code
stringlengths
82
54.1k
code_codestyle
int64
0
699
style_context
stringlengths
111
35.6k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : str = None , ) -> List[Any]: if config_name_or_path is None: __a = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: __a = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __a = question_encoder_name_or_path __a = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. __a = RagConfig.from_pretrained(lowerCAmelCase__ ) __a = AutoConfig.from_pretrained(lowerCAmelCase__ ) __a = AutoConfig.from_pretrained(lowerCAmelCase__ ) __a = gen_config __a = question_encoder_config __a = model_class.from_pretrained_question_encoder_generator( lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ ) rag_model.save_pretrained(lowerCAmelCase__ ) # Sanity check. model_class.from_pretrained(lowerCAmelCase__ ) # Save tokenizers. __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--model_type", choices=["rag_sequence", "rag_token"], required=True, type=str, help="RAG model type: rag_sequence, rag_token", ) parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.") parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier") parser.add_argument( "--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier" ) parser.add_argument( "--generator_tokenizer_name_or_path", type=str, help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``", ) parser.add_argument( "--question_encoder_tokenizer_name_or_path", type=str, help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``", ) parser.add_argument( "--config_name_or_path", type=str, help=( "Identifier of the model config to use, if not provided, resolves to a base config for a given" " ``model_type``" ), ) lowercase_ = parser.parse_args() lowercase_ = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
695
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : int = 10**9 ) -> int: __a = 1 __a = 2 __a = 0 __a = 0 __a = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F'''{solution() = }''')
695
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
1
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]: # Initialise PyTorch model __a = BigBirdConfig.from_json_file(lowerCAmelCase__ ) print(f'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: __a = BigBirdForQuestionAnswering(lowerCAmelCase__ ) else: __a = BigBirdForPreTraining(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCAmelCase__ , lowerCAmelCase__ , is_trivia_qa=lowerCAmelCase__ ) # Save pytorch-model print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) lowercase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
1
"""simple docstring""" import os from math import logaa def lowercase ( lowerCAmelCase__ : str = "base_exp.txt" ) -> int: __a = 0 __a = 0 for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ): __a , __a = list(map(lowerCAmelCase__ , line.split(''',''' ) ) ) if x * logaa(lowerCAmelCase__ ) > largest: __a = x * logaa(lowerCAmelCase__ ) __a = i + 1 return result if __name__ == "__main__": print(solution())
695
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import importlib.metadata import json import os from dataclasses import dataclass from typing import Any, Dict, Union from packaging import version from ..utils import is_torch_available, logging if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) @dataclass class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a=False , _a=False , _a=6.0 , _a=None , _a=False , _a=False , _a=None , _a="fp4" , _a=False , **_a , ): __a = load_in_abit __a = load_in_abit __a = llm_inta_threshold __a = llm_inta_skip_modules __a = llm_inta_enable_fpaa_cpu_offload __a = llm_inta_has_fpaa_weight __a = bnb_abit_quant_type __a = bnb_abit_use_double_quant if bnb_abit_compute_dtype is None: __a = torch.floataa elif isinstance(_a , _a ): __a = getattr(_a , _a ) elif isinstance(_a , torch.dtype ): __a = bnb_abit_compute_dtype else: raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' ) self.post_init() def __UpperCAmelCase ( self ): if not isinstance(self.llm_inta_threshold , _a ): raise ValueError('''llm_int8_threshold must be a float''' ) if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _a ): raise ValueError('''llm_int8_skip_modules must be a list of strings''' ) if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _a ): raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' ) if not isinstance(self.llm_inta_has_fpaa_weight , _a ): raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' ) if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ): raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' ) if not isinstance(self.bnb_abit_quant_type , _a ): raise ValueError('''bnb_4bit_quant_type must be a string''' ) if not isinstance(self.bnb_abit_use_double_quant , _a ): raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' ) if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse( '''0.39.0''' ): raise ValueError( '''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' ) def __UpperCAmelCase ( self ): return self.load_in_abit or self.load_in_abit def __UpperCAmelCase ( self ): if self.load_in_abit: return "llm_int8" elif self.load_in_abit and self.bnb_abit_quant_type == "fp4": return "fp4" elif self.load_in_abit and self.bnb_abit_quant_type == "nf4": return "nf4" else: return None @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): __a = cls(**_a ) __a = [] for key, value in kwargs.items(): if hasattr(_a , _a ): setattr(_a , _a , _a ) to_remove.append(_a ) for key in to_remove: kwargs.pop(_a , _a ) if return_unused_kwargs: return config, kwargs else: return config def __UpperCAmelCase ( self , _a ): with open(_a , '''w''' , encoding='''utf-8''' ) as writer: __a = self.to_dict() __a = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n''' writer.write(_a ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1] return output def __repr__( self ): return f'''{self.__class__.__name__} {self.to_json_string()}''' def __UpperCAmelCase ( self , _a = True ): if use_diff is True: __a = self.to_diff_dict() else: __a = self.to_dict() return json.dumps(_a , indent=2 , sort_keys=_a ) + "\n" def __UpperCAmelCase ( self ): __a = self.to_dict() # get the default config dict __a = BitsAndBytesConfig().to_dict() __a = {} # only serialize values that differ from the default config for key, value in config_dict.items(): if value != default_config_dict[key]: __a = value return serializable_config_dict
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'trajectory_transformer' __UpperCAmelCase : Optional[Any] = ['past_key_values'] __UpperCAmelCase : int = { 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=100 , _a=5 , _a=1 , _a=1 , _a=249 , _a=6 , _a=17 , _a=25 , _a=4 , _a=4 , _a=128 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0006 , _a=512 , _a=0.02 , _a=1E-12 , _a=1 , _a=True , _a=1 , _a=50_256 , _a=50_256 , **_a , ): __a = vocab_size __a = action_weight __a = reward_weight __a = value_weight __a = max_position_embeddings __a = block_size __a = action_dim __a = observation_dim __a = transition_dim __a = learning_rate __a = n_layer __a = n_head __a = n_embd __a = embd_pdrop __a = attn_pdrop __a = resid_pdrop __a = initializer_range __a = layer_norm_eps __a = kaiming_initializer_range __a = use_cache super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
695
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
1
"""simple docstring""" from timeit import timeit lowercase_ = { "MALAYALAM": True, "String": False, "rotor": True, "level": True, "A": True, "BB": True, "ABC": False, "amanaplanacanalpanama": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def lowercase ( lowerCAmelCase__ : str ) -> bool: __a = 0 __a = len(lowerCAmelCase__ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def lowercase ( lowerCAmelCase__ : str ) -> bool: __a = len(lowerCAmelCase__ ) // 2 __a = len(lowerCAmelCase__ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ : str ) -> bool: if len(lowerCAmelCase__ ) <= 2: return True if s[0] == s[len(lowerCAmelCase__ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def lowercase ( lowerCAmelCase__ : str ) -> bool: return s == s[::-1] def lowercase ( lowerCAmelCase__ : str ) -> None: __a = f'''all({name}(key) is value for key, value in test_data.items())''' __a = f'''from __main__ import test_data, {name}''' __a = 500000 __a = timeit(stmt=lowerCAmelCase__ , setup=lowerCAmelCase__ , number=lowerCAmelCase__ ) print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F'''{key:21} {value}''') print("a man a plan a canal panama") # finished 500,000 runs in 0.46793 seconds benchmark_function("is_palindrome_slice") # finished 500,000 runs in 0.85234 seconds benchmark_function("is_palindrome") # finished 500,000 runs in 1.32028 seconds benchmark_function("is_palindrome_recursive") # finished 500,000 runs in 2.08679 seconds benchmark_function("is_palindrome_traversal")
695
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
1
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
1
"""simple docstring""" import pytest lowercase_ = "__dummy_dataset1__" lowercase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n" @pytest.fixture def lowercase ( ) -> Any: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase ( ) -> int: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Any: __a = dataset_loading_script_name __a = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=lowerCAmelCase__ ) __a = script_dir / f'''{script_name}.py''' with open(lowerCAmelCase__ , '''w''' ) as f: f.write(lowerCAmelCase__ ) return str(lowerCAmelCase__ )
695
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
1
"""simple docstring""" import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification lowercase_ = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co lowercase_ = "main" # Default branch name lowercase_ = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) lowercase_ = "aaaaaaa" # This commit does not exist, so we should 404. lowercase_ = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes lowercase_ = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def lowercase ( ) -> List[Any]: print('''Welcome!''' ) yield print('''Bye!''' ) @contextlib.contextmanager def lowercase ( ) -> Dict: print('''Bonjour!''' ) yield print('''Au revoir!''' ) class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If the spec is missing, importlib would not be able to import the module dynamically. assert transformers.__spec__ is not None assert importlib.util.find_spec('''transformers''' ) is not None class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __UpperCAmelCase ( self , _a ): with ContextManagers([] ): print('''Transformers are awesome!''' ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __UpperCAmelCase ( self , _a ): with ContextManagers([context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' ) @unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO ) def __UpperCAmelCase ( self , _a ): with ContextManagers([context_fr(), context_en()] ): print('''Transformers are awesome!''' ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' ) @require_torch def __UpperCAmelCase ( self ): self.assertEqual(find_labels(_a ) , ['''labels'''] ) self.assertEqual(find_labels(_a ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_a ) , ['''start_positions''', '''end_positions'''] ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(_a ) , ['''labels'''] ) @require_tf def __UpperCAmelCase ( self ): self.assertEqual(find_labels(_a ) , ['''labels'''] ) self.assertEqual(find_labels(_a ) , ['''labels''', '''next_sentence_label'''] ) self.assertEqual(find_labels(_a ) , ['''start_positions''', '''end_positions'''] ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(_a ) , ['''labels'''] ) @require_flax def __UpperCAmelCase ( self ): # Flax models don't have labels self.assertEqual(find_labels(_a ) , [] ) self.assertEqual(find_labels(_a ) , [] ) self.assertEqual(find_labels(_a ) , [] ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' pass self.assertEqual(find_labels(_a ) , [] )
695
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. lowercase_ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) ) __a = self.transformer_dir shutil.copy( os.path.join(_a , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , ) def __UpperCAmelCase ( self ): __a = '''src/transformers''' shutil.rmtree(self.transformer_dir ) def __UpperCAmelCase ( self , _a , _a , _a , _a=None ): __a = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: __a = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result __a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) __a = black.format_str(_a , mode=_a ) __a = os.path.join(self.transformer_dir , '''new_code.py''' ) with open(_a , '''w''' , newline='''\n''' ) as f: f.write(_a ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_a ) with open(_a , '''r''' ) as f: self.assertTrue(f.read() , _a ) def __UpperCAmelCase ( self ): __a = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' ) self.assertEqual(_a , _a ) def __UpperCAmelCase ( self ): # Base copy consistency self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _a , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _a ) , ) # Copy consistency with a really long name __a = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , _a , _a ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _a , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _a ) , ) def __UpperCAmelCase ( self ): __a = check_copies.LOCALIZED_READMES['''README_zh-hans.md'''] __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),''' ''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**''' ''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders''' ''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang''' ''' Luong, Quoc V. Le, Christopher D. Manning.''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.''' ''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文''' ''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and''' ''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same''' ''' method has been applied to compress GPT2 into''' ''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into''' ''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),''' ''' Multilingual BERT into''' ''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German''' ''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自''' ''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather''' ''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,''' ''' Christopher D. Manning 发布。\n''' ) __a , __a = check_copies.convert_to_localized_md( _a , _a , localized_readme['''format_model_list'''] ) self.assertFalse(_a ) self.assertEqual(_a , _a ) __a , __a = check_copies.convert_to_localized_md( _a , _a , localized_readme['''format_model_list'''] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(_a ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the''' ''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for''' ''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong''' ''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and''' ''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __a = ( '''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the''' ''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of''' ''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian''' ''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n''' ) __a , __a = check_copies.convert_to_localized_md( _a , _a , localized_readme['''format_model_list'''] ) # Check if the model link is synchronized. self.assertEqual(_a , _a )
695
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> list[str]: return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : str ) -> List[str]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def lowercase ( lowerCAmelCase__ : dict[int, list[int]] ) -> list[tuple[int, int]]: __a = 0 __a = len(lowerCAmelCase__ ) # No of vertices in graph __a = [0] * n __a = [False] * n def dfs(lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ): __a = True __a = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , id_ ) __a = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge __a = min(low[at] , low[to] ) __a = [] for i in range(lowerCAmelCase__ ): if not visited[i]: dfs(lowerCAmelCase__ , -1 , lowerCAmelCase__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
695
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
1
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
1
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase_ = logging.get_logger(__name__) lowercase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : '''simple docstring''' __UpperCAmelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Model type selected in the list: ' + ', '.join(__SCREAMING_SNAKE_CASE )} ) __UpperCAmelCase : str = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) __UpperCAmelCase : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCAmelCase : int = field( default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) __UpperCAmelCase : int = field( default=6_4 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) __UpperCAmelCase : int = field( default=3_0 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) __UpperCAmelCase : bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) __UpperCAmelCase : float = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __UpperCAmelCase : int = field( default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) __UpperCAmelCase : int = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) __UpperCAmelCase : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[int] = 'train' __UpperCAmelCase : Dict = 'dev' class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : SquadDataTrainingArguments __UpperCAmelCase : List[SquadFeatures] __UpperCAmelCase : Split __UpperCAmelCase : bool def __init__( self , _a , _a , _a = None , _a = Split.train , _a = False , _a = None , _a = "pt" , ): __a = args __a = is_language_sensitive __a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(_a , _a ): try: __a = Split[mode] except KeyError: raise KeyError('''mode is not a valid split name''' ) __a = mode # Load data features from cache or dataset file __a = '''v2''' if args.version_2_with_negative else '''v1''' __a = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __a = cached_features_file + '''.lock''' with FileLock(_a ): if os.path.exists(_a ) and not args.overwrite_cache: __a = time.time() __a = torch.load(_a ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. __a = self.old_features['''features'''] __a = self.old_features.get('''dataset''' , _a ) __a = self.old_features.get('''examples''' , _a ) logger.info( f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in''' ''' future run''' ) else: if mode == Split.dev: __a = self.processor.get_dev_examples(args.data_dir ) else: __a = self.processor.get_train_examples(args.data_dir ) __a , __a = squad_convert_examples_to_features( examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , ) __a = time.time() torch.save( {'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _a , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self ): return len(self.features ) def __getitem__( self , _a ): # Convert to Tensors and build dataset __a = self.features[i] __a = torch.tensor(feature.input_ids , dtype=torch.long ) __a = torch.tensor(feature.attention_mask , dtype=torch.long ) __a = torch.tensor(feature.token_type_ids , dtype=torch.long ) __a = torch.tensor(feature.cls_index , dtype=torch.long ) __a = torch.tensor(feature.p_mask , dtype=torch.float ) __a = torch.tensor(feature.is_impossible , dtype=torch.float ) __a = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} ) if self.args.version_2_with_negative: inputs.update({'''is_impossible''': is_impossible} ) if self.is_language_sensitive: inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: __a = torch.tensor(feature.start_position , dtype=torch.long ) __a = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} ) return inputs
695
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
1
"""simple docstring""" def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> None: __a = len(lowerCAmelCase__ ) print('''The following activities are selected:''' ) # The first activity is always selected __a = 0 print(lowerCAmelCase__ , end=''',''' ) # Consider rest of the activities for j in range(lowerCAmelCase__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(lowerCAmelCase__ , end=''',''' ) __a = j if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = [1, 3, 0, 5, 8, 5] lowercase_ = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
695
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
1
"""simple docstring""" from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Tuple = 'autoformer' __UpperCAmelCase : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = [1, 2, 3, 4, 5, 6, 7] , _a = True , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 64 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = 32 , _a = 32 , _a = "gelu" , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a = True , _a=True , _a = 10 , _a = 25 , _a = 3 , **_a , ): # time series specific configuration __a = prediction_length __a = context_length if context_length is not None else prediction_length __a = distribution_output __a = loss __a = input_size __a = num_time_features __a = lags_sequence __a = scaling __a = num_dynamic_real_features __a = num_static_real_features __a = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( '''The cardinality should be a list of the same length as `num_static_categorical_features`''' ) __a = cardinality else: __a = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(_a ) != num_static_categorical_features: raise ValueError( '''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' ) __a = embedding_dimension else: __a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __a = num_parallel_samples # Transformer architecture configuration __a = input_size * len(self.lags_sequence ) + self._number_of_features __a = d_model __a = encoder_attention_heads __a = decoder_attention_heads __a = encoder_ffn_dim __a = decoder_ffn_dim __a = encoder_layers __a = decoder_layers __a = dropout __a = attention_dropout __a = activation_dropout __a = encoder_layerdrop __a = decoder_layerdrop __a = activation_function __a = init_std __a = use_cache # Autoformer __a = label_length __a = moving_average __a = autocorrelation_factor super().__init__(is_encoder_decoder=_a , **_a ) @property def __UpperCAmelCase ( self ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
695
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
1
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
1
"""simple docstring""" import argparse import os import re lowercase_ = "src/diffusers" # Pattern that looks at the indentation in a line. lowercase_ = re.compile(r"^(\s*)\S") # Pattern that matches `"key":" and puts `key` in group 0. lowercase_ = re.compile(r"^\s*\"([^\"]+)\":") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase_ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]") # Pattern that matches `"key",` and puts `key` in group 0. lowercase_ = re.compile(r"^\s*\"([^\"]+)\",\s*$") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase_ = re.compile(r"\[([^\]]+)\]") def lowercase ( lowerCAmelCase__ : Any ) -> str: __a = _re_indent.search(lowerCAmelCase__ ) return "" if search is None else search.groups()[0] def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]="" , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : int=None ) -> List[Any]: __a = 0 __a = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(lowerCAmelCase__ ): index += 1 __a = ['''\n'''.join(lines[:index] )] else: __a = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __a = [lines[index]] index += 1 while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(lowerCAmelCase__ ) ) if index < len(lowerCAmelCase__ ) - 1: __a = [lines[index + 1]] index += 1 else: __a = [] else: blocks.append('''\n'''.join(lowerCAmelCase__ ) ) __a = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowerCAmelCase__ ) > 0: blocks.append('''\n'''.join(lowerCAmelCase__ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowerCAmelCase__ ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowercase ( lowerCAmelCase__ : int ) -> Tuple: def _inner(lowerCAmelCase__ : int ): return key(lowerCAmelCase__ ).lower().replace('''_''' , '''''' ) return _inner def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple: # If no key is provided, we use a noop. def noop(lowerCAmelCase__ : Optional[int] ): return x if key is None: __a = noop # Constants are all uppercase, they go first. __a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()] # Functions begin with a lowercase, they go last. __a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()] __a = ignore_underscore(lowerCAmelCase__ ) return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Any: # This inner function sort imports between [ ]. def _replace(lowerCAmelCase__ : str ): __a = match.groups()[0] if "," not in imports: return f'''[{imports}]''' __a = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]" __a = import_statement.split('''\n''' ) if len(lowerCAmelCase__ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __a = 2 if lines[1].strip() == '''[''' else 1 __a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] ) __a = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowerCAmelCase__ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __a = _re_bracket_content.sub(_replace , lines[1] ) else: __a = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __a = keys[:-1] __a = get_indent(lines[1] ) + ''', '''.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) return "\n".join(lowerCAmelCase__ ) else: # Finally we have to deal with imports fitting on one line __a = _re_bracket_content.sub(_replace , lowerCAmelCase__ ) return import_statement def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=True ) -> Optional[int]: with open(lowerCAmelCase__ , '''r''' ) as f: __a = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __a = split_code_in_indented_blocks( lowerCAmelCase__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __a = main_blocks[block_idx] __a = block.split('''\n''' ) # Get to the start of the imports. __a = 0 while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __a = len(lowerCAmelCase__ ) else: line_idx += 1 if line_idx >= len(lowerCAmelCase__ ): continue # Ignore beginning and last line: they don't contain anything. __a = '''\n'''.join(block_lines[line_idx:-1] ) __a = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ ) # We have two categories of import key: list or _import_structure[key].append/extend __a = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None] __a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __a = 0 __a = [] for i in range(len(lowerCAmelCase__ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __a = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowerCAmelCase__ ) count += 1 # And we put our main block back together with its first and last line. __a = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowerCAmelCase__ ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowerCAmelCase__ , '''w''' ) as f: f.write('''\n'''.join(lowerCAmelCase__ ) ) def lowercase ( lowerCAmelCase__ : Tuple=True ) -> int: __a = [] for root, _, files in os.walk(lowerCAmelCase__ ): if "__init__.py" in files: __a = sort_imports(os.path.join(lowerCAmelCase__ , '''__init__.py''' ) , check_only=lowerCAmelCase__ ) if result: __a = [os.path.join(lowerCAmelCase__ , '''__init__.py''' )] if len(lowerCAmelCase__ ) > 0: raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") lowercase_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
695
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
1
"""simple docstring""" lowercase_ = 6_5_5_2_1 def lowercase ( lowerCAmelCase__ : str ) -> int: __a = 1 __a = 0 for plain_chr in plain_text: __a = (a + ord(lowerCAmelCase__ )) % MOD_ADLER __a = (b + a) % MOD_ADLER return (b << 16) | a
695
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
1
import requests def __lowercase ( snake_case, snake_case ): """simple docstring""" __magic_name__ :Dict = {'''Content-Type''': '''application/json'''} __magic_name__ :Union[str, Any] = requests.post(snake_case, json={'''text''': message_body}, headers=snake_case ) if response.status_code != 2_0_0: __magic_name__ :Any = ( '''Request to slack returned an error ''' f'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(snake_case ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
0
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCamelCase (_a , unittest.TestCase ): _lowercase = DiTPipeline _lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS _lowercase = PipelineTesterMixin.required_optional_params - { """latents""", """num_images_per_prompt""", """callback""", """callback_steps""", } _lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS _lowercase = False def snake_case_ ( self: Any ): '''simple docstring''' torch.manual_seed(0 ) __UpperCamelCase = TransformeraDModel( sample_size=16,num_layers=2,patch_size=4,attention_head_dim=8,num_attention_heads=2,in_channels=4,out_channels=8,attention_bias=A_,activation_fn='gelu-approximate',num_embeds_ada_norm=1000,norm_type='ada_norm_zero',norm_elementwise_affine=A_,) __UpperCamelCase = AutoencoderKL() __UpperCamelCase = DDIMScheduler() __UpperCamelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler} return components def snake_case_ ( self: Optional[Any],A_: Any,A_: int=0 ): '''simple docstring''' if str(A_ ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(A_ ) else: __UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ ) __UpperCamelCase = { 'class_labels': [1], 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = 'cpu' __UpperCamelCase = self.get_dummy_components() __UpperCamelCase = self.pipeline_class(**A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) __UpperCamelCase = self.get_dummy_inputs(A_ ) __UpperCamelCase = pipe(**A_ ).images __UpperCamelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape,(1, 16, 16, 3) ) __UpperCamelCase = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] ) __UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(A_,1E-3 ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' self._test_inference_batch_single_identical(relax_max_difference=A_,expected_max_diff=1E-3 ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',) def snake_case_ ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @require_torch_gpu @slow class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: str ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' ) pipe.to('cuda' ) __UpperCamelCase = ['vase', 'umbrella', 'white shark', 'white wolf'] __UpperCamelCase = pipe.get_label_ids(A_ ) __UpperCamelCase = pipe(A_,generator=A_,num_inference_steps=40,output_type='np' ).images for word, image in zip(A_,A_ ): __UpperCamelCase = load_numpy( F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-2 def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' ) __UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to('cuda' ) __UpperCamelCase = ['vase', 'umbrella'] __UpperCamelCase = pipe.get_label_ids(A_ ) __UpperCamelCase = torch.manual_seed(0 ) __UpperCamelCase = pipe(A_,generator=A_,num_inference_steps=25,output_type='np' ).images for word, image in zip(A_,A_ ): __UpperCamelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' F'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1E-1
1
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> YolosConfig: _A = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _A = 192 _A = 768 _A = 12 _A = 3 _A = [800, 1_333] _A = False elif yolos_name == "yolos_s_dWr": _A = 330 _A = 14 _A = 6 _A = 1_320 elif "yolos_s" in yolos_name: _A = 384 _A = 1_536 _A = 12 _A = 6 elif "yolos_b" in yolos_name: _A = [800, 1_344] _A = 91 _A = '''huggingface/label-files''' _A = '''coco-detection-id2label.json''' _A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) _A = {int(_snake_case ): v for k, v in idalabel.items()} _A = idalabel _A = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosConfig , _snake_case :bool = False ) -> Optional[int]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) _A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _A = in_proj_weight[: config.hidden_size, :] _A = in_proj_bias[: config.hidden_size] _A = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _A = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _A = in_proj_weight[-config.hidden_size :, :] _A = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> str: if "backbone" in name: _A = name.replace('''backbone''' , '''vit''' ) if "cls_token" in name: _A = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "det_token" in name: _A = name.replace('''det_token''' , '''embeddings.detection_tokens''' ) if "mid_pos_embed" in name: _A = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' ) if "pos_embed" in name: _A = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "blocks" in name: _A = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _A = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _A = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _A = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _A = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _A = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _A = name.replace('''mlp.fc2''' , '''output.dense''' ) if "class_embed" in name: _A = name.replace('''class_embed''' , '''class_labels_classifier''' ) if "bbox_embed" in name: _A = name.replace('''bbox_embed''' , '''bbox_predictor''' ) if "vit.norm" in name: _A = name.replace('''vit.norm''' , '''vit.layernorm''' ) return name def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosForObjectDetection ) -> dict: for key in orig_state_dict.copy().keys(): _A = orig_state_dict.pop(_snake_case ) if "qkv" in key: _A = key.split('''.''' ) _A = int(key_split[2] ) _A = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _A = val[:dim, :] _A = val[ dim : dim * 2, : ] _A = val[-dim:, :] else: _A = val[:dim] _A = val[dim : dim * 2] _A = val[-dim:] else: _A = val return orig_state_dict def SCREAMING_SNAKE_CASE_ ( ) -> torch.Tensor: _A = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str , _snake_case :str , _snake_case :bool = False ) -> Dict: _A = get_yolos_config(_snake_case ) # load original state_dict _A = torch.load(_snake_case , map_location='''cpu''' )['''model'''] # load 🤗 model _A = YolosForObjectDetection(_snake_case ) model.eval() _A = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by YolosImageProcessor _A = 800 if yolos_name != '''yolos_ti''' else 512 _A = YolosImageProcessor(format='''coco_detection''' , size=_snake_case ) _A = image_processor(images=prepare_img() , return_tensors='''pt''' ) _A = model(**_snake_case ) _A , _A = outputs.logits, outputs.pred_boxes _A , _A = None, None if yolos_name == "yolos_ti": _A = torch.tensor( [[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] ) _A = torch.tensor( [[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] ) elif yolos_name == "yolos_s_200_pre": _A = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] ) _A = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] ) elif yolos_name == "yolos_s_300_pre": _A = torch.tensor( [[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] ) _A = torch.tensor( [[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] ) elif yolos_name == "yolos_s_dWr": _A = torch.tensor( [[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] ) _A = torch.tensor( [[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] ) elif yolos_name == "yolos_base": _A = torch.tensor( [[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] ) _A = torch.tensor( [[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] ) else: raise ValueError(F'''Unknown yolos_name: {yolos_name}''' ) assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: _A = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''' ) _A = model_mapping[yolos_name] image_processor.push_to_hub(_snake_case , organization='''hustvl''' ) model.push_to_hub(_snake_case , organization='''hustvl''' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--yolos_name""", default="""yolos_s_200_pre""", type=str, help=( """Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',""" """ 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'.""" ), ) parser.add_argument( """--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
2
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy lowerCAmelCase : Dict = logging.get_logger(__name__) lowerCAmelCase : Tuple = { 'artists_file': 'artists.json', 'lyrics_file': 'lyrics.json', 'genres_file': 'genres.json', } lowerCAmelCase : Optional[Any] = { 'artists_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json', }, 'genres_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json', }, 'lyrics_file': { 'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json', }, } lowerCAmelCase : Optional[int] = { 'jukebox': 5_12, } class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_LYRIC_TOKENS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] def __init__( self , A_ , A_ , A_ , A_=["v3", "v2", "v2"] , A_=512 , A_=5 , A_="<|endoftext|>" , **A_ , )-> str: '''simple docstring''' UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token super().__init__( unk_token=A_ , n_genres=A_ , version=A_ , max_n_lyric_tokens=A_ , **A_ , ) UpperCamelCase = version UpperCamelCase = max_n_lyric_tokens UpperCamelCase = n_genres with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) with open(A_ , encoding='utf-8' ) as vocab_handle: UpperCamelCase = json.load(A_ ) UpperCamelCase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: UpperCamelCase = oov.replace(R'\-\'' , R'\-+\'' ) UpperCamelCase = regex.compile(A_ ) UpperCamelCase = {v: k for k, v in self.artists_encoder.items()} UpperCamelCase = {v: k for k, v in self.genres_encoder.items()} UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase_ ( self )-> str: '''simple docstring''' return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder ) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Dict: '''simple docstring''' UpperCamelCase = [self.artists_encoder.get(A_ , 0 ) for artist in list_artists] for genres in range(len(A_ ) ): UpperCamelCase = [self.genres_encoder.get(A_ , 0 ) for genre in list_genres[genres]] UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) UpperCamelCase = [[self.lyrics_encoder.get(A_ , 0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase_ ( self , A_ )-> Optional[Any]: '''simple docstring''' return list(A_ ) def UpperCAmelCase_ ( self , A_ , A_ , A_ , **A_ )-> Optional[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_for_tokenization(A_ , A_ , A_ ) UpperCamelCase = self._tokenize(A_ ) return artist, genre, lyrics def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ = False )-> Tuple[str, str, str, Dict[str, Any]]: '''simple docstring''' for idx in range(len(self.version ) ): if self.version[idx] == "v3": UpperCamelCase = artists[idx].lower() UpperCamelCase = [genres[idx].lower()] else: UpperCamelCase = self._normalize(artists[idx] ) + '.v2' UpperCamelCase = [ self._normalize(A_ ) + '.v2' for genre in genres[idx].split('_' ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' ) UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n' UpperCamelCase = {vocab[index]: index + 1 for index in range(len(A_ ) )} UpperCamelCase = 0 UpperCamelCase = len(A_ ) + 1 UpperCamelCase = self.vocab UpperCamelCase = {v: k for k, v in self.vocab.items()} UpperCamelCase = '' else: UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' ) UpperCamelCase = self._run_strip_accents(A_ ) UpperCamelCase = lyrics.replace('\\' , '\n' ) UpperCamelCase = self.out_of_vocab.sub('' , A_ ), [], [] return artists, genres, lyrics def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = unicodedata.normalize('NFD' , A_ ) UpperCamelCase = [] for char in text: UpperCamelCase = unicodedata.category(A_ ) if cat == "Mn": continue output.append(A_ ) return "".join(A_ ) def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' UpperCamelCase = ( [chr(A_ ) for i in range(ord('a' ) , ord('z' ) + 1 )] + [chr(A_ ) for i in range(ord('A' ) , ord('Z' ) + 1 )] + [chr(A_ ) for i in range(ord('0' ) , ord('9' ) + 1 )] + ['.'] ) UpperCamelCase = frozenset(A_ ) UpperCamelCase = re.compile(R'_+' ) UpperCamelCase = ''.join([c if c in accepted else '_' for c in text.lower()] ) UpperCamelCase = pattern.sub('_' , A_ ).strip('_' ) return text def UpperCAmelCase_ ( self , A_ )-> str: '''simple docstring''' return " ".join(A_ ) def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = False )-> Any: '''simple docstring''' if not isinstance(A_ , A_ ): UpperCamelCase = TensorType(A_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( 'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' ) import tensorflow as tf UpperCamelCase = tf.constant UpperCamelCase = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' ) import torch UpperCamelCase = torch.tensor UpperCamelCase = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' ) import jax.numpy as jnp # noqa: F811 UpperCamelCase = jnp.array UpperCamelCase = _is_jax else: UpperCamelCase = np.asarray UpperCamelCase = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: UpperCamelCase = [inputs] if not is_tensor(A_ ): UpperCamelCase = as_tensor(A_ ) except: # noqa E722 raise ValueError( 'Unable to create tensor, you should probably activate truncation and/or padding ' 'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' ) return inputs def __call__( self , A_ , A_ , A_="" , A_="pt" )-> BatchEncoding: '''simple docstring''' UpperCamelCase = [0, 0, 0] UpperCamelCase = [artist] * len(self.version ) UpperCamelCase = [genres] * len(self.version ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self.tokenize(A_ , A_ , A_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase = self._convert_token_to_id(A_ , A_ , A_ ) UpperCamelCase = [-INFINITY] * len(full_tokens[-1] ) UpperCamelCase = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A_ ) for i in range(len(self.version ) ) ] return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} ) def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]: '''simple docstring''' if not os.path.isdir(A_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=A_ ) ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=A_ ) ) UpperCamelCase = os.path.join( A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] ) with open(A_ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A_ ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> str: '''simple docstring''' UpperCamelCase = self.artists_decoder.get(A_ ) UpperCamelCase = [self.genres_decoder.get(A_ ) for genre in genres_index] UpperCamelCase = [self.lyrics_decoder.get(A_ ) for character in lyric_index] return artist, genres, lyrics
3
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
"""simple docstring""" import importlib.metadata import warnings from copy import deepcopy from packaging import version from ..utils import logging from .import_utils import is_accelerate_available, is_bitsandbytes_available if is_bitsandbytes_available(): import bitsandbytes as bnb import torch import torch.nn as nn from ..pytorch_utils import ConvaD if is_accelerate_available(): from accelerate import init_empty_weights from accelerate.utils import find_tied_parameters __UpperCamelCase : Dict = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None ): # Recurse if needed if "." in tensor_name: lowerCAmelCase = tensor_name.split('.' ) for split in splits[:-1]: lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if new_module is None: raise ValueError(F'{module} has no attribute {split}.' ) lowerCAmelCase = new_module lowerCAmelCase = splits[-1] if tensor_name not in module._parameters and tensor_name not in module._buffers: raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' ) lowerCAmelCase = tensor_name in module._buffers lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase ) if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None: raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' ) lowerCAmelCase = False lowerCAmelCase = False if is_buffer or not is_bitsandbytes_available(): lowerCAmelCase = False lowerCAmelCase = False else: lowerCAmelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit ) lowerCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams ) if is_abit or is_abit: lowerCAmelCase = module._parameters[tensor_name] if param.device.type != "cuda": if value is None: lowerCAmelCase = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , torch.Tensor ): lowerCAmelCase = value.to('cpu' ) if value.dtype == torch.inta: lowerCAmelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse( '0.37.2' ) if not is_abit_serializable: raise ValueError( 'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. ' 'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' ) else: lowerCAmelCase = torch.tensor(_UpperCAmelCase , device='cpu' ) # Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization. # Since weights are saved in the correct "orientation", we skip transposing when loading. if issubclass(module.source_cls , _UpperCAmelCase ) and fpaa_statistics is None: lowerCAmelCase = new_value.T lowerCAmelCase = old_value.__dict__ if is_abit: lowerCAmelCase = bnb.nn.IntaParams(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase ) elif is_abit: lowerCAmelCase = bnb.nn.Paramsabit(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase ) lowerCAmelCase = new_value if fpaa_statistics is not None: setattr(module.weight , 'SCB' , fpaa_statistics.to(_UpperCAmelCase ) ) else: if value is None: lowerCAmelCase = old_value.to(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , torch.Tensor ): lowerCAmelCase = value.to(_UpperCAmelCase ) else: lowerCAmelCase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase ) if is_buffer: lowerCAmelCase = new_value else: lowerCAmelCase = nn.Parameter(_UpperCAmelCase , requires_grad=old_value.requires_grad ) lowerCAmelCase = new_value def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=False ): for name, module in model.named_children(): if current_key_name is None: lowerCAmelCase = [] current_key_name.append(_UpperCAmelCase ) if (isinstance(_UpperCAmelCase , nn.Linear ) or isinstance(_UpperCAmelCase , _UpperCAmelCase )) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` if not any(key in '.'.join(_UpperCAmelCase ) for key in modules_to_not_convert ): with init_empty_weights(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase ,lowerCAmelCase = module.weight.shape else: lowerCAmelCase = module.in_features lowerCAmelCase = module.out_features if quantization_config.quantization_method() == "llm_int8": lowerCAmelCase = bnb.nn.LinearabitLt( _UpperCAmelCase , _UpperCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , ) lowerCAmelCase = True else: if ( quantization_config.llm_inta_skip_modules is not None and name in quantization_config.llm_inta_skip_modules ): pass else: lowerCAmelCase = bnb.nn.Linearabit( _UpperCAmelCase , _UpperCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , ) lowerCAmelCase = True # Store the module class in case we need to transpose the weight later lowerCAmelCase = type(_UpperCAmelCase ) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(_UpperCAmelCase ) if len(list(module.children() ) ) > 0: lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , has_been_replaced=_UpperCAmelCase , ) # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None ): lowerCAmelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ): warnings.warn( '`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _UpperCAmelCase , ) return replace_with_bnb_linear(*_UpperCAmelCase , **_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ): warnings.warn( '`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _UpperCAmelCase , ) return set_module_quantized_tensor_to_device(*_UpperCAmelCase , **_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ): lowerCAmelCase = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` tied_model.tie_weights() lowerCAmelCase = find_tied_parameters(_UpperCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(_UpperCAmelCase , _UpperCAmelCase ): lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: lowerCAmelCase = sum(_UpperCAmelCase , [] ) lowerCAmelCase = len(_UpperCAmelCase ) > 0 # Check if it is a base model lowerCAmelCase = not hasattr(_UpperCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head lowerCAmelCase = list(model.named_children() ) lowerCAmelCase = [list_modules[-1][0]] # add last module together with tied weights lowerCAmelCase = set(_UpperCAmelCase ) - set(_UpperCAmelCase ) lowerCAmelCase = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase ) # remove ".weight" from the keys lowerCAmelCase = ['.weight', '.bias'] lowerCAmelCase = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: lowerCAmelCase = name.replace(_UpperCAmelCase , '' ) filtered_module_names.append(_UpperCAmelCase ) return filtered_module_names
4
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int | float] , __lowerCamelCase :int , __lowerCamelCase :int ): if len(__lowerCamelCase ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(__lowerCamelCase ) or left < -len(__lowerCamelCase ) or right >= len(__lowerCamelCase ) or right < -len(__lowerCamelCase ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] _lowerCAmelCase = (left + right) >> 1 # the middle _lowerCAmelCase = find_max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # find max in range[left, mid] _lowerCAmelCase = find_max(__lowerCamelCase , mid + 1 , __lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
5
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = "open-llama" def __init__( self :Union[str, Any] , __A :Tuple=10_0000 , __A :Dict=4096 , __A :int=1_1008 , __A :Optional[int]=32 , __A :Optional[Any]=32 , __A :Dict="silu" , __A :List[str]=2048 , __A :Dict=0.0_2 , __A :Dict=1E-6 , __A :Union[str, Any]=True , __A :Any=0 , __A :List[Any]=1 , __A :Any=2 , __A :Optional[Any]=False , __A :Tuple=True , __A :Optional[int]=0.1 , __A :Tuple=0.1 , __A :str=True , __A :Union[str, Any]=True , __A :Any=None , **__A :Any , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = rms_norm_eps SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = kwargs.pop( """use_memorry_efficient_attention""" , __A ) SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_dropout_prob SCREAMING_SNAKE_CASE__ = use_stable_embedding SCREAMING_SNAKE_CASE__ = shared_input_output_embedding SCREAMING_SNAKE_CASE__ = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A , ) def _snake_case ( self :Optional[int] ) -> int: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ f'''got {self.rope_scaling}''' ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""type""" , __A ) SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""factor""" , __A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
6
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
"""simple docstring""" from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) # TODO Update this a = { '''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''', # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Dict = '''esm''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=768 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=1_026 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1E-1_2 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[str] , ): super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = emb_layer_norm_before _A = token_dropout _A = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('No esmfold_config supplied for folding model, using default values.' ) _A = EsmFoldConfig() elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = EsmFoldConfig(**_UpperCAmelCase ) _A = esmfold_config if vocab_list is None: logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' ) _A = get_default_vocab_list() else: _A = vocab_list else: _A = None _A = None if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _UpperCAmelCase ): raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = super().to_dict() if isinstance(self.esmfold_config , _UpperCAmelCase ): _A = self.esmfold_config.to_dict() return output @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = None UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : float = 0 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : int = 128 UpperCAmelCase : "TrunkConfig" = None def lowerCAmelCase_ ( self : Optional[int] ): if self.trunk is None: _A = TrunkConfig() elif isinstance(self.trunk , _UpperCAmelCase ): _A = TrunkConfig(**self.trunk ) def lowerCAmelCase_ ( self : Dict ): _A = asdict(self ) _A = self.trunk.to_dict() return output @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : int = 48 UpperCAmelCase : int = 1024 UpperCAmelCase : int = 128 UpperCAmelCase : int = 32 UpperCAmelCase : int = 32 UpperCAmelCase : int = 32 UpperCAmelCase : float = 0 UpperCAmelCase : float = 0 UpperCAmelCase : bool = False UpperCAmelCase : int = 4 UpperCAmelCase : Optional[int] = 128 UpperCAmelCase : "StructureModuleConfig" = None def lowerCAmelCase_ ( self : str ): if self.structure_module is None: _A = StructureModuleConfig() elif isinstance(self.structure_module , _UpperCAmelCase ): _A = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got' F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got' F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) _A = self.sequence_state_dim // self.sequence_head_width _A = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got' F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got' F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = asdict(self ) _A = self.structure_module.to_dict() return output @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : int = 384 UpperCAmelCase : int = 128 UpperCAmelCase : int = 16 UpperCAmelCase : int = 128 UpperCAmelCase : int = 12 UpperCAmelCase : int = 4 UpperCAmelCase : int = 8 UpperCAmelCase : float = 0.1 UpperCAmelCase : int = 8 UpperCAmelCase : int = 1 UpperCAmelCase : int = 2 UpperCAmelCase : int = 7 UpperCAmelCase : int = 10 UpperCAmelCase : float = 1E-8 UpperCAmelCase : float = 1E5 def lowerCAmelCase_ ( self : Optional[int] ): return asdict(self ) def _snake_case ( ) -> List[Any]: '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
7
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
'''simple docstring''' from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = SMALL_MODEL_IDENTIFIER __A : Optional[Any] = 'pt' __A : Optional[int] = 'tf' def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase) model_tf.save_pretrained(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = 'mock_framework' # Framework provided - return whatever the user provides __A : int = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : str = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase) __A : str = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase) __A : Union[str, Any] = FeaturesManager.determine_framework(_UpperCAmelCase) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase): __A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # PyTorch not in environment -> use TensorFlow __A : int = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : Any = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_tf) # Both in environment -> use PyTorch __A : List[Any] = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): __A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(_UpperCAmelCase , self.framework_pt) # Both not in environment -> raise error __A : Tuple = MagicMock(return_value=_UpperCAmelCase) __A : Tuple = MagicMock(return_value=_UpperCAmelCase) with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch( 'transformers.onnx.features.is_torch_available' , _UpperCAmelCase): with self.assertRaises(_UpperCAmelCase): __A : Optional[int] = FeaturesManager.determine_framework(self.test_model)
8
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''', # See all CANINE models at https://huggingface.co/models?filter=canine } class __lowerCAmelCase ( UpperCAmelCase_ ): """simple docstring""" A__ : str = "canine" def __init__( self : Tuple , _snake_case : Optional[Any]=7_68 , _snake_case : Optional[Any]=12 , _snake_case : int=12 , _snake_case : List[str]=30_72 , _snake_case : Any="gelu" , _snake_case : str=0.1 , _snake_case : List[Any]=0.1 , _snake_case : List[str]=1_63_84 , _snake_case : Optional[Any]=16 , _snake_case : Dict=0.02 , _snake_case : str=1E-12 , _snake_case : Dict=0 , _snake_case : Optional[Any]=0xE000 , _snake_case : Optional[Any]=0xE001 , _snake_case : Optional[int]=4 , _snake_case : int=4 , _snake_case : Optional[Any]=8 , _snake_case : Any=1_63_84 , _snake_case : Dict=1_28 , **_snake_case : Tuple , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case ) A__ = max_position_embeddings A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = initializer_range A__ = type_vocab_size A__ = layer_norm_eps # Character config: A__ = downsampling_rate A__ = upsampling_kernel_size A__ = num_hash_functions A__ = num_hash_buckets A__ = local_transformer_stride
9
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration _lowerCAmelCase = [ # tf -> hf ("/", "."), ("layer_", "layers."), ("kernel", "weight"), ("beta", "bias"), ("gamma", "weight"), ("pegasus", "model"), ] _lowerCAmelCase = [ (".output.dense", ".fc2"), ("intermediate.LayerNorm", "final_layer_norm"), ("intermediate.dense", "fc1"), ] _lowerCAmelCase = ( INIT_COMMON + [ ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.out_proj"), ("attention.self", "self_attn"), ("attention.encdec.LayerNorm", "encoder_attn_layer_norm"), ("attention.encdec_output.dense", "encoder_attn.out_proj"), ("attention.encdec", "encoder_attn"), ("key", "k_proj"), ("value", "v_proj"), ("query", "q_proj"), ("decoder.LayerNorm", "decoder.layernorm_embedding"), ] + END_COMMON ) _lowerCAmelCase = ( INIT_COMMON + [ ("embeddings.word_embeddings", "shared.weight"), ("embeddings.position_embeddings", "embed_positions.weight"), ("attention.self.LayerNorm", "self_attn_layer_norm"), ("attention.output.dense", "self_attn.output"), ("attention.self", "self_attn.self"), ("encoder.LayerNorm", "encoder.layernorm_embedding"), ] + END_COMMON ) _lowerCAmelCase = [ "encdec/key/bias", "encdec/query/bias", "encdec/value/bias", "self/key/bias", "self/query/bias", "self/value/bias", "encdec_output/dense/bias", "attention/output/dense/bias", ] def _snake_case ( __snake_case , __snake_case ): for tf_name, hf_name in patterns: _UpperCamelCase = k.replace(__snake_case , __snake_case ) return k def _snake_case ( __snake_case , __snake_case ): _UpperCamelCase = BigBirdPegasusConfig(**__snake_case ) _UpperCamelCase = BigBirdPegasusForConditionalGeneration(__snake_case ) _UpperCamelCase = torch_model.state_dict() _UpperCamelCase = {} # separating decoder weights _UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )} _UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )} for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ): _UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue _UpperCamelCase = DECODER_PATTERNS _UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case ) if new_k not in state_dict: raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _UpperCamelCase = v.T _UpperCamelCase = torch.from_numpy(__snake_case ) assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ): _UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE] if any(__snake_case ): continue _UpperCamelCase = REMAINING_PATTERNS _UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ): _UpperCamelCase = v.T _UpperCamelCase = torch.from_numpy(__snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" _UpperCamelCase = mapping['''model.embed_positions.weight'''] _UpperCamelCase = mapping.pop('''model.embed_positions.weight''' ) _UpperCamelCase , _UpperCamelCase = torch_model.load_state_dict(__snake_case , strict=__snake_case ) _UpperCamelCase = [ k for k in missing if k not in [ '''final_logits_bias''', '''model.encoder.embed_tokens.weight''', '''model.decoder.embed_tokens.weight''', '''lm_head.weight''', ] ] assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], f"""no matches found for the following tf keys {extra}""" return torch_model def _snake_case ( __snake_case ): _UpperCamelCase = tf.train.list_variables(__snake_case ) _UpperCamelCase = {} _UpperCamelCase = ['''global_step'''] for name, shape in tqdm(__snake_case , desc='''converting tf checkpoint to dict''' ): _UpperCamelCase = any(pat in name for pat in ignore_name ) if skip_key: continue _UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case ) _UpperCamelCase = array return tf_weights def _snake_case ( __snake_case , __snake_case , __snake_case ): _UpperCamelCase = get_tf_weights_as_numpy(__snake_case ) _UpperCamelCase = convert_bigbird_pegasus(__snake_case , __snake_case ) torch_model.save_pretrained(__snake_case ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables") parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.") _lowerCAmelCase = parser.parse_args() _lowerCAmelCase = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
10
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 lowercase_ = data_utils.TransfoXLTokenizer lowercase_ = data_utils.TransfoXLCorpus lowercase_ = data_utils lowercase_ = data_utils def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(__A , '''rb''') as fp: _a = pickle.load(__A , encoding='''latin1''') # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) _a = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file'''] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''') _a = corpus.vocab.__dict__ torch.save(__A , __A) _a = corpus.__dict__ corpus_dict_no_vocab.pop('''vocab''' , __A) _a = pytorch_dump_folder_path + '''/''' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''') torch.save(__A , __A) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model _a = os.path.abspath(__A) _a = os.path.abspath(__A) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''') # Initialise PyTorch model if transfo_xl_config_file == "": _a = TransfoXLConfig() else: _a = TransfoXLConfig.from_json_file(__A) print(F'''Building PyTorch model from configuration: {config}''') _a = TransfoXLLMHeadModel(__A) _a = load_tf_weights_in_transfo_xl(__A , __A , __A) # Save pytorch-model _a = os.path.join(__A , __A) _a = os.path.join(__A , __A) print(F'''Save PyTorch model to {os.path.abspath(__A)}''') torch.save(model.state_dict() , __A) print(F'''Save configuration file to {os.path.abspath(__A)}''') with open(__A , '''w''' , encoding='''utf-8''') as f: f.write(config.to_json_string()) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--tf_checkpoint_path", default="", type=str, help="An optional path to a TensorFlow checkpoint path to be converted.", ) parser.add_argument( "--transfo_xl_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--transfo_xl_dataset_file", default="", type=str, help="An optional dataset file to be converted in a vocabulary.", ) lowercase_ = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
11
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
def UpperCamelCase ( lowercase_ ) -> list: '''simple docstring''' for i in range(len(lowercase_ ) - 1 , 0 , -1 ): lowercase__ : Union[str, Any] = False for j in range(lowercase_ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase__ , lowercase__ : Tuple = unsorted[j - 1], unsorted[j] lowercase__ : str = True for j in range(lowercase_ ): if unsorted[j] > unsorted[j + 1]: lowercase__ , lowercase__ : List[Any] = unsorted[j + 1], unsorted[j] lowercase__ : Dict = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase__ : Dict = [int(item) for item in user_input.split(""",""")] print(f'''{cocktail_shaker_sort(unsorted) = }''')
12
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
'''simple docstring''' import numpy # List of input, output pairs A__ : Any = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) A__ : Union[str, Any] = (((515, 22, 13), 555), ((61, 35, 49), 150)) A__ : str = [2, 4, 1, 5] A__ : Dict = len(train_data) A__ : Tuple = 0.0_0_9 def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]="train" ) -> str: return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output( UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str: __lowerCamelCase : Optional[int] = 0 for i in range(len(UpperCAmelCase_ ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Tuple: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=m ) -> Dict: __lowerCamelCase : List[str] = 0 for i in range(UpperCAmelCase_ ): if index == -1: summation_value += _error(UpperCAmelCase_ ) else: summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index] return summation_value def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]: __lowerCamelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m return cost_derivative_value def UpperCAmelCase__ ( ) -> Optional[int]: global parameter_vector # Tune these values to set a tolerance value for predicted output __lowerCamelCase : List[str] = 0.000_002 __lowerCamelCase : str = 0 __lowerCamelCase : int = 0 while True: j += 1 __lowerCamelCase : List[Any] = [0, 0, 0, 0] for i in range(0 , len(UpperCAmelCase_ ) ): __lowerCamelCase : Any = get_cost_derivative(i - 1 ) __lowerCamelCase : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ): break __lowerCamelCase : Tuple = temp_parameter_vector print(('Number of iterations:', j) ) def UpperCAmelCase__ ( ) -> Tuple: for i in range(len(UpperCAmelCase_ ) ): print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
13
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class UpperCAmelCase_ : """simple docstring""" def __init__( self , _a , _a , _a = True , _a = False ) -> Optional[Any]: _a : Tuple = scheduler _a : List[Any] = optimizers if isinstance(_a , (list, tuple) ) else [optimizers] _a : Any = split_batches _a : Dict = step_with_optimizer _a : Tuple = GradientState() def __lowercase ( self , *_a , **_a ) -> int: if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_a , **_a ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_a , **_a ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step _a : Tuple = AcceleratorState().num_processes for _ in range(_a ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_a , **_a ) else: self.scheduler.step(*_a , **_a ) def __lowercase ( self ) -> int: return self.scheduler.get_last_lr() def __lowercase ( self ) -> Optional[int]: return self.scheduler.state_dict() def __lowercase ( self , _a ) -> Dict: self.scheduler.load_state_dict(_a ) def __lowercase ( self ) -> str: return self.scheduler.get_lr() def __lowercase ( self , *_a , **_a ) -> List[str]: return self.scheduler.print_lr(*_a , **_a )
14
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 A : Union[str, Any] = 0B101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 A : Any = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class A : '''simple docstring''' def __init__(self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = WATERMARK_BITS lowercase__ = WatermarkEncoder() self.encoder.set_watermark("""bits""" , self.watermark ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : torch.FloatTensor ) -> Optional[Any]: """simple docstring""" if images.shape[-1] < 256: return images lowercase__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ = [self.encoder.encode(_UpperCAmelCase , """dwtDct""" ) for image in images] lowercase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 ) lowercase__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
15
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
from collections.abc import Callable import numpy as np def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ): SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) ) SCREAMING_SNAKE_CASE = np.zeros((n + 1,) ) SCREAMING_SNAKE_CASE = ya SCREAMING_SNAKE_CASE = xa for k in range(A__ ): SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] ) SCREAMING_SNAKE_CASE = y[k] + ( (step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
16
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() UpperCAmelCase_ : Any = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
17
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
'''simple docstring''' from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ): '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path _lowerCAmelCase = quote(SCREAMING_SNAKE_CASE_ ) return hfh.hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" , revision=SCREAMING_SNAKE_CASE_ )
18
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
"""simple docstring""" def lowerCamelCase__ ( __snake_case, __snake_case ) -> int: """simple docstring""" _UpperCamelCase = '''''' for i in table: res += inp[i - 1] return res def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" return data[1:] + data[0] def lowerCamelCase__ ( __snake_case, __snake_case ) -> Tuple: """simple docstring""" _UpperCamelCase = '''''' for i in range(len(__snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[Any]: """simple docstring""" _UpperCamelCase = int('''0b''' + data[0] + data[-1], 2 ) _UpperCamelCase = int('''0b''' + data[1:3], 2 ) return bin(s[row][col] )[2:] def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = message[:4] _UpperCamelCase = message[4:] _UpperCamelCase = apply_table(__snake_case, __snake_case ) _UpperCamelCase = xor(__snake_case, __snake_case ) _UpperCamelCase = apply_sbox(__snake_case, temp[:4] ) # noqa: E741 _UpperCamelCase = apply_sbox(__snake_case, temp[4:] ) _UpperCamelCase = '''0''' * (2 - len(__snake_case )) + l # noqa: E741 _UpperCamelCase = '''0''' * (2 - len(__snake_case )) + r _UpperCamelCase = apply_table(l + r, __snake_case ) _UpperCamelCase = xor(__snake_case, __snake_case ) return temp + right if __name__ == "__main__": _a = input("""Enter 10 bit key: """) _a = input("""Enter 8 bit message: """) _a = [6, 3, 7, 4, 8, 5, 10, 9] _a = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6] _a = [2, 4, 3, 1] _a = [2, 6, 3, 1, 4, 8, 5, 7] _a = [4, 1, 3, 5, 7, 2, 8, 6] _a = [4, 1, 2, 3, 2, 3, 4, 1] _a = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] _a = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation _a = apply_table(key, paa_table) _a = temp[:5] _a = temp[5:] _a = left_shift(left) _a = left_shift(right) _a = apply_table(left + right, pa_table) _a = left_shift(left) _a = left_shift(right) _a = left_shift(left) _a = left_shift(right) _a = apply_table(left + right, pa_table) # encryption _a = apply_table(message, IP) _a = function(expansion, sa, sa, keya, temp) _a = temp[4:] + temp[:4] _a = function(expansion, sa, sa, keya, temp) _a = apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption _a = apply_table(CT, IP) _a = function(expansion, sa, sa, keya, temp) _a = temp[4:] + temp[:4] _a = function(expansion, sa, sa, keya, temp) _a = apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
19
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 _lowerCAmelCase: Any = sys.version_info >= (3, 10) def _lowercase( __a : int=None , __a : Any=None ): return field(default_factory=lambda: default , metadata=__a ) @dataclass class lowercase_ : snake_case =42 snake_case =42 snake_case =42 snake_case =42 @dataclass class lowercase_ : snake_case =42 snake_case =field(default='toto' , metadata={'help': 'help message'} ) @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' class lowercase_ (lowercase__ ): snake_case ='titi' snake_case ='toto' snake_case =42 @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =BasicEnum(self.foo) @dataclass class lowercase_ : snake_case ="toto" def __UpperCamelCase ( self) -> List[str]: a__ =MixedTypeEnum(self.foo) @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) @dataclass class lowercase_ : snake_case =list_field(default=[] ) snake_case =list_field(default=[1, 2, 3] ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) snake_case =list_field(default=[0.1, 0.2, 0.3] ) @dataclass class lowercase_ : snake_case =field() snake_case =field() snake_case =field() def __UpperCamelCase ( self) -> List[Any]: a__ =BasicEnum(self.required_enum) @dataclass class lowercase_ : snake_case =42 snake_case =field() snake_case =None snake_case =field(default='toto' , metadata={'help': 'help message'} ) snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] ) if is_python_no_less_than_3_10: @dataclass class lowercase_ : snake_case =False snake_case =True snake_case =None @dataclass class lowercase_ : snake_case =None snake_case =field(default=lowercase__ , metadata={'help': 'help message'} ) snake_case =None snake_case =list_field(default=[] ) snake_case =list_field(default=[] ) class lowercase_ (unittest.TestCase ): def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int: self.assertEqual(len(a._actions) , len(b._actions)) for x, y in zip(a._actions , b._actions): a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_)) del xx["type"], yy["type"] self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument('--bar' , type=lowercase_ , required=lowercase_) expected.add_argument('--baz' , type=lowercase_ , required=lowercase_) expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') self.argparsersEqual(lowercase_ , lowercase_) a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5'] ((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_) self.assertFalse(example.flag) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=42 , type=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Optional[Any]: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?') # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz') expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) a__ =[WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--no_baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', '--baz']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False']) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_)) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args_into_dataclasses([])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto) a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi) a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo) def __UpperCamelCase ( self) -> List[Any]: @dataclass class lowercase_ : snake_case ="toto" a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument( '--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , ) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(args.foo , 'toto') a__ =parser.parse_args(['--foo', 'titi']) self.assertEqual(args.foo , 'titi') a__ =parser.parse_args(['--foo', '42']) self.assertEqual(args.foo , 42) def __UpperCamelCase ( self) -> Optional[int]: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_) expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual( lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , ) a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split()) self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7])) def __UpperCamelCase ( self) -> Dict: a__ =argparse.ArgumentParser() expected.add_argument('--foo' , default=lowercase_ , type=lowercase_) expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message') expected.add_argument('--baz' , default=lowercase_ , type=lowercase_) expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_) expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_) a__ =[OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(lowercase_) for dataclass_type in dataclass_types: a__ =HfArgumentParser(lowercase_) self.argparsersEqual(lowercase_ , lowercase_) a__ =parser.parse_args([]) self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[])) a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split()) self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3])) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_) expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> str: a__ =HfArgumentParser(lowercase_) a__ =argparse.ArgumentParser() expected.add_argument('--foo' , type=lowercase_ , required=lowercase_) expected.add_argument( '--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , ) expected.add_argument('--opt' , type=lowercase_ , default=lowercase_) expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message') expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_) self.argparsersEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } a__ =parser.parse_dict(lowercase_)[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, 'extra': 42, } self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_) def __UpperCamelCase ( self) -> List[Any]: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_json') os.mkdir(lowercase_) with open(temp_local_path + '.json' , 'w+') as f: json.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Any: a__ =HfArgumentParser(lowercase_) a__ ={ 'foo': 12, 'bar': 3.14, 'baz': '42', 'flag': True, } with tempfile.TemporaryDirectory() as tmp_dir: a__ =os.path.join(lowercase_ , 'temp_yaml') os.mkdir(lowercase_) with open(temp_local_path + '.yaml' , 'w+') as f: yaml.dump(lowercase_ , lowercase_) a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0] a__ =BasicExample(**lowercase_) self.assertEqual(lowercase_ , lowercase_) def __UpperCamelCase ( self) -> Union[str, Any]: a__ =HfArgumentParser(lowercase_) self.assertIsNotNone(lowercase_)
20
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowerCAmelCase_ ( *lowerCamelCase ): if not isinstance(lowerCamelCase , lowerCamelCase ): __magic_name__ : Union[str, Any] =list(lowerCamelCase ) for i in range(len(lowerCamelCase ) ): __magic_name__ : Dict =None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowerCAmelCase_ ( lowerCamelCase ): __magic_name__ : List[str] =[ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(lowerCamelCase , lowerCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowerCAmelCase_ ( lowerCamelCase = None , lowerCamelCase = 128 ): if function is None: return functools.partial(lowerCamelCase , starting_batch_size=lowerCamelCase ) __magic_name__ : List[Any] =starting_batch_size def decorator(*lowerCamelCase , **lowerCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __magic_name__ : Optional[Any] =list(inspect.signature(lowerCamelCase ).parameters.keys() ) # Guard against user error if len(lowerCamelCase ) < (len(lowerCamelCase ) + 1): __magic_name__ : Optional[int] =""", """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F"Batch size was passed into `{function.__name__}` as the first argument when called." F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" ) while True: if batch_size == 0: raise RuntimeError("""No executable batch size found, reached zero.""" ) try: return function(lowerCamelCase , *lowerCamelCase , **lowerCamelCase ) except Exception as e: if should_reduce_batch_size(lowerCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
21
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
'''simple docstring''' def snake_case_ (UpperCamelCase : int = 200_0000 ): '''simple docstring''' _a = [0 for i in range(n + 1 )] _a = 1 _a = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , UpperCamelCase ): _a = 1 _a = 0 for i in range(UpperCamelCase ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(F'''{solution() = }''')
22
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer snake_case__ : List[str] = logging.get_logger(__name__) snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case__ : Any = { """vocab_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json""" }, """merges_file""": { """allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt""" }, } snake_case__ : str = {"""allegro/herbert-base-cased""": 5_1_4} snake_case__ : Union[str, Any] = {} class _a ( UpperCAmelCase__ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_INIT_CONFIGURATION A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = HerbertTokenizer def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase="</s>" , **_UpperCAmelCase , ) -> Optional[int]: super().__init__( _UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , **_UpperCAmelCase , ) def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.cls_token_id] UpperCamelCase_ = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]: UpperCamelCase_ = [self.sep_token_id] UpperCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]: UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase ) return tuple(_UpperCAmelCase )
23
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCamelCase (_lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float )-> np.array: '''simple docstring''' __snake_case = int(np.ceil((x_end - xa) / step_size ) ) __snake_case = np.zeros((n + 1,) ) __snake_case = ya __snake_case = xa for k in range(_lowerCamelCase ): __snake_case = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) __snake_case = y[k] + ( (step_size / 2) * (ode_func(_lowerCamelCase , y[k] ) + ode_func(x + step_size , _lowerCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
24
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
from ...configuration_utils import PretrainedConfig a_ = { 'google/tapas-base-finetuned-sqa': ( 'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json' ), 'google/tapas-base-finetuned-wtq': ( 'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json' ), 'google/tapas-base-finetuned-wikisql-supervised': ( 'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json' ), 'google/tapas-base-finetuned-tabfact': ( 'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json' ), } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='tapas' def __init__( self : int , a : Optional[Any]=3_0522 , a : Optional[Any]=768 , a : Dict=12 , a : str=12 , a : str=3072 , a : Optional[int]="gelu" , a : Optional[Any]=0.1 , a : Any=0.1 , a : List[str]=1024 , a : str=[3, 256, 256, 2, 256, 256, 10] , a : Tuple=0.02 , a : List[Any]=1e-12 , a : Tuple=0 , a : int=10.0 , a : Optional[Any]=0 , a : Optional[int]=1.0 , a : Optional[int]=None , a : List[Any]=1.0 , a : Optional[int]=False , a : int=None , a : Optional[int]=1.0 , a : List[Any]=1.0 , a : List[str]=False , a : int=False , a : Any="ratio" , a : Tuple=None , a : Optional[int]=None , a : List[str]=64 , a : str=32 , a : Union[str, Any]=False , a : Optional[Any]=True , a : Union[str, Any]=False , a : List[Any]=False , a : Optional[int]=True , a : int=False , a : List[Any]=None , a : Optional[int]=None , **a : int , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=a , **a ) # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : Any = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Any = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_sizes SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Any = layer_norm_eps # Fine-tuning task hyperparameters SCREAMING_SNAKE_CASE : Union[str, Any] = positive_label_weight SCREAMING_SNAKE_CASE : Union[str, Any] = num_aggregation_labels SCREAMING_SNAKE_CASE : int = aggregation_loss_weight SCREAMING_SNAKE_CASE : List[Any] = use_answer_as_supervision SCREAMING_SNAKE_CASE : List[str] = answer_loss_importance SCREAMING_SNAKE_CASE : Optional[int] = use_normalized_answer_loss SCREAMING_SNAKE_CASE : Dict = huber_loss_delta SCREAMING_SNAKE_CASE : List[str] = temperature SCREAMING_SNAKE_CASE : int = aggregation_temperature SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_cells SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_aggregation SCREAMING_SNAKE_CASE : Tuple = average_approximation_function SCREAMING_SNAKE_CASE : Optional[int] = cell_selection_preference SCREAMING_SNAKE_CASE : Optional[Any] = answer_loss_cutoff SCREAMING_SNAKE_CASE : int = max_num_rows SCREAMING_SNAKE_CASE : Tuple = max_num_columns SCREAMING_SNAKE_CASE : Optional[Any] = average_logits_per_cell SCREAMING_SNAKE_CASE : str = select_one_column SCREAMING_SNAKE_CASE : Any = allow_empty_column_selection SCREAMING_SNAKE_CASE : Tuple = init_cell_selection_weights_to_zero SCREAMING_SNAKE_CASE : Tuple = reset_position_index_per_cell SCREAMING_SNAKE_CASE : Union[str, Any] = disable_per_token_loss # Aggregation hyperparameters SCREAMING_SNAKE_CASE : str = aggregation_labels SCREAMING_SNAKE_CASE : Any = no_aggregation_label_index if isinstance(self.aggregation_labels , a ): SCREAMING_SNAKE_CASE : str = {int(a ): v for k, v in aggregation_labels.items()}
25
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor __UpperCamelCase = logging.get_logger(__name__) class _A ( __lowercase ): def __init__( self : int , *__magic_name__ : int , **__magic_name__ : Tuple ) -> None: """simple docstring""" warnings.warn( """The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use PerceiverImageProcessor instead.""" , __magic_name__ , ) super().__init__(*__magic_name__ , **__magic_name__ )
26
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer __A : Union[str, Any] = logging.get_logger(__name__) __A : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : Any = { "vocab_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt" ), "squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt", "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt" ), }, "tokenizer_file": { "squeezebert/squeezebert-uncased": ( "https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli": ( "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json" ), "squeezebert/squeezebert-mnli-headless": ( "https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json" ), }, } __A : Union[str, Any] = { "squeezebert/squeezebert-uncased": 512, "squeezebert/squeezebert-mnli": 512, "squeezebert/squeezebert-mnli-headless": 512, } __A : List[str] = { "squeezebert/squeezebert-uncased": {"do_lower_case": True}, "squeezebert/squeezebert-mnli": {"do_lower_case": True}, "squeezebert/squeezebert-mnli-headless": {"do_lower_case": True}, } class lowerCamelCase( __snake_case ): '''simple docstring''' __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = PRETRAINED_INIT_CONFIGURATION __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = SqueezeBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) _A = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars ): _A = getattr(snake_case_ , normalizer_state.pop('type' ) ) _A = do_lower_case _A = strip_accents _A = tokenize_chinese_chars _A = normalizer_class(**snake_case_ ) _A = do_lower_case def lowerCAmelCase__ ( self , snake_case_ , snake_case_=None ): _A = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ): _A = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
27
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
'''simple docstring''' import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "spiece.model"} UpperCamelCase_ = { "vocab_file": { "AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model", "AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model", } } UpperCamelCase_ = { "AI-Sweden/gpt-sw3-126m": 2_0_4_8, "AI-Sweden/gpt-sw3-350m": 2_0_4_8, "AI-Sweden/gpt-sw3-1.6b": 2_0_4_8, "AI-Sweden/gpt-sw3-6.7b": 2_0_4_8, "AI-Sweden/gpt-sw3-20b": 2_0_4_8, } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = VOCAB_FILES_NAMES A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self, A, A=False, A=False, A=False, A=None, A=None, A=None, A=None, A = None, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('name_or_path' ) if name_or_path is None: logger.warning( 'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,' ' you are testing the model, this can safely be ignored' ) SCREAMING_SNAKE_CASE : Dict = 'None' # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing SCREAMING_SNAKE_CASE : Optional[Any] = '<|endoftext|>' if eos_token is None else eos_token SCREAMING_SNAKE_CASE : int = '<unk>' if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: SCREAMING_SNAKE_CASE : Dict = unk_token if pad_token is None else pad_token SCREAMING_SNAKE_CASE : List[Any] = eos_token if bos_token is None else bos_token else: SCREAMING_SNAKE_CASE : Optional[int] = '<pad>' if pad_token is None else pad_token SCREAMING_SNAKE_CASE : int = '<s>' if bos_token is None else bos_token super().__init__( do_lower_case=A, remove_space=A, keep_accents=A, bos_token=A, eos_token=A, unk_token=A, pad_token=A, sp_model_kwargs=self.sp_model_kwargs, **A, ) SCREAMING_SNAKE_CASE : Tuple = do_lower_case SCREAMING_SNAKE_CASE : Optional[Any] = remove_space SCREAMING_SNAKE_CASE : List[Any] = keep_accents SCREAMING_SNAKE_CASE : Tuple = vocab_file SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # Used for whitespace normalization in input texts # fmt : off SCREAMING_SNAKE_CASE : Any = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', '„'} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing SCREAMING_SNAKE_CASE : str = re.compile( F"[{''.join(map(A, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8_203] ) )}]" ) def __getstate__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.__dict__.copy() SCREAMING_SNAKE_CASE : Optional[int] = None return state def __setstate__( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE : Optional[Any] = {} SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase_ ( self ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.non_printing_characters_re.sub('', A ) # Normalize whitespaces SCREAMING_SNAKE_CASE : Any = ''.join([char if char not in self.whitespaces else ' ' for char in text] ) # NFC Unicode normalization SCREAMING_SNAKE_CASE : List[str] = unicodedata.normalize('NFC', A ) return text def UpperCamelCase_ ( self, A, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.preprocess_text(A ) return self.sp_model.encode(A, out_type=A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.sp_model.PieceToId(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.sp_model.IdToPiece(A ) @staticmethod def UpperCamelCase_ ( A ): '''simple docstring''' return out_string def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [] SCREAMING_SNAKE_CASE : str = '' SCREAMING_SNAKE_CASE : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token SCREAMING_SNAKE_CASE : str = True SCREAMING_SNAKE_CASE : List[str] = [] else: current_sub_tokens.append(A ) SCREAMING_SNAKE_CASE : int = False out_string += self.sp_model.decode(A ) return out_string def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self, A, A = None ): '''simple docstring''' if not os.path.isdir(A ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE : Any = os.path.join( A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, A ) elif not os.path.isfile(self.vocab_file ): with open(A, 'wb' ) as fi: SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def UpperCamelCase_ ( self, A, A = False ): '''simple docstring''' if isinstance(A, A ): SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_text(A ) SCREAMING_SNAKE_CASE : Tuple = self.sp_model.encode(A ) else: SCREAMING_SNAKE_CASE : List[Any] = [self.preprocess_text(A ) for t in text] SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.encode(A ) if return_tensors is True or return_tensors == "pt": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(A ) return token_ids def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.sp_model.decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()] SCREAMING_SNAKE_CASE : Any = ( F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(A ) + F"{self.bos_token}Bot:" ) return self.encode(text=A )
28
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) A_ = None A_ = { """7B""": 1_1008, """13B""": 1_3824, """30B""": 1_7920, """65B""": 2_2016, """70B""": 2_8672, } A_ = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ,lowerCAmelCase__=256 ): return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def lowercase ( lowerCAmelCase__ ): with open(lowerCAmelCase__ ,'''r''' ) as f: return json.load(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): with open(lowerCAmelCase__ ,'''w''' ) as f: json.dump(lowerCAmelCase__ ,lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ): os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''tmp''' ) os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) lowerCamelCase_ = read_json(os.path.join(lowerCAmelCase__ ,'''params.json''' ) ) lowerCamelCase_ = NUM_SHARDS[model_size] lowerCamelCase_ = params['''n_layers'''] lowerCamelCase_ = params['''n_heads'''] lowerCamelCase_ = n_heads // num_shards lowerCamelCase_ = params['''dim'''] lowerCamelCase_ = dim // n_heads lowerCamelCase_ = 10_000.0 lowerCamelCase_ = 1.0 / (base ** (torch.arange(0 ,lowerCAmelCase__ ,2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCamelCase_ = params['''n_kv_heads'''] # for GQA / MQA lowerCamelCase_ = n_heads_per_shard // num_key_value_heads lowerCamelCase_ = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCamelCase_ = n_heads lowerCamelCase_ = n_heads_per_shard lowerCamelCase_ = dim # permute for sliced rotary def permute(lowerCAmelCase__ ,lowerCAmelCase__=n_heads ,lowerCAmelCase__=dim ,lowerCAmelCase__=dim ): return w.view(lowerCAmelCase__ ,dima // n_heads // 2 ,2 ,lowerCAmelCase__ ).transpose(1 ,2 ).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCamelCase_ = torch.load(os.path.join(lowerCAmelCase__ ,'''consolidated.00.pth''' ) ,map_location='''cpu''' ) else: # Sharded lowerCamelCase_ = [ torch.load(os.path.join(lowerCAmelCase__ ,f"consolidated.{i:02d}.pth" ) ,map_location='''cpu''' ) for i in range(lowerCAmelCase__ ) ] lowerCamelCase_ = 0 lowerCamelCase_ = {'''weight_map''': {}} for layer_i in range(lowerCAmelCase__ ): lowerCamelCase_ = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCamelCase_ = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCamelCase_ = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } lowerCamelCase_ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ) ] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ) ] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,) lowerCamelCase_ = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) for i in range(lowerCAmelCase__ ) ] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(lowerCAmelCase__ )] ,dim=1 ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(lowerCAmelCase__ )] ,dim=0 ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(lowerCAmelCase__ )] ,dim=1 ) lowerCamelCase_ = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(lowerCAmelCase__ )] ,dim=0 ) lowerCamelCase_ = inv_freq for k, v in state_dict.items(): lowerCamelCase_ = filename param_count += v.numel() torch.save(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ) lowerCamelCase_ = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCamelCase_ = { '''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''], '''model.norm.weight''': loaded['''norm.weight'''], '''lm_head.weight''': loaded['''output.weight'''], } else: lowerCamelCase_ = { '''model.norm.weight''': loaded[0]['''norm.weight'''], '''model.embed_tokens.weight''': torch.cat( [loaded[i]['''tok_embeddings.weight'''] for i in range(lowerCAmelCase__ )] ,dim=1 ), '''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowerCAmelCase__ )] ,dim=0 ), } for k, v in state_dict.items(): lowerCamelCase_ = filename param_count += v.numel() torch.save(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) ) # Write configs lowerCamelCase_ = {'''total_size''': param_count * 2} write_json(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin.index.json''' ) ) lowerCamelCase_ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1 lowerCamelCase_ = params['''multiple_of'''] if '''multiple_of''' in params else 256 lowerCamelCase_ = LlamaConfig( hidden_size=lowerCAmelCase__ ,intermediate_size=compute_intermediate_size(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,num_attention_heads=params['''n_heads'''] ,num_hidden_layers=params['''n_layers'''] ,rms_norm_eps=params['''norm_eps'''] ,num_key_value_heads=lowerCAmelCase__ ,) config.save_pretrained(lowerCAmelCase__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('''Loading the checkpoint in a Llama model.''' ) lowerCamelCase_ = LlamaForCausalLM.from_pretrained(lowerCAmelCase__ ,torch_dtype=torch.floataa ,low_cpu_mem_usage=lowerCAmelCase__ ) # Avoid saving this as part of the config. del model.config._name_or_path print('''Saving in the Transformers format.''' ) model.save_pretrained(lowerCAmelCase__ ,safe_serialization=lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ): # Initialize the tokenizer based on the `spm` model lowerCamelCase_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) lowerCamelCase_ = tokenizer_class(lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) def lowercase ( ): lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument( '''--input_dir''' ,help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' ,) parser.add_argument( '''--model_size''' ,choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] ,) parser.add_argument( '''--output_dir''' ,help='''Location to write HF model and tokenizer''' ,) parser.add_argument('''--safe_serialization''' ,type=lowerCAmelCase__ ,help='''Whether or not to save using `safetensors`.''' ) lowerCamelCase_ = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,) lowerCamelCase_ = os.path.join(args.input_dir ,'''tokenizer.model''' ) write_tokenizer(args.output_dir ,lowerCAmelCase__ ) if __name__ == "__main__": main()
29
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase , _lowercase=False , _lowercase=False , _lowercase=False ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' for i in range(config.num_hidden_layers ): UpperCAmelCase_ : List[str] = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase_ : List[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase_ : Tuple = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[: config.hidden_size] UpperCAmelCase_ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase_ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase_ : Optional[int] = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : str = dct.pop(_lowercase ) UpperCAmelCase_ : Dict = val @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowercase ) UpperCAmelCase_ : int = False UpperCAmelCase_ : str = False UpperCAmelCase_ : int = False UpperCAmelCase_ : Dict = False if "vqa" in checkpoint_url: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : str = 3129 UpperCAmelCase_ : List[str] = '''huggingface/label-files''' UpperCAmelCase_ : List[Any] = '''vqa2-id2label.json''' UpperCAmelCase_ : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase_ : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : int = idalabel UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()} UpperCAmelCase_ : Optional[Any] = ViltForQuestionAnswering(_lowercase ) elif "nlvr" in checkpoint_url: UpperCAmelCase_ : Optional[Any] = True UpperCAmelCase_ : List[str] = 2 UpperCAmelCase_ : Any = {0: '''False''', 1: '''True'''} UpperCAmelCase_ : Optional[int] = {v: k for k, v in config.idalabel.items()} UpperCAmelCase_ : int = 3 UpperCAmelCase_ : Optional[int] = ViltForImagesAndTextClassification(_lowercase ) elif "irtr" in checkpoint_url: UpperCAmelCase_ : List[Any] = True UpperCAmelCase_ : Tuple = ViltForImageAndTextRetrieval(_lowercase ) elif "mlm_itm" in checkpoint_url: UpperCAmelCase_ : List[str] = True UpperCAmelCase_ : Any = ViltForMaskedLM(_lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys UpperCAmelCase_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''state_dict'''] UpperCAmelCase_ : int = create_rename_keys(_lowercase , _lowercase , _lowercase , _lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase ) if mlm_model or irtr_model: UpperCAmelCase_ : Any = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(_lowercase , _lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: UpperCAmelCase_, UpperCAmelCase_ : int = model.load_state_dict(_lowercase , strict=_lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(_lowercase ) # Define processor UpperCAmelCase_ : Dict = ViltImageProcessor(size=384 ) UpperCAmelCase_ : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' ) UpperCAmelCase_ : Optional[int] = ViltProcessor(_lowercase , _lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: UpperCAmelCase_ : int = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_lowercase ).raw ) UpperCAmelCase_ : Any = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_lowercase ).raw ) UpperCAmelCase_ : Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) UpperCAmelCase_ : Tuple = processor(_lowercase , _lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : Optional[int] = processor(_lowercase , _lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : Tuple = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: UpperCAmelCase_ : str = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=_lowercase ).raw ) if mlm_model: UpperCAmelCase_ : List[str] = '''a bunch of [MASK] laying on a [MASK].''' else: UpperCAmelCase_ : Optional[Any] = '''How many cats are there?''' UpperCAmelCase_ : str = processor(_lowercase , _lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : Any = model(**_lowercase ) # Verify outputs if mlm_model: UpperCAmelCase_ : Optional[int] = torch.Size([1, 11, 30522] ) UpperCAmelCase_ : str = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" UpperCAmelCase_ : str = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: UpperCAmelCase_ : List[str] = torch.Size([1, 3129] ) UpperCAmelCase_ : Union[str, Any] = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1E-4 ) # verify vqa prediction equals "2" UpperCAmelCase_ : List[str] = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: UpperCAmelCase_ : Union[str, Any] = torch.Size([1, 2] ) UpperCAmelCase_ : List[str] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt', type=str, help='URL of the checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
30
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ): return F"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy" def lowerCAmelCase_ ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def lowerCAmelCase_ ( self : int , _lowerCAmelCase : int=0 , _lowerCAmelCase : Dict=(4, 4, 64, 64) , _lowerCAmelCase : List[str]=False ): SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE_ = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return image def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" ): SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE_ = 'bf16' if fpaa else None SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = FlaxUNetaDConditionModel.from_pretrained( _lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase ) return model, params def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : List[str]=(4, 77, 768) , _lowerCAmelCase : List[str]=False ): SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa SCREAMING_SNAKE_CASE_ = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_latents(_lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 77, 1_024) , fpaa=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = model.apply( {'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample assert sample.shape == latents.shape SCREAMING_SNAKE_CASE_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ = jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
31
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
import os import time import numpy as np import onnxruntime as ort UpperCAmelCase_ = "1" UpperCAmelCase_ = "0" UpperCAmelCase_ = "1" UpperCAmelCase_ = ort.SessionOptions() UpperCAmelCase_ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") UpperCAmelCase_ = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] UpperCAmelCase_ = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) UpperCAmelCase_ = ort.RunOptions() UpperCAmelCase_ = 1_28 UpperCAmelCase_ = 1 UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa) UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") UpperCAmelCase_ = time.time() UpperCAmelCase_ = 20_00 UpperCAmelCase_ = {} for iter in range(max_iters): UpperCAmelCase_ = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters))
32
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : str = (CMStochasticIterativeScheduler,) __lowercase : List[str] = 10 def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ): snake_case__ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } config.update(**_a ) return config def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = 10 snake_case__ = self.get_scheduler_config() snake_case__ = self.scheduler_classes[0](**_a ) scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps[0] snake_case__ = scheduler.timesteps[1] snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample snake_case__ = scheduler.step(_a , _a , _a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE__ ( self:Any ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=_a ) def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = 1 scheduler.set_timesteps(_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(_a ): # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 192.7614 ) < 1e-2 assert abs(result_mean.item() - 0.2510 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [1_06, 0] scheduler.set_timesteps(timesteps=_a ) snake_case__ = scheduler.timesteps snake_case__ = torch.manual_seed(0 ) snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input snake_case__ = scheduler.scale_model_input(_a , _a ) # 2. predict noise residual snake_case__ = model(_a , _a ) # 3. predict previous sample x_t-1 snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample snake_case__ = pred_prev_sample snake_case__ = torch.sum(torch.abs(_a ) ) snake_case__ = torch.mean(torch.abs(_a ) ) assert abs(result_sum.item() - 347.6357 ) < 1e-2 assert abs(result_mean.item() - 0.4527 ) < 1e-3 def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 15, 0] with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Any ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [39, 30, 12, 1, 0] snake_case__ = len(_a ) with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**_a ) snake_case__ = [scheduler.config.num_train_timesteps] with self.assertRaises( _a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=_a )
33
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = (UniPCMultistepScheduler,) A_ = (('''num_inference_steps''', 25),) def UpperCAmelCase__ ( self , **lowerCamelCase_) -> int: UpperCamelCase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**lowerCamelCase_) return config def UpperCAmelCase__ ( self , lowerCamelCase_=0 , **lowerCamelCase_) -> int: UpperCamelCase = dict(self.forward_default_kwargs) UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_) UpperCamelCase = scheduler_class.from_pretrained(lowerCamelCase_) new_scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residuals UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase , UpperCamelCase = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1): UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample UpperCamelCase = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , lowerCamelCase_=0 , **lowerCamelCase_) -> Any: UpperCamelCase = dict(self.forward_default_kwargs) UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**lowerCamelCase_) scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residuals (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_) UpperCamelCase = scheduler_class.from_pretrained(lowerCamelCase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_) # copy over dummy past residual (must be after setting timesteps) UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order] UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample UpperCamelCase = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def UpperCAmelCase__ ( self , lowerCamelCase_=None , **lowerCamelCase_) -> List[Any]: if scheduler is None: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = 1_0 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_) for i, t in enumerate(scheduler.timesteps): UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample return sample def UpperCAmelCase__ ( self) -> Optional[Any]: UpperCamelCase = dict(self.forward_default_kwargs) UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_) for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = self.dummy_sample UpperCamelCase = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , '''set_timesteps'''): scheduler.set_timesteps(lowerCamelCase_) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , '''set_timesteps'''): UpperCamelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10] UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order] UpperCamelCase = scheduler.timesteps[5] UpperCamelCase = scheduler.timesteps[6] UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def UpperCAmelCase__ ( self) -> int: # make sure that iterating over schedulers with same config names gives same results # for defaults UpperCamelCase = UniPCMultistepScheduler(**self.get_scheduler_config()) UpperCamelCase = self.full_loop(scheduler=lowerCamelCase_) UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.2464) < 1e-3 UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config) UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config) UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config) UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config) UpperCamelCase = self.full_loop(scheduler=lowerCamelCase_) UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.2464) < 1e-3 def UpperCAmelCase__ ( self) -> Optional[Any]: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_) def UpperCAmelCase__ ( self) -> Optional[Any]: self.check_over_configs(thresholding=lowerCamelCase_) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def UpperCAmelCase__ ( self) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_) def UpperCAmelCase__ ( self) -> Tuple: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) UpperCamelCase = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_).any(), "Samples have nan numbers" def UpperCAmelCase__ ( self) -> Optional[Any]: self.check_over_configs(lower_order_final=lowerCamelCase_) self.check_over_configs(lower_order_final=lowerCamelCase_) def UpperCAmelCase__ ( self) -> List[Any]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0) def UpperCAmelCase__ ( self) -> List[Any]: UpperCamelCase = self.full_loop() UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.2464) < 1e-3 def UpperCAmelCase__ ( self) -> Tuple: UpperCamelCase = self.full_loop(prediction_type='''v_prediction''') UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_)) assert abs(result_mean.item() - 0.1014) < 1e-3 def UpperCAmelCase__ ( self) -> str: UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0) UpperCamelCase = scheduler_class(**lowerCamelCase_) UpperCamelCase = 1_0 UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_) for i, t in enumerate(scheduler.timesteps): UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_) UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample assert sample.dtype == torch.floataa def UpperCAmelCase__ ( self , **lowerCamelCase_) -> str: for scheduler_class in self.scheduler_classes: UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_) UpperCamelCase = scheduler_class(**lowerCamelCase_) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
34
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
from timeit import timeit def a ( A__ ) -> int: '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0 while number: number &= number - 1 result += 1 return result def a ( A__ ) -> int: '''simple docstring''' if number < 0: raise ValueError('''the value of input must not be negative''' ) SCREAMING_SNAKE_CASE__ : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a ( ) -> None: '''simple docstring''' def do_benchmark(A__ ) -> None: SCREAMING_SNAKE_CASE__ : List[Any] = '''import __main__ as z''' print(f"""Benchmark when {number = }:""" ) print(f"""{get_set_bits_count_using_modulo_operator(A__ ) = }""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=A__ ) print(f"""timeit() runs in {timing} seconds""" ) print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(A__ ) = }""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=A__ , ) print(f"""timeit() runs in {timing} seconds""" ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(A__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
35
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def lowercase ( __A : Union[str, Any] ) -> Any: '''simple docstring''' if "cls_token" in name: snake_case : List[str] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: snake_case : Dict = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: snake_case : List[str] = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: snake_case : Optional[Any] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case : Any = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: snake_case : Optional[int] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: snake_case : Optional[Any] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: snake_case : int = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: snake_case : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case : Tuple = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case : Tuple = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case : Dict = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: snake_case : Union[str, Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: snake_case : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: snake_case : Optional[Any] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: snake_case : List[Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: snake_case : Optional[Any] = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def lowercase ( __A : Tuple , __A : Optional[int] ) -> Tuple: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case : Any = orig_state_dict.pop(__A ) if "qkv" in key: snake_case : List[Any] = key.split(""".""" ) snake_case : int = int(key_split[1] ) if "decoder_blocks" in key: snake_case : int = config.decoder_hidden_size snake_case : Union[str, Any] = """decoder.decoder_layers.""" if "weight" in key: snake_case : Optional[Any] = val[:dim, :] snake_case : Tuple = val[dim : dim * 2, :] snake_case : Optional[int] = val[-dim:, :] elif "bias" in key: snake_case : Union[str, Any] = val[:dim] snake_case : int = val[dim : dim * 2] snake_case : Optional[Any] = val[-dim:] else: snake_case : List[str] = config.hidden_size snake_case : List[str] = """vit.encoder.layer.""" if "weight" in key: snake_case : Any = val[:dim, :] snake_case : int = val[dim : dim * 2, :] snake_case : Union[str, Any] = val[-dim:, :] elif "bias" in key: snake_case : Optional[Any] = val[:dim] snake_case : int = val[dim : dim * 2] snake_case : Optional[int] = val[-dim:] else: snake_case : Optional[Any] = val return orig_state_dict def lowercase ( __A : Tuple , __A : str ) -> List[Any]: '''simple docstring''' snake_case : Optional[int] = ViTMAEConfig() if "large" in checkpoint_url: snake_case : List[str] = 1024 snake_case : Optional[int] = 4096 snake_case : Optional[int] = 24 snake_case : Tuple = 16 elif "huge" in checkpoint_url: snake_case : Dict = 14 snake_case : int = 1280 snake_case : Dict = 5120 snake_case : List[str] = 32 snake_case : Optional[Any] = 16 snake_case : str = ViTMAEForPreTraining(__A ) snake_case : Optional[int] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" )["""model"""] snake_case : Any = ViTMAEImageProcessor(size=config.image_size ) snake_case : Tuple = convert_state_dict(__A , __A ) model.load_state_dict(__A ) model.eval() snake_case : Tuple = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" snake_case : Union[str, Any] = Image.open(requests.get(__A , stream=__A ).raw ) snake_case : Dict = ViTMAEImageProcessor(size=config.image_size ) snake_case : str = image_processor(images=__A , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) snake_case : List[str] = model(**__A ) snake_case : str = outputs.logits if "large" in checkpoint_url: snake_case : str = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: snake_case : List[Any] = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: snake_case : Optional[int] = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": __lowercase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __lowercase : Optional[Any] = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
36
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
from __future__ import annotations from collections import deque class A__ : """simple docstring""" def __init__( self : Any , lowerCamelCase__ : list[str] ): a__ : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(lowerCamelCase__ ) self.set_fail_transitions() def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : str ): for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def _UpperCamelCase( self : Any , lowerCamelCase__ : str ): a__ : List[str] = 0 for character in keyword: a__ : Tuple = self.find_next_state(lowerCamelCase__ , lowerCamelCase__ ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) a__ : Union[str, Any] = len(self.adlist ) - 1 else: a__ : List[str] = next_state self.adlist[current_state]["output"].append(lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): a__ : deque = deque() for node in self.adlist[0]["next_states"]: q.append(lowerCamelCase__ ) a__ : Tuple = 0 while q: a__ : str = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowerCamelCase__ ) a__ : Tuple = self.adlist[r]["fail_state"] while ( self.find_next_state(lowerCamelCase__ , self.adlist[child]["value"] ) is None and state != 0 ): a__ : List[Any] = self.adlist[state]["fail_state"] a__ : Optional[int] = self.find_next_state( lowerCamelCase__ , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: a__ : Dict = 0 a__ : Union[str, Any] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str ): a__ : dict = {} # returns a dict with keywords and list of its occurrences a__ : Tuple = 0 for i in range(len(lowerCamelCase__ ) ): while ( self.find_next_state(lowerCamelCase__ , string[i] ) is None and current_state != 0 ): a__ : Union[str, Any] = self.adlist[current_state]["fail_state"] a__ : Optional[Any] = self.find_next_state(lowerCamelCase__ , string[i] ) if next_state is None: a__ : str = 0 else: a__ : int = next_state for key in self.adlist[current_state]["output"]: if key not in result: a__ : Optional[Any] = [] result[key].append(i - len(lowerCamelCase__ ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
37
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
'''simple docstring''' from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __SCREAMING_SNAKE_CASE , ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = RobertaConfig lowerCamelCase__ = '''roberta''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = RobertaEmbeddings(__SCREAMING_SNAKE_CASE ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __SCREAMING_SNAKE_CASE , ) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = RobertaConfig lowerCamelCase__ = '''roberta''' def __init__( self , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE ) snake_case__ : int = config.num_labels snake_case__ : str = config.num_hidden_layers snake_case__ : Optional[int] = DeeRobertaModel(__SCREAMING_SNAKE_CASE ) snake_case__ : int = nn.Dropout(config.hidden_dropout_prob ) snake_case__ : Dict = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=False , ): snake_case__ : Tuple = self.num_layers try: snake_case__ : List[Any] = self.roberta( __SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , ) snake_case__ : int = outputs[1] snake_case__ : str = self.dropout(__SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] = self.classifier(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: snake_case__ : Optional[int] = e.message snake_case__ : Dict = e.exit_layer snake_case__ : Optional[int] = outputs[0] if not self.training: snake_case__ : Any = entropy(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = [] snake_case__ : List[str] = [] if labels is not None: if self.num_labels == 1: # We are doing regression snake_case__ : str = MSELoss() snake_case__ : List[str] = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : Optional[Any] = CrossEntropyLoss() snake_case__ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits snake_case__ : Optional[int] = [] for highway_exit in outputs[-1]: snake_case__ : Optional[Any] = highway_exit[0] if not self.training: highway_logits_all.append(__SCREAMING_SNAKE_CASE ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression snake_case__ : Dict = MSELoss() snake_case__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: snake_case__ : int = CrossEntropyLoss() snake_case__ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__SCREAMING_SNAKE_CASE ) if train_highway: snake_case__ : Any = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: snake_case__ : Union[str, Any] = (loss,) + outputs if not self.training: snake_case__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: snake_case__ : Optional[int] = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
38
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): def wrapper(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): snake_case_ = timeit.default_timer() snake_case_ = func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) snake_case_ = timeit.default_timer() - starttime return delta snake_case_ = func.__name__ return wrapper def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=None ): snake_case_ = [] snake_case_ = seq_shapes or {} for i in range(SCREAMING_SNAKE_CASE__ ): snake_case_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(SCREAMING_SNAKE_CASE__ , _ArrayXD ): snake_case_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Value ): if v.dtype == "string": snake_case_ = '''The small grey turtle was surprisingly fast when challenged.''' else: snake_case_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ): while isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ): snake_case_ = v.feature snake_case_ = seq_shapes[k] snake_case_ = np.random.rand(*SCREAMING_SNAKE_CASE__ ).astype(v.dtype ) snake_case_ = data dummy_data.append((i, example) ) return dummy_data def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=None ): snake_case_ = generate_examples(SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes=SCREAMING_SNAKE_CASE__ ) with ArrowWriter(features=SCREAMING_SNAKE_CASE__ , path=SCREAMING_SNAKE_CASE__ ) as writer: for key, record in dummy_data: snake_case_ = features.encode_example(SCREAMING_SNAKE_CASE__ ) writer.write(SCREAMING_SNAKE_CASE__ ) snake_case_, snake_case_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) snake_case_ = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE__ , info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE__ ) ) return dataset
39
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __UpperCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def UpperCamelCase ( snake_case__ : Tuple ) -> str: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(snake_case__ ) def UpperCamelCase ( snake_case__ : Tuple ) -> Any: from transformers.testing_utils import pytest_terminal_summary_main UpperCamelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
40
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') lowerCAmelCase__ = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = CamembertTokenizer SCREAMING_SNAKE_CASE : Optional[int] = CamembertTokenizerFast SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : Optional[Any] = True def SCREAMING_SNAKE_CASE ( self : List[str] ): super().setUp() # We have a SentencePiece fixture for testing __lowercase = CamembertTokenizer(lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = '''<pad>''' __lowercase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) ,lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'''<s>NOTUSED''' ) self.assertEqual(vocab_keys[1] ,'''<pad>''' ) self.assertEqual(vocab_keys[-1] ,'''<mask>''' ) self.assertEqual(len(lowercase__ ) ,1_0_0_4 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_5 ) def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = CamembertTokenizer(lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) __lowercase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __lowercase = '''I was born in 92000, and this is falsé.''' __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __lowercase = tokenizer.convert_ids_to_tokens(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = '''I was born in 92000, and this is falsé.''' __lowercase = tokenizer.tokenize(lowercase__ ) __lowercase = rust_tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(lowercase__ ) __lowercase = rust_tokenizer.encode(lowercase__ ) self.assertListEqual(lowercase__ ,lowercase__ ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): # fmt: off __lowercase = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __lowercase = [ '''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ''' '''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''', '''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ''' '''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ''' '''telles que la traduction et la synthèse de texte.''', ] self.tokenizer_integration_test_util( expected_encoding=lowercase__ ,model_name='''camembert-base''' ,revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' ,sequences=lowercase__ ,)
41
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> np.array: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' lowerCamelCase_ = 'f32le' lowerCamelCase_ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: lowerCamelCase_ = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCamelCase_ = output_stream[0] lowerCamelCase_ = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = "f32le" ,) -> Union[str, Any]: lowerCamelCase_ = f'''{sampling_rate}''' lowerCamelCase_ = '1' if format_for_conversion == "s16le": lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) lowerCamelCase_ = platform.system() if system == "Linux": lowerCamelCase_ = 'alsa' lowerCamelCase_ = 'default' elif system == "Darwin": lowerCamelCase_ = 'avfoundation' lowerCamelCase_ = ':0' elif system == "Windows": lowerCamelCase_ = 'dshow' lowerCamelCase_ = 'default' lowerCamelCase_ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCamelCase_ = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "f32le" ,) -> Any: if stream_chunk_s is not None: lowerCamelCase_ = stream_chunk_s else: lowerCamelCase_ = chunk_length_s lowerCamelCase_ = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": lowerCamelCase_ = np.intaa lowerCamelCase_ = 2 elif format_for_conversion == "f32le": lowerCamelCase_ = np.floataa lowerCamelCase_ = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: lowerCamelCase_ = chunk_length_s / 6 lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): lowerCamelCase_ = [stride_length_s, stride_length_s] lowerCamelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCamelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCamelCase_ = datetime.datetime.now() lowerCamelCase_ = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale lowerCamelCase_ = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) lowerCamelCase_ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCamelCase_ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = False ) -> Optional[Any]: lowerCamelCase_ = b'' lowerCamelCase_ ,lowerCamelCase_ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) lowerCamelCase_ = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: lowerCamelCase_ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator lowerCamelCase_ = (_stride_left, stride_right) lowerCamelCase_ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCamelCase_ = False yield item lowerCamelCase_ = stride_left lowerCamelCase_ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: lowerCamelCase_ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCamelCase_ = False yield item def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]: lowerCamelCase_ = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: lowerCamelCase_ = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
42
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = s.rsplit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return new.join(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = {} lowercase__ = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: lowercase__ = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: lowercase__ = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): lowercase__ = rreplace(SCREAMING_SNAKE_CASE , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): lowercase__ = rreplace(SCREAMING_SNAKE_CASE , '''.b''' , '''.bias''' , 1 ) lowercase__ = value.float() return upgrade @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ): """simple docstring""" from dall_e import Encoder lowercase__ = Encoder() if os.path.exists(SCREAMING_SNAKE_CASE ): lowercase__ = torch.load(SCREAMING_SNAKE_CASE ) else: lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): lowercase__ = ckpt.state_dict() encoder.load_state_dict(SCREAMING_SNAKE_CASE ) if config_path is not None: lowercase__ = FlavaImageCodebookConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: lowercase__ = FlavaImageCodebookConfig() lowercase__ = FlavaImageCodebook(SCREAMING_SNAKE_CASE ).eval() lowercase__ = encoder.state_dict() lowercase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE ) lowercase__ = hf_model.state_dict() lowercase__ = count_parameters(SCREAMING_SNAKE_CASE ) lowercase__ = count_parameters(SCREAMING_SNAKE_CASE ) assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(SCREAMING_SNAKE_CASE ) else: return hf_state_dict if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowerCAmelCase = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
43
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
'''simple docstring''' import argparse import json import os from tensorflow.core.protobuf.saved_model_pba import SavedModel # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py UpperCAmelCase_ : int = '.' # Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model) UpperCAmelCase_ : str = [ 'Assert', 'AssignVariableOp', 'EmptyTensorList', 'MergeV2Checkpoints', 'ReadVariableOp', 'ResourceGather', 'RestoreV2', 'SaveV2', 'ShardedFilename', 'StatefulPartitionedCall', 'StaticRegexFullMatch', 'VarHandleOp', ] def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Any = SavedModel() _lowerCamelCase : Union[str, Any] = [] with open(os.path.join(_lowerCAmelCase , "utils" , "tf_ops" , "onnx.json" ) ) as f: _lowerCamelCase : List[Any] = json.load(_lowerCAmelCase )["opsets"] for i in range(1 , opset + 1 ): onnx_ops.extend(onnx_opsets[str(_lowerCAmelCase )] ) with open(_lowerCAmelCase , "rb" ) as f: saved_model.ParseFromString(f.read() ) _lowerCamelCase : Optional[Any] = set() # Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs) for meta_graph in saved_model.meta_graphs: # Add operations in the graph definition model_op_names.update(node.op for node in meta_graph.graph_def.node ) # Go through the functions in the graph definition for func in meta_graph.graph_def.library.function: # Add operations in each function model_op_names.update(node.op for node in func.node_def ) # Convert to list, sorted if you want _lowerCamelCase : List[str] = sorted(_lowerCAmelCase ) _lowerCamelCase : Optional[int] = [] for op in model_op_names: if op not in onnx_ops and op not in INTERNAL_OPS: incompatible_ops.append(_lowerCAmelCase ) if strict and len(_lowerCAmelCase ) > 0: raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops ) elif len(_lowerCAmelCase ) > 0: print(F'Found the following incompatible ops for the opset {opset}:' ) print(*_lowerCAmelCase , sep="\n" ) else: print(F'The saved model {saved_model_path} can properly be converted with ONNX.' ) if __name__ == "__main__": UpperCAmelCase_ : Any = argparse.ArgumentParser() parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).') parser.add_argument( '--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.' ) parser.add_argument( '--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.' ) parser.add_argument( '--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)' ) UpperCAmelCase_ : Union[str, Any] = parser.parse_args() if args.framework == "onnx": onnx_compliancy(args.saved_model_path, args.strict, args.opset)
44
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
from math import factorial def A ( lowercase__ : int , lowercase__ : int ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(lowercase__ ) // (factorial(lowercase__ ) * factorial(n - k )) if __name__ == "__main__": print( "The number of five-card hands possible from a standard", f'''fifty-two card deck is: {combinations(52, 5)}\n''', ) print( "If a class of 40 students must be arranged into groups of", f'''4 for group projects, there are {combinations(40, 4)} ways''', "to arrange them.\n", ) print( "If 10 teams are competing in a Formula One race, there", f'''are {combinations(10, 3)} ways that first, second and''', "third place can be awarded.", )
45
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
"""simple docstring""" import gzip import hashlib import json import multiprocessing import os import re import shutil import time from pathlib import Path import numpy as np from arguments import PreprocessingArguments from datasets import load_dataset from minhash_deduplication import deduplicate_dataset from transformers import AutoTokenizer, HfArgumentParser _lowerCAmelCase : str = re.compile(R'''\s+''') def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' return {"hash": hashlib.mda(re.sub(_lowerCamelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()} def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Any = [len(_lowerCamelCase ) for line in example["content"].splitlines()] return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )} def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : Optional[Any] = np.mean([c.isalnum() for c in example["content"]] ) return {"alpha_frac": alpha_frac} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple: '''simple docstring''' if example["hash"] in uniques: uniques.remove(example["hash"] ) return True else: return False def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : str = ["auto-generated", "autogenerated", "automatically generated"] _lowerCamelCase : str = example["content"].splitlines() for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"autogenerated": True} else: return {"autogenerated": False} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 , _lowerCamelCase=0.0_5 ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Tuple = ["unit tests", "test file", "configuration file"] _lowerCamelCase : List[Any] = example["content"].splitlines() _lowerCamelCase : List[str] = 0 _lowerCamelCase : Optional[Any] = 0 # first test for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ): for keyword in keywords: if keyword in line.lower(): return {"config_or_test": True} # second test _lowerCamelCase : Dict = example["content"].count("\n" ) _lowerCamelCase : Optional[Any] = int(coeff * nlines ) for line in lines: count_config += line.lower().count("config" ) count_test += line.lower().count("test" ) if count_config > threshold or count_test > threshold: return {"config_or_test": True} return {"config_or_test": False} def lowerCamelCase_( _lowerCamelCase ) -> int: '''simple docstring''' _lowerCamelCase : Dict = ["def ", "class ", "for ", "while "] _lowerCamelCase : Union[str, Any] = example["content"].splitlines() for line in lines: for keyword in keywords: if keyword in line.lower(): return {"has_no_keywords": False} return {"has_no_keywords": True} def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=4 ) -> int: '''simple docstring''' _lowerCamelCase : int = example["content"].splitlines() _lowerCamelCase : List[Any] = 0 for line in lines: counter += line.lower().count("=" ) if counter > minimum: return {"has_few_assignments": False} return {"has_few_assignments": True} def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]: '''simple docstring''' _lowerCamelCase : List[str] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"] _lowerCamelCase : Tuple = len(example["content"] ) / len(_lowerCamelCase ) return {"ratio": ratio} def lowerCamelCase_( _lowerCamelCase ) -> Dict: '''simple docstring''' _lowerCamelCase : str = {} results.update(get_hash(_lowerCamelCase ) ) results.update(line_stats(_lowerCamelCase ) ) results.update(alpha_stats(_lowerCamelCase ) ) results.update(char_token_ratio(_lowerCamelCase ) ) results.update(is_autogenerated(_lowerCamelCase ) ) results.update(is_config_or_test(_lowerCamelCase ) ) results.update(has_no_keywords(_lowerCamelCase ) ) results.update(has_few_assignments(_lowerCamelCase ) ) return results def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str: '''simple docstring''' if not check_uniques(_lowerCamelCase , _lowerCamelCase ): return False elif example["autogenerated"]: return False elif example["line_max"] > args.line_max: return False elif example["line_mean"] > args.line_mean: return False elif example["alpha_frac"] < args.alpha_frac: return False elif example["ratio"] < args.min_token_ratio: return False elif example["config_or_test"] and np.random.rand() <= args.filter_proba: return False elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba: return False elif example["has_few_assignments"]: return False else: return True def lowerCamelCase_( _lowerCamelCase ) -> Any: '''simple docstring''' with open(_lowerCamelCase , "rb" ) as f_in: with gzip.open(str(_lowerCamelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out: shutil.copyfileobj(_lowerCamelCase , _lowerCamelCase ) os.unlink(_lowerCamelCase ) # Settings _lowerCAmelCase : Dict = HfArgumentParser(PreprocessingArguments) _lowerCAmelCase : List[str] = parser.parse_args() if args.num_workers is None: _lowerCAmelCase : Optional[Any] = multiprocessing.cpu_count() _lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir) # Load dataset _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase : str = load_dataset(args.dataset_name, split='''train''') print(f'''Time to load dataset: {time.time()-t_start:.2f}''') # Run preprocessing _lowerCAmelCase : List[Any] = time.time() _lowerCAmelCase : Optional[int] = ds.map(preprocess, num_proc=args.num_workers) print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''') # Deduplicate hashes _lowerCAmelCase : Dict = set(ds.unique('''hash''')) _lowerCAmelCase : Union[str, Any] = len(uniques) / len(ds) print(f'''Fraction of duplicates: {1-frac:.2%}''') # Deduplicate data and apply heuristics _lowerCAmelCase : Tuple = time.time() _lowerCAmelCase : List[Any] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args}) print(f'''Time to filter dataset: {time.time()-t_start:.2f}''') print(f'''Size of filtered dataset: {len(ds_filter)}''') # Deduplicate with minhash and jaccard similarity if args.near_deduplication: _lowerCAmelCase : Union[str, Any] = time.time() _lowerCAmelCase , _lowerCAmelCase : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold) print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''') print(f'''Size of deduplicate dataset: {len(ds_filter)}''') # Save data in batches of samples_per_file _lowerCAmelCase : List[str] = Path(args.output_dir) output_dir.mkdir(exist_ok=True) # save duplicate_clusters in the output_dir as artifacts # not sure it is the right place the save it if args.near_deduplication: with open(output_dir / '''duplicate_clusters.json''', '''w''') as f: json.dump(duplicate_clusters, f) _lowerCAmelCase : Optional[int] = output_dir / '''data''' data_dir.mkdir(exist_ok=True) _lowerCAmelCase : Optional[int] = time.time() for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)): _lowerCAmelCase : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''') _lowerCAmelCase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file) ds_filter.select(list(range(index, end_index))).to_json(file_path) compress_file(file_path) print(f'''Time to save dataset: {time.time()-t_start:.2f}''')
46
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''): raise Exception('''requires fairseq >= 1.0.0a''') logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = '''Hello world! cécé herlolip''' def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool ): __a : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowerCamelCase_ ) roberta.eval() # disable dropout __a : Optional[int] = roberta.model.encoder.sentence_encoder __a : Any = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our RoBERTa config:' , lowerCamelCase_ ) __a : Dict = XLMRobertaXLForSequenceClassification(lowerCamelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase_ ) model.eval() # Now let's copy all the weights. # Embeddings __a : Optional[int] = roberta_sent_encoder.embed_tokens.weight __a : Union[str, Any] = roberta_sent_encoder.embed_positions.weight __a : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __a : int = roberta_sent_encoder.layer_norm.weight __a : Union[str, Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __a : BertLayer = model.roberta.encoder.layer[i] __a : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] __a : RobertaAttention = layer.attention __a : Any = roberta_layer.self_attn_layer_norm.weight __a : Any = roberta_layer.self_attn_layer_norm.bias # self attention __a : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __a : int = roberta_layer.self_attn.q_proj.weight __a : Dict = roberta_layer.self_attn.q_proj.bias __a : List[Any] = roberta_layer.self_attn.k_proj.weight __a : Any = roberta_layer.self_attn.k_proj.bias __a : List[str] = roberta_layer.self_attn.v_proj.weight __a : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output __a : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __a : int = roberta_layer.self_attn.out_proj.weight __a : Union[str, Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __a : Tuple = roberta_layer.final_layer_norm.weight __a : Dict = roberta_layer.final_layer_norm.bias # intermediate __a : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __a : Union[str, Any] = roberta_layer.fca.weight __a : Tuple = roberta_layer.fca.bias # output __a : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __a : int = roberta_layer.fca.weight __a : Optional[Any] = roberta_layer.fca.bias # end of layer if classification_head: __a : Union[str, Any] = roberta.model.classification_heads['mnli'].dense.weight __a : Dict = roberta.model.classification_heads['mnli'].dense.bias __a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight __a : Tuple = roberta.model.classification_heads['mnli'].out_proj.bias else: # LM Head __a : Optional[Any] = roberta.model.encoder.lm_head.dense.weight __a : Tuple = roberta.model.encoder.lm_head.dense.bias __a : Dict = roberta.model.encoder.lm_head.layer_norm.weight __a : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias __a : Union[str, Any] = roberta.model.encoder.lm_head.weight __a : Optional[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __a : torch.Tensor = roberta.encode(lowerCamelCase_ ).unsqueeze(0 ) # batch of size 1 __a : Tuple = model(lowerCamelCase_ )[0] if classification_head: __a : Union[str, Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(lowerCamelCase_ ) ) else: __a : int = roberta.model(lowerCamelCase_ )[0] print(our_output.shape , their_output.shape ) __a : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 __a : Union[str, Any] = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) pathlib.Path(lowerCamelCase_ ).mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.''' ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
47
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 if start < end: lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 ) count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ ) return count def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase__ = a[end] lowerCAmelCase__ = a[pivot] lowerCAmelCase__ = temp lowerCAmelCase__ = start - 1 for index in range(UpperCamelCase_ , UpperCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value lowerCAmelCase__ = new_pivot_index + 1 lowerCAmelCase__ = a[new_pivot_index] lowerCAmelCase__ = a[index] lowerCAmelCase__ = temp lowerCAmelCase__ = a[new_pivot_index + 1] lowerCAmelCase__ = a[end] lowerCAmelCase__ = temp return new_pivot_index + 1, count UpperCAmelCase__ : Tuple = TemporaryFile() UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array UpperCAmelCase__ : Optional[Any] = np.load(outfile) UpperCAmelCase__ : Any = len(M) - 1 UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
"""simple docstring""" def lowercase__ ( snake_case_ :float ): return 10 - x * x def lowercase__ ( snake_case_ :float , snake_case_ :float ): # Bolzano theory in order to find if there is a root between a and b if equation(snake_case_ ) * equation(snake_case_ ) >= 0: raise ValueError('''Wrong space!''' ) __UpperCAmelCase = a while (b - a) >= 0.01: # Find middle point __UpperCAmelCase = (a + b) / 2 # Check if middle point is root if equation(snake_case_ ) == 0.0: break # Decide the side to repeat the steps if equation(snake_case_ ) * equation(snake_case_ ) < 0: __UpperCAmelCase = c else: __UpperCAmelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
49
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : List[str] = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class UpperCamelCase__ (a ): '''simple docstring''' _UpperCamelCase = 'marian' _UpperCamelCase = ['past_key_values'] _UpperCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self ,_lowerCAmelCase=5_81_01 ,_lowerCAmelCase=None ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=False ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=0 ,_lowerCAmelCase=0 ,_lowerCAmelCase=True ,**_lowerCAmelCase ,): lowerCamelCase__ = vocab_size lowerCamelCase__ = decoder_vocab_size or vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = d_model lowerCamelCase__ = encoder_ffn_dim lowerCamelCase__ = encoder_layers lowerCamelCase__ = encoder_attention_heads lowerCamelCase__ = decoder_ffn_dim lowerCamelCase__ = decoder_layers lowerCamelCase__ = decoder_attention_heads lowerCamelCase__ = dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = activation_function lowerCamelCase__ = init_std lowerCamelCase__ = encoder_layerdrop lowerCamelCase__ = decoder_layerdrop lowerCamelCase__ = use_cache lowerCamelCase__ = encoder_layers lowerCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase__ = share_encoder_decoder_embeddings super().__init__( pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,) class UpperCamelCase__ (a ): '''simple docstring''' @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def UpperCamelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ = {0: """batch"""} lowerCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ] ) if self.use_past: lowerCamelCase__ , lowerCamelCase__ = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} else: lowerCamelCase__ = OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}), ("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}), ("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}), ("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def UpperCamelCase_ ( self ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = super().outputs else: lowerCamelCase__ = super(_lowerCAmelCase ,self ).outputs if self.use_past: lowerCamelCase__ , lowerCamelCase__ = self.num_layers for i in range(_lowerCAmelCase ): lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""} return common_outputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Generate decoder inputs lowerCamelCase__ = seq_length if not self.use_past else 1 lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()} lowerCamelCase__ = dict(**_lowerCAmelCase ,**_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape lowerCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1] lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads lowerCamelCase__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ = decoder_seq_length + 3 lowerCamelCase__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCamelCase__ = torch.cat( [common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase )] ,dim=1 ) lowerCamelCase__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCamelCase__ , lowerCamelCase__ = self.num_layers lowerCamelCase__ = min(_lowerCAmelCase ,_lowerCAmelCase ) lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ) - min_num_layers lowerCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder""" for _ in range(_lowerCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase ), ) ) # TODO: test this. lowerCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape for _ in range(_lowerCAmelCase ,_lowerCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ , lowerCamelCase__ = self.num_layers lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads lowerCamelCase__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCamelCase__ = common_inputs["""attention_mask"""].dtype lowerCamelCase__ = torch.cat( [common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 ) lowerCamelCase__ = [ (torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase ) ] return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCamelCase__ = compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCamelCase__ = tokenizer.num_special_tokens_to_add(_lowerCAmelCase ) lowerCamelCase__ = compute_effective_axis_dimension( _lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowerCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCamelCase__ = dict(tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) else: lowerCamelCase__ = self._generate_dummy_inputs_for_causal_lm( _lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase ) return common_inputs def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): if self.task in ["default", "seq2seq-lm"]: lowerCamelCase__ = super()._flatten_past_key_values_(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) else: lowerCamelCase__ = super(_lowerCAmelCase ,self )._flatten_past_key_values_( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) @property def UpperCamelCase_ ( self ): return 1E-4
50
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
'''simple docstring''' import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =ConsistencyModelPipeline _lowerCamelCase =UNCONDITIONAL_IMAGE_GENERATION_PARAMS _lowerCamelCase =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _lowerCamelCase =frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def __snake_case ( self : List[str] ): UpperCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def __snake_case ( self : int ): UpperCAmelCase = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def __snake_case ( self : int , a__ : List[Any]=False ): if class_cond: UpperCAmelCase = self.dummy_cond_unet else: UpperCAmelCase = self.dummy_uncond_unet # Default to CM multistep sampler UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, } return components def __snake_case ( self : Any , a__ : Optional[Any] , a__ : List[str]=0 ): if str(a__ ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(a__ ) else: UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [22, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def __snake_case ( self : Optional[Any] ): UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = ConsistencyModelPipeline(**a__ ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __snake_case ( self : int ): UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components(class_cond=a__ ) UpperCAmelCase = ConsistencyModelPipeline(**a__ ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = 0 UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __snake_case ( self : int ): UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = ConsistencyModelPipeline(**a__ ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def __snake_case ( self : str ): UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCAmelCase = self.get_dummy_components(class_cond=a__ ) UpperCAmelCase = ConsistencyModelPipeline(**a__ ) UpperCAmelCase = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_dummy_inputs(a__ ) UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = 0 UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 32, 32, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self : Tuple ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : str , a__ : Optional[Any]=0 , a__ : List[str]=False , a__ : Tuple="cpu" , a__ : Optional[Any]=torch.floataa , a__ : List[Any]=(1, 3, 64, 64) ): UpperCAmelCase = torch.manual_seed(a__ ) UpperCAmelCase = { '''num_inference_steps''': None, '''timesteps''': [22, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: UpperCAmelCase = self.get_fixed_latents(seed=a__ , device=a__ , dtype=a__ , shape=a__ ) UpperCAmelCase = latents return inputs def __snake_case ( self : List[Any] , a__ : Optional[Any]=0 , a__ : int="cpu" , a__ : Any=torch.floataa , a__ : List[str]=(1, 3, 64, 64) ): if type(a__ ) == str: UpperCAmelCase = torch.device(a__ ) UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ ) UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ ) return latents def __snake_case ( self : Tuple ): UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_inputs() UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __snake_case ( self : Optional[Any] ): UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_inputs() UpperCAmelCase = 1 UpperCAmelCase = None UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def __snake_case ( self : Union[str, Any] ): UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_inputs(get_fixed_latents=a__ , device=a__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ): UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def __snake_case ( self : Any ): UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) UpperCAmelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , ) UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ ) pipe.to(torch_device=a__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a__ ) UpperCAmelCase = self.get_inputs(get_fixed_latents=a__ , device=a__ ) UpperCAmelCase = 1 UpperCAmelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ): UpperCAmelCase = pipe(**a__ ).images assert image.shape == (1, 64, 64, 3) UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
51
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
"""simple docstring""" from cva import destroyAllWindows, imread, imshow, waitKey def __A ( a_ :Any) -> List[Any]: # getting number of pixels in the image __a , __a : Dict = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(a_): for j in range(a_): __a : Optional[int] = [2_55, 2_55, 2_55] - img[i][j] return img if __name__ == "__main__": # read original image A = imread('''image_data/lena.jpg''', 1) # convert to its negative A = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
52
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _snake_case : List[str] = logging.get_logger(__name__) def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): __lowerCAmelCase = RobertaPreLayerNormConfig.from_pretrained( lowerCAmelCase_, architectures=['RobertaPreLayerNormForMaskedLM'] ) # convert state_dict __lowerCAmelCase = torch.load(hf_hub_download(repo_id=lowerCAmelCase_, filename='pytorch_model.bin' ) ) __lowerCAmelCase = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('roberta.' ): __lowerCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ): continue __lowerCAmelCase = tensor_value __lowerCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCAmelCase_, config=lowerCAmelCase_, state_dict=lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) # convert tokenizer __lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": _snake_case : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Union[str, Any] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
53
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
import math from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Optional[int] =logging.get_logger(__name__) __lowercase : Tuple ={ """facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class A ( __lowercase ): _snake_case ='''data2vec-audio''' def __init__( self: str , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Tuple=12 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: Optional[int]=3072 , _lowerCAmelCase: List[Any]="gelu" , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: int=0.0 , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.02 , _lowerCAmelCase: Optional[int]=1e-5 , _lowerCAmelCase: Union[str, Any]="gelu" , _lowerCAmelCase: Dict=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase: int=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase: Any=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[Any]=16 , _lowerCAmelCase: Tuple=19 , _lowerCAmelCase: int=5 , _lowerCAmelCase: List[str]=0.05 , _lowerCAmelCase: List[str]=10 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=0 , _lowerCAmelCase: Optional[int]="sum" , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Dict=256 , _lowerCAmelCase: Union[str, Any]=(512, 512, 512, 512, 1500) , _lowerCAmelCase: List[Any]=(5, 3, 3, 1, 1) , _lowerCAmelCase: Any=(1, 2, 3, 1, 1) , _lowerCAmelCase: Optional[int]=512 , _lowerCAmelCase: List[Any]=0 , _lowerCAmelCase: int=1 , _lowerCAmelCase: Optional[Any]=2 , _lowerCAmelCase: Union[str, Any]=False , _lowerCAmelCase: Union[str, Any]=3 , _lowerCAmelCase: Optional[int]=2 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=None , **_lowerCAmelCase: List[str] , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase ) UpperCAmelCase_ =hidden_size UpperCAmelCase_ =feat_extract_activation UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =conv_bias UpperCAmelCase_ =num_conv_pos_embeddings UpperCAmelCase_ =num_conv_pos_embedding_groups UpperCAmelCase_ =conv_pos_kernel_size UpperCAmelCase_ =len(self.conv_dim ) UpperCAmelCase_ =num_hidden_layers UpperCAmelCase_ =intermediate_size UpperCAmelCase_ =hidden_act UpperCAmelCase_ =num_attention_heads UpperCAmelCase_ =hidden_dropout UpperCAmelCase_ =attention_dropout UpperCAmelCase_ =activation_dropout UpperCAmelCase_ =feat_proj_dropout UpperCAmelCase_ =final_dropout UpperCAmelCase_ =layerdrop UpperCAmelCase_ =layer_norm_eps UpperCAmelCase_ =initializer_range UpperCAmelCase_ =vocab_size UpperCAmelCase_ =use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase_ =mask_time_prob UpperCAmelCase_ =mask_time_length UpperCAmelCase_ =mask_time_min_masks UpperCAmelCase_ =mask_feature_prob UpperCAmelCase_ =mask_feature_length UpperCAmelCase_ =mask_feature_min_masks # ctc loss UpperCAmelCase_ =ctc_loss_reduction UpperCAmelCase_ =ctc_zero_infinity # adapter UpperCAmelCase_ =add_adapter UpperCAmelCase_ =adapter_kernel_size UpperCAmelCase_ =adapter_stride UpperCAmelCase_ =num_adapter_layers UpperCAmelCase_ =output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase_ =classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =list(_lowerCAmelCase ) UpperCAmelCase_ =xvector_output_dim @property def lowerCAmelCase__ ( self: List[Any] ) -> int: '''simple docstring''' return math.prod(self.conv_stride )
54
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = abs(a_ ) __A = 0 while n > 0: res += n % 1_0 n //= 1_0 return res def UpperCAmelCase ( a_ ) -> int: """simple docstring""" __A = abs(a_ ) return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 ) def UpperCAmelCase ( a_ ) -> int: """simple docstring""" return sum(int(a_ ) for c in str(abs(a_ ) ) ) def UpperCAmelCase ( ) -> None: """simple docstring""" from collections.abc import Callable from timeit import timeit def benchmark_a_function(a_ , a_ ) -> None: __A = F'''{func.__name__}({value})''' __A = timeit(F'''__main__.{call}''' , setup="import __main__" ) print(F'''{call:56} = {func(a_ )} -- {timing:.4f} seconds''' ) for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(a_ , a_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
55
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
'''simple docstring''' import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class _lowercase ( unittest.TestCase ): def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) __snake_case = Vector() def a ( self : List[str] ) -> None: __snake_case = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,0,0,0,0,1)' ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 2, 3, 4] ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) def a ( self : Union[str, Any] ) -> None: __snake_case = Vector([1, 2] ) __snake_case = Vector([1, 2, 3, 4, 5] ) __snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) __snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def a ( self : Union[str, Any] ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([2, -1, 4] ) # for test of dot product __snake_case = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def a ( self : int ) -> None: self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def a ( self : Any ) -> None: self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def a ( self : int ) -> None: __snake_case = Vector([1, 2, 3] ) __snake_case = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , '(3,4,7)' ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 0, 0, 0, 0, 0] ) __snake_case = x.copy() self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Optional[Any] ) -> None: __snake_case = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,1,0)' ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Tuple ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : str ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def a ( self : Optional[Any] ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) __snake_case = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def a ( self : Union[str, Any] ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) ) def a ( self : Any ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 ) def a ( self : Tuple ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def a ( self : int ) -> None: __snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) __snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def a ( self : Any ) -> None: self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
56
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A_ : int = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Any = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
57
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0
"""simple docstring""" import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str=0.999 , __UpperCamelCase : Dict="cosine" , ): '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__UpperCamelCase : Optional[Any] ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__UpperCamelCase : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' ) snake_case_ : Optional[int] = [] for i in range(__UpperCamelCase ): snake_case_ : str = i / num_diffusion_timesteps snake_case_ : Dict = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) ) return torch.tensor(__UpperCamelCase , dtype=torch.floataa ) class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = [e.name for e in KarrasDiffusionSchedulers] _lowerCamelCase = 2 @register_to_config def __init__( self , _lowercase = 1_0_0_0 , _lowercase = 0.0_0085 , _lowercase = 0.012 , _lowercase = "linear" , _lowercase = None , _lowercase = "epsilon" , _lowercase = "linspace" , _lowercase = 0 , ) -> Union[str, Any]: '''simple docstring''' if trained_betas is not None: snake_case_ : Tuple = torch.tensor(_lowercase , dtype=torch.floataa ) elif beta_schedule == "linear": snake_case_ : int = torch.linspace(_lowercase , _lowercase , _lowercase , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : Optional[int] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowercase , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : List[str] = betas_for_alpha_bar(_lowercase ) else: raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' ) snake_case_ : Tuple = 1.0 - self.betas snake_case_ : str = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(_lowercase , _lowercase , _lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> List[str]: '''simple docstring''' if schedule_timesteps is None: snake_case_ : Optional[Any] = self.timesteps snake_case_ : int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: snake_case_ : Optional[Any] = 1 if len(_lowercase ) > 1 else 0 else: snake_case_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep snake_case_ : List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def UpperCAmelCase__ ( self , _lowercase , _lowercase , ) -> torch.FloatTensor: '''simple docstring''' snake_case_ : str = self.index_for_timestep(_lowercase ) if self.state_in_first_order: snake_case_ : Union[str, Any] = self.sigmas[step_index] else: snake_case_ : List[Any] = self.sigmas_interpol[step_index] snake_case_ : Dict = sample / ((sigma**2 + 1) ** 0.5) return sample def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Optional[Any]: '''simple docstring''' snake_case_ : Any = num_inference_steps snake_case_ : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": snake_case_ : Tuple = np.linspace(0 , num_train_timesteps - 1 , _lowercase , dtype=_lowercase )[::-1].copy() elif self.config.timestep_spacing == "leading": snake_case_ : int = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case_ : Any = (np.arange(0 , _lowercase ) * step_ratio).round()[::-1].copy().astype(_lowercase ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": snake_case_ : Tuple = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 snake_case_ : Dict = (np.arange(_lowercase , 0 , -step_ratio )).round().copy().astype(_lowercase ) timesteps -= 1 else: raise ValueError( f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' ) snake_case_ : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) snake_case_ : List[str] = torch.from_numpy(np.log(_lowercase ) ).to(_lowercase ) snake_case_ : Optional[int] = np.interp(_lowercase , np.arange(0 , len(_lowercase ) ) , _lowercase ) snake_case_ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) snake_case_ : str = torch.from_numpy(_lowercase ).to(device=_lowercase ) # interpolate sigmas snake_case_ : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp() snake_case_ : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) snake_case_ : str = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(_lowercase ).startswith("""mps""" ): # mps does not support float64 snake_case_ : str = torch.from_numpy(_lowercase ).to(_lowercase , dtype=torch.floataa ) else: snake_case_ : Optional[int] = torch.from_numpy(_lowercase ).to(_lowercase ) # interpolate timesteps snake_case_ : Tuple = self.sigma_to_t(_lowercase ).to(_lowercase , dtype=timesteps.dtype ) snake_case_ : str = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten() snake_case_ : Any = torch.cat([timesteps[:1], interleaved_timesteps] ) snake_case_ : List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter snake_case_ : Union[str, Any] = defaultdict(_lowercase ) def UpperCAmelCase__ ( self , _lowercase ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = sigma.log() # get distribution snake_case_ : List[str] = log_sigma - self.log_sigmas[:, None] # get sigmas range snake_case_ : Optional[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) snake_case_ : int = low_idx + 1 snake_case_ : Tuple = self.log_sigmas[low_idx] snake_case_ : List[str] = self.log_sigmas[high_idx] # interpolate sigmas snake_case_ : Optional[int] = (low - log_sigma) / (low - high) snake_case_ : Optional[Any] = w.clamp(0 , 1 ) # transform interpolation to time range snake_case_ : List[Any] = (1 - w) * low_idx + w * high_idx snake_case_ : List[str] = t.view(sigma.shape ) return t @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' return self.sample is None def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = True , ) -> Union[SchedulerOutput, Tuple]: '''simple docstring''' snake_case_ : List[str] = self.index_for_timestep(_lowercase ) # advance index counter by 1 snake_case_ : List[Any] = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: snake_case_ : int = self.sigmas[step_index] snake_case_ : Union[str, Any] = self.sigmas_interpol[step_index + 1] snake_case_ : List[str] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method snake_case_ : Optional[int] = self.sigmas[step_index - 1] snake_case_ : Optional[int] = self.sigmas_interpol[step_index] snake_case_ : int = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API snake_case_ : str = 0 snake_case_ : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": snake_case_ : str = sigma_hat if self.state_in_first_order else sigma_interpol snake_case_ : Optional[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": snake_case_ : Dict = sigma_hat if self.state_in_first_order else sigma_interpol snake_case_ : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError("""prediction_type not implemented yet: sample""" ) else: raise ValueError( f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order snake_case_ : List[str] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep snake_case_ : List[str] = sigma_interpol - sigma_hat # store for 2nd order step snake_case_ : List[Any] = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order snake_case_ : List[Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep snake_case_ : Optional[int] = sigma_next - sigma_hat snake_case_ : Dict = self.sample snake_case_ : int = None snake_case_ : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , ) -> torch.FloatTensor: '''simple docstring''' snake_case_ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(_lowercase ): # mps does not support float64 snake_case_ : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) snake_case_ : Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: snake_case_ : Any = self.timesteps.to(original_samples.device ) snake_case_ : Union[str, Any] = timesteps.to(original_samples.device ) snake_case_ : Optional[Any] = [self.index_for_timestep(_lowercase , _lowercase ) for t in timesteps] snake_case_ : Any = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): snake_case_ : Union[str, Any] = sigma.unsqueeze(-1 ) snake_case_ : Optional[Any] = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Union[str, Any]: '''simple docstring''' return self.config.num_train_timesteps
58
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowercase_ = { "<": operator.lt, "<=": operator.le, "==": operator.eq, "!=": operator.ne, ">=": operator.ge, ">": operator.gt, } def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict: if got_ver is None or want_ver is None: raise ValueError( f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' f''' reinstalling {pkg}.''' ) if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ): raise ImportError( f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None: __a = f'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ): __a , __a , __a = requirement, None, None else: __a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' f''' got {requirement}''' ) __a , __a = match[0] __a = want_full.split(''',''' ) # there could be multiple requirements __a = {} for w in want_range: __a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' f''' but got {requirement}''' ) __a , __a = match[0] __a = want_ver if op not in ops: raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": __a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return # check if any version is installed try: __a = importlib.metadata.version(lowerCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]: __a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
695
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = RoCBertTokenizer lowercase_ = None lowercase_ = False lowercase_ = True lowercase_ = filter_non_english def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]: '''simple docstring''' super().setUp() lowerCamelCase__: int =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] lowerCamelCase__: Dict ={} lowerCamelCase__: Dict ={} for i, value in enumerate(UpperCAmelCase_): lowerCamelCase__: Any =i lowerCamelCase__: List[str] =i lowerCamelCase__: List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) lowerCamelCase__: Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"]) lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) with open(self.word_shape_file , "w" , encoding="utf-8") as word_shape_writer: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) with open(self.word_pronunciation_file , "w" , encoding="utf-8") as word_pronunciation_writer: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : int) ->int: '''simple docstring''' lowerCamelCase__: int =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("你好[SEP]你是谁") self.assertListEqual(UpperCAmelCase_ , ["你", "好", "[SEP]", "你", "是", "谁"]) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase_) , [5, 6, 2, 5, 7, 8]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: Union[str, Any] =RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"]) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Any =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any: '''simple docstring''' lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"]) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"]) self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"]) def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int: '''simple docstring''' lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : int) ->str: '''simple docstring''' lowerCamelCase__: Optional[Any] =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"]) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"]) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]: '''simple docstring''' lowerCamelCase__: Optional[int] =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase__: Dict ={} for i, token in enumerate(UpperCAmelCase_): lowerCamelCase__: Any =i lowerCamelCase__: Union[str, Any] =RoCBertWordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]") self.assertListEqual(tokenizer.tokenize("") , []) self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"]) self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"]) def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]: '''simple docstring''' self.assertTrue(_is_whitespace(" ")) self.assertTrue(_is_whitespace("\t")) self.assertTrue(_is_whitespace("\r")) self.assertTrue(_is_whitespace("\n")) self.assertTrue(_is_whitespace("\u00A0")) self.assertFalse(_is_whitespace("A")) self.assertFalse(_is_whitespace("-")) def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]: '''simple docstring''' self.assertTrue(_is_control("\u0005")) self.assertFalse(_is_control("A")) self.assertFalse(_is_control(" ")) self.assertFalse(_is_control("\t")) self.assertFalse(_is_control("\r")) def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("-")) self.assertTrue(_is_punctuation("$")) self.assertTrue(_is_punctuation("`")) self.assertTrue(_is_punctuation(".")) self.assertFalse(_is_punctuation("A")) self.assertFalse(_is_punctuation(" ")) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int: '''simple docstring''' lowerCamelCase__: Any =self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) if self.test_rust_tokenizer: lowerCamelCase__: Tuple =self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]]) def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: str =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase__: Optional[int] =tokenizer_r.encode_plus( UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , ) lowerCamelCase__: Tuple =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False lowerCamelCase__: Tuple =( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"])) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"]) def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =["的", "人", "有"] lowerCamelCase__: List[str] ="".join(UpperCAmelCase_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""): lowerCamelCase__: Dict =True lowerCamelCase__: Optional[Any] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: int =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: List[str] =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Optional[Any] =False lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: List[Any] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: str =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase__: List[str] =[ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_) ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) @slow def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict: '''simple docstring''' lowerCamelCase__: Tuple =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowerCamelCase__: int =tokenizer.encode("你好" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Any =tokenizer.encode("你是谁" , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_) lowerCamelCase__: Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =self.get_tokenizers(do_lower_case=UpperCAmelCase_) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}"""): lowerCamelCase__: Union[str, Any] ="你好,你是谁" lowerCamelCase__: str =tokenizer.tokenize(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.convert_tokens_to_ids(UpperCAmelCase_) lowerCamelCase__: int =tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase_) lowerCamelCase__: Optional[int] =tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase_) lowerCamelCase__: str =tokenizer.prepare_for_model( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) lowerCamelCase__: List[Any] =tokenizer.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
59
"""simple docstring""" from __future__ import annotations lowercase_ = list[tuple[int, int]] lowercase_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , ): __a = pos_x __a = pos_y __a = (pos_y, pos_x) __a = goal_x __a = goal_y __a = g_cost __a = parent __a = self.calculate_heuristic() def __UpperCAmelCase ( self ): __a = abs(self.pos_x - self.goal_x ) __a = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self , _a ): return self.f_cost < other.f_cost class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a ): __a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __a = [self.start] __a = [] __a = False def __UpperCAmelCase ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __a = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __a = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __a = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __a = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def __UpperCAmelCase ( self , _a ): __a = [] for action in delta: __a = parent.pos_x + action[1] __a = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def __UpperCAmelCase ( self , _a ): __a = node __a = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __a = current_node.parent path.reverse() return path if __name__ == "__main__": lowercase_ = (0, 0) lowercase_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") lowercase_ = GreedyBestFirst(init, goal) lowercase_ = greedy_bf.search() if path: for pos_x, pos_y in path: lowercase_ = 2 for elem in grid: print(elem)
695
0
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : def __init__(self , __magic_name__ , __magic_name__=99 , __magic_name__=13 , __magic_name__=16 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=False , __magic_name__=True , __magic_name__=2 , __magic_name__=32 , __magic_name__=4 , __magic_name__=4 , __magic_name__=30 , __magic_name__=0 , __magic_name__=1 , __magic_name__=2 , __magic_name__=None , ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = parent snake_case_ : Union[str, Any] = batch_size snake_case_ : Optional[Any] = decoder_seq_length # For common tests snake_case_ : Tuple = self.decoder_seq_length snake_case_ : Tuple = is_training snake_case_ : Optional[Any] = use_attention_mask snake_case_ : Optional[int] = use_labels snake_case_ : Dict = vocab_size snake_case_ : Tuple = d_model snake_case_ : Tuple = d_model snake_case_ : str = decoder_layers snake_case_ : List[str] = decoder_layers snake_case_ : List[str] = decoder_ffn_dim snake_case_ : int = decoder_attention_heads snake_case_ : List[str] = decoder_attention_heads snake_case_ : List[Any] = eos_token_id snake_case_ : Optional[int] = bos_token_id snake_case_ : Optional[Any] = pad_token_id snake_case_ : str = decoder_start_token_id snake_case_ : List[Any] = use_cache snake_case_ : int = max_position_embeddings snake_case_ : Optional[int] = None snake_case_ : List[str] = decoder_seq_length snake_case_ : str = 2 snake_case_ : Union[str, Any] = 1 def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ : Any = None if self.use_attention_mask: snake_case_ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case_ : List[Any] = None if self.use_labels: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case_ : Any = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> int: '''simple docstring''' snake_case_ : List[str] = True snake_case_ : List[Any] = TrOCRDecoder(config=__magic_name__ ).to(__magic_name__ ).eval() snake_case_ : Optional[int] = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case_ : Any = model(__magic_name__ , use_cache=__magic_name__ ) snake_case_ : int = model(__magic_name__ ) snake_case_ : int = model(__magic_name__ , use_cache=__magic_name__ ) self.parent.assertTrue(len(__magic_name__ ) == len(__magic_name__ ) ) self.parent.assertTrue(len(__magic_name__ ) == len(__magic_name__ ) + 1 ) snake_case_ : Union[str, Any] = outputs['''past_key_values'''] # create hypothetical next token and extent to next_input_ids snake_case_ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case_ : int = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case_ : Tuple = model(__magic_name__ )['''last_hidden_state'''] snake_case_ : str = model(__magic_name__ , past_key_values=__magic_name__ )['''last_hidden_state'''] # select random slice snake_case_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case_ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 ) def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : int = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( _a, _a, _a, unittest.TestCase ): lowerCamelCase_ : Optional[int] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowerCamelCase_ : int = (TrOCRForCausalLM,) if is_torch_available() else () lowerCamelCase_ : Union[str, Any] = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} lowerCamelCase_ : List[Any] = True lowerCamelCase_ : Optional[int] = False def lowerCamelCase (self ) -> int: '''simple docstring''' snake_case_ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=__magic_name__ ) snake_case_ : int = ConfigTester(self , config_class=__magic_name__ ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' pass def lowerCamelCase (self ) -> Any: '''simple docstring''' pass def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' pass def lowerCamelCase (self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase (self ) -> str: '''simple docstring''' snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__magic_name__ ) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' return @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowerCamelCase (self ) -> Tuple: '''simple docstring''' pass
60
"""simple docstring""" import argparse import torch from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert from transformers.utils import logging logging.set_verbosity_info() def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]: # Initialise PyTorch model __a = RemBertConfig.from_json_file(lowerCAmelCase__ ) print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) ) __a = RemBertModel(lowerCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) ) torch.save(model.state_dict() , lowerCAmelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--rembert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained RemBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase_ = parser.parse_args() convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
695
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def _A ( lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: lowerCAmelCase__ = 1024 lowerCAmelCase__ = 4096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = [5, 11, 17, 23] lowerCAmelCase__ = [256, 512, 1024, 1024] lowerCAmelCase__ = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase__ = 768 lowerCAmelCase__ = [1, 1, 1, 0.5] lowerCAmelCase__ = [256, 512, 768, 768] lowerCAmelCase__ = 150 lowerCAmelCase__ = 16 lowerCAmelCase__ = (1, 384, 384) lowerCAmelCase__ = False lowerCAmelCase__ = "project" if "ade" in checkpoint_url: lowerCAmelCase__ = True lowerCAmelCase__ = 768 lowerCAmelCase__ = [1, 1, 1, 0.5] lowerCAmelCase__ = 150 lowerCAmelCase__ = 16 lowerCAmelCase__ = "huggingface/label-files" lowerCAmelCase__ = "ade20k-id2label.json" lowerCAmelCase__ = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) ) , "r" ) ) lowerCAmelCase__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} lowerCAmelCase__ = [1, 150, 480, 480] return config, expected_shape def _A ( lowerCAmelCase_ : List[Any] ): """simple docstring""" lowerCAmelCase__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : Optional[int] ): """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase__ = name.replace("pretrained.model" , "dpt.encoder" ) if "pretrained.model" in name: lowerCAmelCase__ = name.replace("pretrained.model" , "dpt.embeddings" ) if "patch_embed" in name: lowerCAmelCase__ = name.replace("patch_embed" , "" ) if "pos_embed" in name: lowerCAmelCase__ = name.replace("pos_embed" , "position_embeddings" ) if "attn.proj" in name: lowerCAmelCase__ = name.replace("attn.proj" , "attention.output.dense" ) if "proj" in name and "project" not in name: lowerCAmelCase__ = name.replace("proj" , "projection" ) if "blocks" in name: lowerCAmelCase__ = name.replace("blocks" , "layer" ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace("mlp.fc2" , "output.dense" ) if "norm1" in name and "backbone" not in name: lowerCAmelCase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name and "backbone" not in name: lowerCAmelCase__ = name.replace("norm2" , "layernorm_after" ) if "scratch.output_conv" in name: lowerCAmelCase__ = name.replace("scratch.output_conv" , "head" ) if "scratch" in name: lowerCAmelCase__ = name.replace("scratch" , "neck" ) if "layer1_rn" in name: lowerCAmelCase__ = name.replace("layer1_rn" , "convs.0" ) if "layer2_rn" in name: lowerCAmelCase__ = name.replace("layer2_rn" , "convs.1" ) if "layer3_rn" in name: lowerCAmelCase__ = name.replace("layer3_rn" , "convs.2" ) if "layer4_rn" in name: lowerCAmelCase__ = name.replace("layer4_rn" , "convs.3" ) if "refinenet" in name: lowerCAmelCase__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase__ = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: lowerCAmelCase__ = name.replace("out_conv" , "projection" ) if "resConfUnit1" in name: lowerCAmelCase__ = name.replace("resConfUnit1" , "residual_layer1" ) if "resConfUnit2" in name: lowerCAmelCase__ = name.replace("resConfUnit2" , "residual_layer2" ) if "conv1" in name: lowerCAmelCase__ = name.replace("conv1" , "convolution1" ) if "conv2" in name: lowerCAmelCase__ = name.replace("conv2" , "convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: lowerCAmelCase__ = name.replace("pretrained" , "dpt" ) if "bn" in name: lowerCAmelCase__ = name.replace("bn" , "batch_norm" ) if "head" in name: lowerCAmelCase__ = name.replace("head" , "head.head" ) if "encoder.norm" in name: lowerCAmelCase__ = name.replace("encoder.norm" , "layernorm" ) if "auxlayer" in name: lowerCAmelCase__ = name.replace("auxlayer" , "auxiliary_head.head" ) if "backbone" in name: lowerCAmelCase__ = name.replace("backbone" , "backbone.bit.encoder" ) if ".." in name: lowerCAmelCase__ = name.replace(".." , "." ) if "stem.conv" in name: lowerCAmelCase__ = name.replace("stem.conv" , "bit.embedder.convolution" ) if "blocks" in name: lowerCAmelCase__ = name.replace("blocks" , "layers" ) if "convolution" in name and "backbone" in name: lowerCAmelCase__ = name.replace("convolution" , "conv" ) if "layer" in name and "backbone" in name: lowerCAmelCase__ = name.replace("layer" , "layers" ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase__ = name.replace("backbone.bit.encoder.bit" , "backbone.bit" ) if "embedder.conv" in name: lowerCAmelCase__ = name.replace("embedder.conv" , "embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase__ = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" ) return name def _A ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' ) lowerCAmelCase__ = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ = in_proj_weight[: config.hidden_size, :] lowerCAmelCase__ = in_proj_bias[: config.hidden_size] lowerCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ = in_proj_bias[-config.hidden_size :] def _A ( ): """simple docstring""" lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw ) return im @torch.no_grad() def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ = get_dpt_config(lowerCAmelCase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowerCAmelCase_ ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase__ = state_dict.pop(lowerCAmelCase_ ) lowerCAmelCase__ = val # read in qkv matrices read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ ) # load HuggingFace model lowerCAmelCase__ = DPTForSemanticSegmentation(lowerCAmelCase_ ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # Check outputs on an image lowerCAmelCase__ = 480 if "ade" in checkpoint_url else 384 lowerCAmelCase__ = DPTImageProcessor(size=lowerCAmelCase_ ) lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(lowerCAmelCase_ , return_tensors="pt" ) # forward pass lowerCAmelCase__ = model(**lowerCAmelCase_ ).logits if "ade" in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth if show_prediction: lowerCAmelCase__ = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=lowerCAmelCase_ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt', type=str, help='URL of the original DPT checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', ) parser.add_argument( '--model_name', default='dpt-large', type=str, help='Name of the model, in case you\'re pushing to the hub.', ) parser.add_argument( '--show_prediction', action='store_true', ) UpperCamelCase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
61
"""simple docstring""" import tempfile import unittest import numpy as np from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import BertConfig, is_flax_available from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax if is_flax_available(): import os from flax.core.frozen_dict import unfreeze from flax.traverse_util import flatten_dict from transformers import FlaxBertModel lowercase_ = "0.12" # assumed parallelism: 8 @require_flax @is_staging_test class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @classmethod def __UpperCAmelCase ( cls ): __a = TOKEN HfFolder.save_token(_a ) @classmethod def __UpperCAmelCase ( cls ): try: delete_repo(token=cls._token , repo_id='''test-model-flax''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' ) except HTTPError: pass def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''test-model-flax''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''test-model-flax''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def __UpperCAmelCase ( self ): __a = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) __a = FlaxBertModel(_a ) model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained( _a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token ) __a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' ) __a = flatten_dict(unfreeze(model.params ) ) __a = flatten_dict(unfreeze(new_model.params ) ) for key in base_params.keys(): __a = (base_params[key] - new_params[key]).sum().item() self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' ) def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]: __a = True __a = flatten_dict(modela.params ) __a = flatten_dict(modela.params ) for key in flat_params_a.keys(): if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4: __a = False return models_are_equal @require_flax class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' ) __a = FlaxBertModel(_a ) __a = '''bert''' with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' ) with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertTrue(check_models_equal(_a , _a ) ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a ) def __UpperCAmelCase ( self ): __a = '''bert''' __a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder''' with self.assertRaises(_a ): __a = FlaxBertModel.from_pretrained(_a ) __a = FlaxBertModel.from_pretrained(_a , subfolder=_a ) self.assertIsNotNone(_a )
695
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' @slow def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=UpperCAmelCase_ ).to(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) SCREAMING_SNAKE_CASE : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE : Any = tokenizer("Hi I am" , return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE : str = model(input_ids.to(UpperCAmelCase_ ) , labels=labels.to(UpperCAmelCase_ ) ).loss SCREAMING_SNAKE_CASE : List[str] = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE : Any = -84.9_127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
62
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' def __UpperCAmelCase ( self ): __a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'down' def __UpperCAmelCase ( self ): __a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Optional[Any] = 'down' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SkipDownBlockaD # noqa F405 __UpperCAmelCase : Tuple = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_skip_sample=_a ) def __UpperCAmelCase ( self ): __a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = DownEncoderBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'down' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''out_channels''': 32, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaD # noqa F405 __UpperCAmelCase : Any = 'mid' def __UpperCAmelCase ( self ): __a = { '''in_channels''': 32, '''temb_channels''': 128, } __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405 __UpperCAmelCase : str = 'mid' def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405 __UpperCAmelCase : List[Any] = 'mid' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405 __UpperCAmelCase : Union[str, Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 __UpperCAmelCase : Optional[int] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a ) def __UpperCAmelCase ( self ): __a , __a = super().prepare_init_args_and_inputs_for_common() __a = 32 return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = AttnUpBlockaD # noqa F405 __UpperCAmelCase : List[Any] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __UpperCAmelCase ( self ): __a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Any = SkipUpBlockaD # noqa F405 __UpperCAmelCase : str = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405 __UpperCAmelCase : int = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=_a ) def __UpperCAmelCase ( self ): __a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405 __UpperCAmelCase : List[str] = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 __UpperCAmelCase : Any = 'up' @property def __UpperCAmelCase ( self ): return super().get_dummy_input(include_temb=_a ) def __UpperCAmelCase ( self ): __a = {'''in_channels''': 32, '''out_channels''': 32} __a = self.dummy_input return init_dict, inputs_dict def __UpperCAmelCase ( self ): __a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(_a )
695
0
from torch import nn def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ): if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
63
"""simple docstring""" import copy from typing import Dict, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING from ..detr import DetrConfig from ..swin import SwinConfig lowercase_ = { "facebook/maskformer-swin-base-ade": ( "https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json" ) # See all MaskFormer models at https://huggingface.co/models?filter=maskformer } lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'maskformer' __UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'} __UpperCAmelCase : Any = ['resnet', 'swin'] __UpperCAmelCase : Dict = ['detr'] def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ): if backbone_config is None: # fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k __a = SwinConfig( image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(_a , _a ): __a = backbone_config.pop('''model_type''' ) __a = CONFIG_MAPPING[backbone_model_type] __a = config_class.from_dict(_a ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. ''' f'''Supported model types: {','.join(self.backbones_supported )}''' ) if decoder_config is None: # fall back to https://huggingface.co/facebook/detr-resnet-50 __a = DetrConfig() else: # verify that the decoder is supported __a = ( decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type ) if decoder_type not in self.decoders_supported: raise ValueError( f'''Transformer Decoder {decoder_type} not supported, please use one of''' f''' {','.join(self.decoders_supported )}''' ) if isinstance(_a , _a ): __a = CONFIG_MAPPING[decoder_type] __a = config_class.from_dict(_a ) __a = backbone_config __a = decoder_config # main feature dimension for the model __a = fpn_feature_size __a = mask_feature_size # initializer __a = init_std __a = init_xavier_std # Hungarian matcher && loss __a = cross_entropy_weight __a = dice_weight __a = mask_weight __a = use_auxiliary_loss __a = no_object_weight __a = output_auxiliary_logits __a = self.decoder_config.encoder_attention_heads __a = self.decoder_config.num_hidden_layers super().__init__(**_a ) @classmethod def __UpperCAmelCase ( cls , _a , _a , **_a ): return cls( backbone_config=_a , decoder_config=_a , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.backbone_config.to_dict() __a = self.decoder_config.to_dict() __a = self.__class__.model_type return output
695
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : Any = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class _lowerCamelCase ( UpperCamelCase_ ): __a = "xlm-roberta" def __init__( self , lowerCAmelCase=30522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-12 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> Union[str, Any]: super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Union[str, Any]= vocab_size SCREAMING_SNAKE_CASE__: Tuple= hidden_size SCREAMING_SNAKE_CASE__: List[Any]= num_hidden_layers SCREAMING_SNAKE_CASE__: Optional[Any]= num_attention_heads SCREAMING_SNAKE_CASE__: Any= hidden_act SCREAMING_SNAKE_CASE__: List[Any]= intermediate_size SCREAMING_SNAKE_CASE__: str= hidden_dropout_prob SCREAMING_SNAKE_CASE__: Optional[int]= attention_probs_dropout_prob SCREAMING_SNAKE_CASE__: List[str]= max_position_embeddings SCREAMING_SNAKE_CASE__: Optional[Any]= type_vocab_size SCREAMING_SNAKE_CASE__: List[Any]= initializer_range SCREAMING_SNAKE_CASE__: Tuple= layer_norm_eps SCREAMING_SNAKE_CASE__: Dict= position_embedding_type SCREAMING_SNAKE_CASE__: Optional[Any]= use_cache SCREAMING_SNAKE_CASE__: int= classifier_dropout class _lowerCamelCase ( UpperCamelCase_ ): @property def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE__: Any= {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE__: Any= {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
64
"""simple docstring""" from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l=" def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: __a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): __a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() __a = job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
695
0
"""simple docstring""" from itertools import permutations def lowerCAmelCase ( __UpperCamelCase ): '''simple docstring''' if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False UpperCAmelCase__ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__UpperCamelCase ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def lowerCAmelCase ( __UpperCamelCase = 10 ): '''simple docstring''' return sum( int("""""".join(map(__UpperCamelCase , __UpperCamelCase ) ) ) for num in permutations(range(__UpperCamelCase ) ) if is_substring_divisible(__UpperCamelCase ) ) if __name__ == "__main__": print(F"{solution() = }")
65
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'gpt_bigcode' __UpperCAmelCase : Tuple = ['past_key_values'] __UpperCAmelCase : Dict = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ): __a = vocab_size __a = n_positions __a = n_embd __a = n_layer __a = n_head __a = n_inner __a = activation_function __a = resid_pdrop __a = embd_pdrop __a = attn_pdrop __a = layer_norm_epsilon __a = initializer_range __a = scale_attn_weights __a = use_cache __a = attention_softmax_in_fpaa __a = scale_attention_softmax_in_fpaa __a = multi_query __a = bos_token_id __a = eos_token_id super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
695
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset UpperCamelCase = "bert-base-cased" UpperCamelCase = "google/pegasus-xsum" UpperCamelCase = [" Sam ate lunch today.", "Sams lunch ingredients."] UpperCamelCase = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] UpperCamelCase = "patrickvonplaten/t5-tiny-random" UpperCamelCase = "sshleifer/bart-tiny-random" UpperCamelCase = "sshleifer/tiny-mbart" UpperCamelCase = "sshleifer/tiny-marian-en-de" def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int: _lowercase : List[Any] = '\n'.join(SCREAMING_SNAKE_CASE ) Path(SCREAMING_SNAKE_CASE ).open('w' ).writelines(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]: for split in ["train", "val", "test"]: _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"""{split}.source""" ) , SCREAMING_SNAKE_CASE ) _dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"""{split}.target""" ) , SCREAMING_SNAKE_CASE ) return tmp_dir class lowerCAmelCase_ ( __snake_case ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def __a ( self , _lowerCAmelCase ): _lowercase : int = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _lowercase : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowercase : Dict = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in ARTICLES ) _lowercase : List[Any] = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in SUMMARIES ) _lowercase : List[str] = 4 _lowercase : Union[str, Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated _lowercase , _lowercase : str = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. _lowercase : List[str] = SeqaSeqDataset( _lowerCAmelCase , data_dir=_lowerCAmelCase , type_path='train' , max_source_length=_lowerCAmelCase , max_target_length=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , ) _lowercase : List[str] = DataLoader(_lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place _lowercase : List[str] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _lowercase : Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) _lowercase : Union[str, Any] = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in ARTICLES ) _lowercase : Optional[int] = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in SUMMARIES ) _lowercase : Tuple = 4 _lowercase : Optional[Any] = LegacySeqaSeqDataset( _lowerCAmelCase , data_dir=_lowerCAmelCase , type_path='train' , max_source_length=2_0 , max_target_length=_lowerCAmelCase , ) _lowercase : int = DataLoader(_lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def __a ( self ): _lowercase : Tuple = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) _lowercase : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) _lowercase : Optional[int] = tmp_dir.joinpath('train.source' ).open().readlines() _lowercase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_lowerCAmelCase , _lowerCAmelCase , 1_2_8 , _lowerCAmelCase ) _lowercase : Optional[int] = {x.name for x in tmp_dir.iterdir()} _lowercase : List[str] = {x.name for x in save_dir.iterdir()} _lowercase : List[Any] = save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_lowerCAmelCase ) < len(_lowerCAmelCase ) assert len(_lowerCAmelCase ) == 1 assert len(packed_examples[0] ) == sum(len(_lowerCAmelCase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def __a ( self ): if not FAIRSEQ_AVAILABLE: return _lowercase , _lowercase , _lowercase : Union[str, Any] = self._get_dataset(max_len=6_4 ) _lowercase : Dict = 6_4 _lowercase : int = ds.make_dynamic_sampler(_lowerCAmelCase , required_batch_size_multiple=_lowerCAmelCase ) _lowercase : Optional[int] = [len(_lowerCAmelCase ) for x in batch_sampler] assert len(set(_lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_lowerCAmelCase ) == len(_lowerCAmelCase ) # no dropped or added examples _lowercase : Tuple = DataLoader(_lowerCAmelCase , batch_sampler=_lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) _lowercase : Tuple = [] _lowercase : Union[str, Any] = [] for batch in data_loader: _lowercase : Union[str, Any] = batch['input_ids'].shape _lowercase : Tuple = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple _lowercase : str = np.product(batch['input_ids'].shape ) num_src_per_batch.append(_lowerCAmelCase ) if num_src_tokens > (max_tokens * 1.1): failures.append(_lowerCAmelCase ) assert num_src_per_batch[0] == max(_lowerCAmelCase ) if failures: raise AssertionError(F"""too many tokens in {len(_lowerCAmelCase )} batches""" ) def __a ( self ): _lowercase , _lowercase , _lowercase : Tuple = self._get_dataset(max_len=5_1_2 ) _lowercase : Any = 2 _lowercase : Optional[int] = ds.make_sortish_sampler(_lowerCAmelCase , shuffle=_lowerCAmelCase ) _lowercase : List[str] = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 ) _lowercase : Optional[Any] = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowerCAmelCase ) _lowercase : str = tokenizer.pad_token_id def count_pad_tokens(_lowerCAmelCase , _lowerCAmelCase="input_ids" ): return [batch[k].eq(_lowerCAmelCase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_lowerCAmelCase , k='labels' ) ) < sum(count_pad_tokens(_lowerCAmelCase , k='labels' ) ) assert sum(count_pad_tokens(_lowerCAmelCase ) ) < sum(count_pad_tokens(_lowerCAmelCase ) ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=1_0_0_0 , _lowerCAmelCase=1_2_8 ): if os.getenv('USE_REAL_DATA' , _lowerCAmelCase ): _lowercase : Tuple = 'examples/seq2seq/wmt_en_ro' _lowercase : Optional[Any] = max_len * 2 * 6_4 if not Path(_lowerCAmelCase ).joinpath('train.len' ).exists(): save_len_file(_lowerCAmelCase , _lowerCAmelCase ) else: _lowercase : int = 'examples/seq2seq/test_data/wmt_en_ro' _lowercase : Any = max_len * 4 save_len_file(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) _lowercase : Dict = SeqaSeqDataset( _lowerCAmelCase , data_dir=_lowerCAmelCase , type_path='train' , max_source_length=_lowerCAmelCase , max_target_length=_lowerCAmelCase , n_obs=_lowerCAmelCase , ) return ds, max_tokens, tokenizer def __a ( self ): _lowercase , _lowercase , _lowercase : List[str] = self._get_dataset() _lowercase : List[str] = set(DistributedSortishSampler(_lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_lowerCAmelCase ) ) _lowercase : Tuple = set(DistributedSortishSampler(_lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_lowerCAmelCase ) ) assert idsa.intersection(_lowerCAmelCase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def __a ( self , _lowerCAmelCase ): _lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase , use_fast=_lowerCAmelCase ) if tok_name == MBART_TINY: _lowercase : Dict = SeqaSeqDataset( _lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) _lowercase : Dict = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: _lowercase : int = SeqaSeqDataset( _lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) _lowercase : Any = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(_lowerCAmelCase ) == 0
66
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]: __a = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]: # Initialize accelerator __a = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = args.model_name_or_path set_seed(lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __a = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __a = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: __a = 1 __a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __a = 0 # We also need to keep track of the stating epoch so files are named properly __a = 0 # Now we train the model __a = evaluate.load('''glue''' , '''mrpc''' ) __a = 0 __a = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __a = model(**lowerCAmelCase__ ) __a = outputs.loss __a = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() __a = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __a , __a = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __a = predictions[: len(eval_dataloader.dataset ) - samples_seen] __a = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) __a = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: __a = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( ) -> List[str]: __a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , ) parser.add_argument( '''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
695
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case = { """configuration_xmod""": [ """XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XmodConfig""", """XmodOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""", """XmodForCausalLM""", """XmodForMaskedLM""", """XmodForMultipleChoice""", """XmodForQuestionAnswering""", """XmodForSequenceClassification""", """XmodForTokenClassification""", """XmodModel""", """XmodPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
"""simple docstring""" from typing import Any def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list: _validation( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) # Creates data structures and fill initial step __a = {} __a = {} for state in states_space: __a = observations_space[0] __a = ( initial_probabilities[state] * emission_probabilities[state][observation] ) __a = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(lowerCAmelCase__ ) ): __a = observations_space[o] __a = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function __a = '''''' __a = -1 for k_state in states_space: __a = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: __a = probability __a = k_state # Update probabilities and pointers dicts __a = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) __a = arg_max # The final observation __a = observations_space[len(lowerCAmelCase__ ) - 1] # argmax for given final observation __a = '''''' __a = -1 for k_state in states_space: __a = probabilities[(k_state, final_observation)] if probability > max_probability: __a = probability __a = k_state __a = arg_max # Process pointers backwards __a = last_state __a = [] for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ): result.append(lowerCAmelCase__ ) __a = pointers[previous, observations_space[o]] result.reverse() return result def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_not_empty( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) _validate_lists(lowerCAmelCase__ , lowerCAmelCase__ ) _validate_dicts( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError('''There\'s an empty parameter''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None: _validate_list(lowerCAmelCase__ , '''observations_space''' ) _validate_list(lowerCAmelCase__ , '''states_space''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a list''' raise ValueError(lowerCAmelCase__ ) else: for x in _object: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = f'''{var_name} must be a list of strings''' raise ValueError(lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None: _validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ ) _validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' ) _validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None: _validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values(): _validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None: if not isinstance(_object , lowerCAmelCase__ ): __a = f'''{var_name} must be a dict''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ): __a = f'''{var_name} all keys must be strings''' raise ValueError(lowerCAmelCase__ ) if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ): __a = '''nested dictionary ''' if nested else '''''' __a = f'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(lowerCAmelCase__ ) if __name__ == "__main__": from doctest import testmod testmod()
695
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __A = logging.get_logger(__name__) def lowercase__ ( A_: Tuple ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(A_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A_ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A_ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class _A ( UpperCamelCase ): """simple docstring""" lowerCamelCase : Dict = ['pixel_values'] def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None: super().__init__(**__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =size if size is not None else {"""shortest_edge""": 256} __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) __UpperCAmelCase =do_resize __UpperCAmelCase =size __UpperCAmelCase =do_center_crop __UpperCAmelCase =crop_size __UpperCAmelCase =resample __UpperCAmelCase =do_rescale __UpperCAmelCase =rescale_factor __UpperCAmelCase =offset __UpperCAmelCase =do_normalize __UpperCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD def _a ( self : str , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray: __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: __UpperCAmelCase =get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size["""shortest_edge"""] , default_to_square=__SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: __UpperCAmelCase =(size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> np.ndarray: __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(__SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> Optional[int]: __UpperCAmelCase =image.astype(np.floataa ) if offset: __UpperCAmelCase =image - (scale / 2) return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> np.ndarray: return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase =to_numpy_array(__SCREAMING_SNAKE_CASE ) if do_resize: __UpperCAmelCase =self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) if do_center_crop: __UpperCAmelCase =self.center_crop(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE ) if do_rescale: __UpperCAmelCase =self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE ) if do_normalize: __UpperCAmelCase =self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return image def _a ( self : Any , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> PIL.Image.Image: __UpperCAmelCase =do_resize if do_resize is not None else self.do_resize __UpperCAmelCase =resample if resample is not None else self.resample __UpperCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase =do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase =offset if offset is not None else self.offset __UpperCAmelCase =do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase =image_mean if image_mean is not None else self.image_mean __UpperCAmelCase =image_std if image_std is not None else self.image_std __UpperCAmelCase =size if size is not None else self.size __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =crop_size if crop_size is not None else self.crop_size __UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __UpperCAmelCase =make_batched(__SCREAMING_SNAKE_CASE ) __UpperCAmelCase =[ [ self._preprocess_image( image=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size=__SCREAMING_SNAKE_CASE , do_rescale=__SCREAMING_SNAKE_CASE , rescale_factor=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , ) for img in video ] for video in videos ] __UpperCAmelCase ={"""pixel_values""": videos} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
68
"""simple docstring""" import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int: __a = 3 __a = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(lowerCAmelCase__ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
695
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a : str = logging.get_logger(__name__) a : Dict = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """lilt""" def __init__( self : List[Any] , a_ : List[Any]=30_522 , a_ : Optional[int]=768 , a_ : Optional[Any]=12 , a_ : Union[str, Any]=12 , a_ : Optional[int]=3_072 , a_ : Dict="gelu" , a_ : Union[str, Any]=0.1 , a_ : str=0.1 , a_ : Optional[int]=512 , a_ : Tuple=2 , a_ : Dict=0.02 , a_ : Tuple=1e-12 , a_ : str=0 , a_ : Union[str, Any]="absolute" , a_ : Dict=None , a_ : List[str]=4 , a_ : Optional[Any]=1_024 , **a_ : str , ): """simple docstring""" super().__init__(pad_token_id=a_ , **a_ ) __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = hidden_act __snake_case = intermediate_size __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = initializer_range __snake_case = layer_norm_eps __snake_case = position_embedding_type __snake_case = classifier_dropout __snake_case = channel_shrink_ratio __snake_case = max_ad_position_embeddings
69
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
695
0
def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) lowerCamelCase_ = hex_num[0] == '-' if is_negative: lowerCamelCase_ = hex_num[1:] try: lowerCamelCase_ = int(lowercase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) lowerCamelCase_ = '' while int_num > 0: lowerCamelCase_ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
70
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json" ), "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[Any] = 'dpr' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = projection_dim __a = position_embedding_type
695
0
'''simple docstring''' from math import sqrt def a__ ( _SCREAMING_SNAKE_CASE : int ) -> bool: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" UpperCAmelCase_ : int = True # 0 and 1 are none primes. if number <= 1: UpperCAmelCase_ : List[Any] = False for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCAmelCase_ : Dict = False break # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def a__ ( _SCREAMING_SNAKE_CASE : str ) -> List[str]: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) UpperCAmelCase_ : Dict = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCAmelCase_ : List[Any] = 0 # filters actual prime numbers. UpperCAmelCase_ : Any = [x for x in begin_list if x != 0] # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Tuple: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" UpperCAmelCase_ : Union[str, Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_SCREAMING_SNAKE_CASE ): ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" UpperCAmelCase_ : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCAmelCase_ : Optional[int] = 2 UpperCAmelCase_ : Optional[Any] = number if number == 0 or number == 1: ans.append(_SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(_SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase_ : Tuple = 0 # prime factorization of 'number' UpperCAmelCase_ : str = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = max(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCAmelCase_ : List[str] = 0 # prime factorization of 'number' UpperCAmelCase_ : Any = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = min(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Tuple: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Dict: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]: """simple docstring""" assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" UpperCAmelCase_ : Optional[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCAmelCase_ : Any = get_prime_numbers(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = len(_SCREAMING_SNAKE_CASE ) # run variable for while-loops. UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[Any] = None # exit variable. for break up the loops UpperCAmelCase_ : Tuple = True while i < len_pn and loop: UpperCAmelCase_ : Dict = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCAmelCase_ : str = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (len(_SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase_ : Any = 0 while numbera != 0: UpperCAmelCase_ : Dict = numbera % numbera UpperCAmelCase_ : str = numbera UpperCAmelCase_ : Optional[int] = rest # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCAmelCase_ : str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCAmelCase_ : Dict = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = prime_factorization(_SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : str = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : str = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCAmelCase_ : Optional[int] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): ans *= n else: UpperCAmelCase_ : Any = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCAmelCase_ : Dict = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> int: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Union[str, Any] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime( _SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]: """simple docstring""" assert ( is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCAmelCase_ : str = p_number_a + 1 # jump to the next number UpperCAmelCase_ : Any = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(_SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a__ ( _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" UpperCAmelCase_ : Tuple = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCAmelCase_ : List[Any] = get_divisors(_SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCAmelCase_ : int = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Dict: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" UpperCAmelCase_ : str = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]: """simple docstring""" assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Any = 1 UpperCAmelCase_ : Any = 1 # this will be return for _ in range(n - 1 ): UpperCAmelCase_ : List[str] = ans ans += fiba UpperCAmelCase_ : Dict = tmp return ans
71
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline __UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS __UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __UpperCAmelCase : int = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Tuple = frozenset([] ) def __UpperCAmelCase ( self ): torch.manual_seed(0 ) __a = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , ) __a = PNDMScheduler(skip_prk_steps=_a ) torch.manual_seed(0 ) __a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , ) __a = CLIPTextModel(_a ) __a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) __a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def __UpperCAmelCase ( self , _a , _a=0 ): # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched __a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) ) __a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_a ).startswith('''mps''' ): __a = torch.manual_seed(_a ) else: __a = torch.Generator(device=_a ).manual_seed(_a ) __a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': init_image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def __UpperCAmelCase ( self ): __a = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a = self.get_dummy_components() __a = StableDiffusionInpaintPipeline(**_a ) __a = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) __a = self.get_dummy_inputs(_a ) __a = sd_pipe(**_a ).images __a = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def __UpperCAmelCase ( self ): __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = StableDiffusionInpaintPipeline.from_pretrained( _a , torch_dtype=torch.floataa , safety_checker=_a , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def __UpperCAmelCase ( self ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) __a = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) __a = '''stabilityai/stable-diffusion-2-inpainting''' __a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' ) __a = StableDiffusionInpaintPipeline.from_pretrained( _a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __a = '''Face of a yellow cat, high resolution, sitting on a park bench''' __a = torch.manual_seed(0 ) __a = pipe( prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , ) __a = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
695
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCAmelCase : int = '''\ Text data. Second line of data.''' _UpperCAmelCase : Optional[int] = '''file''' @pytest.fixture(scope='''session''' ) def UpperCamelCase ( lowercase_ : str ) -> int: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''') lowercase =bytes(lowercase_ , '''utf-8''' ) with zstd.open(lowercase_ , '''wb''' ) as f: f.write(lowercase_ ) return path @pytest.fixture def UpperCamelCase ( lowercase_ : Optional[int] ) -> List[Any]: '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , lowercase_ ) , '''w''' ) as f: f.write(lowercase_ ) return FILE_PATH @pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] ) def UpperCamelCase ( lowercase_ : str , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Any ) -> List[Any]: '''simple docstring''' lowercase ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path} lowercase =input_paths[compression_format] lowercase =tmp_path / '''cache''' lowercase =DownloadConfig(cache_dir=lowercase_ , extract_compressed_file=lowercase_ ) lowercase =cached_path(lowercase_ , download_config=lowercase_ ) with open(lowercase_ ) as f: lowercase =f.read() with open(lowercase_ ) as f: lowercase =f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('''default_extracted''' , [True, False] ) @pytest.mark.parametrize('''default_cache_dir''' , [True, False] ) def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' lowercase ='''custom_cache''' lowercase ='''custom_extracted_dir''' lowercase =tmp_path / '''custom_extracted_path''' if default_extracted: lowercase =('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''') else: monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , lowercase_ ) monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) ) lowercase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) lowercase =xz_file lowercase =( DownloadConfig(extract_compressed_file=lowercase_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase_ ) ) lowercase =cached_path(lowercase_ , download_config=lowercase_ ) assert Path(lowercase_ ).parent.parts[-2:] == expected def UpperCamelCase ( lowercase_ : List[str] ) -> Any: '''simple docstring''' lowercase =str(Path(lowercase_ ).resolve() ) assert cached_path(lowercase_ ) == text_file # relative path lowercase =str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(lowercase_ ) == text_file def UpperCamelCase ( lowercase_ : int ) -> Dict: '''simple docstring''' lowercase =str(tmp_path.resolve() / '''__missing_file__.txt''' ) with pytest.raises(lowercase_ ): cached_path(lowercase_ ) # relative path lowercase ='''./__missing_file__.txt''' with pytest.raises(lowercase_ ): cached_path(lowercase_ ) def UpperCamelCase ( lowercase_ : List[str] ) -> Tuple: '''simple docstring''' lowercase =get_from_cache(f'tmp://{tmpfs_file}' ) with open(lowercase_ ) as f: lowercase =f.read() assert output_file_content == FILE_CONTENT @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' with pytest.raises(lowercase_ ): cached_path('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( lowercase_ : Dict ) -> int: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase_ ): http_get('''https://huggingface.co''' , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): http_head('''https://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( lowercase_ : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase_ ): ftp_get('''ftp://huggingface.co''' , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): ftp_head('''ftp://huggingface.co''' ) @patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ ) def UpperCamelCase ( lowercase_ : Dict ) -> Any: '''simple docstring''' lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html''' with pytest.raises(lowercase_ ): fsspec_get('''s3://huggingface.co''' , temp_file=lowercase_ ) with pytest.raises(lowercase_ ): fsspec_head('''s3://huggingface.co''' )
72
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
0
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( 'pipelines_utils', '0.22.0', 'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.', standard_warn=False, stacklevel=3, )
73
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = MobileBertTokenizer lowerCAmelCase_ = MobileBertTokenizerFast lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = filter_non_english lowerCAmelCase_ = '''google/mobilebert-uncased''' def UpperCAmelCase__ ( self : Dict ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : List[str] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) __SCREAMING_SNAKE_CASE : int = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : List[str] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class(self.vocab_file ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] ) def UpperCAmelCase__ ( self : int ): """simple docstring""" if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Optional[Any] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : str = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) # With lower casing __SCREAMING_SNAKE_CASE : Any = self.get_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(do_lower_case=_A ) __SCREAMING_SNAKE_CASE : List[str] = '''UNwant\u00E9d,running''' __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A ) __SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __SCREAMING_SNAKE_CASE : Dict = {} for i, token in enumerate(_A ): __SCREAMING_SNAKE_CASE : List[str] = i __SCREAMING_SNAKE_CASE : str = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def UpperCAmelCase__ ( self : str ): """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : str = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus( _A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False __SCREAMING_SNAKE_CASE : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = ['''的''', '''人''', '''有'''] __SCREAMING_SNAKE_CASE : int = ''''''.join(_A ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : str = True __SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = False __SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.encode(_A , add_special_tokens=_A ) __SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(_A ) __SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A ) # it is expected that only the first Chinese character is not preceded by "##". __SCREAMING_SNAKE_CASE : List[Any] = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A ) ] self.assertListEqual(_A , _A ) self.assertListEqual(_A , _A )
74
"""simple docstring""" import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BertTokenizer __UpperCAmelCase : Optional[Any] = BertTokenizerFast __UpperCAmelCase : str = True __UpperCAmelCase : Tuple = True __UpperCAmelCase : Any = filter_non_english def __UpperCAmelCase ( self ): super().setUp() __a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __UpperCAmelCase ( self , _a ): __a = '''UNwant\u00E9d,running''' __a = '''unwanted, running''' return input_text, output_text def __UpperCAmelCase ( self ): __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] ) def __UpperCAmelCase ( self ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) # With lower casing __a = self.get_tokenizer(do_lower_case=_a ) __a = self.get_rust_tokenizer(do_lower_case=_a ) __a = '''UNwant\u00E9d,running''' __a = tokenizer.tokenize(_a ) __a = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = rust_tokenizer.encode(_a , add_special_tokens=_a ) self.assertListEqual(_a , _a ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(_a ) __a = rust_tokenizer.encode(_a ) self.assertListEqual(_a , _a ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , strip_accents=_a ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __UpperCAmelCase ( self ): __a = BasicTokenizer() __a = '''a\n\'ll !!to?\'d of, can\'t.''' __a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.'''] self.assertListEqual(tokenizer.tokenize(_a ) , _a ) def __UpperCAmelCase ( self ): __a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] __a = {} for i, token in enumerate(_a ): __a = i __a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __UpperCAmelCase ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __UpperCAmelCase ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def __UpperCAmelCase ( self ): __a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def __UpperCAmelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __a = tokenizer_r.encode_plus( _a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , ) __a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False __a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __UpperCAmelCase ( self ): __a = ['''的''', '''人''', '''有'''] __a = ''''''.join(_a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __a = True __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a ) __a = False __a = self.rust_tokenizer_class.from_pretrained(_a , **_a ) __a = self.tokenizer_class.from_pretrained(_a , **_a ) __a = tokenizer_r.encode(_a , add_special_tokens=_a ) __a = tokenizer_p.encode(_a , add_special_tokens=_a ) __a = tokenizer_r.convert_ids_to_tokens(_a ) __a = tokenizer_p.convert_ids_to_tokens(_a ) # it is expected that only the first Chinese character is not preceded by "##". __a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a ) ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , _a )
695
0
'''simple docstring''' from torch import nn def a__ ( lowerCAmelCase__ ) -> List[Any]: if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(F"""Unsupported activation function: {act_fn}""" )
75
"""simple docstring""" from __future__ import annotations def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float: if days_between_payments <= 0: raise ValueError('''days_between_payments must be > 0''' ) if daily_interest_rate < 0: raise ValueError('''daily_interest_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * daily_interest_rate * days_between_payments def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('''number_of_compounding_periods must be > 0''' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float: if number_of_years <= 0: raise ValueError('''number_of_years must be > 0''' ) if nominal_annual_percentage_rate < 0: raise ValueError('''nominal_annual_percentage_rate must be >= 0''' ) if principal <= 0: raise ValueError('''principal must be > 0''' ) return compound_interest( lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
695
0
"""simple docstring""" def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): if not (isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase )): raise ValueError('''longest_common_substring() takes two strings for inputs''' ) __lowercase : List[str] = len(__UpperCamelCase ) __lowercase : Dict = len(__UpperCamelCase ) __lowercase : Optional[Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowercase : Optional[Any] = 0 __lowercase : Union[str, Any] = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowercase : Optional[Any] = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowercase : List[str] = i __lowercase : List[Any] = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
76
"""simple docstring""" def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a = len(set_a.intersection(lowerCAmelCase__ ) ) if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) else: __a = len(set_a.union(lowerCAmelCase__ ) ) return intersection / union if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ): __a = [element for element in set_a if element in set_b] if alternative_union: __a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / union else: __a = set_a + [element for element in set_b if element not in set_a] return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ ) return None if __name__ == "__main__": lowercase_ = {"a", "b", "c", "d", "e"} lowercase_ = {"c", "d", "e", "f", "h", "i"} print(jaccard_similarity(set_a, set_b))
695
0
"""simple docstring""" from __future__ import annotations A = [] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> bool: """simple docstring""" for i in range(len(UpperCamelCase ) ): if board[row][i] == 1: return False for i in range(len(UpperCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ): if board[i][j] == 1: return False return True def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> bool: """simple docstring""" if row >= len(UpperCamelCase ): solution.append(UpperCamelCase ) printboard(UpperCamelCase ) print() return True for i in range(len(UpperCamelCase ) ): if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ): __UpperCAmelCase : Any = 1 solve(UpperCamelCase , row + 1 ) __UpperCAmelCase : Dict = 0 return False def _UpperCamelCase ( UpperCamelCase ) -> None: """simple docstring""" for i in range(len(UpperCamelCase ) ): for j in range(len(UpperCamelCase ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) A = 8 A = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
77
"""simple docstring""" from __future__ import annotations import requests def lowercase ( lowerCAmelCase__ : str ) -> dict: __a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty''' return requests.get(lowerCAmelCase__ ).json() def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]: __a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' __a = requests.get(lowerCAmelCase__ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids] def lowercase ( lowerCAmelCase__ : int = 10 ) -> str: __a = hackernews_top_stories(lowerCAmelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
695
0
'''simple docstring''' import numpy as np class __A : def __init__(self : Union[str, Any] ): UpperCAmelCase_ = (0, 0) UpperCAmelCase_ = None UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 def __eq__(self : List[str] , __a : List[Any] ): return self.position == cell.position def _lowercase (self : List[str] ): print(self.position ) class __A : def __init__(self : Optional[int] , __a : Tuple=(5, 5) ): UpperCAmelCase_ = np.zeros(__a ) UpperCAmelCase_ = world_size[0] UpperCAmelCase_ = world_size[1] def _lowercase (self : str ): print(self.w ) def _lowercase (self : Any , __a : List[Any] ): UpperCAmelCase_ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ = cell.position[0] UpperCAmelCase_ = cell.position[1] UpperCAmelCase_ = [] for n in neughbour_cord: UpperCAmelCase_ = current_x + n[0] UpperCAmelCase_ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ = Cell() UpperCAmelCase_ = (x, y) UpperCAmelCase_ = cell neighbours.append(__a ) return neighbours def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = [] _open.append(snake_case_ ) while _open: UpperCAmelCase_ = np.argmin([n.f for n in _open] ) UpperCAmelCase_ = _open[min_f] _closed.append(_open.pop(snake_case_ ) ) if current == goal: break for n in world.get_neigbours(snake_case_ ): for c in _closed: if c == n: continue UpperCAmelCase_ = current.g + 1 UpperCAmelCase_ , UpperCAmelCase_ = n.position UpperCAmelCase_ , UpperCAmelCase_ = goal.position UpperCAmelCase_ = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case_ ) UpperCAmelCase_ = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[Any] =Gridworld() # Start position and goal SCREAMING_SNAKE_CASE_: Any =Cell() SCREAMING_SNAKE_CASE_: Optional[int] =(0, 0) SCREAMING_SNAKE_CASE_: Tuple =Cell() SCREAMING_SNAKE_CASE_: Any =(4, 4) print(f"path from {start.position} to {goal.position}") SCREAMING_SNAKE_CASE_: Optional[int] =astar(world, start, goal) # Just for visual reasons. for i in s: SCREAMING_SNAKE_CASE_: str =1 print(world.w)
78
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) lowercase_ = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 'blip_2_vision_model' def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ): super().__init__(**_a ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act __a = qkv_bias @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = 'blip_2_qformer' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ): super().__init__(pad_token_id=_a , **_a ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = cross_attention_frequency __a = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls , _a , **_a ): cls._set_token_in_kwargs(_a ) __a , __a = cls.get_config_dict(_a , **_a ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''' ) == "blip-2": __a = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = 'blip-2' __UpperCAmelCase : List[str] = True def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ): super().__init__(**_a ) if vision_config is None: __a = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' ) if qformer_config is None: __a = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' ) if text_config is None: __a = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' ) __a = BlipaVisionConfig(**_a ) __a = BlipaQFormerConfig(**_a ) __a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' __a = CONFIG_MAPPING[text_model_type](**_a ) __a = self.text_config.tie_word_embeddings __a = self.text_config.is_encoder_decoder __a = num_query_tokens __a = self.vision_config.hidden_size __a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __a = 1.0 __a = 0.02 @classmethod def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ): return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , ) def __UpperCAmelCase ( self ): __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.qformer_config.to_dict() __a = self.text_config.to_dict() __a = self.__class__.model_type return output
695
0
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class UpperCAmelCase_ ( __lowerCamelCase ): __lowerCamelCase = '' __lowerCamelCase = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ): super().__init__(self , **_lowerCAmelCase ) UpperCAmelCase__ : Optional[int] = repo_info UpperCAmelCase__ : Optional[int] = token UpperCAmelCase__ : Any = None def __UpperCAmelCase ( self ): if self.dir_cache is None: UpperCAmelCase__ : Optional[int] = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes UpperCAmelCase__ : Any = { """name""": hf_file.rfilename, """size""": None, """type""": """file""", } self.dir_cache.update( { str(_lowerCAmelCase ): {"""name""": str(_lowerCAmelCase ), """size""": None, """type""": """directory"""} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = "rb" , **_lowerCAmelCase , ): if not isinstance(self.repo_info , _lowerCAmelCase ): raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" ) UpperCAmelCase__ : Optional[int] = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open() def __UpperCAmelCase ( self , _lowerCAmelCase , **_lowerCAmelCase ): self._get_dirs() UpperCAmelCase__ : int = self._strip_protocol(_lowerCAmelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCAmelCase ) def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ): self._get_dirs() UpperCAmelCase__ : int = PurePosixPath(path.strip("""/""" ) ) UpperCAmelCase__ : Union[str, Any] = {} for p, f in self.dir_cache.items(): UpperCAmelCase__ : List[Any] = PurePosixPath(p.strip("""/""" ) ) UpperCAmelCase__ : Any = p.parent if root == path: UpperCAmelCase__ : Dict = f UpperCAmelCase__ : Optional[Any] = list(paths.values() ) if detail: return out else: return sorted(f["""name"""] for f in out )
79
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
0