code
stringlengths
4
4.48k
docstring
stringlengths
1
6.45k
_id
stringlengths
24
24
def buckets(context=None): <NEW_LINE> <INDENT> api = _create_api(context) <NEW_LINE> return _BucketList(api)
Retrieves a list of Storage buckets. Args: context: an optional Context object providing project_id and credentials. Returns: An iteratable list of buckets.
625941ba5fc7496912cc3815
@register.simple_tag <NEW_LINE> def build(app_name): <NEW_LINE> <INDENT> url_link = f"http://localhost:3000/{app_name}" <NEW_LINE> file_name = f"dist/{app_name}" <NEW_LINE> try: <NEW_LINE> <INDENT> if requests.get(url_link).status_code == 200: <NEW_LINE> <INDENT> return url_link <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> return static(file_name)
Connecting with the WebPackDev or Django Static * First, checking the dev server & using it * if status code is not 200, then using bundle file
625941ba85dfad0860c3ace8
@pytest.mark.slow <NEW_LINE> def test_linemin(H2_ccecp_uhf): <NEW_LINE> <INDENT> mol, mf = H2_ccecp_uhf <NEW_LINE> wf, to_opt = generate_wf(mol, mf) <NEW_LINE> nconf = 100 <NEW_LINE> wf, dfgrad = line_minimization( wf, initial_guess(mol, nconf), gradient_generator(mol, wf, to_opt) ) <NEW_LINE> dfgrad = pd.DataFrame(dfgrad) <NEW_LINE> mfen = mf.energy_tot() <NEW_LINE> enfinal = dfgrad["energy"].values[-1] <NEW_LINE> enfinal_err = dfgrad["energy_error"].values[-1] <NEW_LINE> assert mfen > enfinal
Optimize a Slater-Jastrow wave function and check that it's better than Hartree-Fock
625941ba3eb6a72ae02ec364
def render(self): <NEW_LINE> <INDENT> return [ '%s%s' % (self.name()[0].upper(), self.name()[1:],), ['outputs=', self.outputs], ['inputs=', self.inputs], ['distargs=', self.get_distargs()], ['params=', self.get_params()], ['hypers=', self.get_hypers()], ['suffstats=', self.get_suffstats()], ]
Return an AST-like representation of the CGPM.
625941ba63d6d428bbe4437f
@register.simple_tag(takes_context=True) <NEW_LINE> def render_app_icon(context): <NEW_LINE> <INDENT> return AdminMenu.get_app_icon(context['app']['name'])
Render app icon
625941ba66673b3332b91f26
def ReadMetrics( fileName ): <NEW_LINE> <INDENT> DataDF = pd.read_csv(fileName,header = 0, delimiter= ',', parse_dates=['Date']) <NEW_LINE> DataDF = DataDF.set_index('Date') <NEW_LINE> return( DataDF )
This function takes a filename as input, and returns a dataframe with the metrics from the assignment on descriptive statistics and environmental metrics. Works for both annual and monthly metrics. Date column should be used as the index for the new dataframe. Function returns the completed DataFrame.
625941baf548e778e58cd40c
def check_fleet_edges(ai_settings, monsters): <NEW_LINE> <INDENT> for monster in monsters.sprites(): <NEW_LINE> <INDENT> if monster.check_edges(): <NEW_LINE> <INDENT> change_fleet_direction(ai_settings, monsters) <NEW_LINE> break
Respond appropriately if any aliens have reached an edge.
625941bae5267d203edcdb30
def dns_mx_add(self, client_id, params=None): <NEW_LINE> <INDENT> default = {"server_id": 1, "zone": 1, "name": "www", "data": "127.0.0.1", "aux": 10, "ttl": "3600", "type": "MX", "active": "y"} <NEW_LINE> if params['zone']: <NEW_LINE> <INDENT> server_id = self.dns_zone_get(params['zone']) <NEW_LINE> if server_id: <NEW_LINE> <INDENT> params['server_id'] = server_id['server_id'] <NEW_LINE> <DEDENT> <DEDENT> default = self.update_default_dict(default, params) <NEW_LINE> default = self.dict_to_tuple(default) <NEW_LINE> response = self._call("dns_mx_add", (client_id, default)) <NEW_LINE> return self.check_response(response, int, "Error during 'dns_mx_add' method")
Adds a new DNS MX record. Param: id -- Client's id param -- Dictionary containing record's informations. Output: Returns the ID of the newly added record.
625941bacc40096d615957e2
def plot_not_before(self, all_years, nice_years, width=0.35): <NEW_LINE> <INDENT> xaxis_ticks = [] <NEW_LINE> idx = 0 <NEW_LINE> for y in range(2012, 2018): <NEW_LINE> <INDENT> for m in range(1, 13): <NEW_LINE> <INDENT> xaxis_ticks.append('%4d-%02d' % (y, m)) <NEW_LINE> idx += 1 <NEW_LINE> <DEDENT> <DEDENT> xaxis = np.arange(len(xaxis_ticks)) <NEW_LINE> all_y = [all_years[i] for i in xaxis_ticks] <NEW_LINE> nice_y = [nice_years[i] for i in xaxis_ticks] <NEW_LINE> nice_y = [x for x in nice_y] <NEW_LINE> fig, ax = plt.subplots() <NEW_LINE> rects1 = ax.bar(xaxis, nice_y, width, color='b') <NEW_LINE> rects2 = ax.bar(xaxis + width, all_y, width, color='y') <NEW_LINE> plt.xticks(xaxis, xaxis_ticks, rotation='vertical') <NEW_LINE> ax.legend((rects1[0], rects2[0]), ('Nice', 'All')) <NEW_LINE> ax.set_ylabel('Count') <NEW_LINE> ax.set_title('Not before vs. count') <NEW_LINE> plt.show()
Plot not before :param all_years: :param nice_years: :param width: :return:
625941ba97e22403b379ce29
def bytes_string(text, encode="utf-8"): <NEW_LINE> <INDENT> if not PY3: <NEW_LINE> <INDENT> if isinstance(text, unicode): <NEW_LINE> <INDENT> result = text.encode(encode) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result = text <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> if isinstance(text, bytes): <NEW_LINE> <INDENT> result = text <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result = bytes(text, encode) <NEW_LINE> <DEDENT> <DEDENT> return result
Return a bytes object on Python 3 and a str object on Python 2
625941ba8a43f66fc4b53ef9
def render(self, data, accepted_media_type=None, renderer_context=None): <NEW_LINE> <INDENT> renderer_context = renderer_context or {} <NEW_LINE> view = renderer_context['view'] <NEW_LINE> request = renderer_context['request'] <NEW_LINE> response = renderer_context['response'] <NEW_LINE> if response.exception: <NEW_LINE> <INDENT> template = self.get_exception_template(response) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> template_names = self.get_template_names(response, view) <NEW_LINE> template = self.resolve_template(template_names) <NEW_LINE> <DEDENT> context = self.resolve_context(data, request, response) <NEW_LINE> return template_render(template, context, request=request)
Renders data to HTML, using Django's standard template rendering. The template name is determined by (in order of preference): 1. An explicit .template_name set on the response. 2. An explicit .template_name set on this class. 3. The return result of calling view.get_template_names().
625941ba4e4d5625662d426c
def plot_task(task): <NEW_LINE> <INDENT> cmap = colors.ListedColormap( [ '#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25' ] ) <NEW_LINE> norm = colors.Normalize(vmin=0, vmax=9) <NEW_LINE> fig, axs = plt.subplots(1, 4, figsize=(15, 15)) <NEW_LINE> axs[0].imshow(task['train'][0]['input'], cmap=cmap, norm=norm) <NEW_LINE> axs[0].axis('off') <NEW_LINE> axs[0].set_title('Train Input') <NEW_LINE> axs[1].imshow(task['train'][0]['output'], cmap=cmap, norm=norm) <NEW_LINE> axs[1].axis('off') <NEW_LINE> axs[1].set_title('Train Output') <NEW_LINE> axs[2].imshow(task['test'][0]['input'], cmap=cmap, norm=norm) <NEW_LINE> axs[2].axis('off') <NEW_LINE> axs[2].set_title('Test Input') <NEW_LINE> axs[3].imshow(task['test'][0]['output'], cmap=cmap, norm=norm) <NEW_LINE> axs[3].axis('off') <NEW_LINE> axs[3].set_title('Test Output') <NEW_LINE> plt.tight_layout() <NEW_LINE> plt.show()
Plots the first train and test pairs of a specified task, using same color scheme as the ARC app
625941bab545ff76a8913cae
def __init__(self): <NEW_LINE> <INDENT> from gamestate import GameState <NEW_LINE> self.data_in_q = Queue(MAX_Q_SIZE) <NEW_LINE> self.commands_out_q = Queue(MAX_Q_SIZE) <NEW_LINE> self.gs = GameState() <NEW_LINE> self.logger = None <NEW_LINE> self.last_run_time = None <NEW_LINE> self.delta_time = 0 <NEW_LINE> self._owned_fields = []
Sets up queues for reading data in and out of this provider
625941ba9b70327d1c4e0c64
def read_all(self): <NEW_LINE> <INDENT> print("\nCRUD: Read (all) test case") <NEW_LINE> docs = self.organizers.read() <NEW_LINE> self.show_docs(docs, 5)
Run Read(all) test case
625941ba01c39578d7e74cd3
def refresh(self, cycles_passed): <NEW_LINE> <INDENT> if not self.busy: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> self.time_left -= cycles_passed <NEW_LINE> if self.time_left <= 0: <NEW_LINE> <INDENT> self.busy = False <NEW_LINE> self.time_left = 0 <NEW_LINE> return (self.locked_mode, self.locked_range) <NEW_LINE> <DEDENT> return None
Called every VM step, if device is busy, refresh how many cycles it'll busy more
625941ba498bea3a759b9940
def countPrimes(self, n): <NEW_LINE> <INDENT> if n < 3: return 0 <NEW_LINE> primes = [True] * (n+1) <NEW_LINE> res = 0 <NEW_LINE> for i in range(2,n): <NEW_LINE> <INDENT> if primes[i]: <NEW_LINE> <INDENT> res += 1 <NEW_LINE> for j in range(i,n,i): <NEW_LINE> <INDENT> primes[j] = False <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return res
:type n: int :rtype: int
625941ba26238365f5f0ecfa
def to_file(self, filename=None): <NEW_LINE> <INDENT> t = localtime() <NEW_LINE> size = len(self.a) <NEW_LINE> assumptions = ['Independent Observations'] <NEW_LINE> if self.alt_hyp == 'unequal': <NEW_LINE> <INDENT> alternative = "Mean 1 != " + str(self.popmean) <NEW_LINE> sided = "two-sided" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> sided = "one-sided" <NEW_LINE> if self.alt_hyp == "less": <NEW_LINE> <INDENT> alternative = "Mean 1 < " + str(self.popmean) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> alternative = "Mean 1 > " + str(self.popmean) <NEW_LINE> <DEDENT> <DEDENT> data = {} <NEW_LINE> data['sig_test'] = "T-Test (" + sided + ")" <NEW_LINE> data['date'] = strftime("%a, %d %b %Y", t) <NEW_LINE> data['time'] = strftime("%H:%M:%S", t) <NEW_LINE> data['assumptions'] = assumptions <NEW_LINE> data['data_size'] = size <NEW_LINE> data['pop_mean'] = self.popmean <NEW_LINE> data['null_hyp'] = "Mean 1 ==", self.popmean <NEW_LINE> data['alt_hyp'] = alternative <NEW_LINE> data['t_stat'] = self.t_stat <NEW_LINE> data['p_val'] = self.p_val <NEW_LINE> if (self.alpha and self.p_val >= self.alpha) or self.p_val == 0 or not self.alpha: <NEW_LINE> <INDENT> data['reject_null'] = False <NEW_LINE> data['accept_alt'] = False <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> data['reject_null'] = True <NEW_LINE> if self.alt_hyp == 'unequal' or (self.alt_hyp == 'less' and self.t_stat < 0) or (self.alt_hyp == 'greater' and self.t_stat > 0): <NEW_LINE> <INDENT> data['accept_alt'] = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> data['accept_alt'] = False <NEW_LINE> <DEDENT> <DEDENT> filename = filename or strftime("%a_%d_%b_%Y_%H_%M_%S.json", t) <NEW_LINE> with open(filename, 'w') as target: <NEW_LINE> <INDENT> dump(data, target)
Summarizes the results of the t-test performed and saves the results out into `filename`. Parameters ---------- filename : string, optional The location of the file where the results will be stored. If no filename is provided, a default filename will be generated, and the results will be stored there.
625941bad10714528d5ffb6f
def identification(self, birth_date, first_name, middle_name, last_name, passport, inn=None, snils=None, oms=None): <NEW_LINE> <INDENT> result_json = apihelper.identification(self.token, self.number, birth_date, first_name, middle_name, last_name, passport, inn, snils, oms, self.proxy) <NEW_LINE> result_json['base_inn'] = inn <NEW_LINE> return types.Identity.de_json(result_json)
Идентификация пользователя Данный запрос позволяет отправить данные для упрощенной идентификации своего QIWI кошелька. Warnings -------- Данный метод не тестируется, соответственно я не могу гарантировать того что он будет работать как должен. Вы делаете это на свой страх и риск. Parameters ---------- birth_date : str Дата рождения пользователя (в формате “ГГГГ-ММ-ДД”) first_name : str Имя пользователя middle_name : str Отчество пользователя last_name : str Фамилия пользователя passport : str Серия и номер паспорта пользователя (только цифры) inn : str ИНН пользователя snils : str Номер СНИЛС пользователя oms : str Номер полиса ОМС пользователя Returns ------- :class:`Identity <pyqiwi.types.Identity>` Текущая идентификация пользователя. Параметр внутри отвечающий за подтверждение успешной идентификации: Identity.check
625941ba96565a6dacc8f565
def read(*parts): <NEW_LINE> <INDENT> path = os.path.join(os.path.dirname(__file__), *parts) <NEW_LINE> with codecs.open(path, encoding='utf-8') as fobj: <NEW_LINE> <INDENT> return fobj.read()
Read file and return contents.
625941bac432627299f04ad4
def maxCount(self, m, n, ops): <NEW_LINE> <INDENT> rmin = m <NEW_LINE> cmin = n <NEW_LINE> for i in ops: <NEW_LINE> <INDENT> rmin = min(i[0], rmin) <NEW_LINE> cmin = min(i[1], cmin) <NEW_LINE> <DEDENT> return rmin * cmin
:type m: int :type n: int :type ops: List[List[int]] :rtype: int
625941ba091ae35668666df5
def set_space(self, space): <NEW_LINE> <INDENT> self.space = space
sets the space the robot keeps between himself and the carrot :param space: space in meters
625941ba94891a1f4081b938
def upgrade_lock(self, purpose=None, retry=None): <NEW_LINE> <INDENT> if purpose is not None: <NEW_LINE> <INDENT> self._purpose = purpose <NEW_LINE> <DEDENT> if retry is not None: <NEW_LINE> <INDENT> self._retry = retry <NEW_LINE> <DEDENT> if self.shared: <NEW_LINE> <INDENT> LOG.debug('Upgrading shared lock on node %(uuid)s for %(purpose)s ' 'to an exclusive one (shared lock was held %(time).2f ' 'seconds)', {'uuid': self.node.uuid, 'purpose': self._purpose, 'time': self._debug_timer.elapsed()}) <NEW_LINE> self._lock() <NEW_LINE> self.shared = False
Upgrade a shared lock to an exclusive lock. Also reloads node object from the database. If lock is already exclusive only changes the lock purpose when provided with one. :param purpose: optionally change the purpose of the lock :param retry: whether to retry locking if it fails, the class-level value is used by default :raises: NodeLocked if an exclusive lock remains on the node after "node_locked_retry_attempts"
625941ba293b9510aa2c3129
def create_information(self): <NEW_LINE> <INDENT> return AnimalInfo(origin=self, contents=None)
Create a new Info. transmit() -> _what() -> create_information().
625941ba32920d7e50b2805d
def rdkit2amberpdb(mol_pdb_txt): <NEW_LINE> <INDENT> mol_new_lines = [] <NEW_LINE> atom_counts = {} <NEW_LINE> line_format = '{0[0]}{0[1]:>7}{0[2]:>4}{0[3]:>5}{0[4]:>6}{0[5]: 12.3f}{0[6]: 8.3f}{0[7]: 8.3f}{0[8]:>6}{0[9]:>6}{0[10]:>12}' <NEW_LINE> mol_txt_lines = mol_pdb_txt.split('\n') <NEW_LINE> for line in mol_txt_lines: <NEW_LINE> <INDENT> if line.startswith('HETATM') or line.startswith('ATOM'): <NEW_LINE> <INDENT> strings = line.split() <NEW_LINE> strings[0] = 'ATOM' <NEW_LINE> atom_counts[strings[2]] = atom_counts.get(strings[2], 0) + 1 <NEW_LINE> strings[2] = strings[2] <NEW_LINE> strings[3] = 'MOL' <NEW_LINE> strings[5] = float(strings[5]) <NEW_LINE> strings[6] = float(strings[6]) <NEW_LINE> strings[7] = float(strings[7]) <NEW_LINE> new_line = line_format.format(strings) <NEW_LINE> mol_new_lines.append(new_line) <NEW_LINE> <DEDENT> <DEDENT> mol_new_lines.extend(['TER', 'END']) <NEW_LINE> return '\n'.join(mol_new_lines)
Converts a PDB block from openbabel or rdkit like format to the PDB block in rism pdb format :param mol_pdb_txt: pdb block with openbabel or rdkit like format :return: string with a pdb block in rism pdb comparable format
625941bad8ef3951e32433cd
def get_results(self, **kwargs): <NEW_LINE> <INDENT> if self.returncode is None: <NEW_LINE> <INDENT> raise self.Error("return code is None, you should call wait, communicate or poll") <NEW_LINE> <DEDENT> if self.status is None or self.status < self.S_DONE: <NEW_LINE> <INDENT> raise self.Error("Task is not completed") <NEW_LINE> <DEDENT> return self.Results.from_node(self)
Returns :class:`NodeResults` instance. Subclasses should extend this method (if needed) by adding specialized code that performs some kind of post-processing.
625941bae8904600ed9f1db9
def test_rule(): <NEW_LINE> <INDENT> from pica.cells import Cells <NEW_LINE> from pica.conditions import Equals <NEW_LINE> from pica.rules import Rule, Result <NEW_LINE> rule = Rule('from', 'to', Equals(1, 0, 'no match'), 0.5) <NEW_LINE> cells = Cells(2, 2, 'from') <NEW_LINE> cells.update(0, 0, 'no match') <NEW_LINE> cells.update(1, 1, 'no match') <NEW_LINE> assert_is_none(rule(cells, -1, -1)) <NEW_LINE> for x in range(2): <NEW_LINE> <INDENT> for y in range(2): <NEW_LINE> <INDENT> rule.reset() <NEW_LINE> if (x, y) == (0, 1): <NEW_LINE> <INDENT> assert_equals(rule(cells, x, y), Result('to', 0.5)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> assert_is_none(rule(cells, x, y))
A Rule
625941ba498bea3a759b9941
def addCategory(self, entry): <NEW_LINE> <INDENT> newID = random.randint(10000, 99999) <NEW_LINE> while newID in self.idList: <NEW_LINE> <INDENT> newID = random.randint(10000, 99999) <NEW_LINE> <DEDENT> entry.insert(0, newID) <NEW_LINE> self.idList.append(newID) <NEW_LINE> self.cursor.execute("INSERT INTO CATEGORIES VALUES (?, ?, ?, ?)", entry) <NEW_LINE> return newID
Author: Alex Lambert UW NetID: alamb25 Date: 3/7/17 Add Category to the Database
625941ba090684286d50eb71
def list_user_profiles(nextToken=None, maxResults=None): <NEW_LINE> <INDENT> pass
Lists all the user profiles configured for your AWS account in AWS CodeStar. See also: AWS API Documentation Exceptions :example: response = client.list_user_profiles( nextToken='string', maxResults=123 ) :type nextToken: string :param nextToken: The continuation token for the next set of results, if the results cannot be returned in one response. :type maxResults: integer :param maxResults: The maximum number of results to return in a response. :rtype: dict ReturnsResponse Syntax { 'userProfiles': [ { 'userArn': 'string', 'displayName': 'string', 'emailAddress': 'string', 'sshPublicKey': 'string' }, ], 'nextToken': 'string' } Response Structure (dict) -- userProfiles (list) -- All the user profiles configured in AWS CodeStar for an AWS account. (dict) -- Information about a user's profile in AWS CodeStar. userArn (string) -- The Amazon Resource Name (ARN) of the user in IAM. displayName (string) -- The display name of a user in AWS CodeStar. For example, this could be set to both first and last name ("Mary Major") or a single name ("Mary"). The display name is also used to generate the initial icon associated with the user in AWS CodeStar projects. If spaces are included in the display name, the first character that appears after the space will be used as the second character in the user initial icon. The initial icon displays a maximum of two characters, so a display name with more than one space (for example "Mary Jane Major") would generate an initial icon using the first character and the first character after the space ("MJ", not "MM"). emailAddress (string) -- The email address associated with the user. sshPublicKey (string) -- The SSH public key associated with the user in AWS CodeStar. If a project owner allows the user remote access to project resources, this public key will be used along with the user's private key for SSH access. nextToken (string) -- The continuation token to use when requesting the next set of results, if there are more results to be returned. Exceptions CodeStar.Client.exceptions.InvalidNextTokenException CodeStar.Client.exceptions.ValidationException :return: { 'userProfiles': [ { 'userArn': 'string', 'displayName': 'string', 'emailAddress': 'string', 'sshPublicKey': 'string' }, ], 'nextToken': 'string' } :returns: CodeStar.Client.exceptions.InvalidNextTokenException CodeStar.Client.exceptions.ValidationException
625941ba0a50d4780f666d1f
def get_enclitic(self, pronoun): <NEW_LINE> <INDENT> return yaziji_const.ENCLITICS.get(pronoun,"")
Extract enclitic
625941ba30dc7b76659017fa
def add_artifact(self, pt_id, artifact_id, private_key, public_key, del_flag=False): <NEW_LINE> <INDENT> if del_flag: <NEW_LINE> <INDENT> response_bytes = self.retrieve_part(pt_id) <NEW_LINE> if response_bytes != None: <NEW_LINE> <INDENT> jresponse = json.loads(response_bytes.decode()) <NEW_LINE> if len(jresponse["artifact_list"]) == 0: <NEW_LINE> <INDENT> return [ None, "No {} to remove from this {}." .format("Artifact", "Part") ] <NEW_LINE> <DEDENT> if artifact_id not in jresponse["artifact_list"]: <NEW_LINE> <INDENT> return [ None, "No such {} in this {}." .format("Artifact", "Part") ] <NEW_LINE> <DEDENT> jresponse["artifact_list"].remove(artifact_id) <NEW_LINE> cur = self._get_block_num() <NEW_LINE> return self.create_part_transaction(pt_id, jresponse["name"], jresponse["checksum"], jresponse["version"], jresponse["alias"], jresponse["licensing"], jresponse["label"], jresponse["description"], "AddArtifact", private_key, public_key, jresponse["artifact_list"], jresponse["category_list"], jresponse["organization_list"], jresponse["cur_block"], cur, str(datetime.datetime.utcnow())) <NEW_LINE> <DEDENT> return None <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> response_bytes = self.retrieve_part(pt_id) <NEW_LINE> if response_bytes != None: <NEW_LINE> <INDENT> if self._validate_artifact_id(artifact_id) == None: <NEW_LINE> <INDENT> return [ None, "ArtifactException : UUID does not exist." ] <NEW_LINE> <DEDENT> jresponse = json.loads(response_bytes.decode()) <NEW_LINE> if artifact_id not in jresponse["artifact_list"]: <NEW_LINE> <INDENT> jresponse["artifact_list"].append(artifact_id) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [ None, "Duplicate Artifact UUID in the Part." ] <NEW_LINE> <DEDENT> cur = self._get_block_num() <NEW_LINE> return self.create_part_transaction(pt_id, jresponse["name"], jresponse["checksum"], jresponse["version"], jresponse["alias"], jresponse["licensing"], jresponse["label"], jresponse["description"], "AddArtifact", private_key, public_key, jresponse["artifact_list"], jresponse["category_list"], jresponse["organization_list"], jresponse["cur_block"], cur, str(datetime.datetime.utcnow())) <NEW_LINE> <DEDENT> return None
Constructs the batch payload for the "AddArtifact" command. Args: pt_id (str): The uuid of the part artifact_id (str): The uuid of the artifact private_key (str): The private key of the user public_key (str): The public key of the user del_flag (bool): The flag for "--delete" option (default False) Returns: type: Batch The batch object which pertains all the data associating with the "AddArtifact" command. or type: None None object if UUID does not exist in the ledger. or type: list pertaining None and str List containing None object and error message: * If "--delete" > If "artifact_list" is empty > If "artifact_id" is not in "artifact_list" * If "artifact_id" is in "artifact_list"
625941ba377c676e9127203a
def update_last_updated(self, commit = True): <NEW_LINE> <INDENT> assert 'person_id' in self <NEW_LINE> assert self.table_name <NEW_LINE> self.api.db.do("UPDATE %s SET last_updated = CURRENT_TIMESTAMP " % (self.table_name) + " where person_id = %d" % (self['person_id']) ) <NEW_LINE> self.sync(commit)
Update last_updated field with current time
625941ba44b2445a33931f30
def mask_out(src): <NEW_LINE> <INDENT> mini = np.amin(src) <NEW_LINE> num = len(src) <NEW_LINE> for i in range(num): <NEW_LINE> <INDENT> for j in range(num): <NEW_LINE> <INDENT> if (i - num / 2) ** 2 + (j - num / 2) ** 2 > (0.3846 * num) ** 2: <NEW_LINE> <INDENT> src[i][j] = mini <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> assert (len(src) == 256 and len(src[0]) == 256)
Mask the data outside of the disk. 0.3846 is a number calculated based on the structure of the pic. Due to -inf, this is normally done after normalize :param src: full disk data
625941baa79ad161976cbfd6
def _unwrap_maps(self, name_maps, name, analysis=None, **inner_maps): <NEW_LINE> <INDENT> name = name_maps.get('name', name) <NEW_LINE> name = name_maps.get('prefix', '') + name <NEW_LINE> analysis = name_maps.get('analysis', analysis) <NEW_LINE> maps = {} <NEW_LINE> for mtype in ('input_map', 'output_map'): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> inner_map = inner_maps[mtype] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> maps[mtype] = name_maps[mtype] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> outer_map = name_maps[mtype] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> maps[mtype] = inner_map <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if isinstance(outer_map, basestring): <NEW_LINE> <INDENT> if isinstance(inner_map, basestring): <NEW_LINE> <INDENT> maps[mtype] = outer_map + inner_map <NEW_LINE> <DEDENT> elif isinstance(inner_map, dict): <NEW_LINE> <INDENT> maps[mtype] = {k: outer_map + v for k, v in inner_map.items()} <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ArcanaDesignError( "Unrecognised type for name map in '{}' " "pipeline can be str or dict[str,str]: {}" .format(name, inner_map)) <NEW_LINE> <DEDENT> <DEDENT> elif isinstance(outer_map, dict): <NEW_LINE> <INDENT> if isinstance(inner_map, basestring): <NEW_LINE> <INDENT> maps[mtype] = {k[len(inner_map):]: v for k, v in outer_map.items()} <NEW_LINE> <DEDENT> elif isinstance(inner_map, dict): <NEW_LINE> <INDENT> maps[mtype] = deepcopy(outer_map) <NEW_LINE> maps[mtype].update( {k: outer_map.get(v, v) for k, v in inner_map.items()}) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ArcanaDesignError( "Unrecognised type for name map in '{}' " "pipeline can be str or dict[str,str]: {}" .format(name, inner_map)) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> raise ArcanaDesignError( "Unrecognised type for name map in '{}' " "pipeline can be str or dict[str,str]: {}" .format(name, outer_map)) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> try: <NEW_LINE> <INDENT> outer_maps = name_maps['name_maps'] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> name, analysis, maps = self._unwrap_maps( outer_maps, name=name, analysis=analysis, **maps) <NEW_LINE> <DEDENT> return name, analysis, maps
Unwraps potentially nested name-mapping dictionaries to get values for name, input_map, output_map and analysis. Unsed in __init__. Parameters ---------- name_maps : dict A dictionary containing the name_maps to apply to the values name : str Name passed from inner pipeline constructor analysis : Analysis The analysis to bind the pipeline to. Will be overridden by any values in the mods dict inner_maps : dict[str, dict[str,str]] input and output maps from inner pipeline constructors Returns ------- name : str Potentially modified name of the pipeline analysis : Analysis Potentially modified analysis maps : dict[str, dict[str,str]] Potentially modifed input and output maps
625941ba67a9b606de4a7d4d
def sigmoid_output_to_derivative(output): <NEW_LINE> <INDENT> return output * (1-output)
Convert the sigmoid function's output to its derivative.
625941ba4f88993c3716bf04
def _adaptive_step_size(f, f0=None, alpha=None, tau=2): <NEW_LINE> <INDENT> if alpha is None: <NEW_LINE> <INDENT> alpha = 1 <NEW_LINE> <DEDENT> if f0 is None: <NEW_LINE> <INDENT> f0, _ = f(0) <NEW_LINE> <DEDENT> f_alpha, x_alpha = f(alpha) <NEW_LINE> if f_alpha < f0: <NEW_LINE> <INDENT> f_alpha_up, x_alpha_up = f(alpha * tau) <NEW_LINE> if f_alpha_up < f0: <NEW_LINE> <INDENT> return f_alpha_up, x_alpha_up, alpha * tau <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return f_alpha, x_alpha, alpha <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> alpha /= tau <NEW_LINE> f_alpha, x_alpha = f(alpha) <NEW_LINE> while f0 <= f_alpha and alpha > MIN_STEP_SIZE: <NEW_LINE> <INDENT> alpha /= tau <NEW_LINE> f_alpha, x_alpha = f(alpha) <NEW_LINE> <DEDENT> return f_alpha, x_alpha, alpha
Parameters ---------- f : callable Optimized function, take only the step size as argument f0 : float value of f at current point, i.e. step size = 0 alpha : float Initial step size tau : float Multiplication factor of the step size during the adaptation
625941bad7e4931a7ee9ddac
def test_get_data_from_dataset_with_multiword_dimnames(self): <NEW_LINE> <INDENT> data_frame = knoema.get('FDI_FLOW_CTRY', **{'Reporting country': 'AUS', 'Partner country/territory': 'w0', 'Measurement principle': 'DI', 'Type of FDI': 'T_FA_F', 'Type of entity': 'ALL', 'Accounting entry': 'NET', 'Level of counterpart': 'IMC', 'Currency': 'USD'}) <NEW_LINE> self.assertEqual(data_frame.shape[0], 7) <NEW_LINE> self.assertEqual(data_frame.shape[1], 1) <NEW_LINE> sname = ('Australia', 'WORLD', 'Directional principle: Inward', 'FDI financial flows - Total', 'All resident units', 'Net', 'Immediate counterpart (Immediate investor or immediate host)', 'US Dollar', 'A') <NEW_LINE> indx = data_frame.first_valid_index() <NEW_LINE> value = data_frame.at[indx, sname] <NEW_LINE> self.assertAlmostEqual(value, 31666.667, 3) <NEW_LINE> indx = data_frame.last_valid_index() <NEW_LINE> value = data_frame.at[indx, sname] <NEW_LINE> self.assertAlmostEqual(value, 22267.638, 3)
The method is testing load data from regular dataset with dimenions that have multi word names
625941bab7558d58953c4dab
def gen_sinc_list(a, b, n=1000): <NEW_LINE> <INDENT> dx = (b-a)/(n-1) <NEW_LINE> x = np.arange(0, n) <NEW_LINE> generatedList = [a + kx * dx for kx in x] <NEW_LINE> sincList = [np.divide(np.sin(t), t, out=None, where=t!=0) for t in generatedList] <NEW_LINE> return (generatedList, sincList)
Generates a list based on the "sinc" function. Based on the template for the Gaussian function above. Args: a (float): Lower bound of domain b (float): Uper bound of domain n (int): number of points in the domain, with a default value of 1000. Returns: (generatedList, sincList): generatedList [float] : [a,...,b] A list of floats used as the inputs to the function. sincList [float] : [sinc(a),...,sinc(b)] A list of floats produced by running the inputs through the sinc program.
625941ba30bbd722463cbc53
def __init__(self, path, xlim=(0, 1), ylim=(0, 1), *args, **kwargs): <NEW_LINE> <INDENT> self.name = os.path.splitext(os.path.basename(path))[0] <NEW_LINE> self.img_data = self._read_image(path, *args, **kwargs) <NEW_LINE> self.xlim = xlim <NEW_LINE> self.ylim = ylim <NEW_LINE> self._data = None
Create a graph object from image at path. Optionally pass the x and y limits. Args: path (str): The path to the image of the graph. xlim (tuple[float]): The range of the x axis. ylim (tuple[float]): The range of the y axis.
625941ba6e29344779a624a6
def tuned_frequency_encode(self, tuned_freq): <NEW_LINE> <INDENT> return MAVLink_tuned_frequency_message(tuned_freq)
Control the tuned frequency of an SDR tuned_freq : Tuned Frequency (float)
625941ba26068e7796caeb6a
def merge_user_into_another_user_accounts(request_ctx, id, destination_account_id, destination_user_id, **request_kwargs): <NEW_LINE> <INDENT> path = '/v1/users/{id}/merge_into/accounts/{destination_account_id}/users/{destination_user_id}' <NEW_LINE> url = request_ctx.base_api_url + path.format(id=id, destination_account_id=destination_account_id, destination_user_id=destination_user_id) <NEW_LINE> response = client.put(request_ctx, url, **request_kwargs) <NEW_LINE> return response
Merge a user into another user. To merge users, the caller must have permissions to manage both users. When finding users by SIS ids in different accounts the destination_account_id is required. The account can also be identified by passing the domain in destination_account_id. :param request_ctx: The request context :type request_ctx: :class:RequestContext :param id: (required) ID :type id: string :param destination_account_id: (required) ID :type destination_account_id: string :param destination_user_id: (required) ID :type destination_user_id: string :return: Merge user into another user :rtype: requests.Response (with User data)
625941bad164cc6175782bde
def get_power_type(self, region, namespace, power_type_id, **filters): <NEW_LINE> <INDENT> filters['namespace'] = namespace <NEW_LINE> return self.get_resource('data/wow/power-type/{0}', region, *[power_type_id], **filters)
Power Type API - get power type by id
625941ba9c8ee82313fbb605
def _GetInstanceParameterFields(): <NEW_LINE> <INDENT> fields = [ (_MakeField("hvparams", "HypervisorParameters", QFT_OTHER, "Hypervisor parameters (merged)"), IQ_CONFIG, 0, lambda ctx, _: ctx.inst_hvparams), (_MakeField("beparams", "BackendParameters", QFT_OTHER, "Backend parameters (merged)"), IQ_CONFIG, 0, lambda ctx, _: ctx.inst_beparams), (_MakeField("osparams", "OpSysParameters", QFT_OTHER, "Operating system parameters (merged)"), IQ_CONFIG, 0, lambda ctx, _: ctx.inst_osparams), (_MakeField("custom_hvparams", "CustomHypervisorParameters", QFT_OTHER, "Custom hypervisor parameters"), IQ_CONFIG, 0, _GetItemAttr("hvparams")), (_MakeField("custom_beparams", "CustomBackendParameters", QFT_OTHER, "Custom backend parameters",), IQ_CONFIG, 0, _GetItemAttr("beparams")), (_MakeField("custom_osparams", "CustomOpSysParameters", QFT_OTHER, "Custom operating system parameters",), IQ_CONFIG, 0, _GetItemAttr("osparams")), (_MakeField("custom_nicparams", "CustomNicParameters", QFT_OTHER, "Custom network interface parameters"), IQ_CONFIG, 0, lambda ctx, inst: [nic.nicparams for nic in inst.nics]), ] <NEW_LINE> def _GetInstHvParam(name): <NEW_LINE> <INDENT> return lambda ctx, _: ctx.inst_hvparams.get(name, _FS_UNAVAIL) <NEW_LINE> <DEDENT> fields.extend([ (_MakeField("hv/%s" % name, constants.HVS_PARAMETER_TITLES.get(name, "hv/%s" % name), _VTToQFT[kind], "The \"%s\" hypervisor parameter" % name), IQ_CONFIG, 0, _GetInstHvParam(name)) for name, kind in constants.HVS_PARAMETER_TYPES.items() if name not in constants.HVC_GLOBALS]) <NEW_LINE> def _GetInstBeParam(name): <NEW_LINE> <INDENT> return lambda ctx, _: ctx.inst_beparams.get(name, None) <NEW_LINE> <DEDENT> fields.extend([ (_MakeField("be/%s" % name, constants.BES_PARAMETER_TITLES.get(name, "be/%s" % name), _VTToQFT[kind], "The \"%s\" backend parameter" % name), IQ_CONFIG, 0, _GetInstBeParam(name)) for name, kind in constants.BES_PARAMETER_TYPES.items()]) <NEW_LINE> return fields
Get instance fields involving parameters. @return: List of field definitions used as input for L{_PrepareFieldList}
625941bafff4ab517eb2f2ca
@app.route("/objectBrowser") <NEW_LINE> @login_required <NEW_LINE> def object_browser(): <NEW_LINE> <INDENT> return render_template("dashboard/index.haml")
The object Browser page
625941ba50812a4eaa59c1b5
def update_planet_position(segment): <NEW_LINE> <INDENT> conditions = segment.state.conditions <NEW_LINE> V = conditions.freestream.velocity[:,0] <NEW_LINE> altitude = conditions.freestream.altitude[:,0] <NEW_LINE> phi = conditions.frames.body.inertial_rotations[:,0] <NEW_LINE> theta = conditions.frames.body.inertial_rotations[:,1] <NEW_LINE> psi = conditions.frames.body.inertial_rotations[:,2] <NEW_LINE> alpha = conditions.aerodynamics.angle_of_attack[:,0] <NEW_LINE> I = segment.state.numerics.time.integrate <NEW_LINE> Re = segment.analyses.planet.features.mean_radius <NEW_LINE> gamma = theta - alpha <NEW_LINE> R = altitude + Re <NEW_LINE> lamdadot = (V/R)*np.cos(gamma)*np.cos(psi) <NEW_LINE> lamda = np.dot(I,lamdadot) / Units.deg <NEW_LINE> mudot = (V/R)*np.cos(gamma)*np.sin(psi)/np.cos(lamda) <NEW_LINE> mu = np.dot(I,mudot) / Units.deg <NEW_LINE> shape = np.shape(conditions.freestream.velocity) <NEW_LINE> mu = np.reshape(mu,shape) <NEW_LINE> lamda = np.reshape(lamda,shape) <NEW_LINE> lat = conditions.frames.planet.latitude[0,0] <NEW_LINE> lon = conditions.frames.planet.longitude[0,0] <NEW_LINE> conditions.frames.planet.latitude = lat + lamda <NEW_LINE> conditions.frames.planet.longitude = lon + mu <NEW_LINE> return
Updates the location of the vehicle relative to the Planet throughout the mission Assumptions: This is valid for small movements and times as it does not account for the rotation of the Planet beneath the vehicle Inputs: segment.state.conditions: freestream.velocity [meters/second] freestream.altitude [meters] frames.body.inertial_rotations [Radians] segment.analyses.planet.features.mean_radius [meters] segment.state.numerics.time.integrate [float] Outputs: segment.state.conditions: frames.planet.latitude [Radians] frames.planet.longitude [Radians] Properties Used: N/A
625941ba925a0f43d2549d04
def __init__(self, **kwargs): <NEW_LINE> <INDENT> self.result = None <NEW_LINE> self.meta = None <NEW_LINE> replace_names = { "result": "result", "meta": "meta", } <NEW_LINE> if kwargs is not None: <NEW_LINE> <INDENT> for key in kwargs: <NEW_LINE> <INDENT> if key in replace_names: <NEW_LINE> <INDENT> setattr(self, replace_names[key], kwargs[key]) <NEW_LINE> <DEDENT> <DEDENT> if "result" in kwargs: <NEW_LINE> <INDENT> self.result = list() <NEW_LINE> for item in kwargs["result"]: <NEW_LINE> <INDENT> self.result.append(ProductData(**item)) <NEW_LINE> <DEDENT> <DEDENT> if "meta" in kwargs: <NEW_LINE> <INDENT> self.meta = MetaPaged(**kwargs["meta"])
Constructor for the GetProductsWrapper class Args: **kwargs: Keyword Arguments in order to initialise the object. Any of the attributes in this object are able to be set through the **kwargs of the constructor. The values that can be supplied and their types are as follows:: result -- list of ProductData -- Sets the attribute result meta -- MetaPaged -- Sets the attribute meta
625941badc8b845886cb53c5
def pcToToneRow(pcSet): <NEW_LINE> <INDENT> if len(pcSet) == 12: <NEW_LINE> <INDENT> a = TwelveToneRow() <NEW_LINE> for thisPc in pcSet: <NEW_LINE> <INDENT> p = music21.pitch.Pitch() <NEW_LINE> p.pitchClass = thisPc <NEW_LINE> a.append(p) <NEW_LINE> <DEDENT> return a <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> a = ToneRow() <NEW_LINE> for thisPc in pcSet: <NEW_LINE> <INDENT> p = music21.pitch.Pitch() <NEW_LINE> p.pitchClass = thisPc <NEW_LINE> a.append(p) <NEW_LINE> <DEDENT> return a
A convenience function that, given a list of pitch classes represented as integers and turns it in to a serial.ToneRow object. >>> from music21 import * >>> a = serial.pcToToneRow(range(12)) >>> matrixObj = a.matrix() >>> print matrixObj 0 1 2 3 4 5 6 7 8 9 A B B 0 1 2 3 4 5 6 7 8 9 A ... >>> a = serial.pcToToneRow([4,5,0,6,7,2,'a',8,9,1,'b',3]) >>> matrixObj = a.matrix() >>> print matrixObj 0 1 8 2 3 A 6 4 5 9 7 B B 0 7 1 2 9 5 3 4 8 6 A ... __OMIT_FROM_DOCS__ >>> a = serial.pcToToneRow([1,1,1,1,1,1,1,1,1,1,1,1]) ... >>> a = serial.pcToToneRow([3, 4]) ...
625941ba3346ee7daa2b2bfa
def _handle_chat_event(self, event: events.ChatMessageWasReceived) -> None: <NEW_LINE> <INDENT> for subscriber in self._chat_subscribers: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> subscriber(event) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> LOG.exception(self._prefix_log_message( f"failed to send chat event {event} to " f"subscriber {subscriber}" ))
Not thread-safe.
625941ba66656f66f7cbc03b
def GetFeatureImage(self): <NEW_LINE> <INDENT> return _itkBinaryStatisticsKeepNObjectsImageFilterPython.itkBinaryStatisticsKeepNObjectsImageFilterIUL3ID3_GetFeatureImage(self)
GetFeatureImage(self) -> itkImageD3
625941ba15fb5d323cde099b
def read_wav(filename): <NEW_LINE> <INDENT> wave_read = wave.open(filename, 'r') <NEW_LINE> n_samples = wave_read.getnframes() <NEW_LINE> byte_data = wave_read.readframes(n_samples) <NEW_LINE> x = np.frombuffer(byte_data, dtype=np.short) <NEW_LINE> return x
Read a 16-bit wav file as an numpy array of shorts
625941bad6c5a10208143ed8
def test_empty_info(self) -> None: <NEW_LINE> <INDENT> sample_gen = Foundset(i for i in [1, 2]) <NEW_LINE> self.assertEqual(sample_gen.info, {})
Test that a foundset without 'dataInfo' section returns an empty info dictionary
625941bafff4ab517eb2f2cb
def ScrollPageLeft(self): <NEW_LINE> <INDENT> pass
ScrollPageLeft(self: DocumentViewer) Scrolls left one viewport.
625941bac432627299f04ad5
def resourcesPoissonPP(self, Nres, ri = 40.): <NEW_LINE> <INDENT> rmax = min(self.Lx, self.Ly)/2 <NEW_LINE> N = self.Lx * self.Ly <NEW_LINE> self.Resx = np.zeros((Nres)) <NEW_LINE> self.Resy = np.zeros((Nres)) <NEW_LINE> for j in range(Nres): <NEW_LINE> <INDENT> r = (rmax - ri)*random.random() + ri <NEW_LINE> theta = 2*3.1415*random.random() <NEW_LINE> self.Resx[j] = r*sin(theta) + self.Lx/2 <NEW_LINE> self.Resy[j] = r*cos(theta) + self.Ly/2 <NEW_LINE> self.Area[self.Resx[j], self.Resy[j]] = int( 5*random.random() ) <NEW_LINE> <DEDENT> return
Spreads resources around the area for the bees to look for. It is implemented as a Poisson Point process.
625941ba16aa5153ce362309
def test_projector(): <NEW_LINE> <INDENT> gmm1 = GMM(number_of_gaussians=2) <NEW_LINE> gmm1.ubm = GMMMachine.from_hdf5( pkg_resources.resource_filename("bob.bio.gmm.test", "data/gmm_ubm.hdf5") ) <NEW_LINE> feature = utils.random_array((20, 45), -5.0, 5.0, seed=seed_value) <NEW_LINE> projected = gmm1.project(feature) <NEW_LINE> assert isinstance(projected, GMMStats) <NEW_LINE> reference_file = pkg_resources.resource_filename( "bob.bio.gmm.test", "data/gmm_projected.hdf5" ) <NEW_LINE> if regenerate_refs: <NEW_LINE> <INDENT> projected.save(reference_file) <NEW_LINE> <DEDENT> reference = GMMStats.from_hdf5(reference_file) <NEW_LINE> assert projected.is_similar_to(reference)
Tests the projector.
625941ba91f36d47f21ac387
def network_add_cl(self, nb_filter, filter_size, activation='relu', padding='same'): <NEW_LINE> <INDENT> if self.network is None: <NEW_LINE> <INDENT> print("Network not initialized. Initialize network first using the 'init_network' method!") <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.network = conv_2d(self.network, nb_filter, filter_size, activation=activation, padding=padding) <NEW_LINE> self.layer_overview = self.layer_overview.append( [0, nb_filter, filter_size, activation, padding] )
Adds a convolutional layer to the specified network. :param nb_filter: (int) Specifying the number of convolution filters :param filter_size: (int or list(int)) Specifying the size of the filters :param activation: (str) Specifying which type of activation function should be applied to the weights in the given layer. Default is set to 'rely' (Rectified Linear Unit). :param padding: (str) Specifying padding algorithm ('same' or 'valid') :return: An added convolutional layer to the network attribute in the CNN class.
625941ba3317a56b86939afa
def test_tc10(self): <NEW_LINE> <INDENT> tc = LargestWord(file_path="tests/input_files/data_tc10.txt") <NEW_LINE> self.assertEqual("File is corrupted", tc.load_file())
Validate program against a corrupted file Note: Generated file using command: dd if=/dev/urandom of=data_tc10.txt bs=5000 count=1
625941bab57a9660fec33712
def weight(self, S_bar, psi, outlier): <NEW_LINE> <INDENT> psi_inliers = psi[np.invert(outlier), :] <NEW_LINE> psi_max = psi[np.argmax(np.sum(psi, 1)), :].reshape( (1, S_bar.shape[1])) <NEW_LINE> psi_inliers = psi_max <NEW_LINE> nx = S_bar.shape[0] - 1 <NEW_LINE> if psi_inliers.size > 0: <NEW_LINE> <INDENT> weights = np.prod(psi_inliers, axis=0) <NEW_LINE> weights = weights / np.sum(weights) <NEW_LINE> S_bar[nx, :] = weights <NEW_LINE> <DEDENT> return S_bar
Weigh the particles according to the probabilities in psi.
625941baa4f1c619b28afed2
def convert_to_csv(element: etree.Element, **kwargs) -> None: <NEW_LINE> <INDENT> row = [] <NEW_LINE> csv_file = kwargs.get('csv_file') <NEW_LINE> namespaces = kwargs.get('namespaces') <NEW_LINE> print(f'c1: {element.xpath("ns:c1/text()", namespaces=namespaces)}') <NEW_LINE> with open(csv_file, mode='a', encoding='utf-8') as file: <NEW_LINE> <INDENT> writer = csv.writer(file, delimiter=';', quotechar='"', quoting=csv.QUOTE_MINIMAL) <NEW_LINE> for column in element: <NEW_LINE> <INDENT> row.append(column.text) <NEW_LINE> <DEDENT> writer.writerow(row)
Write/append row to CSV file.
625941bacb5e8a47e48b7940
def set_directories(self, directories, cache_folder): <NEW_LINE> <INDENT> if jinja2 is None: <NEW_LINE> <INDENT> req_missing(['jinja2'], 'use this theme') <NEW_LINE> <DEDENT> cache_folder = os.path.join(cache_folder, 'jinja') <NEW_LINE> makedirs(cache_folder) <NEW_LINE> cache = jinja2.FileSystemBytecodeCache(cache_folder) <NEW_LINE> self.lookup = jinja2.Environment(bytecode_cache=cache) <NEW_LINE> self.lookup.trim_blocks = True <NEW_LINE> self.lookup.lstrip_blocks = True <NEW_LINE> self.lookup.filters['tojson'] = json.dumps <NEW_LINE> self.lookup.filters['sort_posts'] = sort_posts <NEW_LINE> self.lookup.filters['smartjoin'] = _smartjoin_filter <NEW_LINE> self.lookup.filters['slugify'] = slugify <NEW_LINE> self.lookup.globals['enumerate'] = enumerate <NEW_LINE> self.lookup.globals['isinstance'] = isinstance <NEW_LINE> self.lookup.globals['tuple'] = tuple <NEW_LINE> self.directories = directories <NEW_LINE> self.create_lookup()
Create a new template lookup with set directories.
625941bab7558d58953c4dac
@prof.log_call(trace_logger) <NEW_LINE> def dot_product_normalized(new_vector_set_1, new_vector_set_2, ord=2): <NEW_LINE> <INDENT> assert ord > 0 <NEW_LINE> if not issubclass(new_vector_set_1.dtype.type, numpy.floating): <NEW_LINE> <INDENT> new_vector_set_1 = new_vector_set_1.astype(numpy.float64) <NEW_LINE> <DEDENT> if not issubclass(new_vector_set_2.dtype.type, numpy.floating): <NEW_LINE> <INDENT> new_vector_set_2 = new_vector_set_2.astype(numpy.float64) <NEW_LINE> <DEDENT> new_vector_set_1_norms = norm(new_vector_set_1, ord=ord) <NEW_LINE> new_vector_set_2_norms = norm(new_vector_set_2, ord=ord) <NEW_LINE> norm_products = all_permutations_operation( operator.mul, new_vector_set_1_norms, new_vector_set_2_norms ) <NEW_LINE> vector_pairs_dot_product = numpy.dot( new_vector_set_1, new_vector_set_2.T ) <NEW_LINE> vector_pairs_dot_product_normalized = vector_pairs_dot_product / norm_products <NEW_LINE> return(vector_pairs_dot_product_normalized)
Determines the dot product between a pair of vectors from each set and divides them by the norm of the two. Args: new_vector_set_1(numpy.ndarray): first set of vectors. new_vector_set_2(numpy.ndarray): second set of vectors. ord(optional): basically the same arguments as numpy.linalg.norm. Returns: (numpy.ndarray): an array with the normalized distances between each pair of vectors. Examples: >>> (dot_product_normalized(numpy.eye(2), numpy.eye(2), 2) == numpy.eye(2)).all() True >>> (dot_product_normalized(numpy.eye(10), numpy.eye(10), 2) == numpy.eye(10)).all() True >>> dot_product_normalized( ... numpy.array([[ 1, 0]]), ... numpy.array([[ 1, 0]]), ... 2 ... ) array([[ 1.]]) >>> dot_product_normalized( ... numpy.array([[ 1, 0]]), ... numpy.array([[ 0, 1]]), ... 2 ... ) array([[ 0.]]) >>> dot_product_normalized( ... numpy.array([[ 1, 0]]), ... numpy.array([[-1, 0]]), ... 2 ... ) array([[-1.]]) >>> dot_product_normalized( ... numpy.array([[ 1, 0]]), ... numpy.array([[ 0, -1]]), ... 2 ... ) array([[ 0.]]) >>> dot_product_normalized( ... numpy.array([[ 1, 0]]), ... numpy.array([[ 1, 1]]), ... 2 ... ) array([[ 0.70710678]]) >>> dot_product_normalized( ... numpy.array([[ 1, 0]]), ... numpy.array([[ 1, 1]]), ... 1 ... ) array([[ 0.5]]) >>> dot_product_normalized( ... numpy.array([[ True, False]]), ... numpy.array([[ True, True]]), ... 2 ... ) array([[ 0.70710678]]) >>> dot_product_normalized( ... numpy.array([[ True, False]]), ... numpy.array([[ True, True]]), ... 1 ... ) array([[ 0.5]]) >>> dot_product_normalized( ... numpy.arange(6).reshape((2,3)), ... numpy.arange(5, 17).reshape((4,3)), ... 2 ... ) array([[ 0.85280287, 0.82857143, 0.8157437 , 0.80782729], [ 0.9978158 , 0.99385869, 0.99111258, 0.98921809]])
625941ba627d3e7fe0d68ce0
def copy(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> bounds = [x for x in self.boundingbox] <NEW_LINE> return TextBlock(self.text,bounds) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> raise Exception("Unable to copy textbox")
Return a deep copy of TextBlock Returns: Copy TextBlock (TextBlock): New Copied TextBlock
625941baec188e330fd5a637
def find_le(self, a, x): <NEW_LINE> <INDENT> i = bisect_right(a, x) <NEW_LINE> if i: <NEW_LINE> <INDENT> return a[i-1] <NEW_LINE> <DEDENT> raise ValueError
Find rightmost value less than or equal to x
625941ba462c4b4f79d1d562
def __init__(self, images, labels, seed=None): <NEW_LINE> <INDENT> seed1, seed2 = random_seed.get_seed(seed) <NEW_LINE> np.random.seed(seed1 if seed is None else seed2) <NEW_LINE> assert images.shape[0] == labels.shape[0], ( 'images.shape: %s labels.shape: %s' % (images.shape, labels.shape)) <NEW_LINE> self._num_examples = images.shape[0] <NEW_LINE> images = images.reshape(images.shape[0], images.shape[1] * images.shape[2]) <NEW_LINE> images = images.astype(np.float32) <NEW_LINE> self._images = images <NEW_LINE> self._labels = labels <NEW_LINE> self._epochs_completed = 0 <NEW_LINE> self._index_in_epoch = 0
Construct a DataSet. one_hot arg is used only if fake_data is true. `dtype` can be either `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into `[0, 1]`. Seed arg provides for convenient deterministic testing.
625941bad99f1b3c44c67427
@login_required <NEW_LINE> def change_profile(request): <NEW_LINE> <INDENT> profile = UserProfile.get_or_create_profile(request.user) <NEW_LINE> if request.method == "GET": <NEW_LINE> <INDENT> user_form = UserForm(instance=request.user) <NEW_LINE> pass_change_form = PasswordChangeForm(request.user) <NEW_LINE> if profile.is_net_admin: <NEW_LINE> <INDENT> admin_form = AdminProfileForm(instance=request.user.get_profile()) <NEW_LINE> <DEDENT> <DEDENT> elif request.method == "POST": <NEW_LINE> <INDENT> user_form = UserForm(request.POST, instance=request.user) <NEW_LINE> valid1 = user_form.is_valid() <NEW_LINE> if profile.is_net_admin: <NEW_LINE> <INDENT> admin_form = AdminProfileForm(request.POST, instance=request.user.get_profile()) <NEW_LINE> valid3 = admin_form.is_valid() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> valid3 = True <NEW_LINE> <DEDENT> if (request.POST['old_password']!=""): <NEW_LINE> <INDENT> pass_change_form = PasswordChangeForm(request.user, request.POST) <NEW_LINE> valid2 = pass_change_form.is_valid() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> pass_change_form = PasswordChangeForm(request.user) <NEW_LINE> valid2 = True <NEW_LINE> <DEDENT> if (valid1 and valid2 and valid3): <NEW_LINE> <INDENT> user_form.save() <NEW_LINE> if (request.POST['old_password']!=""): <NEW_LINE> <INDENT> pass_change_form.save() <NEW_LINE> <DEDENT> if profile.is_net_admin: <NEW_LINE> <INDENT> admin_form.save() <NEW_LINE> <DEDENT> return HttpResponseRedirect("/dashboard") <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> return HttpResponseNotAllowed("GET", "POST") <NEW_LINE> <DEDENT> if (profile.is_net_admin): <NEW_LINE> <INDENT> return simple.direct_to_template(request, template = 'openflow/optin_manager/users/change_profile_admin.html', extra_context = { 'user_form':user_form, 'pass_form':pass_change_form, 'admin_form':admin_form } ) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return simple.direct_to_template(request, template = 'openflow/optin_manager/users/change_profile_user.html', extra_context = { 'user_form':user_form, 'pass_form':pass_change_form, } )
The view function to change profile information for a user or admin.
625941ba090684286d50eb72
def merge(*iterables, **kwargs): <NEW_LINE> <INDENT> key = kwargs.pop('key', lambda a: a) <NEW_LINE> reverse = kwargs.pop('reverse', False) <NEW_LINE> min_or_max = max if reverse else min <NEW_LINE> peekables = [peekable(it) for it in iterables] <NEW_LINE> peekables = [p for p in peekables if p] <NEW_LINE> while peekables: <NEW_LINE> <INDENT> _, p = min_or_max((key(p.peek()), p) for p in peekables) <NEW_LINE> yield p.next() <NEW_LINE> peekables = [p for p in peekables if p]
Return an iterable ordered merge of the already-sorted items from each of `iterables`, compared by kwarg `key`. If reverse=True is passed, iterables must return their results in descending order rather than ascending.
625941bab830903b967e97a8
def test_empty_with_metadata(): <NEW_LINE> <INDENT> dict_undict_loops({ 'contents': {}, 'metadata': 'Fake metadata', })
Test empty tree with metadata.
625941bae1aae11d1e749b46
def get_table_ovs_ports(self): <NEW_LINE> <INDENT> raise UIException("Method isn't implemented")
Get OvsPorts table. Returns: list[dict]: table (list of dictionaries)) Examples:: env.switch[1].ui.get_table_ovs_ports()
625941ba0c0af96317bb807b
def blink(self, device_uuid=None, app_id=None): <NEW_LINE> <INDENT> return self._do_command( '{0}/blink'.format(self.SUPERVISOR_API_VERSION), device_uuid=device_uuid, app_id=app_id, method='POST' )
Start a blink pattern on a LED for 15 seconds. This is the same with `balena.models.device.identify()`. No need to set device_uuid and app_id if command is sent to the API on device. Args: device_uuid (Optional[str]): device uuid. app_id (Optional[str]): application id. Raises: InvalidOption: if the endpoint is balena API proxy endpoint and device_uuid or app_id is not specified. Examples: >>> balena.models.supervisor.blink(device_uuid='8f66ec7335267e7cc7999ca9eec029a01ea7d823214c742ace5cfffaa21be3', app_id='9020') 'OK'
625941ba7b25080760e392ec
def save(self): <NEW_LINE> <INDENT> if self.id is None: <NEW_LINE> <INDENT> raise ObjectHasNoId <NEW_LINE> <DEDENT> self._commit() <NEW_LINE> return self
Сохранить изменения
625941ba1b99ca400220a942
def exception(self, msg, *args, exc_info=True, **kwargs): <NEW_LINE> <INDENT> self.error(msg, *args, exc_info=exc_info, **kwargs)
Convenience method for logging an ERROR with exception information.
625941ba82261d6c526ab334
def execute(self): <NEW_LINE> <INDENT> configurator = get_configurator(self.params.config, storage_path=self.params.storage, include_config_dirs=True) <NEW_LINE> cluster_name = self.params.cluster <NEW_LINE> try: <NEW_LINE> <INDENT> cluster = configurator.load_cluster(cluster_name) <NEW_LINE> if self.params.update: <NEW_LINE> <INDENT> cluster.update() <NEW_LINE> <DEDENT> <DEDENT> except (ClusterNotFound, ConfigurationError) as ex: <NEW_LINE> <INDENT> log.error("Listing nodes from cluster %s: %s\n" % (cluster_name, ex)) <NEW_LINE> return <NEW_LINE> <DEDENT> if self.params.pretty_json: <NEW_LINE> <INDENT> print(json.dumps(cluster, default=dict, indent=4)) <NEW_LINE> <DEDENT> elif self.params.json: <NEW_LINE> <INDENT> print(json.dumps(cluster, default=dict)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print(cluster_summary(cluster)) <NEW_LINE> for cls in cluster.nodes: <NEW_LINE> <INDENT> print("%s nodes:" % cls) <NEW_LINE> print("") <NEW_LINE> for node in cluster.nodes[cls]: <NEW_LINE> <INDENT> txt = [" " + i for i in node.pprint().splitlines()] <NEW_LINE> print(' - ' + str.join("\n", txt)[4:]) <NEW_LINE> print("")
Lists all nodes within the specified cluster with certain information like id and ip.
625941ba5e10d32532c5edc0
def _get_provider_for_router(self, context, router_id): <NEW_LINE> <INDENT> driver_name = self._stm.get_provider_names_by_resource_ids( context, [router_id]).get(router_id) <NEW_LINE> if not driver_name: <NEW_LINE> <INDENT> router = self.l3_plugin.get_router(context, router_id) <NEW_LINE> driver = self._attrs_to_driver(router) <NEW_LINE> driver_name = driver.name <NEW_LINE> self._stm.add_resource_association(context, 'L3_ROUTER_NAT', driver_name, router_id) <NEW_LINE> <DEDENT> return self.drivers[driver_name]
Return the provider driver handle for a router id.
625941ba21bff66bcd6847e7
def SleepUntilHistogramHasEntry(self, histogram_name, sleep_intervals=10): <NEW_LINE> <INDENT> histogram = {} <NEW_LINE> while(not histogram and sleep_intervals > 0): <NEW_LINE> <INDENT> histogram = self.GetHistogram(histogram_name, 5) <NEW_LINE> if (not histogram): <NEW_LINE> <INDENT> time.sleep(1) <NEW_LINE> sleep_intervals -= 1 <NEW_LINE> <DEDENT> <DEDENT> return bool(histogram)
Polls if a histogram exists in 1-6 second intervals for 10 intervals. Allows script to run with a timeout of 5 seconds, so the default behavior allows up to 60 seconds until timeout. Args: histogram_name: The name of the histogram to wait for sleep_intervals: The number of polling intervals, each polling cycle takes no more than 6 seconds. Returns: Whether the histogram exists
625941ba3539df3088e2e1dd
def _build_class(class_name, classes): <NEW_LINE> <INDENT> if not isinstance(classes, (list, tuple)): <NEW_LINE> <INDENT> classes = (classes, ) <NEW_LINE> <DEDENT> return type(class_name, tuple(import_obj(c) for c in classes), {})
Import all classes from the parameter and then build a new class with the given name. :param class_name: the name for the new class :param classes: one ore more Classes to build the new class out of
625941bafbf16365ca6f604f
def resco_12_hrs(read_sheet, dummy1, row, col): <NEW_LINE> <INDENT> data = read_sheet.cell_value(row, col) <NEW_LINE> return data
This function returns an integer which aligns with the number of hours worked associated with the call. :param read_sheet: The active .xlsx sheet defined by xlrd. :type read_sheet: object :param dummy1: Unused variable. :type dummy1: null :param row: The data row that is being scraped. :type row: integer :param col: The data column that is being scraped. :type col: integer :return: The number of hours worked in the call. :rtype: integer
625941ba9b70327d1c4e0c66
def gainFocus(self, previous, previous_name, text="", *args, **kwargs): <NEW_LINE> <INDENT> self.old_state = previous <NEW_LINE> self.old_state_name = previous_name <NEW_LINE> self.ui = ui.UI(96, 208) <NEW_LINE> self.txtbox = ui.ScrollText(16, 8, 256, 33, text, 0.15) <NEW_LINE> self.ui.add(self.txtbox) <NEW_LINE> self.ui.add(ui.Button(287, 37, "", self.scroll))
What should be done when the state gets focus. Previous is the state that had focus before this one.
625941bab545ff76a8913cb0
def get_all_conversations(self,messages_dir): <NEW_LINE> <INDENT> conversations=[] <NEW_LINE> dirs=[convo for convo in os.listdir(messages_dir) if os.path.isdir(messages_dir+"/"+convo)==True] <NEW_LINE> for d in dirs: <NEW_LINE> <INDENT> files=[x for x in os.listdir(messages_dir+"/"+d) if os.path.isfile(messages_dir+"/"+d+"/"+x)==True] <NEW_LINE> try: <NEW_LINE> <INDENT> if re.search(r'message(_\d+)?\.json', files[0]): <NEW_LINE> <INDENT> self.message_filename = files[0] <NEW_LINE> conversations.append(d) <NEW_LINE> <DEDENT> <DEDENT> except: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> <DEDENT> return conversations
:params message_dir: The location of the directory :returns: a list of all the directory i.e conversations Returns a list of all the converstaion that has taken place.
625941ba8a349b6b435e8006
def forward(self, x, mask_matrix): <NEW_LINE> <INDENT> B, L, C = x.shape <NEW_LINE> H, W = self.H, self.W <NEW_LINE> assert L == H * W, "input feature has wrong size" <NEW_LINE> shortcut = x <NEW_LINE> x = self.norm1(x) <NEW_LINE> x = x.view(B, H, W, C) <NEW_LINE> pad_l = pad_t = 0 <NEW_LINE> pad_r = (self.window_size - W % self.window_size) % self.window_size <NEW_LINE> pad_b = (self.window_size - H % self.window_size) % self.window_size <NEW_LINE> x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) <NEW_LINE> _, Hp, Wp, _ = x.shape <NEW_LINE> if self.shift_size > 0: <NEW_LINE> <INDENT> shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) <NEW_LINE> attn_mask = mask_matrix <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> shifted_x = x <NEW_LINE> attn_mask = None <NEW_LINE> <DEDENT> x_windows = window_partition(shifted_x, self.window_size) <NEW_LINE> x_windows = x_windows.view(-1, self.window_size * self.window_size, C) <NEW_LINE> attn_windows = self.attn(x_windows, mask=attn_mask) <NEW_LINE> attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) <NEW_LINE> shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) <NEW_LINE> if self.shift_size > 0: <NEW_LINE> <INDENT> x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> x = shifted_x <NEW_LINE> <DEDENT> if pad_r > 0 or pad_b > 0: <NEW_LINE> <INDENT> x = x[:, :H, :W, :].contiguous() <NEW_LINE> <DEDENT> x = x.view(B, H * W, C) <NEW_LINE> x = shortcut + self.drop_path(x) <NEW_LINE> x = x + self.drop_path(self.mlp(self.norm2(x))) <NEW_LINE> return x
Forward function. Args: x: Input feature, tensor size (B, H*W, C). H, W: Spatial resolution of the input feature. mask_matrix: Attention mask for cyclic shift.
625941ba66656f66f7cbc03c
def numJewelsInStones(J, S): <NEW_LINE> <INDENT> d = Counter(J) <NEW_LINE> count = 0 <NEW_LINE> for char in S: <NEW_LINE> <INDENT> if char in d: <NEW_LINE> <INDENT> count += 1 <NEW_LINE> <DEDENT> <DEDENT> return count
:type J: str :type S: str :rtype: int
625941ba4a966d76dd550e9e
def download_photo(): <NEW_LINE> <INDENT> return response.download(request, db)
This action downloads a photo to be shown on screen.
625941ba57b8e32f52483332
def get_euclid_distance_to(self, atom): <NEW_LINE> <INDENT> return linalg.norm(self.get_coords() - atom.get_coords())
Gets the euclid distance from this atom to the given atom. Returns ------- distance : float the distance from this atom to the diven atom
625941bad10714528d5ffb72
def test_norm_vector(self): <NEW_LINE> <INDENT> desc = CoulombMatrix(n_atoms_max=5, permutation="random", sigma=100, flatten=False) <NEW_LINE> cm = desc.create(H2O) <NEW_LINE> self.assertEqual(len(cm), 5) <NEW_LINE> self.assertEqual(len(desc._norm_vector), 3) <NEW_LINE> cm = desc.create(H2O) <NEW_LINE> self.assertEqual(len(cm), 5)
Tests if the attribute _norm_vector is written and used correctly
625941baa4f1c619b28afed3
def export_getOverallStatus( self ): <NEW_LINE> <INDENT> return InstallTools.getOverallStatus( getCSExtensions() )
Get the complete status information for the components in the given list
625941ba293b9510aa2c312b
def get_registry_value(self, registry_path): <NEW_LINE> <INDENT> self.ready_event.wait() <NEW_LINE> ret = self.__post_and_wait("reg query value", registry_path) <NEW_LINE> return ret.get('value', None)
Retrieve the data from a registry value.
625941bad8ef3951e32433cf
def test_exp_then_log_right(self): <NEW_LINE> <INDENT> for metric in [self.metrics['right_canonical'], self.metrics['right_diag']]: <NEW_LINE> <INDENT> for base_point_type in self.elements: <NEW_LINE> <INDENT> base_point = self.elements[base_point_type] <NEW_LINE> for element_type in self.elements: <NEW_LINE> <INDENT> if element_type in self.angles_close_to_pi: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> tangent_vec = self.elements[element_type] <NEW_LINE> result = helper.exp_then_log( metric=metric, tangent_vec=tangent_vec, base_point=base_point) <NEW_LINE> expected = self.group.regularize_tangent_vec( tangent_vec=tangent_vec, base_point=base_point, metric=metric)
Test that the riemannian left exponential and the riemannian left logarithm are inverse. Expect their composition to give the identity function.
625941ba498bea3a759b9943
def GetFriendlyName(self): <NEW_LINE> <INDENT> if hasattr(self, 'NAME'): <NEW_LINE> <INDENT> return self.NAME <NEW_LINE> <DEDENT> return 'unknown thread'
Returns a human-friendly description of the thread.
625941ba0a50d4780f666d21
def _initialize(self, resource = None, id_query = False, reset = False, **keywargs): <NEW_LINE> <INDENT> super(toellner8840_50, self)._initialize(resource, id_query, reset, **keywargs) <NEW_LINE> if self._interface is not None: <NEW_LINE> <INDENT> if 'xonxoff' in self._interface.__dict__: <NEW_LINE> <INDENT> self._interface.xonxoff = True <NEW_LINE> self._interface.update_settings() <NEW_LINE> <DEDENT> <DEDENT> if id_query and not self._driver_operation_simulate: <NEW_LINE> <INDENT> id = self.identity.instrument_model <NEW_LINE> id_check = self._instrument_id <NEW_LINE> id_short = id[:len(id_check)] <NEW_LINE> if id_short != id_check: <NEW_LINE> <INDENT> raise Exception("Instrument ID mismatch, expecting %s, got %s", id_check, id_short) <NEW_LINE> <DEDENT> <DEDENT> if reset: <NEW_LINE> <INDENT> self.utility_reset() <NEW_LINE> <DEDENT> result = self._write('system:remote')
Opens an I/O session to the instrument.
625941ba4428ac0f6e5ba684
def unsqueeze(input, axes, name=None): <NEW_LINE> <INDENT> helper = LayerHelper("unsqueeze", **locals()) <NEW_LINE> out = helper.create_variable_for_type_inference(dtype=input.dtype) <NEW_LINE> x_shape = helper.create_variable_for_type_inference(dtype=input.dtype) <NEW_LINE> helper.append_op( type="unsqueeze2", inputs={"X": input}, attrs={"axes": axes}, outputs={"Out": out, "XShape": x_shape}) <NEW_LINE> return out
Insert single-dimensional entries to the shape of a tensor. Takes one required argument axes, a list of dimensions that will be inserted. Dimension indices in axes are as seen in the output tensor. For example: .. code-block:: text Given a tensor such that tensor with shape [3, 4, 5], then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1]. Args: input (Variable): The input variable to be unsqueezed. axes (list): List of integers, indicating the dimensions to be inserted. name (str|None): Name for this layer. Returns: Variable: Output unsqueezed variable. Examples: .. code-block:: python import paddle.fluid as fluid x = fluid.layers.data(name='x', shape=[5, 10]) y = fluid.layers.unsqueeze(input=x, axes=[1])
625941ba0fa83653e4656e4f
def _do_delete(self, subject_id=None, object_id=None, predicate=None): <NEW_LINE> <INDENT> affected_rels = self._get_relationships_from_criteria(subject_id, object_id, predicate).all() <NEW_LINE> tables = [schema.ObjectFromSubject, schema.SubjectFromObject] <NEW_LINE> with BatchQuery() as batch: <NEW_LINE> <INDENT> for affected_rel in affected_rels: <NEW_LINE> <INDENT> for table in tables: <NEW_LINE> <INDENT> table.objects(subject_id=affected_rel.subject_id, object_id=affected_rel.object_id, predicate=affected_rel.predicate).batch(batch).delete()
Given one or more criteria, delete all matching Relationships from the DAO's backend. This does not affect records, data, etc. Only Relationships. :raise ValueError: if no criteria are specified.
625941baad47b63b2c509e1b
def test_partial(partial_author): <NEW_LINE> <INDENT> assert partial_author.name == "John Doe" <NEW_LINE> assert partial_author.user.username == "[email protected]"
Test fixture partial specialization.
625941ba30c21e258bdfa32d
def default(self, obj): <NEW_LINE> <INDENT> if isinstance(obj, trans.app.model.HistoryDatasetAssociation): <NEW_LINE> <INDENT> rval = { "__HistoryDatasetAssociation__": True, "create_time": obj.create_time.__str__(), "update_time": obj.update_time.__str__(), "hid": obj.hid, "name": to_unicode(obj.name), "info": to_unicode(obj.info), "blurb": obj.blurb, "peek": obj.peek, "extension": obj.extension, "metadata": prepare_metadata(dict(obj.metadata.items())), "parent_id": obj.parent_id, "designation": obj.designation, "deleted": obj.deleted, "visible": obj.visible, "file_name": obj.file_name, "uuid": (lambda uuid: str(uuid) if uuid else None)(obj.dataset.uuid), "annotation": to_unicode(getattr(obj, 'annotation', '')), "tags": get_item_tag_dict(obj), "extra_files_path": obj.extra_files_path } <NEW_LINE> if not obj.visible and not include_hidden: <NEW_LINE> <INDENT> rval['exported'] = False <NEW_LINE> <DEDENT> elif obj.deleted and not include_deleted: <NEW_LINE> <INDENT> rval['exported'] = False <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> rval['exported'] = True <NEW_LINE> <DEDENT> return rval <NEW_LINE> <DEDENT> return json.JSONEncoder.default(self, obj)
Encode an HDA, default encoding for everything else.
625941ba8c0ade5d55d3e852
def iter_headers(self): <NEW_LINE> <INDENT> return self.headerlist
Yield (header, value) tuples, skipping headers that are not allowed with the current response status code.
625941bab5575c28eb68de90
def test_resources_attribute_is_not_list(self): <NEW_LINE> <INDENT> new_task = Task(**self.kwargs) <NEW_LINE> with pytest.raises(TypeError) as cm: <NEW_LINE> <INDENT> new_task.resources = "a resource" <NEW_LINE> <DEDENT> assert str(cm.value) == 'Incompatible collection type: str is not list-like'
testing if a TypeError will be raised when the resources attribute is set to any other value then a list
625941ba377c676e9127203d
def load_config_from_file(self, config_path): <NEW_LINE> <INDENT> self._config_path = config_path <NEW_LINE> with open(r'{}'.format(self._config_path)) as file: <NEW_LINE> <INDENT> self._config = yaml.load(file, Loader=yaml.FullLoader) <NEW_LINE> <DEDENT> self._parse_params() <NEW_LINE> self._create_output_dirs()
Loads configuration from a file
625941ba4f88993c3716bf06
def version_setter(self, new_version): <NEW_LINE> <INDENT> pass
You must implement this method in your class
625941ba30bbd722463cbc55
def players_turn(): <NEW_LINE> <INDENT> return _gamestate.players_turn
This function returns True if it is the player's turn, Flase if its not.
625941ba38b623060ff0ac81
def _import_record(self, record_id, **kwargs): <NEW_LINE> <INDENT> return super(SaleOrderBatchImport, self)._import_record( record_id, max_retries=0, priority=5)
Import the record directly
625941baab23a570cc250012
def max(values): <NEW_LINE> <INDENT> return builtins.max(values)
Given a sequence of values, returns the greatest value in the sequence, also known as the "max" value. Returns NaN (Not a Number) if passed an empty sequence. Args: values: A Sequence of numerical values. Accepts both Integers and Floats. The sequence may not contain None type values. However, passing a None type object instead of a Sequence of numerical values will return NaN. Returns: The maximum value contained in the values parameter, or NaN if the input was empty or null.
625941ba8e7ae83300e4ae5e
def findDuplicate3(self, nums): <NEW_LINE> <INDENT> slow = nums[0] <NEW_LINE> fast = nums[slow] <NEW_LINE> while fast != slow: <NEW_LINE> <INDENT> slow = nums[slow] <NEW_LINE> fast = nums[nums[fast]] <NEW_LINE> <DEDENT> fast = 0 <NEW_LINE> while fast != slow: <NEW_LINE> <INDENT> fast = nums[fast] <NEW_LINE> slow = nums[slow] <NEW_LINE> <DEDENT> return slow
:type nums: List[int] :rtype: int
625941ba6e29344779a624a8
def get_value(self, pos): <NEW_LINE> <INDENT> x, y = pos <NEW_LINE> return self.matrix[x][y]
给出矩阵特定位置的值 :param pos: [x, y] :return: [a, b, cn],其中,a表示格子产出,b表示各自是否有个体占据,cn定义同上
625941ba26068e7796caeb6c
def create(self, transaction, prec, succs=(), flag=0, parents=None, date=None, metadata=None): <NEW_LINE> <INDENT> if metadata is None: <NEW_LINE> <INDENT> metadata = {} <NEW_LINE> <DEDENT> if date is None: <NEW_LINE> <INDENT> if 'date' in metadata: <NEW_LINE> <INDENT> date = util.parsedate(metadata.pop('date')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> date = util.makedate() <NEW_LINE> <DEDENT> <DEDENT> if len(prec) != 20: <NEW_LINE> <INDENT> raise ValueError(prec) <NEW_LINE> <DEDENT> for succ in succs: <NEW_LINE> <INDENT> if len(succ) != 20: <NEW_LINE> <INDENT> raise ValueError(succ) <NEW_LINE> <DEDENT> <DEDENT> if prec in succs: <NEW_LINE> <INDENT> raise ValueError(_('in-marker cycle with %s') % node.hex(prec)) <NEW_LINE> <DEDENT> metadata = tuple(sorted(metadata.iteritems())) <NEW_LINE> marker = (str(prec), tuple(succs), int(flag), metadata, date, parents) <NEW_LINE> return bool(self.add(transaction, [marker]))
obsolete: add a new obsolete marker * ensuring it is hashable * check mandatory metadata * encode metadata If you are a human writing code creating marker you want to use the `createmarkers` function in this module instead. return True if a new marker have been added, False if the markers already existed (no op).
625941bafff4ab517eb2f2cc