code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def write(self, outfile='geom.xyz', label=True, style='xyz'): <NEW_LINE> <INDENT> out = '' <NEW_LINE> if style == 'xyz': <NEW_LINE> <INDENT> if label: <NEW_LINE> <INDENT> out += f'{len(self)}\n\n' <NEW_LINE> <DEDENT> out += f'{self}' <NEW_LINE> <DEDENT> elif style == 'latex': <NEW_LINE> <INDENT> header = f'{len(self)}\\\\\n' <NEW_LINE> line_form = '{:<2}' + ' {:> 13.6f}' * 3 <NEW_LINE> atoms = [line_form.format(atom, *xyz) for atom, xyz in self] <NEW_LINE> atoms = '\n'.join(atoms) <NEW_LINE> out = '\\begin{verbatim}\n' + atoms + '\n\\end{verbatim}' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise SyntaxError('Invalid style') <NEW_LINE> <DEDENT> with open(outfile, 'w') as f: <NEW_LINE> <INDENT> f.write(out) | Writes the geometry to the specified file
Prints the size at the beginning if desired (to conform to XYZ format) | 625941b592d797404e303f8c |
def get(self, path, params=None): <NEW_LINE> <INDENT> params = params or {} <NEW_LINE> params = dict((k, _clean(v)) for k,v in params.iteritems()) <NEW_LINE> _log.debug("Calling %s with params=%r", path, params) <NEW_LINE> if self.api_key: <NEW_LINE> <INDENT> _log.debug("keyID and vCode added") <NEW_LINE> params['keyID'] = self.api_key[0] <NEW_LINE> params['vCode'] = self.api_key[1] <NEW_LINE> <DEDENT> key = self._cache_key(path, params) <NEW_LINE> cached_result = self.cache.get(key) <NEW_LINE> if cached_result is not None: <NEW_LINE> <INDENT> if isinstance(cached_result, APIError): <NEW_LINE> <INDENT> _log.error("Raising cached error: %r" % cached_result) <NEW_LINE> raise cached_result <NEW_LINE> <DEDENT> _log.debug("Cache hit, returning cached payload") <NEW_LINE> return cached_result <NEW_LINE> <DEDENT> params = urlencode(params) <NEW_LINE> full_path = "https://%s/%s.xml.aspx" % (self.base_url, path) <NEW_LINE> response = self.send_request(full_path, params) <NEW_LINE> tree = ElementTree.parse(response) <NEW_LINE> current_time = get_ts_value(tree, 'currentTime') <NEW_LINE> expires_time = get_ts_value(tree, 'cachedUntil') <NEW_LINE> error = tree.find('error') <NEW_LINE> if error is not None: <NEW_LINE> <INDENT> code = error.attrib['code'] <NEW_LINE> message = error.text.strip() <NEW_LINE> exc = APIError(code, message) <NEW_LINE> self.cache.put(key, exc, expires_time - current_time) <NEW_LINE> _log.error("Raising API error: %r" % exc) <NEW_LINE> raise exc <NEW_LINE> <DEDENT> result = tree.find('result') <NEW_LINE> self.cache.put(key, result, expires_time - current_time) <NEW_LINE> return result | Request a specific path from the EVE API.
The supplied path should be a slash-separated path
frament, e.g. "corp/AssetList". (Basically, the portion
of the API url in between the root / and the .xml bit.) | 625941b56aa9bd52df036ba4 |
def contrast_stretch(I, N): <NEW_LINE> <INDENT> T_up = 254 <NEW_LINE> T_low = 1 <NEW_LINE> for i in range(N): <NEW_LINE> <INDENT> if I.max()<T_up: <NEW_LINE> <INDENT> G_max = I.max() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> G_max = T_up <NEW_LINE> <DEDENT> if I.min()>T_low: <NEW_LINE> <INDENT> G_min = I.min() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> G_min = T_low <NEW_LINE> <DEDENT> Gain = T_up/G_max <NEW_LINE> Offset = G_min*Gain <NEW_LINE> I = I*Gain - Offset*np.ones_like(I) <NEW_LINE> <DEDENT> return I | contrast_stretch(I,N)
where I is BW image matrix and N is a integer.
Carries out contrast enhancement of the image using the method described
in the paper by L.Chen et al(2013) :
'An effective image segmentation method for noisy low-contrast unbalanced
background in Mura defects using balanced discrete-cosine-transfer (BDCT)' | 625941b5dd821e528d63afad |
def _execute_multi_specific(self): <NEW_LINE> <INDENT> raise NotImplementedError | Operations specific for particular command dealing with multiple todo
IDs. | 625941b5d99f1b3c44c6739a |
def process_split( self, split, indexers, model_preprocessing_interface ) -> Iterable[Type[Instance]]: <NEW_LINE> <INDENT> def _make_instance(passage, question, answer, label, par_idx, qst_idx, ans_idx): <NEW_LINE> <INDENT> d = {} <NEW_LINE> d["psg_str"] = MetadataField(" ".join(passage)) <NEW_LINE> d["qst_str"] = MetadataField(" ".join(question)) <NEW_LINE> d["ans_str"] = MetadataField(" ".join(answer)) <NEW_LINE> d["psg_idx"] = MetadataField(par_idx) <NEW_LINE> d["qst_idx"] = MetadataField(qst_idx) <NEW_LINE> d["ans_idx"] = MetadataField(ans_idx) <NEW_LINE> d["idx"] = MetadataField(ans_idx) <NEW_LINE> if model_preprocessing_interface.model_flags["uses_pair_embedding"]: <NEW_LINE> <INDENT> inp = model_preprocessing_interface.boundary_token_fn(para, question + answer) <NEW_LINE> d["psg_qst_ans"] = sentence_to_text_field(inp, indexers) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> d["psg"] = sentence_to_text_field( model_preprocessing_interface.boundary_token_fn(passage), indexers ) <NEW_LINE> d["qst"] = sentence_to_text_field( model_preprocessing_interface.boundary_token_fn(question), indexers ) <NEW_LINE> d["ans"] = sentence_to_text_field( model_preprocessing_interface.boundary_token_fn(answer), indexers ) <NEW_LINE> <DEDENT> d["label"] = LabelField(label, label_namespace="labels", skip_indexing=True) <NEW_LINE> return Instance(d) <NEW_LINE> <DEDENT> for example in split: <NEW_LINE> <INDENT> par_idx = example["idx"] <NEW_LINE> para = example["passage"]["text"] <NEW_LINE> for ex in example["passage"]["questions"]: <NEW_LINE> <INDENT> qst_idx = ex["idx"] <NEW_LINE> question = ex["question"] <NEW_LINE> for answer in ex["answers"]: <NEW_LINE> <INDENT> ans_idx = answer["idx"] <NEW_LINE> ans = answer["text"] <NEW_LINE> label = int(answer["label"]) if "label" in answer else 0 <NEW_LINE> yield _make_instance(para, question, ans, label, par_idx, qst_idx, ans_idx) | Process split text into a list of AllenNLP Instances. | 625941b5bf627c535bc12fd9 |
def __init__(self, state_size, action_size, seed): <NEW_LINE> <INDENT> super(QNetwork, self).__init__() <NEW_LINE> self.seed = torch.manual_seed(seed) <NEW_LINE> self.state_size = state_size <NEW_LINE> self.action_size = action_size <NEW_LINE> self.fc1 = nn.Linear(self.state_size, 64) <NEW_LINE> self.fc2 = nn.Linear(64, 64) <NEW_LINE> self.fc3 = nn.Linear(64, self.action_size) | Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed | 625941b5baa26c4b54cb0f26 |
def __resolveRelativeImport(importObj, basePath, result): <NEW_LINE> <INDENT> if basePath is None: <NEW_LINE> <INDENT> result.append(ImportResolution(importObj, None, False, None, None, "Could not resolve 'from " + importObj.name + " import ...' at line " + str(importObj.line) + " because the editing buffer has not been saved yet")) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> path = basePath <NEW_LINE> current = importObj.name[1:] <NEW_LINE> error = False <NEW_LINE> while current.startswith('.'): <NEW_LINE> <INDENT> if not path: <NEW_LINE> <INDENT> error = True <NEW_LINE> break <NEW_LINE> <DEDENT> current = current[1:] <NEW_LINE> path = os.path.dirname(path) <NEW_LINE> <DEDENT> if error: <NEW_LINE> <INDENT> result.append(ImportResolution(importObj, None, False, None, None, "Could not resolve 'from " + importObj.name + " import ...' at line " + str(importObj.line))) <NEW_LINE> return <NEW_LINE> <DEDENT> if not path: <NEW_LINE> <INDENT> path = os.path.sep <NEW_LINE> <DEDENT> oldSysPath = sys.path <NEW_LINE> sys.path = [path] <NEW_LINE> __resolveFrom(importObj, current, path, result) <NEW_LINE> sys.path = oldSysPath | Resolves imports like: 'from ..x import y' | 625941b57d847024c06be0c2 |
def time2year(self, t): <NEW_LINE> <INDENT> time = self.ds.variables['time'] <NEW_LINE> if type(t) == np.int: <NEW_LINE> <INDENT> return num2date(t, time.units).year <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return np.asarray([y.year for y in np.asarray(num2date(t, time.units))]) | convert time to year | 625941b5046cf37aa974cb4d |
def prep_level(self): <NEW_LINE> <INDENT> self.level_image = self.font.render(str(self.stats.level), True, self.text_color, self.ai_settings.bg_color) <NEW_LINE> self.level_rect = self.level_image.get_rect() <NEW_LINE> self.level_rect.right = self.screen_rect.right <NEW_LINE> self.level_rect.top =self.score_rect.bottom + 10 | 将等级转换为渲染的图像 | 625941b545492302aab5e0c2 |
def __init__(self, charge): <NEW_LINE> <INDENT> self.charge = charge <NEW_LINE> self.rs = None <NEW_LINE> self.volume = None <NEW_LINE> self.mask_g = None <NEW_LINE> self.gd = None | Initialize the Jellium object
Input: charge, the total Jellium background charge. | 625941b5462c4b4f79d1d4d2 |
def on_token_auto_refreshed(self, access_token): <NEW_LINE> <INDENT> with self.lock: <NEW_LINE> <INDENT> self.access_token = access_token | Called after the access token is refreshed (requests-oauthlib
can automatically refresh tokens if given an OAuth client ID and
secret, so this is how our copy of the token stays up-to-date).
Applications that cache access tokens can override this to store
the new token - just remember to call the super() method!
:param access_token: New token obtained by refreshing | 625941b57cff6e4e81117788 |
def get_css_classes(self): <NEW_LINE> <INDENT> css_classes = set(self.default_css_classes) <NEW_LINE> if self.is_required: <NEW_LINE> <INDENT> css_classes.add('required') <NEW_LINE> <DEDENT> return css_classes | Returns the list of CSS classes to apply to the element.
By default, this will include the contents of ``default_css_classes``,
and ``required`` if it's a required field.
This can be overridden to provide additional CSS classes, if they're
not appropraite for ``default_css_classes``. | 625941b597e22403b379cd9b |
def convert_package_name_or_id_to_title_or_name(package_name_or_id, context): <NEW_LINE> <INDENT> session = context['session'] <NEW_LINE> result = session.query(model.Package).filter_by( id=package_name_or_id).first() <NEW_LINE> if not result: <NEW_LINE> <INDENT> result = session.query(model.Package).filter_by( name=package_name_or_id).first() <NEW_LINE> <DEDENT> if not result: <NEW_LINE> <INDENT> raise df.Invalid('%s: %s' % (_('Not found'), _('Dataset'))) <NEW_LINE> <DEDENT> return result.title or result.name | Return the package title, or name if no title, for the given package name
or id.
:returns: the name of the package with the given name or id
:rtype: string
:raises: ckan.lib.navl.dictization_functions.Invalid if there is no
package with the given name or id | 625941b5de87d2750b85fb90 |
def __init__(self, stream_id=None, message=None, input_id=None): <NEW_LINE> <INDENT> self.swagger_types = { 'stream_id': 'str', 'message': 'object', 'input_id': 'str' } <NEW_LINE> self.attribute_map = { 'stream_id': 'stream_id', 'message': 'message', 'input_id': 'input_id' } <NEW_LINE> self._stream_id = stream_id <NEW_LINE> self._message = message <NEW_LINE> self._input_id = input_id | SimulationRequest - a model defined in Swagger
:param dict swaggerTypes: The key is attribute name
and the value is attribute type.
:param dict attributeMap: The key is attribute name
and the value is json key in definition. | 625941b5b545ff76a8913c23 |
def diffstat_for_changeset(patch_text: str) -> Dict: <NEW_LINE> <INDENT> diffstat = patch.diffstat(patch_text) <NEW_LINE> return { 'changedFiles': diffstat.files_changed, 'additions': diffstat.additions, 'deletions': diffstat.deletions, } | Calculate and return a raw patch's diffstat as JSON. | 625941b5b57a9660fec33682 |
def record(self, numframes=None): <NEW_LINE> <INDENT> if numframes is None: <NEW_LINE> <INDENT> recorded_data = [self._pending_chunk, self._record_chunk()] <NEW_LINE> self._pending_chunk = numpy.zeros([0]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> recorded_frames = len(self._pending_chunk) <NEW_LINE> recorded_data = [self._pending_chunk] <NEW_LINE> self._pending_chunk = numpy.zeros([0]) <NEW_LINE> required_frames = numframes*len(set(self.channelmap)) <NEW_LINE> while recorded_frames < required_frames: <NEW_LINE> <INDENT> chunk = self._record_chunk() <NEW_LINE> if len(chunk) == 0: <NEW_LINE> <INDENT> chunk = numpy.zeros(required_frames-recorded_frames, dtype='float32') <NEW_LINE> <DEDENT> recorded_data.append(chunk) <NEW_LINE> recorded_frames += len(chunk) <NEW_LINE> <DEDENT> if recorded_frames > required_frames: <NEW_LINE> <INDENT> to_split = -(recorded_frames-required_frames) <NEW_LINE> recorded_data[-1], self._pending_chunk = numpy.split(recorded_data[-1], [to_split]) <NEW_LINE> <DEDENT> <DEDENT> data = numpy.reshape(numpy.concatenate(recorded_data), [-1, len(set(self.channelmap))]) <NEW_LINE> return data[:, self.channelmap] | Record a block of audio data.
The data will be returned as a frames × channels float32 numpy array.
This function will wait until numframes frames have been recorded.
If numframes is given, it will return exactly `numframes` frames,
and buffer the rest for later.
If numframes is None, it will return whatever the audio backend
has available right now.
Use this if latency must be kept to a minimum, but be aware that
block sizes can change at the whims of the audio backend.
If using `record` with `numframes=None` after using `record` with a
required `numframes`, the last buffered frame will be returned along
with the new recorded block.
(If you want to empty the last buffered frame instead, use `flush`) | 625941b5293b9510aa2c309c |
def is_bool(a): <NEW_LINE> <INDENT> return isinstance(a, BoolRef) | Return `True` if `a` is a Z3 Boolean expression.
>>> p = Bool('p')
>>> is_bool(p)
True
>>> q = Bool('q')
>>> is_bool(And(p, q))
True
>>> x = Real('x')
>>> is_bool(x)
False
>>> is_bool(x == 0)
True | 625941b54f6381625f114849 |
def testComparison_009a(self): <NEW_LINE> <INDENT> quantity1 = 13 <NEW_LINE> quantity2 = ByteQuantity(quantity="12", units=UNIT_BYTES) <NEW_LINE> self.assertNotEqual(quantity1, quantity2) <NEW_LINE> self.assertTrue(not quantity1 == quantity2) <NEW_LINE> self.assertTrue(not quantity1 < quantity2) <NEW_LINE> self.assertTrue(not quantity1 <= quantity2) <NEW_LINE> self.assertTrue(quantity1 > quantity2) <NEW_LINE> self.assertTrue(quantity1 >= quantity2) <NEW_LINE> self.assertTrue(quantity1 != quantity2) | Test comparison of byte quantity to integer bytes, integer larger | 625941b51b99ca400220a8b3 |
def __mul__(self, other): <NEW_LINE> <INDENT> if not isinstance(other, Polynomial) or other.n != self.n: <NEW_LINE> <INDENT> raise ValueError <NEW_LINE> <DEDENT> d = max(len(self.coeff), len(other.coeff)) <NEW_LINE> k = (d * self.n ** 2 + 1).bit_length() <NEW_LINE> k_8 = (k - 1) // 8 + 1 <NEW_LINE> k = k_8 * 8 <NEW_LINE> bt_self = bytes.join( b"", (ai.to_bytes(k_8, byteorder="little") for ai in self.coeff) ) <NEW_LINE> t_self = int.from_bytes(bt_self, byteorder="little") <NEW_LINE> if self == other: <NEW_LINE> <INDENT> t_other = t_self <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> bt_other = bytes.join( b"", (ai.to_bytes(k_8, byteorder="little") for ai in other.coeff) ) <NEW_LINE> t_other = int.from_bytes(bt_other, byteorder="little") <NEW_LINE> <DEDENT> t_res = t_self * t_other <NEW_LINE> res = [] <NEW_LINE> bt_res = t_res.to_bytes((t_res.bit_length() - 1) // 8 + 1, byteorder="little") <NEW_LINE> i = 0 <NEW_LINE> while i < len(bt_res): <NEW_LINE> <INDENT> res.append(int.from_bytes(bt_res[i : i + k_8], byteorder="little") % self.n) <NEW_LINE> i += k_8 <NEW_LINE> <DEDENT> return Polynomial(res, self.n) | Multiplies two polynomials self and other.
Relies on fast integer multiplication in Python implementation.
Args:
other (Polynomial): Multiplier.
Raises:
ValueError: Thrown when other is not Polynomial or is incompatible.
Returns:
Polynomial: self * other. | 625941b5004d5f362079a13a |
def MaxFetch(coins): <NEW_LINE> <INDENT> num_coins = len(coins) <NEW_LINE> ans = [[0 for _ in xrange(num_coins+1)] for _ in xrange(num_coins+1)] <NEW_LINE> sides = [[None for _ in xrange(num_coins+1)] for _ in xrange(num_coins+1)] <NEW_LINE> for i in xrange(num_coins-1, -1, -1): <NEW_LINE> <INDENT> for j in xrange(i+1, num_coins+1): <NEW_LINE> <INDENT> left_pick = coins[i] + sum(coins[i+1:j]) - ans[i+1][j] <NEW_LINE> right_pick = coins[j-1] + sum(coins[i:j-1]) - ans[i][j-1] <NEW_LINE> if left_pick > right_pick: <NEW_LINE> <INDENT> ans[i][j] = left_pick <NEW_LINE> sides[i][j] = 'L' <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> ans[i][j] = right_pick <NEW_LINE> sides[i][j] = 'R' <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> return ans[0][num_coins], PickPath(coins, sides, 0, num_coins) | http://leetcode.com/2011/02/coins-in-line.html | 625941b53346ee7daa2b2b6b |
@pytest.fixture <NEW_LINE> def signed_certificate(known_private_key, known_private_key_2): <NEW_LINE> <INDENT> subject = x509.Name( [ x509.NameAttribute(x509.oid.NameOID.COUNTRY_NAME, "DK"), x509.NameAttribute(x509.oid.NameOID.COMMON_NAME, "example.com"), ] ) <NEW_LINE> issuer = x509.Name( [ x509.NameAttribute(x509.oid.NameOID.COUNTRY_NAME, "DK"), x509.NameAttribute(x509.oid.NameOID.COMMON_NAME, "example.net"), ] ) <NEW_LINE> cert = ( x509.CertificateBuilder() .subject_name(subject) .issuer_name(issuer) .public_key(known_private_key.public_key()) .serial_number(x509.random_serial_number()) .not_valid_before(datetime.datetime.utcnow()) .not_valid_after(datetime.datetime.utcnow() + datetime.timedelta(days=90)) .add_extension( x509.SubjectAlternativeName([x509.DNSName("example.com")]), critical=False ) .sign(known_private_key_2, primitives.hashes.SHA256(), default_backend()) ) <NEW_LINE> return cert | Return a signed certificate. | 625941b5adb09d7d5db6c596 |
def get_instance(self, payload): <NEW_LINE> <INDENT> return NewFactorInstance( self._version, payload, service_sid=self._solution['service_sid'], identity=self._solution['identity'], ) | Build an instance of NewFactorInstance
:param dict payload: Payload response from the API
:returns: twilio.rest.verify.v2.service.entity.new_factor.NewFactorInstance
:rtype: twilio.rest.verify.v2.service.entity.new_factor.NewFactorInstance | 625941b53539df3088e2e14d |
def read(self, section, key): <NEW_LINE> <INDENT> f = io.open(self.filename, 'r', encoding='utf16') <NEW_LINE> self.config.read_file(f) <NEW_LINE> f.close() <NEW_LINE> if section in self.config: <NEW_LINE> <INDENT> if key in self.config[section]: <NEW_LINE> <INDENT> return self.config[section][key] <NEW_LINE> <DEDENT> <DEDENT> return '' | Read value of key in section. Return value or None if failed.
| 625941b567a9b606de4a7cc0 |
def anlaysis_nerve_plotting(track_point): <NEW_LINE> <INDENT> num_true_pts = np.shape(track_point)[0] <NEW_LINE> num_sample_pts = 80 <NEW_LINE> x_sample = track_point[:,0] <NEW_LINE> y_sample = track_point[:,1] <NEW_LINE> z_sample = track_point[:,2] <NEW_LINE> tck, u = interpolate.splprep([x_sample, y_sample, z_sample], s=2) <NEW_LINE> x_knots, y_knots, z_knots = interpolate.splev(tck[0], tck) <NEW_LINE> u_fine = np.linspace(0, 1, num_true_pts) <NEW_LINE> x_fine, y_fine, z_fine = interpolate.splev(u_fine, tck) <NEW_LINE> fig2 = plt.figure(2) <NEW_LINE> ax3d = fig2.add_subplot(111, projection='3d') <NEW_LINE> ax3d.plot(x_knots, y_knots, z_knots, 'go') <NEW_LINE> ax3d.plot(x_fine, y_fine, z_fine, 'g') <NEW_LINE> plt.xlim([0, 500]) <NEW_LINE> plt.ylim([0, 550]) <NEW_LINE> plt.zlim([0, 450]) <NEW_LINE> fig2.show() <NEW_LINE> plt.show() | :param track_point:N X 3, array, [x,y,z]
:return: | 625941b5d164cc6175782b50 |
def bind_to(self, exchange='', routing_key='', arguments=None, nowait=False, **kwargs): <NEW_LINE> <INDENT> if isinstance(exchange, Exchange): <NEW_LINE> <INDENT> exchange = exchange.name <NEW_LINE> <DEDENT> return self.channel.exchange_bind(destination=self.name, source=exchange, routing_key=routing_key, nowait=nowait, arguments=arguments) | Binds the exchange to another exchange.
Arguments:
nowait (bool): If set the server will not respond, and the call
will not block waiting for a response.
Default is :const:`False`. | 625941b516aa5153ce36227b |
def add_sample(self, model, reference, label=None): <NEW_LINE> <INDENT> m_mean = np.mean(model) <NEW_LINE> r_mean = np.mean(reference) <NEW_LINE> sigma_r = reference.std() <NEW_LINE> sigma_m = model.std() <NEW_LINE> sigma_n = sigma_m // sigma_r <NEW_LINE> R = np.corrcoef(model, reference)[1,0] <NEW_LINE> n_bias = (m_mean - r_mean) // sigma_r <NEW_LINE> nurmse = np.sqrt(1 + sigma_n**2 - 2 * sigma_n * R) <NEW_LINE> x = nurmse * np.sign(sigma_m - sigma_r) <NEW_LINE> y = n_bias <NEW_LINE> color = self.__get_color() <NEW_LINE> marker = self.__get_shape() <NEW_LINE> self.ax.plot(x,y, marker=marker, color=color, label=label) | Adds a new point to the diagram.
Args:
- *model*: Numpy array of model data.
- *reference*: Numpy array of reference (observation) data.
- *label* (optional): The label for this sample (default: None). | 625941b544b2445a33931ea3 |
def __init__(self, *args): <NEW_LINE> <INDENT> this = _blocks_swig3.new_float_to_complex_sptr(*args) <NEW_LINE> try: self.this.append(this) <NEW_LINE> except: self.this = this | __init__(boost::shared_ptr<(gr::blocks::float_to_complex)> self) -> float_to_complex_sptr
__init__(boost::shared_ptr<(gr::blocks::float_to_complex)> self, float_to_complex p) -> float_to_complex_sptr | 625941b5ff9c53063f47c001 |
def update_alarm(self, device_id, alarm_id, alarm_time, week_days, recurring=False, enabled=True, label=None, snooze_length=None, snooze_count=None, vibe='DEFAULT'): <NEW_LINE> <INDENT> if not isinstance(week_days, list): <NEW_LINE> <INDENT> raise ValueError("Week days needs to be a list") <NEW_LINE> <DEDENT> for day in week_days: <NEW_LINE> <INDENT> if day not in self.WEEK_DAYS: <NEW_LINE> <INDENT> raise ValueError("Incorrect week day %s. see WEEK_DAY_LIST." % day) <NEW_LINE> <DEDENT> <DEDENT> url = "{0}/{1}/user/-/devices/tracker/{device_id}/alarms/{alarm_id}.json".format( *self._get_common_args(), device_id=device_id, alarm_id=alarm_id ) <NEW_LINE> data = { 'time': alarm_time, 'weekDays': week_days, 'recurring': recurring, 'enabled': enabled, 'vibe': vibe } <NEW_LINE> if label: <NEW_LINE> <INDENT> data['label'] = label <NEW_LINE> <DEDENT> if snooze_length: <NEW_LINE> <INDENT> data['snoozeLength'] = snooze_length <NEW_LINE> <DEDENT> if snooze_count: <NEW_LINE> <INDENT> data['snoozeCount'] = snooze_count <NEW_LINE> <DEDENT> return self.make_request(url, data=data, method="POST") | https://wiki.fitbit.com/display/API/API-Devices-Update-Alarm
alarm_time should be a timezone aware datetime object. | 625941b515fb5d323cde090b |
def metric_rms(ri, ref): <NEW_LINE> <INDENT> rms = np.sum(cutout(ri.real-ref.real)**2) <NEW_LINE> norm = np.sum(cutout(ref.real-1)**2) <NEW_LINE> return np.sqrt(rms/norm) | Root mean square metric (normalized)
This metric was used and described in
Müller et. al, "ODTbrain: a Python library for full-view,
dense diffraction tomography" Bioinformatics 2015 | 625941b524f1403a9260096d |
def post(self, request, nnid): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return_data = AutoMlCommon().update_parm_obj(nnid, request.data) <NEW_LINE> return Response(json.dumps(return_data)) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> return_data = {"status": "404", "result": str(e)} <NEW_LINE> return Response(json.dumps(return_data)) | Manage hyperparameter for GA algorithm like eval, population, survive etc
Structure : AutoML - NetID - NetVer(Auto Generated by GA) - NetBatch (auto generated on every batch)
(1) Define AutoML Graph definition
(2) Select Type of Data
(3) Select Type of Anal algorithm
(4) Select range of hyper parameters
(5) Run - AutoML (<- for this step)
(6) Check result of each generation with UI/UX
(7) Select Best model you want use and activate it
---
# Class Name : RunManagerAutoParm
# Description:
Set hyperparameters for genetic algorithm itself, if it is not set
Genetic Algorithm will run with default parmas | 625941b5462c4b4f79d1d4d3 |
def ogr_to_numpy(ogrobj): <NEW_LINE> <INDENT> jsonobj = eval(ogrobj.ExportToJson()) <NEW_LINE> return np.squeeze(jsonobj['coordinates']) | Backconvert a gdal/ogr geometry to a numpy vertex array.
Using JSON as a vehicle to efficiently deal with numpy arrays.
Parameters
----------
ogrobj : ogr.Geometry
object
Returns
-------
out : :class:`numpy:numpy.ndarray`
a nested ndarray of vertices of shape (num vertices, 2) | 625941b55f7d997b8717489e |
def get_steam_level(self, steamID, format=None): <NEW_LINE> <INDENT> parameters = {'steamid' : steamID} <NEW_LINE> if format is not None: <NEW_LINE> <INDENT> parameters['format'] = format <NEW_LINE> <DEDENT> url = self.create_request_url(self.interface, 'GetSteamLevel', 1, parameters) <NEW_LINE> data = self.retrieve_request(url) <NEW_LINE> return self.return_data(data, format=format) | Returns the Steam Level of a user.
steamID: The users ID
format: Return format. None defaults to json. (json, xml, vdf) | 625941b58a43f66fc4b53e6d |
def reload(self): <NEW_LINE> <INDENT> Base.metadata.create_all(self.__engine) <NEW_LINE> session_factory = sessionmaker(bind=self.__engine, expire_on_commit=False) <NEW_LINE> Session = scoped_session(session_factory) <NEW_LINE> self.__session = Session() | reload stuff | 625941b531939e2706e4cc74 |
def __init__(self, input, n_in, n_nodes): <NEW_LINE> <INDENT> self.input = input <NEW_LINE> W_bound = np.sqrt(6. /(n_in+n_nodes)) <NEW_LINE> W_values = np.asarray(np.random.uniform(high=W_bound, low=-W_bound, size=(n_in, n_nodes)), dtype=theano.config.floatX) <NEW_LINE> self.W = theano.shared(value=W_values, name='W', borrow=True) <NEW_LINE> b_values = np.zeros((n_nodes,), dtype=theano.config.floatX) <NEW_LINE> self.b = theano.shared(value=b_values, name='b', borrow=True) <NEW_LINE> self.threshold = 0 <NEW_LINE> dot_product = T.dot(input, self.W) + self.b <NEW_LINE> above_threshold = dot_product>self.threshold <NEW_LINE> self.output = above_threshold * (dot_product-self.threshold) <NEW_LINE> self.params = [self.W, self.b] | Initialize a hidden layer
@param input: theano.tensor.dmatrix of shape (batch_size,n_in), represents inputs from previous layer
@param n_in: int, number of inputs to layer
@param n_nodes: int, number of nodes in the layer. Also the size of output | 625941b5090684286d50eae2 |
def wait_for_operation_async(reactor, compute, operation, timeout_steps): <NEW_LINE> <INDENT> poller = _create_poller(operation) <NEW_LINE> eliot_action = start_action( action_type=u"flocker:node:agents:gce:wait_for_operation_async", operation=operation ) <NEW_LINE> with eliot_action.context(): <NEW_LINE> <INDENT> def finished_operation_result(): <NEW_LINE> <INDENT> latest_operation = poller.poll(compute) <NEW_LINE> if latest_operation['status'] == 'DONE': <NEW_LINE> <INDENT> return latest_operation <NEW_LINE> <DEDENT> return None <NEW_LINE> <DEDENT> operation_deferred = loop_until( reactor, finished_operation_result, timeout_steps, ) <NEW_LINE> <DEDENT> def conclude_operation(final_operation): <NEW_LINE> <INDENT> eliot_action.add_success_fields(final_operation=final_operation) <NEW_LINE> eliot_action.finish() <NEW_LINE> return final_operation <NEW_LINE> <DEDENT> operation_deferred.addCallback(conclude_operation) <NEW_LINE> return operation_deferred | Fires a deferred once a GCE operation is complete, or timeout passes.
This function will poll the operation until it reaches state 'DONE' or
times out, and then returns the final operation resource dict.
:param reactor: The twisted ``IReactorTime`` provider to use to schedule
delays.
:param compute: The GCE compute python API object.
:param operation: A dict representing a pending GCE operation resource.
This can be either a zone or a global operation.
:param timeout_steps: Iterable of times in seconds to wait until timing out
the operation.
:returns Deferred: A Deferred firing with the concluded GCE operation
resource or calling its errback if it times out. | 625941b52ae34c7f2600cf34 |
def test_requestAvatarIdInvalidKey(self): <NEW_LINE> <INDENT> def _checkKey(ignored): <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> self.patch(self.checker, 'checkKey', _checkKey) <NEW_LINE> d = self.checker.requestAvatarId(None); <NEW_LINE> return self.assertFailure(d, UnauthorizedLogin) | If L{SSHPublicKeyDatabase.checkKey} returns False,
C{_cbRequestAvatarId} should raise L{UnauthorizedLogin}. | 625941b5627d3e7fe0d68c51 |
def __init__(self): <NEW_LINE> <INDENT> super(hamiltonian_and_energy_output, self).__init__() <NEW_LINE> self.ham_init = None <NEW_LINE> self.energy_init = None | Initialization of particles output | 625941b5a17c0f6771cbde57 |
def _wrap_client_error(e): <NEW_LINE> <INDENT> error_code = e.response['Error']['Code'] <NEW_LINE> message = e.response['Error']['Message'] <NEW_LINE> if error_code == 'BadRequestException': <NEW_LINE> <INDENT> if "Failed to copy S3 object. Access denied:" in message: <NEW_LINE> <INDENT> match = re.search('bucket=(.+?), key=(.+?)$', message) <NEW_LINE> if match: <NEW_LINE> <INDENT> return S3PermissionsRequired(bucket=match.group(1), key=match.group(2)) <NEW_LINE> <DEDENT> <DEDENT> if "Invalid S3 URI" in message: <NEW_LINE> <INDENT> return InvalidS3UriError(message=message) <NEW_LINE> <DEDENT> <DEDENT> return ServerlessRepoClientError(message=message) | Wrap botocore ClientError exception into ServerlessRepoClientError.
:param e: botocore exception
:type e: ClientError
:return: S3PermissionsRequired or InvalidS3UriError or general ServerlessRepoClientError | 625941b538b623060ff0abf2 |
def iterpapers(self): <NEW_LINE> <INDENT> with self.input().open() as f: <NEW_LINE> <INDENT> record = self.nextrecord(f) <NEW_LINE> while record is not None: <NEW_LINE> <INDENT> yield record <NEW_LINE> record = self.nextrecord(f) | Return iterator over all paper records. | 625941b52ae34c7f2600cf35 |
def DocTestSuite(module=None, globs=None, extraglobs=None, test_finder=None, **options): <NEW_LINE> <INDENT> if test_finder is None: <NEW_LINE> <INDENT> test_finder = DocTestFinder() <NEW_LINE> <DEDENT> module = _normalize_module(module) <NEW_LINE> tests = test_finder.find(module, globs=globs, extraglobs=extraglobs) <NEW_LINE> if globs is None: <NEW_LINE> <INDENT> globs = module.__dict__ <NEW_LINE> <DEDENT> if not tests: <NEW_LINE> <INDENT> raise ValueError(module, "has no tests") <NEW_LINE> <DEDENT> tests.sort() <NEW_LINE> suite = unittest.TestSuite() <NEW_LINE> for test in tests: <NEW_LINE> <INDENT> if len(test.examples) == 0: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> if not test.filename: <NEW_LINE> <INDENT> filename = module.__file__ <NEW_LINE> if filename[-4:] in (".pyc", ".pyo"): <NEW_LINE> <INDENT> filename = filename[:-1] <NEW_LINE> <DEDENT> test.filename = filename <NEW_LINE> <DEDENT> suite.addTest(DocTestCase(test, **options)) <NEW_LINE> <DEDENT> return suite | Convert doctest tests for a module to a unittest test suite.
This converts each documentation string in a module that
contains doctest tests to a unittest test case. If any of the
tests in a doc string fail, then the test case fails. An exception
is raised showing the name of the file containing the test and a
(sometimes approximate) line number.
The `module` argument provides the module to be tested. The argument
can be either a module or a module name.
If no argument is given, the calling module is used.
A number of options may be provided as keyword arguments:
setUp
A set-up function. This is called before running the
tests in each file. The setUp function will be passed a DocTest
object. The setUp function can access the test globals as the
globs attribute of the test passed.
tearDown
A tear-down function. This is called after running the
tests in each file. The tearDown function will be passed a DocTest
object. The tearDown function can access the test globals as the
globs attribute of the test passed.
globs
A dictionary containing initial global variables for the tests.
optionflags
A set of doctest option flags expressed as an integer. | 625941b5097d151d1a222c5f |
def test_parse_env(): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> testpath = "testenv.txt" <NEW_LINE> with open(testpath, "w") as testfile: <NEW_LINE> <INDENT> testfile.write("FOO_VAR=bar=var\nexport FOO_NUM=42\n") <NEW_LINE> <DEDENT> parse_env(testpath) <NEW_LINE> assert get_string("FOO_VAR", "") == "bar=var" <NEW_LINE> assert get_int("FOO_NUM", 0) == 42 <NEW_LINE> <DEDENT> finally: <NEW_LINE> <INDENT> os.remove(testpath) | ensure that the parse_env function is properly processing env files | 625941b55510c4643540f1fc |
def handle_emoji_extraction( emoji: dict, first_alias: str, path: str, force: bool, real_names: bool ): <NEW_LINE> <INDENT> unicode = ''.join(format(ord(char), 'x') for char in emoji['emoji']) <NEW_LINE> unicode = re.sub(r'fe0[ef]$', '', unicode, re.IGNORECASE) <NEW_LINE> unicode = re.sub(r'^(1f937)(?:200d)(.*)$', r'\1-\2', unicode, re.IGNORECASE) <NEW_LINE> unicode = re.sub(r'^(1f1)(..)(1f1)(..)$', r'\1\2-\3\4', unicode, re.IGNORECASE) <NEW_LINE> logging.info("Unicode value of \'%s\' found : %s", first_alias, unicode) <NEW_LINE> return download_file( url=GITHUB_ASSETS_BASE_URL.format('unicode/' + unicode), path=os.path.join(path, 'unicode'), force=force, real_name=(first_alias if real_names else None) ) | Simple function reduce `perform_emojis_extraction` cyclomatic complexity | 625941b5dc8b845886cb5337 |
def itkMeanProjectionImageFilterID3ID3_cast(*args): <NEW_LINE> <INDENT> return _itkMeanProjectionImageFilterPython.itkMeanProjectionImageFilterID3ID3_cast(*args) | itkMeanProjectionImageFilterID3ID3_cast(itkLightObject obj) -> itkMeanProjectionImageFilterID3ID3 | 625941b5a05bb46b383ec630 |
def data(self, QModelIndex, p_int): <NEW_LINE> <INDENT> pass | QStringListModel.data(QModelIndex, int) -> QVariant | 625941b5ec188e330fd5a5ab |
def testAPIChildren(self): <NEW_LINE> <INDENT> self.db.storeItem(1, 2, 0, {"ishort" : "CSE/270", "idesc" : "A computer science lab."}) <NEW_LINE> self.db.storeItem(2, 2, 0, {"ishort" : "CSE 2F", "idesc" : "The second-floor corridor of the Computer Science building."}) <NEW_LINE> self.db.storeItem(3, 0, 1, {"oshort" : "Colin Runciman", "odesc" : "Do you need a description of Colin Runciman?!"}) <NEW_LINE> self.db.storeItem(4, 0, 1, {"oshort" : "Pascal", "odesc" : "He's here! He's finally here!"}) <NEW_LINE> self.db.storeItem(5, 1, 2, {"oshort" : "SuperBerin", "odesc" : "You are acting like an idiot."}) <NEW_LINE> self.assertEqual(self.db.getChildren(1), [3, 4]) <NEW_LINE> self.assertEqual(self.db.getChildren(2), [5]) <NEW_LINE> self.assertEqual(self.db.getChildren(3), []) | Test use of the database backend's API to find children of an object. | 625941b563d6d428bbe442f2 |
def upload_screenshot(self, name, image_data, metadata=None): <NEW_LINE> <INDENT> if not self.build_id: <NEW_LINE> <INDENT> raise PersephoneException('No build is running. Please create a build first.') <NEW_LINE> <DEDENT> screenshot = self.client.post_screenshot( self.project_id, self.build_id, name, image_data, metadata) <NEW_LINE> return screenshot['id'] | Uploads a screenshot to the current build.
:param name: A freeform name for the screenshot (e.g. subfolder/image.png).
:param image_data: A bytes object with a PNG screenshot.
:param metadata: An optional freeform dict with JSON serializable values to attach to the
image as metadata. | 625941b55166f23b2e1a4f5c |
def error_handler(self, f): <NEW_LINE> <INDENT> self.handle_error_func = f <NEW_LINE> return f | Decorater | 625941b52c8b7c6e89b355c7 |
def do_GET(self): <NEW_LINE> <INDENT> pass | Ignore GET messages. | 625941b5796e427e537b03c5 |
def environment(sz): <NEW_LINE> <INDENT> sr = 0; sc = 1; su = 2; sg = 3; vg = 4; wt = 5; il = 6 <NEW_LINE> sr_dry = 0; sr_wet = 1; sr_saturated = 2 <NEW_LINE> sc_vs = 0; sc_s = 1; sc_hc = 2; sc_c = 3; sc_s = 4 <NEW_LINE> vg_no = 0; vg_sp = 1; vg_dn = 2 <NEW_LINE> wt_cl = 0; wt_oc = 1; wt_rn = 2 <NEW_LINE> il_lo = 0; il_me = 1; il_hi = 2 <NEW_LINE> moisture = np.random.randint(3, size=sz) <NEW_LINE> composition = np.random.randint(5, size=sz) <NEW_LINE> magnetic = np.random.randint(2, size=sz) <NEW_LINE> vegetation = np.random.randint(3, size=sz) <NEW_LINE> uniformity = np.random.randint(2, size=sz) <NEW_LINE> weather = np.random.randint(3, size=sz) <NEW_LINE> illumination = np.random.randint(3, size=sz) <NEW_LINE> env = np.column_stack((moisture, composition, uniformity, magnetic, vegetation, weather, illumination)) <NEW_LINE> np.random.shuffle(env) <NEW_LINE> return env | Create a simulated environment to match the simulated minefield.
The environment data includes:
sr : soil moisture (%)- dry [0, 10], wet (10, 40], saturated (>40)
sc : soil composition - very sandy, sandy, high-clay, clay, silt
su : soil uniformity - no, yes (uniform)
sg : magnetic soil - no, yes (magnetic)
vg : vegetation - no-vegetation, sparse, dense
wt : weather - clear, overcast, raining
il : illumination - low, medium, high
:param size: One side of the square shaped minefield area
:return: a 3d array that includes the environment data over minefield | 625941b58e05c05ec3eea174 |
def shufflenetv2b_wd2(**kwargs): <NEW_LINE> <INDENT> return get_shufflenetv2b( width_scale=(12.0 / 29.0), shuffle_group_first=True, model_name="shufflenetv2b_wd2", **kwargs) | ShuffleNetV2(b) 0.5x model from 'ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design,'
https://arxiv.org/abs/1807.11164.
Parameters:
----------
pretrained : bool, default False
Whether to load the pretrained weights for model.
root : str, default '~/.chainer/models'
Location for keeping the model parameters. | 625941b560cbc95b062c634c |
@register.simple_tag <NEW_LINE> def snippet(snippet_name): <NEW_LINE> <INDENT> return snip(snippet_name) | Looks up a snippet by name and returns it.
Syntax::
{% snippet [snippet_name] %}
Example::
{% snippet frontpage_message %} | 625941b50fa83653e4656dc1 |
def RunInJ(i,Type,X,Y,Z,Range,MeshRange,Iterations,Output = None): <NEW_LINE> <INDENT> EndResult = [None]*(Iterations-1) <NEW_LINE> for j in range(Iterations-1): <NEW_LINE> <INDENT> Result = StartObjectScan(i,j,Type,X,Y,Z,Range,MeshRange) <NEW_LINE> EndResult[j]= Result <NEW_LINE> <DEDENT> Output.append(EndResult) | ######################################################
run onver all columns
###################################################### | 625941b5e1aae11d1e749ab7 |
def make_wcs_positions(row, col, offset, inverse=False): <NEW_LINE> <INDENT> n=row.size <NEW_LINE> dt=[('wcs_row','f8'), ('wcs_col','f8'), ('zrow','f8'), ('zcol','f8')] <NEW_LINE> data=numpy.zeros(row.size, dtype=dt) <NEW_LINE> if inverse: <NEW_LINE> <INDENT> data['zrow'] = row <NEW_LINE> data['zcol'] = col <NEW_LINE> data['wcs_row'] = row + offset <NEW_LINE> data['wcs_col'] = col + offset <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> data['wcs_row'] = row <NEW_LINE> data['wcs_col'] = col <NEW_LINE> data['zrow'] = row - offset <NEW_LINE> data['zcol'] = col - offset <NEW_LINE> <DEDENT> return data | make a structure holding both the original wcs and zero-offset positions.
This is only meant for converting between 1-offset and 0-offset
wcs positions are called 'wcs_row','wcs_col' and zero offset are called
'zrow','zcol'
parameters
----------
row: array
rows in the image, wcs coords if inverse=False
col: array
columns in the image, wcs coords if inverse=False
offset: float
offset to subtract from the input positions
inverse: bool, optional
Set to True if the input are zero based | 625941b5956e5f7376d70c7f |
def CV_multi_stats(X, y, model) : <NEW_LINE> <INDENT> n = N_TRIALS <NEW_LINE> scores = cross_validation.cross_val_score(estimator=model, X=X, y=y) <NEW_LINE> scores_f1 = cross_validation.cross_val_score(estimator=model, X=X, y=y, scoring='f1') <NEW_LINE> print("Model Accuracy: %0.3f (+- %0.2f)" % (scores.mean(), scores.std() * 2)) <NEW_LINE> print("Model f1: %0.3f (+- %0.2f)" % (scores_f1.mean(), scores_f1.std() * 2)) | http://scikit-learn.org/stable/modules/model_evaluation.html#classification-metrics
This version uses multiclass (or multilabel) compatible metrics.
May be expanded to use the cross_val_score helper function:
http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.cross_val_score.html
http://scikit-learn.org/stable/modules/cross_validation.html#computing-cross-validated-metrics | 625941b550812a4eaa59c129 |
def read_file(self, f, source=None): <NEW_LINE> <INDENT> super(ExtendedConfigParser, self).read_file(f, source) <NEW_LINE> self.move_defaults() | Like read() but the argument must be a file-like object.
The `f' argument must be iterable, returning one line at a time.
Optional second argument is the `source' specifying the name of the
file being read. If not given, it is taken from f.name. If `f' has no
`name' attribute, `<???>' is used. | 625941b57d43ff24873a2aa7 |
def test_raises_exception_when_accessed(self): <NEW_LINE> <INDENT> qs = QuerySetMock(None, TestException()) <NEW_LINE> self.assertRaises(TestException, lambda x: x[0], qs) | Exceptions can raise on getitem, too. | 625941b54c3428357757c12e |
def __init__(self, n_in, n_out, input, rng, poisson_layer=False, mean_doc_size=1, init_W=None, init_b=None, activation = T.tanh, mirroring=False): <NEW_LINE> <INDENT> self.n_in = n_in <NEW_LINE> self.n_out = n_out <NEW_LINE> self.input = input <NEW_LINE> self.mirroring = mirroring <NEW_LINE> T.pprint(self.input) <NEW_LINE> if not input: <NEW_LINE> <INDENT> raise Exception <NEW_LINE> <DEDENT> if (init_W == None): <NEW_LINE> <INDENT> W_values = numpy.asarray( rng.uniform( low = -numpy.sqrt(6./(n_in+n_out)), high = numpy.sqrt(6./(n_in+n_out)), size = (n_in, n_out)), dtype = theano.config.floatX) <NEW_LINE> if activation == theano.tensor.nnet.sigmoid: <NEW_LINE> <INDENT> W_values *= 4 <NEW_LINE> <DEDENT> if poisson_layer == True: <NEW_LINE> <INDENT> W_values *= 1/mean_doc_size; <NEW_LINE> <DEDENT> self.W = theano.shared(value = W_values) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.W = theano.shared(value = init_W) <NEW_LINE> <DEDENT> if (init_b == None): <NEW_LINE> <INDENT> b_values = numpy.zeros((n_out,), dtype= theano.config.floatX) <NEW_LINE> self.b = theano.shared(value= b_values) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.b = theano.shared(value= init_b) <NEW_LINE> <DEDENT> self.output = activation(T.dot(self.input, self.W) + self.b) <NEW_LINE> self.params = [self.W, self.b] | Typical hidden layer of a MLP: units are fully-connected and have
sigmoidal activation function. Weight matrix W is of shape (n_in,n_out)
and the bias vector b is of shape (n_out,).
NOTE : The nonlinearity used here is tanh
Hidden unit activation is given by: tanh(dot(input,W) + b)
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.matrix/dmatrix
:param input: a symbolic tensor of shape (n_examples, n_in)
:type n_in: int
:param n_in: dimensionality of input
:type n_out: int
:param n_out: number of hidden units
:type activation: theano.Op or function
:param activation: Non linearity to be applied in the hidden
layer | 625941b50c0af96317bb7fed |
def read_all_available_shows(self): <NEW_LINE> <INDENT> json_url = ('http://il.srgssr.ch/integrationlayer/1.0/ue/%s/tv/assetGroup/editorialPlayerAlphabetical.json') % BU <NEW_LINE> json_response = json.loads(self.open_url(json_url)) <NEW_LINE> try: <NEW_LINE> <INDENT> show_list = json_response['AssetGroups']['Show'] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> log('read_all_available_shows: No shows found.') <NEW_LINE> return [] <NEW_LINE> <DEDENT> if not isinstance(show_list, list) or not show_list: <NEW_LINE> <INDENT> log('read_all_available_shows: No shows found.') <NEW_LINE> return [] <NEW_LINE> <DEDENT> return show_list | Downloads a list of all available RSI shows and returns this list. | 625941b556b00c62f0f14460 |
def set_media(self): <NEW_LINE> <INDENT> media_path = self.files[self.current_file_index] <NEW_LINE> fmt = self.get_fmt(media_path) <NEW_LINE> if fmt.lower() in self.image_fmts: <NEW_LINE> <INDENT> self.media = Image.open(media_path) <NEW_LINE> self.qmedia = ImageQt(self.hologrify(self.media)) <NEW_LINE> <DEDENT> elif fmt.lower() in self.video_fmts: <NEW_LINE> <INDENT> imageio.plugins.ffmpeg.download() <NEW_LINE> if type(self.media) is Video: <NEW_LINE> <INDENT> self.stop() <NEW_LINE> <DEDENT> self.media = imageio.get_reader(media_path, "ffmpeg") <NEW_LINE> self.qmedia = None <NEW_LINE> <DEDENT> self.size_checkbox.setEnabled(True) <NEW_LINE> self.nav_widget.setEnabled(True) <NEW_LINE> self.next_shortcut.setEnabled(True) <NEW_LINE> self.previous_shortcut.setEnabled(True) <NEW_LINE> self.dimensions_shortcut.setEnabled(True) <NEW_LINE> self.refresh() | Sets the current media based on `self.current_file_index`. | 625941b5f548e778e58cd37f |
def list_hdf_groups(fname): <NEW_LINE> <INDENT> group_type = h5py._hl.group.Group <NEW_LINE> f = h5py.File(fname, 'r') <NEW_LINE> glist = [] <NEW_LINE> for kname in sorted(f.keys()): <NEW_LINE> <INDENT> if type(f[kname]) == group_type: <NEW_LINE> <INDENT> glist += [ kname, ] <NEW_LINE> <DEDENT> <DEDENT> f.close() <NEW_LINE> return glist | Makes a list of hdf groups.
Only the 1st level is implemented, TDB: recursive listing.
USAGE
=====
glist = list_hdf_groups(fname)
INPUT
=====
fname: filename of hdf file
OUTPUT
======
glist: list of group names | 625941b5d164cc6175782b51 |
def _insert_into_or_remove_from_text_archive(self, doc): <NEW_LINE> <INDENT> text_archive_service = get_resource_service('text_archive') <NEW_LINE> if text_archive_service is None: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> if doc.get('state') in ['published', 'corrected']: <NEW_LINE> <INDENT> query = { 'query': { 'filtered': { 'filter': { 'and': [ {'term': {'item_id': doc['item_id']}}, {'term': {'state': 'killed'}} ] } } } } <NEW_LINE> request = ParsedRequest() <NEW_LINE> request.args = {'source': json.dumps(query)} <NEW_LINE> items = super().get(req=request, lookup=None) <NEW_LINE> if items.count() == 0: <NEW_LINE> <INDENT> text_archive_service.post([doc.copy()]) <NEW_LINE> logger.info('Inserted published item {} with headline {} and version {} and expiry {}.'. format(doc['item_id'], doc.get('headline'), doc.get(config.VERSION), doc.get('expiry'))) <NEW_LINE> <DEDENT> <DEDENT> elif doc.get('state') == 'killed': <NEW_LINE> <INDENT> text_archive_service.delete_action({config.ID_FIELD: doc[config.ID_FIELD]}) <NEW_LINE> logger.info('Deleted published item {} with headline {} and version {} and expiry {} ' 'as the state of an article is killed.'.format(doc['item_id'], doc.get('headline'), doc.get(config.VERSION), doc.get('expiry'))) | If the state of the article is published, check if it's been killed after publishing. If article has been killed
then return otherwise insert into text_archive.
If the state of the article is killed then delete the article if the article is available in text_archive. | 625941b5d18da76e235322d5 |
def ex_add_servers_to_load_balancer(self, lb_id, server_ips=[]): <NEW_LINE> <INDENT> body = { 'server_ips': server_ips, } <NEW_LINE> response = self.connection.request( action='load_balancers/%s/server_ips' % lb_id, data=body, method='POST' ) <NEW_LINE> return response.object | Adds server's IP address to load balancer
:param lb_id: Load balancer ID
:rtype: ``str``
:param server_ips: Array of server IP IDs
:rtype: ``list`` of ``str``
:return: Instance of load balancer
:rtype: ``dict`` | 625941b54c3428357757c12f |
def stop(self): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with open(self.pidfile,'r') as f: <NEW_LINE> <INDENT> pid = int(f.read().strip()) <NEW_LINE> <DEDENT> <DEDENT> except IOError: <NEW_LINE> <INDENT> pid = None <NEW_LINE> <DEDENT> if not pid: <NEW_LINE> <INDENT> message = "pidfile {0} does not exist. Daemon not running!\n".format(self.pidfile) <NEW_LINE> sys.stderr.write(message) <NEW_LINE> return <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> while 1: <NEW_LINE> <INDENT> os.kill(pid, SIGTERM) <NEW_LINE> time.sleep(0.1) <NEW_LINE> <DEDENT> <DEDENT> except OSError as err: <NEW_LINE> <INDENT> err = str(err) <NEW_LINE> if err.find("No such process") > 0: <NEW_LINE> <INDENT> if os.path.exists(self.pidfile): <NEW_LINE> <INDENT> os.remove(self.pidfile) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> print(str(err)) <NEW_LINE> sys.exit(1) | Stops daemon. | 625941b5e64d504609d74644 |
def predict_chunk(df, clfs): <NEW_LINE> <INDENT> object_id = df['object_id'].values <NEW_LINE> del df['object_id'] <NEW_LINE> preds = None <NEW_LINE> for clf in clfs: <NEW_LINE> <INDENT> if preds is None: <NEW_LINE> <INDENT> preds = clf.predict_proba(df, num_iteration=clf.best_iteration_) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> preds += clf.predict_proba(df, num_iteration=clf.best_iteration_) <NEW_LINE> <DEDENT> <DEDENT> preds = preds / len(clfs) <NEW_LINE> preds_df = pd.DataFrame(preds, columns=['class_{}'.format(s) for s in clfs[0].classes_]) <NEW_LINE> preds_df['object_id'] = object_id <NEW_LINE> return preds_df | Prediction for chunk | 625941b5656771135c3eb676 |
@app.route('/api/v1/event/<event_id>/version', methods=['GET']) <NEW_LINE> @cross_origin() <NEW_LINE> def get_event_version(event_id): <NEW_LINE> <INDENT> version = Version.query.filter_by(event_id=event_id).order_by(Version.id.desc()).first() <NEW_LINE> if version: <NEW_LINE> <INDENT> return jsonify(version.serialize) <NEW_LINE> <DEDENT> return jsonify({"version": []}) | Returns event's the latest version | 625941b52eb69b55b151c6ae |
def fourieruij_iso(beta,ct_over_cl, theta, phi): <NEW_LINE> <INDENT> gamt = (1-beta**2) <NEW_LINE> gaml = (1-(ct_over_cl*beta)**2) <NEW_LINE> uij = np.zeros((3,3,len(theta),len(phi))) <NEW_LINE> sinph = np.sin(phi) <NEW_LINE> cosph = np.cos(phi) <NEW_LINE> sinth = np.sin(theta) <NEW_LINE> denomL = 1-(ct_over_cl*beta*cosph)**2 <NEW_LINE> denomT = 1-(beta*cosph)**2 <NEW_LINE> if beta==0: <NEW_LINE> <INDENT> crat2 = ct_over_cl**2 <NEW_LINE> uij[0,0] = -np.outer(sinth,sinph*(sinph**2 + (2*crat2-1)*cosph**2)) <NEW_LINE> uij[0,1] = np.outer(sinth,cosph*(2*(1-crat2)*sinph**2 + 1)) <NEW_LINE> uij[1,0] = np.outer(sinth,cosph*(2*(1-crat2)*sinph**2 - 1)) <NEW_LINE> uij[1,1] = np.outer(sinth,sinph*(2*(1-crat2)*sinph**2 - 1)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> uij[0,0] = (-2/(beta**2))*np.outer(sinth,sinph*(1/denomL-(1-beta**2/2)/denomT)) <NEW_LINE> uij[0,1] = (2/(beta**2))*np.outer(sinth,cosph*(gaml/denomL-(1-beta**2/2)*gamt/denomT)) <NEW_LINE> uij[1,0] = (2/(beta**2))*np.outer(sinth,cosph*(gaml/denomL-(1-beta**2/2)/denomT)) <NEW_LINE> uij[1,1] = (2/(beta**2))*np.outer(sinth,sinph*(gaml/denomL-(1-beta**2/2)/denomT)) <NEW_LINE> <DEDENT> uij[2,0] = -np.outer(np.cos(theta),sinph*1/denomT) <NEW_LINE> uij[2,1] = np.outer(np.cos(theta),cosph*gamt/denomT) <NEW_LINE> return uij | Compute the dislocation displacement gradient field in the isotropic limit in Fourier space multiplied by iq/b (the radial coordinate over the magnitude of the Burgers vector),
i.e. we only return the dependence on the (discretized) polar angle phi in Fourier space, and hence the result is a 3x3xNthetaxNphi dimensional array.
Required input parameters are: the dislocation velocity beta in units of transverse sound speed, the ratio of transverse to longitudinal sound speed,
and two arrays encoding the discretized dependence on the angle theta between dislocation line and Burgers vector and the polar angle phi. | 625941b545492302aab5e0c3 |
def setUp(self): <NEW_LINE> <INDENT> mynote = TextNote() <NEW_LINE> mynote.content = '1st' <NEW_LINE> mynote.is_published = False <NEW_LINE> mynote.save() <NEW_LINE> TextNote.objects.create( content='2nd', is_published=True, ) <NEW_LINE> TextNote.objects.create( content='3rd', is_published=False, ) <NEW_LINE> TextNote.objects.create( content='4th', is_published=True, ) <NEW_LINE> TextNote.objects.create( content='5th', is_published=True, ) | create TextNotes objects, publish 2,4,5 | 625941b5091ae35668666d6a |
def parse_apx_xml(self, fs_apx_pn): <NEW_LINE> <INDENT> assert fs_apx_pn <NEW_LINE> l_data_file = QtCore.QFile(fs_apx_pn) <NEW_LINE> assert l_data_file is not None <NEW_LINE> l_data_file.open(QtCore.QIODevice.ReadOnly) <NEW_LINE> if not l_data_file.isOpen(): <NEW_LINE> <INDENT> l_log = logging.getLogger("CApxData::make_apx") <NEW_LINE> l_log.setLevel(logging.CRITICAL) <NEW_LINE> l_log.critical(u"<E01: erro na abertura de {}.".format(fs_apx_pn)) <NEW_LINE> l_evt = events.CQuit() <NEW_LINE> assert l_evt <NEW_LINE> self.__event.post(l_evt) <NEW_LINE> sys.exit(1) <NEW_LINE> <DEDENT> l_xdoc_apx = QtXml.QDomDocument("aproximacoes") <NEW_LINE> assert l_xdoc_apx is not None <NEW_LINE> if not l_xdoc_apx.setContent(l_data_file): <NEW_LINE> <INDENT> l_data_file.close() <NEW_LINE> l_log = logging.getLogger("CApxData::make_apx") <NEW_LINE> l_log.setLevel(logging.CRITICAL) <NEW_LINE> l_log.critical(u"<E02: falha no parse de {}.".format(fs_apx_pn)) <NEW_LINE> l_evt = events.CQuit() <NEW_LINE> assert l_evt <NEW_LINE> self.__event.post(l_evt) <NEW_LINE> sys.exit(1) <NEW_LINE> <DEDENT> l_data_file.close() <NEW_LINE> l_elem_root = l_xdoc_apx.documentElement() <NEW_LINE> assert l_elem_root is not None <NEW_LINE> ldct_root = parser.parse_root_element(l_elem_root) <NEW_LINE> l_node_list = l_elem_root.elementsByTagName("aproximacao") <NEW_LINE> for li_ndx in xrange(l_node_list.length()): <NEW_LINE> <INDENT> ldct_data = {} <NEW_LINE> ldct_data["breakpoints"] = [] <NEW_LINE> l_element = l_node_list.at(li_ndx).toElement() <NEW_LINE> assert l_element is not None <NEW_LINE> if l_element.hasAttribute("nApx"): <NEW_LINE> <INDENT> ldct_data["nApx"] = int(l_element.attribute("nApx")) <NEW_LINE> <DEDENT> l_node = l_element.firstChild() <NEW_LINE> assert l_node is not None <NEW_LINE> while not l_node.isNull(): <NEW_LINE> <INDENT> l_element = l_node.toElement() <NEW_LINE> assert l_element is not None <NEW_LINE> if not l_element.isNull(): <NEW_LINE> <INDENT> ldct_tmp = parser.parse_aproximacao(l_element) <NEW_LINE> if "breakpoint" in ldct_tmp: <NEW_LINE> <INDENT> ldct_data["breakpoints"].append(ldct_tmp["breakpoint"]) <NEW_LINE> del ldct_tmp["breakpoint"] <NEW_LINE> <DEDENT> ldct_data.update(ldct_tmp) <NEW_LINE> <DEDENT> l_node = l_node.nextSibling() <NEW_LINE> assert l_node is not None <NEW_LINE> <DEDENT> self.make_apx(ldct_root, ldct_data) | carrega o arquivo de procedimentos de aproximação
@param fs_apx_pn: pathname do arquivo em disco | 625941b5adb09d7d5db6c597 |
def i_set(self, a, b): <NEW_LINE> <INDENT> self.registers[self.eval_reg(a)] = self.eval_num(b) | Set register a to value of <b>. | 625941b55fdd1c0f98dc0035 |
def build_f(self, f, part, t): <NEW_LINE> <INDENT> if not isinstance(part, particles): <NEW_LINE> <INDENT> raise ProblemError('something is wrong during build_f, got %s' % type(part)) <NEW_LINE> <DEDENT> N = self.params.nparts <NEW_LINE> rhs = acceleration(self.params.nparts) <NEW_LINE> for n in range(N): <NEW_LINE> <INDENT> rhs.values[3 * n:3 * n + 3] = part.q[n] / part.m[n] * ( f.elec.values[3 * n:3 * n + 3] + np.cross(part.vel.values[3 * n:3 * n + 3], f.magn.values[3 * n:3 * n + 3])) <NEW_LINE> <DEDENT> return rhs | Helper function to assemble the correct right-hand side out of B and E field
Args:
f (dtype_f): the field values
part (dtype_u): the current particles data
t (float): the current time
Returns:
acceleration: correct RHS of type acceleration | 625941b5cad5886f8bd26de6 |
def field_thick_cover_diffraction_matrix(shape, ks, d = 1., epsv = (1,1,1), epsa = (0,0,0.), d_cover = 0, epsv_cover = (1.,1.,1.), epsa_cover = (0.,0.,0.), mode = "b", betamax = BETAMAX, out = None): <NEW_LINE> <INDENT> ks = np.asarray(ks, dtype = FDTYPE) <NEW_LINE> epsv = np.asarray(epsv, dtype = CDTYPE) <NEW_LINE> epsa = np.asarray(epsa, dtype = FDTYPE) <NEW_LINE> alpha, f, fi = diffraction_alphaffi(shape, ks, epsv = epsv, epsa = epsa, betamax = betamax) <NEW_LINE> alpha0, f0 = diffraction_alphaf(shape, ks, epsv = epsv_cover ,epsa = epsa_cover, betamax = betamax) <NEW_LINE> alphac = alpha0 - alpha / 1.5 <NEW_LINE> alphac = alphac - alphac[...,0,0,:][...,None,None,:] <NEW_LINE> kd = ks * d_cover <NEW_LINE> pmatc = phase_matrix(alphac, kd , mode = mode) <NEW_LINE> kd = ks * d <NEW_LINE> pmat = phase_matrix(alpha, kd , mode = mode) <NEW_LINE> pmat = pmat * pmatc <NEW_LINE> return dotmdm(f,pmat,fi,out = out) | Build field diffraction matrix.
| 625941b523849d37ff7b2e96 |
def getListData(request, models): <NEW_LINE> <INDENT> pageNo = request.GET.get('pageNo', '') <NEW_LINE> pageNo = 1 if (pageNo == '') else int(pageNo) <NEW_LINE> sortCol = request.GET.get('sortCol', '') <NEW_LINE> sortCol = '-name' if sortCol != '' and sortCol == request.session.get( 'sortCol', '') else 'name' <NEW_LINE> request.session['sortCol'] = sortCol <NEW_LINE> masterList = models.objects.all().exclude(pk='0').order_by(sortCol) <NEW_LINE> paginator = Paginator(masterList, settings.PAGE_SIZE) <NEW_LINE> page_range = paginator.page_range <NEW_LINE> if pageNo != 0: <NEW_LINE> <INDENT> page_data = paginator.page(int(pageNo)) <NEW_LINE> masterList = page_data.object_list <NEW_LINE> <DEDENT> return masterList, page_range | pagination for master config | 625941b54d74a7450ccd3fc6 |
def create(self, allow_existing=False): <NEW_LINE> <INDENT> if not allow_existing: <NEW_LINE> <INDENT> if self.exists(): <NEW_LINE> <INDENT> raise google.api_core.exceptions.AlreadyExists(f"Topic {self.path!r} already exists.") <NEW_LINE> <DEDENT> <DEDENT> if not self.exists(): <NEW_LINE> <INDENT> MESSAGES[get_service_id(self.path)] = [] | Register the topic in the global messages dictionary.
:param bool allow_existing: if True, don't raise an error if the topic already exists
:raise google.api_core.exceptions.AlreadyExists: if the topic already exists
:return None: | 625941b50a366e3fb873e61a |
def __idiv__(self, other): <NEW_LINE> <INDENT> if isinstance(other, GPUArray): <NEW_LINE> <INDENT> return self._div(other, self) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if other == 1: <NEW_LINE> <INDENT> return self <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return self._axpbz(1/other, 0, self) | Divides an array by an array or a scalar::
x /= n | 625941b521bff66bcd684759 |
@P.cluster_runnable <NEW_LINE> def getTimepointIntersections(infiles, n_times, outfile): <NEW_LINE> <INDENT> file_dictionary = {} <NEW_LINE> for infile in infiles: <NEW_LINE> <INDENT> gene_list = [] <NEW_LINE> with IOTools.openFile(infile, "rb") as gene_file: <NEW_LINE> <INDENT> gene_list = gene_file.read().split("\n") <NEW_LINE> <DEDENT> gene_list.remove('') <NEW_LINE> file_dictionary[infile] = gene_list <NEW_LINE> <DEDENT> time_point_dict = {} <NEW_LINE> for tme in n_times: <NEW_LINE> <INDENT> tpoints = [t for t in file_dictionary.keys() if re.search(str(tme), t)] <NEW_LINE> time_set = set(file_dictionary[tpoints[0]]) <NEW_LINE> for i in range(1, len(tpoints)): <NEW_LINE> <INDENT> gene_list = file_dictionary[tpoints[i]] <NEW_LINE> time_set = time_set.intersection(gene_list) <NEW_LINE> <DEDENT> time_point_dict[str(tme)] = time_set <NEW_LINE> <DEDENT> core_set = set(time_point_dict[str(n_times[0])]) <NEW_LINE> for j in range(1, len(time_point_dict.keys())): <NEW_LINE> <INDENT> core_set = core_set.intersection(time_point_dict[str(n_times[j])]) <NEW_LINE> <DEDENT> core_list = list(core_set) <NEW_LINE> core_genes = [ge for ge in list(core_list) if re.search("EN", ge)] <NEW_LINE> core_lncs = [lc for lc in list(core_list) if re.search("LNC", lc)] <NEW_LINE> mg = mygene.MyGeneInfo() <NEW_LINE> out_core = mg.querymany(core_genes, scopes="ensemblgene", fields="symbol", returnall=True)['out'] <NEW_LINE> out_df = pd.DataFrame(out_core) <NEW_LINE> out_df.drop(['notfound'], inplace=True, axis=1) <NEW_LINE> out_df.index = out_df['query'] <NEW_LINE> out_df.drop_duplicates(subset='query', take_last=True, inplace=True) <NEW_LINE> out_df.drop(['query'], inplace=True, axis=1) <NEW_LINE> out_df.to_csv(outfile, sep="\t", index_label="gene_id") <NEW_LINE> condition = outfile.split("-")[0] <NEW_LINE> lnc_out = "%s-timepoint_intersection_lncRNAs.tsv" % condition <NEW_LINE> with IOTools.openFile(lnc_out, "w") as lnc_file: <NEW_LINE> <INDENT> lnc_file.write("lncRNA_id") <NEW_LINE> for lncrna in core_lncs: <NEW_LINE> <INDENT> lnc_file.write("%s\n" % lncrna) | Take first n timepoints and intersect for each in vitro
activation condition. | 625941b592d797404e303f8e |
def split_patients(path, train=0.7, test=0.15, validate=0.15, use_first=None): <NEW_LINE> <INDENT> assert train + test + validate == 1.0, "Train, Test, and Validate must add to 1.0." <NEW_LINE> result = { 'train': [], 'test': [], 'validate': [], } <NEW_LINE> folder = pathlib.Path(path) <NEW_LINE> patients = [patient for patient in folder.iterdir() if patient.is_dir()] <NEW_LINE> if use_first is not None: <NEW_LINE> <INDENT> patients = patients[0:use_first] <NEW_LINE> <DEDENT> num_patients = len(patients) <NEW_LINE> num_train = math.floor(num_patients * train) <NEW_LINE> num_test = math.floor(num_patients * test) <NEW_LINE> num_validate = num_patients - (num_train + num_test) <NEW_LINE> for i in range(0, num_train): <NEW_LINE> <INDENT> result['train'].append(patients.pop(0)) <NEW_LINE> <DEDENT> for i in range(0, num_test): <NEW_LINE> <INDENT> result['test'].append(patients.pop(0)) <NEW_LINE> <DEDENT> for i in range(0, num_validate): <NEW_LINE> <INDENT> result['validate'].append(patients.pop(0)) <NEW_LINE> <DEDENT> print(f"Actual Patient Split is train: {num_train} ({num_train/num_patients: 0.2f}) test: {num_test} " f"({num_test/num_patients: 0.2f}) " f"validate: {num_validate} ({num_validate/num_patients: 0.2f}) ") <NEW_LINE> return result | Divide the data into train, test, and validate on the patient level.
This prevents unfair bias from preview into the test/validate sets.
:param use_first: int optional, only use the first use_first number of patients in this path.
:param path: path-like to the directory containing patient directories
:param train: float 0.0 - 1.0 amount of total data to allocate to training
:param test: float 0.0 - 1.0 amount of total data to allocate to testing
:param validate: float 0.0 - 1.0 amount of total data to allocate to validation
:return: dict {'train': [...], 'test': [...], 'validate': [...]} | 625941b5b57a9660fec33683 |
def draw_pattack(self): <NEW_LINE> <INDENT> if self.visible: <NEW_LINE> <INDENT> self.screen.blit(self.image, self.rect) | Draws an attack | 625941b55fdd1c0f98dc0036 |
def _get_maybe_error_index(scores, y_score, median, threshold=1.4): <NEW_LINE> <INDENT> scores = scores.flatten() <NEW_LINE> maybe_error_indices = np.where((y_score > threshold) & (scores < median)) <NEW_LINE> maybe_error_scores = scores[maybe_error_indices] <NEW_LINE> return list(maybe_error_indices[0]), maybe_error_scores | 取疑似错字的位置,通过平均绝对离差(MAD)
:param scores: np.array
:param threshold: 阈值越小,得到疑似错别字越多
:return: | 625941b54d74a7450ccd3fc7 |
def test_collect_subscriber(self): <NEW_LINE> <INDENT> result = collect_subscriber.delay(1) <NEW_LINE> self.assertEqual(result.successful(), True) | Test that the ``collect_subscriber``
task runs with no errors, and returns the correct result. | 625941b521bff66bcd68475a |
def _decode_newlines(s): <NEW_LINE> <INDENT> def repl(m): <NEW_LINE> <INDENT> return LinewiseSerializer._subst[m.group(1)] <NEW_LINE> <DEDENT> return LinewiseSerializer._escape_re.sub(repl, s) | Return s with newlines and backslashes decoded.
This function reverses the encoding of _encode_newlines(). | 625941b510dbd63aa1bd29b4 |
def p_Iterable(self, p): <NEW_LINE> <INDENT> location = self.getLocation(p, 2) <NEW_LINE> identifier = IDLUnresolvedIdentifier( location, "__iterable", allowDoubleUnderscore=True ) <NEW_LINE> if len(p) > 6: <NEW_LINE> <INDENT> keyType = p[3] <NEW_LINE> valueType = p[5] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> keyType = None <NEW_LINE> valueType = p[3] <NEW_LINE> <DEDENT> p[0] = IDLIterable(location, identifier, keyType, valueType, self.globalScope()) | Iterable : ITERABLE LT TypeWithExtendedAttributes GT SEMICOLON
| ITERABLE LT TypeWithExtendedAttributes COMMA TypeWithExtendedAttributes GT SEMICOLON | 625941b54527f215b584c25f |
def __setattr__(self, name, value): <NEW_LINE> <INDENT> if self._initialized and not hasattr(self, name): <NEW_LINE> <INDENT> raise AttributeError("%s instance has no attribute '%s'" % (self.__class__.__name__, name)) <NEW_LINE> <DEDENT> super(Sonar, self).__setattr__(name, value) | Don't allow setting non-existent attributes on this class
| 625941b5293b9510aa2c309d |
def canonize(self, string, dummy_state): <NEW_LINE> <INDENT> return string | Returns the canonized string (student answer).
To return an error: return False, "Syntax error" | 625941b555399d3f055884b7 |
def comp_model(params, plate): <NEW_LINE> <INDENT> kn = params[0] <NEW_LINE> b = np.asarray(params[1:]) <NEW_LINE> neighbourhood = plate.neighbourhood <NEW_LINE> mask = plate.mask <NEW_LINE> neigh_nos = plate.neigh_nos <NEW_LINE> def growth(amounts, times): <NEW_LINE> <INDENT> np.maximum(0, amounts, out=amounts) <NEW_LINE> C, N = np.split(amounts, 2) <NEW_LINE> N_diffs = neigh_nos*N - np.sum(mask*N, axis=1) <NEW_LINE> C_rates = b*C*N <NEW_LINE> N_rates = -C_rates - kn*N_diffs <NEW_LINE> rates = np.append(C_rates, N_rates) <NEW_LINE> return rates <NEW_LINE> <DEDENT> return growth | Return a function for running the competition model.
Args
----
params : list
Model parameters excluding intial amounts.
plate : Plate
A corresponding plate with attributes describing the neighbourhood. | 625941b57b25080760e39260 |
def render_wavedrom_image(sphinx, node): <NEW_LINE> <INDENT> image_format = determine_format(sphinx.builder.supported_image_types) <NEW_LINE> if image_format is None: <NEW_LINE> <INDENT> raise SphinxError("Cannot determine a suitable output format") <NEW_LINE> <DEDENT> bname = "wavedrom-{}".format(uuid4()) <NEW_LINE> outpath = os.path.join(sphinx.builder.outdir, sphinx.builder.imagedir) <NEW_LINE> if sphinx.builder.config.render_using_wavedrompy: <NEW_LINE> <INDENT> imgname = render_wavedrom_py(node, outpath, bname, image_format) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> imgname = render_wavedrom_cli(sphinx, node, outpath, bname, image_format) <NEW_LINE> <DEDENT> image_node = node['image_node'] <NEW_LINE> image_node['uri'] = os.path.join(sphinx.builder.imgpath, imgname) <NEW_LINE> node.append(image_node) | Visit the wavedrom node | 625941b545492302aab5e0c4 |
def dataReceived(self, data): <NEW_LINE> <INDENT> self.log.debug("Data received: %s" % data) <NEW_LINE> self.buffer.append(data) <NEW_LINE> for frame in self.buffer: <NEW_LINE> <INDENT> self.log.debug("Processing frame: %s" % frame) <NEW_LINE> self.engine.process_frame(frame) | Twisted calls this method when data is received.
Note: The data may not be not be a complete frame or may be more than
one frame. | 625941b51f5feb6acb0c495a |
def __init__(self): <NEW_LINE> <INDENT> self._vtm_go_epg = VtmGoEpg() | Initialise object | 625941b571ff763f4b549492 |
def setProducer(self, _oProducer): <NEW_LINE> <INDENT> if not isinstance(_oProducer, Producer): <NEW_LINE> <INDENT> raise RuntimeError('Producer is not a subclass of LogWatcher.Producers.Producer') <NEW_LINE> <DEDENT> self.__oProducer = _oProducer | Set the data producer.
@param Producer _oProducer Log data producer | 625941b56fb2d068a760eea6 |
def __init__(self, *args): <NEW_LINE> <INDENT> this = _filter_swig.new_fir_filter_fcc_sptr(*args) <NEW_LINE> try: self.this.append(this) <NEW_LINE> except: self.this = this | __init__(boost::shared_ptr<(gr::filter::fir_filter_fcc)> self) -> fir_filter_fcc_sptr
__init__(boost::shared_ptr<(gr::filter::fir_filter_fcc)> self, fir_filter_fcc p) -> fir_filter_fcc_sptr | 625941b5cb5e8a47e48b78b4 |
def limit(self, *args): <NEW_LINE> <INDENT> return self._new(self.rows, self.cols, lambda i, j: self[i, j].limit(*args)) | Calculate the limit of each element in the matrix.
Examples
========
>>> import sympy
>>> from sympy.abc import x, y
>>> M = sympy.matrices.Matrix([[x, y], [1, 0]])
>>> M.limit(x, 2)
[2, y]
[1, 0]
See Also
========
integrate
diff | 625941b5462c4b4f79d1d4d4 |
def generate_article_info(parsed_result, feed_id): <NEW_LINE> <INDENT> article_info = parsed_result <NEW_LINE> article_info['feed_id'] = feed_id <NEW_LINE> return article_info | :param parsed_result: dict returned from parse_entry()
:param feee_id: feed ID
:return: | 625941b5be8e80087fb20a53 |
def possibilities_calculator(self): <NEW_LINE> <INDENT> output = 0 <NEW_LINE> for house in self.grid.houses: <NEW_LINE> <INDENT> output += house.output <NEW_LINE> <DEDENT> cap_kind = [450, 900, 1800] <NEW_LINE> options = [] <NEW_LINE> max_num = [0, 0, 0] <NEW_LINE> for i in range(len(cap_kind)): <NEW_LINE> <INDENT> max_num[i] = round(output / cap_kind[i]) <NEW_LINE> <DEDENT> i = 0 <NEW_LINE> j = 0 <NEW_LINE> k = 0 <NEW_LINE> for i in range(max_num[2] + 1): <NEW_LINE> <INDENT> for j in range(max_num[1] + 1): <NEW_LINE> <INDENT> for k in range(max_num[0] + 1): <NEW_LINE> <INDENT> total_cap = i * cap_kind[2] + j * cap_kind[1] + k * cap_kind[0] <NEW_LINE> if total_cap >= output and total_cap < (output + cap_kind[0]) and [k, j, i] not in options: <NEW_LINE> <INDENT> options.append([k, j, i]) <NEW_LINE> <DEDENT> <DEDENT> <DEDENT> <DEDENT> return options | A function that calculates the least amount of battery
combinations that are possible, taking into account the capacity | 625941b5f7d966606f6a9e0d |
def addDigits(self, num): <NEW_LINE> <INDENT> if num == 0: <NEW_LINE> <INDENT> return 0 <NEW_LINE> <DEDENT> return num-9*int((num-1)/9) | :type num: int
:rtype: int
https://en.wikipedia.org/wiki/Digital_root | 625941b5796e427e537b03c6 |
def main(): <NEW_LINE> <INDENT> args = [] <NEW_LINE> project, account = bootstrapping.GetActiveProjectAndAccount() <NEW_LINE> pass_credentials = ( properties.VALUES.core.pass_credentials_to_gsutil.GetBool() and not properties.VALUES.auth.disable_credentials.GetBool()) <NEW_LINE> _MaybeAddBotoOption(args, 'GSUtil', 'default_project_id', project) <NEW_LINE> if pass_credentials: <NEW_LINE> <INDENT> encoding.SetEncodedValue( os.environ, 'CLOUDSDK_CORE_PASS_CREDENTIALS_TO_GSUTIL', '1') <NEW_LINE> if account in c_gce.Metadata().Accounts(): <NEW_LINE> <INDENT> _MaybeAddBotoOption(args, 'GoogleCompute', 'service_account', 'default') <NEW_LINE> encoding.SetEncodedValue( os.environ, 'CLOUDSDK_PASSED_GCE_SERVICE_ACCOUNT_TO_GSUTIL', '1') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> legacy_config_path = config.Paths().LegacyCredentialsGSUtilPath(account) <NEW_LINE> boto_config = encoding.GetEncodedValue(os.environ, 'BOTO_CONFIG', '') <NEW_LINE> boto_path = encoding.GetEncodedValue(os.environ, 'BOTO_PATH', '') <NEW_LINE> if boto_config: <NEW_LINE> <INDENT> boto_path = os.pathsep.join([boto_config, legacy_config_path]) <NEW_LINE> <DEDENT> elif boto_path: <NEW_LINE> <INDENT> boto_path = os.pathsep.join([boto_path, legacy_config_path]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> path_parts = ['/etc/boto.cfg', os.path.expanduser(os.path.join('~', '.boto')), legacy_config_path] <NEW_LINE> boto_path = os.pathsep.join(path_parts) <NEW_LINE> <DEDENT> encoding.SetEncodedValue(os.environ, 'BOTO_CONFIG', None) <NEW_LINE> encoding.SetEncodedValue(os.environ, 'BOTO_PATH', boto_path) <NEW_LINE> <DEDENT> <DEDENT> encoding.SetEncodedValue( os.environ, 'GA_CID', metrics.GetCIDIfMetricsEnabled()) <NEW_LINE> proxy_params = properties.VALUES.proxy <NEW_LINE> proxy_address = proxy_params.address.Get() <NEW_LINE> if proxy_address: <NEW_LINE> <INDENT> _MaybeAddBotoOption(args, 'Boto', 'proxy', proxy_address) <NEW_LINE> _MaybeAddBotoOption(args, 'Boto', 'proxy_port', proxy_params.port.Get()) <NEW_LINE> _MaybeAddBotoOption(args, 'Boto', 'proxy_rdns', proxy_params.rdns.GetBool()) <NEW_LINE> _MaybeAddBotoOption(args, 'Boto', 'proxy_user', proxy_params.username.Get()) <NEW_LINE> _MaybeAddBotoOption(args, 'Boto', 'proxy_pass', proxy_params.password.Get()) <NEW_LINE> <DEDENT> disable_ssl = properties.VALUES.auth.disable_ssl_validation.GetBool() <NEW_LINE> _MaybeAddBotoOption(args, 'Boto', 'https_validate_certificates', None if disable_ssl is None else not disable_ssl) <NEW_LINE> _MaybeAddBotoOption(args, 'Boto', 'ca_certificates_file', properties.VALUES.core.custom_ca_certs_file.Get()) <NEW_LINE> bootstrapping.ExecutePythonTool('platform/gsutil', 'gsutil', *args) | Launches gsutil. | 625941b5566aa707497f437f |
def set_times(event_list): <NEW_LINE> <INDENT> for event in event_list: <NEW_LINE> <INDENT> event.start = event.event_date_start.strftime('%H:%M') <NEW_LINE> event.end = event.event_date_end.strftime('%H:%M') <NEW_LINE> <DEDENT> return event_list | Formates time | 625941b5d58c6744b4257a65 |
def test_get(self): <NEW_LINE> <INDENT> self.flash['message'] = 'Message' <NEW_LINE> self.storage.set(self.flash, self.request, self.response) <NEW_LINE> self.assertEqual(None, self.storage.get(self.request)) <NEW_LINE> self._transfer_cookies_from_response_to_request() <NEW_LINE> self.assertEqual('Message', self.storage.get(self.request)['message']) | CookieStorage: should return the stored object.
| 625941b53c8af77a43ae35a2 |
def consumer_commit_for_times(consumer, partition_to_offset, atomic=False): <NEW_LINE> <INDENT> no_offsets = set() <NEW_LINE> for tp, offset in six.iteritems(partition_to_offset): <NEW_LINE> <INDENT> if offset is None: <NEW_LINE> <INDENT> logging.error( "No offsets found for topic-partition {tp}. Either timestamps not supported" " for the topic {tp}, or no offsets found after timestamp specified, or there is no" " data in the topic-partition.".format(tp=tp), ) <NEW_LINE> no_offsets.add(tp) <NEW_LINE> <DEDENT> <DEDENT> if atomic and len(no_offsets) > 0: <NEW_LINE> <INDENT> logging.error( "Commit aborted; offsets were not found for timestamps in" " topics {}".format(",".join([str(tp) for tp in no_offsets])), ) <NEW_LINE> return <NEW_LINE> <DEDENT> offsets_metadata = { tp: OffsetAndMetadata(partition_to_offset[tp].offset, metadata=None) for tp in six.iterkeys(partition_to_offset) if tp not in no_offsets } <NEW_LINE> if len(offsets_metadata) != 0: <NEW_LINE> <INDENT> consumer.commit(offsets_metadata) | Commits offsets to Kafka using the given KafkaConsumer and offsets, a mapping
of TopicPartition to Unix Epoch milliseconds timestamps.
Arguments:
consumer (KafkaConsumer): an initialized kafka-python consumer.
partitions_to_offset (dict TopicPartition: OffsetAndTimestamp): Map of TopicPartition to OffsetAndTimestamp. Return value of offsets_for_times.
atomic (bool): Flag to specify whether the commit should fail if offsets are not found for some
TopicPartition: timestamp pairs. | 625941b5b545ff76a8913c24 |
def get_res(self, context, element=None, ui=False) -> "BFResult or None": <NEW_LINE> <INDENT> if DEBUG: print("BFDS: BFObject.get_res:", self.idname) <NEW_LINE> return BFCommon.get_res(self, context, self, ui) | Get full BFResult (children and mine). On error raise BFException. | 625941b5442bda511e8be22b |
def get_user_input(input_value): <NEW_LINE> <INDENT> if input_value: <NEW_LINE> <INDENT> if check_input_validity(input_value): <NEW_LINE> <INDENT> return input_value <NEW_LINE> <DEDENT> <DEDENT> while True: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> current_code = raw_input("Your code (max len 13 char): ") <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> current_code = input("Your code (max len 13 char): ") <NEW_LINE> <DEDENT> if check_input_validity(current_code): <NEW_LINE> <INDENT> return current_code | Question user for input
:return: | 625941b5d7e4931a7ee9dd20 |
def vote_positive(self): <NEW_LINE> <INDENT> return self.upvotes > self.downvotes | return the weight of all votes, positive if upvotes are more, negative if downvotes are more | 625941b5adb09d7d5db6c598 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.