code
stringlengths 82
54.1k
| code_codestyle
int64 0
699
| style_context
stringlengths 111
35.6k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import argparse
from pathlib import Path
from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Path , lowerCAmelCase__ : str = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : str = None , ) -> List[Any]:
if config_name_or_path is None:
__a = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base'''
if generator_tokenizer_name_or_path is None:
__a = generator_name_or_path
if question_encoder_tokenizer_name_or_path is None:
__a = question_encoder_name_or_path
__a = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration
# Save model.
__a = RagConfig.from_pretrained(lowerCAmelCase__ )
__a = AutoConfig.from_pretrained(lowerCAmelCase__ )
__a = AutoConfig.from_pretrained(lowerCAmelCase__ )
__a = gen_config
__a = question_encoder_config
__a = model_class.from_pretrained_question_encoder_generator(
lowerCAmelCase__ , lowerCAmelCase__ , config=lowerCAmelCase__ )
rag_model.save_pretrained(lowerCAmelCase__ )
# Sanity check.
model_class.from_pretrained(lowerCAmelCase__ )
# Save tokenizers.
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' )
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--model_type",
choices=["rag_sequence", "rag_token"],
required=True,
type=str,
help="RAG model type: rag_sequence, rag_token",
)
parser.add_argument("--dest", type=str, required=True, help="Path to the output checkpoint directory.")
parser.add_argument("--generator_name_or_path", type=str, required=True, help="Generator model identifier")
parser.add_argument(
"--question_encoder_name_or_path", type=str, required=True, help="Question encoder model identifier"
)
parser.add_argument(
"--generator_tokenizer_name_or_path",
type=str,
help="Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``",
)
parser.add_argument(
"--question_encoder_tokenizer_name_or_path",
type=str,
help="Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``",
)
parser.add_argument(
"--config_name_or_path",
type=str,
help=(
"Identifier of the model config to use, if not provided, resolves to a base config for a given"
" ``model_type``"
),
)
lowercase_ = parser.parse_args()
lowercase_ = Path(args.dest)
dest_dir.mkdir(exist_ok=True)
consolidate(
args.model_type,
args.generator_name_or_path,
args.question_encoder_name_or_path,
dest_dir,
args.config_name_or_path,
args.generator_tokenizer_name_or_path,
args.question_encoder_tokenizer_name_or_path,
)
| 695 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int:
__a = 3
__a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowerCAmelCase__ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : int = 10**9 ) -> int:
__a = 1
__a = 2
__a = 0
__a = 0
__a = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__a = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F'''{solution() = }''')
| 695 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 695 | 1 |
"""simple docstring"""
import argparse
from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int] ) -> Union[str, Any]:
# Initialise PyTorch model
__a = BigBirdConfig.from_json_file(lowerCAmelCase__ )
print(f'''Building PyTorch model from configuration: {config}''' )
if is_trivia_qa:
__a = BigBirdForQuestionAnswering(lowerCAmelCase__ )
else:
__a = BigBirdForPreTraining(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_big_bird(lowerCAmelCase__ , lowerCAmelCase__ , is_trivia_qa=lowerCAmelCase__ )
# Save pytorch-model
print(f'''Save PyTorch model to {pytorch_dump_path}''' )
model.save_pretrained(lowerCAmelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--big_bird_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head."
)
lowercase_ = parser.parse_args()
convert_tf_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa
)
| 695 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = 'dpr'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = projection_dim
__a = position_embedding_type
| 695 | 1 |
"""simple docstring"""
import os
from math import logaa
def lowercase ( lowerCAmelCase__ : str = "base_exp.txt" ) -> int:
__a = 0
__a = 0
for i, line in enumerate(open(os.path.join(os.path.dirname(lowerCAmelCase__ ) , lowerCAmelCase__ ) ) ):
__a , __a = list(map(lowerCAmelCase__ , line.split(''',''' ) ) )
if x * logaa(lowerCAmelCase__ ) > largest:
__a = x * logaa(lowerCAmelCase__ )
__a = i + 1
return result
if __name__ == "__main__":
print(solution())
| 695 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline
__UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCAmelCase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__UpperCAmelCase : Tuple = frozenset([] )
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
__a = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) )
__a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInpaintPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __UpperCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 695 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import importlib.metadata
import json
import os
from dataclasses import dataclass
from typing import Any, Dict, Union
from packaging import version
from ..utils import is_torch_available, logging
if is_torch_available():
import torch
lowercase_ = logging.get_logger(__name__)
@dataclass
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a=False , _a=False , _a=6.0 , _a=None , _a=False , _a=False , _a=None , _a="fp4" , _a=False , **_a , ):
__a = load_in_abit
__a = load_in_abit
__a = llm_inta_threshold
__a = llm_inta_skip_modules
__a = llm_inta_enable_fpaa_cpu_offload
__a = llm_inta_has_fpaa_weight
__a = bnb_abit_quant_type
__a = bnb_abit_use_double_quant
if bnb_abit_compute_dtype is None:
__a = torch.floataa
elif isinstance(_a , _a ):
__a = getattr(_a , _a )
elif isinstance(_a , torch.dtype ):
__a = bnb_abit_compute_dtype
else:
raise ValueError('''bnb_4bit_compute_dtype must be a string or a torch.dtype''' )
self.post_init()
def __UpperCAmelCase ( self ):
if not isinstance(self.llm_inta_threshold , _a ):
raise ValueError('''llm_int8_threshold must be a float''' )
if self.llm_inta_skip_modules is not None and not isinstance(self.llm_inta_skip_modules , _a ):
raise ValueError('''llm_int8_skip_modules must be a list of strings''' )
if not isinstance(self.llm_inta_enable_fpaa_cpu_offload , _a ):
raise ValueError('''llm_int8_enable_fp32_cpu_offload must be a boolean''' )
if not isinstance(self.llm_inta_has_fpaa_weight , _a ):
raise ValueError('''llm_int8_has_fp16_weight must be a boolean''' )
if self.bnb_abit_compute_dtype is not None and not isinstance(self.bnb_abit_compute_dtype , torch.dtype ):
raise ValueError('''bnb_4bit_compute_dtype must be torch.dtype''' )
if not isinstance(self.bnb_abit_quant_type , _a ):
raise ValueError('''bnb_4bit_quant_type must be a string''' )
if not isinstance(self.bnb_abit_use_double_quant , _a ):
raise ValueError('''bnb_4bit_use_double_quant must be a boolean''' )
if self.load_in_abit and not version.parse(importlib.metadata.version('''bitsandbytes''' ) ) >= version.parse(
'''0.39.0''' ):
raise ValueError(
'''4 bit quantization requires bitsandbytes>=0.39.0 - please upgrade your bitsandbytes version''' )
def __UpperCAmelCase ( self ):
return self.load_in_abit or self.load_in_abit
def __UpperCAmelCase ( self ):
if self.load_in_abit:
return "llm_int8"
elif self.load_in_abit and self.bnb_abit_quant_type == "fp4":
return "fp4"
elif self.load_in_abit and self.bnb_abit_quant_type == "nf4":
return "nf4"
else:
return None
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
__a = cls(**_a )
__a = []
for key, value in kwargs.items():
if hasattr(_a , _a ):
setattr(_a , _a , _a )
to_remove.append(_a )
for key in to_remove:
kwargs.pop(_a , _a )
if return_unused_kwargs:
return config, kwargs
else:
return config
def __UpperCAmelCase ( self , _a ):
with open(_a , '''w''' , encoding='''utf-8''' ) as writer:
__a = self.to_dict()
__a = json.dumps(_a , indent=2 , sort_keys=_a ) + '''\n'''
writer.write(_a )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = str(output['''bnb_4bit_compute_dtype'''] ).split('''.''' )[1]
return output
def __repr__( self ):
return f'''{self.__class__.__name__} {self.to_json_string()}'''
def __UpperCAmelCase ( self , _a = True ):
if use_diff is True:
__a = self.to_diff_dict()
else:
__a = self.to_dict()
return json.dumps(_a , indent=2 , sort_keys=_a ) + "\n"
def __UpperCAmelCase ( self ):
__a = self.to_dict()
# get the default config dict
__a = BitsAndBytesConfig().to_dict()
__a = {}
# only serialize values that differ from the default config
for key, value in config_dict.items():
if value != default_config_dict[key]:
__a = value
return serializable_config_dict
| 695 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = False
__UpperCAmelCase : float = 3.0
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} )
@require_cuda
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
__a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__a = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , _a )
@require_multi_gpu
def __UpperCAmelCase ( self ):
__a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler])
lowercase_ = torch.nn.Linear(1_0_0, 2_0_0)
lowercase_ = accelerator.prepare(model)
# Check the values changed in kwargs
lowercase_ = ""
lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 695 | 1 |
"""simple docstring"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"CarlCochet/trajectory-transformer-halfcheetah-medium-v2": (
"https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json"
),
# See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'trajectory_transformer'
__UpperCAmelCase : Optional[Any] = ['past_key_values']
__UpperCAmelCase : int = {
'hidden_size': 'n_embd',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=100 , _a=5 , _a=1 , _a=1 , _a=249 , _a=6 , _a=17 , _a=25 , _a=4 , _a=4 , _a=128 , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0006 , _a=512 , _a=0.02 , _a=1E-12 , _a=1 , _a=True , _a=1 , _a=50_256 , _a=50_256 , **_a , ):
__a = vocab_size
__a = action_weight
__a = reward_weight
__a = value_weight
__a = max_position_embeddings
__a = block_size
__a = action_dim
__a = observation_dim
__a = transition_dim
__a = learning_rate
__a = n_layer
__a = n_head
__a = n_embd
__a = embd_pdrop
__a = attn_pdrop
__a = resid_pdrop
__a = initializer_range
__a = layer_norm_eps
__a = kaiming_initializer_range
__a = use_cache
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
| 695 |
"""simple docstring"""
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __UpperCAmelCase ( self ):
__a = f'''
{self.test_dir}/xla_spawn.py
--num_cores 8
{self.test_file_path}
'''.split()
__a = [sys.executable] + distributed_args
execute_subprocess_async(_a , env=os.environ.copy() )
| 695 | 1 |
"""simple docstring"""
from timeit import timeit
lowercase_ = {
"MALAYALAM": True,
"String": False,
"rotor": True,
"level": True,
"A": True,
"BB": True,
"ABC": False,
"amanaplanacanalpanama": True, # "a man a plan a canal panama"
}
# Ensure our test data is valid
assert all((key == key[::-1]) is value for key, value in test_data.items())
def lowercase ( lowerCAmelCase__ : str ) -> bool:
__a = 0
__a = len(lowerCAmelCase__ ) - 1
while start_i < end_i:
if s[start_i] == s[end_i]:
start_i += 1
end_i -= 1
else:
return False
return True
def lowercase ( lowerCAmelCase__ : str ) -> bool:
__a = len(lowerCAmelCase__ ) // 2
__a = len(lowerCAmelCase__ )
# We need to traverse till half of the length of string
# as we can get access of the i'th last element from
# i'th index.
# eg: [0,1,2,3,4,5] => 4th index can be accessed
# with the help of 1st index (i==n-i-1)
# where n is length of string
return all(s[i] == s[n - i - 1] for i in range(lowerCAmelCase__ ) )
def lowercase ( lowerCAmelCase__ : str ) -> bool:
if len(lowerCAmelCase__ ) <= 2:
return True
if s[0] == s[len(lowerCAmelCase__ ) - 1]:
return is_palindrome_recursive(s[1:-1] )
else:
return False
def lowercase ( lowerCAmelCase__ : str ) -> bool:
return s == s[::-1]
def lowercase ( lowerCAmelCase__ : str ) -> None:
__a = f'''all({name}(key) is value for key, value in test_data.items())'''
__a = f'''from __main__ import test_data, {name}'''
__a = 500000
__a = timeit(stmt=lowerCAmelCase__ , setup=lowerCAmelCase__ , number=lowerCAmelCase__ )
print(f'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' )
if __name__ == "__main__":
for key, value in test_data.items():
assert is_palindrome(key) is is_palindrome_recursive(key)
assert is_palindrome(key) is is_palindrome_slice(key)
print(F'''{key:21} {value}''')
print("a man a plan a canal panama")
# finished 500,000 runs in 0.46793 seconds
benchmark_function("is_palindrome_slice")
# finished 500,000 runs in 0.85234 seconds
benchmark_function("is_palindrome")
# finished 500,000 runs in 1.32028 seconds
benchmark_function("is_palindrome_recursive")
# finished 500,000 runs in 2.08679 seconds
benchmark_function("is_palindrome_traversal")
| 695 |
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = BertTokenizer
__UpperCAmelCase : Optional[Any] = BertTokenizerFast
__UpperCAmelCase : str = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Any = filter_non_english
def __UpperCAmelCase ( self ):
super().setUp()
__a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __UpperCAmelCase ( self , _a ):
__a = '''UNwant\u00E9d,running'''
__a = '''unwanted, running'''
return input_text, output_text
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class(self.vocab_file )
__a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] )
def __UpperCAmelCase ( self ):
if not self.test_rust_tokenizer:
return
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# With lower casing
__a = self.get_tokenizer(do_lower_case=_a )
__a = self.get_rust_tokenizer(do_lower_case=_a )
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
__a = '''a\n\'ll !!to?\'d of, can\'t.'''
__a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(_a ) , _a )
def __UpperCAmelCase ( self ):
__a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__a = {}
for i, token in enumerate(_a ):
__a = i
__a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __UpperCAmelCase ( self ):
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def __UpperCAmelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__a = tokenizer_r.encode_plus(
_a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , )
__a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False
__a = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __UpperCAmelCase ( self ):
__a = ['''的''', '''人''', '''有''']
__a = ''''''.join(_a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = True
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
__a = False
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that only the first Chinese character is not preceded by "##".
__a = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a )
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
| 695 | 1 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
lowercase_ = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls ):
__a = TOKEN
HfFolder.save_token(_a )
@classmethod
def __UpperCAmelCase ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
__a = True
__a = flatten_dict(modela.params )
__a = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
__a = False
return models_are_equal
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
| 695 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float:
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 1 |
"""simple docstring"""
import pytest
lowercase_ = "__dummy_dataset1__"
lowercase_ = "\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"\nURLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n \"tokens\": datasets.Sequence(datasets.Value(\"string\")),\n \"ner_tags\": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n \"O\",\n \"B-PER\",\n \"I-PER\",\n \"B-ORG\",\n \"I-ORG\",\n \"B-LOC\",\n \"I-LOC\",\n ]\n )\n ),\n \"langs\": datasets.Sequence(datasets.Value(\"string\")),\n \"spans\": datasets.Sequence(datasets.Value(\"string\")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, \"r\", encoding=\"utf-8\") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n"
@pytest.fixture
def lowercase ( ) -> Any:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def lowercase ( ) -> int:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str ) -> Any:
__a = dataset_loading_script_name
__a = tmp_path / '''datasets''' / script_name
script_dir.mkdir(parents=lowerCAmelCase__ )
__a = script_dir / f'''{script_name}.py'''
with open(lowerCAmelCase__ , '''w''' ) as f:
f.write(lowerCAmelCase__ )
return str(lowerCAmelCase__ )
| 695 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = len(set_a.intersection(lowerCAmelCase__ ) )
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
else:
__a = len(set_a.union(lowerCAmelCase__ ) )
return intersection / union
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return None
if __name__ == "__main__":
lowercase_ = {"a", "b", "c", "d", "e"}
lowercase_ = {"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 695 | 1 |
"""simple docstring"""
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
lowercase_ = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
lowercase_ = "main"
# Default branch name
lowercase_ = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2"
# One particular commit (not the top of `main`)
lowercase_ = "aaaaaaa"
# This commit does not exist, so we should 404.
lowercase_ = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684"
# Sha-1 of config.json on the top of `main`, for checking purposes
lowercase_ = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3"
@contextlib.contextmanager
def lowercase ( ) -> List[Any]:
print('''Welcome!''' )
yield
print('''Bye!''' )
@contextlib.contextmanager
def lowercase ( ) -> Dict:
print('''Bonjour!''' )
yield
print('''Au revoir!''' )
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# If the spec is missing, importlib would not be able to import the module dynamically.
assert transformers.__spec__ is not None
assert importlib.util.find_spec('''transformers''' ) is not None
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __UpperCAmelCase ( self , _a ):
with ContextManagers([] ):
print('''Transformers are awesome!''' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , '''Transformers are awesome!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __UpperCAmelCase ( self , _a ):
with ContextManagers([context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Welcome!\nTransformers are awesome!\nBye!\n''' )
@unittest.mock.patch('''sys.stdout''' , new_callable=io.StringIO )
def __UpperCAmelCase ( self , _a ):
with ContextManagers([context_fr(), context_en()] ):
print('''Transformers are awesome!''' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , '''Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n''' )
@require_torch
def __UpperCAmelCase ( self ):
self.assertEqual(find_labels(_a ) , ['''labels'''] )
self.assertEqual(find_labels(_a ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(_a ) , ['''start_positions''', '''end_positions'''] )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
self.assertEqual(find_labels(_a ) , ['''labels'''] )
@require_tf
def __UpperCAmelCase ( self ):
self.assertEqual(find_labels(_a ) , ['''labels'''] )
self.assertEqual(find_labels(_a ) , ['''labels''', '''next_sentence_label'''] )
self.assertEqual(find_labels(_a ) , ['''start_positions''', '''end_positions'''] )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
self.assertEqual(find_labels(_a ) , ['''labels'''] )
@require_flax
def __UpperCAmelCase ( self ):
# Flax models don't have labels
self.assertEqual(find_labels(_a ) , [] )
self.assertEqual(find_labels(_a ) , [] )
self.assertEqual(find_labels(_a ) , [] )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
pass
self.assertEqual(find_labels(_a ) , [] )
| 695 |
"""simple docstring"""
from __future__ import annotations
import requests
def lowercase ( lowerCAmelCase__ : str ) -> dict:
__a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(lowerCAmelCase__ ).json()
def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]:
__a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
__a = requests.get(lowerCAmelCase__ ).json()[:max_stories]
return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids]
def lowercase ( lowerCAmelCase__ : int = 10 ) -> str:
__a = hackernews_top_stories(lowerCAmelCase__ )
return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 695 | 1 |
"""simple docstring"""
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
lowercase_ = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n"
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , '''models/bert/''' ) )
__a = self.transformer_dir
shutil.copy(
os.path.join(_a , '''src/transformers/models/bert/modeling_bert.py''' ) , os.path.join(self.transformer_dir , '''models/bert/modeling_bert.py''' ) , )
def __UpperCAmelCase ( self ):
__a = '''src/transformers'''
shutil.rmtree(self.transformer_dir )
def __UpperCAmelCase ( self , _a , _a , _a , _a=None ):
__a = comment + f'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
__a = comment + f'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
__a = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
__a = black.format_str(_a , mode=_a )
__a = os.path.join(self.transformer_dir , '''new_code.py''' )
with open(_a , '''w''' , newline='''\n''' ) as f:
f.write(_a )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(_a ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=_a )
with open(_a , '''r''' ) as f:
self.assertTrue(f.read() , _a )
def __UpperCAmelCase ( self ):
__a = check_copies.find_code_in_transformers('''models.bert.modeling_bert.BertLMPredictionHead''' )
self.assertEqual(_a , _a )
def __UpperCAmelCase ( self ):
# Base copy consistency
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead''' , '''BertLMPredictionHead''' , _a , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , re.sub('''Bert''' , '''TestModel''' , _a ) , )
# Copy consistency with a really long name
__a = '''TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
f'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , f'''{long_class_name}LMPredictionHead''' , re.sub('''Bert''' , _a , _a ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel''' , '''TestModelLMPredictionHead''' , _a , overwrite_result=re.sub('''Bert''' , '''TestModel''' , _a ) , )
def __UpperCAmelCase ( self ):
__a = check_copies.LOCALIZED_READMES['''README_zh-hans.md''']
__a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),'''
''' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**'''
''' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders'''
''' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang'''
''' Luong, Quoc V. Le, Christopher D. Manning.'''
)
__a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
__a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.'''
''' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文'''
''' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and'''
''' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same'''
''' method has been applied to compress GPT2 into'''
''' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into'''
''' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),'''
''' Multilingual BERT into'''
''' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German'''
''' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自'''
''' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather'''
''' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,'''
''' Christopher D. Manning 发布。\n'''
)
__a , __a = check_copies.convert_to_localized_md(
_a , _a , localized_readme['''format_model_list'''] )
self.assertFalse(_a )
self.assertEqual(_a , _a )
__a , __a = check_copies.convert_to_localized_md(
_a , _a , localized_readme['''format_model_list'''] )
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(_a )
__a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the'''
''' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for'''
''' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong'''
''' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.'''
)
__a = (
'''1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and'''
''' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
__a = (
'''1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the'''
''' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of'''
''' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian'''
''' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n'''
)
__a , __a = check_copies.convert_to_localized_md(
_a , _a , localized_readme['''format_model_list'''] )
# Check if the model link is synchronized.
self.assertEqual(_a , _a )
| 695 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'blip_2_vision_model'
def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = intermediate_size
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
__a = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'blip_2_qformer'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = cross_attention_frequency
__a = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'blip-2'
__UpperCAmelCase : List[str] = True
def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ):
super().__init__(**_a )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' )
if qformer_config is None:
__a = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
__a = BlipaVisionConfig(**_a )
__a = BlipaQFormerConfig(**_a )
__a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
__a = CONFIG_MAPPING[text_model_type](**_a )
__a = self.text_config.tie_word_embeddings
__a = self.text_config.is_encoder_decoder
__a = num_query_tokens
__a = self.vision_config.hidden_size
__a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__a = 1.0
__a = 0.02
@classmethod
def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.vision_config.to_dict()
__a = self.qformer_config.to_dict()
__a = self.text_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : int ) -> list[str]:
return [sentence[i : i + ngram_size] for i in range(len(lowerCAmelCase__ ) - ngram_size + 1 )]
if __name__ == "__main__":
from doctest import testmod
testmod()
| 695 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = 'deberta-v2'
def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = relative_attention
__a = max_relative_positions
__a = pad_token_id
__a = position_biased_input
# Backwards compatibility
if type(_a ) == str:
__a = [x.strip() for x in pos_att_type.lower().split('''|''' )]
__a = pos_att_type
__a = vocab_size
__a = layer_norm_eps
__a = kwargs.get('''pooler_hidden_size''' , _a )
__a = pooler_dropout
__a = pooler_hidden_act
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def __UpperCAmelCase ( self ):
return 12
def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ):
__a = super().generate_dummy_inputs(preprocessor=_a , framework=_a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 695 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : str ) -> List[str]:
return [
{
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
},
{
0: [6],
1: [9],
2: [4, 5],
3: [4],
4: [2, 3],
5: [2],
6: [0, 7],
7: [6],
8: [],
9: [1],
},
{
0: [4],
1: [6],
2: [],
3: [5, 6, 7],
4: [0, 6],
5: [3, 8, 9],
6: [1, 3, 4, 7],
7: [3, 6, 8, 9],
8: [5, 7],
9: [5, 7],
},
{
0: [1, 3],
1: [0, 2, 4],
2: [1, 3, 4],
3: [0, 2, 4],
4: [1, 2, 3],
},
][index]
def lowercase ( lowerCAmelCase__ : dict[int, list[int]] ) -> list[tuple[int, int]]:
__a = 0
__a = len(lowerCAmelCase__ ) # No of vertices in graph
__a = [0] * n
__a = [False] * n
def dfs(lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int] ):
__a = True
__a = id_
id_ += 1
for to in graph[at]:
if to == parent:
pass
elif not visited[to]:
dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , id_ )
__a = min(low[at] , low[to] )
if id_ <= low[to]:
bridges.append((at, to) if at < to else (to, at) )
else:
# This edge is a back edge and cannot be a bridge
__a = min(low[at] , low[to] )
__a = []
for i in range(lowerCAmelCase__ ):
if not visited[i]:
dfs(lowerCAmelCase__ , -1 , lowerCAmelCase__ , id_ )
return bridges
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 |
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
lowercase_ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
if got_ver is None or want_ver is None:
raise ValueError(
f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
f''' reinstalling {pkg}.''' )
if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ):
raise ImportError(
f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None:
__a = f'''\n{hint}''' if hint is not None else ''''''
# non-versioned check
if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ):
__a , __a , __a = requirement, None, None
else:
__a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
f''' got {requirement}''' )
__a , __a = match[0]
__a = want_full.split(''',''' ) # there could be multiple requirements
__a = {}
for w in want_range:
__a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
f''' but got {requirement}''' )
__a , __a = match[0]
__a = want_ver
if op not in ops:
raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
__a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return
# check if any version is installed
try:
__a = importlib.metadata.version(lowerCAmelCase__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]:
__a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
| 695 | 1 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowercase_ = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'maskformer'
__UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'}
__UpperCAmelCase : Any = ['resnet', 'swin']
__UpperCAmelCase : Dict = ['detr']
def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
__a = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_a , _a ):
__a = backbone_config.pop('''model_type''' )
__a = CONFIG_MAPPING[backbone_model_type]
__a = config_class.from_dict(_a )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
__a = DetrConfig()
else:
# verify that the decoder is supported
__a = (
decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported )}''' )
if isinstance(_a , _a ):
__a = CONFIG_MAPPING[decoder_type]
__a = config_class.from_dict(_a )
__a = backbone_config
__a = decoder_config
# main feature dimension for the model
__a = fpn_feature_size
__a = mask_feature_size
# initializer
__a = init_std
__a = init_xavier_std
# Hungarian matcher && loss
__a = cross_entropy_weight
__a = dice_weight
__a = mask_weight
__a = use_auxiliary_loss
__a = no_object_weight
__a = output_auxiliary_logits
__a = self.decoder_config.encoder_attention_heads
__a = self.decoder_config.num_hidden_layers
super().__init__(**_a )
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
return cls(
backbone_config=_a , decoder_config=_a , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.backbone_config.to_dict()
__a = self.decoder_config.to_dict()
__a = self.__class__.model_type
return output
| 695 |
"""simple docstring"""
from __future__ import annotations
lowercase_ = list[tuple[int, int]]
lowercase_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , ):
__a = pos_x
__a = pos_y
__a = (pos_y, pos_x)
__a = goal_x
__a = goal_y
__a = g_cost
__a = parent
__a = self.calculate_heuristic()
def __UpperCAmelCase ( self ):
__a = abs(self.pos_x - self.goal_x )
__a = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , _a ):
return self.f_cost < other.f_cost
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a ):
__a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a )
__a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a )
__a = [self.start]
__a = []
__a = False
def __UpperCAmelCase ( self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__a = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
__a = True
return self.retrace_path(_a )
self.closed_nodes.append(_a )
__a = self.get_successors(_a )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_a )
else:
# retrieve the best current path
__a = self.open_nodes.pop(self.open_nodes.index(_a ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_a )
else:
self.open_nodes.append(_a )
if not self.reached:
return [self.start.pos]
return None
def __UpperCAmelCase ( self , _a ):
__a = []
for action in delta:
__a = parent.pos_x + action[1]
__a = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) )
return successors
def __UpperCAmelCase ( self , _a ):
__a = node
__a = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__a = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase_ = (0, 0)
lowercase_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
lowercase_ = GreedyBestFirst(init, goal)
lowercase_ = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase_ = 2
for elem in grid:
print(elem)
| 695 | 1 |
"""simple docstring"""
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
lowercase_ = logging.get_logger(__name__)
lowercase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __lowerCAmelCase :
'''simple docstring'''
__UpperCAmelCase : str = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Model type selected in the list: ' + ', '.join(__SCREAMING_SNAKE_CASE )} )
__UpperCAmelCase : str = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
__UpperCAmelCase : int = field(
default=1_2_8 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
__UpperCAmelCase : int = field(
default=1_2_8 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
__UpperCAmelCase : int = field(
default=6_4 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
__UpperCAmelCase : int = field(
default=3_0 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
__UpperCAmelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
__UpperCAmelCase : bool = field(
default=__SCREAMING_SNAKE_CASE , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
__UpperCAmelCase : float = field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
__UpperCAmelCase : int = field(
default=2_0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
__UpperCAmelCase : int = field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
__UpperCAmelCase : int = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = 'train'
__UpperCAmelCase : Dict = 'dev'
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : SquadDataTrainingArguments
__UpperCAmelCase : List[SquadFeatures]
__UpperCAmelCase : Split
__UpperCAmelCase : bool
def __init__( self , _a , _a , _a = None , _a = Split.train , _a = False , _a = None , _a = "pt" , ):
__a = args
__a = is_language_sensitive
__a = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(_a , _a ):
try:
__a = Split[mode]
except KeyError:
raise KeyError('''mode is not a valid split name''' )
__a = mode
# Load data features from cache or dataset file
__a = '''v2''' if args.version_2_with_negative else '''v1'''
__a = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , f'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}''' , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__a = cached_features_file + '''.lock'''
with FileLock(_a ):
if os.path.exists(_a ) and not args.overwrite_cache:
__a = time.time()
__a = torch.load(_a )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
__a = self.old_features['''features''']
__a = self.old_features.get('''dataset''' , _a )
__a = self.old_features.get('''examples''' , _a )
logger.info(
f'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'''Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'''
''' future run''' )
else:
if mode == Split.dev:
__a = self.processor.get_dev_examples(args.data_dir )
else:
__a = self.processor.get_train_examples(args.data_dir )
__a , __a = squad_convert_examples_to_features(
examples=self.examples , tokenizer=_a , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=_a , )
__a = time.time()
torch.save(
{'''features''': self.features, '''dataset''': self.dataset, '''examples''': self.examples} , _a , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' )
def __len__( self ):
return len(self.features )
def __getitem__( self , _a ):
# Convert to Tensors and build dataset
__a = self.features[i]
__a = torch.tensor(feature.input_ids , dtype=torch.long )
__a = torch.tensor(feature.attention_mask , dtype=torch.long )
__a = torch.tensor(feature.token_type_ids , dtype=torch.long )
__a = torch.tensor(feature.cls_index , dtype=torch.long )
__a = torch.tensor(feature.p_mask , dtype=torch.float )
__a = torch.tensor(feature.is_impossible , dtype=torch.float )
__a = {
'''input_ids''': input_ids,
'''attention_mask''': attention_mask,
'''token_type_ids''': token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({'''cls_index''': cls_index, '''p_mask''': p_mask} )
if self.args.version_2_with_negative:
inputs.update({'''is_impossible''': is_impossible} )
if self.is_language_sensitive:
inputs.update({'''langs''': (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
__a = torch.tensor(feature.start_position , dtype=torch.long )
__a = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({'''start_positions''': start_positions, '''end_positions''': end_positions} )
return inputs
| 695 |
"""simple docstring"""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]:
# Initialise PyTorch model
__a = RemBertConfig.from_json_file(lowerCAmelCase__ )
print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) )
__a = RemBertModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--rembert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained RemBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 695 | 1 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : list[int] , lowerCAmelCase__ : list[int] ) -> None:
__a = len(lowerCAmelCase__ )
print('''The following activities are selected:''' )
# The first activity is always selected
__a = 0
print(lowerCAmelCase__ , end=''',''' )
# Consider rest of the activities
for j in range(lowerCAmelCase__ ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(lowerCAmelCase__ , end=''',''' )
__a = j
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase_ = [1, 3, 0, 5, 8, 5]
lowercase_ = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 695 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
lowercase_ = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls ):
__a = TOKEN
HfFolder.save_token(_a )
@classmethod
def __UpperCAmelCase ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
__a = True
__a = flatten_dict(modela.params )
__a = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
__a = False
return models_are_equal
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
| 695 | 1 |
"""simple docstring"""
from typing import List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"huggingface/autoformer-tourism-monthly": "https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Tuple = 'autoformer'
__UpperCAmelCase : Dict = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
'num_hidden_layers': 'encoder_layers',
}
def __init__( self , _a = None , _a = None , _a = "student_t" , _a = "nll" , _a = 1 , _a = [1, 2, 3, 4, 5, 6, 7] , _a = True , _a = 0 , _a = 0 , _a = 0 , _a = 0 , _a = None , _a = None , _a = 64 , _a = 2 , _a = 2 , _a = 2 , _a = 2 , _a = 32 , _a = 32 , _a = "gelu" , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 0.1 , _a = 100 , _a = 0.02 , _a = True , _a=True , _a = 10 , _a = 25 , _a = 3 , **_a , ):
# time series specific configuration
__a = prediction_length
__a = context_length if context_length is not None else prediction_length
__a = distribution_output
__a = loss
__a = input_size
__a = num_time_features
__a = lags_sequence
__a = scaling
__a = num_dynamic_real_features
__a = num_static_real_features
__a = num_static_categorical_features
if cardinality is not None and num_static_categorical_features > 0:
if len(_a ) != num_static_categorical_features:
raise ValueError(
'''The cardinality should be a list of the same length as `num_static_categorical_features`''' )
__a = cardinality
else:
__a = [0]
if embedding_dimension is not None and num_static_categorical_features > 0:
if len(_a ) != num_static_categorical_features:
raise ValueError(
'''The embedding dimension should be a list of the same length as `num_static_categorical_features`''' )
__a = embedding_dimension
else:
__a = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality]
__a = num_parallel_samples
# Transformer architecture configuration
__a = input_size * len(self.lags_sequence ) + self._number_of_features
__a = d_model
__a = encoder_attention_heads
__a = decoder_attention_heads
__a = encoder_ffn_dim
__a = decoder_ffn_dim
__a = encoder_layers
__a = decoder_layers
__a = dropout
__a = attention_dropout
__a = activation_dropout
__a = encoder_layerdrop
__a = decoder_layerdrop
__a = activation_function
__a = init_std
__a = use_cache
# Autoformer
__a = label_length
__a = moving_average
__a = autocorrelation_factor
super().__init__(is_encoder_decoder=_a , **_a )
@property
def __UpperCAmelCase ( self ):
return (
sum(self.embedding_dimension )
+ self.num_dynamic_real_features
+ self.num_time_features
+ self.num_static_real_features
+ self.input_size * 2 # the log1p(abs(loc)) and log(scale) features
)
| 695 |
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
def __UpperCAmelCase ( self ):
__a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SkipDownBlockaD # noqa F405
__UpperCAmelCase : Tuple = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = DownEncoderBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaD # noqa F405
__UpperCAmelCase : Any = 'mid'
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''temb_channels''': 128,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405
__UpperCAmelCase : str = 'mid'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405
__UpperCAmelCase : List[Any] = 'mid'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405
__UpperCAmelCase : Union[str, Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = AttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = SkipUpBlockaD # noqa F405
__UpperCAmelCase : str = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(_a )
| 695 | 1 |
"""simple docstring"""
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __UpperCAmelCase ( self ):
__a = f'''
{self.test_dir}/xla_spawn.py
--num_cores 8
{self.test_file_path}
'''.split()
__a = [sys.executable] + distributed_args
execute_subprocess_async(_a , env=os.environ.copy() )
| 695 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowercase_ = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'maskformer'
__UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'}
__UpperCAmelCase : Any = ['resnet', 'swin']
__UpperCAmelCase : Dict = ['detr']
def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
__a = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_a , _a ):
__a = backbone_config.pop('''model_type''' )
__a = CONFIG_MAPPING[backbone_model_type]
__a = config_class.from_dict(_a )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
__a = DetrConfig()
else:
# verify that the decoder is supported
__a = (
decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported )}''' )
if isinstance(_a , _a ):
__a = CONFIG_MAPPING[decoder_type]
__a = config_class.from_dict(_a )
__a = backbone_config
__a = decoder_config
# main feature dimension for the model
__a = fpn_feature_size
__a = mask_feature_size
# initializer
__a = init_std
__a = init_xavier_std
# Hungarian matcher && loss
__a = cross_entropy_weight
__a = dice_weight
__a = mask_weight
__a = use_auxiliary_loss
__a = no_object_weight
__a = output_auxiliary_logits
__a = self.decoder_config.encoder_attention_heads
__a = self.decoder_config.num_hidden_layers
super().__init__(**_a )
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
return cls(
backbone_config=_a , decoder_config=_a , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.backbone_config.to_dict()
__a = self.decoder_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 1 |
"""simple docstring"""
import argparse
import os
import re
lowercase_ = "src/diffusers"
# Pattern that looks at the indentation in a line.
lowercase_ = re.compile(r"^(\s*)\S")
# Pattern that matches `"key":" and puts `key` in group 0.
lowercase_ = re.compile(r"^\s*\"([^\"]+)\":")
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
lowercase_ = re.compile(r"^\s*_import_structure\[\"([^\"]+)\"\]")
# Pattern that matches `"key",` and puts `key` in group 0.
lowercase_ = re.compile(r"^\s*\"([^\"]+)\",\s*$")
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
lowercase_ = re.compile(r"\[([^\]]+)\]")
def lowercase ( lowerCAmelCase__ : Any ) -> str:
__a = _re_indent.search(lowerCAmelCase__ )
return "" if search is None else search.groups()[0]
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]="" , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : int=None ) -> List[Any]:
__a = 0
__a = code.split('''\n''' )
if start_prompt is not None:
while not lines[index].startswith(lowerCAmelCase__ ):
index += 1
__a = ['''\n'''.join(lines[:index] )]
else:
__a = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
__a = [lines[index]]
index += 1
while index < len(lowerCAmelCase__ ) and (end_prompt is None or not lines[index].startswith(lowerCAmelCase__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(lowerCAmelCase__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ):
current_block.append(lines[index] )
blocks.append('''\n'''.join(lowerCAmelCase__ ) )
if index < len(lowerCAmelCase__ ) - 1:
__a = [lines[index + 1]]
index += 1
else:
__a = []
else:
blocks.append('''\n'''.join(lowerCAmelCase__ ) )
__a = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(lowerCAmelCase__ ) > 0:
blocks.append('''\n'''.join(lowerCAmelCase__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(lowerCAmelCase__ ):
blocks.append('''\n'''.join(lines[index:] ) )
return blocks
def lowercase ( lowerCAmelCase__ : int ) -> Tuple:
def _inner(lowerCAmelCase__ : int ):
return key(lowerCAmelCase__ ).lower().replace('''_''' , '''''' )
return _inner
def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple:
# If no key is provided, we use a noop.
def noop(lowerCAmelCase__ : Optional[int] ):
return x
if key is None:
__a = noop
# Constants are all uppercase, they go first.
__a = [obj for obj in objects if key(lowerCAmelCase__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
__a = [obj for obj in objects if key(lowerCAmelCase__ )[0].isupper() and not key(lowerCAmelCase__ ).isupper()]
# Functions begin with a lowercase, they go last.
__a = [obj for obj in objects if not key(lowerCAmelCase__ )[0].isupper()]
__a = ignore_underscore(lowerCAmelCase__ )
return sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ ) + sorted(lowerCAmelCase__ , key=lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Union[str, Any] ) -> Any:
# This inner function sort imports between [ ].
def _replace(lowerCAmelCase__ : str ):
__a = match.groups()[0]
if "," not in imports:
return f'''[{imports}]'''
__a = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__a = keys[:-1]
return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] ) + "]"
__a = import_statement.split('''\n''' )
if len(lowerCAmelCase__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
__a = 2 if lines[1].strip() == '''[''' else 1
__a = [(i, _re_strip_line.search(lowerCAmelCase__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
__a = sort_objects(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )
__a = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(lowerCAmelCase__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
__a = _re_bracket_content.sub(_replace , lines[1] )
else:
__a = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
__a = keys[:-1]
__a = get_indent(lines[1] ) + ''', '''.join([f'''"{k}"''' for k in sort_objects(lowerCAmelCase__ )] )
return "\n".join(lowerCAmelCase__ )
else:
# Finally we have to deal with imports fitting on one line
__a = _re_bracket_content.sub(_replace , lowerCAmelCase__ )
return import_statement
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int]=True ) -> Optional[int]:
with open(lowerCAmelCase__ , '''r''' ) as f:
__a = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
__a = split_code_in_indented_blocks(
lowerCAmelCase__ , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(lowerCAmelCase__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
__a = main_blocks[block_idx]
__a = block.split('''\n''' )
# Get to the start of the imports.
__a = 0
while line_idx < len(lowerCAmelCase__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
__a = len(lowerCAmelCase__ )
else:
line_idx += 1
if line_idx >= len(lowerCAmelCase__ ):
continue
# Ignore beginning and last line: they don't contain anything.
__a = '''\n'''.join(block_lines[line_idx:-1] )
__a = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
__a = split_code_in_indented_blocks(lowerCAmelCase__ , indent_level=lowerCAmelCase__ )
# We have two categories of import key: list or _import_structure[key].append/extend
__a = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
__a = [(pattern.search(lowerCAmelCase__ ).groups()[0] if pattern.search(lowerCAmelCase__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
__a = [(i, key) for i, key in enumerate(lowerCAmelCase__ ) if key is not None]
__a = [x[0] for x in sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
__a = 0
__a = []
for i in range(len(lowerCAmelCase__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
__a = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(lowerCAmelCase__ )
count += 1
# And we put our main block back together with its first and last line.
__a = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(lowerCAmelCase__ ):
if check_only:
return True
else:
print(f'''Overwriting {file}.''' )
with open(lowerCAmelCase__ , '''w''' ) as f:
f.write('''\n'''.join(lowerCAmelCase__ ) )
def lowercase ( lowerCAmelCase__ : Tuple=True ) -> int:
__a = []
for root, _, files in os.walk(lowerCAmelCase__ ):
if "__init__.py" in files:
__a = sort_imports(os.path.join(lowerCAmelCase__ , '''__init__.py''' ) , check_only=lowerCAmelCase__ )
if result:
__a = [os.path.join(lowerCAmelCase__ , '''__init__.py''' )]
if len(lowerCAmelCase__ ) > 0:
raise ValueError(f'''Would overwrite {len(lowerCAmelCase__ )} files, run `make style`.''' )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
lowercase_ = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 695 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
__a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__a = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
| 695 | 1 |
"""simple docstring"""
lowercase_ = 6_5_5_2_1
def lowercase ( lowerCAmelCase__ : str ) -> int:
__a = 1
__a = 0
for plain_chr in plain_text:
__a = (a + ord(lowerCAmelCase__ )) % MOD_ADLER
__a = (b + a) % MOD_ADLER
return (b << 16) | a
| 695 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = 'gpt_bigcode'
__UpperCAmelCase : Tuple = ['past_key_values']
__UpperCAmelCase : Dict = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = n_positions
__a = n_embd
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = attention_softmax_in_fpaa
__a = scale_attention_softmax_in_fpaa
__a = multi_query
__a = bos_token_id
__a = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 695 | 1 |
import requests
def __lowercase ( snake_case, snake_case ):
"""simple docstring"""
__magic_name__ :Dict = {'''Content-Type''': '''application/json'''}
__magic_name__ :Union[str, Any] = requests.post(snake_case, json={'''text''': message_body}, headers=snake_case )
if response.status_code != 2_0_0:
__magic_name__ :Any = (
'''Request to slack returned an error '''
f'''{response.status_code}, the response is:\n{response.text}'''
)
raise ValueError(snake_case )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 0 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase_ = 1_6
lowercase_ = 3_2
def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]:
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
__a = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__a = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase__ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__a = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
__a = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
# Initialize accelerator
__a = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a = config['''lr''']
__a = int(config['''num_epochs'''] )
__a = int(config['''seed'''] )
__a = int(config['''batch_size'''] )
__a = args.model_name_or_path
set_seed(lowerCAmelCase__ )
__a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
__a = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__a = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__a = 1
__a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__a = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
__a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a , __a , __a , __a , __a = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
__a = 0
# We also need to keep track of the stating epoch so files are named properly
__a = 0
# Now we train the model
__a = evaluate.load('''glue''' , '''mrpc''' )
__a = 0
__a = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
__a = model(**lowerCAmelCase__ )
__a = outputs.loss
__a = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__a = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__a = model(**lowerCAmelCase__ )
__a = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__a , __a = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
__a = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__a = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
__a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ )
__a = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
__a = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( ) -> List[str]:
__a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , )
parser.add_argument(
'''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , )
parser.add_argument(
'''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , )
__a = parser.parse_args()
__a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 695 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase (_a , unittest.TestCase ):
_lowercase = DiTPipeline
_lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
_lowercase = PipelineTesterMixin.required_optional_params - {
"""latents""",
"""num_images_per_prompt""",
"""callback""",
"""callback_steps""",
}
_lowercase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
_lowercase = False
def snake_case_ ( self: Any ):
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = TransformeraDModel(
sample_size=16,num_layers=2,patch_size=4,attention_head_dim=8,num_attention_heads=2,in_channels=4,out_channels=8,attention_bias=A_,activation_fn='gelu-approximate',num_embeds_ada_norm=1000,norm_type='ada_norm_zero',norm_elementwise_affine=A_,)
__UpperCamelCase = AutoencoderKL()
__UpperCamelCase = DDIMScheduler()
__UpperCamelCase = {'transformer': transformer.eval(), 'vae': vae.eval(), 'scheduler': scheduler}
return components
def snake_case_ ( self: Optional[Any],A_: Any,A_: int=0 ):
'''simple docstring'''
if str(A_ ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(A_ )
else:
__UpperCamelCase = torch.Generator(device=A_ ).manual_seed(A_ )
__UpperCamelCase = {
'class_labels': [1],
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
def snake_case_ ( self: Dict ):
'''simple docstring'''
__UpperCamelCase = 'cpu'
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = self.pipeline_class(**A_ )
pipe.to(A_ )
pipe.set_progress_bar_config(disable=A_ )
__UpperCamelCase = self.get_dummy_inputs(A_ )
__UpperCamelCase = pipe(**A_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape,(1, 16, 16, 3) )
__UpperCamelCase = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] )
__UpperCamelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(A_,1E-3 )
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=A_,expected_max_diff=1E-3 )
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available(),reason='XFormers attention is only available with CUDA and `xformers` installed',)
def snake_case_ ( self: List[Any] ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
@require_torch_gpu
@slow
class __lowerCamelCase (unittest.TestCase ):
def snake_case_ ( self: str ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-256' )
pipe.to('cuda' )
__UpperCamelCase = ['vase', 'umbrella', 'white shark', 'white wolf']
__UpperCamelCase = pipe.get_label_ids(A_ )
__UpperCamelCase = pipe(A_,generator=A_,num_inference_steps=40,output_type='np' ).images
for word, image in zip(A_,A_ ):
__UpperCamelCase = load_numpy(
F'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-2
def snake_case_ ( self: Union[str, Any] ):
'''simple docstring'''
__UpperCamelCase = DiTPipeline.from_pretrained('facebook/DiT-XL-2-512' )
__UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to('cuda' )
__UpperCamelCase = ['vase', 'umbrella']
__UpperCamelCase = pipe.get_label_ids(A_ )
__UpperCamelCase = torch.manual_seed(0 )
__UpperCamelCase = pipe(A_,generator=A_,num_inference_steps=25,output_type='np' ).images
for word, image in zip(A_,A_ ):
__UpperCamelCase = load_numpy(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
F'''/dit/{word}_512.npy''' )
assert np.abs((expected_image - image).max() ) < 1E-1
| 1 |
"""simple docstring"""
from typing import Any
def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list:
_validation(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
# Creates data structures and fill initial step
__a = {}
__a = {}
for state in states_space:
__a = observations_space[0]
__a = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__a = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(lowerCAmelCase__ ) ):
__a = observations_space[o]
__a = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__a = ''''''
__a = -1
for k_state in states_space:
__a = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__a = probability
__a = k_state
# Update probabilities and pointers dicts
__a = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__a = arg_max
# The final observation
__a = observations_space[len(lowerCAmelCase__ ) - 1]
# argmax for given final observation
__a = ''''''
__a = -1
for k_state in states_space:
__a = probabilities[(k_state, final_observation)]
if probability > max_probability:
__a = probability
__a = k_state
__a = arg_max
# Process pointers backwards
__a = last_state
__a = []
for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ):
result.append(lowerCAmelCase__ )
__a = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_not_empty(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
_validate_lists(lowerCAmelCase__ , lowerCAmelCase__ )
_validate_dicts(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None:
_validate_list(lowerCAmelCase__ , '''observations_space''' )
_validate_list(lowerCAmelCase__ , '''states_space''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list'''
raise ValueError(lowerCAmelCase__ )
else:
for x in _object:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list of strings'''
raise ValueError(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ )
_validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' )
_validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
_validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ )
for x in _object.values():
_validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a dict'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ):
__a = f'''{var_name} all keys must be strings'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ):
__a = '''nested dictionary ''' if nested else ''''''
__a = f'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 695 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase_ = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> YolosConfig:
_A = YolosConfig()
# size of the architecture
if "yolos_ti" in yolos_name:
_A = 192
_A = 768
_A = 12
_A = 3
_A = [800, 1_333]
_A = False
elif yolos_name == "yolos_s_dWr":
_A = 330
_A = 14
_A = 6
_A = 1_320
elif "yolos_s" in yolos_name:
_A = 384
_A = 1_536
_A = 12
_A = 6
elif "yolos_b" in yolos_name:
_A = [800, 1_344]
_A = 91
_A = '''huggingface/label-files'''
_A = '''coco-detection-id2label.json'''
_A = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) )
_A = {int(_snake_case ): v for k, v in idalabel.items()}
_A = idalabel
_A = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosConfig , _snake_case :bool = False ) -> Optional[int]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
_A = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' )
_A = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
_A = in_proj_weight[: config.hidden_size, :]
_A = in_proj_bias[: config.hidden_size]
_A = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
_A = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
_A = in_proj_weight[-config.hidden_size :, :]
_A = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE_ ( _snake_case :str ) -> str:
if "backbone" in name:
_A = name.replace('''backbone''' , '''vit''' )
if "cls_token" in name:
_A = name.replace('''cls_token''' , '''embeddings.cls_token''' )
if "det_token" in name:
_A = name.replace('''det_token''' , '''embeddings.detection_tokens''' )
if "mid_pos_embed" in name:
_A = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''' )
if "pos_embed" in name:
_A = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' )
if "patch_embed.proj" in name:
_A = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' )
if "blocks" in name:
_A = name.replace('''blocks''' , '''encoder.layer''' )
if "attn.proj" in name:
_A = name.replace('''attn.proj''' , '''attention.output.dense''' )
if "attn" in name:
_A = name.replace('''attn''' , '''attention.self''' )
if "norm1" in name:
_A = name.replace('''norm1''' , '''layernorm_before''' )
if "norm2" in name:
_A = name.replace('''norm2''' , '''layernorm_after''' )
if "mlp.fc1" in name:
_A = name.replace('''mlp.fc1''' , '''intermediate.dense''' )
if "mlp.fc2" in name:
_A = name.replace('''mlp.fc2''' , '''output.dense''' )
if "class_embed" in name:
_A = name.replace('''class_embed''' , '''class_labels_classifier''' )
if "bbox_embed" in name:
_A = name.replace('''bbox_embed''' , '''bbox_predictor''' )
if "vit.norm" in name:
_A = name.replace('''vit.norm''' , '''vit.layernorm''' )
return name
def SCREAMING_SNAKE_CASE_ ( _snake_case :dict , _snake_case :YolosForObjectDetection ) -> dict:
for key in orig_state_dict.copy().keys():
_A = orig_state_dict.pop(_snake_case )
if "qkv" in key:
_A = key.split('''.''' )
_A = int(key_split[2] )
_A = model.vit.encoder.layer[layer_num].attention.attention.all_head_size
if "weight" in key:
_A = val[:dim, :]
_A = val[
dim : dim * 2, :
]
_A = val[-dim:, :]
else:
_A = val[:dim]
_A = val[dim : dim * 2]
_A = val[-dim:]
else:
_A = val
return orig_state_dict
def SCREAMING_SNAKE_CASE_ ( ) -> torch.Tensor:
_A = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
_A = Image.open(requests.get(_snake_case , stream=_snake_case ).raw )
return im
@torch.no_grad()
def SCREAMING_SNAKE_CASE_ ( _snake_case :str , _snake_case :str , _snake_case :str , _snake_case :bool = False ) -> Dict:
_A = get_yolos_config(_snake_case )
# load original state_dict
_A = torch.load(_snake_case , map_location='''cpu''' )['''model''']
# load 🤗 model
_A = YolosForObjectDetection(_snake_case )
model.eval()
_A = convert_state_dict(_snake_case , _snake_case )
model.load_state_dict(_snake_case )
# Check outputs on an image, prepared by YolosImageProcessor
_A = 800 if yolos_name != '''yolos_ti''' else 512
_A = YolosImageProcessor(format='''coco_detection''' , size=_snake_case )
_A = image_processor(images=prepare_img() , return_tensors='''pt''' )
_A = model(**_snake_case )
_A , _A = outputs.logits, outputs.pred_boxes
_A , _A = None, None
if yolos_name == "yolos_ti":
_A = torch.tensor(
[[-39.5022, -11.9820, -17.6888], [-29.9574, -9.9769, -17.7691], [-42.3281, -20.7200, -30.6294]] )
_A = torch.tensor(
[[0.4021, 0.0836, 0.7979], [0.0184, 0.2609, 0.0364], [0.1781, 0.2004, 0.2095]] )
elif yolos_name == "yolos_s_200_pre":
_A = torch.tensor(
[[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] )
_A = torch.tensor(
[[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] )
elif yolos_name == "yolos_s_300_pre":
_A = torch.tensor(
[[-36.2220, -14.4385, -23.5457], [-35.6970, -14.7583, -21.3935], [-31.5939, -13.6042, -16.8049]] )
_A = torch.tensor(
[[0.7614, 0.2316, 0.4728], [0.7168, 0.4495, 0.3855], [0.4996, 0.1466, 0.9996]] )
elif yolos_name == "yolos_s_dWr":
_A = torch.tensor(
[[-42.8668, -24.1049, -41.1690], [-34.7456, -14.1274, -24.9194], [-33.7898, -12.1946, -25.6495]] )
_A = torch.tensor(
[[0.5587, 0.2773, 0.0605], [0.5004, 0.3014, 0.9994], [0.4999, 0.1548, 0.9994]] )
elif yolos_name == "yolos_base":
_A = torch.tensor(
[[-40.6064, -24.3084, -32.6447], [-55.1990, -30.7719, -35.5877], [-51.4311, -33.3507, -35.6462]] )
_A = torch.tensor(
[[0.5555, 0.2794, 0.0655], [0.9049, 0.2664, 0.1894], [0.9183, 0.1984, 0.1635]] )
else:
raise ValueError(F'''Unknown yolos_name: {yolos_name}''' )
assert torch.allclose(logits[0, :3, :3] , _snake_case , atol=1E-4 )
assert torch.allclose(pred_boxes[0, :3, :3] , _snake_case , atol=1E-4 )
Path(_snake_case ).mkdir(exist_ok=_snake_case )
print(F'''Saving model {yolos_name} to {pytorch_dump_folder_path}''' )
model.save_pretrained(_snake_case )
print(F'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(_snake_case )
if push_to_hub:
_A = {
'''yolos_ti''': '''yolos-tiny''',
'''yolos_s_200_pre''': '''yolos-small''',
'''yolos_s_300_pre''': '''yolos-small-300''',
'''yolos_s_dWr''': '''yolos-small-dwr''',
'''yolos_base''': '''yolos-base''',
}
print('''Pushing to the hub...''' )
_A = model_mapping[yolos_name]
image_processor.push_to_hub(_snake_case , organization='''hustvl''' )
model.push_to_hub(_snake_case , organization='''hustvl''' )
if __name__ == "__main__":
UpperCAmelCase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--yolos_name""",
default="""yolos_s_200_pre""",
type=str,
help=(
"""Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre',"""
""" 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'."""
),
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, help="""Path to the original state dict (.pth file)."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory."""
)
parser.add_argument(
"""--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub."""
)
UpperCAmelCase_ = parser.parse_args()
convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
| 2 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int:
__a = 3
__a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowerCAmelCase__ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
'''simple docstring'''
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
lowerCAmelCase : Dict = logging.get_logger(__name__)
lowerCAmelCase : Tuple = {
'artists_file': 'artists.json',
'lyrics_file': 'lyrics.json',
'genres_file': 'genres.json',
}
lowerCAmelCase : Optional[Any] = {
'artists_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json',
},
'genres_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json',
},
'lyrics_file': {
'jukebox': 'https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json',
},
}
lowerCAmelCase : Optional[int] = {
'jukebox': 5_12,
}
class SCREAMING_SNAKE_CASE__ ( snake_case_):
lowerCAmelCase_ = VOCAB_FILES_NAMES
lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP
lowerCAmelCase_ = PRETRAINED_LYRIC_TOKENS_SIZES
lowerCAmelCase_ = ["""input_ids""", """attention_mask"""]
def __init__( self , A_ , A_ , A_ , A_=["v3", "v2", "v2"] , A_=512 , A_=5 , A_="<|endoftext|>" , **A_ , )-> str:
'''simple docstring'''
UpperCamelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token
super().__init__(
unk_token=A_ , n_genres=A_ , version=A_ , max_n_lyric_tokens=A_ , **A_ , )
UpperCamelCase = version
UpperCamelCase = max_n_lyric_tokens
UpperCamelCase = n_genres
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
with open(A_ , encoding='utf-8' ) as vocab_handle:
UpperCamelCase = json.load(A_ )
UpperCamelCase = R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
UpperCamelCase = oov.replace(R'\-\'' , R'\-+\'' )
UpperCamelCase = regex.compile(A_ )
UpperCamelCase = {v: k for k, v in self.artists_encoder.items()}
UpperCamelCase = {v: k for k, v in self.genres_encoder.items()}
UpperCamelCase = {v: k for k, v in self.lyrics_encoder.items()}
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> Dict:
'''simple docstring'''
UpperCamelCase = [self.artists_encoder.get(A_ , 0 ) for artist in list_artists]
for genres in range(len(A_ ) ):
UpperCamelCase = [self.genres_encoder.get(A_ , 0 ) for genre in list_genres[genres]]
UpperCamelCase = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
UpperCamelCase = [[self.lyrics_encoder.get(A_ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def UpperCAmelCase_ ( self , A_ )-> Optional[Any]:
'''simple docstring'''
return list(A_ )
def UpperCAmelCase_ ( self , A_ , A_ , A_ , **A_ )-> Optional[Any]:
'''simple docstring'''
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.prepare_for_tokenization(A_ , A_ , A_ )
UpperCamelCase = self._tokenize(A_ )
return artist, genre, lyrics
def UpperCAmelCase_ ( self , A_ , A_ , A_ , A_ = False )-> Tuple[str, str, str, Dict[str, Any]]:
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
UpperCamelCase = artists[idx].lower()
UpperCamelCase = [genres[idx].lower()]
else:
UpperCamelCase = self._normalize(artists[idx] ) + '.v2'
UpperCamelCase = [
self._normalize(A_ ) + '.v2' for genre in genres[idx].split('_' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+' )
UpperCamelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'
UpperCamelCase = {vocab[index]: index + 1 for index in range(len(A_ ) )}
UpperCamelCase = 0
UpperCamelCase = len(A_ ) + 1
UpperCamelCase = self.vocab
UpperCamelCase = {v: k for k, v in self.vocab.items()}
UpperCamelCase = ''
else:
UpperCamelCase = regex.compile(R'[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+' )
UpperCamelCase = self._run_strip_accents(A_ )
UpperCamelCase = lyrics.replace('\\' , '\n' )
UpperCamelCase = self.out_of_vocab.sub('' , A_ ), [], []
return artists, genres, lyrics
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = unicodedata.normalize('NFD' , A_ )
UpperCamelCase = []
for char in text:
UpperCamelCase = unicodedata.category(A_ )
if cat == "Mn":
continue
output.append(A_ )
return "".join(A_ )
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
UpperCamelCase = (
[chr(A_ ) for i in range(ord('a' ) , ord('z' ) + 1 )]
+ [chr(A_ ) for i in range(ord('A' ) , ord('Z' ) + 1 )]
+ [chr(A_ ) for i in range(ord('0' ) , ord('9' ) + 1 )]
+ ['.']
)
UpperCamelCase = frozenset(A_ )
UpperCamelCase = re.compile(R'_+' )
UpperCamelCase = ''.join([c if c in accepted else '_' for c in text.lower()] )
UpperCamelCase = pattern.sub('_' , A_ ).strip('_' )
return text
def UpperCAmelCase_ ( self , A_ )-> str:
'''simple docstring'''
return " ".join(A_ )
def UpperCAmelCase_ ( self , A_ , A_ = None , A_ = False )-> Any:
'''simple docstring'''
if not isinstance(A_ , A_ ):
UpperCamelCase = TensorType(A_ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.' )
import tensorflow as tf
UpperCamelCase = tf.constant
UpperCamelCase = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('Unable to convert output to PyTorch tensors format, PyTorch is not installed.' )
import torch
UpperCamelCase = torch.tensor
UpperCamelCase = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('Unable to convert output to JAX tensors format, JAX is not installed.' )
import jax.numpy as jnp # noqa: F811
UpperCamelCase = jnp.array
UpperCamelCase = _is_jax
else:
UpperCamelCase = np.asarray
UpperCamelCase = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
UpperCamelCase = [inputs]
if not is_tensor(A_ ):
UpperCamelCase = as_tensor(A_ )
except: # noqa E722
raise ValueError(
'Unable to create tensor, you should probably activate truncation and/or padding '
'with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.' )
return inputs
def __call__( self , A_ , A_ , A_="" , A_="pt" )-> BatchEncoding:
'''simple docstring'''
UpperCamelCase = [0, 0, 0]
UpperCamelCase = [artist] * len(self.version )
UpperCamelCase = [genres] * len(self.version )
UpperCamelCase , UpperCamelCase , UpperCamelCase = self.tokenize(A_ , A_ , A_ )
UpperCamelCase , UpperCamelCase , UpperCamelCase = self._convert_token_to_id(A_ , A_ , A_ )
UpperCamelCase = [-INFINITY] * len(full_tokens[-1] )
UpperCamelCase = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=A_ )
for i in range(len(self.version ) )
]
return BatchEncoding({'input_ids': input_ids, 'attention_masks': attention_masks} )
def UpperCAmelCase_ ( self , A_ , A_ = None )-> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(A_ ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['artists_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=A_ ) )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['genres_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=A_ ) )
UpperCamelCase = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['lyrics_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=A_ ) )
return (artists_file, genres_file, lyrics_file)
def UpperCAmelCase_ ( self , A_ , A_ , A_ )-> str:
'''simple docstring'''
UpperCamelCase = self.artists_decoder.get(A_ )
UpperCamelCase = [self.genres_decoder.get(A_ ) for genre in genres_index]
UpperCamelCase = [self.lyrics_decoder.get(A_ ) for character in lyric_index]
return artist, genres, lyrics
| 3 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 695 | 0 |
"""simple docstring"""
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCamelCase : Dict = logging.get_logger(__name__)
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[Any]=None ):
# Recurse if needed
if "." in tensor_name:
lowerCAmelCase = tensor_name.split('.' )
for split in splits[:-1]:
lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase )
if new_module is None:
raise ValueError(F'{module} has no attribute {split}.' )
lowerCAmelCase = new_module
lowerCAmelCase = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F'{module} does not have a parameter or a buffer named {tensor_name}.' )
lowerCAmelCase = tensor_name in module._buffers
lowerCAmelCase = getattr(_UpperCAmelCase , _UpperCAmelCase )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F'{tensor_name} is on the meta device, we need a `value` to put in on {device}.' )
lowerCAmelCase = False
lowerCAmelCase = False
if is_buffer or not is_bitsandbytes_available():
lowerCAmelCase = False
lowerCAmelCase = False
else:
lowerCAmelCase = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
lowerCAmelCase = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
lowerCAmelCase = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
lowerCAmelCase = old_value.to(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , torch.Tensor ):
lowerCAmelCase = value.to('cpu' )
if value.dtype == torch.inta:
lowerCAmelCase = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
lowerCAmelCase = torch.tensor(_UpperCAmelCase , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , _UpperCAmelCase ) and fpaa_statistics is None:
lowerCAmelCase = new_value.T
lowerCAmelCase = old_value.__dict__
if is_abit:
lowerCAmelCase = bnb.nn.IntaParams(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase )
elif is_abit:
lowerCAmelCase = bnb.nn.Paramsabit(_UpperCAmelCase , requires_grad=_UpperCAmelCase , **_UpperCAmelCase ).to(_UpperCAmelCase )
lowerCAmelCase = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(_UpperCAmelCase ) )
else:
if value is None:
lowerCAmelCase = old_value.to(_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , torch.Tensor ):
lowerCAmelCase = value.to(_UpperCAmelCase )
else:
lowerCAmelCase = torch.tensor(_UpperCAmelCase , device=_UpperCAmelCase )
if is_buffer:
lowerCAmelCase = new_value
else:
lowerCAmelCase = nn.Parameter(_UpperCAmelCase , requires_grad=old_value.requires_grad )
lowerCAmelCase = new_value
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Union[str, Any]=False ):
for name, module in model.named_children():
if current_key_name is None:
lowerCAmelCase = []
current_key_name.append(_UpperCAmelCase )
if (isinstance(_UpperCAmelCase , nn.Linear ) or isinstance(_UpperCAmelCase , _UpperCAmelCase )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(_UpperCAmelCase ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase ,lowerCAmelCase = module.weight.shape
else:
lowerCAmelCase = module.in_features
lowerCAmelCase = module.out_features
if quantization_config.quantization_method() == "llm_int8":
lowerCAmelCase = bnb.nn.LinearabitLt(
_UpperCAmelCase , _UpperCAmelCase , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
lowerCAmelCase = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
lowerCAmelCase = bnb.nn.Linearabit(
_UpperCAmelCase , _UpperCAmelCase , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
lowerCAmelCase = True
# Store the module class in case we need to transpose the weight later
lowerCAmelCase = type(_UpperCAmelCase )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(_UpperCAmelCase )
if len(list(module.children() ) ) > 0:
lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , has_been_replaced=_UpperCAmelCase , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None ):
lowerCAmelCase = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
lowerCAmelCase ,lowerCAmelCase = _replace_with_bnb_linear(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : str ):
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , _UpperCAmelCase , )
return replace_with_bnb_linear(*_UpperCAmelCase , **_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (*_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Optional[int] ):
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , _UpperCAmelCase , )
return set_module_quantized_tensor_to_device(*_UpperCAmelCase , **_UpperCAmelCase )
def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : int ):
lowerCAmelCase = deepcopy(_UpperCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
lowerCAmelCase = find_tied_parameters(_UpperCAmelCase )
# For compatibility with Accelerate < 0.18
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
lowerCAmelCase = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowerCAmelCase = sum(_UpperCAmelCase , [] )
lowerCAmelCase = len(_UpperCAmelCase ) > 0
# Check if it is a base model
lowerCAmelCase = not hasattr(_UpperCAmelCase , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowerCAmelCase = list(model.named_children() )
lowerCAmelCase = [list_modules[-1][0]]
# add last module together with tied weights
lowerCAmelCase = set(_UpperCAmelCase ) - set(_UpperCAmelCase )
lowerCAmelCase = list(set(_UpperCAmelCase ) ) + list(_UpperCAmelCase )
# remove ".weight" from the keys
lowerCAmelCase = ['.weight', '.bias']
lowerCAmelCase = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowerCAmelCase = name.replace(_UpperCAmelCase , '' )
filtered_module_names.append(_UpperCAmelCase )
return filtered_module_names
| 4 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = 'dpr'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = projection_dim
__a = position_embedding_type
| 695 | 0 |
'''simple docstring'''
from __future__ import annotations
def A (__lowerCamelCase :list[int | float] , __lowerCamelCase :int , __lowerCamelCase :int ):
if len(__lowerCamelCase ) == 0:
raise ValueError("""find_max() arg is an empty sequence""" )
if (
left >= len(__lowerCamelCase )
or left < -len(__lowerCamelCase )
or right >= len(__lowerCamelCase )
or right < -len(__lowerCamelCase )
):
raise IndexError("""list index out of range""" )
if left == right:
return nums[left]
_lowerCAmelCase = (left + right) >> 1 # the middle
_lowerCAmelCase = find_max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # find max in range[left, mid]
_lowerCAmelCase = find_max(__lowerCamelCase , mid + 1 , __lowerCamelCase ) # find max in range[mid + 1, right]
return left_max if left_max >= right_max else right_max
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
| 5 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline
__UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCAmelCase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__UpperCAmelCase : Tuple = frozenset([] )
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
__a = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) )
__a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInpaintPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __UpperCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 695 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {
's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json',
}
class UpperCamelCase_ ( UpperCamelCase__ ):
lowerCamelCase_ = "open-llama"
def __init__( self :Union[str, Any] , __A :Tuple=10_0000 , __A :Dict=4096 , __A :int=1_1008 , __A :Optional[int]=32 , __A :Optional[Any]=32 , __A :Dict="silu" , __A :List[str]=2048 , __A :Dict=0.0_2 , __A :Dict=1E-6 , __A :Union[str, Any]=True , __A :Any=0 , __A :List[Any]=1 , __A :Any=2 , __A :Optional[Any]=False , __A :Tuple=True , __A :Optional[int]=0.1 , __A :Tuple=0.1 , __A :str=True , __A :Union[str, Any]=True , __A :Any=None , **__A :Any , ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = max_position_embeddings
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = rms_norm_eps
SCREAMING_SNAKE_CASE__ = use_cache
SCREAMING_SNAKE_CASE__ = kwargs.pop(
"""use_memorry_efficient_attention""" , __A )
SCREAMING_SNAKE_CASE__ = hidden_dropout_prob
SCREAMING_SNAKE_CASE__ = attention_dropout_prob
SCREAMING_SNAKE_CASE__ = use_stable_embedding
SCREAMING_SNAKE_CASE__ = shared_input_output_embedding
SCREAMING_SNAKE_CASE__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A , )
def _snake_case ( self :Optional[int] ) -> int:
"""simple docstring"""
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2:
raise ValueError(
"""`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """
f'''got {self.rope_scaling}''' )
SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""type""" , __A )
SCREAMING_SNAKE_CASE__ = self.rope_scaling.get("""factor""" , __A )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' ) | 6 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = False
__UpperCAmelCase : float = 3.0
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} )
@require_cuda
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
__a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__a = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , _a )
@require_multi_gpu
def __UpperCAmelCase ( self ):
__a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler])
lowercase_ = torch.nn.Linear(1_0_0, 2_0_0)
lowercase_ = accelerator.prepare(model)
# Check the values changed in kwargs
lowercase_ = ""
lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 695 | 0 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
# TODO Update this
a = {
'''facebook/esm-1b''': '''https://huggingface.co/facebook/esm-1b/resolve/main/config.json''',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Dict = '''esm'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : int=768 , _UpperCAmelCase : Union[str, Any]=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : int=3_072 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : int=1_026 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : Optional[int]=1E-1_2 , _UpperCAmelCase : str="absolute" , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Any=None , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : List[str] , ):
super().__init__(pad_token_id=_UpperCAmelCase , mask_token_id=_UpperCAmelCase , **_UpperCAmelCase )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = emb_layer_norm_before
_A = token_dropout
_A = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
_A = EsmFoldConfig()
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = EsmFoldConfig(**_UpperCAmelCase )
_A = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
_A = get_default_vocab_list()
else:
_A = vocab_list
else:
_A = None
_A = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , _UpperCAmelCase ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = super().to_dict()
if isinstance(self.esmfold_config , _UpperCAmelCase ):
_A = self.esmfold_config.to_dict()
return output
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = None
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : float = 0
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : int = 128
UpperCAmelCase : "TrunkConfig" = None
def lowerCAmelCase_ ( self : Optional[int] ):
if self.trunk is None:
_A = TrunkConfig()
elif isinstance(self.trunk , _UpperCAmelCase ):
_A = TrunkConfig(**self.trunk )
def lowerCAmelCase_ ( self : Dict ):
_A = asdict(self )
_A = self.trunk.to_dict()
return output
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : int = 48
UpperCAmelCase : int = 1024
UpperCAmelCase : int = 128
UpperCAmelCase : int = 32
UpperCAmelCase : int = 32
UpperCAmelCase : int = 32
UpperCAmelCase : float = 0
UpperCAmelCase : float = 0
UpperCAmelCase : bool = False
UpperCAmelCase : int = 4
UpperCAmelCase : Optional[int] = 128
UpperCAmelCase : "StructureModuleConfig" = None
def lowerCAmelCase_ ( self : str ):
if self.structure_module is None:
_A = StructureModuleConfig()
elif isinstance(self.structure_module , _UpperCAmelCase ):
_A = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F'''`max_recycles` should be positive, got {self.max_recycles}.''' )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
F''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
F''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' )
_A = self.sequence_state_dim // self.sequence_head_width
_A = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
F''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
F''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' )
if self.dropout >= 0.4:
raise ValueError(F'''`dropout` should not be greater than 0.4, got {self.dropout}.''' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = asdict(self )
_A = self.structure_module.to_dict()
return output
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : int = 384
UpperCAmelCase : int = 128
UpperCAmelCase : int = 16
UpperCAmelCase : int = 128
UpperCAmelCase : int = 12
UpperCAmelCase : int = 4
UpperCAmelCase : int = 8
UpperCAmelCase : float = 0.1
UpperCAmelCase : int = 8
UpperCAmelCase : int = 1
UpperCAmelCase : int = 2
UpperCAmelCase : int = 7
UpperCAmelCase : int = 10
UpperCAmelCase : float = 1E-8
UpperCAmelCase : float = 1E5
def lowerCAmelCase_ ( self : Optional[int] ):
return asdict(self )
def _snake_case ( ) -> List[Any]:
'''simple docstring'''
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 7 |
"""simple docstring"""
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __UpperCAmelCase ( self ):
__a = f'''
{self.test_dir}/xla_spawn.py
--num_cores 8
{self.test_file_path}
'''.split()
__a = [sys.executable] + distributed_args
execute_subprocess_async(_a , env=os.environ.copy() )
| 695 | 0 |
'''simple docstring'''
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class SCREAMING_SNAKE_CASE (a__ ):
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Optional[Any] = SMALL_MODEL_IDENTIFIER
__A : Optional[Any] = 'pt'
__A : Optional[int] = 'tf'
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : Optional[Any] = AutoModel.from_pretrained(self.test_model)
model_pt.save_pretrained(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase):
'''simple docstring'''
__A : Any = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase)
model_tf.save_pretrained(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : str = 'mock_framework'
# Framework provided - return whatever the user provides
__A : int = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_UpperCAmelCase)
__A : List[str] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_UpperCAmelCase)
__A : str = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_UpperCAmelCase)
__A : str = FeaturesManager.determine_framework(_UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , self.framework_pt)
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_UpperCAmelCase)
__A : Union[str, Any] = FeaturesManager.determine_framework(_UpperCAmelCase)
self.assertEqual(_UpperCAmelCase , self.framework_tf)
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_UpperCAmelCase):
__A : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase)
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Any = MagicMock(return_value=_UpperCAmelCase)
with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase):
__A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model)
self.assertEqual(_UpperCAmelCase , self.framework_pt)
# PyTorch not in environment -> use TensorFlow
__A : int = MagicMock(return_value=_UpperCAmelCase)
with patch('transformers.onnx.features.is_torch_available' , _UpperCAmelCase):
__A : Any = FeaturesManager.determine_framework(self.test_model)
self.assertEqual(_UpperCAmelCase , self.framework_tf)
# Both in environment -> use PyTorch
__A : List[Any] = MagicMock(return_value=_UpperCAmelCase)
__A : Tuple = MagicMock(return_value=_UpperCAmelCase)
with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch(
'transformers.onnx.features.is_torch_available' , _UpperCAmelCase):
__A : Union[str, Any] = FeaturesManager.determine_framework(self.test_model)
self.assertEqual(_UpperCAmelCase , self.framework_pt)
# Both not in environment -> raise error
__A : Tuple = MagicMock(return_value=_UpperCAmelCase)
__A : Tuple = MagicMock(return_value=_UpperCAmelCase)
with patch('transformers.onnx.features.is_tf_available' , _UpperCAmelCase), patch(
'transformers.onnx.features.is_torch_available' , _UpperCAmelCase):
with self.assertRaises(_UpperCAmelCase):
__A : Optional[int] = FeaturesManager.determine_framework(self.test_model) | 8 |
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = BertTokenizer
__UpperCAmelCase : Optional[Any] = BertTokenizerFast
__UpperCAmelCase : str = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Any = filter_non_english
def __UpperCAmelCase ( self ):
super().setUp()
__a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __UpperCAmelCase ( self , _a ):
__a = '''UNwant\u00E9d,running'''
__a = '''unwanted, running'''
return input_text, output_text
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class(self.vocab_file )
__a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] )
def __UpperCAmelCase ( self ):
if not self.test_rust_tokenizer:
return
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# With lower casing
__a = self.get_tokenizer(do_lower_case=_a )
__a = self.get_rust_tokenizer(do_lower_case=_a )
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
__a = '''a\n\'ll !!to?\'d of, can\'t.'''
__a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(_a ) , _a )
def __UpperCAmelCase ( self ):
__a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__a = {}
for i, token in enumerate(_a ):
__a = i
__a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __UpperCAmelCase ( self ):
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def __UpperCAmelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__a = tokenizer_r.encode_plus(
_a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , )
__a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False
__a = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __UpperCAmelCase ( self ):
__a = ['''的''', '''人''', '''有''']
__a = ''''''.join(_a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = True
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
__a = False
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that only the first Chinese character is not preceded by "##".
__a = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a )
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
| 695 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = {
'''google/canine-s''': '''https://huggingface.co/google/canine-s/resolve/main/config.json''',
# See all CANINE models at https://huggingface.co/models?filter=canine
}
class __lowerCAmelCase ( UpperCAmelCase_ ):
"""simple docstring"""
A__ : str = "canine"
def __init__( self : Tuple , _snake_case : Optional[Any]=7_68 , _snake_case : Optional[Any]=12 , _snake_case : int=12 , _snake_case : List[str]=30_72 , _snake_case : Any="gelu" , _snake_case : str=0.1 , _snake_case : List[Any]=0.1 , _snake_case : List[str]=1_63_84 , _snake_case : Optional[Any]=16 , _snake_case : Dict=0.02 , _snake_case : str=1E-12 , _snake_case : Dict=0 , _snake_case : Optional[Any]=0xE000 , _snake_case : Optional[Any]=0xE001 , _snake_case : Optional[int]=4 , _snake_case : int=4 , _snake_case : Optional[Any]=8 , _snake_case : Any=1_63_84 , _snake_case : Dict=1_28 , **_snake_case : Tuple , ):
"""simple docstring"""
super().__init__(pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case , **_snake_case )
A__ = max_position_embeddings
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = initializer_range
A__ = type_vocab_size
A__ = layer_norm_eps
# Character config:
A__ = downsampling_rate
A__ = upsampling_kernel_size
A__ = num_hash_functions
A__ = num_hash_buckets
A__ = local_transformer_stride
| 9 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float:
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
_lowerCAmelCase = [
# tf -> hf
("/", "."),
("layer_", "layers."),
("kernel", "weight"),
("beta", "bias"),
("gamma", "weight"),
("pegasus", "model"),
]
_lowerCAmelCase = [
(".output.dense", ".fc2"),
("intermediate.LayerNorm", "final_layer_norm"),
("intermediate.dense", "fc1"),
]
_lowerCAmelCase = (
INIT_COMMON
+ [
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.out_proj"),
("attention.self", "self_attn"),
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
("attention.encdec_output.dense", "encoder_attn.out_proj"),
("attention.encdec", "encoder_attn"),
("key", "k_proj"),
("value", "v_proj"),
("query", "q_proj"),
("decoder.LayerNorm", "decoder.layernorm_embedding"),
]
+ END_COMMON
)
_lowerCAmelCase = (
INIT_COMMON
+ [
("embeddings.word_embeddings", "shared.weight"),
("embeddings.position_embeddings", "embed_positions.weight"),
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.output"),
("attention.self", "self_attn.self"),
("encoder.LayerNorm", "encoder.layernorm_embedding"),
]
+ END_COMMON
)
_lowerCAmelCase = [
"encdec/key/bias",
"encdec/query/bias",
"encdec/value/bias",
"self/key/bias",
"self/query/bias",
"self/value/bias",
"encdec_output/dense/bias",
"attention/output/dense/bias",
]
def _snake_case ( __snake_case , __snake_case ):
for tf_name, hf_name in patterns:
_UpperCamelCase = k.replace(__snake_case , __snake_case )
return k
def _snake_case ( __snake_case , __snake_case ):
_UpperCamelCase = BigBirdPegasusConfig(**__snake_case )
_UpperCamelCase = BigBirdPegasusForConditionalGeneration(__snake_case )
_UpperCamelCase = torch_model.state_dict()
_UpperCamelCase = {}
# separating decoder weights
_UpperCamelCase = {k: tf_weights[k] for k in tf_weights if k.startswith('''pegasus/decoder''' )}
_UpperCamelCase = {k: tf_weights[k] for k in tf_weights if not k.startswith('''pegasus/decoder''' )}
for k, v in tqdm(decoder_weights.items() , '''tf -> hf conversion''' ):
_UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE]
if any(__snake_case ):
continue
_UpperCamelCase = DECODER_PATTERNS
_UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
_UpperCamelCase = v.T
_UpperCamelCase = torch.from_numpy(__snake_case )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items() , '''tf -> hf conversion''' ):
_UpperCamelCase = [k.endswith(__snake_case ) for ending in KEYS_TO_IGNORE]
if any(__snake_case ):
continue
_UpperCamelCase = REMAINING_PATTERNS
_UpperCamelCase = rename_state_dict_key(__snake_case , __snake_case )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['''dense''', '''query''', '''key''', '''value'''] ):
_UpperCamelCase = v.T
_UpperCamelCase = torch.from_numpy(__snake_case )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
_UpperCamelCase = mapping['''model.embed_positions.weight''']
_UpperCamelCase = mapping.pop('''model.embed_positions.weight''' )
_UpperCamelCase , _UpperCamelCase = torch_model.load_state_dict(__snake_case , strict=__snake_case )
_UpperCamelCase = [
k
for k in missing
if k
not in [
'''final_logits_bias''',
'''model.encoder.embed_tokens.weight''',
'''model.decoder.embed_tokens.weight''',
'''lm_head.weight''',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def _snake_case ( __snake_case ):
_UpperCamelCase = tf.train.list_variables(__snake_case )
_UpperCamelCase = {}
_UpperCamelCase = ['''global_step''']
for name, shape in tqdm(__snake_case , desc='''converting tf checkpoint to dict''' ):
_UpperCamelCase = any(pat in name for pat in ignore_name )
if skip_key:
continue
_UpperCamelCase = tf.train.load_variable(__snake_case , __snake_case )
_UpperCamelCase = array
return tf_weights
def _snake_case ( __snake_case , __snake_case , __snake_case ):
_UpperCamelCase = get_tf_weights_as_numpy(__snake_case )
_UpperCamelCase = convert_bigbird_pegasus(__snake_case , __snake_case )
torch_model.save_pretrained(__snake_case )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
_lowerCAmelCase = parser.parse_args()
_lowerCAmelCase = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 10 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = len(set_a.intersection(lowerCAmelCase__ ) )
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
else:
__a = len(set_a.union(lowerCAmelCase__ ) )
return intersection / union
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return None
if __name__ == "__main__":
lowercase_ = {"a", "b", "c", "d", "e"}
lowercase_ = {"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 695 | 0 |
'''simple docstring'''
import argparse
import os
import pickle
import sys
import torch
from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl
from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils
from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
# We do this to be able to load python 2 datasets pickles
# See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918
lowercase_ = data_utils.TransfoXLTokenizer
lowercase_ = data_utils.TransfoXLCorpus
lowercase_ = data_utils
lowercase_ = data_utils
def lowerCAmelCase (__A , __A , __A , __A):
"""simple docstring"""
if transfo_xl_dataset_file:
# Convert a pre-processed corpus (see original TensorFlow repo)
with open(__A , '''rb''') as fp:
_a = pickle.load(__A , encoding='''latin1''')
# Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term)
_a = pytorch_dump_folder_path + '''/''' + VOCAB_FILES_NAMES['''pretrained_vocab_file''']
print(F'''Save vocabulary to {pytorch_vocab_dump_path}''')
_a = corpus.vocab.__dict__
torch.save(__A , __A)
_a = corpus.__dict__
corpus_dict_no_vocab.pop('''vocab''' , __A)
_a = pytorch_dump_folder_path + '''/''' + CORPUS_NAME
print(F'''Save dataset to {pytorch_dataset_dump_path}''')
torch.save(__A , __A)
if tf_checkpoint_path:
# Convert a pre-trained TensorFlow model
_a = os.path.abspath(__A)
_a = os.path.abspath(__A)
print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''')
# Initialise PyTorch model
if transfo_xl_config_file == "":
_a = TransfoXLConfig()
else:
_a = TransfoXLConfig.from_json_file(__A)
print(F'''Building PyTorch model from configuration: {config}''')
_a = TransfoXLLMHeadModel(__A)
_a = load_tf_weights_in_transfo_xl(__A , __A , __A)
# Save pytorch-model
_a = os.path.join(__A , __A)
_a = os.path.join(__A , __A)
print(F'''Save PyTorch model to {os.path.abspath(__A)}''')
torch.save(model.state_dict() , __A)
print(F'''Save configuration file to {os.path.abspath(__A)}''')
with open(__A , '''w''' , encoding='''utf-8''') as f:
f.write(config.to_json_string())
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--tf_checkpoint_path",
default="",
type=str,
help="An optional path to a TensorFlow checkpoint path to be converted.",
)
parser.add_argument(
"--transfo_xl_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--transfo_xl_dataset_file",
default="",
type=str,
help="An optional dataset file to be converted in a vocabulary.",
)
lowercase_ = parser.parse_args()
convert_transfo_xl_checkpoint_to_pytorch(
args.tf_checkpoint_path,
args.transfo_xl_config_file,
args.pytorch_dump_folder_path,
args.transfo_xl_dataset_file,
)
| 11 |
"""simple docstring"""
from __future__ import annotations
import requests
def lowercase ( lowerCAmelCase__ : str ) -> dict:
__a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(lowerCAmelCase__ ).json()
def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]:
__a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
__a = requests.get(lowerCAmelCase__ ).json()[:max_stories]
return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids]
def lowercase ( lowerCAmelCase__ : int = 10 ) -> str:
__a = hackernews_top_stories(lowerCAmelCase__ )
return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 695 | 0 |
def UpperCamelCase ( lowercase_ ) -> list:
'''simple docstring'''
for i in range(len(lowercase_ ) - 1 , 0 , -1 ):
lowercase__ : Union[str, Any] = False
for j in range(lowercase_ , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
lowercase__ , lowercase__ : Tuple = unsorted[j - 1], unsorted[j]
lowercase__ : str = True
for j in range(lowercase_ ):
if unsorted[j] > unsorted[j + 1]:
lowercase__ , lowercase__ : List[Any] = unsorted[j + 1], unsorted[j]
lowercase__ : Dict = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase__ : Optional[int] = input("""Enter numbers separated by a comma:\n""").strip()
lowerCamelCase__ : Dict = [int(item) for item in user_input.split(""",""")]
print(f'''{cocktail_shaker_sort(unsorted) = }''')
| 12 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'blip_2_vision_model'
def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = intermediate_size
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
__a = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'blip_2_qformer'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = cross_attention_frequency
__a = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'blip-2'
__UpperCAmelCase : List[str] = True
def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ):
super().__init__(**_a )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' )
if qformer_config is None:
__a = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
__a = BlipaVisionConfig(**_a )
__a = BlipaQFormerConfig(**_a )
__a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
__a = CONFIG_MAPPING[text_model_type](**_a )
__a = self.text_config.tie_word_embeddings
__a = self.text_config.is_encoder_decoder
__a = num_query_tokens
__a = self.vision_config.hidden_size
__a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__a = 1.0
__a = 0.02
@classmethod
def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.vision_config.to_dict()
__a = self.qformer_config.to_dict()
__a = self.text_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
'''simple docstring'''
import numpy
# List of input, output pairs
A__ : Any = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
A__ : Union[str, Any] = (((515, 22, 13), 555), ((61, 35, 49), 150))
A__ : str = [2, 4, 1, 5]
A__ : Dict = len(train_data)
A__ : Tuple = 0.0_0_9
def UpperCAmelCase__ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any]="train" ) -> str:
return calculate_hypothesis_value(UpperCAmelCase_ , UpperCAmelCase_ ) - output(
UpperCAmelCase_ , UpperCAmelCase_ )
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] ) -> str:
__lowerCamelCase : Optional[int] = 0
for i in range(len(UpperCAmelCase_ ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def UpperCAmelCase__ ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] ) -> Union[str, Any]:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tuple ) -> Tuple:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : int=m ) -> Dict:
__lowerCamelCase : List[str] = 0
for i in range(UpperCAmelCase_ ):
if index == -1:
summation_value += _error(UpperCAmelCase_ )
else:
summation_value += _error(UpperCAmelCase_ ) * train_data[i][0][index]
return summation_value
def UpperCAmelCase__ ( UpperCAmelCase_ : Optional[int] ) -> Optional[int]:
__lowerCamelCase : str = summation_of_cost_derivative(UpperCAmelCase_ , UpperCAmelCase_ ) / m
return cost_derivative_value
def UpperCAmelCase__ ( ) -> Optional[int]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
__lowerCamelCase : List[str] = 0.000_002
__lowerCamelCase : str = 0
__lowerCamelCase : int = 0
while True:
j += 1
__lowerCamelCase : List[Any] = [0, 0, 0, 0]
for i in range(0 , len(UpperCAmelCase_ ) ):
__lowerCamelCase : Any = get_cost_derivative(i - 1 )
__lowerCamelCase : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
UpperCAmelCase_ , UpperCAmelCase_ , atol=UpperCAmelCase_ , rtol=UpperCAmelCase_ , ):
break
__lowerCamelCase : Tuple = temp_parameter_vector
print(('Number of iterations:', j) )
def UpperCAmelCase__ ( ) -> Tuple:
for i in range(len(UpperCAmelCase_ ) ):
print(('Actual output value:', output(UpperCAmelCase_ , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(UpperCAmelCase_ , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 13 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = 'deberta-v2'
def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = relative_attention
__a = max_relative_positions
__a = pad_token_id
__a = position_biased_input
# Backwards compatibility
if type(_a ) == str:
__a = [x.strip() for x in pos_att_type.lower().split('''|''' )]
__a = pos_att_type
__a = vocab_size
__a = layer_norm_eps
__a = kwargs.get('''pooler_hidden_size''' , _a )
__a = pooler_dropout
__a = pooler_hidden_act
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def __UpperCAmelCase ( self ):
return 12
def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ):
__a = super().generate_dummy_inputs(preprocessor=_a , framework=_a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 695 | 0 |
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''')
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a , _a = True , _a = False ) -> Optional[Any]:
_a : Tuple = scheduler
_a : List[Any] = optimizers if isinstance(_a , (list, tuple) ) else [optimizers]
_a : Any = split_batches
_a : Dict = step_with_optimizer
_a : Tuple = GradientState()
def __lowercase ( self , *_a , **_a ) -> int:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_a , **_a )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_a , **_a )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_a : Tuple = AcceleratorState().num_processes
for _ in range(_a ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , '''total_steps''' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_a , **_a )
else:
self.scheduler.step(*_a , **_a )
def __lowercase ( self ) -> int:
return self.scheduler.get_last_lr()
def __lowercase ( self ) -> Optional[int]:
return self.scheduler.state_dict()
def __lowercase ( self , _a ) -> Dict:
self.scheduler.load_state_dict(_a )
def __lowercase ( self ) -> str:
return self.scheduler.get_lr()
def __lowercase ( self , *_a , **_a ) -> List[str]:
return self.scheduler.print_lr(*_a , **_a )
| 14 |
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
lowercase_ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
if got_ver is None or want_ver is None:
raise ValueError(
f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
f''' reinstalling {pkg}.''' )
if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ):
raise ImportError(
f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None:
__a = f'''\n{hint}''' if hint is not None else ''''''
# non-versioned check
if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ):
__a , __a , __a = requirement, None, None
else:
__a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
f''' got {requirement}''' )
__a , __a = match[0]
__a = want_full.split(''',''' ) # there could be multiple requirements
__a = {}
for w in want_range:
__a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
f''' but got {requirement}''' )
__a , __a = match[0]
__a = want_ver
if op not in ops:
raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
__a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return
# check if any version is installed
try:
__a = importlib.metadata.version(lowerCAmelCase__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]:
__a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
| 695 | 0 |
import numpy as np
import torch
from imwatermark import WatermarkEncoder
# Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66
A : Union[str, Any] = 0B101100111110110010010000011110111011000110011110
# bin(x)[2:] gives bits of x as str, use int to convert them to 0/1
A : Any = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]]
class A :
'''simple docstring'''
def __init__(self : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = WATERMARK_BITS
lowercase__ = WatermarkEncoder()
self.encoder.set_watermark("""bits""" , self.watermark )
def lowerCamelCase__ (self : Any , _UpperCAmelCase : torch.FloatTensor ) -> Optional[Any]:
"""simple docstring"""
if images.shape[-1] < 256:
return images
lowercase__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
lowercase__ = [self.encoder.encode(_UpperCAmelCase , """dwtDct""" ) for image in images]
lowercase__ = torch.from_numpy(np.array(_UpperCAmelCase ) ).permute(0 , 3 , 1 , 2 )
lowercase__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 )
return images
| 15 |
"""simple docstring"""
from __future__ import annotations
lowercase_ = list[tuple[int, int]]
lowercase_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , ):
__a = pos_x
__a = pos_y
__a = (pos_y, pos_x)
__a = goal_x
__a = goal_y
__a = g_cost
__a = parent
__a = self.calculate_heuristic()
def __UpperCAmelCase ( self ):
__a = abs(self.pos_x - self.goal_x )
__a = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , _a ):
return self.f_cost < other.f_cost
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a ):
__a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a )
__a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a )
__a = [self.start]
__a = []
__a = False
def __UpperCAmelCase ( self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__a = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
__a = True
return self.retrace_path(_a )
self.closed_nodes.append(_a )
__a = self.get_successors(_a )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_a )
else:
# retrieve the best current path
__a = self.open_nodes.pop(self.open_nodes.index(_a ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_a )
else:
self.open_nodes.append(_a )
if not self.reached:
return [self.start.pos]
return None
def __UpperCAmelCase ( self , _a ):
__a = []
for action in delta:
__a = parent.pos_x + action[1]
__a = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) )
return successors
def __UpperCAmelCase ( self , _a ):
__a = node
__a = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__a = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase_ = (0, 0)
lowercase_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
lowercase_ = GreedyBestFirst(init, goal)
lowercase_ = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase_ = 2
for elem in grid:
print(elem)
| 695 | 0 |
from collections.abc import Callable
import numpy as np
def __a ( A__ : Callable , A__ : float , A__ : float , A__ : float , A__ : float ):
SCREAMING_SNAKE_CASE = int(np.ceil((x_end - xa) / step_size ) )
SCREAMING_SNAKE_CASE = np.zeros((n + 1,) )
SCREAMING_SNAKE_CASE = ya
SCREAMING_SNAKE_CASE = xa
for k in range(A__ ):
SCREAMING_SNAKE_CASE = y[k] + step_size * ode_func(A__ , y[k] )
SCREAMING_SNAKE_CASE = y[k] + (
(step_size / 2) * (ode_func(A__ , y[k] ) + ode_func(x + step_size , A__ ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod() | 16 |
"""simple docstring"""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]:
# Initialise PyTorch model
__a = RemBertConfig.from_json_file(lowerCAmelCase__ )
print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) )
__a = RemBertModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--rembert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained RemBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 695 | 0 |
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
UpperCAmelCase_ : str = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'''--original_config_file''',
default=None,
type=str,
help='''The YAML config file corresponding to the original architecture.''',
)
parser.add_argument(
'''--num_in_channels''',
default=None,
type=int,
help='''The number of input channels. If `None` number of input channels will be automatically inferred.''',
)
parser.add_argument(
'''--scheduler_type''',
default='''pndm''',
type=str,
help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''',
)
parser.add_argument(
'''--pipeline_type''',
default=None,
type=str,
help=(
'''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''''
'''. If `None` pipeline will be automatically inferred.'''
),
)
parser.add_argument(
'''--image_size''',
default=None,
type=int,
help=(
'''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'''
''' Base. Use 768 for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--prediction_type''',
default=None,
type=str,
help=(
'''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'''
''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--extract_ema''',
action='''store_true''',
help=(
'''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'''
''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'''
''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'''
),
)
parser.add_argument(
'''--upcast_attention''',
action='''store_true''',
help=(
'''Whether the attention computation should always be upcasted. This is necessary when running stable'''
''' diffusion 2.1.'''
),
)
parser.add_argument(
'''--from_safetensors''',
action='''store_true''',
help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''',
)
parser.add_argument(
'''--to_safetensors''',
action='''store_true''',
help='''Whether to store pipeline in safetensors format or not.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
parser.add_argument(
'''--stable_unclip''',
type=str,
default=None,
required=False,
help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''',
)
parser.add_argument(
'''--stable_unclip_prior''',
type=str,
default=None,
required=False,
help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''',
)
parser.add_argument(
'''--clip_stats_path''',
type=str,
help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''',
required=False,
)
parser.add_argument(
'''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.'''
)
parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''')
parser.add_argument(
'''--vae_path''',
type=str,
default=None,
required=False,
help='''Set to a path, hub id to an already converted vae to not convert it again.''',
)
UpperCAmelCase_ : Union[str, Any] = parser.parse_args()
UpperCAmelCase_ : Any = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 17 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
lowercase_ = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls ):
__a = TOKEN
HfFolder.save_token(_a )
@classmethod
def __UpperCAmelCase ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
__a = True
__a = flatten_dict(modela.params )
__a = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
__a = False
return models_are_equal
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
| 695 | 0 |
'''simple docstring'''
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ):
'''simple docstring'''
if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release:
# old versions of hfh don't url-encode the file path
_lowerCAmelCase = quote(SCREAMING_SNAKE_CASE_ )
return hfh.hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" , revision=SCREAMING_SNAKE_CASE_ )
| 18 |
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
def __UpperCAmelCase ( self ):
__a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SkipDownBlockaD # noqa F405
__UpperCAmelCase : Tuple = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = DownEncoderBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaD # noqa F405
__UpperCAmelCase : Any = 'mid'
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''temb_channels''': 128,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405
__UpperCAmelCase : str = 'mid'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405
__UpperCAmelCase : List[Any] = 'mid'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405
__UpperCAmelCase : Union[str, Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = AttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = SkipUpBlockaD # noqa F405
__UpperCAmelCase : str = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(_a )
| 695 | 0 |
"""simple docstring"""
def lowerCamelCase__ ( __snake_case, __snake_case ) -> int:
"""simple docstring"""
_UpperCamelCase = ''''''
for i in table:
res += inp[i - 1]
return res
def lowerCamelCase__ ( __snake_case ) -> str:
"""simple docstring"""
return data[1:] + data[0]
def lowerCamelCase__ ( __snake_case, __snake_case ) -> Tuple:
"""simple docstring"""
_UpperCamelCase = ''''''
for i in range(len(__snake_case ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def lowerCamelCase__ ( __snake_case, __snake_case ) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = int('''0b''' + data[0] + data[-1], 2 )
_UpperCamelCase = int('''0b''' + data[1:3], 2 )
return bin(s[row][col] )[2:]
def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> Dict:
"""simple docstring"""
_UpperCamelCase = message[:4]
_UpperCamelCase = message[4:]
_UpperCamelCase = apply_table(__snake_case, __snake_case )
_UpperCamelCase = xor(__snake_case, __snake_case )
_UpperCamelCase = apply_sbox(__snake_case, temp[:4] ) # noqa: E741
_UpperCamelCase = apply_sbox(__snake_case, temp[4:] )
_UpperCamelCase = '''0''' * (2 - len(__snake_case )) + l # noqa: E741
_UpperCamelCase = '''0''' * (2 - len(__snake_case )) + r
_UpperCamelCase = apply_table(l + r, __snake_case )
_UpperCamelCase = xor(__snake_case, __snake_case )
return temp + right
if __name__ == "__main__":
_a = input("""Enter 10 bit key: """)
_a = input("""Enter 8 bit message: """)
_a = [6, 3, 7, 4, 8, 5, 10, 9]
_a = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
_a = [2, 4, 3, 1]
_a = [2, 6, 3, 1, 4, 8, 5, 7]
_a = [4, 1, 3, 5, 7, 2, 8, 6]
_a = [4, 1, 2, 3, 2, 3, 4, 1]
_a = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
_a = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
_a = apply_table(key, paa_table)
_a = temp[:5]
_a = temp[5:]
_a = left_shift(left)
_a = left_shift(right)
_a = apply_table(left + right, pa_table)
_a = left_shift(left)
_a = left_shift(right)
_a = left_shift(left)
_a = left_shift(right)
_a = apply_table(left + right, pa_table)
# encryption
_a = apply_table(message, IP)
_a = function(expansion, sa, sa, keya, temp)
_a = temp[4:] + temp[:4]
_a = function(expansion, sa, sa, keya, temp)
_a = apply_table(temp, IP_inv)
print("""Cipher text is:""", CT)
# decryption
_a = apply_table(CT, IP)
_a = function(expansion, sa, sa, keya, temp)
_a = temp[4:] + temp[:4]
_a = function(expansion, sa, sa, keya, temp)
_a = apply_table(temp, IP_inv)
print("""Plain text after decypting is:""", PT)
| 19 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowercase_ = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'maskformer'
__UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'}
__UpperCAmelCase : Any = ['resnet', 'swin']
__UpperCAmelCase : Dict = ['detr']
def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
__a = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_a , _a ):
__a = backbone_config.pop('''model_type''' )
__a = CONFIG_MAPPING[backbone_model_type]
__a = config_class.from_dict(_a )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
__a = DetrConfig()
else:
# verify that the decoder is supported
__a = (
decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported )}''' )
if isinstance(_a , _a ):
__a = CONFIG_MAPPING[decoder_type]
__a = config_class.from_dict(_a )
__a = backbone_config
__a = decoder_config
# main feature dimension for the model
__a = fpn_feature_size
__a = mask_feature_size
# initializer
__a = init_std
__a = init_xavier_std
# Hungarian matcher && loss
__a = cross_entropy_weight
__a = dice_weight
__a = mask_weight
__a = use_auxiliary_loss
__a = no_object_weight
__a = output_auxiliary_logits
__a = self.decoder_config.encoder_attention_heads
__a = self.decoder_config.num_hidden_layers
super().__init__(**_a )
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
return cls(
backbone_config=_a , decoder_config=_a , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.backbone_config.to_dict()
__a = self.decoder_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
import argparse
import json
import os
import sys
import tempfile
import unittest
from argparse import Namespace
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
from typing import List, Literal, Optional
import yaml
from transformers import HfArgumentParser, TrainingArguments
from transformers.hf_argparser import make_choice_type_function, string_to_bool
# Since Python 3.10, we can use the builtin `|` operator for Union types
# See PEP 604: https://peps.python.org/pep-0604
_lowerCAmelCase: Any = sys.version_info >= (3, 10)
def _lowercase( __a : int=None , __a : Any=None ):
return field(default_factory=lambda: default , metadata=__a )
@dataclass
class lowercase_ :
snake_case =42
snake_case =42
snake_case =42
snake_case =42
@dataclass
class lowercase_ :
snake_case =42
snake_case =field(default='toto' , metadata={'help': 'help message'} )
@dataclass
class lowercase_ :
snake_case =False
snake_case =True
snake_case =None
class lowercase_ (lowercase__ ):
snake_case ='titi'
snake_case ='toto'
class lowercase_ (lowercase__ ):
snake_case ='titi'
snake_case ='toto'
snake_case =42
@dataclass
class lowercase_ :
snake_case ="toto"
def __UpperCamelCase ( self) -> List[str]:
a__ =BasicEnum(self.foo)
@dataclass
class lowercase_ :
snake_case ="toto"
def __UpperCamelCase ( self) -> List[str]:
a__ =MixedTypeEnum(self.foo)
@dataclass
class lowercase_ :
snake_case =None
snake_case =field(default=lowercase__ , metadata={'help': 'help message'} )
snake_case =None
snake_case =list_field(default=[] )
snake_case =list_field(default=[] )
@dataclass
class lowercase_ :
snake_case =list_field(default=[] )
snake_case =list_field(default=[1, 2, 3] )
snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] )
snake_case =list_field(default=[0.1, 0.2, 0.3] )
@dataclass
class lowercase_ :
snake_case =field()
snake_case =field()
snake_case =field()
def __UpperCamelCase ( self) -> List[Any]:
a__ =BasicEnum(self.required_enum)
@dataclass
class lowercase_ :
snake_case =42
snake_case =field()
snake_case =None
snake_case =field(default='toto' , metadata={'help': 'help message'} )
snake_case =list_field(default=['Hallo', 'Bonjour', 'Hello'] )
if is_python_no_less_than_3_10:
@dataclass
class lowercase_ :
snake_case =False
snake_case =True
snake_case =None
@dataclass
class lowercase_ :
snake_case =None
snake_case =field(default=lowercase__ , metadata={'help': 'help message'} )
snake_case =None
snake_case =list_field(default=[] )
snake_case =list_field(default=[] )
class lowercase_ (unittest.TestCase ):
def __UpperCamelCase ( self , lowercase_ , lowercase_) -> int:
self.assertEqual(len(a._actions) , len(b._actions))
for x, y in zip(a._actions , b._actions):
a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'}
a__ ={k: v for k, v in vars(lowercase_).items() if k != 'container'}
# Choices with mixed type have custom function as "type"
# So we need to compare results directly for equality
if xx.get('choices' , lowercase_) and yy.get('choices' , lowercase_):
for expected_choice in yy["choices"] + xx["choices"]:
self.assertEqual(xx['type'](lowercase_) , yy['type'](lowercase_))
del xx["type"], yy["type"]
self.assertEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> List[Any]:
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument('--foo' , type=lowercase_ , required=lowercase_)
expected.add_argument('--bar' , type=lowercase_ , required=lowercase_)
expected.add_argument('--baz' , type=lowercase_ , required=lowercase_)
expected.add_argument('--flag' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?')
self.argparsersEqual(lowercase_ , lowercase_)
a__ =['--foo', '1', '--baz', 'quux', '--bar', '0.5']
((a__) , ) =parser.parse_args_into_dataclasses(lowercase_ , look_for_args_file=lowercase_)
self.assertFalse(example.flag)
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument('--foo' , default=42 , type=lowercase_)
expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message')
self.argparsersEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> Optional[Any]:
a__ =argparse.ArgumentParser()
expected.add_argument('--foo' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?')
expected.add_argument('--baz' , type=lowercase_ , default=lowercase_ , const=lowercase_ , nargs='?')
# A boolean no_* argument always has to come after its "default: True" regular counter-part
# and its default must be set to False
expected.add_argument('--no_baz' , action='store_false' , default=lowercase_ , dest='baz')
expected.add_argument('--opt' , type=lowercase_ , default=lowercase_)
a__ =[WithDefaultBoolExample]
if is_python_no_less_than_3_10:
dataclass_types.append(lowercase_)
for dataclass_type in dataclass_types:
a__ =HfArgumentParser(lowercase_)
self.argparsersEqual(lowercase_ , lowercase_)
a__ =parser.parse_args([])
self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_))
a__ =parser.parse_args(['--foo', '--no_baz'])
self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_))
a__ =parser.parse_args(['--foo', '--baz'])
self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_))
a__ =parser.parse_args(['--foo', 'True', '--baz', 'True', '--opt', 'True'])
self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_))
a__ =parser.parse_args(['--foo', 'False', '--baz', 'False', '--opt', 'False'])
self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , baz=lowercase_ , opt=lowercase_))
def __UpperCamelCase ( self) -> str:
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=['titi', 'toto', 42] , type=make_choice_type_function(['titi', 'toto', 42]) , )
self.argparsersEqual(lowercase_ , lowercase_)
a__ =parser.parse_args([])
self.assertEqual(args.foo , 'toto')
a__ =parser.parse_args_into_dataclasses([])[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.toto)
a__ =parser.parse_args(['--foo', 'titi'])
self.assertEqual(args.foo , 'titi')
a__ =parser.parse_args_into_dataclasses(['--foo', 'titi'])[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.titi)
a__ =parser.parse_args(['--foo', '42'])
self.assertEqual(args.foo , 42)
a__ =parser.parse_args_into_dataclasses(['--foo', '42'])[0]
self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo)
def __UpperCamelCase ( self) -> List[Any]:
@dataclass
class lowercase_ :
snake_case ="toto"
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument(
'--foo' , default='toto' , choices=('titi', 'toto', 42) , type=make_choice_type_function(['titi', 'toto', 42]) , )
self.argparsersEqual(lowercase_ , lowercase_)
a__ =parser.parse_args([])
self.assertEqual(args.foo , 'toto')
a__ =parser.parse_args(['--foo', 'titi'])
self.assertEqual(args.foo , 'titi')
a__ =parser.parse_args(['--foo', '42'])
self.assertEqual(args.foo , 42)
def __UpperCamelCase ( self) -> Optional[int]:
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument('--foo_int' , nargs='+' , default=[] , type=lowercase_)
expected.add_argument('--bar_int' , nargs='+' , default=[1, 2, 3] , type=lowercase_)
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_)
expected.add_argument('--foo_float' , nargs='+' , default=[0.1, 0.2, 0.3] , type=lowercase_)
self.argparsersEqual(lowercase_ , lowercase_)
a__ =parser.parse_args([])
self.assertEqual(
lowercase_ , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['Hallo', 'Bonjour', 'Hello'] , foo_float=[0.1, 0.2, 0.3]) , )
a__ =parser.parse_args('--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'.split())
self.assertEqual(lowercase_ , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['a', 'b', 'c'] , foo_float=[0.1, 0.7]))
def __UpperCamelCase ( self) -> Dict:
a__ =argparse.ArgumentParser()
expected.add_argument('--foo' , default=lowercase_ , type=lowercase_)
expected.add_argument('--bar' , default=lowercase_ , type=lowercase_ , help='help message')
expected.add_argument('--baz' , default=lowercase_ , type=lowercase_)
expected.add_argument('--ces' , nargs='+' , default=[] , type=lowercase_)
expected.add_argument('--des' , nargs='+' , default=[] , type=lowercase_)
a__ =[OptionalExample]
if is_python_no_less_than_3_10:
dataclass_types.append(lowercase_)
for dataclass_type in dataclass_types:
a__ =HfArgumentParser(lowercase_)
self.argparsersEqual(lowercase_ , lowercase_)
a__ =parser.parse_args([])
self.assertEqual(lowercase_ , Namespace(foo=lowercase_ , bar=lowercase_ , baz=lowercase_ , ces=[] , des=[]))
a__ =parser.parse_args('--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'.split())
self.assertEqual(lowercase_ , Namespace(foo=12 , bar=3.14 , baz='42' , ces=['a', 'b', 'c'] , des=[1, 2, 3]))
def __UpperCamelCase ( self) -> str:
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument('--required_list' , nargs='+' , type=lowercase_ , required=lowercase_)
expected.add_argument('--required_str' , type=lowercase_ , required=lowercase_)
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , )
self.argparsersEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> str:
a__ =HfArgumentParser(lowercase_)
a__ =argparse.ArgumentParser()
expected.add_argument('--foo' , type=lowercase_ , required=lowercase_)
expected.add_argument(
'--required_enum' , type=make_choice_type_function(['titi', 'toto']) , choices=['titi', 'toto'] , required=lowercase_ , )
expected.add_argument('--opt' , type=lowercase_ , default=lowercase_)
expected.add_argument('--baz' , default='toto' , type=lowercase_ , help='help message')
expected.add_argument('--foo_str' , nargs='+' , default=['Hallo', 'Bonjour', 'Hello'] , type=lowercase_)
self.argparsersEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> List[Any]:
a__ =HfArgumentParser(lowercase_)
a__ ={
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
a__ =parser.parse_dict(lowercase_)[0]
a__ =BasicExample(**lowercase_)
self.assertEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =HfArgumentParser(lowercase_)
a__ ={
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
'extra': 42,
}
self.assertRaises(lowercase_ , parser.parse_dict , lowercase_ , allow_extra_keys=lowercase_)
def __UpperCamelCase ( self) -> List[Any]:
a__ =HfArgumentParser(lowercase_)
a__ ={
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
a__ =os.path.join(lowercase_ , 'temp_json')
os.mkdir(lowercase_)
with open(temp_local_path + '.json' , 'w+') as f:
json.dump(lowercase_ , lowercase_)
a__ =parser.parse_yaml_file(Path(temp_local_path + '.json'))[0]
a__ =BasicExample(**lowercase_)
self.assertEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> Any:
a__ =HfArgumentParser(lowercase_)
a__ ={
'foo': 12,
'bar': 3.14,
'baz': '42',
'flag': True,
}
with tempfile.TemporaryDirectory() as tmp_dir:
a__ =os.path.join(lowercase_ , 'temp_yaml')
os.mkdir(lowercase_)
with open(temp_local_path + '.yaml' , 'w+') as f:
yaml.dump(lowercase_ , lowercase_)
a__ =parser.parse_yaml_file(Path(temp_local_path + '.yaml'))[0]
a__ =BasicExample(**lowercase_)
self.assertEqual(lowercase_ , lowercase_)
def __UpperCamelCase ( self) -> Union[str, Any]:
a__ =HfArgumentParser(lowercase_)
self.assertIsNotNone(lowercase_)
| 20 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
__a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__a = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
| 695 | 0 |
import functools
import gc
import inspect
import torch
from .imports import is_npu_available, is_xpu_available
def lowerCAmelCase_ ( *lowerCamelCase ):
if not isinstance(lowerCamelCase , lowerCamelCase ):
__magic_name__ : Union[str, Any] =list(lowerCamelCase )
for i in range(len(lowerCamelCase ) ):
__magic_name__ : Dict =None
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
return objects
def lowerCAmelCase_ ( lowerCamelCase ):
__magic_name__ : List[str] =[
"""CUDA out of memory.""", # CUDA OOM
"""cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU
"""DefaultCPUAllocator: can't allocate memory""", # CPU OOM
]
if isinstance(lowerCamelCase , lowerCamelCase ) and len(exception.args ) == 1:
return any(err in exception.args[0] for err in _statements )
return False
def lowerCAmelCase_ ( lowerCamelCase = None , lowerCamelCase = 128 ):
if function is None:
return functools.partial(lowerCamelCase , starting_batch_size=lowerCamelCase )
__magic_name__ : List[Any] =starting_batch_size
def decorator(*lowerCamelCase , **lowerCamelCase ):
nonlocal batch_size
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
__magic_name__ : Optional[Any] =list(inspect.signature(lowerCamelCase ).parameters.keys() )
# Guard against user error
if len(lowerCamelCase ) < (len(lowerCamelCase ) + 1):
__magic_name__ : Optional[int] =""", """.join([F"{arg}={value}" for arg, value in zip(params[1:] , args[1:] )] )
raise TypeError(
F"Batch size was passed into `{function.__name__}` as the first argument when called."
F"Remove this as the decorator already does so: `{function.__name__}({arg_str})`" )
while True:
if batch_size == 0:
raise RuntimeError("""No executable batch size found, reached zero.""" )
try:
return function(lowerCamelCase , *lowerCamelCase , **lowerCamelCase )
except Exception as e:
if should_reduce_batch_size(lowerCamelCase ):
gc.collect()
if is_xpu_available():
torch.xpu.empty_cache()
elif is_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
batch_size //= 2
else:
raise
return decorator
| 21 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = 'gpt_bigcode'
__UpperCAmelCase : Tuple = ['past_key_values']
__UpperCAmelCase : Dict = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = n_positions
__a = n_embd
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = attention_softmax_in_fpaa
__a = scale_attention_softmax_in_fpaa
__a = multi_query
__a = bos_token_id
__a = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 695 | 0 |
'''simple docstring'''
def snake_case_ (UpperCamelCase : int = 200_0000 ):
'''simple docstring'''
_a = [0 for i in range(n + 1 )]
_a = 1
_a = 1
for i in range(2 , int(n**0.5 ) + 1 ):
if primality_list[i] == 0:
for j in range(i * i , n + 1 , UpperCamelCase ):
_a = 1
_a = 0
for i in range(UpperCamelCase ):
if primality_list[i] == 0:
sum_of_primes += i
return sum_of_primes
if __name__ == "__main__":
print(F'''{solution() = }''')
| 22 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase_ = 1_6
lowercase_ = 3_2
def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]:
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
__a = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__a = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase__ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__a = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
__a = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
# Initialize accelerator
__a = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a = config['''lr''']
__a = int(config['''num_epochs'''] )
__a = int(config['''seed'''] )
__a = int(config['''batch_size'''] )
__a = args.model_name_or_path
set_seed(lowerCAmelCase__ )
__a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
__a = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__a = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__a = 1
__a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__a = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
__a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a , __a , __a , __a , __a = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
__a = 0
# We also need to keep track of the stating epoch so files are named properly
__a = 0
# Now we train the model
__a = evaluate.load('''glue''' , '''mrpc''' )
__a = 0
__a = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
__a = model(**lowerCAmelCase__ )
__a = outputs.loss
__a = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__a = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__a = model(**lowerCAmelCase__ )
__a = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__a , __a = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
__a = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__a = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
__a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ )
__a = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
__a = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( ) -> List[str]:
__a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , )
parser.add_argument(
'''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , )
parser.add_argument(
'''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , )
__a = parser.parse_args()
__a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 695 | 0 |
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_herbert import HerbertTokenizer
snake_case__ : List[str] = logging.get_logger(__name__)
snake_case__ : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
snake_case__ : Any = {
"""vocab_file""": {
"""allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json"""
},
"""merges_file""": {
"""allegro/herbert-base-cased""": """https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt"""
},
}
snake_case__ : str = {"""allegro/herbert-base-cased""": 5_1_4}
snake_case__ : Union[str, Any] = {}
class _a ( UpperCAmelCase__ ):
"""simple docstring"""
A_ = VOCAB_FILES_NAMES
A_ = PRETRAINED_VOCAB_FILES_MAP
A_ = PRETRAINED_INIT_CONFIGURATION
A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A_ = HerbertTokenizer
def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase="</s>" , **_UpperCAmelCase , ) -> Optional[int]:
super().__init__(
_UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , cls_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , **_UpperCAmelCase , )
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]:
UpperCamelCase_ = [self.cls_token_id]
UpperCamelCase_ = [self.sep_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> List[int]:
UpperCamelCase_ = [self.sep_token_id]
UpperCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _UpperCAmelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ) -> Tuple[str]:
UpperCamelCase_ = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase )
return tuple(_UpperCAmelCase )
| 23 |
"""simple docstring"""
from typing import Any
def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list:
_validation(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
# Creates data structures and fill initial step
__a = {}
__a = {}
for state in states_space:
__a = observations_space[0]
__a = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__a = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(lowerCAmelCase__ ) ):
__a = observations_space[o]
__a = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__a = ''''''
__a = -1
for k_state in states_space:
__a = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__a = probability
__a = k_state
# Update probabilities and pointers dicts
__a = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__a = arg_max
# The final observation
__a = observations_space[len(lowerCAmelCase__ ) - 1]
# argmax for given final observation
__a = ''''''
__a = -1
for k_state in states_space:
__a = probabilities[(k_state, final_observation)]
if probability > max_probability:
__a = probability
__a = k_state
__a = arg_max
# Process pointers backwards
__a = last_state
__a = []
for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ):
result.append(lowerCAmelCase__ )
__a = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_not_empty(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
_validate_lists(lowerCAmelCase__ , lowerCAmelCase__ )
_validate_dicts(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None:
_validate_list(lowerCAmelCase__ , '''observations_space''' )
_validate_list(lowerCAmelCase__ , '''states_space''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list'''
raise ValueError(lowerCAmelCase__ )
else:
for x in _object:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list of strings'''
raise ValueError(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ )
_validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' )
_validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
_validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ )
for x in _object.values():
_validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a dict'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ):
__a = f'''{var_name} all keys must be strings'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ):
__a = '''nested dictionary ''' if nested else ''''''
__a = f'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 695 | 0 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def _UpperCamelCase (_lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float )-> np.array:
'''simple docstring'''
__snake_case = int(np.ceil((x_end - xa) / step_size ) )
__snake_case = np.zeros((n + 1,) )
__snake_case = ya
__snake_case = xa
for k in range(_lowerCamelCase ):
__snake_case = y[k] + step_size * ode_func(_lowerCamelCase , y[k] )
__snake_case = y[k] + (
(step_size / 2) * (ode_func(_lowerCamelCase , y[k] ) + ode_func(x + step_size , _lowerCamelCase ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 24 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int:
__a = 3
__a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowerCAmelCase__ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
from ...configuration_utils import PretrainedConfig
a_ = {
'google/tapas-base-finetuned-sqa': (
'https://huggingface.co/google/tapas-base-finetuned-sqa/resolve/main/config.json'
),
'google/tapas-base-finetuned-wtq': (
'https://huggingface.co/google/tapas-base-finetuned-wtq/resolve/main/config.json'
),
'google/tapas-base-finetuned-wikisql-supervised': (
'https://huggingface.co/google/tapas-base-finetuned-wikisql-supervised/resolve/main/config.json'
),
'google/tapas-base-finetuned-tabfact': (
'https://huggingface.co/google/tapas-base-finetuned-tabfact/resolve/main/config.json'
),
}
class _UpperCamelCase ( __A ):
'''simple docstring'''
lowerCamelCase__ ='tapas'
def __init__( self : int , a : Optional[Any]=3_0522 , a : Optional[Any]=768 , a : Dict=12 , a : str=12 , a : str=3072 , a : Optional[int]="gelu" , a : Optional[Any]=0.1 , a : Any=0.1 , a : List[str]=1024 , a : str=[3, 256, 256, 2, 256, 256, 10] , a : Tuple=0.02 , a : List[Any]=1e-12 , a : Tuple=0 , a : int=10.0 , a : Optional[Any]=0 , a : Optional[int]=1.0 , a : Optional[int]=None , a : List[Any]=1.0 , a : Optional[int]=False , a : int=None , a : Optional[int]=1.0 , a : List[Any]=1.0 , a : List[str]=False , a : int=False , a : Any="ratio" , a : Tuple=None , a : Optional[int]=None , a : List[str]=64 , a : str=32 , a : Union[str, Any]=False , a : Optional[Any]=True , a : Union[str, Any]=False , a : List[Any]=False , a : Optional[int]=True , a : int=False , a : List[Any]=None , a : Optional[int]=None , **a : int , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=a , **a )
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
SCREAMING_SNAKE_CASE : Tuple = vocab_size
SCREAMING_SNAKE_CASE : Any = hidden_size
SCREAMING_SNAKE_CASE : List[str] = num_hidden_layers
SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Optional[int] = hidden_act
SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob
SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Any = max_position_embeddings
SCREAMING_SNAKE_CASE : Any = type_vocab_sizes
SCREAMING_SNAKE_CASE : int = initializer_range
SCREAMING_SNAKE_CASE : Any = layer_norm_eps
# Fine-tuning task hyperparameters
SCREAMING_SNAKE_CASE : Union[str, Any] = positive_label_weight
SCREAMING_SNAKE_CASE : Union[str, Any] = num_aggregation_labels
SCREAMING_SNAKE_CASE : int = aggregation_loss_weight
SCREAMING_SNAKE_CASE : List[Any] = use_answer_as_supervision
SCREAMING_SNAKE_CASE : List[str] = answer_loss_importance
SCREAMING_SNAKE_CASE : Optional[int] = use_normalized_answer_loss
SCREAMING_SNAKE_CASE : Dict = huber_loss_delta
SCREAMING_SNAKE_CASE : List[str] = temperature
SCREAMING_SNAKE_CASE : int = aggregation_temperature
SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_cells
SCREAMING_SNAKE_CASE : Optional[int] = use_gumbel_for_aggregation
SCREAMING_SNAKE_CASE : Tuple = average_approximation_function
SCREAMING_SNAKE_CASE : Optional[int] = cell_selection_preference
SCREAMING_SNAKE_CASE : Optional[Any] = answer_loss_cutoff
SCREAMING_SNAKE_CASE : int = max_num_rows
SCREAMING_SNAKE_CASE : Tuple = max_num_columns
SCREAMING_SNAKE_CASE : Optional[Any] = average_logits_per_cell
SCREAMING_SNAKE_CASE : str = select_one_column
SCREAMING_SNAKE_CASE : Any = allow_empty_column_selection
SCREAMING_SNAKE_CASE : Tuple = init_cell_selection_weights_to_zero
SCREAMING_SNAKE_CASE : Tuple = reset_position_index_per_cell
SCREAMING_SNAKE_CASE : Union[str, Any] = disable_per_token_loss
# Aggregation hyperparameters
SCREAMING_SNAKE_CASE : str = aggregation_labels
SCREAMING_SNAKE_CASE : Any = no_aggregation_label_index
if isinstance(self.aggregation_labels , a ):
SCREAMING_SNAKE_CASE : str = {int(a ): v for k, v in aggregation_labels.items()} | 25 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 695 | 0 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_perceiver import PerceiverImageProcessor
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
def __init__( self : int , *__magic_name__ : int , **__magic_name__ : Tuple ) -> None:
"""simple docstring"""
warnings.warn(
"""The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use PerceiverImageProcessor instead.""" , __magic_name__ , )
super().__init__(*__magic_name__ , **__magic_name__ )
| 26 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = 'dpr'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = projection_dim
__a = position_embedding_type
| 695 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
__A : Union[str, Any] = logging.get_logger(__name__)
__A : Optional[Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__A : Any = {
"vocab_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt"
),
"squeezebert/squeezebert-mnli": "https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt",
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"squeezebert/squeezebert-uncased": (
"https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli": (
"https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json"
),
"squeezebert/squeezebert-mnli-headless": (
"https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json"
),
},
}
__A : Union[str, Any] = {
"squeezebert/squeezebert-uncased": 512,
"squeezebert/squeezebert-mnli": 512,
"squeezebert/squeezebert-mnli-headless": 512,
}
__A : List[str] = {
"squeezebert/squeezebert-uncased": {"do_lower_case": True},
"squeezebert/squeezebert-mnli": {"do_lower_case": True},
"squeezebert/squeezebert-mnli-headless": {"do_lower_case": True},
}
class lowerCamelCase( __snake_case ):
'''simple docstring'''
__magic_name__ = VOCAB_FILES_NAMES
__magic_name__ = PRETRAINED_VOCAB_FILES_MAP
__magic_name__ = PRETRAINED_INIT_CONFIGURATION
__magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__magic_name__ = SqueezeBertTokenizer
def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ):
super().__init__(
snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , )
_A = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , snake_case_ ) != do_lower_case
or normalizer_state.get('strip_accents' , snake_case_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , snake_case_ ) != tokenize_chinese_chars
):
_A = getattr(snake_case_ , normalizer_state.pop('type' ) )
_A = do_lower_case
_A = strip_accents
_A = tokenize_chinese_chars
_A = normalizer_class(**snake_case_ )
_A = do_lower_case
def lowerCAmelCase__ ( self , snake_case_ , snake_case_=None ):
_A = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ):
_A = [self.sep_token_id]
_A = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ = None ):
_A = self._tokenizer.model.save(snake_case_ , name=snake_case_ )
return tuple(snake_case_ )
| 27 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline
__UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCAmelCase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__UpperCAmelCase : Tuple = frozenset([] )
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
__a = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) )
__a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInpaintPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __UpperCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 695 | 0 |
'''simple docstring'''
import os
import re
import unicodedata
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import is_torch_available, logging
if is_torch_available():
import torch
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {"vocab_file": "spiece.model"}
UpperCamelCase_ = {
"vocab_file": {
"AI-Sweden/gpt-sw3-126m": "https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-350m": "https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-1.6b": "https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-6.7b": "https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model",
"AI-Sweden/gpt-sw3-20b": "https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model",
}
}
UpperCamelCase_ = {
"AI-Sweden/gpt-sw3-126m": 2_0_4_8,
"AI-Sweden/gpt-sw3-350m": 2_0_4_8,
"AI-Sweden/gpt-sw3-1.6b": 2_0_4_8,
"AI-Sweden/gpt-sw3-6.7b": 2_0_4_8,
"AI-Sweden/gpt-sw3-20b": 2_0_4_8,
}
class _a ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
A : int = VOCAB_FILES_NAMES
A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP
A : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
A : Tuple = ['''input_ids''', '''attention_mask''']
def __init__( self, A, A=False, A=False, A=False, A=None, A=None, A=None, A=None, A = None, **A, ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('name_or_path' )
if name_or_path is None:
logger.warning(
'name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b,'
' you are testing the model, this can safely be ignored' )
SCREAMING_SNAKE_CASE : Dict = 'None'
# Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing
SCREAMING_SNAKE_CASE : Optional[Any] = '<|endoftext|>' if eos_token is None else eos_token
SCREAMING_SNAKE_CASE : int = '<unk>' if unk_token is None else unk_token
if "gpt-sw3-7b" in name_or_path:
SCREAMING_SNAKE_CASE : Dict = unk_token if pad_token is None else pad_token
SCREAMING_SNAKE_CASE : List[Any] = eos_token if bos_token is None else bos_token
else:
SCREAMING_SNAKE_CASE : Optional[int] = '<pad>' if pad_token is None else pad_token
SCREAMING_SNAKE_CASE : int = '<s>' if bos_token is None else bos_token
super().__init__(
do_lower_case=A, remove_space=A, keep_accents=A, bos_token=A, eos_token=A, unk_token=A, pad_token=A, sp_model_kwargs=self.sp_model_kwargs, **A, )
SCREAMING_SNAKE_CASE : Tuple = do_lower_case
SCREAMING_SNAKE_CASE : Optional[Any] = remove_space
SCREAMING_SNAKE_CASE : List[Any] = keep_accents
SCREAMING_SNAKE_CASE : Tuple = vocab_file
SCREAMING_SNAKE_CASE : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(A )
# Used for whitespace normalization in input texts
# fmt : off
SCREAMING_SNAKE_CASE : Any = {' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', '', ''}
# fmt : on
# Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing
SCREAMING_SNAKE_CASE : str = re.compile(
F"[{''.join(map(A, list(range(0, 9 ) ) + list(range(11, 32 ) ) + list(range(127, 160 ) ) + [160, 173, 8_203] ) )}]" )
def __getstate__( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = self.__dict__.copy()
SCREAMING_SNAKE_CASE : Optional[int] = None
return state
def __setstate__( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Dict = d
# for backward compatibility
if not hasattr(self, 'sp_model_kwargs' ):
SCREAMING_SNAKE_CASE : Optional[Any] = {}
SCREAMING_SNAKE_CASE : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
@property
# Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size
def UpperCamelCase_ ( self ):
'''simple docstring'''
return len(self.sp_model )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.non_printing_characters_re.sub('', A )
# Normalize whitespaces
SCREAMING_SNAKE_CASE : Any = ''.join([char if char not in self.whitespaces else ' ' for char in text] )
# NFC Unicode normalization
SCREAMING_SNAKE_CASE : List[str] = unicodedata.normalize('NFC', A )
return text
def UpperCamelCase_ ( self, A, **A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = self.preprocess_text(A )
return self.sp_model.encode(A, out_type=A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.PieceToId(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.IdToPiece(A )
@staticmethod
def UpperCamelCase_ ( A ):
'''simple docstring'''
return out_string
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Tuple = []
SCREAMING_SNAKE_CASE : str = ''
SCREAMING_SNAKE_CASE : Optional[int] = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
# TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(A ) + token
SCREAMING_SNAKE_CASE : str = True
SCREAMING_SNAKE_CASE : List[str] = []
else:
current_sub_tokens.append(A )
SCREAMING_SNAKE_CASE : int = False
out_string += self.sp_model.decode(A )
return out_string
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[int] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCamelCase_ ( self, A, A = None ):
'''simple docstring'''
if not os.path.isdir(A ):
logger.error(F"Vocabulary path ({save_directory}) should be a directory" )
return
SCREAMING_SNAKE_CASE : Any = os.path.join(
A, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file, A )
elif not os.path.isfile(self.vocab_file ):
with open(A, 'wb' ) as fi:
SCREAMING_SNAKE_CASE : Union[str, Any] = self.sp_model.serialized_model_proto()
fi.write(A )
return (out_vocab_file,)
def UpperCamelCase_ ( self, A, A = False ):
'''simple docstring'''
if isinstance(A, A ):
SCREAMING_SNAKE_CASE : Optional[int] = self.preprocess_text(A )
SCREAMING_SNAKE_CASE : Tuple = self.sp_model.encode(A )
else:
SCREAMING_SNAKE_CASE : List[Any] = [self.preprocess_text(A ) for t in text]
SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model.encode(A )
if return_tensors is True or return_tensors == "pt":
SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor(A )
return token_ids
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
return self.sp_model.decode(A )
def UpperCamelCase_ ( self, A ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [F"User: {text}" if is_user else F"Bot: {text}" for is_user, text in conversation.iter_texts()]
SCREAMING_SNAKE_CASE : Any = (
F"{self.eos_token}{self.bos_token}" + F"{self.bos_token}".join(A ) + F"{self.bos_token}Bot:"
)
return self.encode(text=A )
| 28 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = False
__UpperCAmelCase : float = 3.0
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} )
@require_cuda
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
__a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__a = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , _a )
@require_multi_gpu
def __UpperCAmelCase ( self ):
__a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler])
lowercase_ = torch.nn.Linear(1_0_0, 2_0_0)
lowercase_ = accelerator.prepare(model)
# Check the values changed in kwargs
lowercase_ = ""
lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 695 | 0 |
"""simple docstring"""
import argparse
import gc
import json
import os
import shutil
import warnings
import torch
from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"""The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"""
)
A_ = None
A_ = {
"""7B""": 1_1008,
"""13B""": 1_3824,
"""30B""": 1_7920,
"""65B""": 2_2016,
"""70B""": 2_8672,
}
A_ = {
"""7B""": 1,
"""7Bf""": 1,
"""13B""": 2,
"""13Bf""": 2,
"""30B""": 4,
"""65B""": 8,
"""70B""": 8,
"""70Bf""": 8,
}
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__=1 ,lowerCAmelCase__=256 ):
return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of)
def lowercase ( lowerCAmelCase__ ):
with open(lowerCAmelCase__ ,'''r''' ) as f:
return json.load(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
with open(lowerCAmelCase__ ,'''w''' ) as f:
json.dump(lowerCAmelCase__ ,lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=True ):
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = os.path.join(lowerCAmelCase__ ,'''tmp''' )
os.makedirs(lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ )
lowerCamelCase_ = read_json(os.path.join(lowerCAmelCase__ ,'''params.json''' ) )
lowerCamelCase_ = NUM_SHARDS[model_size]
lowerCamelCase_ = params['''n_layers''']
lowerCamelCase_ = params['''n_heads''']
lowerCamelCase_ = n_heads // num_shards
lowerCamelCase_ = params['''dim''']
lowerCamelCase_ = dim // n_heads
lowerCamelCase_ = 10_000.0
lowerCamelCase_ = 1.0 / (base ** (torch.arange(0 ,lowerCAmelCase__ ,2 ).float() / dims_per_head))
if "n_kv_heads" in params:
lowerCamelCase_ = params['''n_kv_heads'''] # for GQA / MQA
lowerCamelCase_ = n_heads_per_shard // num_key_value_heads
lowerCamelCase_ = dim // num_key_value_heads
else: # compatibility with other checkpoints
lowerCamelCase_ = n_heads
lowerCamelCase_ = n_heads_per_shard
lowerCamelCase_ = dim
# permute for sliced rotary
def permute(lowerCAmelCase__ ,lowerCAmelCase__=n_heads ,lowerCAmelCase__=dim ,lowerCAmelCase__=dim ):
return w.view(lowerCAmelCase__ ,dima // n_heads // 2 ,2 ,lowerCAmelCase__ ).transpose(1 ,2 ).reshape(lowerCAmelCase__ ,lowerCAmelCase__ )
print(f"Fetching all parameters from the checkpoint at {input_base_path}." )
# Load weights
if model_size == "7B":
# Not sharded
# (The sharded implementation would also work, but this is simpler.)
lowerCamelCase_ = torch.load(os.path.join(lowerCAmelCase__ ,'''consolidated.00.pth''' ) ,map_location='''cpu''' )
else:
# Sharded
lowerCamelCase_ = [
torch.load(os.path.join(lowerCAmelCase__ ,f"consolidated.{i:02d}.pth" ) ,map_location='''cpu''' )
for i in range(lowerCAmelCase__ )
]
lowerCamelCase_ = 0
lowerCamelCase_ = {'''weight_map''': {}}
for layer_i in range(lowerCAmelCase__ ):
lowerCamelCase_ = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin"
if model_size == "7B":
# Unsharded
lowerCamelCase_ = {
f"model.layers.{layer_i}.self_attn.q_proj.weight": permute(
loaded[f"layers.{layer_i}.attention.wq.weight"] ),
f"model.layers.{layer_i}.self_attn.k_proj.weight": permute(
loaded[f"layers.{layer_i}.attention.wk.weight"] ),
f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"],
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"],
f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"],
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"],
f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"],
f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"],
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
}
else:
# Sharded
# Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share
# the same storage object, saving attention_norm and ffn_norm will save other weights too, which is
# redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned.
lowerCamelCase_ = {
f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][
f"layers.{layer_i}.attention_norm.weight"
].clone(),
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][
f"layers.{layer_i}.ffn_norm.weight"
].clone(),
}
lowerCamelCase_ = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
for i in range(lowerCAmelCase__ )
] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) )
lowerCamelCase_ = permute(
torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
for i in range(lowerCAmelCase__ )
] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ ) ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,)
lowerCamelCase_ = torch.cat(
[
loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(
lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ )
for i in range(lowerCAmelCase__ )
] ,dim=0 ,).reshape(lowerCAmelCase__ ,lowerCAmelCase__ )
lowerCamelCase_ = torch.cat(
[loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(lowerCAmelCase__ )] ,dim=1 )
lowerCamelCase_ = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(lowerCAmelCase__ )] ,dim=0 )
lowerCamelCase_ = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(lowerCAmelCase__ )] ,dim=1 )
lowerCamelCase_ = torch.cat(
[loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(lowerCAmelCase__ )] ,dim=0 )
lowerCamelCase_ = inv_freq
for k, v in state_dict.items():
lowerCamelCase_ = filename
param_count += v.numel()
torch.save(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) )
lowerCamelCase_ = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin"
if model_size == "7B":
# Unsharded
lowerCamelCase_ = {
'''model.embed_tokens.weight''': loaded['''tok_embeddings.weight'''],
'''model.norm.weight''': loaded['''norm.weight'''],
'''lm_head.weight''': loaded['''output.weight'''],
}
else:
lowerCamelCase_ = {
'''model.norm.weight''': loaded[0]['''norm.weight'''],
'''model.embed_tokens.weight''': torch.cat(
[loaded[i]['''tok_embeddings.weight'''] for i in range(lowerCAmelCase__ )] ,dim=1 ),
'''lm_head.weight''': torch.cat([loaded[i]['''output.weight'''] for i in range(lowerCAmelCase__ )] ,dim=0 ),
}
for k, v in state_dict.items():
lowerCamelCase_ = filename
param_count += v.numel()
torch.save(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,lowerCAmelCase__ ) )
# Write configs
lowerCamelCase_ = {'''total_size''': param_count * 2}
write_json(lowerCAmelCase__ ,os.path.join(lowerCAmelCase__ ,'''pytorch_model.bin.index.json''' ) )
lowerCamelCase_ = params['''ffn_dim_multiplier'''] if '''ffn_dim_multiplier''' in params else 1
lowerCamelCase_ = params['''multiple_of'''] if '''multiple_of''' in params else 256
lowerCamelCase_ = LlamaConfig(
hidden_size=lowerCAmelCase__ ,intermediate_size=compute_intermediate_size(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) ,num_attention_heads=params['''n_heads'''] ,num_hidden_layers=params['''n_layers'''] ,rms_norm_eps=params['''norm_eps'''] ,num_key_value_heads=lowerCAmelCase__ ,)
config.save_pretrained(lowerCAmelCase__ )
# Make space so we can load the model properly now.
del state_dict
del loaded
gc.collect()
print('''Loading the checkpoint in a Llama model.''' )
lowerCamelCase_ = LlamaForCausalLM.from_pretrained(lowerCAmelCase__ ,torch_dtype=torch.floataa ,low_cpu_mem_usage=lowerCAmelCase__ )
# Avoid saving this as part of the config.
del model.config._name_or_path
print('''Saving in the Transformers format.''' )
model.save_pretrained(lowerCAmelCase__ ,safe_serialization=lowerCAmelCase__ )
shutil.rmtree(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ ,lowerCAmelCase__ ):
# Initialize the tokenizer based on the `spm` model
lowerCamelCase_ = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast
print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." )
lowerCamelCase_ = tokenizer_class(lowerCAmelCase__ )
tokenizer.save_pretrained(lowerCAmelCase__ )
def lowercase ( ):
lowerCamelCase_ = argparse.ArgumentParser()
parser.add_argument(
'''--input_dir''' ,help='''Location of LLaMA weights, which contains tokenizer.model and model folders''' ,)
parser.add_argument(
'''--model_size''' ,choices=['''7B''', '''7Bf''', '''13B''', '''13Bf''', '''30B''', '''65B''', '''70B''', '''70Bf''', '''tokenizer_only'''] ,)
parser.add_argument(
'''--output_dir''' ,help='''Location to write HF model and tokenizer''' ,)
parser.add_argument('''--safe_serialization''' ,type=lowerCAmelCase__ ,help='''Whether or not to save using `safetensors`.''' )
lowerCamelCase_ = parser.parse_args()
if args.model_size != "tokenizer_only":
write_model(
model_path=args.output_dir ,input_base_path=os.path.join(args.input_dir ,args.model_size ) ,model_size=args.model_size ,safe_serialization=args.safe_serialization ,)
lowerCamelCase_ = os.path.join(args.input_dir ,'''tokenizer.model''' )
write_tokenizer(args.output_dir ,lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 29 |
"""simple docstring"""
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __UpperCAmelCase ( self ):
__a = f'''
{self.test_dir}/xla_spawn.py
--num_cores 8
{self.test_file_path}
'''.split()
__a = [sys.executable] + distributed_args
execute_subprocess_async(_a , env=os.environ.copy() )
| 695 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__a = logging.get_logger(__name__)
def lowerCamelCase__ ( _lowercase , _lowercase=False , _lowercase=False , _lowercase=False ):
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') )
rename_keys.append(
(f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') )
rename_keys.append(
(f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') )
rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def lowerCamelCase__ ( _lowercase , _lowercase ):
'''simple docstring'''
for i in range(config.num_hidden_layers ):
UpperCAmelCase_ : List[str] = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
UpperCAmelCase_ : List[Any] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' )
UpperCAmelCase_ : Tuple = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
: config.hidden_size, :
]
UpperCAmelCase_ : Optional[int] = in_proj_bias[: config.hidden_size]
UpperCAmelCase_ : Dict = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
UpperCAmelCase_ : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
UpperCAmelCase_ : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
UpperCAmelCase_ : Optional[int] = in_proj_bias[-config.hidden_size :]
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : List[Any] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : str = dct.pop(_lowercase )
UpperCAmelCase_ : Dict = val
@torch.no_grad()
def lowerCamelCase__ ( _lowercase , _lowercase ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=_lowercase )
UpperCAmelCase_ : int = False
UpperCAmelCase_ : str = False
UpperCAmelCase_ : int = False
UpperCAmelCase_ : Dict = False
if "vqa" in checkpoint_url:
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : str = 3129
UpperCAmelCase_ : List[str] = '''huggingface/label-files'''
UpperCAmelCase_ : List[Any] = '''vqa2-id2label.json'''
UpperCAmelCase_ : Any = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) )
UpperCAmelCase_ : Dict = {int(_lowercase ): v for k, v in idalabel.items()}
UpperCAmelCase_ : int = idalabel
UpperCAmelCase_ : List[Any] = {v: k for k, v in idalabel.items()}
UpperCAmelCase_ : Optional[Any] = ViltForQuestionAnswering(_lowercase )
elif "nlvr" in checkpoint_url:
UpperCAmelCase_ : Optional[Any] = True
UpperCAmelCase_ : List[str] = 2
UpperCAmelCase_ : Any = {0: '''False''', 1: '''True'''}
UpperCAmelCase_ : Optional[int] = {v: k for k, v in config.idalabel.items()}
UpperCAmelCase_ : int = 3
UpperCAmelCase_ : Optional[int] = ViltForImagesAndTextClassification(_lowercase )
elif "irtr" in checkpoint_url:
UpperCAmelCase_ : List[Any] = True
UpperCAmelCase_ : Tuple = ViltForImageAndTextRetrieval(_lowercase )
elif "mlm_itm" in checkpoint_url:
UpperCAmelCase_ : List[str] = True
UpperCAmelCase_ : Any = ViltForMaskedLM(_lowercase )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
UpperCAmelCase_ : Optional[int] = torch.hub.load_state_dict_from_url(_lowercase , map_location='''cpu''' )['''state_dict''']
UpperCAmelCase_ : int = create_rename_keys(_lowercase , _lowercase , _lowercase , _lowercase )
for src, dest in rename_keys:
rename_key(_lowercase , _lowercase , _lowercase )
read_in_q_k_v(_lowercase , _lowercase )
if mlm_model or irtr_model:
UpperCAmelCase_ : Any = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(_lowercase , _lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
UpperCAmelCase_, UpperCAmelCase_ : int = model.load_state_dict(_lowercase , strict=_lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(_lowercase )
# Define processor
UpperCAmelCase_ : Dict = ViltImageProcessor(size=384 )
UpperCAmelCase_ : Optional[Any] = BertTokenizer.from_pretrained('''bert-base-uncased''' )
UpperCAmelCase_ : Optional[int] = ViltProcessor(_lowercase , _lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
UpperCAmelCase_ : int = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_lowercase ).raw )
UpperCAmelCase_ : Any = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=_lowercase ).raw )
UpperCAmelCase_ : Any = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
UpperCAmelCase_ : Tuple = processor(_lowercase , _lowercase , return_tensors='''pt''' )
UpperCAmelCase_ : Optional[int] = processor(_lowercase , _lowercase , return_tensors='''pt''' )
UpperCAmelCase_ : Tuple = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
UpperCAmelCase_ : str = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=_lowercase ).raw )
if mlm_model:
UpperCAmelCase_ : List[str] = '''a bunch of [MASK] laying on a [MASK].'''
else:
UpperCAmelCase_ : Optional[Any] = '''How many cats are there?'''
UpperCAmelCase_ : str = processor(_lowercase , _lowercase , return_tensors='''pt''' )
UpperCAmelCase_ : Any = model(**_lowercase )
# Verify outputs
if mlm_model:
UpperCAmelCase_ : Optional[int] = torch.Size([1, 11, 30522] )
UpperCAmelCase_ : str = torch.tensor([-12.5061, -12.5123, -12.5174] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1E-4 )
# verify masked token prediction equals "cats"
UpperCAmelCase_ : str = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
UpperCAmelCase_ : List[str] = torch.Size([1, 3129] )
UpperCAmelCase_ : Union[str, Any] = torch.tensor([-15.9495, -18.1472, -10.3041] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , _lowercase , atol=1E-4 )
# verify vqa prediction equals "2"
UpperCAmelCase_ : List[str] = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
UpperCAmelCase_ : Union[str, Any] = torch.Size([1, 2] )
UpperCAmelCase_ : List[str] = torch.tensor([-2.8721, 2.1291] )
assert torch.allclose(outputs.logits[0, :3] , _lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(_lowercase ).mkdir(exist_ok=_lowercase )
print(f'''Saving model and processor to {pytorch_dump_folder_path}''' )
model.save_pretrained(_lowercase )
processor.save_pretrained(_lowercase )
if __name__ == "__main__":
__a = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt',
type=str,
help='URL of the checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.'
)
__a = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path) | 30 |
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = BertTokenizer
__UpperCAmelCase : Optional[Any] = BertTokenizerFast
__UpperCAmelCase : str = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Any = filter_non_english
def __UpperCAmelCase ( self ):
super().setUp()
__a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __UpperCAmelCase ( self , _a ):
__a = '''UNwant\u00E9d,running'''
__a = '''unwanted, running'''
return input_text, output_text
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class(self.vocab_file )
__a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] )
def __UpperCAmelCase ( self ):
if not self.test_rust_tokenizer:
return
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# With lower casing
__a = self.get_tokenizer(do_lower_case=_a )
__a = self.get_rust_tokenizer(do_lower_case=_a )
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
__a = '''a\n\'ll !!to?\'d of, can\'t.'''
__a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(_a ) , _a )
def __UpperCAmelCase ( self ):
__a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__a = {}
for i, token in enumerate(_a ):
__a = i
__a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __UpperCAmelCase ( self ):
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def __UpperCAmelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__a = tokenizer_r.encode_plus(
_a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , )
__a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False
__a = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __UpperCAmelCase ( self ):
__a = ['''的''', '''人''', '''有''']
__a = ''''''.join(_a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = True
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
__a = False
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that only the first Chinese character is not preceded by "##".
__a = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a )
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
| 695 | 0 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class lowerCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] ):
return F"gaussian_noise_s={seed}_shape={'_'.join([str(_lowerCAmelCase ) for s in shape] )}.npy"
def lowerCAmelCase_ ( self : Tuple ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def lowerCAmelCase_ ( self : int , _lowerCAmelCase : int=0 , _lowerCAmelCase : Dict=(4, 4, 64, 64) , _lowerCAmelCase : List[str]=False ):
SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa
SCREAMING_SNAKE_CASE_ = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase )
return image
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : Optional[Any]="CompVis/stable-diffusion-v1-4" ):
SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa
SCREAMING_SNAKE_CASE_ = 'bf16' if fpaa else None
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = FlaxUNetaDConditionModel.from_pretrained(
_lowerCAmelCase , subfolder='unet' , dtype=_lowerCAmelCase , revision=_lowerCAmelCase )
return model, params
def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Tuple=0 , _lowerCAmelCase : List[str]=(4, 77, 768) , _lowerCAmelCase : List[str]=False ):
SCREAMING_SNAKE_CASE_ = jnp.bfloataa if fpaa else jnp.floataa
SCREAMING_SNAKE_CASE_ = jnp.array(load_hf_numpy(self.get_file_format(_lowerCAmelCase , _lowerCAmelCase ) ) , dtype=_lowerCAmelCase )
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]],
[17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]],
[8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]],
[3, 1_000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]],
# fmt: on
] )
def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.get_latents(_lowerCAmelCase , fpaa=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.get_encoder_hidden_states(_lowerCAmelCase , fpaa=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = model.apply(
{'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample
assert sample.shape == latents.shape
SCREAMING_SNAKE_CASE_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE_ = jnp.array(_lowerCAmelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 )
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]],
[17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]],
[8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]],
[3, 1_000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]],
# fmt: on
] )
def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.get_latents(_lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.get_encoder_hidden_states(_lowerCAmelCase , shape=(4, 77, 1_024) , fpaa=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = model.apply(
{'params': params} , _lowerCAmelCase , jnp.array(_lowerCAmelCase , dtype=jnp.intaa ) , encoder_hidden_states=_lowerCAmelCase , ).sample
assert sample.shape == latents.shape
SCREAMING_SNAKE_CASE_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa )
SCREAMING_SNAKE_CASE_ = jnp.array(_lowerCAmelCase , dtype=jnp.floataa )
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(_lowerCAmelCase , _lowerCAmelCase , atol=1E-2 ) | 31 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float:
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
import os
import time
import numpy as np
import onnxruntime as ort
UpperCAmelCase_ = "1"
UpperCAmelCase_ = "0"
UpperCAmelCase_ = "1"
UpperCAmelCase_ = ort.SessionOptions()
UpperCAmelCase_ = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print("Create inference session...")
UpperCAmelCase_ = ["TensorrtExecutionProvider", "CUDAExecutionProvider"]
UpperCAmelCase_ = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider)
UpperCAmelCase_ = ort.RunOptions()
UpperCAmelCase_ = 1_28
UpperCAmelCase_ = 1
UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa)
UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa)
UpperCAmelCase_ = np.ones((batch, sequence), dtype=np.intaa)
print("Warm up phase...")
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Start inference...")
UpperCAmelCase_ = time.time()
UpperCAmelCase_ = 20_00
UpperCAmelCase_ = {}
for iter in range(max_iters):
UpperCAmelCase_ = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 10_00 / max_iters)) | 32 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = len(set_a.intersection(lowerCAmelCase__ ) )
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
else:
__a = len(set_a.union(lowerCAmelCase__ ) )
return intersection / union
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return None
if __name__ == "__main__":
lowercase_ = {"a", "b", "c", "d", "e"}
lowercase_ = {"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 695 | 0 |
import torch
from diffusers import CMStochasticIterativeScheduler
from .test_schedulers import SchedulerCommonTest
class __magic_name__ (snake_case_ ):
'''simple docstring'''
__lowercase : str = (CMStochasticIterativeScheduler,)
__lowercase : List[str] = 10
def SCREAMING_SNAKE_CASE__ ( self:int , **_a:Optional[int] ):
snake_case__ = {
'''num_train_timesteps''': 2_01,
'''sigma_min''': 0.002,
'''sigma_max''': 80.0,
}
config.update(**_a )
return config
def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ):
snake_case__ = 10
snake_case__ = self.get_scheduler_config()
snake_case__ = self.scheduler_classes[0](**_a )
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps[0]
snake_case__ = scheduler.timesteps[1]
snake_case__ = self.dummy_sample
snake_case__ = 0.1 * sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
snake_case__ = scheduler.step(_a , _a , _a ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:List[str] ):
for clip_denoised in [True, False]:
self.check_over_configs(clip_denoised=_a )
def SCREAMING_SNAKE_CASE__ ( self:int ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = 1
scheduler.set_timesteps(_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for i, t in enumerate(_a ):
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 192.7614 ) < 1e-2
assert abs(result_mean.item() - 0.2510 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [1_06, 0]
scheduler.set_timesteps(timesteps=_a )
snake_case__ = scheduler.timesteps
snake_case__ = torch.manual_seed(0 )
snake_case__ = self.dummy_model()
snake_case__ = self.dummy_sample_deter * scheduler.init_noise_sigma
for t in timesteps:
# 1. scale model input
snake_case__ = scheduler.scale_model_input(_a , _a )
# 2. predict noise residual
snake_case__ = model(_a , _a )
# 3. predict previous sample x_t-1
snake_case__ = scheduler.step(_a , _a , _a , generator=_a ).prev_sample
snake_case__ = pred_prev_sample
snake_case__ = torch.sum(torch.abs(_a ) )
snake_case__ = torch.mean(torch.abs(_a ) )
assert abs(result_sum.item() - 347.6357 ) < 1e-2
assert abs(result_mean.item() - 0.4527 ) < 1e-3
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 15, 0]
with self.assertRaises(_a , msg='''`timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Any ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [39, 30, 12, 1, 0]
snake_case__ = len(_a )
with self.assertRaises(_a , msg='''Can only pass one of `num_inference_steps` or `timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=_a , timesteps=_a )
def SCREAMING_SNAKE_CASE__ ( self:Tuple ):
snake_case__ = self.scheduler_classes[0]
snake_case__ = self.get_scheduler_config()
snake_case__ = scheduler_class(**_a )
snake_case__ = [scheduler.config.num_train_timesteps]
with self.assertRaises(
_a , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=_a )
| 33 |
"""simple docstring"""
from __future__ import annotations
import requests
def lowercase ( lowerCAmelCase__ : str ) -> dict:
__a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(lowerCAmelCase__ ).json()
def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]:
__a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
__a = requests.get(lowerCAmelCase__ ).json()[:max_stories]
return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids]
def lowercase ( lowerCAmelCase__ : int = 10 ) -> str:
__a = hackernews_top_stories(lowerCAmelCase__ )
return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 695 | 0 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class snake_case_ ( lowerCamelCase_ ):
"""simple docstring"""
A_ = (UniPCMultistepScheduler,)
A_ = (('''num_inference_steps''', 25),)
def UpperCAmelCase__ ( self , **lowerCamelCase_) -> int:
UpperCamelCase = {
'''num_train_timesteps''': 1_0_0_0,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''solver_order''': 2,
'''solver_type''': '''bh2''',
}
config.update(**lowerCamelCase_)
return config
def UpperCAmelCase__ ( self , lowerCamelCase_=0 , **lowerCamelCase_) -> int:
UpperCamelCase = dict(self.forward_default_kwargs)
UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_)
UpperCamelCase = self.dummy_sample
UpperCamelCase = 0.1 * sample
UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_)
UpperCamelCase = scheduler_class(**lowerCamelCase_)
scheduler.set_timesteps(lowerCamelCase_)
# copy over dummy past residuals
UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase_)
UpperCamelCase = scheduler_class.from_pretrained(lowerCamelCase_)
new_scheduler.set_timesteps(lowerCamelCase_)
# copy over dummy past residuals
UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCamelCase , UpperCamelCase = sample, sample
for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1):
UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample
UpperCamelCase = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def UpperCAmelCase__ ( self , lowerCamelCase_=0 , **lowerCamelCase_) -> Any:
UpperCamelCase = dict(self.forward_default_kwargs)
UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_)
UpperCamelCase = self.dummy_sample
UpperCamelCase = 0.1 * sample
UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
for scheduler_class in self.scheduler_classes:
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**lowerCamelCase_)
scheduler.set_timesteps(lowerCamelCase_)
# copy over dummy past residuals (must be after setting timesteps)
UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(lowerCamelCase_)
UpperCamelCase = scheduler_class.from_pretrained(lowerCamelCase_)
# copy over dummy past residuals
new_scheduler.set_timesteps(lowerCamelCase_)
# copy over dummy past residual (must be after setting timesteps)
UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample
UpperCamelCase = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def UpperCAmelCase__ ( self , lowerCamelCase_=None , **lowerCamelCase_) -> List[Any]:
if scheduler is None:
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_)
UpperCamelCase = scheduler_class(**lowerCamelCase_)
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_)
UpperCamelCase = scheduler_class(**lowerCamelCase_)
UpperCamelCase = 1_0
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter
scheduler.set_timesteps(lowerCamelCase_)
for i, t in enumerate(scheduler.timesteps):
UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample
return sample
def UpperCAmelCase__ ( self) -> Optional[Any]:
UpperCamelCase = dict(self.forward_default_kwargs)
UpperCamelCase = kwargs.pop('''num_inference_steps''' , lowerCamelCase_)
for scheduler_class in self.scheduler_classes:
UpperCamelCase = self.get_scheduler_config()
UpperCamelCase = scheduler_class(**lowerCamelCase_)
UpperCamelCase = self.dummy_sample
UpperCamelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(lowerCamelCase_ , '''set_timesteps'''):
scheduler.set_timesteps(lowerCamelCase_)
elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , '''set_timesteps'''):
UpperCamelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
UpperCamelCase = [residual + 0.2, residual + 0.15, residual + 0.10]
UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order]
UpperCamelCase = scheduler.timesteps[5]
UpperCamelCase = scheduler.timesteps[6]
UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample
UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_).prev_sample
self.assertEqual(output_a.shape , sample.shape)
self.assertEqual(output_a.shape , output_a.shape)
def UpperCAmelCase__ ( self) -> int:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
UpperCamelCase = UniPCMultistepScheduler(**self.get_scheduler_config())
UpperCamelCase = self.full_loop(scheduler=lowerCamelCase_)
UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_))
assert abs(result_mean.item() - 0.2464) < 1e-3
UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config)
UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config)
UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config)
UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config)
UpperCamelCase = self.full_loop(scheduler=lowerCamelCase_)
UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_))
assert abs(result_mean.item() - 0.2464) < 1e-3
def UpperCAmelCase__ ( self) -> Optional[Any]:
for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_configs(num_train_timesteps=lowerCamelCase_)
def UpperCAmelCase__ ( self) -> Optional[Any]:
self.check_over_configs(thresholding=lowerCamelCase_)
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , )
def UpperCAmelCase__ ( self) -> Optional[int]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCamelCase_)
def UpperCAmelCase__ ( self) -> Tuple:
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , )
UpperCamelCase = self.full_loop(
solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , )
assert not torch.isnan(lowerCamelCase_).any(), "Samples have nan numbers"
def UpperCAmelCase__ ( self) -> Optional[Any]:
self.check_over_configs(lower_order_final=lowerCamelCase_)
self.check_over_configs(lower_order_final=lowerCamelCase_)
def UpperCAmelCase__ ( self) -> List[Any]:
for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]:
self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0)
def UpperCAmelCase__ ( self) -> List[Any]:
UpperCamelCase = self.full_loop()
UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_))
assert abs(result_mean.item() - 0.2464) < 1e-3
def UpperCAmelCase__ ( self) -> Tuple:
UpperCamelCase = self.full_loop(prediction_type='''v_prediction''')
UpperCamelCase = torch.mean(torch.abs(lowerCamelCase_))
assert abs(result_mean.item() - 0.1014) < 1e-3
def UpperCAmelCase__ ( self) -> str:
UpperCamelCase = self.scheduler_classes[0]
UpperCamelCase = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0)
UpperCamelCase = scheduler_class(**lowerCamelCase_)
UpperCamelCase = 1_0
UpperCamelCase = self.dummy_model()
UpperCamelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(lowerCamelCase_)
for i, t in enumerate(scheduler.timesteps):
UpperCamelCase = model(lowerCamelCase_ , lowerCamelCase_)
UpperCamelCase = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_).prev_sample
assert sample.dtype == torch.floataa
def UpperCAmelCase__ ( self , **lowerCamelCase_) -> str:
for scheduler_class in self.scheduler_classes:
UpperCamelCase = self.get_scheduler_config(**lowerCamelCase_)
UpperCamelCase = scheduler_class(**lowerCamelCase_)
scheduler.set_timesteps(scheduler.config.num_train_timesteps)
assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps | 34 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'blip_2_vision_model'
def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = intermediate_size
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
__a = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'blip_2_qformer'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = cross_attention_frequency
__a = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'blip-2'
__UpperCAmelCase : List[str] = True
def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ):
super().__init__(**_a )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' )
if qformer_config is None:
__a = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
__a = BlipaVisionConfig(**_a )
__a = BlipaQFormerConfig(**_a )
__a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
__a = CONFIG_MAPPING[text_model_type](**_a )
__a = self.text_config.tie_word_embeddings
__a = self.text_config.is_encoder_decoder
__a = num_query_tokens
__a = self.vision_config.hidden_size
__a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__a = 1.0
__a = 0.02
@classmethod
def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.vision_config.to_dict()
__a = self.qformer_config.to_dict()
__a = self.text_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
from timeit import timeit
def a ( A__ ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('''the value of input must not be negative''' )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 0
while number:
number &= number - 1
result += 1
return result
def a ( A__ ) -> int:
'''simple docstring'''
if number < 0:
raise ValueError('''the value of input must not be negative''' )
SCREAMING_SNAKE_CASE__ : List[str] = 0
while number:
if number % 2 == 1:
result += 1
number >>= 1
return result
def a ( ) -> None:
'''simple docstring'''
def do_benchmark(A__ ) -> None:
SCREAMING_SNAKE_CASE__ : List[Any] = '''import __main__ as z'''
print(f"""Benchmark when {number = }:""" )
print(f"""{get_set_bits_count_using_modulo_operator(A__ ) = }""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=A__ )
print(f"""timeit() runs in {timing} seconds""" )
print(f"""{get_set_bits_count_using_brian_kernighans_algorithm(A__ ) = }""" )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = timeit(
'''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=A__ , )
print(f"""timeit() runs in {timing} seconds""" )
for number in (2_5, 3_7, 5_8, 0):
do_benchmark(A__ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 35 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = 'deberta-v2'
def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = relative_attention
__a = max_relative_positions
__a = pad_token_id
__a = position_biased_input
# Backwards compatibility
if type(_a ) == str:
__a = [x.strip() for x in pos_att_type.lower().split('''|''' )]
__a = pos_att_type
__a = vocab_size
__a = layer_norm_eps
__a = kwargs.get('''pooler_hidden_size''' , _a )
__a = pooler_dropout
__a = pooler_hidden_act
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def __UpperCAmelCase ( self ):
return 12
def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ):
__a = super().generate_dummy_inputs(preprocessor=_a , framework=_a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 695 | 0 |
import argparse
import requests
import torch
from PIL import Image
from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor
def lowercase ( __A : Union[str, Any] ) -> Any:
'''simple docstring'''
if "cls_token" in name:
snake_case : List[str] = name.replace("""cls_token""" , """vit.embeddings.cls_token""" )
if "mask_token" in name:
snake_case : Dict = name.replace("""mask_token""" , """decoder.mask_token""" )
if "decoder_pos_embed" in name:
snake_case : List[str] = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" )
if "pos_embed" in name and "decoder" not in name:
snake_case : Optional[Any] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
snake_case : Any = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
snake_case : Optional[int] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" )
if "decoder_blocks" in name:
snake_case : Optional[Any] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" )
if "blocks" in name:
snake_case : int = name.replace("""blocks""" , """vit.encoder.layer""" )
if "attn.proj" in name:
snake_case : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
snake_case : Tuple = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
snake_case : Tuple = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
snake_case : List[str] = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
snake_case : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
snake_case : Dict = name.replace("""mlp.fc2""" , """output.dense""" )
if "decoder_embed" in name:
snake_case : Union[str, Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" )
if "decoder_norm" in name:
snake_case : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" )
if "decoder_pred" in name:
snake_case : Optional[Any] = name.replace("""decoder_pred""" , """decoder.decoder_pred""" )
if "norm.weight" in name and "decoder" not in name:
snake_case : List[Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" )
if "norm.bias" in name and "decoder" not in name:
snake_case : Optional[Any] = name.replace("""norm.bias""" , """vit.layernorm.bias""" )
return name
def lowercase ( __A : Tuple , __A : Optional[int] ) -> Tuple:
'''simple docstring'''
for key in orig_state_dict.copy().keys():
snake_case : Any = orig_state_dict.pop(__A )
if "qkv" in key:
snake_case : List[Any] = key.split(""".""" )
snake_case : int = int(key_split[1] )
if "decoder_blocks" in key:
snake_case : int = config.decoder_hidden_size
snake_case : Union[str, Any] = """decoder.decoder_layers."""
if "weight" in key:
snake_case : Optional[Any] = val[:dim, :]
snake_case : Tuple = val[dim : dim * 2, :]
snake_case : Optional[int] = val[-dim:, :]
elif "bias" in key:
snake_case : Union[str, Any] = val[:dim]
snake_case : int = val[dim : dim * 2]
snake_case : Optional[Any] = val[-dim:]
else:
snake_case : List[str] = config.hidden_size
snake_case : List[str] = """vit.encoder.layer."""
if "weight" in key:
snake_case : Any = val[:dim, :]
snake_case : int = val[dim : dim * 2, :]
snake_case : Union[str, Any] = val[-dim:, :]
elif "bias" in key:
snake_case : Optional[Any] = val[:dim]
snake_case : int = val[dim : dim * 2]
snake_case : Optional[int] = val[-dim:]
else:
snake_case : Optional[Any] = val
return orig_state_dict
def lowercase ( __A : Tuple , __A : str ) -> List[Any]:
'''simple docstring'''
snake_case : Optional[int] = ViTMAEConfig()
if "large" in checkpoint_url:
snake_case : List[str] = 1024
snake_case : Optional[int] = 4096
snake_case : Optional[int] = 24
snake_case : Tuple = 16
elif "huge" in checkpoint_url:
snake_case : Dict = 14
snake_case : int = 1280
snake_case : Dict = 5120
snake_case : List[str] = 32
snake_case : Optional[Any] = 16
snake_case : str = ViTMAEForPreTraining(__A )
snake_case : Optional[int] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" )["""model"""]
snake_case : Any = ViTMAEImageProcessor(size=config.image_size )
snake_case : Tuple = convert_state_dict(__A , __A )
model.load_state_dict(__A )
model.eval()
snake_case : Tuple = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg"""
snake_case : Union[str, Any] = Image.open(requests.get(__A , stream=__A ).raw )
snake_case : Dict = ViTMAEImageProcessor(size=config.image_size )
snake_case : str = image_processor(images=__A , return_tensors="""pt""" )
# forward pass
torch.manual_seed(2 )
snake_case : List[str] = model(**__A )
snake_case : str = outputs.logits
if "large" in checkpoint_url:
snake_case : str = torch.tensor(
[[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] )
elif "huge" in checkpoint_url:
snake_case : List[Any] = torch.tensor(
[[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] )
else:
snake_case : Optional[int] = torch.tensor(
[[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] )
# verify logits
assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(__A )
print(f"""Saving image processor to {pytorch_dump_folder_path}""" )
image_processor.save_pretrained(__A )
if __name__ == "__main__":
__lowercase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
__lowercase : Optional[Any] = parser.parse_args()
convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 36 |
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
lowercase_ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
if got_ver is None or want_ver is None:
raise ValueError(
f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
f''' reinstalling {pkg}.''' )
if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ):
raise ImportError(
f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None:
__a = f'''\n{hint}''' if hint is not None else ''''''
# non-versioned check
if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ):
__a , __a , __a = requirement, None, None
else:
__a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
f''' got {requirement}''' )
__a , __a = match[0]
__a = want_full.split(''',''' ) # there could be multiple requirements
__a = {}
for w in want_range:
__a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
f''' but got {requirement}''' )
__a , __a = match[0]
__a = want_ver
if op not in ops:
raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
__a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return
# check if any version is installed
try:
__a = importlib.metadata.version(lowerCAmelCase__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]:
__a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
| 695 | 0 |
from __future__ import annotations
from collections import deque
class A__ :
"""simple docstring"""
def __init__( self : Any , lowerCamelCase__ : list[str] ):
a__ : list[dict] = []
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []} )
for keyword in keywords:
self.add_keyword(lowerCamelCase__ )
self.set_fail_transitions()
def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : int , lowerCamelCase__ : str ):
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def _UpperCamelCase( self : Any , lowerCamelCase__ : str ):
a__ : List[str] = 0
for character in keyword:
a__ : Tuple = self.find_next_state(lowerCamelCase__ , lowerCamelCase__ )
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
a__ : Union[str, Any] = len(self.adlist ) - 1
else:
a__ : List[str] = next_state
self.adlist[current_state]["output"].append(lowerCamelCase__ )
def _UpperCamelCase( self : List[Any] ):
a__ : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(lowerCamelCase__ )
a__ : Tuple = 0
while q:
a__ : str = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(lowerCamelCase__ )
a__ : Tuple = self.adlist[r]["fail_state"]
while (
self.find_next_state(lowerCamelCase__ , self.adlist[child]["value"] ) is None
and state != 0
):
a__ : List[Any] = self.adlist[state]["fail_state"]
a__ : Optional[int] = self.find_next_state(
lowerCamelCase__ , self.adlist[child]["value"] )
if self.adlist[child]["fail_state"] is None:
a__ : Dict = 0
a__ : Union[str, Any] = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def _UpperCamelCase( self : Optional[Any] , lowerCamelCase__ : str ):
a__ : dict = {} # returns a dict with keywords and list of its occurrences
a__ : Tuple = 0
for i in range(len(lowerCamelCase__ ) ):
while (
self.find_next_state(lowerCamelCase__ , string[i] ) is None
and current_state != 0
):
a__ : Union[str, Any] = self.adlist[current_state]["fail_state"]
a__ : Optional[Any] = self.find_next_state(lowerCamelCase__ , string[i] )
if next_state is None:
a__ : str = 0
else:
a__ : int = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
a__ : Optional[Any] = []
result[key].append(i - len(lowerCamelCase__ ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 37 |
"""simple docstring"""
from __future__ import annotations
lowercase_ = list[tuple[int, int]]
lowercase_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , ):
__a = pos_x
__a = pos_y
__a = (pos_y, pos_x)
__a = goal_x
__a = goal_y
__a = g_cost
__a = parent
__a = self.calculate_heuristic()
def __UpperCAmelCase ( self ):
__a = abs(self.pos_x - self.goal_x )
__a = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , _a ):
return self.f_cost < other.f_cost
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a ):
__a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a )
__a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a )
__a = [self.start]
__a = []
__a = False
def __UpperCAmelCase ( self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__a = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
__a = True
return self.retrace_path(_a )
self.closed_nodes.append(_a )
__a = self.get_successors(_a )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_a )
else:
# retrieve the best current path
__a = self.open_nodes.pop(self.open_nodes.index(_a ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_a )
else:
self.open_nodes.append(_a )
if not self.reached:
return [self.start.pos]
return None
def __UpperCAmelCase ( self , _a ):
__a = []
for action in delta:
__a = parent.pos_x + action[1]
__a = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) )
return successors
def __UpperCAmelCase ( self , _a ):
__a = node
__a = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__a = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase_ = (0, 0)
lowercase_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
lowercase_ = GreedyBestFirst(init, goal)
lowercase_ = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase_ = 2
for elem in grid:
print(elem)
| 695 | 0 |
'''simple docstring'''
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
'''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __SCREAMING_SNAKE_CASE , )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = RobertaConfig
lowerCamelCase__ = '''roberta'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = RobertaEmbeddings(__SCREAMING_SNAKE_CASE )
self.init_weights()
@add_start_docstrings(
'''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,
also takes care of multi-layer training. ''' , __SCREAMING_SNAKE_CASE , )
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ = RobertaConfig
lowerCamelCase__ = '''roberta'''
def __init__( self , __SCREAMING_SNAKE_CASE ):
super().__init__(__SCREAMING_SNAKE_CASE )
snake_case__ : int = config.num_labels
snake_case__ : str = config.num_hidden_layers
snake_case__ : Optional[int] = DeeRobertaModel(__SCREAMING_SNAKE_CASE )
snake_case__ : int = nn.Dropout(config.hidden_dropout_prob )
snake_case__ : Dict = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(__SCREAMING_SNAKE_CASE )
def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=-1 , __SCREAMING_SNAKE_CASE=False , ):
snake_case__ : Tuple = self.num_layers
try:
snake_case__ : List[Any] = self.roberta(
__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , position_ids=__SCREAMING_SNAKE_CASE , head_mask=__SCREAMING_SNAKE_CASE , inputs_embeds=__SCREAMING_SNAKE_CASE , )
snake_case__ : int = outputs[1]
snake_case__ : str = self.dropout(__SCREAMING_SNAKE_CASE )
snake_case__ : List[Any] = self.classifier(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
snake_case__ : Optional[int] = e.message
snake_case__ : Dict = e.exit_layer
snake_case__ : Optional[int] = outputs[0]
if not self.training:
snake_case__ : Any = entropy(__SCREAMING_SNAKE_CASE )
snake_case__ : Optional[Any] = []
snake_case__ : List[str] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
snake_case__ : str = MSELoss()
snake_case__ : List[str] = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case__ : Optional[Any] = CrossEntropyLoss()
snake_case__ : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
snake_case__ : Optional[int] = []
for highway_exit in outputs[-1]:
snake_case__ : Optional[Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(__SCREAMING_SNAKE_CASE )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
snake_case__ : Dict = MSELoss()
snake_case__ : Any = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
snake_case__ : int = CrossEntropyLoss()
snake_case__ : Dict = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(__SCREAMING_SNAKE_CASE )
if train_highway:
snake_case__ : Any = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
snake_case__ : Union[str, Any] = (loss,) + outputs
if not self.training:
snake_case__ : Optional[Any] = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
snake_case__ : Optional[int] = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 38 |
"""simple docstring"""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]:
# Initialise PyTorch model
__a = RemBertConfig.from_json_file(lowerCAmelCase__ )
print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) )
__a = RemBertModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--rembert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained RemBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 695 | 0 |
import timeit
import numpy as np
import datasets
from datasets.arrow_writer import ArrowWriter
from datasets.features.features import _ArrayXD
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
def wrapper(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ):
snake_case_ = timeit.default_timer()
snake_case_ = func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
snake_case_ = timeit.default_timer() - starttime
return delta
snake_case_ = func.__name__
return wrapper
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=None ):
snake_case_ = []
snake_case_ = seq_shapes or {}
for i in range(SCREAMING_SNAKE_CASE__ ):
snake_case_ = {}
for col_id, (k, v) in enumerate(features.items() ):
if isinstance(SCREAMING_SNAKE_CASE__ , _ArrayXD ):
snake_case_ = np.random.rand(*v.shape ).astype(v.dtype )
elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Value ):
if v.dtype == "string":
snake_case_ = '''The small grey turtle was surprisingly fast when challenged.'''
else:
snake_case_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item()
elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ):
while isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ):
snake_case_ = v.feature
snake_case_ = seq_shapes[k]
snake_case_ = np.random.rand(*SCREAMING_SNAKE_CASE__ ).astype(v.dtype )
snake_case_ = data
dummy_data.append((i, example) )
return dummy_data
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=100 , SCREAMING_SNAKE_CASE__=None ):
snake_case_ = generate_examples(SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes=SCREAMING_SNAKE_CASE__ )
with ArrowWriter(features=SCREAMING_SNAKE_CASE__ , path=SCREAMING_SNAKE_CASE__ ) as writer:
for key, record in dummy_data:
snake_case_ = features.encode_example(SCREAMING_SNAKE_CASE__ )
writer.write(SCREAMING_SNAKE_CASE__ )
snake_case_, snake_case_ = writer.finalize()
if not num_final_examples == num_examples:
raise ValueError(
F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' )
snake_case_ = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE__ , info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE__ ) )
return dataset | 39 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
lowercase_ = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls ):
__a = TOKEN
HfFolder.save_token(_a )
@classmethod
def __UpperCAmelCase ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
__a = True
__a = flatten_dict(modela.params )
__a = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
__a = False
return models_are_equal
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
| 695 | 0 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
__UpperCAmelCase = abspath(join(dirname(dirname(dirname(__file__))), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def UpperCamelCase ( snake_case__ : Tuple ) -> str:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> Any:
from transformers.testing_utils import pytest_terminal_summary_main
UpperCamelCase : Optional[int] = terminalreporter.config.getoption('--make-reports' )
if make_reports:
pytest_terminal_summary_main(snake_case__ , id=snake_case__ )
| 40 |
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
def __UpperCAmelCase ( self ):
__a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SkipDownBlockaD # noqa F405
__UpperCAmelCase : Tuple = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = DownEncoderBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaD # noqa F405
__UpperCAmelCase : Any = 'mid'
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''temb_channels''': 128,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405
__UpperCAmelCase : str = 'mid'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405
__UpperCAmelCase : List[Any] = 'mid'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405
__UpperCAmelCase : Union[str, Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = AttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = SkipUpBlockaD # noqa F405
__UpperCAmelCase : str = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(_a )
| 695 | 0 |
'''simple docstring'''
import unittest
from transformers import CamembertTokenizer, CamembertTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import is_torch_available
from ...test_tokenization_common import TokenizerTesterMixin
lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''')
lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''')
lowerCAmelCase__ = '''pt''' if is_torch_available() else '''tf'''
@require_sentencepiece
@require_tokenizers
class lowercase_ (lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = CamembertTokenizer
SCREAMING_SNAKE_CASE : Optional[int] = CamembertTokenizerFast
SCREAMING_SNAKE_CASE : List[str] = True
SCREAMING_SNAKE_CASE : Optional[Any] = True
def SCREAMING_SNAKE_CASE ( self : List[str] ):
super().setUp()
# We have a SentencePiece fixture for testing
__lowercase = CamembertTokenizer(lowercase__ )
tokenizer.save_pretrained(self.tmpdirname )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ):
__lowercase = '''<pad>'''
__lowercase = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) ,lowercase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] ):
__lowercase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] ,'''<s>NOTUSED''' )
self.assertEqual(vocab_keys[1] ,'''<pad>''' )
self.assertEqual(vocab_keys[-1] ,'''<mask>''' )
self.assertEqual(len(lowercase__ ) ,1_0_0_4 )
def SCREAMING_SNAKE_CASE ( self : List[str] ):
self.assertEqual(self.get_tokenizer().vocab_size ,1_0_0_5 )
def SCREAMING_SNAKE_CASE ( self : Dict ):
__lowercase = CamembertTokenizer(lowercase__ )
tokenizer.save_pretrained(self.tmpdirname )
__lowercase = CamembertTokenizerFast.from_pretrained(self.tmpdirname )
__lowercase = '''I was born in 92000, and this is falsé.'''
__lowercase = tokenizer.encode(lowercase__ )
__lowercase = rust_tokenizer.encode(lowercase__ )
self.assertListEqual(lowercase__ ,lowercase__ )
__lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ )
__lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ )
self.assertListEqual(lowercase__ ,lowercase__ )
# <unk> tokens are not the same for `rust` than for `slow`.
# Because spm gives back raw token instead of `unk` in EncodeAsPieces
# tokens = tokenizer.tokenize(sequence)
__lowercase = tokenizer.convert_ids_to_tokens(lowercase__ )
__lowercase = rust_tokenizer.tokenize(lowercase__ )
self.assertListEqual(lowercase__ ,lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
if not self.test_rust_tokenizer:
return
__lowercase = self.get_tokenizer()
__lowercase = self.get_rust_tokenizer()
__lowercase = '''I was born in 92000, and this is falsé.'''
__lowercase = tokenizer.tokenize(lowercase__ )
__lowercase = rust_tokenizer.tokenize(lowercase__ )
self.assertListEqual(lowercase__ ,lowercase__ )
__lowercase = tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ )
__lowercase = rust_tokenizer.encode(lowercase__ ,add_special_tokens=lowercase__ )
self.assertListEqual(lowercase__ ,lowercase__ )
__lowercase = self.get_rust_tokenizer()
__lowercase = tokenizer.encode(lowercase__ )
__lowercase = rust_tokenizer.encode(lowercase__ )
self.assertListEqual(lowercase__ ,lowercase__ )
@slow
def SCREAMING_SNAKE_CASE ( self : List[str] ):
# fmt: off
__lowercase = {'''input_ids''': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
# camembert is a french model. So we also use french texts.
__lowercase = [
'''Le transformeur est un modèle d\'apprentissage profond introduit en 2017, '''
'''utilisé principalement dans le domaine du traitement automatique des langues (TAL).''',
'''À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus '''
'''pour gérer des données séquentielles, telles que le langage naturel, pour des tâches '''
'''telles que la traduction et la synthèse de texte.''',
]
self.tokenizer_integration_test_util(
expected_encoding=lowercase__ ,model_name='''camembert-base''' ,revision='''3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf''' ,sequences=lowercase__ ,)
| 41 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowercase_ = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'maskformer'
__UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'}
__UpperCAmelCase : Any = ['resnet', 'swin']
__UpperCAmelCase : Dict = ['detr']
def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
__a = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_a , _a ):
__a = backbone_config.pop('''model_type''' )
__a = CONFIG_MAPPING[backbone_model_type]
__a = config_class.from_dict(_a )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
__a = DetrConfig()
else:
# verify that the decoder is supported
__a = (
decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported )}''' )
if isinstance(_a , _a ):
__a = CONFIG_MAPPING[decoder_type]
__a = config_class.from_dict(_a )
__a = backbone_config
__a = decoder_config
# main feature dimension for the model
__a = fpn_feature_size
__a = mask_feature_size
# initializer
__a = init_std
__a = init_xavier_std
# Hungarian matcher && loss
__a = cross_entropy_weight
__a = dice_weight
__a = mask_weight
__a = use_auxiliary_loss
__a = no_object_weight
__a = output_auxiliary_logits
__a = self.decoder_config.encoder_attention_heads
__a = self.decoder_config.num_hidden_layers
super().__init__(**_a )
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
return cls(
backbone_config=_a , decoder_config=_a , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.backbone_config.to_dict()
__a = self.decoder_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
'''simple docstring'''
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> np.array:
lowerCamelCase_ = f'''{sampling_rate}'''
lowerCamelCase_ = '1'
lowerCamelCase_ = 'f32le'
lowerCamelCase_ = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process:
lowerCamelCase_ = ffmpeg_process.communicate(__UpperCamelCase )
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error
lowerCamelCase_ = output_stream[0]
lowerCamelCase_ = np.frombuffer(__UpperCamelCase ,np.floataa )
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile' )
return audio
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = "f32le" ,) -> Union[str, Any]:
lowerCamelCase_ = f'''{sampling_rate}'''
lowerCamelCase_ = '1'
if format_for_conversion == "s16le":
lowerCamelCase_ = 2
elif format_for_conversion == "f32le":
lowerCamelCase_ = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
lowerCamelCase_ = platform.system()
if system == "Linux":
lowerCamelCase_ = 'alsa'
lowerCamelCase_ = 'default'
elif system == "Darwin":
lowerCamelCase_ = 'avfoundation'
lowerCamelCase_ = ':0'
elif system == "Windows":
lowerCamelCase_ = 'dshow'
lowerCamelCase_ = 'default'
lowerCamelCase_ = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
lowerCamelCase_ = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase )
for item in iterator:
yield item
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = None ,__UpperCamelCase = None ,__UpperCamelCase = "f32le" ,) -> Any:
if stream_chunk_s is not None:
lowerCamelCase_ = stream_chunk_s
else:
lowerCamelCase_ = chunk_length_s
lowerCamelCase_ = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase )
if format_for_conversion == "s16le":
lowerCamelCase_ = np.intaa
lowerCamelCase_ = 2
elif format_for_conversion == "f32le":
lowerCamelCase_ = np.floataa
lowerCamelCase_ = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
if stride_length_s is None:
lowerCamelCase_ = chunk_length_s / 6
lowerCamelCase_ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(__UpperCamelCase ,(int, float) ):
lowerCamelCase_ = [stride_length_s, stride_length_s]
lowerCamelCase_ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
lowerCamelCase_ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
lowerCamelCase_ = datetime.datetime.now()
lowerCamelCase_ = datetime.timedelta(seconds=__UpperCamelCase )
for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ):
# Put everything back in numpy scale
lowerCamelCase_ = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase )
lowerCamelCase_ = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
lowerCamelCase_ = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase = False ) -> Optional[Any]:
lowerCamelCase_ = b''
lowerCamelCase_ ,lowerCamelCase_ = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' )
lowerCamelCase_ = 0
for raw in iterator:
acc += raw
if stream and len(__UpperCamelCase ) < chunk_len:
lowerCamelCase_ = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(__UpperCamelCase ) >= chunk_len:
# We are flushing the accumulator
lowerCamelCase_ = (_stride_left, stride_right)
lowerCamelCase_ = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
lowerCamelCase_ = False
yield item
lowerCamelCase_ = stride_left
lowerCamelCase_ = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(__UpperCamelCase ) > stride_left:
lowerCamelCase_ = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
lowerCamelCase_ = False
yield item
def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> Optional[int]:
lowerCamelCase_ = 2**24 # 16Mo
try:
with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process:
while True:
lowerCamelCase_ = ffmpeg_process.stdout.read(__UpperCamelCase )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
| 42 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
__a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__a = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
| 695 | 0 |
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = s.rsplit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
return new.join(SCREAMING_SNAKE_CASE )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() )
def _a ( SCREAMING_SNAKE_CASE ):
"""simple docstring"""
lowercase__ = {}
lowercase__ = ['''group_1''', '''group_2''', '''group_3''', '''group_4''']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
lowercase__ = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
lowercase__ = key.replace('''res_path.''' , '''res_path.path.''' )
if key.endswith('''.w''' ):
lowercase__ = rreplace(SCREAMING_SNAKE_CASE , '''.w''' , '''.weight''' , 1 )
if key.endswith('''.b''' ):
lowercase__ = rreplace(SCREAMING_SNAKE_CASE , '''.b''' , '''.bias''' , 1 )
lowercase__ = value.float()
return upgrade
@torch.no_grad()
def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
from dall_e import Encoder
lowercase__ = Encoder()
if os.path.exists(SCREAMING_SNAKE_CASE ):
lowercase__ = torch.load(SCREAMING_SNAKE_CASE )
else:
lowercase__ = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE )
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
lowercase__ = ckpt.state_dict()
encoder.load_state_dict(SCREAMING_SNAKE_CASE )
if config_path is not None:
lowercase__ = FlavaImageCodebookConfig.from_pretrained(SCREAMING_SNAKE_CASE )
else:
lowercase__ = FlavaImageCodebookConfig()
lowercase__ = FlavaImageCodebook(SCREAMING_SNAKE_CASE ).eval()
lowercase__ = encoder.state_dict()
lowercase__ = upgrade_state_dict(SCREAMING_SNAKE_CASE )
hf_model.load_state_dict(SCREAMING_SNAKE_CASE )
lowercase__ = hf_model.state_dict()
lowercase__ = count_parameters(SCREAMING_SNAKE_CASE )
lowercase__ = count_parameters(SCREAMING_SNAKE_CASE )
assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-3 )
if save_checkpoint:
hf_model.save_pretrained(SCREAMING_SNAKE_CASE )
else:
return hf_state_dict
if __name__ == "__main__":
lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
lowerCAmelCase = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 43 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = 'gpt_bigcode'
__UpperCAmelCase : Tuple = ['past_key_values']
__UpperCAmelCase : Dict = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = n_positions
__a = n_embd
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = attention_softmax_in_fpaa
__a = scale_attention_softmax_in_fpaa
__a = multi_query
__a = bos_token_id
__a = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 695 | 0 |
'''simple docstring'''
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
UpperCAmelCase_ : int = '.'
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
UpperCAmelCase_ : str = [
'Assert',
'AssignVariableOp',
'EmptyTensorList',
'MergeV2Checkpoints',
'ReadVariableOp',
'ResourceGather',
'RestoreV2',
'SaveV2',
'ShardedFilename',
'StatefulPartitionedCall',
'StaticRegexFullMatch',
'VarHandleOp',
]
def A_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict ):
"""simple docstring"""
_lowerCamelCase : Any = SavedModel()
_lowerCamelCase : Union[str, Any] = []
with open(os.path.join(_lowerCAmelCase , "utils" , "tf_ops" , "onnx.json" ) ) as f:
_lowerCamelCase : List[Any] = json.load(_lowerCAmelCase )["opsets"]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(_lowerCAmelCase )] )
with open(_lowerCAmelCase , "rb" ) as f:
saved_model.ParseFromString(f.read() )
_lowerCamelCase : Optional[Any] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
_lowerCamelCase : List[str] = sorted(_lowerCAmelCase )
_lowerCamelCase : Optional[int] = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(_lowerCAmelCase )
if strict and len(_lowerCAmelCase ) > 0:
raise Exception(F'Found the following incompatible ops for the opset {opset}:\n' + incompatible_ops )
elif len(_lowerCAmelCase ) > 0:
print(F'Found the following incompatible ops for the opset {opset}:' )
print(*_lowerCAmelCase , sep="\n" )
else:
print(F'The saved model {saved_model_path} can properly be converted with ONNX.' )
if __name__ == "__main__":
UpperCAmelCase_ : Any = argparse.ArgumentParser()
parser.add_argument('--saved_model_path', help='Path of the saved model to check (the .pb file).')
parser.add_argument(
'--opset', default=12, type=int, help='The ONNX opset against which the model has to be tested.'
)
parser.add_argument(
'--framework', choices=['onnx'], default='onnx', help='Frameworks against which to test the saved model.'
)
parser.add_argument(
'--strict', action='store_true', help='Whether make the checking strict (raise errors) or not (raise warnings)'
)
UpperCAmelCase_ : Union[str, Any] = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset) | 44 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase_ = 1_6
lowercase_ = 3_2
def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]:
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
__a = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__a = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase__ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__a = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
__a = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
# Initialize accelerator
__a = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a = config['''lr''']
__a = int(config['''num_epochs'''] )
__a = int(config['''seed'''] )
__a = int(config['''batch_size'''] )
__a = args.model_name_or_path
set_seed(lowerCAmelCase__ )
__a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
__a = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__a = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__a = 1
__a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__a = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
__a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a , __a , __a , __a , __a = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
__a = 0
# We also need to keep track of the stating epoch so files are named properly
__a = 0
# Now we train the model
__a = evaluate.load('''glue''' , '''mrpc''' )
__a = 0
__a = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
__a = model(**lowerCAmelCase__ )
__a = outputs.loss
__a = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__a = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__a = model(**lowerCAmelCase__ )
__a = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__a , __a = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
__a = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__a = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
__a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ )
__a = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
__a = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( ) -> List[str]:
__a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , )
parser.add_argument(
'''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , )
parser.add_argument(
'''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , )
__a = parser.parse_args()
__a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 695 | 0 |
from math import factorial
def A ( lowercase__ : int , lowercase__ : int ) -> int:
# If either of the conditions are true, the function is being asked
# to calculate a factorial of a negative number, which is not possible
if n < k or k < 0:
raise ValueError("""Please enter positive integers for n and k where n >= k""" )
return factorial(lowercase__ ) // (factorial(lowercase__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
"The number of five-card hands possible from a standard",
f'''fifty-two card deck is: {combinations(52, 5)}\n''',
)
print(
"If a class of 40 students must be arranged into groups of",
f'''4 for group projects, there are {combinations(40, 4)} ways''',
"to arrange them.\n",
)
print(
"If 10 teams are competing in a Formula One race, there",
f'''are {combinations(10, 3)} ways that first, second and''',
"third place can be awarded.",
) | 45 |
"""simple docstring"""
from typing import Any
def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list:
_validation(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
# Creates data structures and fill initial step
__a = {}
__a = {}
for state in states_space:
__a = observations_space[0]
__a = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__a = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(lowerCAmelCase__ ) ):
__a = observations_space[o]
__a = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__a = ''''''
__a = -1
for k_state in states_space:
__a = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__a = probability
__a = k_state
# Update probabilities and pointers dicts
__a = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__a = arg_max
# The final observation
__a = observations_space[len(lowerCAmelCase__ ) - 1]
# argmax for given final observation
__a = ''''''
__a = -1
for k_state in states_space:
__a = probabilities[(k_state, final_observation)]
if probability > max_probability:
__a = probability
__a = k_state
__a = arg_max
# Process pointers backwards
__a = last_state
__a = []
for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ):
result.append(lowerCAmelCase__ )
__a = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_not_empty(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
_validate_lists(lowerCAmelCase__ , lowerCAmelCase__ )
_validate_dicts(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None:
_validate_list(lowerCAmelCase__ , '''observations_space''' )
_validate_list(lowerCAmelCase__ , '''states_space''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list'''
raise ValueError(lowerCAmelCase__ )
else:
for x in _object:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list of strings'''
raise ValueError(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ )
_validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' )
_validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
_validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ )
for x in _object.values():
_validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a dict'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ):
__a = f'''{var_name} all keys must be strings'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ):
__a = '''nested dictionary ''' if nested else ''''''
__a = f'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 695 | 0 |
"""simple docstring"""
import gzip
import hashlib
import json
import multiprocessing
import os
import re
import shutil
import time
from pathlib import Path
import numpy as np
from arguments import PreprocessingArguments
from datasets import load_dataset
from minhash_deduplication import deduplicate_dataset
from transformers import AutoTokenizer, HfArgumentParser
_lowerCAmelCase : str = re.compile(R'''\s+''')
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
return {"hash": hashlib.mda(re.sub(_lowerCamelCase , "" , example["content"] ).encode("utf-8" ) ).hexdigest()}
def lowerCamelCase_( _lowerCamelCase ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Any = [len(_lowerCamelCase ) for line in example["content"].splitlines()]
return {"line_mean": np.mean(_lowerCamelCase ), "line_max": max(_lowerCamelCase )}
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : Optional[Any] = np.mean([c.isalnum() for c in example["content"]] )
return {"alpha_frac": alpha_frac}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase ) -> Tuple:
'''simple docstring'''
if example["hash"] in uniques:
uniques.remove(example["hash"] )
return True
else:
return False
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : str = ["auto-generated", "autogenerated", "automatically generated"]
_lowerCamelCase : str = example["content"].splitlines()
for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ):
for keyword in keywords:
if keyword in line.lower():
return {"autogenerated": True}
else:
return {"autogenerated": False}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=5 , _lowerCamelCase=0.0_5 ) -> Union[str, Any]:
'''simple docstring'''
_lowerCamelCase : Tuple = ["unit tests", "test file", "configuration file"]
_lowerCamelCase : List[Any] = example["content"].splitlines()
_lowerCamelCase : List[str] = 0
_lowerCamelCase : Optional[Any] = 0
# first test
for _, line in zip(range(_lowerCamelCase ) , _lowerCamelCase ):
for keyword in keywords:
if keyword in line.lower():
return {"config_or_test": True}
# second test
_lowerCamelCase : Dict = example["content"].count("\n" )
_lowerCamelCase : Optional[Any] = int(coeff * nlines )
for line in lines:
count_config += line.lower().count("config" )
count_test += line.lower().count("test" )
if count_config > threshold or count_test > threshold:
return {"config_or_test": True}
return {"config_or_test": False}
def lowerCamelCase_( _lowerCamelCase ) -> int:
'''simple docstring'''
_lowerCamelCase : Dict = ["def ", "class ", "for ", "while "]
_lowerCamelCase : Union[str, Any] = example["content"].splitlines()
for line in lines:
for keyword in keywords:
if keyword in line.lower():
return {"has_no_keywords": False}
return {"has_no_keywords": True}
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=4 ) -> int:
'''simple docstring'''
_lowerCamelCase : int = example["content"].splitlines()
_lowerCamelCase : List[Any] = 0
for line in lines:
counter += line.lower().count("=" )
if counter > minimum:
return {"has_few_assignments": False}
return {"has_few_assignments": True}
def lowerCamelCase_( _lowerCamelCase ) -> Optional[Any]:
'''simple docstring'''
_lowerCamelCase : List[str] = tokenizer(example["content"] , truncation=_lowerCamelCase )["input_ids"]
_lowerCamelCase : Tuple = len(example["content"] ) / len(_lowerCamelCase )
return {"ratio": ratio}
def lowerCamelCase_( _lowerCamelCase ) -> Dict:
'''simple docstring'''
_lowerCamelCase : str = {}
results.update(get_hash(_lowerCamelCase ) )
results.update(line_stats(_lowerCamelCase ) )
results.update(alpha_stats(_lowerCamelCase ) )
results.update(char_token_ratio(_lowerCamelCase ) )
results.update(is_autogenerated(_lowerCamelCase ) )
results.update(is_config_or_test(_lowerCamelCase ) )
results.update(has_no_keywords(_lowerCamelCase ) )
results.update(has_few_assignments(_lowerCamelCase ) )
return results
def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> str:
'''simple docstring'''
if not check_uniques(_lowerCamelCase , _lowerCamelCase ):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
def lowerCamelCase_( _lowerCamelCase ) -> Any:
'''simple docstring'''
with open(_lowerCamelCase , "rb" ) as f_in:
with gzip.open(str(_lowerCamelCase ) + ".gz" , "wb" , compresslevel=6 ) as f_out:
shutil.copyfileobj(_lowerCamelCase , _lowerCamelCase )
os.unlink(_lowerCamelCase )
# Settings
_lowerCAmelCase : Dict = HfArgumentParser(PreprocessingArguments)
_lowerCAmelCase : List[str] = parser.parse_args()
if args.num_workers is None:
_lowerCAmelCase : Optional[Any] = multiprocessing.cpu_count()
_lowerCAmelCase : Any = AutoTokenizer.from_pretrained(args.tokenizer_dir)
# Load dataset
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase : str = load_dataset(args.dataset_name, split='''train''')
print(f'''Time to load dataset: {time.time()-t_start:.2f}''')
# Run preprocessing
_lowerCAmelCase : List[Any] = time.time()
_lowerCAmelCase : Optional[int] = ds.map(preprocess, num_proc=args.num_workers)
print(f'''Time to preprocess dataset: {time.time()-t_start:.2f}''')
# Deduplicate hashes
_lowerCAmelCase : Dict = set(ds.unique('''hash'''))
_lowerCAmelCase : Union[str, Any] = len(uniques) / len(ds)
print(f'''Fraction of duplicates: {1-frac:.2%}''')
# Deduplicate data and apply heuristics
_lowerCAmelCase : Tuple = time.time()
_lowerCAmelCase : List[Any] = ds.filter(filter, fn_kwargs={'''uniques''': uniques, '''args''': args})
print(f'''Time to filter dataset: {time.time()-t_start:.2f}''')
print(f'''Size of filtered dataset: {len(ds_filter)}''')
# Deduplicate with minhash and jaccard similarity
if args.near_deduplication:
_lowerCAmelCase : Union[str, Any] = time.time()
_lowerCAmelCase , _lowerCAmelCase : Optional[int] = deduplicate_dataset(ds_filter, args.jaccard_threshold)
print(f'''Time to deduplicate dataset: {time.time()-t_start:.2f}''')
print(f'''Size of deduplicate dataset: {len(ds_filter)}''')
# Save data in batches of samples_per_file
_lowerCAmelCase : List[str] = Path(args.output_dir)
output_dir.mkdir(exist_ok=True)
# save duplicate_clusters in the output_dir as artifacts
# not sure it is the right place the save it
if args.near_deduplication:
with open(output_dir / '''duplicate_clusters.json''', '''w''') as f:
json.dump(duplicate_clusters, f)
_lowerCAmelCase : Optional[int] = output_dir / '''data'''
data_dir.mkdir(exist_ok=True)
_lowerCAmelCase : Optional[int] = time.time()
for file_number, index in enumerate(range(0, len(ds_filter), args.samples_per_file)):
_lowerCAmelCase : Tuple = str(data_dir / f'''file-{file_number+1:012}.json''')
_lowerCAmelCase : Optional[Any] = min(len(ds_filter), index + args.samples_per_file)
ds_filter.select(list(range(index, end_index))).to_json(file_path)
compress_file(file_path)
print(f'''Time to save dataset: {time.time()-t_start:.2f}''') | 46 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int:
__a = 3
__a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowerCAmelCase__ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse('''1.0.0a'''):
raise Exception('''requires fairseq >= 1.0.0a''')
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = '''Hello world! cécé herlolip'''
def UpperCAmelCase__ ( lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : bool ):
__a : Union[str, Any] = FairseqRobertaModel.from_pretrained(lowerCamelCase_ )
roberta.eval() # disable dropout
__a : Optional[int] = roberta.model.encoder.sentence_encoder
__a : Any = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
__a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our RoBERTa config:' , lowerCamelCase_ )
__a : Dict = XLMRobertaXLForSequenceClassification(lowerCamelCase_ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase_ )
model.eval()
# Now let's copy all the weights.
# Embeddings
__a : Optional[int] = roberta_sent_encoder.embed_tokens.weight
__a : Union[str, Any] = roberta_sent_encoder.embed_positions.weight
__a : List[Any] = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
__a : int = roberta_sent_encoder.layer_norm.weight
__a : Union[str, Any] = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__a : BertLayer = model.roberta.encoder.layer[i]
__a : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i]
__a : RobertaAttention = layer.attention
__a : Any = roberta_layer.self_attn_layer_norm.weight
__a : Any = roberta_layer.self_attn_layer_norm.bias
# self attention
__a : BertSelfAttention = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
__a : int = roberta_layer.self_attn.q_proj.weight
__a : Dict = roberta_layer.self_attn.q_proj.bias
__a : List[Any] = roberta_layer.self_attn.k_proj.weight
__a : Any = roberta_layer.self_attn.k_proj.bias
__a : List[str] = roberta_layer.self_attn.v_proj.weight
__a : Union[str, Any] = roberta_layer.self_attn.v_proj.bias
# self-attention output
__a : BertSelfOutput = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
__a : int = roberta_layer.self_attn.out_proj.weight
__a : Union[str, Any] = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
__a : Tuple = roberta_layer.final_layer_norm.weight
__a : Dict = roberta_layer.final_layer_norm.bias
# intermediate
__a : BertIntermediate = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
__a : Union[str, Any] = roberta_layer.fca.weight
__a : Tuple = roberta_layer.fca.bias
# output
__a : BertOutput = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
__a : int = roberta_layer.fca.weight
__a : Optional[Any] = roberta_layer.fca.bias
# end of layer
if classification_head:
__a : Union[str, Any] = roberta.model.classification_heads['mnli'].dense.weight
__a : Dict = roberta.model.classification_heads['mnli'].dense.bias
__a : Optional[int] = roberta.model.classification_heads['mnli'].out_proj.weight
__a : Tuple = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__a : Optional[Any] = roberta.model.encoder.lm_head.dense.weight
__a : Tuple = roberta.model.encoder.lm_head.dense.bias
__a : Dict = roberta.model.encoder.lm_head.layer_norm.weight
__a : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.bias
__a : Union[str, Any] = roberta.model.encoder.lm_head.weight
__a : Optional[Any] = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
__a : torch.Tensor = roberta.encode(lowerCamelCase_ ).unsqueeze(0 ) # batch of size 1
__a : Tuple = model(lowerCamelCase_ )[0]
if classification_head:
__a : Union[str, Any] = roberta.model.classification_heads['mnli'](roberta.extract_features(lowerCamelCase_ ) )
else:
__a : int = roberta.model(lowerCamelCase_ )[0]
print(our_output.shape , their_output.shape )
__a : Any = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7
__a : Union[str, Any] = torch.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
pathlib.Path(lowerCamelCase_ ).mkdir(parents=lowerCamelCase_ , exist_ok=lowerCamelCase_ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--roberta_checkpoint_path''', default=None, type=str, required=True, help='''Path the official PyTorch dump.'''
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
parser.add_argument(
'''--classification_head''', action='''store_true''', help='''Whether to convert a final classification head.'''
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 47 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 695 | 0 |
'''simple docstring'''
from random import randint
from tempfile import TemporaryFile
import numpy as np
def A ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
if start < end:
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ ,lowerCAmelCase__ = _in_place_partition(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )
count += _in_place_quick_sort(UpperCamelCase_ , UpperCamelCase_ , p - 1 )
count += _in_place_quick_sort(UpperCamelCase_ , p + 1 , UpperCamelCase_ )
return count
def A ( UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any ) -> Dict:
'''simple docstring'''
lowerCAmelCase__ = 0
lowerCAmelCase__ = randint(UpperCamelCase_ , UpperCamelCase_ )
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = a[pivot]
lowerCAmelCase__ = temp
lowerCAmelCase__ = start - 1
for index in range(UpperCamelCase_ , UpperCamelCase_ ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
lowerCAmelCase__ = new_pivot_index + 1
lowerCAmelCase__ = a[new_pivot_index]
lowerCAmelCase__ = a[index]
lowerCAmelCase__ = temp
lowerCAmelCase__ = a[new_pivot_index + 1]
lowerCAmelCase__ = a[end]
lowerCAmelCase__ = temp
return new_pivot_index + 1, count
UpperCAmelCase__ : Tuple = TemporaryFile()
UpperCAmelCase__ : List[str] = 1_00 # 1000 elements are to be sorted
UpperCAmelCase__ , UpperCAmelCase__ : Dict = 0, 1 # mean and standard deviation
UpperCAmelCase__ : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
UpperCAmelCase__ : Optional[Any] = np.load(outfile)
UpperCAmelCase__ : Any = len(M) - 1
UpperCAmelCase__ : Tuple = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 48 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = 'dpr'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = projection_dim
__a = position_embedding_type
| 695 | 0 |
"""simple docstring"""
def lowercase__ ( snake_case_ :float ):
return 10 - x * x
def lowercase__ ( snake_case_ :float , snake_case_ :float ):
# Bolzano theory in order to find if there is a root between a and b
if equation(snake_case_ ) * equation(snake_case_ ) >= 0:
raise ValueError('''Wrong space!''' )
__UpperCAmelCase = a
while (b - a) >= 0.01:
# Find middle point
__UpperCAmelCase = (a + b) / 2
# Check if middle point is root
if equation(snake_case_ ) == 0.0:
break
# Decide the side to repeat the steps
if equation(snake_case_ ) * equation(snake_case_ ) < 0:
__UpperCAmelCase = c
else:
__UpperCAmelCase = c
return c
if __name__ == "__main__":
import doctest
doctest.testmod()
print(bisection(-2, 5))
print(bisection(0, 6))
| 49 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline
__UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCAmelCase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__UpperCAmelCase : Tuple = frozenset([] )
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
__a = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) )
__a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInpaintPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __UpperCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 695 | 0 |
'''simple docstring'''
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : List[str] = {
'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json',
# See all Marian models at https://huggingface.co/models?filter=marian
}
class UpperCamelCase__ (a ):
'''simple docstring'''
_UpperCamelCase = 'marian'
_UpperCamelCase = ['past_key_values']
_UpperCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'}
def __init__( self ,_lowerCAmelCase=5_81_01 ,_lowerCAmelCase=None ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=12 ,_lowerCAmelCase=40_96 ,_lowerCAmelCase=16 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=True ,_lowerCAmelCase=True ,_lowerCAmelCase="gelu" ,_lowerCAmelCase=10_24 ,_lowerCAmelCase=0.1 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.0 ,_lowerCAmelCase=0.02 ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=False ,_lowerCAmelCase=5_81_00 ,_lowerCAmelCase=0 ,_lowerCAmelCase=0 ,_lowerCAmelCase=True ,**_lowerCAmelCase ,):
lowerCamelCase__ = vocab_size
lowerCamelCase__ = decoder_vocab_size or vocab_size
lowerCamelCase__ = max_position_embeddings
lowerCamelCase__ = d_model
lowerCamelCase__ = encoder_ffn_dim
lowerCamelCase__ = encoder_layers
lowerCamelCase__ = encoder_attention_heads
lowerCamelCase__ = decoder_ffn_dim
lowerCamelCase__ = decoder_layers
lowerCamelCase__ = decoder_attention_heads
lowerCamelCase__ = dropout
lowerCamelCase__ = attention_dropout
lowerCamelCase__ = activation_dropout
lowerCamelCase__ = activation_function
lowerCamelCase__ = init_std
lowerCamelCase__ = encoder_layerdrop
lowerCamelCase__ = decoder_layerdrop
lowerCamelCase__ = use_cache
lowerCamelCase__ = encoder_layers
lowerCamelCase__ = scale_embedding # scale factor will be sqrt(d_model) if True
lowerCamelCase__ = share_encoder_decoder_embeddings
super().__init__(
pad_token_id=_lowerCAmelCase ,eos_token_id=_lowerCAmelCase ,is_encoder_decoder=_lowerCAmelCase ,decoder_start_token_id=_lowerCAmelCase ,forced_eos_token_id=_lowerCAmelCase ,**_lowerCAmelCase ,)
class UpperCamelCase__ (a ):
'''simple docstring'''
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs
def UpperCamelCase_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
lowerCamelCase__ = {0: """batch"""}
lowerCamelCase__ = {0: """batch""", 1: """past_decoder_sequence + sequence"""}
else:
lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""}
lowerCamelCase__ = {0: """batch""", 1: """decoder_sequence"""}
if self.use_past:
self.fill_with_past_key_values_(_lowerCAmelCase ,direction="""inputs""" )
elif self.task == "causal-lm":
# TODO: figure this case out.
lowerCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
] )
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
for i in range(_lowerCAmelCase ):
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
else:
lowerCamelCase__ = OrderedDict(
[
("""input_ids""", {0: """batch""", 1: """encoder_sequence"""}),
("""attention_mask""", {0: """batch""", 1: """encoder_sequence"""}),
("""decoder_input_ids""", {0: """batch""", 1: """decoder_sequence"""}),
("""decoder_attention_mask""", {0: """batch""", 1: """decoder_sequence"""}),
] )
return common_inputs
@property
# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs
def UpperCamelCase_ ( self ):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = super().outputs
else:
lowerCamelCase__ = super(_lowerCAmelCase ,self ).outputs
if self.use_past:
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
for i in range(_lowerCAmelCase ):
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
lowerCamelCase__ = {0: """batch""", 2: """past_sequence + sequence"""}
return common_outputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
# Generate decoder inputs
lowerCamelCase__ = seq_length if not self.use_past else 1
lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = {F'''decoder_{name}''': tensor for name, tensor in decoder_inputs.items()}
lowerCamelCase__ = dict(**_lowerCAmelCase ,**_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
lowerCamelCase__ = common_inputs["""decoder_input_ids"""].shape[1]
lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads
lowerCamelCase__ = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ = decoder_seq_length + 3
lowerCamelCase__ = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
lowerCamelCase__ = torch.cat(
[common_inputs["""decoder_attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase )] ,dim=1 )
lowerCamelCase__ = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
lowerCamelCase__ = min(_lowerCAmelCase ,_lowerCAmelCase )
lowerCamelCase__ = max(_lowerCAmelCase ,_lowerCAmelCase ) - min_num_layers
lowerCamelCase__ = """encoder""" if num_encoder_layers > num_decoder_layers else """decoder"""
for _ in range(_lowerCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
torch.zeros(_lowerCAmelCase ),
) )
# TODO: test this.
lowerCamelCase__ = encoder_shape if remaining_side_name == """encoder""" else decoder_shape
for _ in range(_lowerCAmelCase ,_lowerCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) )
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
lowerCamelCase__ = self._generate_dummy_inputs_for_encoder_and_decoder(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
lowerCamelCase__ , lowerCamelCase__ = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
lowerCamelCase__ = seqlen + 2
lowerCamelCase__ , lowerCamelCase__ = self.num_layers
lowerCamelCase__ , lowerCamelCase__ = self.num_attention_heads
lowerCamelCase__ = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
lowerCamelCase__ = common_inputs["""attention_mask"""].dtype
lowerCamelCase__ = torch.cat(
[common_inputs["""attention_mask"""], torch.ones(_lowerCAmelCase ,_lowerCAmelCase ,dtype=_lowerCAmelCase )] ,dim=1 )
lowerCamelCase__ = [
(torch.zeros(_lowerCAmelCase ), torch.zeros(_lowerCAmelCase )) for _ in range(_lowerCAmelCase )
]
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
# Copied from OnnxConfig.generate_dummy_inputs
# Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity.
# If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX
lowerCamelCase__ = compute_effective_axis_dimension(
_lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
lowerCamelCase__ = tokenizer.num_special_tokens_to_add(_lowerCAmelCase )
lowerCamelCase__ = compute_effective_axis_dimension(
_lowerCAmelCase ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=_lowerCAmelCase )
# Generate dummy inputs according to compute batch and sequence
lowerCamelCase__ = [""" """.join([tokenizer.unk_token] ) * seq_length] * batch_size
lowerCamelCase__ = dict(tokenizer(_lowerCAmelCase ,return_tensors=_lowerCAmelCase ) )
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase = -1 ,_lowerCAmelCase = -1 ,_lowerCAmelCase = False ,_lowerCAmelCase = None ,):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
else:
lowerCamelCase__ = self._generate_dummy_inputs_for_causal_lm(
_lowerCAmelCase ,batch_size=_lowerCAmelCase ,seq_length=_lowerCAmelCase ,is_pair=_lowerCAmelCase ,framework=_lowerCAmelCase )
return common_inputs
def UpperCamelCase_ ( self ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ):
if self.task in ["default", "seq2seq-lm"]:
lowerCamelCase__ = super()._flatten_past_key_values_(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
else:
lowerCamelCase__ = super(_lowerCAmelCase ,self )._flatten_past_key_values_(
_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase )
@property
def UpperCamelCase_ ( self ):
return 1E-4
| 50 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = False
__UpperCAmelCase : float = 3.0
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} )
@require_cuda
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
__a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__a = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , _a )
@require_multi_gpu
def __UpperCAmelCase ( self ):
__a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler])
lowercase_ = torch.nn.Linear(1_0_0, 2_0_0)
lowercase_ = accelerator.prepare(model)
# Check the values changed in kwargs
lowercase_ = ""
lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 695 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase =ConsistencyModelPipeline
_lowerCamelCase =UNCONDITIONAL_IMAGE_GENERATION_PARAMS
_lowerCamelCase =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
_lowerCamelCase =frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
@property
def __snake_case ( self : List[str] ):
UpperCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet''' , )
return unet
@property
def __snake_case ( self : int ):
UpperCAmelCase = UNetaDModel.from_pretrained(
'''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , )
return unet
def __snake_case ( self : int , a__ : List[Any]=False ):
if class_cond:
UpperCAmelCase = self.dummy_cond_unet
else:
UpperCAmelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def __snake_case ( self : Any , a__ : Optional[Any] , a__ : List[str]=0 ):
if str(a__ ).startswith('''mps''' ):
UpperCAmelCase = torch.manual_seed(a__ )
else:
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = {
'''batch_size''': 1,
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''generator''': generator,
'''output_type''': '''np''',
}
return inputs
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __snake_case ( self : int ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components(class_cond=a__ )
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 0
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.3_572, 0.6_273, 0.4_031, 0.3_961, 0.4_321, 0.5_730, 0.5_266, 0.4_780, 0.5_004] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __snake_case ( self : int ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components()
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 1
UpperCAmelCase = None
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def __snake_case ( self : str ):
UpperCAmelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
UpperCAmelCase = self.get_dummy_components(class_cond=a__ )
UpperCAmelCase = ConsistencyModelPipeline(**a__ )
UpperCAmelCase = pipe.to(a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_dummy_inputs(a__ )
UpperCAmelCase = 1
UpperCAmelCase = None
UpperCAmelCase = 0
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 32, 32, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.5_004, 0.5_004, 0.4_994, 0.5_008, 0.4_976, 0.5_018, 0.4_990, 0.4_982, 0.4_987] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __snake_case ( self : Tuple ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __snake_case ( self : str , a__ : Optional[Any]=0 , a__ : List[str]=False , a__ : Tuple="cpu" , a__ : Optional[Any]=torch.floataa , a__ : List[Any]=(1, 3, 64, 64) ):
UpperCAmelCase = torch.manual_seed(a__ )
UpperCAmelCase = {
'''num_inference_steps''': None,
'''timesteps''': [22, 0],
'''class_labels''': 0,
'''generator''': generator,
'''output_type''': '''np''',
}
if get_fixed_latents:
UpperCAmelCase = self.get_fixed_latents(seed=a__ , device=a__ , dtype=a__ , shape=a__ )
UpperCAmelCase = latents
return inputs
def __snake_case ( self : List[Any] , a__ : Optional[Any]=0 , a__ : int="cpu" , a__ : Any=torch.floataa , a__ : List[str]=(1, 3, 64, 64) ):
if type(a__ ) == str:
UpperCAmelCase = torch.device(a__ )
UpperCAmelCase = torch.Generator(device=a__ ).manual_seed(a__ )
UpperCAmelCase = randn_tensor(a__ , generator=a__ , device=a__ , dtype=a__ )
return latents
def __snake_case ( self : Tuple ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs()
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.0_888, 0.0_881, 0.0_666, 0.0_479, 0.0_292, 0.0_195, 0.0_201, 0.0_163, 0.0_254] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
def __snake_case ( self : Optional[Any] ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs()
UpperCAmelCase = 1
UpperCAmelCase = None
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.0_340, 0.0_152, 0.0_063, 0.0_267, 0.0_221, 0.0_107, 0.0_416, 0.0_186, 0.0_217] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
@require_torch_a
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs(get_fixed_latents=a__ , device=a__ )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ):
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.1_875, 0.1_428, 0.1_289, 0.2_151, 0.2_092, 0.1_477, 0.1_877, 0.1_641, 0.1_353] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@require_torch_a
def __snake_case ( self : Any ):
UpperCAmelCase = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' )
UpperCAmelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.002 , sigma_max=80.0 , )
UpperCAmelCase = ConsistencyModelPipeline(unet=a__ , scheduler=a__ )
pipe.to(torch_device=a__ , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=a__ )
UpperCAmelCase = self.get_inputs(get_fixed_latents=a__ , device=a__ )
UpperCAmelCase = 1
UpperCAmelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=a__ , enable_math=a__ , enable_mem_efficient=a__ ):
UpperCAmelCase = pipe(**a__ ).images
assert image.shape == (1, 64, 64, 3)
UpperCAmelCase = image[0, -3:, -3:, -1]
UpperCAmelCase = np.array([0.1_663, 0.1_948, 0.2_275, 0.1_680, 0.1_204, 0.1_245, 0.1_858, 0.1_338, 0.2_095] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 51 |
"""simple docstring"""
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __UpperCAmelCase ( self ):
__a = f'''
{self.test_dir}/xla_spawn.py
--num_cores 8
{self.test_file_path}
'''.split()
__a = [sys.executable] + distributed_args
execute_subprocess_async(_a , env=os.environ.copy() )
| 695 | 0 |
"""simple docstring"""
from cva import destroyAllWindows, imread, imshow, waitKey
def __A ( a_ :Any) -> List[Any]:
# getting number of pixels in the image
__a , __a : Dict = img.shape[0], img.shape[1]
# converting each pixel's color to its negative
for i in range(a_):
for j in range(a_):
__a : Optional[int] = [2_55, 2_55, 2_55] - img[i][j]
return img
if __name__ == "__main__":
# read original image
A = imread('''image_data/lena.jpg''', 1)
# convert to its negative
A = convert_to_negative(img)
# show result image
imshow('''negative of original image''', img)
waitKey(0)
destroyAllWindows() | 52 |
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = BertTokenizer
__UpperCAmelCase : Optional[Any] = BertTokenizerFast
__UpperCAmelCase : str = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Any = filter_non_english
def __UpperCAmelCase ( self ):
super().setUp()
__a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __UpperCAmelCase ( self , _a ):
__a = '''UNwant\u00E9d,running'''
__a = '''unwanted, running'''
return input_text, output_text
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class(self.vocab_file )
__a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] )
def __UpperCAmelCase ( self ):
if not self.test_rust_tokenizer:
return
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# With lower casing
__a = self.get_tokenizer(do_lower_case=_a )
__a = self.get_rust_tokenizer(do_lower_case=_a )
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
__a = '''a\n\'ll !!to?\'d of, can\'t.'''
__a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(_a ) , _a )
def __UpperCAmelCase ( self ):
__a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__a = {}
for i, token in enumerate(_a ):
__a = i
__a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __UpperCAmelCase ( self ):
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def __UpperCAmelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__a = tokenizer_r.encode_plus(
_a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , )
__a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False
__a = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __UpperCAmelCase ( self ):
__a = ['''的''', '''人''', '''有''']
__a = ''''''.join(_a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = True
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
__a = False
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that only the first Chinese character is not preceded by "##".
__a = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a )
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
| 695 | 0 |
import argparse
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case : List[str] = logging.get_logger(__name__)
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ):
__lowerCAmelCase = RobertaPreLayerNormConfig.from_pretrained(
lowerCAmelCase_, architectures=['RobertaPreLayerNormForMaskedLM'] )
# convert state_dict
__lowerCAmelCase = torch.load(hf_hub_download(repo_id=lowerCAmelCase_, filename='pytorch_model.bin' ) )
__lowerCAmelCase = {}
for tensor_key, tensor_value in original_state_dict.items():
# The transformer implementation gives the model a unique name, rather than overwiriting 'roberta'
if tensor_key.startswith('roberta.' ):
__lowerCAmelCase = 'roberta_prelayernorm.' + tensor_key[len('roberta.' ) :]
# The original implementation contains weights which are not used, remove them from the state_dict
if tensor_key.endswith('.self.LayerNorm.weight' ) or tensor_key.endswith('.self.LayerNorm.bias' ):
continue
__lowerCAmelCase = tensor_value
__lowerCAmelCase = RobertaPreLayerNormForMaskedLM.from_pretrained(
pretrained_model_name_or_path=lowerCAmelCase_, config=lowerCAmelCase_, state_dict=lowerCAmelCase_ )
model.save_pretrained(lowerCAmelCase_ )
# convert tokenizer
__lowerCAmelCase = AutoTokenizer.from_pretrained(lowerCAmelCase_ )
tokenizer.save_pretrained(lowerCAmelCase_ )
if __name__ == "__main__":
_snake_case : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint-repo',
default=None,
type=str,
required=True,
help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
_snake_case : Union[str, Any] = parser.parse_args()
convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
| 53 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float:
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase : Optional[int] =logging.get_logger(__name__)
__lowercase : Tuple ={
"""facebook/data2vec-base-960h""": """https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json""",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class A ( __lowercase ):
_snake_case ='''data2vec-audio'''
def __init__( self: str , _lowerCAmelCase: Any=32 , _lowerCAmelCase: Any=768 , _lowerCAmelCase: Tuple=12 , _lowerCAmelCase: List[str]=12 , _lowerCAmelCase: Optional[int]=3072 , _lowerCAmelCase: List[Any]="gelu" , _lowerCAmelCase: Union[str, Any]=0.1 , _lowerCAmelCase: Optional[Any]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: int=0.0 , _lowerCAmelCase: List[str]=0.1 , _lowerCAmelCase: List[Any]=0.1 , _lowerCAmelCase: List[Any]=0.02 , _lowerCAmelCase: Optional[int]=1e-5 , _lowerCAmelCase: Union[str, Any]="gelu" , _lowerCAmelCase: Dict=(512, 512, 512, 512, 512, 512, 512) , _lowerCAmelCase: int=(5, 2, 2, 2, 2, 2, 2) , _lowerCAmelCase: Any=(10, 3, 3, 3, 3, 2, 2) , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[Any]=16 , _lowerCAmelCase: Tuple=19 , _lowerCAmelCase: int=5 , _lowerCAmelCase: List[str]=0.05 , _lowerCAmelCase: List[str]=10 , _lowerCAmelCase: str=2 , _lowerCAmelCase: Any=0.0 , _lowerCAmelCase: Optional[Any]=10 , _lowerCAmelCase: List[str]=0 , _lowerCAmelCase: Optional[int]="sum" , _lowerCAmelCase: List[Any]=False , _lowerCAmelCase: List[str]=False , _lowerCAmelCase: Dict=256 , _lowerCAmelCase: Union[str, Any]=(512, 512, 512, 512, 1500) , _lowerCAmelCase: List[Any]=(5, 3, 3, 1, 1) , _lowerCAmelCase: Any=(1, 2, 3, 1, 1) , _lowerCAmelCase: Optional[int]=512 , _lowerCAmelCase: List[Any]=0 , _lowerCAmelCase: int=1 , _lowerCAmelCase: Optional[Any]=2 , _lowerCAmelCase: Union[str, Any]=False , _lowerCAmelCase: Union[str, Any]=3 , _lowerCAmelCase: Optional[int]=2 , _lowerCAmelCase: str=3 , _lowerCAmelCase: List[str]=None , **_lowerCAmelCase: List[str] , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(**_lowerCAmelCase , pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase )
UpperCAmelCase_ =hidden_size
UpperCAmelCase_ =feat_extract_activation
UpperCAmelCase_ =list(_lowerCAmelCase )
UpperCAmelCase_ =list(_lowerCAmelCase )
UpperCAmelCase_ =list(_lowerCAmelCase )
UpperCAmelCase_ =conv_bias
UpperCAmelCase_ =num_conv_pos_embeddings
UpperCAmelCase_ =num_conv_pos_embedding_groups
UpperCAmelCase_ =conv_pos_kernel_size
UpperCAmelCase_ =len(self.conv_dim )
UpperCAmelCase_ =num_hidden_layers
UpperCAmelCase_ =intermediate_size
UpperCAmelCase_ =hidden_act
UpperCAmelCase_ =num_attention_heads
UpperCAmelCase_ =hidden_dropout
UpperCAmelCase_ =attention_dropout
UpperCAmelCase_ =activation_dropout
UpperCAmelCase_ =feat_proj_dropout
UpperCAmelCase_ =final_dropout
UpperCAmelCase_ =layerdrop
UpperCAmelCase_ =layer_norm_eps
UpperCAmelCase_ =initializer_range
UpperCAmelCase_ =vocab_size
UpperCAmelCase_ =use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
UpperCAmelCase_ =mask_time_prob
UpperCAmelCase_ =mask_time_length
UpperCAmelCase_ =mask_time_min_masks
UpperCAmelCase_ =mask_feature_prob
UpperCAmelCase_ =mask_feature_length
UpperCAmelCase_ =mask_feature_min_masks
# ctc loss
UpperCAmelCase_ =ctc_loss_reduction
UpperCAmelCase_ =ctc_zero_infinity
# adapter
UpperCAmelCase_ =add_adapter
UpperCAmelCase_ =adapter_kernel_size
UpperCAmelCase_ =adapter_stride
UpperCAmelCase_ =num_adapter_layers
UpperCAmelCase_ =output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
UpperCAmelCase_ =classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
UpperCAmelCase_ =list(_lowerCAmelCase )
UpperCAmelCase_ =list(_lowerCAmelCase )
UpperCAmelCase_ =list(_lowerCAmelCase )
UpperCAmelCase_ =xvector_output_dim
@property
def lowerCAmelCase__ ( self: List[Any] ) -> int:
'''simple docstring'''
return math.prod(self.conv_stride )
| 54 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = len(set_a.intersection(lowerCAmelCase__ ) )
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
else:
__a = len(set_a.union(lowerCAmelCase__ ) )
return intersection / union
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return None
if __name__ == "__main__":
lowercase_ = {"a", "b", "c", "d", "e"}
lowercase_ = {"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 695 | 0 |
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = abs(a_ )
__A = 0
while n > 0:
res += n % 1_0
n //= 1_0
return res
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
__A = abs(a_ )
return n if n < 1_0 else n % 1_0 + sum_of_digits(n // 1_0 )
def UpperCAmelCase ( a_ ) -> int:
"""simple docstring"""
return sum(int(a_ ) for c in str(abs(a_ ) ) )
def UpperCAmelCase ( ) -> None:
"""simple docstring"""
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(a_ , a_ ) -> None:
__A = F'''{func.__name__}({value})'''
__A = timeit(F'''__main__.{call}''' , setup="import __main__" )
print(F'''{call:56} = {func(a_ )} -- {timing:.4f} seconds''' )
for value in (2_6_2_1_4_4, 1_1_2_5_8_9_9_9_0_6_8_4_2_6_2_4, 1_2_6_7_6_5_0_6_0_0_2_2_8_2_2_9_4_0_1_4_9_6_7_0_3_2_0_5_3_7_6):
for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact):
benchmark_a_function(a_ , a_ )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 55 |
"""simple docstring"""
from __future__ import annotations
import requests
def lowercase ( lowerCAmelCase__ : str ) -> dict:
__a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(lowerCAmelCase__ ).json()
def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]:
__a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
__a = requests.get(lowerCAmelCase__ ).json()[:max_stories]
return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids]
def lowercase ( lowerCAmelCase__ : int = 10 ) -> str:
__a = hackernews_top_stories(lowerCAmelCase__ )
return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 695 | 0 |
'''simple docstring'''
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class _lowercase ( unittest.TestCase ):
def a ( self : Optional[Any] ) -> None:
__snake_case = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
__snake_case = Vector()
def a ( self : List[str] ) -> None:
__snake_case = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,0,0,0,0,1)' )
def a ( self : Optional[Any] ) -> None:
__snake_case = Vector([1, 2, 3, 4] )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
def a ( self : Union[str, Any] ) -> None:
__snake_case = Vector([1, 2] )
__snake_case = Vector([1, 2, 3, 4, 5] )
__snake_case = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
__snake_case = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.2_3_6 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.4_1_6 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.6_1_6 , 3 )
def a ( self : int ) -> None:
__snake_case = Vector([1, 2, 3] )
__snake_case = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def a ( self : int ) -> None:
__snake_case = Vector([1, 2, 3] )
__snake_case = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def a ( self : Union[str, Any] ) -> None:
__snake_case = Vector([1, 2, 3] )
__snake_case = Vector([2, -1, 4] ) # for test of dot product
__snake_case = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def a ( self : int ) -> None:
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def a ( self : Any ) -> None:
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def a ( self : int ) -> None:
__snake_case = Vector([1, 2, 3] )
__snake_case = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) , '(3,4,7)' )
def a ( self : Optional[Any] ) -> None:
__snake_case = Vector([1, 0, 0, 0, 0, 0] )
__snake_case = x.copy()
self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , str(SCREAMING_SNAKE_CASE_ ) )
def a ( self : Optional[Any] ) -> None:
__snake_case = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(SCREAMING_SNAKE_CASE_ ) , '(0,1,0)' )
def a ( self : Any ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) )
def a ( self : Tuple ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__snake_case = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a ( self : str ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__snake_case = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def a ( self : Optional[Any] ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def a ( self : Any ) -> None:
__snake_case = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
__snake_case = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def a ( self : Union[str, Any] ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(SCREAMING_SNAKE_CASE_ ) )
def a ( self : Any ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.0_1 )
def a ( self : Tuple ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def a ( self : int ) -> None:
__snake_case = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
__snake_case = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def a ( self : Any ) -> None:
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 56 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'blip_2_vision_model'
def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = intermediate_size
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
__a = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'blip_2_qformer'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = cross_attention_frequency
__a = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'blip-2'
__UpperCAmelCase : List[str] = True
def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ):
super().__init__(**_a )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' )
if qformer_config is None:
__a = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
__a = BlipaVisionConfig(**_a )
__a = BlipaQFormerConfig(**_a )
__a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
__a = CONFIG_MAPPING[text_model_type](**_a )
__a = self.text_config.tie_word_embeddings
__a = self.text_config.is_encoder_decoder
__a = num_query_tokens
__a = self.vision_config.hidden_size
__a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__a = 1.0
__a = 0.02
@classmethod
def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.vision_config.to_dict()
__a = self.qformer_config.to_dict()
__a = self.text_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A_ : int = {
'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any = [
'LILT_PRETRAINED_MODEL_ARCHIVE_LIST',
'LiltForQuestionAnswering',
'LiltForSequenceClassification',
'LiltForTokenClassification',
'LiltModel',
'LiltPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_lilt import (
LILT_PRETRAINED_MODEL_ARCHIVE_LIST,
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
LiltPreTrainedModel,
)
else:
import sys
A_ : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 57 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = 'deberta-v2'
def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = relative_attention
__a = max_relative_positions
__a = pad_token_id
__a = position_biased_input
# Backwards compatibility
if type(_a ) == str:
__a = [x.strip() for x in pos_att_type.lower().split('''|''' )]
__a = pos_att_type
__a = vocab_size
__a = layer_norm_eps
__a = kwargs.get('''pooler_hidden_size''' , _a )
__a = pooler_dropout
__a = pooler_hidden_act
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def __UpperCAmelCase ( self ):
return 12
def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ):
__a = super().generate_dummy_inputs(preprocessor=_a , framework=_a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 695 | 0 |
"""simple docstring"""
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def __lowerCAmelCase ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str=0.999 , __UpperCamelCase : Dict="cosine" , ):
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase : Optional[Any] ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase : Optional[Any] ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'Unsupported alpha_tranform_type: {alpha_transform_type}' )
snake_case_ : Optional[int] = []
for i in range(__UpperCamelCase ):
snake_case_ : str = i / num_diffusion_timesteps
snake_case_ : Dict = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__UpperCamelCase ) / alpha_bar_fn(__UpperCamelCase ) , __UpperCamelCase ) )
return torch.tensor(__UpperCamelCase , dtype=torch.floataa )
class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
_lowerCamelCase = [e.name for e in KarrasDiffusionSchedulers]
_lowerCamelCase = 2
@register_to_config
def __init__( self , _lowercase = 1_0_0_0 , _lowercase = 0.0_0085 , _lowercase = 0.012 , _lowercase = "linear" , _lowercase = None , _lowercase = "epsilon" , _lowercase = "linspace" , _lowercase = 0 , ) -> Union[str, Any]:
'''simple docstring'''
if trained_betas is not None:
snake_case_ : Tuple = torch.tensor(_lowercase , dtype=torch.floataa )
elif beta_schedule == "linear":
snake_case_ : int = torch.linspace(_lowercase , _lowercase , _lowercase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
snake_case_ : Optional[int] = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowercase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
snake_case_ : List[str] = betas_for_alpha_bar(_lowercase )
else:
raise NotImplementedError(f'{beta_schedule} does is not implemented for {self.__class__}' )
snake_case_ : Tuple = 1.0 - self.betas
snake_case_ : str = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_lowercase , _lowercase , _lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase=None ) -> List[str]:
'''simple docstring'''
if schedule_timesteps is None:
snake_case_ : Optional[Any] = self.timesteps
snake_case_ : int = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
snake_case_ : Optional[Any] = 1 if len(_lowercase ) > 1 else 0
else:
snake_case_ : Optional[int] = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep
snake_case_ : List[str] = self._index_counter[timestep_int]
return indices[pos].item()
@property
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def UpperCAmelCase__ ( self , _lowercase , _lowercase , ) -> torch.FloatTensor:
'''simple docstring'''
snake_case_ : str = self.index_for_timestep(_lowercase )
if self.state_in_first_order:
snake_case_ : Union[str, Any] = self.sigmas[step_index]
else:
snake_case_ : List[Any] = self.sigmas_interpol[step_index]
snake_case_ : Dict = sample / ((sigma**2 + 1) ** 0.5)
return sample
def UpperCAmelCase__ ( self , _lowercase , _lowercase = None , _lowercase = None , ) -> Optional[Any]:
'''simple docstring'''
snake_case_ : Any = num_inference_steps
snake_case_ : List[Any] = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
snake_case_ : Tuple = np.linspace(0 , num_train_timesteps - 1 , _lowercase , dtype=_lowercase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
snake_case_ : int = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
snake_case_ : Any = (np.arange(0 , _lowercase ) * step_ratio).round()[::-1].copy().astype(_lowercase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
snake_case_ : Tuple = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
snake_case_ : Dict = (np.arange(_lowercase , 0 , -step_ratio )).round().copy().astype(_lowercase )
timesteps -= 1
else:
raise ValueError(
f'{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.' )
snake_case_ : Dict = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
snake_case_ : List[str] = torch.from_numpy(np.log(_lowercase ) ).to(_lowercase )
snake_case_ : Optional[int] = np.interp(_lowercase , np.arange(0 , len(_lowercase ) ) , _lowercase )
snake_case_ : Union[str, Any] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
snake_case_ : str = torch.from_numpy(_lowercase ).to(device=_lowercase )
# interpolate sigmas
snake_case_ : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log() , 0.5 ).exp()
snake_case_ : List[Any] = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] )
snake_case_ : str = torch.cat(
[sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] )
if str(_lowercase ).startswith("""mps""" ):
# mps does not support float64
snake_case_ : str = torch.from_numpy(_lowercase ).to(_lowercase , dtype=torch.floataa )
else:
snake_case_ : Optional[int] = torch.from_numpy(_lowercase ).to(_lowercase )
# interpolate timesteps
snake_case_ : Tuple = self.sigma_to_t(_lowercase ).to(_lowercase , dtype=timesteps.dtype )
snake_case_ : str = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]) , dim=-1 ).flatten()
snake_case_ : Any = torch.cat([timesteps[:1], interleaved_timesteps] )
snake_case_ : List[Any] = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
snake_case_ : Union[str, Any] = defaultdict(_lowercase )
def UpperCAmelCase__ ( self , _lowercase ) -> Tuple:
'''simple docstring'''
snake_case_ : List[Any] = sigma.log()
# get distribution
snake_case_ : List[str] = log_sigma - self.log_sigmas[:, None]
# get sigmas range
snake_case_ : Optional[Any] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 )
snake_case_ : int = low_idx + 1
snake_case_ : Tuple = self.log_sigmas[low_idx]
snake_case_ : List[str] = self.log_sigmas[high_idx]
# interpolate sigmas
snake_case_ : Optional[int] = (low - log_sigma) / (low - high)
snake_case_ : Optional[Any] = w.clamp(0 , 1 )
# transform interpolation to time range
snake_case_ : List[Any] = (1 - w) * low_idx + w * high_idx
snake_case_ : List[str] = t.view(sigma.shape )
return t
@property
def UpperCAmelCase__ ( self ) -> Dict:
'''simple docstring'''
return self.sample is None
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase = True , ) -> Union[SchedulerOutput, Tuple]:
'''simple docstring'''
snake_case_ : List[str] = self.index_for_timestep(_lowercase )
# advance index counter by 1
snake_case_ : List[Any] = timestep.cpu().item() if torch.is_tensor(_lowercase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
snake_case_ : int = self.sigmas[step_index]
snake_case_ : Union[str, Any] = self.sigmas_interpol[step_index + 1]
snake_case_ : List[str] = self.sigmas[step_index + 1]
else:
# 2nd order / KDPM2's method
snake_case_ : Optional[int] = self.sigmas[step_index - 1]
snake_case_ : Optional[int] = self.sigmas_interpol[step_index]
snake_case_ : int = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
snake_case_ : str = 0
snake_case_ : Optional[int] = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
snake_case_ : str = sigma_hat if self.state_in_first_order else sigma_interpol
snake_case_ : Optional[Any] = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
snake_case_ : Dict = sigma_hat if self.state_in_first_order else sigma_interpol
snake_case_ : int = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
raise NotImplementedError("""prediction_type not implemented yet: sample""" )
else:
raise ValueError(
f'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`' )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
snake_case_ : List[str] = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
snake_case_ : List[str] = sigma_interpol - sigma_hat
# store for 2nd order step
snake_case_ : List[Any] = sample
else:
# DPM-Solver-2
# 2. Convert to an ODE derivative for 2nd order
snake_case_ : List[Any] = (sample - pred_original_sample) / sigma_interpol
# 3. delta timestep
snake_case_ : Optional[int] = sigma_next - sigma_hat
snake_case_ : Dict = self.sample
snake_case_ : int = None
snake_case_ : Any = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_lowercase )
def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , ) -> torch.FloatTensor:
'''simple docstring'''
snake_case_ : Optional[Any] = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_lowercase ):
# mps does not support float64
snake_case_ : List[Any] = self.timesteps.to(original_samples.device , dtype=torch.floataa )
snake_case_ : Any = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
snake_case_ : Any = self.timesteps.to(original_samples.device )
snake_case_ : Union[str, Any] = timesteps.to(original_samples.device )
snake_case_ : Optional[Any] = [self.index_for_timestep(_lowercase , _lowercase ) for t in timesteps]
snake_case_ : Any = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
snake_case_ : Union[str, Any] = sigma.unsqueeze(-1 )
snake_case_ : Optional[Any] = original_samples + noise * sigma
return noisy_samples
def __len__( self ) -> Union[str, Any]:
'''simple docstring'''
return self.config.num_train_timesteps
| 58 |
"""simple docstring"""
import importlib.metadata
import operator
import re
import sys
from typing import Optional
from packaging import version
lowercase_ = {
"<": operator.lt,
"<=": operator.le,
"==": operator.eq,
"!=": operator.ne,
">=": operator.ge,
">": operator.gt,
}
def lowercase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Dict:
if got_ver is None or want_ver is None:
raise ValueError(
f'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider'''
f''' reinstalling {pkg}.''' )
if not ops[op](version.parse(lowerCAmelCase__ ) , version.parse(lowerCAmelCase__ ) ):
raise ImportError(
f'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> None:
__a = f'''\n{hint}''' if hint is not None else ''''''
# non-versioned check
if re.match(r'''^[\w_\-\d]+$''' , lowerCAmelCase__ ):
__a , __a , __a = requirement, None, None
else:
__a = re.findall(r'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but'''
f''' got {requirement}''' )
__a , __a = match[0]
__a = want_full.split(''',''' ) # there could be multiple requirements
__a = {}
for w in want_range:
__a = re.findall(r'''^([\s!=<>]{1,2})(.+)''' , lowerCAmelCase__ )
if not match:
raise ValueError(
'''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,'''
f''' but got {requirement}''' )
__a , __a = match[0]
__a = want_ver
if op not in ops:
raise ValueError(f'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' )
# special case
if pkg == "python":
__a = '''.'''.join([str(lowerCAmelCase__ ) for x in sys.version_info[:3]] )
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
return
# check if any version is installed
try:
__a = importlib.metadata.version(lowerCAmelCase__ )
except importlib.metadata.PackageNotFoundError:
raise importlib.metadata.PackageNotFoundError(
f'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' )
# check that the right version is installed if version number or a range was provided
if want_ver is not None:
for op, want_ver in wanted.items():
_compare_versions(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Tuple ) -> Optional[Any]:
__a = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main'''
return require_version(lowerCAmelCase__ , lowerCAmelCase__ )
| 695 | 0 |
import json
import os
import unittest
from transformers.models.roc_bert.tokenization_roc_bert import (
VOCAB_FILES_NAMES,
RoCBertBasicTokenizer,
RoCBertTokenizer,
RoCBertWordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
lowercase_ = RoCBertTokenizer
lowercase_ = None
lowercase_ = False
lowercase_ = True
lowercase_ = filter_non_english
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->List[str]:
'''simple docstring'''
super().setUp()
lowerCamelCase__: int =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"]
lowerCamelCase__: Dict ={}
lowerCamelCase__: Dict ={}
for i, value in enumerate(UpperCAmelCase_):
lowerCamelCase__: Any =i
lowerCamelCase__: List[str] =i
lowerCamelCase__: List[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
lowerCamelCase__: Tuple =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"])
lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
with open(self.word_shape_file , "w" , encoding="utf-8") as word_shape_writer:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_)
with open(self.word_pronunciation_file , "w" , encoding="utf-8") as word_pronunciation_writer:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : int) ->int:
'''simple docstring'''
lowerCamelCase__: int =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowerCamelCase__: Union[str, Any] =tokenizer.tokenize("你好[SEP]你是谁")
self.assertListEqual(UpperCAmelCase_ , ["你", "好", "[SEP]", "你", "是", "谁"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase_) , [5, 6, 2, 5, 7, 8])
self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase_) , [5, 6, 2, 5, 7, 8])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =RoCBertBasicTokenizer()
self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz") , ["ah", "\u535A", "\u63A8", "zz"])
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["hello", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"])
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Any:
'''simple docstring'''
lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hällo", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["h\u00E9llo"])
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"])
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["hallo", "!", "how", "are", "you", "?"])
self.assertListEqual(tokenizer.tokenize("H\u00E9llo") , ["hello"])
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? ") , ["HeLLo", "!", "how", "Are", "yoU", "?"])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->int:
'''simple docstring'''
lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HäLLo", "!", "how", "Are", "yoU", "?"])
def SCREAMING_SNAKE_CASE_ (self : int) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , strip_accents=UpperCAmelCase_)
self.assertListEqual(
tokenizer.tokenize(" \tHäLLo!how \n Are yoU? ") , ["HaLLo", "!", "how", "Are", "yoU", "?"])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =RoCBertBasicTokenizer(do_lower_case=UpperCAmelCase_ , never_split=["[UNK]"])
self.assertListEqual(
tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]") , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"])
def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"]
lowerCamelCase__: Dict ={}
for i, token in enumerate(UpperCAmelCase_):
lowerCamelCase__: Any =i
lowerCamelCase__: Union[str, Any] =RoCBertWordpieceTokenizer(vocab=UpperCAmelCase_ , unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize("") , [])
self.assertListEqual(tokenizer.tokenize("unwanted running") , ["un", "##want", "##ed", "runn", "##ing"])
self.assertListEqual(tokenizer.tokenize("unwantedX running") , ["[UNK]", "runn", "##ing"])
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]:
'''simple docstring'''
self.assertTrue(_is_whitespace(" "))
self.assertTrue(_is_whitespace("\t"))
self.assertTrue(_is_whitespace("\r"))
self.assertTrue(_is_whitespace("\n"))
self.assertTrue(_is_whitespace("\u00A0"))
self.assertFalse(_is_whitespace("A"))
self.assertFalse(_is_whitespace("-"))
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
self.assertTrue(_is_control("\u0005"))
self.assertFalse(_is_control("A"))
self.assertFalse(_is_control(" "))
self.assertFalse(_is_control("\t"))
self.assertFalse(_is_control("\r"))
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]:
'''simple docstring'''
self.assertTrue(_is_punctuation("-"))
self.assertTrue(_is_punctuation("$"))
self.assertTrue(_is_punctuation("`"))
self.assertTrue(_is_punctuation("."))
self.assertFalse(_is_punctuation("A"))
self.assertFalse(_is_punctuation(" "))
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->int:
'''simple docstring'''
lowerCamelCase__: Any =self.get_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]])
if self.test_rust_tokenizer:
lowerCamelCase__: Tuple =self.get_rust_tokenizer()
self.assertListEqual(
[rust_tokenizer.tokenize(UpperCAmelCase_) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]])
def SCREAMING_SNAKE_CASE_ (self : Any) ->Optional[int]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
lowerCamelCase__: str =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence."""
lowerCamelCase__: Optional[int] =tokenizer_r.encode_plus(
UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , )
lowerCamelCase__: Tuple =tokenizer_r.do_lower_case if hasattr(UpperCAmelCase_ , "do_lower_case") else False
lowerCamelCase__: Tuple =(
[
((0, 0), tokenizer_r.cls_token),
((0, 1), "A"),
((1, 2), ","),
((3, 5), "na"),
((5, 6), "##ï"),
((6, 8), "##ve"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "Allen"),
((21, 23), "##NL"),
((23, 24), "##P"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), "a"),
((1, 2), ","),
((3, 8), "naive"),
((9, 15), tokenizer_r.mask_token),
((16, 21), "allen"),
((21, 23), "##nl"),
((23, 24), "##p"),
((25, 33), "sentence"),
((33, 34), "."),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"]))
self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"])
def SCREAMING_SNAKE_CASE_ (self : str) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =["的", "人", "有"]
lowerCamelCase__: List[str] ="".join(UpperCAmelCase_)
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})"""):
lowerCamelCase__: Dict =True
lowerCamelCase__: Optional[Any] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Optional[int] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: int =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: List[Any] =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_)
lowerCamelCase__: List[str] =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_)
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =False
lowerCamelCase__: Tuple =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: List[Any] =self.tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer_r.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: str =tokenizer_p.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =tokenizer_r.convert_ids_to_tokens(UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer_p.convert_ids_to_tokens(UpperCAmelCase_)
# it is expected that only the first Chinese character is not preceded by "##".
lowerCamelCase__: List[str] =[
F"""##{token}""" if idx != 0 else token for idx, token in enumerate(UpperCAmelCase_)
]
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_)
@slow
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Tuple =self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file)
lowerCamelCase__: int =tokenizer.encode("你好" , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Any =tokenizer.encode("你是谁" , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_)
assert encoded_sentence == [1] + text + [2]
assert encoded_pair == [1] + text + [2] + text_a + [2]
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any]) ->str:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.get_tokenizers(do_lower_case=UpperCAmelCase_)
for tokenizer in tokenizers:
with self.subTest(F"""{tokenizer.__class__.__name__}"""):
lowerCamelCase__: Union[str, Any] ="你好,你是谁"
lowerCamelCase__: str =tokenizer.tokenize(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =tokenizer.convert_tokens_to_ids(UpperCAmelCase_)
lowerCamelCase__: int =tokenizer.convert_tokens_to_shape_ids(UpperCAmelCase_)
lowerCamelCase__: Optional[int] =tokenizer.convert_tokens_to_pronunciation_ids(UpperCAmelCase_)
lowerCamelCase__: str =tokenizer.prepare_for_model(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
lowerCamelCase__: List[Any] =tokenizer.encode_plus(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_)
self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
| 59 |
"""simple docstring"""
from __future__ import annotations
lowercase_ = list[tuple[int, int]]
lowercase_ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
lowercase_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a , _a , _a , _a , _a , ):
__a = pos_x
__a = pos_y
__a = (pos_y, pos_x)
__a = goal_x
__a = goal_y
__a = g_cost
__a = parent
__a = self.calculate_heuristic()
def __UpperCAmelCase ( self ):
__a = abs(self.pos_x - self.goal_x )
__a = abs(self.pos_y - self.goal_y )
return dx + dy
def __lt__( self , _a ):
return self.f_cost < other.f_cost
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a ):
__a = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a )
__a = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a )
__a = [self.start]
__a = []
__a = False
def __UpperCAmelCase ( self ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
__a = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
__a = True
return self.retrace_path(_a )
self.closed_nodes.append(_a )
__a = self.get_successors(_a )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(_a )
else:
# retrieve the best current path
__a = self.open_nodes.pop(self.open_nodes.index(_a ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(_a )
else:
self.open_nodes.append(_a )
if not self.reached:
return [self.start.pos]
return None
def __UpperCAmelCase ( self , _a ):
__a = []
for action in delta:
__a = parent.pos_x + action[1]
__a = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
_a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) )
return successors
def __UpperCAmelCase ( self , _a ):
__a = node
__a = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
__a = current_node.parent
path.reverse()
return path
if __name__ == "__main__":
lowercase_ = (0, 0)
lowercase_ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
print("------")
lowercase_ = GreedyBestFirst(init, goal)
lowercase_ = greedy_bf.search()
if path:
for pos_x, pos_y in path:
lowercase_ = 2
for elem in grid:
print(elem)
| 695 | 0 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class __lowerCAmelCase :
def __init__(self , __magic_name__ , __magic_name__=99 , __magic_name__=13 , __magic_name__=16 , __magic_name__=7 , __magic_name__=True , __magic_name__=True , __magic_name__=True , __magic_name__=False , __magic_name__=True , __magic_name__=2 , __magic_name__=32 , __magic_name__=4 , __magic_name__=4 , __magic_name__=30 , __magic_name__=0 , __magic_name__=1 , __magic_name__=2 , __magic_name__=None , ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : Optional[int] = parent
snake_case_ : Union[str, Any] = batch_size
snake_case_ : Optional[Any] = decoder_seq_length
# For common tests
snake_case_ : Tuple = self.decoder_seq_length
snake_case_ : Tuple = is_training
snake_case_ : Optional[Any] = use_attention_mask
snake_case_ : Optional[int] = use_labels
snake_case_ : Dict = vocab_size
snake_case_ : Tuple = d_model
snake_case_ : Tuple = d_model
snake_case_ : str = decoder_layers
snake_case_ : List[str] = decoder_layers
snake_case_ : List[str] = decoder_ffn_dim
snake_case_ : int = decoder_attention_heads
snake_case_ : List[str] = decoder_attention_heads
snake_case_ : List[Any] = eos_token_id
snake_case_ : Optional[int] = bos_token_id
snake_case_ : Optional[Any] = pad_token_id
snake_case_ : str = decoder_start_token_id
snake_case_ : List[Any] = use_cache
snake_case_ : int = max_position_embeddings
snake_case_ : Optional[int] = None
snake_case_ : List[str] = decoder_seq_length
snake_case_ : str = 2
snake_case_ : Union[str, Any] = 1
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
snake_case_ : Any = None
if self.use_attention_mask:
snake_case_ : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
snake_case_ : List[Any] = None
if self.use_labels:
snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
snake_case_ : Any = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def lowerCamelCase (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> int:
'''simple docstring'''
snake_case_ : List[str] = True
snake_case_ : List[Any] = TrOCRDecoder(config=__magic_name__ ).to(__magic_name__ ).eval()
snake_case_ : Optional[int] = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
snake_case_ : Any = model(__magic_name__ , use_cache=__magic_name__ )
snake_case_ : int = model(__magic_name__ )
snake_case_ : int = model(__magic_name__ , use_cache=__magic_name__ )
self.parent.assertTrue(len(__magic_name__ ) == len(__magic_name__ ) )
self.parent.assertTrue(len(__magic_name__ ) == len(__magic_name__ ) + 1 )
snake_case_ : Union[str, Any] = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
snake_case_ : List[str] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
snake_case_ : int = torch.cat([input_ids, next_tokens] , dim=-1 )
snake_case_ : Tuple = model(__magic_name__ )['''last_hidden_state''']
snake_case_ : str = model(__magic_name__ , past_key_values=__magic_name__ )['''last_hidden_state''']
# select random slice
snake_case_ : Dict = ids_tensor((1,) , output_from_past.shape[-1] ).item()
snake_case_ : Dict = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
snake_case_ : List[Any] = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(__magic_name__ , __magic_name__ , atol=1e-3 )
def lowerCamelCase (self ) -> Optional[int]:
'''simple docstring'''
snake_case_ : int = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs
snake_case_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( _a, _a, _a, unittest.TestCase ):
lowerCamelCase_ : Optional[int] = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
lowerCamelCase_ : int = (TrOCRForCausalLM,) if is_torch_available() else ()
lowerCamelCase_ : Union[str, Any] = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
lowerCamelCase_ : List[Any] = True
lowerCamelCase_ : Optional[int] = False
def lowerCamelCase (self ) -> int:
'''simple docstring'''
snake_case_ : Union[str, Any] = TrOCRStandaloneDecoderModelTester(self , is_training=__magic_name__ )
snake_case_ : int = ConfigTester(self , config_class=__magic_name__ )
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
pass
def lowerCamelCase (self ) -> Any:
'''simple docstring'''
pass
def lowerCamelCase (self ) -> Optional[Any]:
'''simple docstring'''
pass
def lowerCamelCase (self ) -> str:
'''simple docstring'''
self.config_tester.run_common_tests()
def lowerCamelCase (self ) -> str:
'''simple docstring'''
snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*__magic_name__ )
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def lowerCamelCase (self ) -> Tuple:
'''simple docstring'''
pass
| 60 |
"""simple docstring"""
import argparse
import torch
from transformers import RemBertConfig, RemBertModel, load_tf_weights_in_rembert
from transformers.utils import logging
logging.set_verbosity_info()
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str ) -> List[Any]:
# Initialise PyTorch model
__a = RemBertConfig.from_json_file(lowerCAmelCase__ )
print('''Building PyTorch model from configuration: {}'''.format(str(lowerCAmelCase__ ) ) )
__a = RemBertModel(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_rembert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print('''Save PyTorch model to {}'''.format(lowerCAmelCase__ ) )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
lowercase_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--rembert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained RemBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
lowercase_ = parser.parse_args()
convert_rembert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.rembert_config_file, args.pytorch_dump_path)
| 695 | 0 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def _A ( lowerCAmelCase_ : str ):
"""simple docstring"""
lowerCAmelCase__ = DPTConfig(embedding_type="hybrid" )
if "large" in checkpoint_url:
lowerCAmelCase__ = 1024
lowerCAmelCase__ = 4096
lowerCAmelCase__ = 24
lowerCAmelCase__ = 16
lowerCAmelCase__ = [5, 11, 17, 23]
lowerCAmelCase__ = [256, 512, 1024, 1024]
lowerCAmelCase__ = (1, 384, 384)
if "nyu" or "midas" in checkpoint_url:
lowerCAmelCase__ = 768
lowerCAmelCase__ = [1, 1, 1, 0.5]
lowerCAmelCase__ = [256, 512, 768, 768]
lowerCAmelCase__ = 150
lowerCAmelCase__ = 16
lowerCAmelCase__ = (1, 384, 384)
lowerCAmelCase__ = False
lowerCAmelCase__ = "project"
if "ade" in checkpoint_url:
lowerCAmelCase__ = True
lowerCAmelCase__ = 768
lowerCAmelCase__ = [1, 1, 1, 0.5]
lowerCAmelCase__ = 150
lowerCAmelCase__ = 16
lowerCAmelCase__ = "huggingface/label-files"
lowerCAmelCase__ = "ade20k-id2label.json"
lowerCAmelCase__ = json.load(open(cached_download(hf_hub_url(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) ) , "r" ) )
lowerCAmelCase__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
lowerCAmelCase__ = idalabel
lowerCAmelCase__ = {v: k for k, v in idalabel.items()}
lowerCAmelCase__ = [1, 150, 480, 480]
return config, expected_shape
def _A ( lowerCAmelCase_ : List[Any] ):
"""simple docstring"""
lowerCAmelCase__ = ["pretrained.model.head.weight", "pretrained.model.head.bias"]
for k in ignore_keys:
state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ )
def _A ( lowerCAmelCase_ : Optional[int] ):
"""simple docstring"""
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
lowerCAmelCase__ = name.replace("pretrained.model" , "dpt.encoder" )
if "pretrained.model" in name:
lowerCAmelCase__ = name.replace("pretrained.model" , "dpt.embeddings" )
if "patch_embed" in name:
lowerCAmelCase__ = name.replace("patch_embed" , "" )
if "pos_embed" in name:
lowerCAmelCase__ = name.replace("pos_embed" , "position_embeddings" )
if "attn.proj" in name:
lowerCAmelCase__ = name.replace("attn.proj" , "attention.output.dense" )
if "proj" in name and "project" not in name:
lowerCAmelCase__ = name.replace("proj" , "projection" )
if "blocks" in name:
lowerCAmelCase__ = name.replace("blocks" , "layer" )
if "mlp.fc1" in name:
lowerCAmelCase__ = name.replace("mlp.fc1" , "intermediate.dense" )
if "mlp.fc2" in name:
lowerCAmelCase__ = name.replace("mlp.fc2" , "output.dense" )
if "norm1" in name and "backbone" not in name:
lowerCAmelCase__ = name.replace("norm1" , "layernorm_before" )
if "norm2" in name and "backbone" not in name:
lowerCAmelCase__ = name.replace("norm2" , "layernorm_after" )
if "scratch.output_conv" in name:
lowerCAmelCase__ = name.replace("scratch.output_conv" , "head" )
if "scratch" in name:
lowerCAmelCase__ = name.replace("scratch" , "neck" )
if "layer1_rn" in name:
lowerCAmelCase__ = name.replace("layer1_rn" , "convs.0" )
if "layer2_rn" in name:
lowerCAmelCase__ = name.replace("layer2_rn" , "convs.1" )
if "layer3_rn" in name:
lowerCAmelCase__ = name.replace("layer3_rn" , "convs.2" )
if "layer4_rn" in name:
lowerCAmelCase__ = name.replace("layer4_rn" , "convs.3" )
if "refinenet" in name:
lowerCAmelCase__ = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
lowerCAmelCase__ = name.replace(F'refinenet{layer_idx}' , F'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
lowerCAmelCase__ = name.replace("out_conv" , "projection" )
if "resConfUnit1" in name:
lowerCAmelCase__ = name.replace("resConfUnit1" , "residual_layer1" )
if "resConfUnit2" in name:
lowerCAmelCase__ = name.replace("resConfUnit2" , "residual_layer2" )
if "conv1" in name:
lowerCAmelCase__ = name.replace("conv1" , "convolution1" )
if "conv2" in name:
lowerCAmelCase__ = name.replace("conv2" , "convolution2" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess1.0.project.0" , "neck.reassemble_stage.readout_projects.0.0" )
if "pretrained.act_postprocess2.0.project.0" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess2.0.project.0" , "neck.reassemble_stage.readout_projects.1.0" )
if "pretrained.act_postprocess3.0.project.0" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess3.0.project.0" , "neck.reassemble_stage.readout_projects.2.0" )
if "pretrained.act_postprocess4.0.project.0" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess4.0.project.0" , "neck.reassemble_stage.readout_projects.3.0" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess1.3" , "neck.reassemble_stage.layers.0.projection" )
if "pretrained.act_postprocess1.4" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess1.4" , "neck.reassemble_stage.layers.0.resize" )
if "pretrained.act_postprocess2.3" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess2.3" , "neck.reassemble_stage.layers.1.projection" )
if "pretrained.act_postprocess2.4" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess2.4" , "neck.reassemble_stage.layers.1.resize" )
if "pretrained.act_postprocess3.3" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess3.3" , "neck.reassemble_stage.layers.2.projection" )
if "pretrained.act_postprocess4.3" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess4.3" , "neck.reassemble_stage.layers.3.projection" )
if "pretrained.act_postprocess4.4" in name:
lowerCAmelCase__ = name.replace("pretrained.act_postprocess4.4" , "neck.reassemble_stage.layers.3.resize" )
if "pretrained" in name:
lowerCAmelCase__ = name.replace("pretrained" , "dpt" )
if "bn" in name:
lowerCAmelCase__ = name.replace("bn" , "batch_norm" )
if "head" in name:
lowerCAmelCase__ = name.replace("head" , "head.head" )
if "encoder.norm" in name:
lowerCAmelCase__ = name.replace("encoder.norm" , "layernorm" )
if "auxlayer" in name:
lowerCAmelCase__ = name.replace("auxlayer" , "auxiliary_head.head" )
if "backbone" in name:
lowerCAmelCase__ = name.replace("backbone" , "backbone.bit.encoder" )
if ".." in name:
lowerCAmelCase__ = name.replace(".." , "." )
if "stem.conv" in name:
lowerCAmelCase__ = name.replace("stem.conv" , "bit.embedder.convolution" )
if "blocks" in name:
lowerCAmelCase__ = name.replace("blocks" , "layers" )
if "convolution" in name and "backbone" in name:
lowerCAmelCase__ = name.replace("convolution" , "conv" )
if "layer" in name and "backbone" in name:
lowerCAmelCase__ = name.replace("layer" , "layers" )
if "backbone.bit.encoder.bit" in name:
lowerCAmelCase__ = name.replace("backbone.bit.encoder.bit" , "backbone.bit" )
if "embedder.conv" in name:
lowerCAmelCase__ = name.replace("embedder.conv" , "embedder.convolution" )
if "backbone.bit.encoder.stem.norm" in name:
lowerCAmelCase__ = name.replace("backbone.bit.encoder.stem.norm" , "backbone.bit.embedder.norm" )
return name
def _A ( lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] ):
"""simple docstring"""
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
lowerCAmelCase__ = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.weight' )
lowerCAmelCase__ = state_dict.pop(F'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
lowerCAmelCase__ = in_proj_weight[: config.hidden_size, :]
lowerCAmelCase__ = in_proj_bias[: config.hidden_size]
lowerCAmelCase__ = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
lowerCAmelCase__ = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
lowerCAmelCase__ = in_proj_weight[
-config.hidden_size :, :
]
lowerCAmelCase__ = in_proj_bias[-config.hidden_size :]
def _A ( ):
"""simple docstring"""
lowerCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg"
lowerCAmelCase__ = Image.open(requests.get(lowerCAmelCase_ , stream=lowerCAmelCase_ ).raw )
return im
@torch.no_grad()
def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] ):
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ = get_dpt_config(lowerCAmelCase_ )
# load original state_dict from URL
# state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" )
# remove certain keys
remove_ignore_keys_(lowerCAmelCase_ )
# rename keys
for key in state_dict.copy().keys():
lowerCAmelCase__ = state_dict.pop(lowerCAmelCase_ )
lowerCAmelCase__ = val
# read in qkv matrices
read_in_q_k_v(lowerCAmelCase_ , lowerCAmelCase_ )
# load HuggingFace model
lowerCAmelCase__ = DPTForSemanticSegmentation(lowerCAmelCase_ ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowerCAmelCase_ )
model.load_state_dict(lowerCAmelCase_ )
model.eval()
# Check outputs on an image
lowerCAmelCase__ = 480 if "ade" in checkpoint_url else 384
lowerCAmelCase__ = DPTImageProcessor(size=lowerCAmelCase_ )
lowerCAmelCase__ = prepare_img()
lowerCAmelCase__ = image_processor(lowerCAmelCase_ , return_tensors="pt" )
# forward pass
lowerCAmelCase__ = model(**lowerCAmelCase_ ).logits if "ade" in checkpoint_url else model(**lowerCAmelCase_ ).predicted_depth
if show_prediction:
lowerCAmelCase__ = (
torch.nn.functional.interpolate(
outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="bicubic" , align_corners=lowerCAmelCase_ , )
.squeeze()
.cpu()
.numpy()
)
Image.fromarray((prediction / prediction.max()) * 255 ).show()
if pytorch_dump_folder_path is not None:
Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ )
print(F'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(lowerCAmelCase_ )
print(F'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(lowerCAmelCase_ )
if push_to_hub:
model.push_to_hub("ybelkada/dpt-hybrid-midas" )
image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--checkpoint_url',
default='https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt',
type=str,
help='URL of the original DPT checkpoint you\'d like to convert.',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default=None,
type=str,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument(
'--push_to_hub',
action='store_true',
)
parser.add_argument(
'--model_name',
default='dpt-large',
type=str,
help='Name of the model, in case you\'re pushing to the hub.',
)
parser.add_argument(
'--show_prediction',
action='store_true',
)
UpperCamelCase = parser.parse_args()
convert_dpt_checkpoint(
args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction
)
| 61 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
lowercase_ = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def __UpperCAmelCase ( cls ):
__a = TOKEN
HfFolder.save_token(_a )
@classmethod
def __UpperCAmelCase ( cls ):
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(_a , repo_id='''test-model-flax''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained(f'''{USER}/test-model-flax''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def __UpperCAmelCase ( self ):
__a = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
__a = FlaxBertModel(_a )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
_a , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=_a , use_auth_token=self._token )
__a = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
__a = flatten_dict(unfreeze(model.params ) )
__a = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
__a = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(_a , 1E-3 , msg=f'''{key} not identical''' )
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict ) -> Optional[int]:
__a = True
__a = flatten_dict(modela.params )
__a = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
__a = False
return models_are_equal
@require_flax
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
__a = FlaxBertModel(_a )
__a = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(_a , _a ) , max_shard_size='''10KB''' )
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertTrue(check_models_equal(_a , _a ) )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
def __UpperCAmelCase ( self ):
__a = '''bert'''
__a = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(_a ):
__a = FlaxBertModel.from_pretrained(_a )
__a = FlaxBertModel.from_pretrained(_a , subfolder=_a )
self.assertIsNotNone(_a )
| 695 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
@slow
def _A ( self : Optional[Any] ):
SCREAMING_SNAKE_CASE : Any = AutoModelForSeqaSeqLM.from_pretrained("google/mt5-small" , return_dict=UpperCAmelCase_ ).to(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("google/mt5-small" )
SCREAMING_SNAKE_CASE : str = tokenizer("Hello there" , return_tensors="pt" ).input_ids
SCREAMING_SNAKE_CASE : Any = tokenizer("Hi I am" , return_tensors="pt" ).input_ids
SCREAMING_SNAKE_CASE : str = model(input_ids.to(UpperCAmelCase_ ) , labels=labels.to(UpperCAmelCase_ ) ).loss
SCREAMING_SNAKE_CASE : List[str] = -(labels.shape[-1] * loss.item())
SCREAMING_SNAKE_CASE : Any = -84.9_127
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 62 |
"""simple docstring"""
import unittest
from diffusers.models.unet_ad_blocks import * # noqa F403
from diffusers.utils import torch_device
from .test_unet_blocks_common import UNetBlockTesterMixin
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = DownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
def __UpperCAmelCase ( self ):
__a = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetDownsampleBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = CrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Optional[Any] = 'down'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SimpleCrossAttnDownBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = SkipDownBlockaD # noqa F405
__UpperCAmelCase : Tuple = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = AttnSkipDownBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_skip_sample=_a )
def __UpperCAmelCase ( self ):
__a = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : int = DownEncoderBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnDownEncoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'down'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''out_channels''': 32,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaD # noqa F405
__UpperCAmelCase : Any = 'mid'
def __UpperCAmelCase ( self ):
__a = {
'''in_channels''': 32,
'''temb_channels''': 128,
}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = UNetMidBlockaDCrossAttn # noqa F405
__UpperCAmelCase : str = 'mid'
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = UNetMidBlockaDSimpleCrossAttn # noqa F405
__UpperCAmelCase : List[Any] = 'mid'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpBlockaD # noqa F405
__UpperCAmelCase : Union[str, Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = ResnetUpsampleBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Dict = CrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405
__UpperCAmelCase : Optional[int] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a , include_encoder_hidden_states=_a )
def __UpperCAmelCase ( self ):
__a , __a = super().prepare_init_args_and_inputs_for_common()
__a = 32
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = AttnUpBlockaD # noqa F405
__UpperCAmelCase : List[Any] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
@unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' )
def __UpperCAmelCase ( self ):
__a = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Any = SkipUpBlockaD # noqa F405
__UpperCAmelCase : str = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = AttnSkipUpBlockaD # noqa F405
__UpperCAmelCase : int = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_res_hidden_states_tuple=_a )
def __UpperCAmelCase ( self ):
__a = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = UpDecoderBlockaD # noqa F405
__UpperCAmelCase : List[str] = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137]
super().test_output(_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = AttnUpDecoderBlockaD # noqa F405
__UpperCAmelCase : Any = 'up'
@property
def __UpperCAmelCase ( self ):
return super().get_dummy_input(include_temb=_a )
def __UpperCAmelCase ( self ):
__a = {'''in_channels''': 32, '''out_channels''': 32}
__a = self.dummy_input
return init_dict, inputs_dict
def __UpperCAmelCase ( self ):
__a = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568]
super().test_output(_a )
| 695 | 0 |
from torch import nn
def lowerCamelCase__ ( __lowerCamelCase : Optional[int] ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(f"""Unsupported activation function: {act_fn}""" )
| 63 |
"""simple docstring"""
import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
lowercase_ = {
"facebook/maskformer-swin-base-ade": (
"https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json"
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
lowercase_ = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'maskformer'
__UpperCAmelCase : Optional[int] = {'hidden_size': 'mask_feature_size'}
__UpperCAmelCase : Any = ['resnet', 'swin']
__UpperCAmelCase : Dict = ['detr']
def __init__( self , _a = 256 , _a = 256 , _a = 0.1 , _a = False , _a = None , _a = None , _a = 0.02 , _a = 1.0 , _a = 1.0 , _a = 1.0 , _a = 20.0 , _a = None , **_a , ):
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
__a = SwinConfig(
image_size=384 , in_channels=3 , patch_size=4 , embed_dim=128 , depths=[2, 2, 18, 2] , num_heads=[4, 8, 16, 32] , window_size=12 , drop_path_rate=0.3 , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , )
if isinstance(_a , _a ):
__a = backbone_config.pop('''model_type''' )
__a = CONFIG_MAPPING[backbone_model_type]
__a = config_class.from_dict(_a )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
__a = DetrConfig()
else:
# verify that the decoder is supported
__a = (
decoder_config.pop('''model_type''' ) if isinstance(_a , _a ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f'''Transformer Decoder {decoder_type} not supported, please use one of'''
f''' {','.join(self.decoders_supported )}''' )
if isinstance(_a , _a ):
__a = CONFIG_MAPPING[decoder_type]
__a = config_class.from_dict(_a )
__a = backbone_config
__a = decoder_config
# main feature dimension for the model
__a = fpn_feature_size
__a = mask_feature_size
# initializer
__a = init_std
__a = init_xavier_std
# Hungarian matcher && loss
__a = cross_entropy_weight
__a = dice_weight
__a = mask_weight
__a = use_auxiliary_loss
__a = no_object_weight
__a = output_auxiliary_logits
__a = self.decoder_config.encoder_attention_heads
__a = self.decoder_config.num_hidden_layers
super().__init__(**_a )
@classmethod
def __UpperCAmelCase ( cls , _a , _a , **_a ):
return cls(
backbone_config=_a , decoder_config=_a , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.backbone_config.to_dict()
__a = self.decoder_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowercase_ : List[Any] = logging.get_logger(__name__)
lowercase_ : Any = {
'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json',
'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json',
'xlm-roberta-large-finetuned-conll02-dutch': (
'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json'
),
'xlm-roberta-large-finetuned-conll02-spanish': (
'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json'
),
'xlm-roberta-large-finetuned-conll03-english': (
'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json'
),
'xlm-roberta-large-finetuned-conll03-german': (
'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json'
),
}
class _lowerCamelCase ( UpperCamelCase_ ):
__a = "xlm-roberta"
def __init__( self , lowerCAmelCase=30522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-12 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ) -> Union[str, Any]:
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Union[str, Any]= vocab_size
SCREAMING_SNAKE_CASE__: Tuple= hidden_size
SCREAMING_SNAKE_CASE__: List[Any]= num_hidden_layers
SCREAMING_SNAKE_CASE__: Optional[Any]= num_attention_heads
SCREAMING_SNAKE_CASE__: Any= hidden_act
SCREAMING_SNAKE_CASE__: List[Any]= intermediate_size
SCREAMING_SNAKE_CASE__: str= hidden_dropout_prob
SCREAMING_SNAKE_CASE__: Optional[int]= attention_probs_dropout_prob
SCREAMING_SNAKE_CASE__: List[str]= max_position_embeddings
SCREAMING_SNAKE_CASE__: Optional[Any]= type_vocab_size
SCREAMING_SNAKE_CASE__: List[Any]= initializer_range
SCREAMING_SNAKE_CASE__: Tuple= layer_norm_eps
SCREAMING_SNAKE_CASE__: Dict= position_embedding_type
SCREAMING_SNAKE_CASE__: Optional[Any]= use_cache
SCREAMING_SNAKE_CASE__: int= classifier_dropout
class _lowerCamelCase ( UpperCamelCase_ ):
@property
def UpperCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
SCREAMING_SNAKE_CASE__: Any= {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
SCREAMING_SNAKE_CASE__: Any= {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
] )
| 64 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowercase_ = "https://www.indeed.co.in/jobs?q=mobile+app+development&l="
def lowercase ( lowerCAmelCase__ : str = "mumbai" ) -> Generator[tuple[str, str], None, None]:
__a = BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
__a = job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
__a = job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs("Bangalore"), 1):
print(F'''Job {i:>2} is {job[0]} at {job[1]}''')
| 695 | 0 |
"""simple docstring"""
from itertools import permutations
def lowerCAmelCase ( __UpperCamelCase ):
'''simple docstring'''
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
UpperCAmelCase__ : List[str] = [7, 11, 13, 17]
for i, test in enumerate(__UpperCamelCase ):
if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0:
return False
return True
def lowerCAmelCase ( __UpperCamelCase = 10 ):
'''simple docstring'''
return sum(
int("""""".join(map(__UpperCamelCase , __UpperCamelCase ) ) )
for num in permutations(range(__UpperCamelCase ) )
if is_substring_divisible(__UpperCamelCase ) )
if __name__ == "__main__":
print(F"{solution() = }")
| 65 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[str] = 'gpt_bigcode'
__UpperCAmelCase : Tuple = ['past_key_values']
__UpperCAmelCase : Dict = {
'hidden_size': 'n_embd',
'max_position_embeddings': 'n_positions',
'num_attention_heads': 'n_head',
'num_hidden_layers': 'n_layer',
}
def __init__( self , _a=50_257 , _a=1_024 , _a=768 , _a=12 , _a=12 , _a=None , _a="gelu_pytorch_tanh" , _a=0.1 , _a=0.1 , _a=0.1 , _a=1E-5 , _a=0.02 , _a=True , _a=True , _a=50_256 , _a=50_256 , _a=True , _a=True , _a=True , **_a , ):
__a = vocab_size
__a = n_positions
__a = n_embd
__a = n_layer
__a = n_head
__a = n_inner
__a = activation_function
__a = resid_pdrop
__a = embd_pdrop
__a = attn_pdrop
__a = layer_norm_epsilon
__a = initializer_range
__a = scale_attn_weights
__a = use_cache
__a = attention_softmax_in_fpaa
__a = scale_attention_softmax_in_fpaa
__a = multi_query
__a = bos_token_id
__a = eos_token_id
super().__init__(bos_token_id=_a , eos_token_id=_a , **_a )
| 695 | 0 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
UpperCamelCase = "bert-base-cased"
UpperCamelCase = "google/pegasus-xsum"
UpperCamelCase = [" Sam ate lunch today.", "Sams lunch ingredients."]
UpperCamelCase = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"]
UpperCamelCase = "patrickvonplaten/t5-tiny-random"
UpperCamelCase = "sshleifer/bart-tiny-random"
UpperCamelCase = "sshleifer/tiny-mbart"
UpperCamelCase = "sshleifer/tiny-marian-en-de"
def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> int:
_lowercase : List[Any] = '\n'.join(SCREAMING_SNAKE_CASE )
Path(SCREAMING_SNAKE_CASE ).open('w' ).writelines(SCREAMING_SNAKE_CASE )
def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Optional[int]:
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"""{split}.source""" ) , SCREAMING_SNAKE_CASE )
_dump_articles(os.path.join(SCREAMING_SNAKE_CASE , F"""{split}.target""" ) , SCREAMING_SNAKE_CASE )
return tmp_dir
class lowerCAmelCase_ ( __snake_case ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def __a ( self , _lowerCAmelCase ):
_lowercase : int = AutoTokenizer.from_pretrained(_lowerCAmelCase )
_lowercase : List[Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_lowercase : Dict = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in ARTICLES )
_lowercase : List[Any] = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in SUMMARIES )
_lowercase : List[str] = 4
_lowercase : Union[str, Any] = 8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
_lowercase , _lowercase : str = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error.
_lowercase : List[str] = SeqaSeqDataset(
_lowerCAmelCase , data_dir=_lowerCAmelCase , type_path='train' , max_source_length=_lowerCAmelCase , max_target_length=_lowerCAmelCase , src_lang=_lowerCAmelCase , tgt_lang=_lowerCAmelCase , )
_lowercase : List[str] = DataLoader(_lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(_lowerCAmelCase , _lowerCAmelCase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
_lowercase : List[str] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def __a ( self , _lowerCAmelCase ):
_lowercase : Tuple = AutoTokenizer.from_pretrained(_lowerCAmelCase )
_lowercase : Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_lowercase : Union[str, Any] = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in ARTICLES )
_lowercase : Optional[int] = max(len(tokenizer.encode(_lowerCAmelCase ) ) for a in SUMMARIES )
_lowercase : Tuple = 4
_lowercase : Optional[Any] = LegacySeqaSeqDataset(
_lowerCAmelCase , data_dir=_lowerCAmelCase , type_path='train' , max_source_length=2_0 , max_target_length=_lowerCAmelCase , )
_lowercase : int = DataLoader(_lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def __a ( self ):
_lowercase : Tuple = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' )
_lowercase : Any = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
_lowercase : Optional[int] = tmp_dir.joinpath('train.source' ).open().readlines()
_lowercase : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(_lowerCAmelCase , _lowerCAmelCase , 1_2_8 , _lowerCAmelCase )
_lowercase : Optional[int] = {x.name for x in tmp_dir.iterdir()}
_lowercase : List[str] = {x.name for x in save_dir.iterdir()}
_lowercase : List[Any] = save_dir.joinpath('train.source' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(_lowerCAmelCase ) < len(_lowerCAmelCase )
assert len(_lowerCAmelCase ) == 1
assert len(packed_examples[0] ) == sum(len(_lowerCAmelCase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' )
def __a ( self ):
if not FAIRSEQ_AVAILABLE:
return
_lowercase , _lowercase , _lowercase : Union[str, Any] = self._get_dataset(max_len=6_4 )
_lowercase : Dict = 6_4
_lowercase : int = ds.make_dynamic_sampler(_lowerCAmelCase , required_batch_size_multiple=_lowerCAmelCase )
_lowercase : Optional[int] = [len(_lowerCAmelCase ) for x in batch_sampler]
assert len(set(_lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(_lowerCAmelCase ) == len(_lowerCAmelCase ) # no dropped or added examples
_lowercase : Tuple = DataLoader(_lowerCAmelCase , batch_sampler=_lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 )
_lowercase : Tuple = []
_lowercase : Union[str, Any] = []
for batch in data_loader:
_lowercase : Union[str, Any] = batch['input_ids'].shape
_lowercase : Tuple = src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
_lowercase : str = np.product(batch['input_ids'].shape )
num_src_per_batch.append(_lowerCAmelCase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(_lowerCAmelCase )
assert num_src_per_batch[0] == max(_lowerCAmelCase )
if failures:
raise AssertionError(F"""too many tokens in {len(_lowerCAmelCase )} batches""" )
def __a ( self ):
_lowercase , _lowercase , _lowercase : Tuple = self._get_dataset(max_len=5_1_2 )
_lowercase : Any = 2
_lowercase : Optional[int] = ds.make_sortish_sampler(_lowerCAmelCase , shuffle=_lowerCAmelCase )
_lowercase : List[str] = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 )
_lowercase : Optional[Any] = DataLoader(_lowerCAmelCase , batch_size=_lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowerCAmelCase )
_lowercase : str = tokenizer.pad_token_id
def count_pad_tokens(_lowerCAmelCase , _lowerCAmelCase="input_ids" ):
return [batch[k].eq(_lowerCAmelCase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(_lowerCAmelCase , k='labels' ) ) < sum(count_pad_tokens(_lowerCAmelCase , k='labels' ) )
assert sum(count_pad_tokens(_lowerCAmelCase ) ) < sum(count_pad_tokens(_lowerCAmelCase ) )
assert len(_lowerCAmelCase ) == len(_lowerCAmelCase )
def __a ( self , _lowerCAmelCase=1_0_0_0 , _lowerCAmelCase=1_2_8 ):
if os.getenv('USE_REAL_DATA' , _lowerCAmelCase ):
_lowercase : Tuple = 'examples/seq2seq/wmt_en_ro'
_lowercase : Optional[Any] = max_len * 2 * 6_4
if not Path(_lowerCAmelCase ).joinpath('train.len' ).exists():
save_len_file(_lowerCAmelCase , _lowerCAmelCase )
else:
_lowercase : int = 'examples/seq2seq/test_data/wmt_en_ro'
_lowercase : Any = max_len * 4
save_len_file(_lowerCAmelCase , _lowerCAmelCase )
_lowercase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase )
_lowercase : Dict = SeqaSeqDataset(
_lowerCAmelCase , data_dir=_lowerCAmelCase , type_path='train' , max_source_length=_lowerCAmelCase , max_target_length=_lowerCAmelCase , n_obs=_lowerCAmelCase , )
return ds, max_tokens, tokenizer
def __a ( self ):
_lowercase , _lowercase , _lowercase : List[str] = self._get_dataset()
_lowercase : List[str] = set(DistributedSortishSampler(_lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=0 , add_extra_examples=_lowerCAmelCase ) )
_lowercase : Tuple = set(DistributedSortishSampler(_lowerCAmelCase , 2_5_6 , num_replicas=2 , rank=1 , add_extra_examples=_lowerCAmelCase ) )
assert idsa.intersection(_lowerCAmelCase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def __a ( self , _lowerCAmelCase ):
_lowercase : Union[str, Any] = AutoTokenizer.from_pretrained(_lowerCAmelCase , use_fast=_lowerCAmelCase )
if tok_name == MBART_TINY:
_lowercase : Dict = SeqaSeqDataset(
_lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , )
_lowercase : Dict = train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
_lowercase : int = SeqaSeqDataset(
_lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , )
_lowercase : Any = train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(_lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(_lowerCAmelCase ) == 0
| 66 |
"""simple docstring"""
import argparse
import json
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
lowercase_ = 1_6
lowercase_ = 3_2
def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 , lowerCAmelCase__ : str = "bert-base-cased" ) -> Optional[int]:
__a = AutoTokenizer.from_pretrained(lowerCAmelCase__ )
__a = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(lowerCAmelCase__ : Optional[Any] ):
# max_length=None => use the model max length (it's actually the default)
__a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__a = datasets.map(
lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=lowerCAmelCase__ )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__a = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(lowerCAmelCase__ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(lowerCAmelCase__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' )
return tokenizer.pad(lowerCAmelCase__ , padding='''longest''' , return_tensors='''pt''' )
# Instantiate dataloaders.
__a = DataLoader(
tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
__a = DataLoader(
tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ )
return train_dataloader, eval_dataloader
def lowercase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
# Initialize accelerator
__a = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__a = config['''lr''']
__a = int(config['''num_epochs'''] )
__a = int(config['''seed'''] )
__a = int(config['''batch_size'''] )
__a = args.model_name_or_path
set_seed(lowerCAmelCase__ )
__a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__a = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ )
# Instantiate optimizer
__a = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
__a = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ )
if accelerator.state.deepspeed_plugin is not None:
__a = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
__a = 1
__a = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
__a = get_linear_schedule_with_warmup(
optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , )
else:
__a = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__a , __a , __a , __a , __a = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# We need to keep track of how many total steps we have iterated over
__a = 0
# We also need to keep track of the stating epoch so files are named properly
__a = 0
# Now we train the model
__a = evaluate.load('''glue''' , '''mrpc''' )
__a = 0
__a = {}
for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ):
model.train()
for step, batch in enumerate(lowerCAmelCase__ ):
__a = model(**lowerCAmelCase__ )
__a = outputs.loss
__a = loss / gradient_accumulation_steps
accelerator.backward(lowerCAmelCase__ )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
model.eval()
__a = 0
for step, batch in enumerate(lowerCAmelCase__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__a = model(**lowerCAmelCase__ )
__a = outputs.logits.argmax(dim=-1 )
# It is slightly faster to call this once, than multiple times
__a , __a = accelerator.gather(
(predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates
if accelerator.use_distributed:
if step == len(lowerCAmelCase__ ) - 1:
__a = predictions[: len(eval_dataloader.dataset ) - samples_seen]
__a = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
samples_seen += references.shape[0]
metric.add_batch(
predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , )
__a = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ )
__a = eval_metric['''accuracy''']
if best_performance < eval_metric["accuracy"]:
__a = eval_metric['''accuracy''']
if args.performance_lower_bound is not None:
assert (
args.performance_lower_bound <= best_performance
), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}'''
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir , '''all_results.json''' ) , '''w''' ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( ) -> List[str]:
__a = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' , type=lowerCAmelCase__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=lowerCAmelCase__ , )
parser.add_argument(
'''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , )
parser.add_argument(
'''--performance_lower_bound''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' , )
parser.add_argument(
'''--num_epochs''' , type=lowerCAmelCase__ , default=3 , help='''Number of train epochs.''' , )
__a = parser.parse_args()
__a = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(lowerCAmelCase__ , lowerCAmelCase__ )
if __name__ == "__main__":
main()
| 695 | 0 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
snake_case = {
"""configuration_xmod""": [
"""XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XmodConfig""",
"""XmodOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
snake_case = [
"""XMOD_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XmodForCausalLM""",
"""XmodForMaskedLM""",
"""XmodForMultipleChoice""",
"""XmodForQuestionAnswering""",
"""XmodForSequenceClassification""",
"""XmodForTokenClassification""",
"""XmodModel""",
"""XmodPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 67 |
"""simple docstring"""
from typing import Any
def lowercase ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , lowerCAmelCase__ : dict , ) -> list:
_validation(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
# Creates data structures and fill initial step
__a = {}
__a = {}
for state in states_space:
__a = observations_space[0]
__a = (
initial_probabilities[state] * emission_probabilities[state][observation]
)
__a = None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(lowerCAmelCase__ ) ):
__a = observations_space[o]
__a = observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
__a = ''''''
__a = -1
for k_state in states_space:
__a = (
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
__a = probability
__a = k_state
# Update probabilities and pointers dicts
__a = (
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
__a = arg_max
# The final observation
__a = observations_space[len(lowerCAmelCase__ ) - 1]
# argmax for given final observation
__a = ''''''
__a = -1
for k_state in states_space:
__a = probabilities[(k_state, final_observation)]
if probability > max_probability:
__a = probability
__a = k_state
__a = arg_max
# Process pointers backwards
__a = last_state
__a = []
for o in range(len(lowerCAmelCase__ ) - 1 , -1 , -1 ):
result.append(lowerCAmelCase__ )
__a = pointers[previous, observations_space[o]]
result.reverse()
return result
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_not_empty(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
_validate_lists(lowerCAmelCase__ , lowerCAmelCase__ )
_validate_dicts(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError('''There\'s an empty parameter''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any ) -> None:
_validate_list(lowerCAmelCase__ , '''observations_space''' )
_validate_list(lowerCAmelCase__ , '''states_space''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list'''
raise ValueError(lowerCAmelCase__ )
else:
for x in _object:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = f'''{var_name} must be a list of strings'''
raise ValueError(lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , lowerCAmelCase__ : Any , ) -> None:
_validate_dict(lowerCAmelCase__ , '''initial_probabilities''' , lowerCAmelCase__ )
_validate_nested_dict(lowerCAmelCase__ , '''transition_probabilities''' )
_validate_nested_dict(lowerCAmelCase__ , '''emission_probabilities''' )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str ) -> None:
_validate_dict(_object , lowerCAmelCase__ , lowerCAmelCase__ )
for x in _object.values():
_validate_dict(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : type , lowerCAmelCase__ : bool = False ) -> None:
if not isinstance(_object , lowerCAmelCase__ ):
__a = f'''{var_name} must be a dict'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object ):
__a = f'''{var_name} all keys must be strings'''
raise ValueError(lowerCAmelCase__ )
if not all(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) for x in _object.values() ):
__a = '''nested dictionary ''' if nested else ''''''
__a = f'''{var_name} {nested_text}all values must be {value_type.__name__}'''
raise ValueError(lowerCAmelCase__ )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 695 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.utils import is_vision_available
from transformers.utils.generic import TensorType
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import logging
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
def lowercase__ ( A_: Tuple ) -> List[List[ImageInput]]:
"""simple docstring"""
if isinstance(A_ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(A_ , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(A_ ):
return [[videos]]
raise ValueError(F'''Could not make batched video from {videos}''' )
class _A ( UpperCamelCase ):
"""simple docstring"""
lowerCamelCase : Dict = ['pixel_values']
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Union[int, float] = 1 / 255 , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , **__SCREAMING_SNAKE_CASE : Optional[int] , ) -> None:
super().__init__(**__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =size if size is not None else {"""shortest_edge""": 256}
__UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
__UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" )
__UpperCAmelCase =do_resize
__UpperCAmelCase =size
__UpperCAmelCase =do_center_crop
__UpperCAmelCase =crop_size
__UpperCAmelCase =resample
__UpperCAmelCase =do_rescale
__UpperCAmelCase =rescale_factor
__UpperCAmelCase =offset
__UpperCAmelCase =do_normalize
__UpperCAmelCase =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__UpperCAmelCase =image_std if image_std is not None else IMAGENET_STANDARD_STD
def _a ( self : str , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : PILImageResampling = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Tuple , ) -> np.ndarray:
__UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE )
if "shortest_edge" in size:
__UpperCAmelCase =get_resize_output_image_size(__SCREAMING_SNAKE_CASE , size["""shortest_edge"""] , default_to_square=__SCREAMING_SNAKE_CASE )
elif "height" in size and "width" in size:
__UpperCAmelCase =(size["""height"""], size["""width"""])
else:
raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' )
return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : Dict , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Dict[str, int] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : List[str] , ) -> np.ndarray:
__UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE )
if "height" not in size or "width" not in size:
raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' )
return center_crop(__SCREAMING_SNAKE_CASE , size=(size["""height"""], size["""width"""]) , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : Any , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[int, float] , __SCREAMING_SNAKE_CASE : bool = True , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Any , ) -> Optional[int]:
__UpperCAmelCase =image.astype(np.floataa )
if offset:
__UpperCAmelCase =image - (scale / 2)
return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : np.ndarray , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Union[float, List[float]] , __SCREAMING_SNAKE_CASE : Optional[Union[str, ChannelDimension]] = None , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> np.ndarray:
return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def _a ( self : List[Any] , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray:
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
if offset and not do_rescale:
raise ValueError("""For offset, do_rescale must also be set to True.""" )
# All transformations expect numpy arrays.
__UpperCAmelCase =to_numpy_array(__SCREAMING_SNAKE_CASE )
if do_resize:
__UpperCAmelCase =self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE )
if do_center_crop:
__UpperCAmelCase =self.center_crop(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE )
if do_rescale:
__UpperCAmelCase =self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE )
if do_normalize:
__UpperCAmelCase =self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return image
def _a ( self : Any , __SCREAMING_SNAKE_CASE : ImageInput , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : PILImageResampling = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Dict[str, int] = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : float = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : bool = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[float, List[float]]] = None , __SCREAMING_SNAKE_CASE : Optional[Union[str, TensorType]] = None , __SCREAMING_SNAKE_CASE : ChannelDimension = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE : Optional[Any] , ) -> PIL.Image.Image:
__UpperCAmelCase =do_resize if do_resize is not None else self.do_resize
__UpperCAmelCase =resample if resample is not None else self.resample
__UpperCAmelCase =do_center_crop if do_center_crop is not None else self.do_center_crop
__UpperCAmelCase =do_rescale if do_rescale is not None else self.do_rescale
__UpperCAmelCase =rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCAmelCase =offset if offset is not None else self.offset
__UpperCAmelCase =do_normalize if do_normalize is not None else self.do_normalize
__UpperCAmelCase =image_mean if image_mean is not None else self.image_mean
__UpperCAmelCase =image_std if image_std is not None else self.image_std
__UpperCAmelCase =size if size is not None else self.size
__UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , default_to_square=__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =crop_size if crop_size is not None else self.crop_size
__UpperCAmelCase =get_size_dict(__SCREAMING_SNAKE_CASE , param_name="""crop_size""" )
if not valid_images(__SCREAMING_SNAKE_CASE ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
__UpperCAmelCase =make_batched(__SCREAMING_SNAKE_CASE )
__UpperCAmelCase =[
[
self._preprocess_image(
image=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , do_center_crop=__SCREAMING_SNAKE_CASE , crop_size=__SCREAMING_SNAKE_CASE , do_rescale=__SCREAMING_SNAKE_CASE , rescale_factor=__SCREAMING_SNAKE_CASE , offset=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , image_mean=__SCREAMING_SNAKE_CASE , image_std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , )
for img in video
]
for video in videos
]
__UpperCAmelCase ={"""pixel_values""": videos}
return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE )
| 68 |
"""simple docstring"""
import math
def lowercase ( lowerCAmelCase__ : int ) -> bool:
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def lowercase ( lowerCAmelCase__ : float = 0.1 ) -> int:
__a = 3
__a = 3
while primes / (2 * j - 1) >= ratio:
for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ):
primes += is_prime(lowerCAmelCase__ )
j += 2
return j
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a : str = logging.get_logger(__name__)
a : Dict = {
'''SCUT-DLVCLab/lilt-roberta-en-base''': (
'''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json'''
),
}
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE = """lilt"""
def __init__( self : List[Any] , a_ : List[Any]=30_522 , a_ : Optional[int]=768 , a_ : Optional[Any]=12 , a_ : Union[str, Any]=12 , a_ : Optional[int]=3_072 , a_ : Dict="gelu" , a_ : Union[str, Any]=0.1 , a_ : str=0.1 , a_ : Optional[int]=512 , a_ : Tuple=2 , a_ : Dict=0.02 , a_ : Tuple=1e-12 , a_ : str=0 , a_ : Union[str, Any]="absolute" , a_ : Dict=None , a_ : List[str]=4 , a_ : Optional[Any]=1_024 , **a_ : str , ):
"""simple docstring"""
super().__init__(pad_token_id=a_ , **a_ )
__snake_case = vocab_size
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = hidden_act
__snake_case = intermediate_size
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = max_position_embeddings
__snake_case = type_vocab_size
__snake_case = initializer_range
__snake_case = layer_norm_eps
__snake_case = position_embedding_type
__snake_case = classifier_dropout
__snake_case = channel_shrink_ratio
__snake_case = max_ad_position_embeddings
| 69 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {
"configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"],
"feature_extraction_mctct": ["MCTCTFeatureExtractor"],
"processing_mctct": ["MCTCTProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = [
"MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MCTCTForCTC",
"MCTCTModel",
"MCTCTPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 695 | 0 |
def _SCREAMING_SNAKE_CASE ( lowercase : str ):
'''simple docstring'''
lowerCamelCase_ = hex_num.strip()
if not hex_num:
raise ValueError('No value was passed to the function' )
lowerCamelCase_ = hex_num[0] == '-'
if is_negative:
lowerCamelCase_ = hex_num[1:]
try:
lowerCamelCase_ = int(lowercase , 16 )
except ValueError:
raise ValueError('Invalid value was passed to the function' )
lowerCamelCase_ = ''
while int_num > 0:
lowerCamelCase_ = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(('-' + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 70 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = 'dpr'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a = 0 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = projection_dim
__a = position_embedding_type
| 695 | 0 |
'''simple docstring'''
from math import sqrt
def a__ ( _SCREAMING_SNAKE_CASE : int ) -> bool:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' must been an int and positive"
UpperCAmelCase_ : int = True
# 0 and 1 are none primes.
if number <= 1:
UpperCAmelCase_ : List[Any] = False
for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
UpperCAmelCase_ : Dict = False
break
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool"
return status
def a__ ( _SCREAMING_SNAKE_CASE : str ) -> List[str]:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
UpperCAmelCase_ : Tuple = list(range(2 , n + 1 ) )
UpperCAmelCase_ : Dict = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
UpperCAmelCase_ : List[Any] = 0
# filters actual prime numbers.
UpperCAmelCase_ : Any = [x for x in begin_list if x != 0]
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : str ) -> Tuple:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2"
UpperCAmelCase_ : Union[str, Any] = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(_SCREAMING_SNAKE_CASE ):
ans.append(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0"
UpperCAmelCase_ : Optional[Any] = [] # this list will be returns of the function.
# potential prime number factors.
UpperCAmelCase_ : Optional[int] = 2
UpperCAmelCase_ : Optional[Any] = number
if number == 0 or number == 1:
ans.append(_SCREAMING_SNAKE_CASE )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(_SCREAMING_SNAKE_CASE ):
while quotient != 1:
if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0):
ans.append(_SCREAMING_SNAKE_CASE )
quotient /= factor
else:
factor += 1
else:
ans.append(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase_ : Tuple = 0
# prime factorization of 'number'
UpperCAmelCase_ : str = prime_factorization(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Any = max(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Tuple ) -> Union[str, Any]:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number >= 0
), "'number' bust been an int and >= 0"
UpperCAmelCase_ : List[str] = 0
# prime factorization of 'number'
UpperCAmelCase_ : Any = prime_factorization(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = min(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : List[str] ) -> Tuple:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 == 0
def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Dict:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int"
assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool"
return number % 2 != 0
def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE )
), "'number' must been an int, even and > 2"
UpperCAmelCase_ : Optional[Any] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
UpperCAmelCase_ : Any = get_prime_numbers(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : List[str] = len(_SCREAMING_SNAKE_CASE )
# run variable for while-loops.
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : Optional[Any] = None
# exit variable. for break up the loops
UpperCAmelCase_ : Tuple = True
while i < len_pn and loop:
UpperCAmelCase_ : Dict = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
UpperCAmelCase_ : str = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (len(_SCREAMING_SNAKE_CASE ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str:
"""simple docstring"""
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase_ : Any = 0
while numbera != 0:
UpperCAmelCase_ : Dict = numbera % numbera
UpperCAmelCase_ : str = numbera
UpperCAmelCase_ : Optional[int] = rest
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
UpperCAmelCase_ : str = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
UpperCAmelCase_ : Dict = prime_factorization(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Tuple = prime_factorization(_SCREAMING_SNAKE_CASE )
elif numbera == 1 or numbera == 1:
UpperCAmelCase_ : List[str] = []
UpperCAmelCase_ : List[Any] = []
UpperCAmelCase_ : str = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Optional[Any] = 0
UpperCAmelCase_ : Union[str, Any] = 0
UpperCAmelCase_ : str = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
UpperCAmelCase_ : Optional[int] = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
UpperCAmelCase_ : Tuple = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ):
ans *= n
else:
UpperCAmelCase_ : Any = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
for _ in range(_SCREAMING_SNAKE_CASE ):
ans *= n
done.append(_SCREAMING_SNAKE_CASE )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
UpperCAmelCase_ : Dict = prime_fac_a.count(_SCREAMING_SNAKE_CASE )
for _ in range(_SCREAMING_SNAKE_CASE ):
ans *= n
done.append(_SCREAMING_SNAKE_CASE )
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Dict ) -> int:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int"
UpperCAmelCase_ : Tuple = 0
UpperCAmelCase_ : Union[str, Any] = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(_SCREAMING_SNAKE_CASE ):
ans += 1
# precondition
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime(
_SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
assert (
is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
UpperCAmelCase_ : str = p_number_a + 1 # jump to the next number
UpperCAmelCase_ : Any = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(_SCREAMING_SNAKE_CASE ):
number += 1
while number < p_number_a:
ans.append(_SCREAMING_SNAKE_CASE )
number += 1
# fetch the next prime number.
while not is_prime(_SCREAMING_SNAKE_CASE ):
number += 1
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and ans[0] != p_number_a
and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def a__ ( _SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1"
UpperCAmelCase_ : Tuple = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(_SCREAMING_SNAKE_CASE )
# precondition
assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> str:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (
number > 1
), "'number' must been an int and >= 1"
UpperCAmelCase_ : List[Any] = get_divisors(_SCREAMING_SNAKE_CASE )
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (divisors[0] == 1)
and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def a__ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : int ) -> int:
"""simple docstring"""
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
UpperCAmelCase_ : int = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) )
# precondition
assert (
isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def a__ ( _SCREAMING_SNAKE_CASE : int ) -> Dict:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0"
UpperCAmelCase_ : str = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def a__ ( _SCREAMING_SNAKE_CASE : Any ) -> List[Any]:
"""simple docstring"""
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0"
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : Any = 1
UpperCAmelCase_ : Any = 1 # this will be return
for _ in range(n - 1 ):
UpperCAmelCase_ : List[str] = ans
ans += fiba
UpperCAmelCase_ : Dict = tmp
return ans
| 71 |
"""simple docstring"""
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel
from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = StableDiffusionInpaintPipeline
__UpperCAmelCase : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
__UpperCAmelCase : str = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
__UpperCAmelCase : int = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
__UpperCAmelCase : Tuple = frozenset([] )
def __UpperCAmelCase ( self ):
torch.manual_seed(0 )
__a = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_a , )
__a = PNDMScheduler(skip_prk_steps=_a )
torch.manual_seed(0 )
__a = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__a = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='''gelu''' , projection_dim=512 , )
__a = CLIPTextModel(_a )
__a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' )
__a = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''safety_checker''': None,
'''feature_extractor''': None,
}
return components
def __UpperCAmelCase ( self , _a , _a=0 ):
# TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
__a = floats_tensor((1, 3, 32, 32) , rng=random.Random(_a ) ).to(_a )
__a = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__a = Image.fromarray(np.uinta(_a ) ).convert('''RGB''' ).resize((64, 64) )
__a = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) )
if str(_a ).startswith('''mps''' ):
__a = torch.manual_seed(_a )
else:
__a = torch.Generator(device=_a ).manual_seed(_a )
__a = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': init_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 6.0,
'''output_type''': '''numpy''',
}
return inputs
def __UpperCAmelCase ( self ):
__a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__a = self.get_dummy_components()
__a = StableDiffusionInpaintPipeline(**_a )
__a = sd_pipe.to(_a )
sd_pipe.set_progress_bar_config(disable=_a )
__a = self.get_dummy_inputs(_a )
__a = sd_pipe(**_a ).images
__a = image[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__a = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def __UpperCAmelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(_a , safety_checker=_a )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 9E-3
def __UpperCAmelCase ( self ):
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint'''
'''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , torch_dtype=torch.floataa , safety_checker=_a , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , output_type='''np''' , )
__a = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image ).max() < 5E-1
def __UpperCAmelCase ( self ):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
__a = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
__a = '''stabilityai/stable-diffusion-2-inpainting'''
__a = PNDMScheduler.from_pretrained(_a , subfolder='''scheduler''' )
__a = StableDiffusionInpaintPipeline.from_pretrained(
_a , safety_checker=_a , scheduler=_a , torch_dtype=torch.floataa , )
pipe.to(_a )
pipe.set_progress_bar_config(disable=_a )
pipe.enable_attention_slicing(1 )
pipe.enable_sequential_cpu_offload()
__a = '''Face of a yellow cat, high resolution, sitting on a park bench'''
__a = torch.manual_seed(0 )
__a = pipe(
prompt=_a , image=_a , mask_image=_a , generator=_a , num_inference_steps=2 , output_type='''np''' , )
__a = torch.cuda.max_memory_allocated()
# make sure that less than 2.65 GB is allocated
assert mem_bytes < 2.65 * 10**9
| 695 | 0 |
'''simple docstring'''
import os
from pathlib import Path
from unittest.mock import patch
import pytest
import zstandard as zstd
from datasets.download.download_config import DownloadConfig
from datasets.utils.file_utils import (
OfflineModeIsEnabled,
cached_path,
fsspec_get,
fsspec_head,
ftp_get,
ftp_head,
get_from_cache,
http_get,
http_head,
)
_UpperCAmelCase : int = '''\
Text data.
Second line of data.'''
_UpperCAmelCase : Optional[int] = '''file'''
@pytest.fixture(scope='''session''' )
def UpperCamelCase ( lowercase_ : str ) -> int:
'''simple docstring'''
lowercase =tmp_path_factory.mktemp('''data''' ) / (FILE_PATH + '''.zstd''')
lowercase =bytes(lowercase_ , '''utf-8''' )
with zstd.open(lowercase_ , '''wb''' ) as f:
f.write(lowercase_ )
return path
@pytest.fixture
def UpperCamelCase ( lowercase_ : Optional[int] ) -> List[Any]:
'''simple docstring'''
with open(os.path.join(tmpfs.local_root_dir , lowercase_ ) , '''w''' ) as f:
f.write(lowercase_ )
return FILE_PATH
@pytest.mark.parametrize('''compression_format''' , ['''gzip''', '''xz''', '''zstd'''] )
def UpperCamelCase ( lowercase_ : str , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Any ) -> List[Any]:
'''simple docstring'''
lowercase ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_path}
lowercase =input_paths[compression_format]
lowercase =tmp_path / '''cache'''
lowercase =DownloadConfig(cache_dir=lowercase_ , extract_compressed_file=lowercase_ )
lowercase =cached_path(lowercase_ , download_config=lowercase_ )
with open(lowercase_ ) as f:
lowercase =f.read()
with open(lowercase_ ) as f:
lowercase =f.read()
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize('''default_extracted''' , [True, False] )
@pytest.mark.parametrize('''default_cache_dir''' , [True, False] )
def UpperCamelCase ( lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
lowercase ='''custom_cache'''
lowercase ='''custom_extracted_dir'''
lowercase =tmp_path / '''custom_extracted_path'''
if default_extracted:
lowercase =('''downloads''' if default_cache_dir else custom_cache_dir, '''extracted''')
else:
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_DIR''' , lowercase_ )
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(lowercase_ ) )
lowercase =custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir)
lowercase =xz_file
lowercase =(
DownloadConfig(extract_compressed_file=lowercase_ )
if default_cache_dir
else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=lowercase_ )
)
lowercase =cached_path(lowercase_ , download_config=lowercase_ )
assert Path(lowercase_ ).parent.parts[-2:] == expected
def UpperCamelCase ( lowercase_ : List[str] ) -> Any:
'''simple docstring'''
lowercase =str(Path(lowercase_ ).resolve() )
assert cached_path(lowercase_ ) == text_file
# relative path
lowercase =str(Path(lowercase_ ).resolve().relative_to(Path(os.getcwd() ) ) )
assert cached_path(lowercase_ ) == text_file
def UpperCamelCase ( lowercase_ : int ) -> Dict:
'''simple docstring'''
lowercase =str(tmp_path.resolve() / '''__missing_file__.txt''' )
with pytest.raises(lowercase_ ):
cached_path(lowercase_ )
# relative path
lowercase ='''./__missing_file__.txt'''
with pytest.raises(lowercase_ ):
cached_path(lowercase_ )
def UpperCamelCase ( lowercase_ : List[str] ) -> Tuple:
'''simple docstring'''
lowercase =get_from_cache(f'tmp://{tmpfs_file}' )
with open(lowercase_ ) as f:
lowercase =f.read()
assert output_file_content == FILE_CONTENT
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ )
def UpperCamelCase ( ) -> Union[str, Any]:
'''simple docstring'''
with pytest.raises(lowercase_ ):
cached_path('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ )
def UpperCamelCase ( lowercase_ : Dict ) -> int:
'''simple docstring'''
lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowercase_ ):
http_get('''https://huggingface.co''' , temp_file=lowercase_ )
with pytest.raises(lowercase_ ):
http_head('''https://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ )
def UpperCamelCase ( lowercase_ : Tuple ) -> Union[str, Any]:
'''simple docstring'''
lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowercase_ ):
ftp_get('''ftp://huggingface.co''' , temp_file=lowercase_ )
with pytest.raises(lowercase_ ):
ftp_head('''ftp://huggingface.co''' )
@patch('''datasets.config.HF_DATASETS_OFFLINE''' , lowercase_ )
def UpperCamelCase ( lowercase_ : Dict ) -> Any:
'''simple docstring'''
lowercase =tmp_path_factory.mktemp('''data''' ) / '''file.html'''
with pytest.raises(lowercase_ ):
fsspec_get('''s3://huggingface.co''' , temp_file=lowercase_ )
with pytest.raises(lowercase_ ):
fsspec_head('''s3://huggingface.co''' )
| 72 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : int = 0
__UpperCAmelCase : bool = False
__UpperCAmelCase : float = 3.0
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} )
@require_cuda
def __UpperCAmelCase ( self ):
# If no defaults are changed, `to_kwargs` returns an empty dict.
__a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 )
AcceleratorState._reset_state()
__a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__a = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2_000 )
self.assertEqual(scaler._enabled , _a )
@require_multi_gpu
def __UpperCAmelCase ( self ):
__a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(_a , env=os.environ.copy() )
if __name__ == "__main__":
lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler])
lowercase_ = torch.nn.Linear(1_0_0, 2_0_0)
lowercase_ = accelerator.prepare(model)
# Check the values changed in kwargs
lowercase_ = ""
lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 695 | 0 |
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
'pipelines_utils',
'0.22.0',
'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.',
standard_warn=False,
stacklevel=3,
)
| 73 |
"""simple docstring"""
import inspect
import os
import sys
import unittest
import accelerate
from accelerate.test_utils import execute_subprocess_async, require_tpu
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
__a = inspect.getfile(accelerate.test_utils )
__a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] )
@require_tpu
def __UpperCAmelCase ( self ):
__a = f'''
{self.test_dir}/xla_spawn.py
--num_cores 8
{self.test_file_path}
'''.split()
__a = [sys.executable] + distributed_args
execute_subprocess_async(_a , env=os.environ.copy() )
| 695 | 0 |
import os
import unittest
from transformers import MobileBertTokenizer, MobileBertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __UpperCamelCase ( lowerCAmelCase__ , unittest.TestCase ):
"""simple docstring"""
lowerCAmelCase_ = MobileBertTokenizer
lowerCAmelCase_ = MobileBertTokenizerFast
lowerCAmelCase_ = True
lowerCAmelCase_ = True
lowerCAmelCase_ = filter_non_english
lowerCAmelCase_ = '''google/mobilebert-uncased'''
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
super().setUp()
__SCREAMING_SNAKE_CASE : List[str] = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
__SCREAMING_SNAKE_CASE : int = [
(tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped
for tokenizer_def in self.tokenizers_list
]
def UpperCAmelCase__ ( self : Tuple , _A : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''UNwant\u00E9d,running'''
__SCREAMING_SNAKE_CASE : List[str] = '''unwanted, running'''
return input_text, output_text
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer_class(self.vocab_file )
__SCREAMING_SNAKE_CASE : List[str] = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 12, 10, 11] )
def UpperCAmelCase__ ( self : int ):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
__SCREAMING_SNAKE_CASE : List[str] = self.get_tokenizer()
__SCREAMING_SNAKE_CASE : Optional[Any] = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE : Optional[Any] = '''UNwant\u00E9d,running'''
__SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A )
__SCREAMING_SNAKE_CASE : Optional[Any] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE : Dict = tokenizer.encode(_A , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : str = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE : Any = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE : str = tokenizer.encode(_A )
__SCREAMING_SNAKE_CASE : Any = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
# With lower casing
__SCREAMING_SNAKE_CASE : Any = self.get_tokenizer(do_lower_case=_A )
__SCREAMING_SNAKE_CASE : List[str] = self.get_rust_tokenizer(do_lower_case=_A )
__SCREAMING_SNAKE_CASE : List[str] = '''UNwant\u00E9d,running'''
__SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize(_A )
__SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.tokenize(_A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : List[str] = rust_tokenizer.encode(_A , add_special_tokens=_A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE : int = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE : Any = tokenizer.encode(_A )
__SCREAMING_SNAKE_CASE : Optional[int] = rust_tokenizer.encode(_A )
self.assertListEqual(_A , _A )
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def UpperCAmelCase__ ( self : Optional[Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = BasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def UpperCAmelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : List[Any] = BasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : int = BasicTokenizer(do_lower_case=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self : Any ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Any = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Union[str, Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__SCREAMING_SNAKE_CASE : Dict = {}
for i, token in enumerate(_A ):
__SCREAMING_SNAKE_CASE : List[str] = i
__SCREAMING_SNAKE_CASE : str = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def UpperCAmelCase__ ( self : List[str] ):
"""simple docstring"""
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def UpperCAmelCase__ ( self : Any ):
"""simple docstring"""
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def UpperCAmelCase__ ( self : Dict ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer()
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_A ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def UpperCAmelCase__ ( self : List[str] ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[Any] = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' )
__SCREAMING_SNAKE_CASE : Tuple = tokenizer.encode('''sequence builders''' , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : int = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : Any = tokenizer.build_inputs_with_special_tokens(_A )
__SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def UpperCAmelCase__ ( self : Tuple ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__SCREAMING_SNAKE_CASE : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A )
__SCREAMING_SNAKE_CASE : str = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_r.encode_plus(
_A , return_attention_mask=_A , return_token_type_ids=_A , return_offsets_mapping=_A , add_special_tokens=_A , )
__SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.do_lower_case if hasattr(_A , '''do_lower_case''' ) else False
__SCREAMING_SNAKE_CASE : Optional[Any] = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
__SCREAMING_SNAKE_CASE : Optional[int] = ['''的''', '''人''', '''有''']
__SCREAMING_SNAKE_CASE : int = ''''''.join(_A )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__SCREAMING_SNAKE_CASE : str = True
__SCREAMING_SNAKE_CASE : int = self.tokenizer_class.from_pretrained(_A , **_A )
__SCREAMING_SNAKE_CASE : int = self.rust_tokenizer_class.from_pretrained(_A , **_A )
__SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.encode(_A , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.encode(_A , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.convert_ids_to_tokens(_A )
__SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_A , _A )
self.assertListEqual(_A , _A )
__SCREAMING_SNAKE_CASE : Optional[Any] = False
__SCREAMING_SNAKE_CASE : Any = self.rust_tokenizer_class.from_pretrained(_A , **_A )
__SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_A , **_A )
__SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.encode(_A , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : int = tokenizer_p.encode(_A , add_special_tokens=_A )
__SCREAMING_SNAKE_CASE : Dict = tokenizer_r.convert_ids_to_tokens(_A )
__SCREAMING_SNAKE_CASE : int = tokenizer_p.convert_ids_to_tokens(_A )
# it is expected that only the first Chinese character is not preceded by "##".
__SCREAMING_SNAKE_CASE : List[Any] = [
F'''##{token}''' if idx != 0 else token for idx, token in enumerate(_A )
]
self.assertListEqual(_A , _A )
self.assertListEqual(_A , _A )
| 74 |
"""simple docstring"""
import os
import unittest
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import (
VOCAB_FILES_NAMES,
BasicTokenizer,
BertTokenizer,
WordpieceTokenizer,
_is_control,
_is_punctuation,
_is_whitespace,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english
@require_tokenizers
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = BertTokenizer
__UpperCAmelCase : Optional[Any] = BertTokenizerFast
__UpperCAmelCase : str = True
__UpperCAmelCase : Tuple = True
__UpperCAmelCase : Any = filter_non_english
def __UpperCAmelCase ( self ):
super().setUp()
__a = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
__a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
def __UpperCAmelCase ( self , _a ):
__a = '''UNwant\u00E9d,running'''
__a = '''unwanted, running'''
return input_text, output_text
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class(self.vocab_file )
__a = tokenizer.tokenize('''UNwant\u00E9d,running''' )
self.assertListEqual(_a , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , [9, 6, 7, 12, 10, 11] )
def __UpperCAmelCase ( self ):
if not self.test_rust_tokenizer:
return
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
# With lower casing
__a = self.get_tokenizer(do_lower_case=_a )
__a = self.get_rust_tokenizer(do_lower_case=_a )
__a = '''UNwant\u00E9d,running'''
__a = tokenizer.tokenize(_a )
__a = rust_tokenizer.tokenize(_a )
self.assertListEqual(_a , _a )
__a = tokenizer.encode(_a , add_special_tokens=_a )
__a = rust_tokenizer.encode(_a , add_special_tokens=_a )
self.assertListEqual(_a , _a )
__a = self.get_rust_tokenizer()
__a = tokenizer.encode(_a )
__a = rust_tokenizer.encode(_a )
self.assertListEqual(_a , _a )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] )
self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , strip_accents=_a )
self.assertListEqual(
tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer(do_lower_case=_a , never_split=['''[UNK]'''] )
self.assertListEqual(
tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] )
def __UpperCAmelCase ( self ):
__a = BasicTokenizer()
__a = '''a\n\'ll !!to?\'d of, can\'t.'''
__a = ['''a''', '''\'''', '''ll''', '''!''', '''!''', '''to''', '''?''', '''\'''', '''d''', '''of''', ''',''', '''can''', '''\'''', '''t''', '''.''']
self.assertListEqual(tokenizer.tokenize(_a ) , _a )
def __UpperCAmelCase ( self ):
__a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''']
__a = {}
for i, token in enumerate(_a ):
__a = i
__a = WordpieceTokenizer(vocab=_a , unk_token='''[UNK]''' )
self.assertListEqual(tokenizer.tokenize('''''' ) , [] )
self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] )
self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_whitespace(''' ''' ) )
self.assertTrue(_is_whitespace('''\t''' ) )
self.assertTrue(_is_whitespace('''\r''' ) )
self.assertTrue(_is_whitespace('''\n''' ) )
self.assertTrue(_is_whitespace('''\u00A0''' ) )
self.assertFalse(_is_whitespace('''A''' ) )
self.assertFalse(_is_whitespace('''-''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_control('''\u0005''' ) )
self.assertFalse(_is_control('''A''' ) )
self.assertFalse(_is_control(''' ''' ) )
self.assertFalse(_is_control('''\t''' ) )
self.assertFalse(_is_control('''\r''' ) )
def __UpperCAmelCase ( self ):
self.assertTrue(_is_punctuation('''-''' ) )
self.assertTrue(_is_punctuation('''$''' ) )
self.assertTrue(_is_punctuation('''`''' ) )
self.assertTrue(_is_punctuation('''.''' ) )
self.assertFalse(_is_punctuation('''A''' ) )
self.assertFalse(_is_punctuation(''' ''' ) )
def __UpperCAmelCase ( self ):
__a = self.get_tokenizer()
__a = self.get_rust_tokenizer()
# Example taken from the issue https://github.com/huggingface/tokenizers/issues/340
self.assertListEqual([tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
self.assertListEqual(
[rust_tokenizer.tokenize(_a ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] )
@slow
def __UpperCAmelCase ( self ):
__a = self.tokenizer_class.from_pretrained('''bert-base-uncased''' )
__a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a )
__a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a )
__a = tokenizer.build_inputs_with_special_tokens(_a )
__a = tokenizer.build_inputs_with_special_tokens(_a , _a )
assert encoded_sentence == [101] + text + [102]
assert encoded_pair == [101] + text + [102] + text_a + [102]
def __UpperCAmelCase ( self ):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.'''
__a = tokenizer_r.encode_plus(
_a , return_attention_mask=_a , return_token_type_ids=_a , return_offsets_mapping=_a , add_special_tokens=_a , )
__a = tokenizer_r.do_lower_case if hasattr(_a , '''do_lower_case''' ) else False
__a = (
[
((0, 0), tokenizer_r.cls_token),
((0, 1), '''A'''),
((1, 2), ''','''),
((3, 5), '''na'''),
((5, 6), '''##ï'''),
((6, 8), '''##ve'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''Allen'''),
((21, 23), '''##NL'''),
((23, 24), '''##P'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
if not do_lower_case
else [
((0, 0), tokenizer_r.cls_token),
((0, 1), '''a'''),
((1, 2), ''','''),
((3, 8), '''naive'''),
((9, 15), tokenizer_r.mask_token),
((16, 21), '''allen'''),
((21, 23), '''##nl'''),
((23, 24), '''##p'''),
((25, 33), '''sentence'''),
((33, 34), '''.'''),
((0, 0), tokenizer_r.sep_token),
]
)
self.assertEqual(
[e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) )
self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] )
def __UpperCAmelCase ( self ):
__a = ['''的''', '''人''', '''有''']
__a = ''''''.join(_a )
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__a = True
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that each Chinese character is not preceded by "##"
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
__a = False
__a = self.rust_tokenizer_class.from_pretrained(_a , **_a )
__a = self.tokenizer_class.from_pretrained(_a , **_a )
__a = tokenizer_r.encode(_a , add_special_tokens=_a )
__a = tokenizer_p.encode(_a , add_special_tokens=_a )
__a = tokenizer_r.convert_ids_to_tokens(_a )
__a = tokenizer_p.convert_ids_to_tokens(_a )
# it is expected that only the first Chinese character is not preceded by "##".
__a = [
f'''##{token}''' if idx != 0 else token for idx, token in enumerate(_a )
]
self.assertListEqual(_a , _a )
self.assertListEqual(_a , _a )
| 695 | 0 |
'''simple docstring'''
from torch import nn
def a__ ( lowerCAmelCase__ ) -> List[Any]:
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F"""Unsupported activation function: {act_fn}""" )
| 75 |
"""simple docstring"""
from __future__ import annotations
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float ) -> float:
if days_between_payments <= 0:
raise ValueError('''days_between_payments must be > 0''' )
if daily_interest_rate < 0:
raise ValueError('''daily_interest_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * daily_interest_rate * days_between_payments
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_compounding_periods <= 0:
raise ValueError('''number_of_compounding_periods must be > 0''' )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError('''nominal_annual_interest_rate_percentage must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def lowercase ( lowerCAmelCase__ : float , lowerCAmelCase__ : float , lowerCAmelCase__ : float , ) -> float:
if number_of_years <= 0:
raise ValueError('''number_of_years must be > 0''' )
if nominal_annual_percentage_rate < 0:
raise ValueError('''nominal_annual_percentage_rate must be >= 0''' )
if principal <= 0:
raise ValueError('''principal must be > 0''' )
return compound_interest(
lowerCAmelCase__ , nominal_annual_percentage_rate / 365 , number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 695 | 0 |
"""simple docstring"""
def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ):
if not (isinstance(__UpperCamelCase , __UpperCamelCase ) and isinstance(__UpperCamelCase , __UpperCamelCase )):
raise ValueError('''longest_common_substring() takes two strings for inputs''' )
__lowercase : List[str] = len(__UpperCamelCase )
__lowercase : Dict = len(__UpperCamelCase )
__lowercase : Optional[Any] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
__lowercase : Optional[Any] = 0
__lowercase : Union[str, Any] = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
__lowercase : Optional[Any] = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
__lowercase : List[str] = i
__lowercase : List[Any] = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 76 |
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False ) -> Any:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__a = len(set_a.intersection(lowerCAmelCase__ ) )
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
else:
__a = len(set_a.union(lowerCAmelCase__ ) )
return intersection / union
if isinstance(lowerCAmelCase__ , (list, tuple) ) and isinstance(lowerCAmelCase__ , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(lowerCAmelCase__ ) + len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return len(lowerCAmelCase__ ) / len(lowerCAmelCase__ )
return None
if __name__ == "__main__":
lowercase_ = {"a", "b", "c", "d", "e"}
lowercase_ = {"c", "d", "e", "f", "h", "i"}
print(jaccard_similarity(set_a, set_b))
| 695 | 0 |
"""simple docstring"""
from __future__ import annotations
A = []
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> bool:
"""simple docstring"""
for i in range(len(UpperCamelCase ) ):
if board[row][i] == 1:
return False
for i in range(len(UpperCamelCase ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , -1 , -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(UpperCamelCase , -1 , -1 ) , range(UpperCamelCase , len(UpperCamelCase ) ) ):
if board[i][j] == 1:
return False
return True
def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> bool:
"""simple docstring"""
if row >= len(UpperCamelCase ):
solution.append(UpperCamelCase )
printboard(UpperCamelCase )
print()
return True
for i in range(len(UpperCamelCase ) ):
if is_safe(UpperCamelCase , UpperCamelCase , UpperCamelCase ):
__UpperCAmelCase : Any = 1
solve(UpperCamelCase , row + 1 )
__UpperCAmelCase : Dict = 0
return False
def _UpperCamelCase ( UpperCamelCase ) -> None:
"""simple docstring"""
for i in range(len(UpperCamelCase ) ):
for j in range(len(UpperCamelCase ) ):
if board[i][j] == 1:
print("Q" , end=" " )
else:
print("." , end=" " )
print()
# n=int(input("The no. of queens"))
A = 8
A = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("""The total no. of solutions are :""", len(solution))
| 77 |
"""simple docstring"""
from __future__ import annotations
import requests
def lowercase ( lowerCAmelCase__ : str ) -> dict:
__a = f'''https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty'''
return requests.get(lowerCAmelCase__ ).json()
def lowercase ( lowerCAmelCase__ : int = 10 ) -> list[dict]:
__a = '''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty'''
__a = requests.get(lowerCAmelCase__ ).json()[:max_stories]
return [get_hackernews_story(lowerCAmelCase__ ) for story_id in story_ids]
def lowercase ( lowerCAmelCase__ : int = 10 ) -> str:
__a = hackernews_top_stories(lowerCAmelCase__ )
return "\n".join('''* [{title}]({url})'''.format(**lowerCAmelCase__ ) for story in stories )
if __name__ == "__main__":
print(hackernews_top_stories_as_markdown())
| 695 | 0 |
'''simple docstring'''
import numpy as np
class __A :
def __init__(self : Union[str, Any] ):
UpperCAmelCase_ = (0, 0)
UpperCAmelCase_ = None
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
UpperCAmelCase_ = 0
def __eq__(self : List[str] , __a : List[Any] ):
return self.position == cell.position
def _lowercase (self : List[str] ):
print(self.position )
class __A :
def __init__(self : Optional[int] , __a : Tuple=(5, 5) ):
UpperCAmelCase_ = np.zeros(__a )
UpperCAmelCase_ = world_size[0]
UpperCAmelCase_ = world_size[1]
def _lowercase (self : str ):
print(self.w )
def _lowercase (self : Any , __a : List[Any] ):
UpperCAmelCase_ = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase_ = cell.position[0]
UpperCAmelCase_ = cell.position[1]
UpperCAmelCase_ = []
for n in neughbour_cord:
UpperCAmelCase_ = current_x + n[0]
UpperCAmelCase_ = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase_ = Cell()
UpperCAmelCase_ = (x, y)
UpperCAmelCase_ = cell
neighbours.append(__a )
return neighbours
def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : str , snake_case_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ = []
UpperCAmelCase_ = []
_open.append(snake_case_ )
while _open:
UpperCAmelCase_ = np.argmin([n.f for n in _open] )
UpperCAmelCase_ = _open[min_f]
_closed.append(_open.pop(snake_case_ ) )
if current == goal:
break
for n in world.get_neigbours(snake_case_ ):
for c in _closed:
if c == n:
continue
UpperCAmelCase_ = current.g + 1
UpperCAmelCase_ , UpperCAmelCase_ = n.position
UpperCAmelCase_ , UpperCAmelCase_ = goal.position
UpperCAmelCase_ = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase_ = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(snake_case_ )
UpperCAmelCase_ = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase_ = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
SCREAMING_SNAKE_CASE_: Optional[Any] =Gridworld()
# Start position and goal
SCREAMING_SNAKE_CASE_: Any =Cell()
SCREAMING_SNAKE_CASE_: Optional[int] =(0, 0)
SCREAMING_SNAKE_CASE_: Tuple =Cell()
SCREAMING_SNAKE_CASE_: Any =(4, 4)
print(f"path from {start.position} to {goal.position}")
SCREAMING_SNAKE_CASE_: Optional[int] =astar(world, start, goal)
# Just for visual reasons.
for i in s:
SCREAMING_SNAKE_CASE_: str =1
print(world.w)
| 78 |
"""simple docstring"""
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = 'blip_2_vision_model'
def __init__( self , _a=1_408 , _a=6_144 , _a=39 , _a=16 , _a=224 , _a=14 , _a="gelu" , _a=0.0_0001 , _a=0.0 , _a=1E-10 , _a=True , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = intermediate_size
__a = num_hidden_layers
__a = num_attention_heads
__a = patch_size
__a = image_size
__a = initializer_range
__a = attention_dropout
__a = layer_norm_eps
__a = hidden_act
__a = qkv_bias
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''vision_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : str = 'blip_2_qformer'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0.02 , _a=1E-12 , _a=0 , _a="absolute" , _a=2 , _a=1_408 , **_a , ):
super().__init__(pad_token_id=_a , **_a )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = cross_attention_frequency
__a = encoder_hidden_size
@classmethod
def __UpperCAmelCase ( cls , _a , **_a ):
cls._set_token_in_kwargs(_a )
__a , __a = cls.get_config_dict(_a , **_a )
# get the qformer config dict if we are loading from Blip2Config
if config_dict.get('''model_type''' ) == "blip-2":
__a = config_dict['''qformer_config''']
if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type '''
f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' )
return cls.from_dict(_a , **_a )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Any = 'blip-2'
__UpperCAmelCase : List[str] = True
def __init__( self , _a=None , _a=None , _a=None , _a=32 , **_a ):
super().__init__(**_a )
if vision_config is None:
__a = {}
logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''' )
if qformer_config is None:
__a = {}
logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''' )
if text_config is None:
__a = {}
logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''' )
__a = BlipaVisionConfig(**_a )
__a = BlipaQFormerConfig(**_a )
__a = text_config['''model_type'''] if '''model_type''' in text_config else '''opt'''
__a = CONFIG_MAPPING[text_model_type](**_a )
__a = self.text_config.tie_word_embeddings
__a = self.text_config.is_encoder_decoder
__a = num_query_tokens
__a = self.vision_config.hidden_size
__a = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
__a = 1.0
__a = 0.02
@classmethod
def __UpperCAmelCase ( cls , _a , _a , _a , **_a , ):
return cls(
vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_a , )
def __UpperCAmelCase ( self ):
__a = copy.deepcopy(self.__dict__ )
__a = self.vision_config.to_dict()
__a = self.qformer_config.to_dict()
__a = self.text_config.to_dict()
__a = self.__class__.model_type
return output
| 695 | 0 |
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = ''
__lowerCamelCase = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self , _lowerCAmelCase = None , _lowerCAmelCase = None , **_lowerCAmelCase , ):
super().__init__(self , **_lowerCAmelCase )
UpperCAmelCase__ : Optional[int] = repo_info
UpperCAmelCase__ : Optional[int] = token
UpperCAmelCase__ : Any = None
def __UpperCAmelCase ( self ):
if self.dir_cache is None:
UpperCAmelCase__ : Optional[int] = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
UpperCAmelCase__ : Any = {
"""name""": hf_file.rfilename,
"""size""": None,
"""type""": """file""",
}
self.dir_cache.update(
{
str(_lowerCAmelCase ): {"""name""": str(_lowerCAmelCase ), """size""": None, """type""": """directory"""}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase = "rb" , **_lowerCAmelCase , ):
if not isinstance(self.repo_info , _lowerCAmelCase ):
raise NotImplementedError(f"Open is only implemented for dataset repositories, but got {self.repo_info}" )
UpperCAmelCase__ : Optional[int] = hf_hub_url(self.repo_info.id , _lowerCAmelCase , revision=self.repo_info.sha )
return fsspec.open(
_lowerCAmelCase , mode=_lowerCAmelCase , headers=get_authentication_headers_for_url(_lowerCAmelCase , use_auth_token=self.token ) , client_kwargs={"""trust_env""": True} , ).open()
def __UpperCAmelCase ( self , _lowerCAmelCase , **_lowerCAmelCase ):
self._get_dirs()
UpperCAmelCase__ : int = self._strip_protocol(_lowerCAmelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_lowerCAmelCase )
def __UpperCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase=False , **_lowerCAmelCase ):
self._get_dirs()
UpperCAmelCase__ : int = PurePosixPath(path.strip("""/""" ) )
UpperCAmelCase__ : Union[str, Any] = {}
for p, f in self.dir_cache.items():
UpperCAmelCase__ : List[Any] = PurePosixPath(p.strip("""/""" ) )
UpperCAmelCase__ : Any = p.parent
if root == path:
UpperCAmelCase__ : Dict = f
UpperCAmelCase__ : Optional[Any] = list(paths.values() )
if detail:
return out
else:
return sorted(f["""name"""] for f in out )
| 79 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json",
"microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json",
"microsoft/deberta-v2-xlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json"
),
"microsoft/deberta-v2-xxlarge-mnli": (
"https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : Dict = 'deberta-v2'
def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ):
super().__init__(**_a )
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = relative_attention
__a = max_relative_positions
__a = pad_token_id
__a = position_biased_input
# Backwards compatibility
if type(_a ) == str:
__a = [x.strip() for x in pos_att_type.lower().split('''|''' )]
__a = pos_att_type
__a = vocab_size
__a = layer_norm_eps
__a = kwargs.get('''pooler_hidden_size''' , _a )
__a = pooler_dropout
__a = pooler_hidden_act
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
@property
def __UpperCAmelCase ( self ):
if self.task == "multiple-choice":
__a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
__a = {0: '''batch''', 1: '''sequence'''}
if self._config.type_vocab_size > 0:
return OrderedDict(
[('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] )
else:
return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] )
@property
def __UpperCAmelCase ( self ):
return 12
def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ):
__a = super().generate_dummy_inputs(preprocessor=_a , framework=_a )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs
| 695 | 0 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.