code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def test_connect(self): <NEW_LINE> <INDENT> response = requests.get('https://www.materialsproject.org/rest/v1/api_check', {'API_KEY': API_KEY}) <NEW_LINE> self.assertTrue(response.ok)
Check the connection with the MP api_check
625941ba9c8ee82313fbb607
def parse(zipcode,filter=None): <NEW_LINE> <INDENT> if filter=="newest": <NEW_LINE> <INDENT> url = "https://www.zillow.com/homes/for_sale/{0}/0_singlestory/days_sort".format(zipcode) <NEW_LINE> <DEDENT> elif filter == "cheapest": <NEW_LINE> <INDENT> url = "https://www.zillow.com/homes/for_sale/{0}/0_singlestory/pricea_sort/".format(zipcode) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> url = "https://www.zillow.com/homes/for_sale/{0}_rb/?fromHomePage=true&shouldFireSellPageImplicitClaimGA=false&fromHomePageTab=buy".format(zipcode) <NEW_LINE> <DEDENT> for i in range(5): <NEW_LINE> <INDENT> session = requests.Session() <NEW_LINE> response = session.get(url,headers=HEADERS,cookies=cookies) <NEW_LINE> print(response.status_code) <NEW_LINE> parser = html.fromstring(response.text) <NEW_LINE> search_results = parser.xpath("//div[@id='search-results']//article") <NEW_LINE> properties_list = [] <NEW_LINE> for properties in search_results: <NEW_LINE> <INDENT> raw_address = properties.xpath(".//span[@itemprop='address']//span[@itemprop='streetAddress']//text()") <NEW_LINE> raw_city = properties.xpath(".//span[@itemprop='address']//span[@itemprop='addressLocality']//text()") <NEW_LINE> raw_state= properties.xpath(".//span[@itemprop='address']//span[@itemprop='addressRegion']//text()") <NEW_LINE> raw_postal_code= properties.xpath(".//span[@itemprop='address']//span[@itemprop='postalCode']//text()") <NEW_LINE> raw_price = properties.xpath(".//span[@class='zsg-photo-card-price']//text()") <NEW_LINE> raw_info = properties.xpath(".//span[@class='zsg-photo-card-info']//text()") <NEW_LINE> raw_broker_name = properties.xpath(".//span[@class='zsg-photo-card-broker-name']//text()") <NEW_LINE> url = properties.xpath(".//a[contains(@class,'overlay-link')]/@href") <NEW_LINE> raw_title = properties.xpath(".//h4//text()") <NEW_LINE> address = ' '.join(' '.join(raw_address).split()) if raw_address else None <NEW_LINE> city = ''.join(raw_city).strip() if raw_city else None <NEW_LINE> state = ''.join(raw_state).strip() if raw_state else None <NEW_LINE> postal_code = ''.join(raw_postal_code).strip() if raw_postal_code else None <NEW_LINE> price = ''.join(raw_price).strip() if raw_price else None <NEW_LINE> info = ' '.join(' '.join(raw_info).split()).replace(u"\xb7",',') <NEW_LINE> broker = ''.join(raw_broker_name).strip() if raw_broker_name else None <NEW_LINE> title = ''.join(raw_title) if raw_title else None <NEW_LINE> property_url = "https://www.zillow.com"+url[0] if url else None <NEW_LINE> is_forsale = properties.xpath('.//span[@class="zsg-icon-for-sale"]') <NEW_LINE> properties = { 'address':address, 'city':city, 'state':state, 'postal_code':postal_code, 'price':price, 'facts and features':info, 'real estate provider':broker, 'url':property_url, 'title':title } <NEW_LINE> if is_forsale: <NEW_LINE> <INDENT> properties_list.append(properties) <NEW_LINE> <DEDENT> <DEDENT> return properties_list
Do the scraping.
625941ba94891a1f4081b93b
def RgbImageF(imageR, imageG, imageB, mapping): <NEW_LINE> <INDENT> return _RgbImageF(imageR, imageG, imageB, mapping)
!\deprecated Legacy API
625941ba925a0f43d2549d06
def coinChange(self, coins, amount): <NEW_LINE> <INDENT> max_val = amount + 1 <NEW_LINE> dp = [max_val] * max_val <NEW_LINE> dp[0] = 0 <NEW_LINE> for i in range(1, amount + 1): <NEW_LINE> <INDENT> for coin in coins: <NEW_LINE> <INDENT> if coin <= i: <NEW_LINE> <INDENT> dp[i] = min(dp[i], dp[i-coin] + 1) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return dp[amount] if dp[amount] <= amount else -1
:type coins: List[int] :type amount: int :rtype: int
625941ba3539df3088e2e1de
def test_validate_xml(self): <NEW_LINE> <INDENT> tree = etree.XML(self.xml) <NEW_LINE> self.xmlschema.assertValid(tree)
Assert the XML is valid according to schema
625941ba8da39b475bd64e0a
def raise_mask(dqarr, bitmask): <NEW_LINE> <INDENT> assert isinstance(bitmask, int) <NEW_LINE> return dqarr | bitmask
Function that raises (sets) all the bits in 'dqarr' contained in the bitmask. :Parameters: dqarr: numpy array or integer numpy array which represents a dq plane (or part of it). The function also works when dqarr is a scalar integer. bitmask: integer A bit mask specifying all the bits to be logically "raised" in dqarr. For example, * bitmask=1 = 2**0 will raise bit 0. * bitmask=5 = 2**0 + 2**2 will raise bits 0 and 2. :Returns: newdqarr: numpy array or integer Returns array 'dqarr' with the specified bits raised in all elements (pixels).
625941ba66656f66f7cbc03d
def get_openssl_error(): <NEW_LINE> <INDENT> error_code = libcrypto.ERR_get_error() <NEW_LINE> error_string = create_string_buffer(ERROR_STRING_BUFFER_SIZE) <NEW_LINE> libcrypto.ERR_error_string_n(error_code, error_string, ERROR_STRING_BUFFER_SIZE) <NEW_LINE> return OpenSSLError(error_string.value)
Read the OpenSSL error queue and return an exception.
625941baadb09d7d5db6c625
def __init__(__self__, __name__, __opts__=None, domain=None, user_pool_id=None): <NEW_LINE> <INDENT> if not __name__: <NEW_LINE> <INDENT> raise TypeError('Missing resource name argument (for URN creation)') <NEW_LINE> <DEDENT> if not isinstance(__name__, basestring): <NEW_LINE> <INDENT> raise TypeError('Expected resource name to be a string') <NEW_LINE> <DEDENT> if __opts__ and not isinstance(__opts__, pulumi.ResourceOptions): <NEW_LINE> <INDENT> raise TypeError('Expected resource options to be a ResourceOptions instance') <NEW_LINE> <DEDENT> __props__ = dict() <NEW_LINE> if not domain: <NEW_LINE> <INDENT> raise TypeError('Missing required property domain') <NEW_LINE> <DEDENT> elif not isinstance(domain, basestring): <NEW_LINE> <INDENT> raise TypeError('Expected property domain to be a basestring') <NEW_LINE> <DEDENT> __self__.domain = domain <NEW_LINE> __props__['domain'] = domain <NEW_LINE> if not user_pool_id: <NEW_LINE> <INDENT> raise TypeError('Missing required property user_pool_id') <NEW_LINE> <DEDENT> elif not isinstance(user_pool_id, basestring): <NEW_LINE> <INDENT> raise TypeError('Expected property user_pool_id to be a basestring') <NEW_LINE> <DEDENT> __self__.user_pool_id = user_pool_id <NEW_LINE> __props__['userPoolId'] = user_pool_id <NEW_LINE> __self__.aws_account_id = pulumi.runtime.UNKNOWN <NEW_LINE> __self__.cloudfront_distribution_arn = pulumi.runtime.UNKNOWN <NEW_LINE> __self__.s3_bucket = pulumi.runtime.UNKNOWN <NEW_LINE> __self__.version = pulumi.runtime.UNKNOWN <NEW_LINE> super(UserPoolDomain, __self__).__init__( 'aws:cognito/userPoolDomain:UserPoolDomain', __name__, __props__, __opts__)
Create a UserPoolDomain resource with the given unique name, props, and options.
625941ba7047854f462a12a0
def getUpdate(self, updateName, forcedBindings): <NEW_LINE> <INDENT> self.logger.debug("=== JSAPObject::getUpdate invoked ===") <NEW_LINE> return self.getSparql(False, updateName, forcedBindings)
Method used to get the final update text
625941ba851cf427c661a3a5
def get_tempo(artist, title): <NEW_LINE> <INDENT> artist = artist.replace(u'\n', u' ').strip() <NEW_LINE> title = title.replace(u'\n', u' ').strip() <NEW_LINE> if not artist or not title: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> for i in range(RETRIES): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> results = pyechonest.song.search( artist=artist, title=title, results=1, buckets=['audio_summary'] ) <NEW_LINE> <DEDENT> except pyechonest.util.EchoNestAPIError as e: <NEW_LINE> <INDENT> if e.code == 3: <NEW_LINE> <INDENT> time.sleep(RETRY_INTERVAL) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> log.warn(u'echonest_tempo: {0}'.format(e.args[0][0])) <NEW_LINE> return None <NEW_LINE> <DEDENT> <DEDENT> except (pyechonest.util.EchoNestIOError, socket.error) as e: <NEW_LINE> <INDENT> log.debug(u'echonest_tempo: IO error: {0}'.format(e)) <NEW_LINE> time.sleep(RETRY_INTERVAL) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> log.debug(u'echonest_tempo: exceeded retries') <NEW_LINE> return None <NEW_LINE> <DEDENT> for result in results: <NEW_LINE> <INDENT> if result.artist_name == artist and result.title == title: <NEW_LINE> <INDENT> return results[0].audio_summary['tempo']
Get the tempo for a song.
625941baeab8aa0e5d26d9f1
def __init__(self, matrix: Array) -> None: <NEW_LINE> <INDENT> super().__init__() <NEW_LINE> from .algebra import compute_condition_number <NEW_LINE> self._condition = compute_condition_number(matrix)
Compute condition number of the matrix.
625941ba5f7d997b8717492e
def __init__(self, width, height): <NEW_LINE> <INDENT> Transformer.__init__(self, width, height) <NEW_LINE> self.code = 16 <NEW_LINE> k = random.randrange(3, min(width + 1, 15), step=2) <NEW_LINE> self.params = [k]
Constructor :param width: image width :param height: image height
625941ba29b78933be1e554c
@stats_api_bp.route("/countries/<country_id_or_name>/stats") <NEW_LINE> def country_stats(country_id_or_name): <NEW_LINE> <INDENT> country_res = get_country_by_id_or_name(country_id_or_name) <NEW_LINE> res_dict = {"country_id": country_res.country_id} <NEW_LINE> indicators_query = Indicator.query.filter( Indicator.country_id == country_res.country_id ).order_by(Indicator.year) <NEW_LINE> years = [int(i.year) for i in indicators_query.distinct(Indicator.year).all()] <NEW_LINE> res_dict["years"] = years <NEW_LINE> years_num_dict: Dict[int, int] = {v: k for k, v in enumerate(years)} <NEW_LINE> indicators = indicators_query.all() <NEW_LINE> indicators_dict: DefaultDict[str, List[Any]] = defaultdict( lambda: [None] * len(years) ) <NEW_LINE> for ind in indicators: <NEW_LINE> <INDENT> year_index: int = years_num_dict[ind.year] <NEW_LINE> indicators_dict[ind.indicator_id][year_index] = float(ind.indicator_value) <NEW_LINE> <DEDENT> res_dict["indicator_values"] = indicators_dict <NEW_LINE> return res_dict
stats for a country indicator_ids - get parameter to specify list of indicators (if not specified - all indicators)
625941bab57a9660fec33713
def test_arg_coherency_boot_event(self): <NEW_LINE> <INDENT> sys.argv = ["cloubed", "boot", "--domain", "toto", "--event", "toto"] <NEW_LINE> parser = CloubedArgumentParser(u"test_description") <NEW_LINE> parser.add_args() <NEW_LINE> parser.parse_args() <NEW_LINE> self.assertRaisesRegexp(CloubedArgumentException, "--event is not compatible with boot action", parser.check_optionals)
Raises CloubedArgumentException because event nonsense with boot action
625941ba3317a56b86939afc
def test_get_mean_and_stddevs(self): <NEW_LINE> <INDENT> gsim = GMPETable(gmpe_table=self.TABLE_FILE) <NEW_LINE> rctx = RuptureContext() <NEW_LINE> rctx.mag = 6.0 <NEW_LINE> dctx = DistancesContext() <NEW_LINE> dctx.rjb = np.array([0.5, 1.0, 10.0, 100.0, 500.0]) <NEW_LINE> sctx = SitesContext() <NEW_LINE> stddevs = [const.StdDev.TOTAL] <NEW_LINE> expected_mean = np.array([2.0, 2.0, 1.0, 0.5, 1.0E-20]) <NEW_LINE> mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt_module.PGA(), stddevs) <NEW_LINE> np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5) <NEW_LINE> np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5) <NEW_LINE> mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt_module.SA(1.0), stddevs) <NEW_LINE> np.testing.assert_array_almost_equal(np.exp(mean), expected_mean, 5) <NEW_LINE> np.testing.assert_array_almost_equal(sigma[0], 0.8 * np.ones(5), 5) <NEW_LINE> mean, sigma = gsim.get_mean_and_stddevs(sctx, rctx, dctx, imt_module.PGV(), stddevs) <NEW_LINE> np.testing.assert_array_almost_equal(np.exp(mean), 10. * expected_mean, 5) <NEW_LINE> np.testing.assert_array_almost_equal(sigma[0], 0.5 * np.ones(5), 5)
Tests mean and standard deviations without amplification
625941ba091ae35668666df8
def setsockopt_mon(self, opt, value): <NEW_LINE> <INDENT> self._mon_sockopts.append((opt, value))
Enqueue setsockopt(opt, value) for mon_socket See zmq.Socket.setsockopt for details.
625941bab7558d58953c4dae
def padding(self, input_id, input_mask, segment_id): <NEW_LINE> <INDENT> if len(input_id) < self.sequence_length: <NEW_LINE> <INDENT> pad_input_id = input_id + [0] * (self.sequence_length - len(input_id)) <NEW_LINE> pad_input_mask = input_mask + [0] * (self.sequence_length - len(input_mask)) <NEW_LINE> pad_segment_id = segment_id + [0] * (self.sequence_length - len(segment_id)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pad_input_id = input_id[:self.sequence_length] <NEW_LINE> pad_input_mask = input_mask[:self.sequence_length] <NEW_LINE> pad_segment_id = segment_id[:self.sequence_length] <NEW_LINE> <DEDENT> return pad_input_id, pad_input_mask, pad_segment_id
对序列进行补全 :param input_id: :param input_mask: :param segment_id: :return:
625941bae1aae11d1e749b47
def plotResiduals(self,x=None,y=None,clf=True,logplot='',**kwargs): <NEW_LINE> <INDENT> from .utils import mpl_context <NEW_LINE> if x is None: <NEW_LINE> <INDENT> if self.data is None: <NEW_LINE> <INDENT> raise ValueError("No xdata provided and no fitted data present - can't plot residuals") <NEW_LINE> <DEDENT> x = self.data[0] <NEW_LINE> <DEDENT> if y is None: <NEW_LINE> <INDENT> if self.data is None: <NEW_LINE> <INDENT> raise ValueError("No ydata provided and no fitted data present - can't plot residuals") <NEW_LINE> <DEDENT> y = self.data[1] <NEW_LINE> <DEDENT> with mpl_context(clf=clf) as plt: <NEW_LINE> <INDENT> if 'x' in logplot and 'y' in logplot: <NEW_LINE> <INDENT> plt.loglog() <NEW_LINE> <DEDENT> elif 'x' in logplot: <NEW_LINE> <INDENT> plt.semilogx() <NEW_LINE> <DEDENT> elif 'y' in logplot: <NEW_LINE> <INDENT> plt.semilogy() <NEW_LINE> <DEDENT> ym = self(x) <NEW_LINE> kwargs.setdefault('c','r') <NEW_LINE> plt.scatter(x,y-ym,**kwargs)
Plots the residuals of the provided data (:math:`y-y_{mod}`) against this model. :param x: The x data to plot the residuals for, or None to get it from any fitted data. :type x: array-like or None :param y: The x data to plot the residuals for, or None to get it from any fitted data. :type y: array-like or None :param bool clf: If True, the plot will be cleared first. :param logplot: Sets which axes are logarithmic :type logplot: '','x','y', or 'xy' string Additional arguments and keywords are passed into :func:`matplotlib.pyplot.scatter`.
625941ba3cc13d1c6d3c7217
def load_params(path): <NEW_LINE> <INDENT> with open(path, 'r') as f: <NEW_LINE> <INDENT> return json.load(f)
Load parameters from file
625941ba462c4b4f79d1d564
def tokenize(file_obj: IO[bytes]) -> Iterator[Any]: <NEW_LINE> <INDENT> status = subprocess.run([str(esprima_bin)], check=True, stdin=file_obj, stdout=subprocess.PIPE) <NEW_LINE> return json.loads(status.stdout.decode('UTF-8'))
Tokenizes a (real!) bytes file using Esprima.
625941ba23849d37ff7b2f25
def _createSessionObject(self, request): <NEW_LINE> <INDENT> user = endpoints.get_current_user() <NEW_LINE> if not user: <NEW_LINE> <INDENT> raise endpoints.UnauthorizedException('Authorization required') <NEW_LINE> <DEDENT> user_id = user.email() <NEW_LINE> if not request.name: <NEW_LINE> <INDENT> raise endpoints.BadRequestException("Session 'name' field required") <NEW_LINE> <DEDENT> if not request.speaker: <NEW_LINE> <INDENT> raise endpoints.BadRequestException("Session 'speaker' field required") <NEW_LINE> <DEDENT> data = {field.name: getattr(request, field.name) for field in request.all_fields()} <NEW_LINE> data['conference'] = ndb.Key(urlsafe=request.websafeConferenceKey) <NEW_LINE> del data['websafeConferenceKey'] <NEW_LINE> del data['sessionKey'] <NEW_LINE> if data['startDate']: <NEW_LINE> <INDENT> data['startDate'] = datetime.strptime(data['startDate'][:10], "%Y-%m-%d").date() <NEW_LINE> <DEDENT> new_key = Session(**data).put() <NEW_LINE> taskqueue.add(params={'conferenceKey': request.websafeConferenceKey, 'speaker': data['speaker']}, url='/tasks/get_featured_speaker') <NEW_LINE> request.sessionKey = new_key.urlsafe() <NEW_LINE> return self._copySessionToForm(request)
Create or update Session object, returning SessionForm/request.
625941baab23a570cc250013
def gen_gain_func(self, entropy_func): <NEW_LINE> <INDENT> def gains_func( features: pd.DataFrame, target: pd.Series, weights: pd.Series ): <NEW_LINE> <INDENT> targ_ent = entropy_func(target, weights) <NEW_LINE> sum_weights = np.sum(weights) <NEW_LINE> col_gains = {} <NEW_LINE> for column in features.columns: <NEW_LINE> <INDENT> col_gain = targ_ent <NEW_LINE> if features[column].dtype == "int64": <NEW_LINE> <INDENT> median = np.median(features[column]) <NEW_LINE> filt = features[column] > median <NEW_LINE> top_targ = target[filt].to_numpy() <NEW_LINE> bot_targ = target[np.invert(filt)].to_numpy() <NEW_LINE> top_wght = weights[filt].to_numpy() <NEW_LINE> bot_wght = weights[np.invert(filt)].to_numpy() <NEW_LINE> top_prob = sum(top_wght) / sum_weights <NEW_LINE> top_entr = entropy_func(top_targ, top_wght) <NEW_LINE> top_entr *= top_prob <NEW_LINE> bot_prob = sum(bot_wght) / sum_weights <NEW_LINE> bot_entr = entropy_func(bot_targ, bot_wght) <NEW_LINE> bot_entr *= bot_prob <NEW_LINE> col_gain -= (bot_entr + top_entr) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> unique_elements = np.unique(features[column]) <NEW_LINE> col_gain = targ_ent <NEW_LINE> for e in unique_elements: <NEW_LINE> <INDENT> filt = features[column] == e <NEW_LINE> sub_targ = target [filt].to_numpy() <NEW_LINE> sub_wght = weights [filt].to_numpy() <NEW_LINE> prob = sum(sub_wght) / sum_weights <NEW_LINE> sub_ent = entropy_func( sub_targ, sub_wght ) <NEW_LINE> sub_ent *= prob <NEW_LINE> col_gain -= sub_ent <NEW_LINE> <DEDENT> <DEDENT> col_gains[column] = col_gain <NEW_LINE> <DEDENT> return col_gains <NEW_LINE> <DEDENT> return gains_func
Determine the gain of each column in the dataset S. Assumes the last column is the target. Parameters: * entropy_func (func(vector): float): any function that inputs a vector of data and outputs a floating point value between zero and one representing how organized that data is. Return: * output (func(DataFrame, Series): dict): a function that takes in a DataFrame of features and Series of targets, and outputs a dic- tionary with the potential informationgain of each feature column.
625941ba0c0af96317bb807d
def sigmoid_focal_loss(inputs, targets, num_boxes,ignore, alpha: float = 0.25, gamma: float = 2): <NEW_LINE> <INDENT> prob = inputs.sigmoid() <NEW_LINE> ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") <NEW_LINE> p_t = prob * targets + (1 - prob) * (1 - targets) <NEW_LINE> loss = ce_loss * ((1 - p_t) ** gamma) <NEW_LINE> if alpha >= 0: <NEW_LINE> <INDENT> alpha_t = alpha * targets + (1 - alpha) * (1 - targets) <NEW_LINE> loss = alpha_t * loss <NEW_LINE> <DEDENT> ignore_factor = torch.ones_like(loss) <NEW_LINE> if len(ignore[0]) > 0: <NEW_LINE> <INDENT> ignore_factor[ignore] = 0 <NEW_LINE> <DEDENT> loss *= ignore_factor <NEW_LINE> return loss.mean(1).sum() / num_boxes
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. Args: ignore: tuple (batch_idx, corresponding ignore tensor idx) inputs: A float tensor of arbitrary shape. The predictions for each example. targets: A float tensor with the same shape as inputs. Stores the binary classification label for each element in inputs (0 for the negative class and 1 for the positive class). alpha: (optional) Weighting factor in range (0,1) to balance positive vs negative examples. Default = -1 (no weighting). gamma: Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. Returns: We per- form the normalization by the number of assigned anchors, not total anchors, since the vast majority of anchors are easy negatives and receive negligible loss values under the focal loss. hence after mean(1) multiply again by number of anchors Loss tensor
625941baa219f33f34628808
def alcubierre(self): <NEW_LINE> <INDENT> xs = symbols('x_s')(x0) <NEW_LINE> vs = xs.diff(x0) <NEW_LINE> rs = sqrt((x1-xs)**2 + x2**2 + x3**2) <NEW_LINE> fs = tanh(s * (rs + R)) - tanh(s * (rs - R)) / (2 * tanh( s * R )) <NEW_LINE> alcubierre_spacetime = Matrix([ [ (vs**2 * fs**2 - 1), -2*vs*fs, -2*vs*fs, -2*vs*fs ], [ -2*vs*fs, -1, 0, 0 ], [ -2*vs*fs, 0, -1, 0 ], [ -2*vs*fs, 0, 0, -1 ] ])
Description =========== Returns the famous Alcubierre 'warp-drive' metric solution. Examples ======== >>> from sympy import * >>> print(Solution().alcubierre()) >>> LaTeX representation ====================
625941ba2eb69b55b151c73f
def index(self, pointer, index, dest_pointer_type=None): <NEW_LINE> <INDENT> if dest_pointer_type: <NEW_LINE> <INDENT> return self.index_multiple(pointer, [index], dest_pointer_type) <NEW_LINE> <DEDENT> return SingleIndexNode(self.pos, pointer.type.base_type, pointer, index)
Index a pointer with the given index node. :param dest_pointer_type: if given, cast the result (*after* adding the index) to the destination type and dereference.
625941bad4950a0f3b08c1e5
def get_fields_from_model(self, model, fields): <NEW_LINE> <INDENT> model_fields = {} <NEW_LINE> for field in fields: <NEW_LINE> <INDENT> if isinstance(field, tuple) and len(field) == 2: <NEW_LINE> <INDENT> field, verbose_name = field[0], field[1] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> model_field = get_fields_from_path(model, field)[-1] <NEW_LINE> verbose_name = model_field.verbose_name <NEW_LINE> <DEDENT> except (FieldDoesNotExist, IndexError, TypeError) as e: <NEW_LINE> <INDENT> logger.warn("AdvancedFilterForm: skip invalid field " "- %s", e) <NEW_LINE> continue <NEW_LINE> <DEDENT> <DEDENT> model_fields[field] = verbose_name <NEW_LINE> <DEDENT> return model_fields
Iterate over given <field> names (in "orm query" notation) and find the actual field given the initial <model>. If <field> is a tuple of the format ('field_name', 'Verbose name'), overwrite the field's verbose name with the given name for display purposes.
625941ba31939e2706e4cd03
def _d_ik(i, W, B): <NEW_LINE> <INDENT> Di = W[i,:].reshape((W.shape[1],1)) - B <NEW_LINE> Di = Di*Di <NEW_LINE> Di = Di.sum(axis = 0) <NEW_LINE> assigned_cluster = Di.argmin() <NEW_LINE> return assigned_cluster
The data cluster matrix A is updated using formula 10 from Li (2005) which is the same as formula 2.3 in Li & Zhu (2005). The formula uses the squared distance between ith point and the kth cluster. The point is then assigned to the closest cluster. The squared distance between point i and data cluster k is computed by summing over the element-wise differences between the i-th row and k-th row of W and B, respectively: d[i,k] = SUM_{j in features} (W[i,j] - B[k,j])^2j Parameters ---------- i : int infdex of data point W : np.array binary data matrix B : np.array feature cluster assignment matrix Returns ------- int index of assigned cluster
625941ba4d74a7450ccd4056
def setUp(self): <NEW_LINE> <INDENT> self.i = indexer.Indexer('dbase')
create an object of Indexer class
625941ba21bff66bcd6847e9
def parse_xgen_file(filepath): <NEW_LINE> <INDENT> modules = [] <NEW_LINE> with open(filepath) as f: <NEW_LINE> <INDENT> module = [] <NEW_LINE> for line in f: <NEW_LINE> <INDENT> line = line.strip(' \t\r\n') <NEW_LINE> if not line: <NEW_LINE> <INDENT> if module: <NEW_LINE> <INDENT> modules.append(module) <NEW_LINE> module = [] <NEW_LINE> <DEDENT> continue <NEW_LINE> <DEDENT> if line.startswith("#") or line.startswith('FileVersion'): <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> module.append(line) <NEW_LINE> <DEDENT> <DEDENT> parsed_modules = collections.defaultdict(list) <NEW_LINE> for module in modules: <NEW_LINE> <INDENT> parsed_module = {} <NEW_LINE> module_type = module.pop(0).strip(' \t\r\n') <NEW_LINE> for line in module: <NEW_LINE> <INDENT> parts = [v.strip() for v in line.split(None, 1)] <NEW_LINE> attr_name = parts.pop(0) <NEW_LINE> attr_value = parts[0] if parts else "" <NEW_LINE> parsed_module[attr_name] = attr_value <NEW_LINE> <DEDENT> parsed_modules[module_type].append(parsed_module) <NEW_LINE> <DEDENT> return dict(parsed_modules)
TODO(LWS): I hope we can get rid of this ASAP if/when xgen provides an api to read .xgen files Crude .xgen file parser for reading palette files. Return a dictionary where the key is the module type, and the value is a list of modules of that type. Each module is a dictionary of data, where the key is the property/attribute name, and the value is the raw value of the property. example input file content: Palette name robert_xgen_coll parent xgDataPath /test/robert/collections/robert_xgen_coll xgProjectPath /test/shot_100/lighting/ xgDogTag endAttrs example output: {"Palette": [ { 'name': 'robert_xgen_coll', 'parent': '', 'xgDataPath': '/test/robert/collections/robert_xgen_coll', 'xgDogTag': '', 'xgProjectPath': '/test/shot_100/lighting/', 'endAttrs': '', } ]}
625941ba85dfad0860c3aced
def _wii_b(self, data, xx): <NEW_LINE> <INDENT> address, f, b = data <NEW_LINE> self.b = b and True or False
Callback method that registers the B button
625941ba507cdc57c6306b67
def file_read_symlink(self, path): <NEW_LINE> <INDENT> return self.request( "file-read-symlink", { 'path': [ path, 'path', [ basestring, 'None' ], False ], }, { 'symlink': [ basestring, False ], } )
Read the contents of a symlink. :param path: Path of the symlink file to read. The value is expected to begin with /vol/<volumename>.
625941ba63b5f9789fde6f79
def _init_sample_imgs_inputs(self): <NEW_LINE> <INDENT> self.sample_row_n = FLAGS.batch_size // FLAGS.sample_col_n <NEW_LINE> self.sample_style_ids = np.repeat(np.arange(0, FLAGS.style_ids_n), self.char_embedding_n)[:FLAGS.batch_size] <NEW_LINE> self.sample_char_ids = np.tile(np.arange(0, self.char_embedding_n), FLAGS.style_ids_n)[:FLAGS.batch_size]
Initialize inputs for generating sample images Sample images are generated once every FLAGS.sample_imgs_interval times. These' inputs are given by this method.
625941ba293b9510aa2c312c
def handle_lut(self, pkt): <NEW_LINE> <INDENT> self.logger.debug("handle lut") <NEW_LINE> if pkt.subunit & COMMAND: <NEW_LINE> <INDENT> data_type = str(pkt.nbytes / 2) + 'h' <NEW_LINE> line = pkt.datain.read(pkt.nbytes) <NEW_LINE> n = len(line) <NEW_LINE> if (n < pkt.nbytes): <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> x = struct.unpack(data_type, line) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> self.logger.error("Error unpacking struct: %s" % (str(e))) <NEW_LINE> return <NEW_LINE> <DEDENT> if len(x) < 14: <NEW_LINE> <INDENT> y = [] <NEW_LINE> for i in range(14): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> y.append(x[i]) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> y.append(0) <NEW_LINE> <DEDENT> <DEDENT> x = y <NEW_LINE> del(y) <NEW_LINE> <DEDENT> if len(x) == 14: <NEW_LINE> <INDENT> z = int(x[0]) <NEW_LINE> self.frame = self.decode_frameno(z) - 1 <NEW_LINE> if (self.frame > MAX_FRAMES): <NEW_LINE> <INDENT> self.logger.error("attempt to select non existing frame.") <NEW_LINE> return <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> self.server.controller.get_frame(self.frame) <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> self.server.controller.init_frame(self.frame) <NEW_LINE> <DEDENT> return <NEW_LINE> <DEDENT> self.logger.error("unable to select a frame.") <NEW_LINE> return <NEW_LINE> <DEDENT> self.logger.error("what shall I do?")
This part of the protocol is used by IRAF to set the frame number.
625941ba236d856c2ad44672
def rob(self, root): <NEW_LINE> <INDENT> return max(self.find_max(root))
:type root: TreeNode :rtype: int
625941ba8a349b6b435e8008
def activation(self, x, w, b): <NEW_LINE> <INDENT> if self.activation_fnc in [0, 'logistic']: <NEW_LINE> <INDENT> return self.logistic(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [8, 'sigmoid']: <NEW_LINE> <INDENT> return self.sigmoid(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [1, 'linear']: <NEW_LINE> <INDENT> return self.linear(self.processInput(x, w.transpose(), b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [2, 'relu']: <NEW_LINE> <INDENT> return self.relu(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [3, 'tanH']: <NEW_LINE> <INDENT> return self.tanH(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [4, 'relu']: <NEW_LINE> <INDENT> return self.relu(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [5, 'softplus']: <NEW_LINE> <INDENT> return self.softplus(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [6, 'arctan']: <NEW_LINE> <INDENT> return self.garctan(self.processInput(x,w.transpose(),b)) <NEW_LINE> <DEDENT> elif self.activation_fnc in [7, 'perceptron']: <NEW_LINE> <INDENT> if self.verbose > 1: <NEW_LINE> <INDENT> print('perception:') <NEW_LINE> print('activation function {}'.format(self.activation_fnc)) <NEW_LINE> <DEDENT> return self.perceptron(self.processInput(x,w.transpose(),b))
Performs the activation function calculation selected when neuron was instantiated {'sigmoid':8, 'linear':1, 'relu':2, 'tanH':3, 'softplus':5, 'arctan':6, 'perceptron':7, 'logistic':0,} :param x: input value numpy array from inputing neurons :param w: weights on inputs :return:
625941bab545ff76a8913cb2
def escape_nl(msg): <NEW_LINE> <INDENT> if msg != '' and msg[-1] == "\n": <NEW_LINE> <INDENT> return msg[:-1] + "\\n" <NEW_LINE> <DEDENT> return msg
It's nice to know if we actually sent a complete line ending in , so escape it for display.
625941ba01c39578d7e74cd7
def marvinPrinciple(row, asList=None, asStr=None): <NEW_LINE> <INDENT> if row.intersection(['principle', 'princip', 'principer']): <NEW_LINE> <INDENT> principles = getString("principle") <NEW_LINE> key = row.intersection(list(principles.keys())) <NEW_LINE> if key: <NEW_LINE> <INDENT> return principles[key.pop()] <NEW_LINE> <DEDENT> return principles[random.choice(list(principles.keys()))]
Display one selected software principle, or provide one as random
625941ba1b99ca400220a945
def test_uboot(self): <NEW_LINE> <INDENT> uboot_url = ('https://acc.dl.osdn.jp/users/23/23888/u-boot.bin.gz') <NEW_LINE> uboot_hash = '9b78dbd43b40b2526848c0b1ce9de02c24f4dcdb' <NEW_LINE> uboot_path = self.fetch_asset(uboot_url, asset_hash=uboot_hash) <NEW_LINE> uboot_path = archive.uncompress(uboot_path, self.workdir) <NEW_LINE> self.vm.set_console() <NEW_LINE> self.vm.add_args('-bios', uboot_path, '-no-reboot') <NEW_LINE> self.vm.launch() <NEW_LINE> uboot_version = 'U-Boot 2016.05-rc3-23705-ga1ef3c71cb-dirty' <NEW_LINE> wait_for_console_pattern(self, uboot_version) <NEW_LINE> gcc_version = 'rx-unknown-linux-gcc (GCC) 9.0.0 20181105 (experimental)'
U-Boot and checks that the console is operational. :avocado: tags=arch:rx :avocado: tags=machine:gdbsim-r5f562n8 :avocado: tags=endian:little
625941ba566aa707497f440d
def test_leading_unknown_messge(): <NEW_LINE> <INDENT> rawmessage = bytearray([0x02, 0x00, 0x15, 0x02, 0x50, 0x46, 0xd0, 0xe6, 0x43, 0x6c, 0x15, 0x40, 0x11, 0x01]) <NEW_LINE> msg, buffer = insteonplm.messages.create(rawmessage) <NEW_LINE> assert isinstance(msg, StandardReceive) <NEW_LINE> assert msg.cmd1 == 0x11 <NEW_LINE> assert msg.cmd2 == 0x01
Test leading unknown messge.
625941ba8e71fb1e9831d641
def xls(self, filename): <NEW_LINE> <INDENT> name = os.path.basename(filename).split('.')[0] + '.pdf' <NEW_LINE> exportfile = os.path.join(self._export_folder, name) <NEW_LINE> xlApp = DispatchEx("Excel.Application") <NEW_LINE> xlApp.Visible = False <NEW_LINE> xlApp.DisplayAlerts = 0 <NEW_LINE> books = xlApp.Workbooks.Open(filename,False) <NEW_LINE> books.ExportAsFixedFormat(0, exportfile) <NEW_LINE> books.Close(False) <NEW_LINE> print('保存 PDF 文件:', exportfile) <NEW_LINE> xlApp.Quit()
xls 和 xlsx 文件转换
625941bacc40096d615957e7
def __init__(self, *args, **kwargs): <NEW_LINE> <INDENT> self.failfast = kwargs.get("failfast") <NEW_LINE> self.verbosity = int(kwargs.get("verbosity")) <NEW_LINE> if not os.environ.get('DJANGO_LIVE_TEST_SERVER_ADDRESS',""): <NEW_LINE> <INDENT> os.environ['DJANGO_LIVE_TEST_SERVER_ADDRESS'] = "localhost:9000-9999" <NEW_LINE> <DEDENT> return super(KALiteTestRunner, self).__init__(*args, **kwargs)
Force setting up live server test. Adding to kwargs doesn't work, need to go to env. Dependent on how Django works here.
625941ba96565a6dacc8f569
def compute_topk_scores_and_seq(sequences, scores, scores_to_gather, flags, beam_dim, prefix="default"): <NEW_LINE> <INDENT> unused_batch_dim, old_beam_dim, unused_length_dim = sequences.shape.dims <NEW_LINE> _, topk_indices = mtf.top_k(scores, old_beam_dim, k_dim=beam_dim) <NEW_LINE> selector = mtf.one_hot(topk_indices, old_beam_dim, dtype=tf.float32) <NEW_LINE> def gather(tensor, name): <NEW_LINE> <INDENT> with tf.name_scope(prefix + name): <NEW_LINE> <INDENT> output_shape = mtf.Shape( [beam_dim if d == old_beam_dim else d for d in tensor.shape.dims]) <NEW_LINE> return mtf.gather( tensor, topk_indices, old_beam_dim, output_shape=output_shape) <NEW_LINE> <DEDENT> <DEDENT> topk_seq = gather(sequences, "_seq") <NEW_LINE> topk_flags = gather(flags, "_flags") <NEW_LINE> topk_gathered_scores = gather(scores_to_gather, "_scores") <NEW_LINE> return topk_seq, topk_gathered_scores, topk_flags, selector
Given sequences and scores, will gather the top k=beam size sequences. This function is used to grow alive, and finished. It takes sequences, scores, and flags, and returns the top k from sequences, scores_to_gather, and flags based on the values in scores. This method permits easy introspection using tfdbg. It adds two named ops that are prefixed by `prefix`: - _topk_seq: the tensor for topk_seq returned by this method. - _topk_flags: the tensor for topk_finished_flags returned by this method. Args: sequences: Tensor of sequences that we need to gather from. [batch_size, beam_size, seq_length] scores: Tensor of scores for each sequence in sequences. [batch_size, beam_size]. We will use these to compute the topk. scores_to_gather: Tensor of scores for each sequence in sequences. [batch_size, beam_size]. We will return the gathered scores from here. Scores to gather is different from scores because for grow_alive, we will need to return log_probs, while for grow_finished, we will need to return the length penalized scores. flags: Tensor of bools for sequences that say whether a sequence has reached EOS or not beam_dim: mtf.Dimension prefix: an optional string Returns: Tuple of (topk_seq [batch_size, beam_size, decode_length], topk_gathered_scores [batch_size, beam_size], topk_finished_flags[batch_size, beam_size], selector)
625941ba63f4b57ef0000fb5
def Get(self, request, global_params=None): <NEW_LINE> <INDENT> config = self.GetMethodConfig('Get') <NEW_LINE> return self._RunMethod( config, request, global_params=global_params)
Retrieves the settings that control the specified consumer project's usage. of the service. Args: request: (ServicemanagementServicesProjectSettingsGetRequest) input message global_params: (StandardQueryParameters, default: None) global arguments Returns: (ProjectSettings) The response message.
625941bad10714528d5ffb74
def quotient_char_p(I, p): <NEW_LINE> <INDENT> if not I.is_integral(): <NEW_LINE> <INDENT> raise ValueError("I must be an integral ideal.") <NEW_LINE> <DEDENT> K = I.number_field() <NEW_LINE> OK = K.maximal_order() <NEW_LINE> M_OK = OK.free_module() <NEW_LINE> M_I = I.free_module() <NEW_LINE> B_I = M_I.basis() <NEW_LINE> M_OK_mat = M_OK.basis_matrix() <NEW_LINE> M_OK_change = M_OK_mat**(-1) <NEW_LINE> B_I_in_terms_of_M = M_I.basis_matrix() * M_OK_change <NEW_LINE> n = K.absolute_degree() <NEW_LINE> k = FiniteField(p) <NEW_LINE> M_OK_modp = k**n <NEW_LINE> B_mod = B_I_in_terms_of_M.change_ring(k) <NEW_LINE> M_I_modp = M_OK_modp.span(B_mod.row_space()) <NEW_LINE> Q = M_OK_modp.quotient(M_I_modp) <NEW_LINE> K_to_Q = QuotientMap(K, M_OK_change, Q, I) <NEW_LINE> Q_to_OK = LiftMap(OK, M_OK_mat, Q, I) <NEW_LINE> return Q, K_to_Q, Q_to_OK
Given an integral ideal `I` that contains a prime number `p`, compute a vector space `V = (O_K \mod p) / (I \mod p)`, along with a homomorphism `O_K \to V` and a section `V \to O_K`. EXAMPLES:: sage: from sage.rings.number_field.number_field_ideal import quotient_char_p sage: K.<i> = NumberField(x^2 + 1); O = K.maximal_order(); I = K.fractional_ideal(15) sage: quotient_char_p(I, 5)[0] Vector space quotient V/W of dimension 2 over Finite Field of size 5 where V: Vector space of dimension 2 over Finite Field of size 5 W: Vector space of degree 2 and dimension 0 over Finite Field of size 5 Basis matrix: [] sage: quotient_char_p(I, 3)[0] Vector space quotient V/W of dimension 2 over Finite Field of size 3 where V: Vector space of dimension 2 over Finite Field of size 3 W: Vector space of degree 2 and dimension 0 over Finite Field of size 3 Basis matrix: [] sage: I = K.factor(13)[0][0]; I Fractional ideal (-3*i - 2) sage: I.residue_class_degree() 1 sage: quotient_char_p(I, 13)[0] Vector space quotient V/W of dimension 1 over Finite Field of size 13 where V: Vector space of dimension 2 over Finite Field of size 13 W: Vector space of degree 2 and dimension 1 over Finite Field of size 13 Basis matrix: [1 8]
625941bac4546d3d9de728c5
def GetJoinBlob(self): <NEW_LINE> <INDENT> l_request = skypekit.XCallRequest("ZR\022\030", 18, 24) <NEW_LINE> l_request.add_parm('O', 0, self) <NEW_LINE> l_response = self.transport.xcall(l_request) <NEW_LINE> l_result = l_response.get(1, '') <NEW_LINE> return l_result
Retrieves a binary join blob for joining public conversations, which are always of type CONFERENCE. If called for a dialog, the blob argument will contain the empty string. The best way to create a Public Chat is to first create a fresh conversation with Skype class CreateConference, then minimally apply the public chat options OPT_JOINING_ENABLED and OPT_ENTRY_LEVEL_RANK - options, like this (C++): :: C->SetOption(Conversation::OPT_JOINING_ENABLED, true); When that is done, you can call GetJoinBlob to retrieve the blob string. Use the blob string to generate and post an HTML link whose href attribute looks like this: href="skype:?chat&blob=_BLOB_GOES_HERE" A person running Skype desktop client can click this link to join the conversation and have that conversation opened in his UI. Note that the conversation host (creator) needs to be online for new joiners-via-link to start participating in the Public Chat. B{Return values:} - B{blob} - Returns the public conversation join blob.
625941bae64d504609d746d5
def decode(self, emission, mask): <NEW_LINE> <INDENT> emission_shape = emission.size() <NEW_LINE> mask = mask.unsqueeze(dim=1) <NEW_LINE> mask = mask.repeat(1, emission_shape[1], 1) <NEW_LINE> mask = mask.reshape([-1, mask.size(2)]) <NEW_LINE> emission = emission.reshape([-1, emission_shape[2], emission.size(3)]) <NEW_LINE> result = self.crf.decode(emission, mask) <NEW_LINE> result = result.reshape([-1, emission_shape[1], mask.size(1)]) <NEW_LINE> result = result.tolist() <NEW_LINE> return result
emission: B T L F
625941ba090684286d50eb75
def __getattr__(self, key): <NEW_LINE> <INDENT> return self.get(key)
Get the environment variable.
625941ba92d797404e30401d
def to_knx(self, value: Sequence[int]) -> DPTArray: <NEW_LINE> <INDENT> if not isinstance(value, (list, tuple)): <NEW_LINE> <INDENT> raise ConversionError( "Could not serialize RemoteValueColorRGBW (wrong type, expecting list of 4-6 bytes))", value=value, type=type(value), ) <NEW_LINE> <DEDENT> if len(value) < 4 or len(value) > 6: <NEW_LINE> <INDENT> raise ConversionError( "Could not serialize value to DPT 251.600 (wrong length, expecting list of 4-6 bytes)", value=value, type=type(value), ) <NEW_LINE> <DEDENT> rgbw = value[:4] <NEW_LINE> if ( any(not isinstance(color, int) for color in rgbw) or any(color < 0 for color in rgbw) or any(color > 255 for color in rgbw) ): <NEW_LINE> <INDENT> raise ConversionError( "Could not serialize DPT 251.600 (wrong RGBW values)", value=value ) <NEW_LINE> <DEDENT> if len(value) < 5: <NEW_LINE> <INDENT> return DPTArray(list(rgbw) + [0x00, 0x0F]) <NEW_LINE> <DEDENT> if len(value) < 6: <NEW_LINE> <INDENT> return DPTArray(list(rgbw) + [0x00] + list(value[4:])) <NEW_LINE> <DEDENT> return DPTArray(value)
Convert value (4-6 bytes) to payload (6 bytes). * Structure of DPT 251.600 ** Byte 0: R value ** Byte 1: G value ** Byte 2: B value ** Byte 3: W value ** Byte 4: 0x00 (reserved) ** Byte 5: *** Bit 0: W value valid? *** Bit 1: B value valid? *** Bit 2: G value valid? *** Bit 3: R value valid? *** Bit 4-7: 0 In case we receive * > 6 bytes: error * 6 bytes: all bytes are passed through * 5 bytes: 0x00?? fill up to 6 bytes * 4 bytes: 0x000f right padding to 6 bytes * < 4 bytes: error
625941ba377c676e9127203e
def __len__(self): <NEW_LINE> <INDENT> return len(self.list)
Return the size of the OrderedSet
625941ba0fa83653e4656e51
def new_url(**kwargs): <NEW_LINE> <INDENT> url_base = "/axapi/v3/debug/tcp" <NEW_LINE> f_dict = {} <NEW_LINE> return url_base.format(**f_dict)
Return the URL for creating a resource
625941ba44b2445a33931f34
def __init__(self): <NEW_LINE> <INDENT> super().__init__("rollback") <NEW_LINE> self.snap = FormattedParameter("--snap={}") <NEW_LINE> self.epc = FormattedParameter("--epc={}")
Create a daos container rollback command object.
625941ba60cbc95b062c63dd
def keypoints_heatmap(kpts, heat_size, stride, var): <NEW_LINE> <INDENT> kpts = kpts.reshape(-1, 14, 3) <NEW_LINE> heat_one_img = [] <NEW_LINE> for kpt in kpts: <NEW_LINE> <INDENT> heat_one_joint = [] <NEW_LINE> for joint in kpt: <NEW_LINE> <INDENT> x, y, v = joint <NEW_LINE> x, y = (x//stride, y//stride) <NEW_LINE> if v < 1.5: <NEW_LINE> <INDENT> heat = heatmap_one_kpt(x, y, heat_size, var) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> heat = np.zeros(heat_size, dtype=np.float32) <NEW_LINE> <DEDENT> heat_one_joint.append(heat) <NEW_LINE> <DEDENT> heat_one_joint = np.stack(heat_one_joint, axis=0) <NEW_LINE> heat_one_img.append(heat_one_joint) <NEW_LINE> <DEDENT> heat_one_img = np.stack(heat_one_img, axis=0) <NEW_LINE> heat_one_img = np.amax(heat_one_img, axis=0) <NEW_LINE> return heat_one_img
Generate heatmap of all keypoints, shape [num_kpts, h, w]. Params: kpts: keypoints coordinates of all human in one img, [num_human*14, 3] heat_size: feature map size of network output stirde: downsample ratio var: Gaussian variance Returns: heatmap of one img, [14, h, w]
625941baa17c0f6771cbdee8
@njit('(float32[:,:,:], float32[:,:,:], int32[:,:], int32)') <NEW_LINE> def steps2D(p, dP, inds, niter): <NEW_LINE> <INDENT> shape = p.shape[1:] <NEW_LINE> for t in range(niter): <NEW_LINE> <INDENT> for j in range(inds.shape[0]): <NEW_LINE> <INDENT> y = inds[j,0] <NEW_LINE> x = inds[j,1] <NEW_LINE> p0, p1 = int(p[0,y,x]), int(p[1,y,x]) <NEW_LINE> p[0,y,x] = min(shape[0]-1, max(0, p[0,y,x] - dP[0,p0,p1])) <NEW_LINE> p[1,y,x] = min(shape[1]-1, max(0, p[1,y,x] - dP[1,p0,p1])) <NEW_LINE> <DEDENT> <DEDENT> return p
run dynamics of pixels to recover masks in 2D Euler integration of dynamics dP for niter steps Parameters ---------------- p: float32, 3D array pixel locations [axis x Ly x Lx] (start at initial meshgrid) dP: float32, 3D array flows [axis x Ly x Lx] inds: int32, 2D array non-zero pixels to run dynamics on [npixels x 2] niter: int32 number of iterations of dynamics to run Returns --------------- p: float32, 3D array final locations of each pixel after dynamics
625941ba6aa9bd52df036c37
def _break_dictionary(data): <NEW_LINE> <INDENT> if not isinstance(data, dict): <NEW_LINE> <INDENT> raise ParameterValueFormatError( f"expected data to be in dictionary format, instead got '{type(data).__name__}'" ) <NEW_LINE> <DEDENT> indexes, values = zip(*data.items()) <NEW_LINE> return list(indexes), np.array(values)
Converts {"index": value} style dictionary into (list(indexes), numpy.ndarray(values)) tuple.
625941ba851cf427c661a3a6
def __init__(self, api, area): <NEW_LINE> <INDENT> self._area_id = area['id'] <NEW_LINE> self._name = area['name'] <NEW_LINE> self._state = _get_alarm_state(area['mode']) <NEW_LINE> if self._state == STATE_ALARM_DISARMED: <NEW_LINE> <INDENT> self._changed_by = area.get('last_unset_user_name', 'unknown') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self._changed_by = area.get('last_set_user_name', 'unknown') <NEW_LINE> <DEDENT> self._api = api
Initialize the SPC alarm panel.
625941bab5575c28eb68de92
def decomposed_energy(context, parm, NRG_UNIT=u.kilocalories_per_mole): <NEW_LINE> <INDENT> energies = {} <NEW_LINE> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.BOND_FORCE_GROUP) <NEW_LINE> energies['bond'] = s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.ANGLE_FORCE_GROUP) <NEW_LINE> energies['angle'] = s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.DIHEDRAL_FORCE_GROUP) <NEW_LINE> energies['dihedral'] = s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.NONBONDED_FORCE_GROUP) <NEW_LINE> energies['nonbond'] = s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> if isinstance(parm, ChamberParm): <NEW_LINE> <INDENT> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.UREY_BRADLEY_FORCE_GROUP) <NEW_LINE> energies['urey'] = s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.IMPROPER_FORCE_GROUP) <NEW_LINE> energies['improper']=s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> s = context.getState(getEnergy=True, enforcePeriodicBox=parm.ptr('ifbox')>0, groups=2**parm.CMAP_FORCE_GROUP) <NEW_LINE> energies['cmap'] = s.getPotentialEnergy().value_in_unit(NRG_UNIT) <NEW_LINE> <DEDENT> return energies
Gets a decomposed energy for a given system
625941ba50485f2cf553cc2d
def _check_access_granted(self,input_file): <NEW_LINE> <INDENT> _,found_ext=os.path.splitext(input_file) <NEW_LINE> if found_ext != '.nxs': <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> if not h5py_installed: <NEW_LINE> <INDENT> self.reducer.prop_man.log ('*** Can not verify if file is accessible. Install h5py to be able to check file access in waiting mode', 'notice') <NEW_LINE> return <NEW_LINE> <DEDENT> ic=0 <NEW_LINE> try: <NEW_LINE> <INDENT> f = h5py.File(input_file,'r') <NEW_LINE> ok = True <NEW_LINE> <DEDENT> except IOError: <NEW_LINE> <INDENT> ok = False <NEW_LINE> while not ok: <NEW_LINE> <INDENT> self.reducer.prop_man.log ('*** File found but access can not be gained. Waiting for 10 sec','notice') <NEW_LINE> time.sleep(10) <NEW_LINE> ic = ic+1 <NEW_LINE> try: <NEW_LINE> <INDENT> f = h5py.File(input_file,'r') <NEW_LINE> ok = True <NEW_LINE> <DEDENT> except IOError: <NEW_LINE> <INDENT> ok = False <NEW_LINE> if ic>24: <NEW_LINE> <INDENT> raise IOError ("Can not get read access to input file: "+input_file+" after 4 min of trying") <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> if ok: <NEW_LINE> <INDENT> f.close()
Check if the access to the found nxs file is granted Created to fix issue on ISIS archive, when file is copied through the network for ~2min and become available 2 minutes after it has been found.
625941bad7e4931a7ee9ddb0
def welcome(self): <NEW_LINE> <INDENT> self.set_rgb(0x00, 0x40, 0x00) <NEW_LINE> time.sleep(0.5) <NEW_LINE> self.set_rgb(0x00, 0x00, 0x00) <NEW_LINE> time.sleep(0.2) <NEW_LINE> self.set_rgb(0x00, 0x40, 0x00) <NEW_LINE> time.sleep(0.5) <NEW_LINE> self.set_rgb(0x00, 0x00, 0x00)
Some visual feedback that the device is operational.
625941ba30bbd722463cbc57
def reload_napp(self, username, napp_name): <NEW_LINE> <INDENT> self.unload_napp(username, napp_name) <NEW_LINE> try: <NEW_LINE> <INDENT> self.reload_napp_module(username, napp_name, 'settings') <NEW_LINE> self.reload_napp_module(username, napp_name, 'main') <NEW_LINE> <DEDENT> except (ModuleNotFoundError, ImportError): <NEW_LINE> <INDENT> return 400 <NEW_LINE> <DEDENT> self.log.info("NApp '%s/%s' successfully reloaded", username, napp_name) <NEW_LINE> self.load_napp(username, napp_name) <NEW_LINE> return 200
Reload a NApp.
625941ba046cf37aa974cbdf
def getSuccessors(self, state): <NEW_LINE> <INDENT> successors = [] <NEW_LINE> for action in [Directions.NORTH, Directions.SOUTH, Directions.EAST, Directions.WEST]: <NEW_LINE> <INDENT> x,y = state[0] <NEW_LINE> dx, dy = Actions.directionToVector(action) <NEW_LINE> nextx, nexty = int(x + dx), int(y + dy) <NEW_LINE> nextState = (nextx, nexty) <NEW_LINE> hitsWall = self.walls[nextx][nexty] <NEW_LINE> if not hitsWall: <NEW_LINE> <INDENT> newTuple = None <NEW_LINE> if nextState in self.corners: <NEW_LINE> <INDENT> print("in big block") <NEW_LINE> if nextState == self.corners[0]: <NEW_LINE> <INDENT> newTuple = (nextState, action, 1, True, state[4], state[5], state[6]) <NEW_LINE> <DEDENT> elif nextState == self.corners[1]: <NEW_LINE> <INDENT> newTuple = (nextState, action, 1, state[3], True, state[5], state[6]) <NEW_LINE> <DEDENT> elif nextState == self.corners[2]: <NEW_LINE> <INDENT> newTuple = (nextState, action, 1, state[3], state[4], True, state[6]) <NEW_LINE> <DEDENT> elif nextState == self.corners[3]: <NEW_LINE> <INDENT> newTuple = (nextState, action, 1, state[3], state[4], state[5], True) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> print("in small block") <NEW_LINE> newTuple = (nextState, action, 1, state[3], state[4], state[5], state[6]) <NEW_LINE> <DEDENT> print(newTuple) <NEW_LINE> successors.append(newTuple) <NEW_LINE> <DEDENT> <DEDENT> self._expanded += 1 <NEW_LINE> return successors
Returns successor states, the actions they require, and a cost of 1. As noted in search.py: For a given state, this should return a list of triples, (successor, action, stepCost), where 'successor' is a successor to the current state, 'action' is the action required to get there, and 'stepCost' is the incremental cost of expanding to that successor
625941ba38b623060ff0ac83
def sendGreeting(self, destination): <NEW_LINE> <INDENT> self.time_greeting_sent = time.time() <NEW_LINE> spore = Spore() <NEW_LINE> spore.dataType = spore.OURP <NEW_LINE> spore.castType = spore.BROADCAST <NEW_LINE> spore.hash = self._generateHash() <NEW_LINE> spore.ourpData.type = OurpData.GREETING <NEW_LINE> spore.ourpData.ipAddress = self.potator.config['IP_ADDRESS'] <NEW_LINE> spore.ourpData.onionUrl = self.potator.server.tor_launcher.port.getHost( ).onion_uri <NEW_LINE> if self.potator.config.get('NETWORK_PASSWORD'): <NEW_LINE> <INDENT> payload = { 'password': self.potator.config.get('NETWORK_PASSWORD') } <NEW_LINE> spore.ourpData.payload = json.dumps(payload) <NEW_LINE> <DEDENT> def looper(): <NEW_LINE> <INDENT> spore.hash = self._generateHash() <NEW_LINE> log.msg('[OURP] GREETING to %s' % destination) <NEW_LINE> self.potator.server.sendSpore( destination, spore.SerializeToString()) <NEW_LINE> self.potator.network_dispatcher.hash_cache.append(spore.hash) <NEW_LINE> <DEDENT> l = task.LoopingCall(looper) <NEW_LINE> l.start(5.0) <NEW_LINE> self.greeting_loop = l
Sends an OURP greeting to destination :param str destination: The onion URL to send the greeting to The OURP greeting packet is crafted and sent to the onion URL by calling :func:`potator.tor.server.Server.sendSpore`. The OURP greeting is sent in a loop until Potator receives an OURP greeting acknowledge.
625941ba7d847024c06be155
def calculate_percent_of_parent(self): <NEW_LINE> <INDENT> if self.__f_parent_timer is None: <NEW_LINE> <INDENT> return "N/A" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if self.__f_parent_timer.__f_elapsed is not 0: <NEW_LINE> <INDENT> return str(round((self.__f_elapsed / self.__f_parent_timer.__f_elapsed) * 100, 3)) + "%" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return "N/A"
Calculate what percentage of the parent method's run time was spent on this timer's method
625941ba55399d3f05588548
def pad5(ar,N,axis=3,mode='mirror',c=0.0): <NEW_LINE> <INDENT> ar = make_nd(ar,5) <NEW_LINE> if N == 0: <NEW_LINE> <INDENT> return ar <NEW_LINE> <DEDENT> N1,N2 = T.cast((N/2), 'int32'),T.cast(N-(N/2), 'int32') <NEW_LINE> Nint = T.cast(N, 'int32') <NEW_LINE> if mode == 'mirror': <NEW_LINE> <INDENT> if axis == 1: <NEW_LINE> <INDENT> return T.concatenate([ar[:,Nint:0:-1,:,:,:],ar],axis=1) <NEW_LINE> <DEDENT> if axis == 3: <NEW_LINE> <INDENT> return T.concatenate([ar[:,:,:,N1:0:-1,:],ar,ar[:,:,:,-1:-(N2+1):-1,:]],axis=3) <NEW_LINE> <DEDENT> if axis ==4: <NEW_LINE> <INDENT> return T.concatenate([ar[:,:,:,:,N1:0:-1],ar,ar[:,:,:,:,-1:-(N2+1):-1]],axis=4) <NEW_LINE> <DEDENT> <DEDENT> if mode == 'border': <NEW_LINE> <INDENT> if axis == 1: <NEW_LINE> <INDENT> return T.concatenate([ar[:,:1,:,:,:]]*Nint+[ar],axis=1) <NEW_LINE> <DEDENT> if axis == 3: <NEW_LINE> <INDENT> return T.concatenate([ar[:,:,:,:1,:]]*N1+[ar]+[ar[:,:,:,-1:,:]]*N2,axis=3) <NEW_LINE> <DEDENT> if axis ==4: <NEW_LINE> <INDENT> return T.concatenate([ar[:,:,:,:,:1]]*N1+[ar]+[ar[:,:,:,:,-1:]]*N2,axis=4) <NEW_LINE> <DEDENT> <DEDENT> if mode == 'const': <NEW_LINE> <INDENT> if axis == 1: <NEW_LINE> <INDENT> return T.concatenate([c*T.ones_like(ar[:,Nint:0:-1,:,:,:]),ar],axis=1) <NEW_LINE> <DEDENT> if axis == 3: <NEW_LINE> <INDENT> return T.concatenate([c*T.ones_like(ar[:,:,:,N1:0:-1,:]),ar,c*T.ones_like(ar[:,:,:,-1:-(N2+1):-1,:])],axis=3) <NEW_LINE> <DEDENT> if axis ==4: <NEW_LINE> <INDENT> return T.concatenate([c*T.ones_like(ar[:,:,:,:,N1:0:-1]),ar,c*T.ones_like(ar[:,:,:,:,-1:-(N2+1):-1])],axis=4)
Padds a 5 dimensional tensor with `N` additional values. If the tensor has less than 5 dimensions, it will be extended. Returns a 5 dimensional tensor. Axis 0 and 2 are ignored. Usage: pad5 padds one axis at a time with one of the following modes: mode = 'mirror' (default) the image is mirrored at the edges, such that image statistics are similar mode = 'border' the border pixels are repeated mode = 'const' the padded area is filled with a single value (default 0.0) It can also be a theano varible such as the mean of the tensor that is to be padded. For axis 1 (time), the padding happens exclusively at the front, for axes 3 and 4 (x and y) the amount is split into `N/2` and `N-(N/2)` (this can be asymmetric!). The total amount padded is always `N`. For convenience, `pad5_txy` can pad time, x and y with the same mode simultaneously. `pad3` and `pad2` return 3 tensors and matrices after padding.
625941ba1f037a2d8b946093
def __get_in_progress_order_or_create(self, client): <NEW_LINE> <INDENT> in_progress_order = self.filter( client=client, status=OrderChoices.IN_PROGRESS) <NEW_LINE> if in_progress_order.count(): <NEW_LINE> <INDENT> return in_progress_order.get() <NEW_LINE> <DEDENT> return self.create(client=client)
Get the client's in progress order or create a new one
625941bafff4ab517eb2f2ce
def OnTreeSelectionChange(self, event): <NEW_LINE> <INDENT> hosts = self.getHostsFromTreeByEvent(event) <NEW_LINE> self.current_tree_hosts = hosts <NEW_LINE> self.updateBtnStatus(hosts) <NEW_LINE> if not hosts or (hosts not in self.hostses and hosts not in self.origin_hostses and hosts not in self.common_hostses): <NEW_LINE> <INDENT> return event.Veto() <NEW_LINE> <DEDENT> if hosts and hosts != self.current_showing_hosts: <NEW_LINE> <INDENT> if hosts.is_origin: <NEW_LINE> <INDENT> hosts.getContent() <NEW_LINE> <DEDENT> self.showHosts(hosts)
当点击左边树状结构的节点的时候触发
625941ba9c8ee82313fbb609
def set_clear_color(color='black', alpha=None): <NEW_LINE> <INDENT> glir = get_current_glir_queue() <NEW_LINE> glir.command('FUNC', 'glClearColor', *Color(color, alpha).rgba)
Set the screen clear color This is a wrapper for gl.glClearColor. Parameters ---------- color : str | tuple | instance of Color Color to use. See vispy.color.Color for options.
625941ba7b25080760e392ef
def _new_game_board(self) -> [[Piece]]: <NEW_LINE> <INDENT> board = [] <NEW_LINE> if self._top_left_disc_color == 'B': <NEW_LINE> <INDENT> diagonal1, diagonal2 = BLACK, WHITE <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> diagonal1, diagonal2 = WHITE, BLACK <NEW_LINE> <DEDENT> turns = 0 <NEW_LINE> for row in range(self.rows): <NEW_LINE> <INDENT> board.append([]) <NEW_LINE> for col in range(self.columns): <NEW_LINE> <INDENT> condition1 = self.columns / 2 - col <NEW_LINE> condition2 = self.rows / 2 - row <NEW_LINE> if 0 <= condition1 <= 1 and 0 <= condition2 <= 1: <NEW_LINE> <INDENT> if turns == 0 or turns == 3: <NEW_LINE> <INDENT> board[-1].append(Piece(diagonal1, (row, col))) <NEW_LINE> <DEDENT> elif turns == 1 or turns == 2: <NEW_LINE> <INDENT> board[-1].append(Piece(diagonal2, (row, col))) <NEW_LINE> <DEDENT> turns += 1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> board[-1].append(Piece(NONE, (row, col))) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return board
Create a new game board using list :return: List of the list of boards and their colors inside
625941ba3346ee7daa2b2bfe
def to_bytes(self, data): <NEW_LINE> <INDENT> if isinstance(data, (bool, int, float, complex)): <NEW_LINE> <INDENT> data = str(data) <NEW_LINE> <DEDENT> elif isinstance(data, bytes): <NEW_LINE> <INDENT> return data <NEW_LINE> <DEDENT> elif isinstance(data, bytearray): <NEW_LINE> <INDENT> return bytes(data) <NEW_LINE> <DEDENT> elif isinstance(data, memoryview): <NEW_LINE> <INDENT> return data.tobytes() <NEW_LINE> <DEDENT> encoding = 'utf-8' if self._chinese else self._codepage.name <NEW_LINE> try: <NEW_LINE> <INDENT> return bytes(data, encoding, errors='replace') <NEW_LINE> <DEDENT> except LookupError: <NEW_LINE> <INDENT> encoding = CodePageConverted[self._codepage.name].value <NEW_LINE> return bytes(data, encoding, errors='replace')
Convert data before sending to the printer.
625941ba8e71fb1e9831d642
def _choose_image(self, *args): <NEW_LINE> <INDENT> if self.separator_image: <NEW_LINE> <INDENT> return self.separator_image <NEW_LINE> <DEDENT> if self._main_above: <NEW_LINE> <INDENT> return 'resources/images/navigationdrawer_gradient_rtol.png' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return 'resources/images/navigationdrawer_gradient_ltor.png'
Chooses which image to display as the main/side separator, based on _main_above.
625941baf9cc0f698b14049a
def _render_stimulus(self, stimulus): <NEW_LINE> <INDENT> stimulus.draw() <NEW_LINE> self.win.flip() <NEW_LINE> core.wait(STIM_DUR)
render stimuls on the window
625941ba460517430c394022
def describesensor(): <NEW_LINE> <INDENT> pass
Make a request to the SOS, returns an XML document wrapped in a Python file object.
625941ba851cf427c661a3a7
def create_alien(ai_settings, screen, aliens, alien_number, row_number): <NEW_LINE> <INDENT> alien = Alien(ai_settings, screen) <NEW_LINE> alien_width = alien.rect.width <NEW_LINE> alien_height = alien.rect.height <NEW_LINE> alien.x = alien_width + 2 * alien_width * alien_number <NEW_LINE> alien.rect.x = alien.x <NEW_LINE> alien.rect.y = alien_height + 2 * alien_height * row_number <NEW_LINE> aliens.add(alien)
创建一个外星人,并将其放在当前行
625941ba099cdd3c635f0af1
def merge_pdfs(source_folder, output_file, rotate_deg): <NEW_LINE> <INDENT> output = PdfFileWriter() <NEW_LINE> filenames = glob.glob(os.path.join(source_folder, '*.pdf')) <NEW_LINE> for filename in filenames: <NEW_LINE> <INDENT> pdf_reader = PdfFileReader(open(filename, 'rb')) <NEW_LINE> for pagenum in range(pdf_reader.numPages): <NEW_LINE> <INDENT> page = pdf_reader.getPage(pagenum) <NEW_LINE> if rotate_deg is not None: <NEW_LINE> <INDENT> page.rotateClockwise(int(rotate_deg)) <NEW_LINE> <DEDENT> output.addPage(page) <NEW_LINE> <DEDENT> <DEDENT> outputStream = open(output_file, "wb") <NEW_LINE> output.write(outputStream) <NEW_LINE> outputStream.close()
Function for merging multiple pdf files into one with optional page rotation. :param source_folder: Folder containing separate pdf files :param output_file: Merged file :param rotate_deg: rotation of page (CW in degree) :return: None
625941ba50812a4eaa59c1ba
def test_pickling(self): <NEW_LINE> <INDENT> pc1 = cPickle.loads(cPickle.dumps(self.pc)) <NEW_LINE> self.pwm.pwmscale = 3 <NEW_LINE> pc2 = cPickle.loads(cPickle.dumps(self.pc)) <NEW_LINE> self.assertEqual('mypwm', pc1.peakwidthmodel.type()) <NEW_LINE> self.assertEqual(1.5, pc1.peakwidthmodel.pwmscale) <NEW_LINE> self.assertEqual(1.5, pc1.pwmscale) <NEW_LINE> self.assertEqual('mypwm', pc2.peakwidthmodel.type()) <NEW_LINE> self.assertEqual(3, pc2.peakwidthmodel.pwmscale) <NEW_LINE> self.assertEqual(3, pc2.pwmscale) <NEW_LINE> return
Check pickling of an owned PeakWidthModel instance.
625941ba63d6d428bbe44384
def _norm_scale(self, arr): <NEW_LINE> <INDENT> arr = arr.astype('float') <NEW_LINE> for i in range(3): <NEW_LINE> <INDENT> minval = arr[...,i].min() <NEW_LINE> maxval = arr[...,i].max() <NEW_LINE> if minval != maxval: <NEW_LINE> <INDENT> arr[...,i] -= minval <NEW_LINE> arr[...,i] *= (255.0/(maxval-minval)) <NEW_LINE> <DEDENT> <DEDENT> return arr
Pixel intensity normalization w/ min/max http://en.wikipedia.org/wiki/Normalization_%28image_processing%29
625941babe383301e01b5321
def test_users_id_delete(self): <NEW_LINE> <INDENT> pass
Test case for users_id_delete Supprimer un utilisateur
625941ba3346ee7daa2b2bff
def _fraction_visited(source, sink, waypoint, tprob, for_committors, cond_committors): <NEW_LINE> <INDENT> fraction_visited = (np.float(tprob[source, :].dot(cond_committors)) / np.float(tprob[source, :].dot(for_committors))) <NEW_LINE> return fraction_visited
Calculate the fraction of times a walker on `tprob` going from `sources` to `sinks` will travel through the set of states `waypoints` en route. Computes the conditional committors q^{ABC^+} and uses them to find the fraction of paths mentioned above. Note that in the notation of Dickson et. al. this computes h_c(A,B), with sources = A sinks = B waypoint = C Parameters ---------- source : int The index of the source state sink : int The index of the sink state waypoint : int The index of the intermediate state tprob : np.ndarray Transition matrix for_committors : np.ndarray The forward committors for the reaction sources -> sinks cond_committors : np.ndarray Conditional committors, i.e. the probability of visiting a waypoint when on a path between source and sink. Returns ------- fraction_visited : float The fraction of times a walker going from `sources` -> `sinks` stops by `waypoints` on its way. See Also -------- msmbuilder.tpt.conditional_committors Calculate the probability of visiting a waypoint while on a path between a source and sink. msmbuilder.tpt.hub_scores : function Compute the 'hub score', the weighted fraction of visits for an entire network. References ---------- .. [1] Dickson & Brooks (2012), J. Chem. Theory Comput., 8, 3044-3052.
625941ba16aa5153ce36230d
def rename_item(self, what, object_id, newname, token=None): <NEW_LINE> <INDENT> self._log("rename_item(%s)" % what, object_id=object_id, token=token) <NEW_LINE> obj = self.__get_object(object_id) <NEW_LINE> self.api.rename_item(what, obj, newname) <NEW_LINE> return True
Renames an object specified by object_id to a new name. :param what: The type of object which shall be renamed to a new name. :param object_id: The id which refers to the object. :param newname: The new name for the object. :param token: The API-token obtained via the login() method. :return: True if the action succeeded.
625941ba24f1403a926009fe
def test_airline_get_passengers_from_terminal(self): <NEW_LINE> <INDENT> self.assertEqual(len(self.airline_dummy.get_passengers_from_terminal(self.terminal_2)), 6) <NEW_LINE> self.assertEqual(len(self.airline_dummy.get_passengers_from_terminal(self.terminal_1)), 0)
Get all the passengers that are flying from a terminal
625941bab57a9660fec33715
def write_char(self, c): <NEW_LINE> <INDENT> if type(c) not in int_types: <NEW_LINE> <INDENT> raise TypeError('expected an int (got:%r)' % (type(c),)) <NEW_LINE> <DEDENT> if not -128 <= c <= 127: <NEW_LINE> <INDENT> raise OverflowError("Not in range, %d" % c) <NEW_LINE> <DEDENT> self.write(struct.pack("b", c))
Write a C{char} to the stream. @param c: char @type c: C{int} @raise TypeError: Unexpected type for int C{c}. @raise OverflowError: Not in range.
625941ba30dc7b76659017ff
def removeDuplicates(self, nums): <NEW_LINE> <INDENT> if not nums: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> last = 0 <NEW_LINE> duplicate = float("inf") <NEW_LINE> for num in nums[1:]: <NEW_LINE> <INDENT> if nums[last] != num: <NEW_LINE> <INDENT> last += 1 <NEW_LINE> nums[last] = num <NEW_LINE> <DEDENT> elif num != duplicate: <NEW_LINE> <INDENT> last += 1 <NEW_LINE> nums[last] = num <NEW_LINE> duplicate = num <NEW_LINE> <DEDENT> <DEDENT> print(nums[:last + 1]) <NEW_LINE> return last + 1
:type nums: List[int] :rtype: int
625941ba99cbb53fe6792a7c
def test_lower_the_maximized_window_works(self): <NEW_LINE> <INDENT> calc_win = self.open_new_application_window("Calculator") <NEW_LINE> text_win = self.open_new_application_window("Text Editor", maximized=True) <NEW_LINE> self.assertProperty(text_win, is_focused=True) <NEW_LINE> self.assertProperty(calc_win, is_focused=False) <NEW_LINE> self.mouse.click_object(self.panel.grab_area, button=2) <NEW_LINE> self.assertProperty(calc_win, is_focused=True)
Middle-clicking on the panel grab area must lower a maximized window.
625941babe7bc26dc91cd49a
def __init__(self): <NEW_LINE> <INDENT> self.__property_name = None <NEW_LINE> self.__property_type = None
Constructor
625941ba5fcc89381b1e1559
def hidden_frame(func, posargs, kwargs): <NEW_LINE> <INDENT> func(*posargs, **kwargs)
this is just an extra method for new thread so
625941ba925a0f43d2549d09
def test_admin_add_category_empty_name(client, authorize_admin): <NEW_LINE> <INDENT> headers = authorize_admin <NEW_LINE> expected_result = 'please provide a category name' <NEW_LINE> response = client.post('/api/v2/categories', data=json.dumps(CATEGORIES['category6']), headers=headers) <NEW_LINE> data = response.json <NEW_LINE> assert response.status_code == 400 <NEW_LINE> assert data['message'] == expected_result
admin should not be able to add category with empty name
625941ba2c8b7c6e89b35658
def name(): <NEW_LINE> <INDENT> return "rc"
return module name
625941ba0c0af96317bb807e
def getLUTPathForFlipbook(self, flipbook, lut): <NEW_LINE> <INDENT> pass
Return the path for the given flipbook and lut. May return an empty string if none registered. @param flipbook: The unique name of the flipbook @param lut: The unique name for the LUT, e.g. 'sRGB' and 'rec709'
625941bab7558d58953c4db0
def __eq__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, V1alpha1Workflow): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return self.to_dict() == other.to_dict()
Returns true if both objects are equal
625941bad53ae8145f87a10b
def safeStr(self, o): <NEW_LINE> <INDENT> if isinstance(o, unicode): <NEW_LINE> <INDENT> return o.encode('UTF-8', 'ignore') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return str(o)
Return a safe string :param o: the string to be checked
625941ba4f6381625f1148da
def test_move(self): <NEW_LINE> <INDENT> start = self.vimiv.get_pos() <NEW_LINE> self.thumb.move_direction("l") <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[start + 1], self.vimiv.get_pos(True)) <NEW_LINE> self.thumb.move_direction("h") <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[start], self.vimiv.get_pos(True)) <NEW_LINE> self.thumb.move_direction("L") <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[-1], self.vimiv.get_pos(True)) <NEW_LINE> self.thumb.move_direction("H") <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[0], self.vimiv.get_pos(True)) <NEW_LINE> self.vimiv["main_window"].scroll("L") <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[-1], self.vimiv.get_pos(True)) <NEW_LINE> self.vimiv["main_window"].scroll("H") <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[0], self.vimiv.get_pos(True)) <NEW_LINE> last = len(self.vimiv.get_paths()) - 1 <NEW_LINE> rows = self.thumb.get_item_row(Gtk.TreePath(last)) + 1 <NEW_LINE> if rows > 1: <NEW_LINE> <INDENT> self.fail("Implementation not done for more than one row.") <NEW_LINE> <DEDENT> for direction in "jkJK": <NEW_LINE> <INDENT> self.thumb.move_direction(direction) <NEW_LINE> self.assertEqual(self.vimiv.get_paths()[0], self.vimiv.get_pos(True))
Move in thumbnail mode.
625941bad18da76e23532367
def _loadToPositionGroupBox(self, inPmGroupBox): <NEW_LINE> <INDENT> self.toPositionspinboxes = PM_CoordinateSpinBoxes(inPmGroupBox) <NEW_LINE> self.moveXSpinBox = self.toPositionspinboxes.xSpinBox <NEW_LINE> self.moveYSpinBox = self.toPositionspinboxes.ySpinBox <NEW_LINE> self.moveZSpinBox = self.toPositionspinboxes.zSpinBox <NEW_LINE> self.moveAbsoluteButton = PM_PushButton( inPmGroupBox, label = "", text = "Move Selection", spanWidth = True )
Load widgets in the Translate To a given Position group box, which is present within the Translate groupbox. @param inPmGroupBox: Translate To Position group box in the Translate group box. @type inPmGroupBox: L{PM_GroupBox}
625941ba9f2886367277a726
def split_commutative_parts(e): <NEW_LINE> <INDENT> c_part, nc_part = e.args_cnc() <NEW_LINE> c_part = list(c_part) <NEW_LINE> return c_part, nc_part
Split into commutative and non-commutative parts.
625941ba5166f23b2e1a4fee
def clearReferencesToDependentCameras(self): <NEW_LINE> <INDENT> return _osgUtil.SceneView_clearReferencesToDependentCameras(self)
clearReferencesToDependentCameras(SceneView self)
625941ba462c4b4f79d1d565
def __eq__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, ListResponseOfContactDto): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return self.__dict__ == other.__dict__
Returns true if both objects are equal
625941ba167d2b6e31218a31
def delete_file(file_path): <NEW_LINE> <INDENT> os.remove(file_path)
Delete file by specified path. :param file_path: path to file :type file_path: str
625941ba3617ad0b5ed67d95
def cmd_exists(cmd): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with open(os.devnull, 'w') as FNULL: <NEW_LINE> <INDENT> subprocess.check_call(['which', cmd], stdout=FNULL) <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> return True
Determine if a given command is available. Requires "which".
625941ba91af0d3eaac9b8aa
def generate(battery_dest=None,battery_repo=None,experiment_repo=None,experiments=None,config=None,make_config=True,warning=True,time=30): <NEW_LINE> <INDENT> if battery_dest == None: <NEW_LINE> <INDENT> battery_dest = tempfile.mkdtemp() <NEW_LINE> shutil.rmtree(battery_dest) <NEW_LINE> <DEDENT> if not os.path.exists(battery_dest): <NEW_LINE> <INDENT> base = generate_base(battery_dest=battery_dest, tasks=experiments, experiment_repo=experiment_repo, battery_repo=battery_repo, warning=warning, add_surveys=False) <NEW_LINE> custom_variables = dict() <NEW_LINE> custom_variables["load"] = [("[SUB_TOTALTIME_SUB]",time)] <NEW_LINE> template_experiments(battery_dest=battery_dest, battery_repo=base["battery_repo"], valid_experiments=base["experiments"], custom_variables=custom_variables) <NEW_LINE> if make_config: <NEW_LINE> <INDENT> if config == None: <NEW_LINE> <INDENT> config = dict() <NEW_LINE> <DEDENT> generate_config(battery_dest,config) <NEW_LINE> <DEDENT> return battery_dest <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("Folder exists at %s, cannot generate." %(battery_dest))
generate will create a battery from a template and list of experiments :param battery_dest: is the output folder for your battery. This folder MUST NOT EXIST. If not specified, a temp folder is created :param battery_repo: location of psiturk-battery repo to use as a template. If not specified, will be downloaded to a temporary directory :param experiment_repo: location of a expfactory-experiments repo to check for valid experiments. If not specified, will be downloaded to a temporary directory :param experiments: a list of experiments, meaning the "exp_id" variable in the config.json, to include. This variable also conincides with the experiment folder name. :param config: A dictionary with keys that coincide with parameters in the config.txt file for a expfactory experiment. If not provided, a dummy config will be generated. :param make_config: A boolean (default True) to control generation of the config. If there is a config generated before calling this function, this should be set to False. :param warning: Show config.json warnings when validating experiments. Default is True :param time: maximum amount of time for battery to endure (default 30 minutes) to select experiments
625941ba1d351010ab8559b3
def get_loc_week_counts(query, total_weeks=6): <NEW_LINE> <INDENT> list_of_weeks = get_list_of_weeks(total_weeks) <NEW_LINE> pipeline = [ {'$match': { 'posted_week': {'$in': list_of_weeks}, '$text': {'$search': query}} }, {'$project': { '_id': 0, 'query_loc': 1, 'posted_week': 1} } ] <NEW_LINE> pipeline.append( { '$group': { '_id': {'loc': '$query_loc', 'week_num': '$posted_week'}, 'count': {'$sum': 1} } } ) <NEW_LINE> cursor = db.posts.aggregate(pipeline) <NEW_LINE> locs = [l.lower() for l in QueryLoc.objects.values_list('query', flat=True)] <NEW_LINE> loc_posts = [] <NEW_LINE> for loc in locs: <NEW_LINE> <INDENT> loc_posts.append({'loc': loc, 'posts': []}) <NEW_LINE> <DEDENT> for d in cursor: <NEW_LINE> <INDENT> loc = d['_id']['loc'] <NEW_LINE> week = d['_id']['week_num'] <NEW_LINE> posts = d['count'] <NEW_LINE> loc_post = list(filter(lambda loc_post: loc_post['loc'] == loc, loc_posts))[0] <NEW_LINE> loc_post[week] = posts <NEW_LINE> <DEDENT> for loc_post in loc_posts: <NEW_LINE> <INDENT> for week in range(min(list_of_weeks), max(list_of_weeks)+1): <NEW_LINE> <INDENT> post_count = loc_post.get(week, 0) <NEW_LINE> loc_post['posts'].append(post_count) <NEW_LINE> <DEDENT> loc_post['total'] = sum(loc_post['posts']) <NEW_LINE> <DEDENT> loc_posts = sorted(loc_posts, key=itemgetter('total'), reverse=True) <NEW_LINE> return loc_posts
Gets counts of posts by location and week Return: List of dicts with 'loc' string and 'posts' list of plot values
625941ba67a9b606de4a7d52
def export_to_string(self): <NEW_LINE> <INDENT> self.validate() <NEW_LINE> aci = "" <NEW_LINE> for t, v in sorted(self.target.items()): <NEW_LINE> <INDENT> op = v['operator'] <NEW_LINE> if type(v['expression']) in (tuple, list): <NEW_LINE> <INDENT> target = "" <NEW_LINE> for l in v['expression']: <NEW_LINE> <INDENT> target = target + l + " || " <NEW_LINE> <DEDENT> target = target[:-4] <NEW_LINE> aci = aci + "(%s %s \"%s\")" % (t, op, target) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> aci = aci + "(%s %s \"%s\")" % (t, op, v['expression']) <NEW_LINE> <DEDENT> <DEDENT> aci = aci + "(version 3.0;acl \"%s\";%s (%s) %s %s \"%s\"" % (self.name, self.action, ",".join(self.permissions), self.bindrule['keyword'], self.bindrule['operator'], self.bindrule['expression']) + ";)" <NEW_LINE> return aci
Output a Directory Server-compatible ACI string
625941baf7d966606f6a9e9e
def replace(self, i: int, v: Val) -> 'ImmTup': <NEW_LINE> <INDENT> return ImmTup(tuple(v if i == j else x for j, x in enumerate(self)))
Creates a new copy
625941babf627c535bc1306c