowerCAmelCase_ : Tuple = 2 for elem in grid: print(elem)
435
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
'''simple docstring''' import os import string import sys snake_case_ : Any = 1 << 8 snake_case_ : Optional[Any] = { '''tab''': ord('''\t'''), '''newline''': ord('''\r'''), '''esc''': 27, '''up''': 65 + ARROW_KEY_FLAG, '''down''': 66 + ARROW_KEY_FLAG, '''right''': 67 + ARROW_KEY_FLAG, '''left''': 68 + ARROW_KEY_FLAG, '''mod_int''': 91, '''undefined''': sys.maxsize, '''interrupt''': 3, '''insert''': 50, '''delete''': 51, '''pg_up''': 53, '''pg_down''': 54, } snake_case_ : List[str] = KEYMAP['''up'''] snake_case_ : int = KEYMAP['''left'''] if sys.platform == "win32": snake_case_ : Tuple = [] snake_case_ : Optional[int] = { B'''\xe0H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\x00H''': KEYMAP['''up'''] - ARROW_KEY_FLAG, B'''\xe0P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\x00P''': KEYMAP['''down'''] - ARROW_KEY_FLAG, B'''\xe0M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\x00M''': KEYMAP['''right'''] - ARROW_KEY_FLAG, B'''\xe0K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, B'''\x00K''': KEYMAP['''left'''] - ARROW_KEY_FLAG, } for i in range(10): snake_case_ : str = ord(str(i)) def lowercase__( )-> Dict: """simple docstring""" if os.name == "nt": import msvcrt _UpperCamelCase = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowerCAmelCase__ ) == 0: # Read the keystroke _UpperCamelCase = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): _UpperCamelCase = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: _UpperCamelCase = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(lowerCAmelCase__ ) if ord(lowerCAmelCase__ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(126 ) ) _UpperCamelCase = chr(KEYMAP["esc"] ) except KeyError: _UpperCamelCase = cha[1] else: _UpperCamelCase = ch.decode(lowerCAmelCase__ ) else: _UpperCamelCase = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty _UpperCamelCase = sys.stdin.fileno() _UpperCamelCase = termios.tcgetattr(lowerCAmelCase__ ) try: tty.setraw(lowerCAmelCase__ ) _UpperCamelCase = sys.stdin.read(1 ) finally: termios.tcsetattr(lowerCAmelCase__ , termios.TCSADRAIN , lowerCAmelCase__ ) return ch def lowercase__( )-> Union[str, Any]: """simple docstring""" _UpperCamelCase = get_raw_chars() if ord(lowerCAmelCase__ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowerCAmelCase__ ) == KEYMAP["esc"]: _UpperCamelCase = get_raw_chars() if ord(lowerCAmelCase__ ) == KEYMAP["mod_int"]: _UpperCamelCase = get_raw_chars() if ord(lowerCAmelCase__ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowerCAmelCase__ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowerCAmelCase__ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
138
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Union[str, Any] = { '''configuration_m2m_100''': ['''M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''M2M100Config''', '''M2M100OnnxConfig'''], '''tokenization_m2m_100''': ['''M2M100Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Dict = [ '''M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST''', '''M2M100ForConditionalGeneration''', '''M2M100Model''', '''M2M100PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
255
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase : Union[str, Any] = { """configuration_xlm""": ["""XLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMConfig""", """XLMOnnxConfig"""], """tokenization_xlm""": ["""XLMTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ """XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMForMultipleChoice""", """XLMForQuestionAnswering""", """XLMForQuestionAnsweringSimple""", """XLMForSequenceClassification""", """XLMForTokenClassification""", """XLMModel""", """XLMPreTrainedModel""", """XLMWithLMHeadModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ """TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLMForMultipleChoice""", """TFXLMForQuestionAnsweringSimple""", """TFXLMForSequenceClassification""", """TFXLMForTokenClassification""", """TFXLMMainLayer""", """TFXLMModel""", """TFXLMPreTrainedModel""", """TFXLMWithLMHeadModel""", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
116
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
"""simple docstring""" import numpy as np def lowercase_ ( _lowercase : Optional[int] , _lowercase : List[Any] , _lowercase : int , _lowercase : List[str] , _lowercase : Any ): '''simple docstring''' UpperCAmelCase : List[str] = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase : Tuple = np.zeros((n + 1,) ) UpperCAmelCase : List[str] = ya UpperCAmelCase : Optional[int] = xa for k in range(lowerCAmelCase__ ): UpperCAmelCase : Optional[int] = f(lowerCAmelCase__ , y[k] ) UpperCAmelCase : List[Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase : Union[str, Any] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase : Union[str, Any] = f(x + h , y[k] + h * ka ) UpperCAmelCase : Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
595
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
import torch from diffusers import StableDiffusionPipeline _snake_case = "path-to-your-trained-model" _snake_case = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") _snake_case = "A photo of sks dog in a bucket" _snake_case = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
307
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
"""simple docstring""" import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) @dataclass class _UpperCAmelCase : def __init__( self , lowercase_=False , lowercase_=False , lowercase_=6.0 , lowercase_=None , lowercase_=False , lowercase_=False , lowercase_=None , lowercase_="fp4" , lowercase_=False , **lowercase_ , ) -> List[Any]: UpperCAmelCase = load_in_abit UpperCAmelCase = load_in_abit UpperCAmelCase = llm_inta_threshold UpperCAmelCase = llm_inta_skip_modules UpperCAmelCase = llm_inta_enable_fpaa_cpu_offload UpperCAmelCase = llm_inta_has_fpaa_weight UpperCAmelCase = bnb_abit_quant_type UpperCAmelCase = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: UpperCAmelCase = torch.floataa elif isinstance(_a , _a ): UpperCAmelCase = getattr(_a , _a ) elif isinstance(_a , torch.dtype ): UpperCAmelCase = bnb_abit_compute_dtype else: raise ValueError('bnb_4bit_compute_dtype must be a string or a torch.dtype' ) self.post_init() def a_ ( self ) -> int: if not isinstance(self.llm_inta_threshold , _a ): raise ValueError('llm_int8_threshold must be a float' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _a ): raise ValueError('llm_int8_skip_modules must be a list of strings' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _a ): raise ValueError('llm_int8_enable_fp32_cpu_offload must be a boolean' ) if not isinstance(self.llm_inta_has_fpaa_weight , _a ): raise ValueError('llm_int8_has_fp16_weight must be a boolean' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('bnb_4bit_compute_dtype must be torch.dtype' ) if not isinstance(self.bnb_abit_quant_type , _a ): raise ValueError('bnb_4bit_quant_type must be a string' ) if not isinstance(self.bnb_abit_use_double_quant , _a ): raise ValueError('bnb_4bit_use_double_quant must be a boolean' ) if self.load_in_abit and not version.parse(importlib.metadata.version('bitsandbytes' ) ) >= version.parse( '0.39.0' ): raise ValueError( '4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version' ) def a_ ( self ) -> List[Any]: return self.load_in_abit or self.load_in_abit def a_ ( self ) -> Optional[int]: if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def a_ ( cls , lowercase_ , lowercase_ , **lowercase_ ) -> Optional[Any]: UpperCAmelCase = cls(**_a ) UpperCAmelCase = [] for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) to_remove.append(_a ) for key in to_remove: kwargs.pop(_a , _a ) if return_unused_kwargs: return config, kwargs else: return config def a_ ( self , lowercase_ ) -> Tuple: with open(_a , 'w' , encoding='utf-8' ) as writer: UpperCAmelCase = self.to_dict() UpperCAmelCase = json.dumps(_a , indent=2 , sort_keys=_a ) + '\n' writer.write(_a ) def a_ ( self ) -> List[str]: UpperCAmelCase = copy.deepcopy(self.__dict__ ) UpperCAmelCase = str(output['bnb_4bit_compute_dtype'] ).split('.' )[1] return output def __repr__( self ) -> List[str]: return F"{self.__class__.__name__} {self.to_json_string()}" def a_ ( self , lowercase_ = True ) -> int: if use_diff is True: UpperCAmelCase = self.to_diff_dict() else: UpperCAmelCase = self.to_dict() return json.dumps(_a , indent=2 , sort_keys=_a ) + "\n" def a_ ( self ) -> Optional[int]: UpperCAmelCase = self.to_dict() # get the default config dict UpperCAmelCase = BitsAndBytesConfig().to_dict() UpperCAmelCase = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: UpperCAmelCase = value return serializable_config_dict
373
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
'''simple docstring''' __A : Tuple = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
334
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def UpperCamelCase ( _lowerCamelCase : List[Any] ): A__ = SwinConfig(image_size=1_92 ) if "base" in model_name: A__ = 6 A__ = 1_28 A__ = (2, 2, 18, 2) A__ = (4, 8, 16, 32) elif "large" in model_name: A__ = 12 A__ = 1_92 A__ = (2, 2, 18, 2) A__ = (6, 12, 24, 48) else: raise ValueError("Model not supported, only supports base and large variants" ) A__ = window_size A__ = embed_dim A__ = depths A__ = num_heads return config def UpperCamelCase ( _lowerCamelCase : Optional[Any] ): if "encoder.mask_token" in name: A__ = name.replace("encoder.mask_token" , "embeddings.mask_token" ) if "encoder.patch_embed.proj" in name: A__ = name.replace("encoder.patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "encoder.patch_embed.norm" in name: A__ = name.replace("encoder.patch_embed.norm" , "embeddings.norm" ) if "attn.proj" in name: A__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: A__ = name.replace("attn" , "attention.self" ) if "norm1" in name: A__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: A__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: A__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: A__ = name.replace("mlp.fc2" , "output.dense" ) if name == "encoder.norm.weight": A__ = "layernorm.weight" if name == "encoder.norm.bias": A__ = "layernorm.bias" if "decoder" in name: pass else: A__ = "swin." + name return name def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : Any ): for key in orig_state_dict.copy().keys(): A__ = orig_state_dict.pop(lowerCAmelCase__ ) if "attn_mask" in key: pass elif "qkv" in key: A__ = key.split("." ) A__ = int(key_split[2] ) A__ = int(key_split[4] ) A__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: A__ = val[:dim, :] A__ = val[ dim : dim * 2, : ] A__ = val[-dim:, :] else: A__ = val[ :dim ] A__ = val[ dim : dim * 2 ] A__ = val[ -dim: ] else: A__ = val return orig_state_dict def UpperCamelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple ): A__ = torch.load(lowerCAmelCase__ , map_location="cpu" )["model"] A__ = get_swin_config(lowerCAmelCase__ ) A__ = SwinForMaskedImageModeling(lowerCAmelCase__ ) model.eval() A__ = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) A__ = "http://images.cocodataset.org/val2017/000000039769.jpg" A__ = ViTImageProcessor(size={"height": 1_92, "width": 1_92} ) A__ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) A__ = image_processor(images=lowerCAmelCase__ , return_tensors="pt" ) with torch.no_grad(): A__ = model(**lowerCAmelCase__ ).logits print(outputs.keys() ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: print(F"Pushing model and image processor for {model_name} to hub" ) model.push_to_hub(F"microsoft/{model_name}" ) image_processor.push_to_hub(F"microsoft/{model_name}" ) if __name__ == "__main__": __lowerCAmelCase : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __lowerCAmelCase : List[Any] =parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
440
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : Tuple ) -> Any: torch.manual_seed(0 ) _A = UNetaDModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=('DownBlock2D', 'AttnDownBlock2D'), up_block_types=('AttnUpBlock2D', 'UpBlock2D'), ) return model @property def __UpperCAmelCase ( self : str ) -> Union[str, Any]: torch.manual_seed(0 ) _A = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=3, ) return model @property def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: torch.manual_seed(0 ) _A = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=10_00, ) return CLIPTextModel(_a ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: _A = self.dummy_uncond_unet _A = DDIMScheduler() _A = self.dummy_vq_model _A = LDMPipeline(unet=_a, vqvae=_a, scheduler=_a ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) _A = torch.manual_seed(0 ) _A = ldm(generator=_a, num_inference_steps=2, output_type='numpy' ).images _A = torch.manual_seed(0 ) _A = ldm(generator=_a, num_inference_steps=2, output_type='numpy', return_dict=_a )[0] _A = image[0, -3:, -3:, -1] _A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _A = np.array([0.8_512, 0.818, 0.6_411, 0.6_808, 0.4_465, 0.5_618, 0.46, 0.6_231, 0.5_172] ) _A = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class lowercase_ ( unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : Tuple ) -> Any: _A = LDMPipeline.from_pretrained('CompVis/ldm-celebahq-256' ) ldm.to(_a ) ldm.set_progress_bar_config(disable=_a ) _A = torch.manual_seed(0 ) _A = ldm(generator=_a, num_inference_steps=5, output_type='numpy' ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) _A = np.array([0.4_399, 0.44_975, 0.46_825, 0.474, 0.4_359, 0.4_581, 0.45_095, 0.4_341, 0.4_447] ) _A = 1e-2 if torch_device != 'mps' else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
107
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
from math import pi, sqrt def __a ( __UpperCAmelCase ): if num <= 0: raise ValueError('''math domain error''' ) if num > 171.5: raise OverflowError('''math range error''' ) elif num - int(lowerCAmelCase__ ) not in (0, 0.5): raise NotImplementedError('''num must be an integer or a half-integer''' ) elif num == 0.5: return sqrt(lowerCAmelCase__ ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __a ( ): assert gamma(0.5 ) == sqrt(lowerCAmelCase__ ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() a_ : str = 1.0 while num: a_ : str = float(input('Gamma of: ')) print(f'gamma({num}) = {gamma(num)}') print('\nEnter 0 to exit...')
194
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0