code
stringlengths 4
4.48k
| docstring
stringlengths 1
6.45k
| _id
stringlengths 24
24
|
---|---|---|
def set_width(self, width): <NEW_LINE> <INDENT> self._width = width if width > self._width else self._width | Set the widths of this Column.
This method can be called if the width of the column can be enlarged.
If the parameter width is smaller then the member variable width, then this method has no effect
@param width the new width | 625941b5090684286d50eada |
def create_df(genes): <NEW_LINE> <INDENT> df_dict = {} <NEW_LINE> for name, gene in genes.items(): <NEW_LINE> <INDENT> df_dict[name] = {'Mat_Counts': gene.mat_counts, 'Pat_Counts': gene.pat_counts, 'N_Counts': gene.n_counts, 'Others': gene.other_counts, 'SNPs': len(gene), 'Winner': gene.win, 'pval': gene.pval, 'Mat_wins': gene.mat_win, 'Pat_wins': gene.pat_win, 'Not_Sig': gene.not_sig, 'Weird': gene.weird, 'Failed': gene.failed} <NEW_LINE> <DEDENT> column_order=['Mat_Counts', 'Pat_Counts', 'N_Counts', 'Others', 'SNPs', 'Winner', 'pval', 'Mat_wins', 'Pat_wins', 'Not_Sig', 'Weird', 'Failed'] <NEW_LINE> df = pandas.DataFrame.from_dict(df_dict, orient='index') <NEW_LINE> df.index.name = 'GENE' <NEW_LINE> df = df[column_order] <NEW_LINE> return df | Make a pandas dataframe from a dictionary of genes.
Datafram has the following columns::
Counts::
'Mat_Counts' -- Total number of maternal counts for this gene
'Pat_Counts' -- Total number of paternal counts for this gene
'N_Counts' -- Total number of reads with N in the SNP position
'Others' -- Total number of reads with a non-parental allele
Gene-level summary::
'Winner' -- The overall winner ('mat' or 'pat')
'pval' -- The pvalue of that association (binomial)
SNP-level information::
'SNPs' -- Total number of SNPs in this gene
'Mat_wins' -- Total number of SNPs with materal wins
'Pat_wins' -- Total number of SNPs with pateral wins
'Not_Sig' -- Total number of SNPs that weren't significant
'Weird' -- Total number of SNPs with non-parental allele
'Failed' -- Total number of SNPs that failed for some reason,
(usually due to Ns in the sequence) | 625941b5ad47b63b2c509d86 |
def __init__(self, *args, **kwargs): <NEW_LINE> <INDENT> _simuPOP_op.CombinedSplitter_swiginit(self, _simuPOP_op.new_CombinedSplitter(*args, **kwargs)) | Usage:
CombinedSplitter(splitters=[], vspMap=[], names=[])
Details:
Create a combined splitter using a list of splitters. For example,
CombinedSplitter([SexSplitter(), AffectionSplitter()]) defines a
combined splitter with four VSPs, defined by male (vsp 0), female
(vsp 1), unaffected (vsp 2) and affected individuals (vsp 3).
Optionally, a new set of VSPs could be defined by parameter
vspMap. Each item in this parameter is a list of VSPs that will be
combined to a single VSP. For example, vspMap=[(0, 2), (1, 3)] in
the previous example will define two VSPs defined by male or
unaffected, and female or affected individuals. VSP names are
usually determined by splitters, but can also be specified using
parameter names. | 625941b55510c4643540f1f4 |
def contains(self, value): <NEW_LINE> <INDENT> while self.head != self.tail: <NEW_LINE> <INDENT> if self.head.data == value: <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> self.head = self.head.next <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False | Checks if any node contains value
Args:
value: The value to look for
Returns:
True if value is in the list, False otherwise | 625941b5b7558d58953c4d17 |
def getUntrustedCertificateCause(self, url): <NEW_LINE> <INDENT> if url is None: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> if not SSLUtil.isSSLCertificatesVerificationEnabled(): <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> r = requests.get(url, verify=True, timeout=self.timeout) <NEW_LINE> <DEDENT> except requests.exceptions.SSLError as e: <NEW_LINE> <INDENT> msg = str(e) <NEW_LINE> self.logger.warn('Untrusted Certificate Cause: %s', msg) <NEW_LINE> p = re.compile( '.*\\[SSL: (?P<constant>[A-Z_]+)\\] (?P<message>[^\\(]+)' ) <NEW_LINE> m = p.match(msg) <NEW_LINE> if m is not None: <NEW_LINE> <INDENT> if m.groups('message') is not None: <NEW_LINE> <INDENT> return m.groups('message')[0].strip() <NEW_LINE> <DEDENT> <DEDENT> if msg.rfind(':') > 0: <NEW_LINE> <INDENT> msg = msg[(msg.rfind(':')+1):] <NEW_LINE> <DEDENT> return msg <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> return str(e) <NEW_LINE> <DEDENT> return None | Getting untrusted certificate cause | 625941b52ae34c7f2600cf2d |
def load_data_from_redis(self, key=None): <NEW_LINE> <INDENT> if self.connect is None or self.connect.ping() is False: <NEW_LINE> <INDENT> self.logger.error("cannot connect to redis, rebuild connection...") <NEW_LINE> self.logger.error("Please try again.") <NEW_LINE> self.connect = self.__connect_redis() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> data = self.connect.get(name=key) <NEW_LINE> if data is not None: <NEW_LINE> <INDENT> data = json.loads(data) <NEW_LINE> return data <NEW_LINE> <DEDENT> <DEDENT> return None | 从 Redis 中加载查询子图数据
:return: | 625941b5e1aae11d1e749aae |
def check_outlier(dataframe, col_name): <NEW_LINE> <INDENT> low_limit, up_limit = outlier_thresholds(dataframe, col_name, 0.05, 0.95) <NEW_LINE> if dataframe[(dataframe[col_name] > up_limit) | (dataframe[col_name] < low_limit)].any(axis=None): <NEW_LINE> <INDENT> return True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return False | This function stands for checking if a column of a dataframe have outlier or
not according to results of outlier_thresholds function.
Parameters
----------
dataframe: pandas.core.frame.DataFrame
DataFrame that we want to check for outlier values.
col_name: str
Column name to check for outlier values.
Returns: bool
True, False
------- | 625941b5cdde0d52a9e52e29 |
def densenet121(mask_init='1s', mask_scale=1e-2, threshold_fn='binarizer', **kwargs): <NEW_LINE> <INDENT> model = DenseNet(mask_init, mask_scale, threshold_fn, num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs) <NEW_LINE> return model | Densenet-121 model from
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf>`_ | 625941b5460517430c393f8b |
def _sync_user(self, request, user): <NEW_LINE> <INDENT> pass | Called after a user is fetched/created and syncs any additional properties
from the JWT's payload to the user object. | 625941b55166f23b2e1a4f54 |
def help(self): <NEW_LINE> <INDENT> sys.stdout.write(self.usage()) <NEW_LINE> sys.stdout.write('\n') | Prints the usage | 625941b5099cdd3c635f0a58 |
def betterEvaluationFunction(currentGameState): <NEW_LINE> <INDENT> util.raiseNotDefined() | Your extreme ghost-hunting, pellet-nabbing, food-gobbling, unstoppable
evaluation function.
DESCRIPTION: <write something here so we know what you did> | 625941b53346ee7daa2b2b64 |
def __init__(self,X,Y,x,y): <NEW_LINE> <INDENT> checkVectorSpace("X",X) <NEW_LINE> checkVectorSpace("Y",Y) <NEW_LINE> Optizelle.Unconstrained.State.allocateVectors(self,X,x) <NEW_LINE> allocateVectors(self,X,Y,x,y) <NEW_LINE> EqualityConstrainedStateCreate(self,X,Y,x,y) | Constructor | 625941b50fa83653e4656db9 |
def download_and_unzip_data(self, destination): <NEW_LINE> <INDENT> logger.debug("Requesting {}".format(self.url)) <NEW_LINE> response = requests.get(self.url) <NEW_LINE> archive = zipfile.ZipFile(io.BytesIO(response.content)) <NEW_LINE> logger.debug("Extracting archive into {}".format(str(destination))) <NEW_LINE> archive.extractall(path=destination) | Download zipped shapfiles | 625941b5de87d2750b85fb89 |
def atomic_number(symbol): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> return atomic_symbols.index(symbol.title()) <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> return None | Returns the atomic number of an element, given its atomic symbol
Parameters:
-----------
* symbol: The atomic symbol of the element whose atomic number is being
requested. This is a 1 or 2 character string, e.g. 'H', 'Si',
etc. It is case insensitive and leading or trailing blanks
are ignored.
Outputs:
--------
This function returns the atomic number of the input element. If an
invalid atomic symbol is input then the function returns 0. | 625941b563b5f9789fde6ee1 |
def list_dataset_for_blobname(cursor, blobname): <NEW_LINE> <INDENT> sql = "SELECT ID, DATETIME, STORAGE_ID FROM BLOBS WHERE BLOBNAME = :filename" <NEW_LINE> param = {'filename': blobname} <NEW_LINE> cursor.execute(sql, param) <NEW_LINE> data = [ { 'id': x[0], 'datatime': x[1], 'storage_id':x[2] } for x in cursor.fetchall()] <NEW_LINE> return data | Listet alle gespeicherten Datensätze in der Datenbank auf die
unter filename gespeichert wurden
Arguments:
cursor -- Datenbank Cursor
blobname -- Name unter dem der gesuchte blob gespeichert ist.
Returns:
Eine Liste von Dictionaries die die gefundenen Einträge enthalten. | 625941b54c3428357757c126 |
def user_exists(username): <NEW_LINE> <INDENT> return username in pending_users or self.user_data(username) is not None | Helper function that checks if a user already exists | 625941b566673b3332b91e92 |
def get_members_ordered_by_explore_point(server_id, char_id, names=True, limit=None): <NEW_LINE> <INDENT> docs = MongoUnionMember.db(server_id).find( {'explore_point': {'$gt': 0}} ).sort('explore_point', -1) <NEW_LINE> result = [] <NEW_LINE> self_info = None <NEW_LINE> for index, doc in enumerate(docs): <NEW_LINE> <INDENT> rank = index + 1 <NEW_LINE> if limit and rank > limit: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> obj = _ExploreMember() <NEW_LINE> obj.rank = rank <NEW_LINE> obj.id = doc['_id'] <NEW_LINE> obj.explore_point = doc['explore_point'] <NEW_LINE> result.append(obj) <NEW_LINE> if doc['_id'] == char_id: <NEW_LINE> <INDENT> self_info = obj <NEW_LINE> <DEDENT> <DEDENT> if names: <NEW_LINE> <INDENT> char_ids = [r.id for r in result] <NEW_LINE> names = batch_get_club_property(server_id, char_ids, 'name') <NEW_LINE> for r in result: <NEW_LINE> <INDENT> r.name = names[r.id] <NEW_LINE> <DEDENT> <DEDENT> if char_id == 0: <NEW_LINE> <INDENT> return result, None <NEW_LINE> <DEDENT> if self_info: <NEW_LINE> <INDENT> return result, self_info <NEW_LINE> <DEDENT> doc = MongoUnionMember.db(server_id).find_one({'_id': char_id}, {'explore_point': 1}) <NEW_LINE> if not doc: <NEW_LINE> <INDENT> return result, None <NEW_LINE> <DEDENT> self_info = _ExploreMember() <NEW_LINE> self_info.id = char_id <NEW_LINE> self_info.name = get_club_property(server_id, char_id, 'name') <NEW_LINE> self_info.explore_point = doc.get('explore_point', 0) <NEW_LINE> if not self_info.explore_point: <NEW_LINE> <INDENT> self_info.rank = 0 <NEW_LINE> return result, self_info <NEW_LINE> <DEDENT> rank = MongoUnionMember.db(server_id).find( {'explore_point': {'$gt': self_info.explore_point}} ).count() <NEW_LINE> self_info.rank = rank <NEW_LINE> return result, self_info | :rtype: (list[_ExploreMember], _ExploreMember | None) | 625941b5377c676e91271fa6 |
@Files.route("/image/<objectid:file_id>", defaults={'size': None}, methods=['GET']) <NEW_LINE> @Files.route("/image/<objectid:file_id>/<string:size>", methods=['GET']) <NEW_LINE> @require_token() <NEW_LINE> def process_image_request(file_id, size): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> sizes = {'small': (140, 100), 'medium': (400, 300), 'large': (1200, 1000) } <NEW_LINE> col = app.data.driver.db['files'] <NEW_LINE> image = col.find_one({'_id': ObjectId(file_id)}) <NEW_LINE> grid_fs = GridFS(app.data.driver.db) <NEW_LINE> if not grid_fs.exists(_id=image['file']): <NEW_LINE> <INDENT> return eve_abort(500, 'No file system found') <NEW_LINE> <DEDENT> im_stream = grid_fs.get_last_version(_id=image['file']) <NEW_LINE> im = Image.open(im_stream) <NEW_LINE> if size != 'original': <NEW_LINE> <INDENT> im.thumbnail(sizes[size], Image.ANTIALIAS) <NEW_LINE> <DEDENT> img_io = io.BytesIO() <NEW_LINE> im.save(img_io, 'PNG', quality=100) <NEW_LINE> img_io.seek(0) <NEW_LINE> encoded_img = base64.b64encode(img_io.read()) <NEW_LINE> dict = {'mimetype': 'image/png', 'encoding': 'base64', 'src': encoded_img } <NEW_LINE> return jsonify(**dict) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> return eve_abort(404, 'Image not found or errors processing') | Resizes images to size and returns a base64 encoded string representing
the image | 625941b591af0d3eaac9b80f |
def format_data(self, value): <NEW_LINE> <INDENT> return self.__call__(value) | Return the full string representation of the value with the
position unspecified. | 625941b560cbc95b062c6344 |
def __init__(self, command_targets, load_targets, blade_path, working_dir, build_dir, blade_root_dir, blade_options, command): <NEW_LINE> <INDENT> self.__command_targets = command_targets <NEW_LINE> self.__load_targets = load_targets <NEW_LINE> self.__blade_path = blade_path <NEW_LINE> self.__working_dir = working_dir <NEW_LINE> self.__build_dir = build_dir <NEW_LINE> self.__root_dir = blade_root_dir <NEW_LINE> self.__options = blade_options <NEW_LINE> self.__command = command <NEW_LINE> self.__current_source_path = blade_root_dir <NEW_LINE> self.__blade_revision = None <NEW_LINE> self.__direct_targets = [] <NEW_LINE> self.__expanded_command_targets = [] <NEW_LINE> self.__target_database = {} <NEW_LINE> self.__build_targets = {} <NEW_LINE> self.__sorted_targets_keys = [] <NEW_LINE> self.__targets_expanded = False <NEW_LINE> self.__build_time = time.time() <NEW_LINE> self.__build_toolchain = ToolChain() <NEW_LINE> self.build_accelerator = BuildAccelerator(self.__root_dir, self.__build_toolchain) <NEW_LINE> self.__build_jobs_num = 0 <NEW_LINE> self.__test_jobs_num = 0 <NEW_LINE> self.svn_root_dirs = [] <NEW_LINE> self._verify_history_path = os.path.join(build_dir, '.blade_verify.json') <NEW_LINE> self._verify_history = { 'header_inclusion_dependencies': {}, } <NEW_LINE> self.__build_script = os.path.join(self.__build_dir, 'build.ninja') <NEW_LINE> self.__all_rule_names = [] | init method.
Args:
command_targets: List[str], target patterns are specified in command line.
load_targets: List[str], target patterns should be loaded from workspace. It usually should be same
as the command_targets, but in query dependents mode, all targets should be loaded.
blade_path: str, the path of the `blade` python module, used to be called by builtin tools. | 625941b550485f2cf553cb94 |
def destroy(self): <NEW_LINE> <INDENT> self.destroy_catalogue() <NEW_LINE> if self._archive_exists(): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> util.remove_path(self._root) <NEW_LINE> <DEDENT> except EnvironmentError as _error: <NEW_LINE> <INDENT> raise Error("unable to remove archive root path '%s' [%s]" % (self._root, _error)) | Completely remove the archive, both the products as well as the product catalogue.
Using the archive after calling this function results in undefined behavior. The prepare() function can be used
to bring the archive back into a useable state. | 625941b591f36d47f21ac2f1 |
def test_format_child(self, mock_nested_config): <NEW_LINE> <INDENT> assert mock_nested_config.format("{CHILD.BAR}") == "bar" <NEW_LINE> assert mock_nested_config.format("{CHILD.GRANDCHILD.XOO}") == "xoo" <NEW_LINE> mock_nested_config.CHILD.NESTED = "{CHILD.GRANDCHILD.XOO}" <NEW_LINE> mock_nested_config.CHILD.GRANDCHILD.NESTED_2ND_LEVEL = "{CHILD.NESTED}" <NEW_LINE> assert mock_nested_config.format("{CHILD.NESTED}") == "xoo" <NEW_LINE> assert mock_nested_config.format("{CHILD.GRANDCHILD.NESTED_2ND_LEVEL}") == "xoo" | Child config should be usable by format | 625941b50a50d4780f666c8a |
def wikidata_items(self): <NEW_LINE> <INDENT> return self.wf.resource("[email protected]", dir=corpora.wikidir(), format="records/frame") | Resource for wikidata items. This is a set of record files where each
WikiData item is represented as a frame:
<qid>: {
=<qid>
:/w/item
name: "..."
description: "..."
alias: {
name: "..."
lang: /lang/<lang>
sources: ...
}
...
/w/wikipedia: {
/lang/<lang>: <wid>
...
}
... properties
}
<qid>: Wikidata item id (Q<item number>, e.g. Q35)
<pid>: Wikidata property id (P<property number>, e.g. P31)
<wid>: Wikipedia page id (/wp/<lang>/<pageid>, /wp/en/76972) | 625941b53eb6a72ae02ec2d5 |
def __write_in_console(self, code, message): <NEW_LINE> <INDENT> self.__console.SetForegroundColour(wx.WHITE) <NEW_LINE> if code == Message.CONSOLE_LOG: <NEW_LINE> <INDENT> self.__console.AppendText(message) <NEW_LINE> <DEDENT> elif code == Message.CONSOLE_LOG_ERR or code == Message.ERROR_MESSAGE: <NEW_LINE> <INDENT> self.__console.SetForegroundColour(wx.RED) <NEW_LINE> self.__console.AppendText(message) <NEW_LINE> <DEDENT> self.__console.SetForegroundColour(wx.WHITE) | write a message in the console
:param code: Message.CONSOLE_LOG =>white|Message.CONSOLE_LOG_ERR => red
:param message:
:return: | 625941b5cc40096d6159574f |
def _px(self, m): <NEW_LINE> <INDENT> mm = m * 1000 * self.scalefactor <NEW_LINE> px = mm * self.MM2PX <NEW_LINE> return px | Go from meters to pixels | 625941b5c432627299f04a40 |
def create_weights_conditional(n_inputs, n_outputs, n_hiddens, n_comps): <NEW_LINE> <INDENT> Wx = tf.Variable(rng.randn(n_inputs, n_hiddens[0]) / np.sqrt(n_inputs + 1), dtype=dtype, name='Wx') <NEW_LINE> return (Wx,) + create_weights(n_outputs, n_hiddens, n_comps) | Creates all learnable weight matrices and bias vectors for a conditional made.
:param n_inputs: the number of (conditional) inputs
:param n_outputs: the number of outputs
:param n_hiddens: a list with the number of hidden units
:param n_comps: number of gaussian components
:return: weights and biases, as tensorflow variables | 625941b5dc8b845886cb5330 |
def reprocess(product_id, valid): <NEW_LINE> <INDENT> req = requests.get( f"https://mesonet.agron.iastate.edu/api/1/nwstext/{product_id}" ) <NEW_LINE> tmpfn = f"/tmp/{product_id}.txt" <NEW_LINE> with open(tmpfn, "wb") as fh: <NEW_LINE> <INDENT> fh.write(req.content) <NEW_LINE> <DEDENT> cmd = f"python ~/projects/pyWWA/util/make_text_noaaportish.py {tmpfn}" <NEW_LINE> subprocess.call(cmd, shell=True) <NEW_LINE> cmd = ( f"cat {tmpfn} | python ~/projects/pyWWA/parsers/spc_parser.py -x " f"-u {valid.strftime('%Y-%m-%dT00:00Z')}" ) <NEW_LINE> subprocess.call(cmd, shell=True) | Send this product_id back through the meatgrinder. | 625941b5cdde0d52a9e52e2a |
def _wigner_fourier(psi, xvec, g=np.sqrt(2)): <NEW_LINE> <INDENT> if psi.type == 'bra': <NEW_LINE> <INDENT> psi = psi.dag() <NEW_LINE> <DEDENT> if psi.type == 'ket': <NEW_LINE> <INDENT> return _psi_wigner_fft(psi.full(), xvec, g) <NEW_LINE> <DEDENT> elif psi.type == 'oper': <NEW_LINE> <INDENT> eig_vals, eig_vecs = la.eigh(psi.full()) <NEW_LINE> W = 0 <NEW_LINE> for ii in range(psi.shape[0]): <NEW_LINE> <INDENT> W1, yvec = _psi_wigner_fft( np.reshape(eig_vecs[:, ii], (psi.shape[0], 1)), xvec, g) <NEW_LINE> W += eig_vals[ii] * W1 <NEW_LINE> <DEDENT> return W, yvec | Evaluate the Wigner function via the Fourier transform. | 625941b5f548e778e58cd377 |
def get_method_kind(method, add_args=0): <NEW_LINE> <INDENT> if method is None: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> fsig=FunctionSignature.from_function(method) <NEW_LINE> if len(fsig.arg_names)>=1+add_args and fsig.arg_names[0]=="name": <NEW_LINE> <INDENT> return "named" <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return "simple" | Determine whether the method takes name as its argument
`add_args` specifies number of additional required arguments.
Return ``"named"`` is the method has at least ``add_args+1`` arguments, and the first one is called ``"name"``.
Otherwise, return ``"simple"``. | 625941b57047854f462a1209 |
def get(self, key): <NEW_LINE> <INDENT> return super().get(key, set()) | Get a set in the dictionary,
defaulting to the empty set if not found | 625941b5d18da76e235322cd |
def __init__(self, game): <NEW_LINE> <INDENT> self.game = game <NEW_LINE> self.states = { PROP_VIEW: STATE_MAPVIEW, PROP_MAP: 0, PROP_GRIDLINES: False, PROP_PLAYERS: True, PROP_UPDATE_MAIN: True, PROP_GM_VIEW: STATE_NORMAL, PROP_SHOW_TOKEN: True, PROP_ZOOM: 1, PROP_TRANS_X: 0, PROP_TRANS_Y: 0, } <NEW_LINE> self.main_view = View() <NEW_LINE> self.gm_view = View() <NEW_LINE> cv.namedWindow("main", cv.WINDOW_NORMAL) <NEW_LINE> cv.namedWindow("gm", cv.WINDOW_NORMAL) | save a reference to the game and set parameters
:param game: The game of which the current map is going to be displayed | 625941b5d10714528d5ffada |
def __number_of_all_unique_kmers(s): <NEW_LINE> <INDENT> n = len(s) <NEW_LINE> uniques = set() <NEW_LINE> for k in range(1, n+1): <NEW_LINE> <INDENT> uniques.update(__list_unique_kmers(s, k)) <NEW_LINE> <DEDENT> return len(uniques) | Finds the number of unique k-mers in s for all k in [1, len(s)].
| 625941b52eb69b55b151c6a6 |
def build_parse_tree(sentence, bp_table, start, end, start_symbol): <NEW_LINE> <INDENT> if (start,end,start_symbol) in bp_table: <NEW_LINE> <INDENT> left_index = bp_table[(start,end,start_symbol)][0] <NEW_LINE> left = build_parse_tree(sentence, bp_table, left_index[0], left_index[1], left_index[2]) <NEW_LINE> right_index = bp_table[(start,end,start_symbol)][1] <NEW_LINE> right = build_parse_tree(sentence, bp_table, right_index[0], right_index[1], right_index[2]) <NEW_LINE> return [start_symbol, left, right] <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return [start_symbol, sentence[start]] | given the target sentence, build a parse tree for it based on the bp_table. | 625941b54f88993c3716be70 |
def BVA_categorical_plot(data, tar, cat,sig_level = 0.05): <NEW_LINE> <INDENT> data = data[[cat,tar]][:] <NEW_LINE> table = pd.crosstab(data[tar],data[cat],) <NEW_LINE> f_obs = np.array([table.iloc[0][:].values,table.iloc[1][:].values]) <NEW_LINE> from scipy.stats import chi2_contingency <NEW_LINE> chi, p, dof, expected = chi2_contingency(f_obs) <NEW_LINE> if p<sig_level: <NEW_LINE> <INDENT> sig = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> sig = False <NEW_LINE> <DEDENT> plt.figure(figsize=(20,4)) <NEW_LINE> fig, axes = plt.subplots(1,2) <NEW_LINE> ax1 = data.groupby(cat)[tar].value_counts(normalize=False).unstack().round(4) <NEW_LINE> sns.countplot(x=cat, hue=tar, data=data, ax = axes[0]) <NEW_LINE> axes[0].set_xticklabels(data[cat].cat.categories,rotation=90) <NEW_LINE> axes[0].title.set_text("p-value = {}\n Significance level: {}\n difference significant? = {}\n\n{}".format(round(p,8), sig_level,sig,str(ax1))) <NEW_LINE> ax1 = data.groupby(cat)[tar].value_counts(normalize=True).unstack().round(4) <NEW_LINE> ax1.plot(kind='bar', stacked='True',title=str(ax1),ax= axes[1], figsize=(15,5)) <NEW_LINE> plt.xticks(rotation=90) <NEW_LINE> plt.ylabel("Percentage") | take data and two categorical variables,
calculates the chi2 significance between the two variables
and prints the result with countplot & CrossTab | 625941b597e22403b379cd94 |
def is_no_record_found_message_displayed_in_customer_offer_preview_grid(self): <NEW_LINE> <INDENT> return self.is_element_present(self.customer_offer_preview_grid_no_record_found_message_locator) | Implementing is no record found message displayed in customer offer preview grid functionality
:return: | 625941b5be7bc26dc91cd402 |
def _check_error(self, ws: WebSocketApp, error: Exception) -> None: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> with self._reader_guard: <NEW_LINE> <INDENT> if self._reader_status == ReaderStatus.DONE and isinstance(error, OSError) and error.errno == 9: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> <DEDENT> self._set_error(error) <NEW_LINE> self.on_error(ws, error) <NEW_LINE> <DEDENT> except Exception as err: <NEW_LINE> <INDENT> self._set_error(err) | Just log the error and propagate it to *self.on_error*.
:param ws: WebSocketApp
:param error: Exception | 625941b510dbd63aa1bd29ac |
def bst_insert(self, root, key): <NEW_LINE> <INDENT> left = False <NEW_LINE> if not root: <NEW_LINE> <INDENT> return TreeNode(key) <NEW_LINE> <DEDENT> if key == root.key: <NEW_LINE> <INDENT> return None <NEW_LINE> <DEDENT> elif key < root.key: <NEW_LINE> <INDENT> next_node = root.left <NEW_LINE> left = True <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> next_node = root.right <NEW_LINE> left = False <NEW_LINE> <DEDENT> if next_node is not None: <NEW_LINE> <INDENT> self.bst_insert(next_node, key) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if left: <NEW_LINE> <INDENT> root.left = TreeNode(key) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> root.right = TreeNode(key) <NEW_LINE> <DEDENT> <DEDENT> return root | A recursive function to insert a new TreeNode into the tree without rotation balancing.
:param root: The root node of the tree or None.
:param key: The new key to insert.
:return: The updated root node or a new TreeNode(key) | 625941b5596a8972360898c6 |
def nodes(self): <NEW_LINE> <INDENT> return self.graph.nodes() | An iterator of all nodes in the graph.
:return: The iterator.
:rtype: iterator | 625941b5be383301e01b5289 |
def test_insert_and_replace_one(self): <NEW_LINE> <INDENT> member = Member() <NEW_LINE> member2 = Member() <NEW_LINE> member2.last_name = "Test" <NEW_LINE> member2.first_name = "Test" <NEW_LINE> insert_result = self.DB.insert_one(db_constants.MEMBERS, member) <NEW_LINE> self.DB.replace_one(db_constants.MEMBERS, {db_constants.ENTRY_ID: insert_result.inserted_id}, member2) <NEW_LINE> result = self.DB.find_one(db_constants.MEMBERS, {db_constants.ENTRY_ID: insert_result.inserted_id}) <NEW_LINE> self.convertUnicodeToAscii(result) <NEW_LINE> self.assertTrue(db_constants.ENTRY_ID in result.__dict__) <NEW_LINE> result.__dict__.pop(db_constants.ENTRY_ID) <NEW_LINE> self.assertNotEqual(member.__dict__, result.__dict__) <NEW_LINE> self.assertEqual(member2.__dict__, result.__dict__) | Verifies a custom class can be properly replaced. | 625941b5287bf620b61d386c |
def get_args(tp, evaluate=None): <NEW_LINE> <INDENT> if NEW_TYPING: <NEW_LINE> <INDENT> if evaluate is not None and not evaluate: <NEW_LINE> <INDENT> raise ValueError('evaluate can only be True in Python >= 3.7') <NEW_LINE> <DEDENT> if isinstance(tp, _GenericAlias): <NEW_LINE> <INDENT> return tp.__args__ <NEW_LINE> <DEDENT> return () <NEW_LINE> <DEDENT> if is_generic_type(tp) or is_union_type(tp) or is_tuple_type(tp): <NEW_LINE> <INDENT> tree = tp._subs_tree() <NEW_LINE> if isinstance(tree, tuple) and len(tree) > 1: <NEW_LINE> <INDENT> if not evaluate: <NEW_LINE> <INDENT> return tree[1:] <NEW_LINE> <DEDENT> return _eval_args(tree[1:]) <NEW_LINE> <DEDENT> <DEDENT> return () | Get type arguments with all substitutions performed. For unions,
basic simplifications used by Union constructor are performed.
On versions prior to 3.7 if `evaluate` is False (default),
report result as nested tuple, this matches
the internal representation of types. If `evaluate` is True
(or if Python version is 3.7 or greater), then all
type parameters are applied (this could be time and memory expensive).
Examples::
get_args(int) == ()
get_args(Union[int, Union[T, int], str][int]) == (int, str)
get_args(Union[int, Tuple[T, int]][str]) == (int, (Tuple, str, int))
get_args(Union[int, Tuple[T, int]][str], evaluate=True) == (int, Tuple[str, int])
get_args(Dict[int, Tuple[T, T]][Optional[int]], evaluate=True) == (int, Tuple[Optional[int], Optional[int]])
get_args(Callable[[], T][int], evaluate=True) == ([], int,) | 625941b5e5267d203edcda9d |
def _name_from_project_path(path, project, template): <NEW_LINE> <INDENT> if isinstance(template, str): <NEW_LINE> <INDENT> template = re.compile(template) <NEW_LINE> <DEDENT> match = template.match(path) <NEW_LINE> if not match: <NEW_LINE> <INDENT> raise ValueError( 'path "%s" did not match expected pattern "%s"' % (path, template.pattern) ) <NEW_LINE> <DEDENT> if project is not None: <NEW_LINE> <INDENT> found_project = match.group("project") <NEW_LINE> if found_project != project: <NEW_LINE> <INDENT> raise ValueError( "Project from client (%s) should agree with " "project from resource(%s)." % (project, found_project) ) <NEW_LINE> <DEDENT> <DEDENT> return match.group("name") | Validate a URI path and get the leaf object's name.
:type path: str
:param path: URI path containing the name.
:type project: str
:param project: (Optional) The project associated with the request. It is
included for validation purposes. If passed as None,
disables validation.
:type template: str
:param template: Template regex describing the expected form of the path.
The regex must have two named groups, 'project' and
'name'.
:rtype: str
:returns: Name parsed from ``path``.
:raises ValueError: if the ``path`` is ill-formed or if the project from
the ``path`` does not agree with the ``project``
passed in. | 625941b54428ac0f6e5ba5f6 |
def __init__(self, collection, page=1, items_per_page=20, item_count=None, wrapper_class=None, url_maker=None, **kwargs): <NEW_LINE> <INDENT> if collection is not None: <NEW_LINE> <INDENT> if wrapper_class is None: <NEW_LINE> <INDENT> self.collection = collection <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.collection = wrapper_class(collection) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> self.collection = [] <NEW_LINE> <DEDENT> self.collection_type = type(collection) <NEW_LINE> if url_maker is not None: <NEW_LINE> <INDENT> self.url_maker = url_maker <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.url_maker = self._default_url_maker <NEW_LINE> <DEDENT> self.kwargs = kwargs <NEW_LINE> try: <NEW_LINE> <INDENT> self.page = int(page) <NEW_LINE> <DEDENT> except (ValueError, TypeError): <NEW_LINE> <INDENT> self.page = 1 <NEW_LINE> <DEDENT> if self.page < 1: <NEW_LINE> <INDENT> self.page = 1 <NEW_LINE> <DEDENT> self.items_per_page = items_per_page <NEW_LINE> try: <NEW_LINE> <INDENT> first = (self.page - 1) * items_per_page <NEW_LINE> last = first + items_per_page <NEW_LINE> self.items = list(self.collection[first:last]) <NEW_LINE> <DEDENT> except TypeError: <NEW_LINE> <INDENT> raise TypeError("Your collection of type "+type(self.collection)+ " cannot be handled by paginate.") <NEW_LINE> <DEDENT> if item_count is not None: <NEW_LINE> <INDENT> self.item_count = item_count <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.item_count = len(self.collection) <NEW_LINE> <DEDENT> if self.item_count > 0: <NEW_LINE> <INDENT> self.first_page = 1 <NEW_LINE> self.page_count = ((self.item_count - 1) // self.items_per_page) + 1 <NEW_LINE> self.last_page = self.first_page + self.page_count - 1 <NEW_LINE> if self.page > self.last_page: <NEW_LINE> <INDENT> self.page = self.last_page <NEW_LINE> <DEDENT> elif self.page < self.first_page: <NEW_LINE> <INDENT> self.page = self.first_page <NEW_LINE> <DEDENT> self.first_item = (self.page - 1) * items_per_page + 1 <NEW_LINE> self.last_item = min(self.first_item + items_per_page - 1, self.item_count) <NEW_LINE> if self.page > self.first_page: <NEW_LINE> <INDENT> self.previous_page = self.page-1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.previous_page = None <NEW_LINE> <DEDENT> if self.page < self.last_page: <NEW_LINE> <INDENT> self.next_page = self.page+1 <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> self.next_page = None <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> self.first_page = None <NEW_LINE> self.page_count = 0 <NEW_LINE> self.last_page = None <NEW_LINE> self.first_item = None <NEW_LINE> self.last_item = None <NEW_LINE> self.previous_page = None <NEW_LINE> self.next_page = None <NEW_LINE> self.items = [] <NEW_LINE> <DEDENT> list.__init__(self, self.items) | Create a "Page" instance.
Parameters:
collection
Sequence representing the collection of items to page through.
page
The requested page number - starts with 1. Default: 1.
items_per_page
The maximal number of items to be displayed per page.
Default: 20.
item_count (optional)
The total number of items in the collection - if known.
If this parameter is not given then the paginator will count
the number of elements in the collection every time a "Page"
is created. Giving this parameter will speed up things. In a busy
real-life application you may want to cache the number of items.
url_maker (optional)
Callback to generate the URL of other pages, given its numbers.
Must accept one int parameter and return a URI string. | 625941b59c8ee82313fbb573 |
def set_unauthorized_token(self): <NEW_LINE> <INDENT> self.session['_utoken'] = self.unauthorized_token() <NEW_LINE> self.session.save() <NEW_LINE> return self.session['_utoken'] | Save unauthorized token in session. | 625941b5baa26c4b54cb0f20 |
@login_required <NEW_LINE> @group_required(SEC_GROUP_NAMES['index']) <NEW_LINE> def indexing_select_type(request, step=None, template='mdtui/indexing.html'): <NEW_LINE> <INDENT> context = {'step': step,} <NEW_LINE> docrule = None <NEW_LINE> active_docrule = None <NEW_LINE> warnings = [] <NEW_LINE> docrules_list = make_document_type_select(user=request.user) <NEW_LINE> cleanup_search_session(request) <NEW_LINE> cleanup_mdts(request) <NEW_LINE> log.debug('indexing_select_type view called with docrule: %s' % docrule) <NEW_LINE> if request.POST: <NEW_LINE> <INDENT> for item, value in request.POST.iteritems(): <NEW_LINE> <INDENT> if not item == u'csrfmiddlewaretoken': <NEW_LINE> <INDENT> docrule = int(item) <NEW_LINE> <DEDENT> <DEDENT> request.session['indexing_docrule_id'] = docrule <NEW_LINE> mdts = get_mdts_for_docrule(docrule) <NEW_LINE> if mdts: <NEW_LINE> <INDENT> request.session['mdts'] = mdts <NEW_LINE> return HttpResponseRedirect(reverse('mdtui-index-details')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> warnings.append(MDTUI_ERROR_STRINGS['NO_MDTS']) <NEW_LINE> <DEDENT> <DEDENT> else: <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> docrule = request.session['indexing_docrule_id'] <NEW_LINE> <DEDENT> except KeyError: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> if docrule: <NEW_LINE> <INDENT> active_docrule = docrule <NEW_LINE> <DEDENT> <DEDENT> context.update({ 'active_docrule': active_docrule, 'docrules_list': docrules_list, 'warnings': warnings, }) <NEW_LINE> return render_to_response(template, context, context_instance=RequestContext(request)) | Indexing: Step 1 : Select Document Type | 625941b599cbb53fe67929e3 |
def test_with_file_management(self): <NEW_LINE> <INDENT> device_key = "some_key" <NEW_LINE> device_password = "some_password" <NEW_LINE> actuator_references = [] <NEW_LINE> device = Device(device_key, device_password, actuator_references) <NEW_LINE> file_directory = "files" <NEW_LINE> wolk_device = WolkConnect(device).with_file_management( 256, 1024, file_directory ) <NEW_LINE> self.assertTrue(os.path.exists(file_directory)) <NEW_LINE> os.rmdir(file_directory) | Test enabling file management module. | 625941b5be383301e01b528a |
def reweight_crush_items(self, **kwargs) -> bool: <NEW_LINE> <INDENT> cmd = "ceph osd df tree" <NEW_LINE> out = self.run_ceph_command(cmd=cmd) <NEW_LINE> osd_info_init = [entry for entry in out["nodes"] if entry["type"] == "osd"] <NEW_LINE> affected_osds = [] <NEW_LINE> if kwargs.get("name"): <NEW_LINE> <INDENT> name = kwargs["name"] <NEW_LINE> weight = kwargs["weight"] <NEW_LINE> cmd = f"ceph osd crush reweight {name} {weight}" <NEW_LINE> out = self.run_ceph_command(cmd=cmd) <NEW_LINE> affected_osds.append(name) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> cmd = r"ceph osd reweight-by-utilization" <NEW_LINE> out = self.run_ceph_command(cmd=cmd) <NEW_LINE> if int(out["max_change_osds"]) >= 1: <NEW_LINE> <INDENT> affected_osds = [entry["osd"] for entry in out["reweights"]] <NEW_LINE> log.info( f"re-weights have been triggered on these OSD's, Deatils\n" f"PG's affected : {out['utilization']['moved_pgs']}\n" f"OSd's affected: {[entry for entry in out['reweights']]}" ) <NEW_LINE> time.sleep(5) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> log.info( "No re-weights based on utilization were triggered. PG distribution is optimal" ) <NEW_LINE> return True <NEW_LINE> <DEDENT> <DEDENT> if kwargs.get("verify_reweight"): <NEW_LINE> <INDENT> if not self.verify_reweight( affected_osds=affected_osds, osd_info=osd_info_init ): <NEW_LINE> <INDENT> log.error("OSD utilization was not reduced upon re-weight") <NEW_LINE> return False <NEW_LINE> <DEDENT> <DEDENT> log.info("Completed the re-weight of OSD's") <NEW_LINE> return True | Performs Re-weight of various CRUSH items, based on key-value pairs sent
Args:
**kwargs: Arguments for the commands
Returns: True -> pass, False -> fail | 625941b5fbf16365ca6f5fb7 |
def format_wf_steps(wf, gi): <NEW_LINE> <INDENT> body = '' <NEW_LINE> steps = wf['steps'] <NEW_LINE> for s in range(len(steps)): <NEW_LINE> <INDENT> wf_step = steps[str(s)] <NEW_LINE> wf_param_values = {} <NEW_LINE> if wf_step['tool_state'] and wf_step['input_connections']: <NEW_LINE> <INDENT> wf_param_values = get_wf_param_values(wf_step['tool_state'], get_wf_inputs(wf_step['input_connections'])) <NEW_LINE> <DEDENT> if not wf_param_values: <NEW_LINE> <INDENT> continue <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> tool_desc = gi.tools.show_tool(wf_step['tool_id'], io_details=True) <NEW_LINE> <DEDENT> except Exception: <NEW_LINE> <INDENT> tool_desc = {'inputs': []} <NEW_LINE> <DEDENT> paramlist = '' <NEW_LINE> for inp in tool_desc["inputs"]: <NEW_LINE> <INDENT> tool_inp = ToolInput(inp, wf_param_values, steps, 1, should_be_there=True) <NEW_LINE> paramlist += tool_inp.get_formatted_desc() <NEW_LINE> <DEDENT> body += templates.render(HANDS_ON_TOOL_BOX_TEMPLATE, **{ "tool_name": wf_step['name'], "paramlist": paramlist}) <NEW_LINE> <DEDENT> return body | Get a string with the hands-on boxes describing the different steps of the worklow. | 625941b5566aa707497f4377 |
def getPara(vector1, vector2): <NEW_LINE> <INDENT> if isinstance(vector1, math3d.VectorN) and isinstance(vector2, math3d.VectorN): <NEW_LINE> <INDENT> v = vector1 <NEW_LINE> w = vector2 <NEW_LINE> newVector = (v.dot(w) / w.dot(w)) * w <NEW_LINE> return newVector <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return ValueError("getPara can only use two vectors of the same dimensions.") | :param vector1: This is the vector you are projecting on.
:param vector2: this is the secondary vector.
:return: a new vector parallel to vector 1 but the length it would need to be to make a right triangle with vector2 | 625941b538b623060ff0abeb |
def calc3(num): <NEW_LINE> <INDENT> return -num | calculate2 | 625941b5293b9510aa2c3096 |
def build_features(df, cols_of_tfidf, n_components, minimal_community_size): <NEW_LINE> <INDENT> print('--Computing Tf-Idf features') <NEW_LINE> t0 = time.time() <NEW_LINE> tfIdfer = TfIdfer() <NEW_LINE> tf_idf_features_dict = tfIdfer.get_features(df, cols_of_tfidf) <NEW_LINE> print("--Tfidf total running time is: {} ".format(time.time() - t0)) <NEW_LINE> print("--Tf-idf feature dimension reduction") <NEW_LINE> t0 = time.time() <NEW_LINE> tfifd_features_sprs_matrix = sparse.hstack(list(tf_idf_features_dict.values())) <NEW_LINE> del tf_idf_features_dict <NEW_LINE> lsa = make_pipeline(TruncatedSVD(n_components), Normalizer(copy=False)) <NEW_LINE> tfifd_features_matrix = lsa.fit_transform(tfifd_features_sprs_matrix) <NEW_LINE> print("--Dimension reduction total running time is: {} ".format(time.time() - t0)) <NEW_LINE> print('Getting graph features') <NEW_LINE> t0 = time.time() <NEW_LINE> graph_geatures_builder = GraphFeaturesBuilder() <NEW_LINE> graph_features_dict = graph_geatures_builder.get_features(df, minimal_community_size) <NEW_LINE> print("Graph features total running time is: {} ".format(time.time() - t0)) <NEW_LINE> print("--Graph feature dimension reduction") <NEW_LINE> t0 = time.time() <NEW_LINE> graph_features_sprs_matrix = sparse.hstack(list(graph_features_dict.values())) <NEW_LINE> del graph_features_dict <NEW_LINE> lsa = make_pipeline(TruncatedSVD(n_components), Normalizer(copy=False)) <NEW_LINE> graph_features_matrix = lsa.fit_transform(graph_features_sprs_matrix) <NEW_LINE> print("--Dimension reduction total running time is: {} ".format(time.time() - t0)) <NEW_LINE> features_matrix = np.hstack([tfifd_features_matrix,graph_features_matrix]) <NEW_LINE> return features_matrix | build all the features of the patents
:param df: pandas DataFrame contains the patents data
:param cols_of_tfidf: list of columns names to get tf-idf vectors for this columns
:param n_components: number of components to save after dimension reducing of tfidf matrices
:return: scipy csr matrix of shape (n_patents, n_features) | 625941b53539df3088e2e147 |
def train_model(dataset, paths, device): <NEW_LINE> <INDENT> iterator = data.get_dataset_iterator("train", dataset, paths["data"]) <NEW_LINE> next_element, train_init_op, valid_init_op = iterator <NEW_LINE> input_images, ground_truths = next_element[:2] <NEW_LINE> input_plhd = tf.placeholder_with_default(input_images, (None, None, None, 3), name="input") <NEW_LINE> msi_net = model.MSINET() <NEW_LINE> predicted_maps = msi_net.forward(input_plhd) <NEW_LINE> optimizer, loss = msi_net.train(ground_truths, predicted_maps, config.PARAMS["learning_rate"]) <NEW_LINE> n_train_data = getattr(data, dataset.upper()).n_train <NEW_LINE> n_valid_data = getattr(data, dataset.upper()).n_valid <NEW_LINE> n_train_batches = int(np.ceil(n_train_data / config.PARAMS["batch_size"])) <NEW_LINE> n_valid_batches = int(np.ceil(n_valid_data / config.PARAMS["batch_size"])) <NEW_LINE> history = utils.History(n_train_batches, n_valid_batches, dataset, paths["history"], device) <NEW_LINE> progbar = utils.Progbar(n_train_data, n_train_batches, config.PARAMS["batch_size"], config.PARAMS["n_epochs"], history.prior_epochs) <NEW_LINE> with tf.Session() as sess: <NEW_LINE> <INDENT> sess.run(tf.global_variables_initializer()) <NEW_LINE> saver = msi_net.restore(sess, dataset, paths, device) <NEW_LINE> print(">> Start training on %s..." % dataset.upper()) <NEW_LINE> for epoch in range(config.PARAMS["n_epochs"]): <NEW_LINE> <INDENT> sess.run(train_init_op) <NEW_LINE> for batch in range(n_train_batches): <NEW_LINE> <INDENT> _, error = sess.run([optimizer, loss]) <NEW_LINE> history.update_train_step(error) <NEW_LINE> progbar.update_train_step(batch) <NEW_LINE> <DEDENT> sess.run(valid_init_op) <NEW_LINE> for batch in range(n_valid_batches): <NEW_LINE> <INDENT> error = sess.run(loss) <NEW_LINE> history.update_valid_step(error) <NEW_LINE> progbar.update_valid_step() <NEW_LINE> <DEDENT> msi_net.save(saver, sess, dataset, paths["latest"], device) <NEW_LINE> history.save_history() <NEW_LINE> progbar.write_summary(history.get_mean_train_error(), history.get_mean_valid_error()) <NEW_LINE> if history.valid_history[-1] == min(history.valid_history): <NEW_LINE> <INDENT> msi_net.save(saver, sess, dataset, paths["best"], device) <NEW_LINE> msi_net.optimize(sess, dataset, paths["best"], device) <NEW_LINE> print("\tBest model!", flush=True) | The main function for executing network training. It loads the specified
dataset iterator, saliency model, and helper classes. Training is then
performed in a new session by iterating over all batches for a number of
epochs. After validation on an independent set, the model is saved and
the training history is updated.
Args:
dataset (str): Denotes the dataset to be used during training.
paths (dict, str): A dictionary with all path elements.
device (str): Represents either "cpu" or "gpu". | 625941b5462c4b4f79d1d4cc |
def parse_function(lexer, module): <NEW_LINE> <INDENT> func = parse_function_definition(lexer, module) <NEW_LINE> while True: <NEW_LINE> <INDENT> token, _ = lexer.get_next_token(peek=True, accept_eol=True) <NEW_LINE> if token == '': <NEW_LINE> <INDENT> lexer.done_with_line() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> break <NEW_LINE> <DEDENT> <DEDENT> lexer.get_next_token('{') <NEW_LINE> lexer.done_with_line() <NEW_LINE> while True: <NEW_LINE> <INDENT> token, tag = lexer.get_next_token(peek=True, accept_eol=True) <NEW_LINE> if token == '': <NEW_LINE> <INDENT> lexer.done_with_line() <NEW_LINE> <DEDENT> elif token == '}': <NEW_LINE> <INDENT> lexer.get_next_token() <NEW_LINE> lexer.done_with_line() <NEW_LINE> return func <NEW_LINE> <DEDENT> elif tag == 'LABEL': <NEW_LINE> <INDENT> parse_basic_block(lexer, module, func) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> raise ParseError('Expected a label or }') | Parse a pretty-printed function. | 625941b5adb09d7d5db6c590 |
def list_connections( self, resource_group_name, virtual_network_gateway_name, **kwargs ): <NEW_LINE> <INDENT> cls = kwargs.pop('cls', None) <NEW_LINE> error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } <NEW_LINE> error_map.update(kwargs.pop('error_map', {})) <NEW_LINE> api_version = "2018-01-01" <NEW_LINE> accept = "application/json, text/json" <NEW_LINE> def prepare_request(next_link=None): <NEW_LINE> <INDENT> header_parameters = {} <NEW_LINE> header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') <NEW_LINE> if not next_link: <NEW_LINE> <INDENT> url = self.list_connections.metadata['url'] <NEW_LINE> path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'virtualNetworkGatewayName': self._serialize.url("virtual_network_gateway_name", virtual_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } <NEW_LINE> url = self._client.format_url(url, **path_format_arguments) <NEW_LINE> query_parameters = {} <NEW_LINE> query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') <NEW_LINE> request = self._client.get(url, query_parameters, header_parameters) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> url = next_link <NEW_LINE> query_parameters = {} <NEW_LINE> request = self._client.get(url, query_parameters, header_parameters) <NEW_LINE> <DEDENT> return request <NEW_LINE> <DEDENT> def extract_data(pipeline_response): <NEW_LINE> <INDENT> deserialized = self._deserialize('VirtualNetworkGatewayListConnectionsResult', pipeline_response) <NEW_LINE> list_of_elem = deserialized.value <NEW_LINE> if cls: <NEW_LINE> <INDENT> list_of_elem = cls(list_of_elem) <NEW_LINE> <DEDENT> return deserialized.next_link or None, iter(list_of_elem) <NEW_LINE> <DEDENT> def get_next(next_link=None): <NEW_LINE> <INDENT> request = prepare_request(next_link) <NEW_LINE> pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) <NEW_LINE> response = pipeline_response.http_response <NEW_LINE> if response.status_code not in [200]: <NEW_LINE> <INDENT> map_error(status_code=response.status_code, response=response, error_map=error_map) <NEW_LINE> raise HttpResponseError(response=response, error_format=ARMErrorFormat) <NEW_LINE> <DEDENT> return pipeline_response <NEW_LINE> <DEDENT> return ItemPaged( get_next, extract_data ) | Gets all the connections in a virtual network gateway.
:param resource_group_name: The name of the resource group.
:type resource_group_name: str
:param virtual_network_gateway_name: The name of the virtual network gateway.
:type virtual_network_gateway_name: str
:keyword callable cls: A custom type or function that will be passed the direct response
:return: An iterator like instance of either VirtualNetworkGatewayListConnectionsResult or the result of cls(response)
:rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.network.v2018_01_01.models.VirtualNetworkGatewayListConnectionsResult]
:raises: ~azure.core.exceptions.HttpResponseError | 625941b501c39578d7e74c40 |
def testTokenList(self): <NEW_LINE> <INDENT> model = graylog.models.token_list.TokenList() | Test TokenList | 625941b566656f66f7cbbfa6 |
def __init__(self, base_directory): <NEW_LINE> <INDENT> self.base_directory = base_directory <NEW_LINE> self.index_path = os.path.join(self.base_directory, 'index') <NEW_LINE> self.docs_path = os.path.join(self.base_directory, 'documents') <NEW_LINE> self.stats_path = os.path.join(self.base_directory, 'stats.json') <NEW_LINE> self.setup() | Sets up the object & the data directory.
Requires a ``base_directory`` parameter, which specifies the parent
directory the index/document/stats data will be kept in.
Example::
ms = microsearch.Microsearch('/var/my_index') | 625941b5796e427e537b03be |
def setup(hass, config): <NEW_LINE> <INDENT> api_key = config[DOMAIN][CONF_API_KEY] <NEW_LINE> global BLOOMSKY <NEW_LINE> try: <NEW_LINE> <INDENT> BLOOMSKY = BloomSky(api_key, hass.config.units.is_metric) <NEW_LINE> <DEDENT> except RuntimeError: <NEW_LINE> <INDENT> return False <NEW_LINE> <DEDENT> for component in BLOOMSKY_TYPE: <NEW_LINE> <INDENT> discovery.load_platform(hass, component, DOMAIN, {}, config) <NEW_LINE> <DEDENT> return True | Set up the BloomSky component. | 625941b55166f23b2e1a4f55 |
def _input_fn(filenames, feature_specs, label_key, batch_size=200): <NEW_LINE> <INDENT> dataset = tf.data.experimental.make_batched_features_dataset( file_pattern=filenames, batch_size=batch_size, features=feature_specs, label_key=label_key, reader=_gzip_reader_fn) <NEW_LINE> return dataset | Generates features and labels for training or evaluation.
Args:
filenames: [str] list of CSV files to read data from.
tf_transform_output: A TFTransformOutput.
batch_size: int First dimension size of the Tensors returned by input_fn
Returns:
A (features, indices) tuple where features is a dictionary of
Tensors, and indices is a single Tensor of label indices. | 625941b5d53ae8145f87a073 |
@permission_required("core.manage_shop", login_url="/login/") <NEW_LINE> def save_payment_method_criteria(request, payment_method_id): <NEW_LINE> <INDENT> payment_method = lfs_get_object_or_404(PaymentMethod, pk=payment_method_id) <NEW_LINE> criteria_utils.save_criteria(request, payment_method) <NEW_LINE> html = [["#criteria", payment_method_criteria(request, payment_method_id)]] <NEW_LINE> result = simplejson.dumps({ "html": html, "message": _(u"Modifications have been changed."), }, cls=LazyEncoder) <NEW_LINE> return HttpResponse(result) | Saves the criteria for the payment method with given id. The criteria
are passed via request body. | 625941b57047854f462a120a |
def print_bday_info(bday): <NEW_LINE> <INDENT> weekday_birth_year = calc_birthday_day_of_week(bday) <NEW_LINE> print('Looks like you were born on a {}'.format(weekday_birth_year)) <NEW_LINE> today = datetime.date.today() <NEW_LINE> bday_this_year = datetime.date(today.year, bday.month, bday.day) <NEW_LINE> weekday_this_year = calc_birthday_day_of_week(bday_this_year) <NEW_LINE> td = bday_this_year - today <NEW_LINE> days_to_bday = td.days <NEW_LINE> if days_to_bday < 0: <NEW_LINE> <INDENT> print('Your birthday this year was on {0}, {1} days ago'.format(weekday_this_year, -days_to_bday)) <NEW_LINE> <DEDENT> elif days_to_bday > 0: <NEW_LINE> <INDENT> print('Your birthday this year is on {0}, in {1} days!'.format(weekday_this_year, days_to_bday)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print('Happy birthday!!!') | Print the relevant information for a given birthday | 625941b51f037a2d8b945ffb |
@mock.patch('CuckooAPI.requests.get') <NEW_LINE> def test_sampledownload_exception(mock_get): <NEW_LINE> <INDENT> mock_get.return_value.status_code = 404 <NEW_LINE> api = CuckooAPI.CuckooAPI() <NEW_LINE> ExceptionThrown = False <NEW_LINE> try: <NEW_LINE> <INDENT> api.sampledownload() <NEW_LINE> <DEDENT> except CuckooAPI.CuckooAPINoHash: <NEW_LINE> <INDENT> ExceptionThrown = True <NEW_LINE> <DEDENT> assert ExceptionThrown is True <NEW_LINE> ExceptionThrown = False <NEW_LINE> try: <NEW_LINE> <INDENT> api.sampledownload('1', 'task', 'README.md') <NEW_LINE> <DEDENT> except CuckooAPI.CuckooAPIFileExists: <NEW_LINE> <INDENT> ExceptionThrown = True <NEW_LINE> <DEDENT> assert ExceptionThrown is True <NEW_LINE> ExceptionThrown = False <NEW_LINE> try: <NEW_LINE> <INDENT> os.remove('test1.bin') <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> pass <NEW_LINE> <DEDENT> try: <NEW_LINE> <INDENT> api.sampledownload(1, 'task', 'test1.bin') <NEW_LINE> <DEDENT> except CuckooAPI.CuckooAPIBadRequest: <NEW_LINE> <INDENT> ExceptionThrown = True <NEW_LINE> <DEDENT> assert ExceptionThrown is True <NEW_LINE> try: <NEW_LINE> <INDENT> os.remove('test1.bin') <NEW_LINE> <DEDENT> except: <NEW_LINE> <INDENT> pass | Test a pretend sample download with exception | 625941b5bde94217f3682bf9 |
def test_network_1_existing_vxlan_nodes_1_requested_vxlan_nodes( self, network_state='tests/bigip_test_vxlan_1_record.json', cloud_state='tests/openshift_1_node.json'): <NEW_LINE> <INDENT> self.read_test_vectors(cloud_state=cloud_state, network_state=network_state) <NEW_LINE> cfg = ctlr.create_network_config(self.cloud_data) <NEW_LINE> apply_network_fdb_config(self.mgr.mgmt_root(), cfg['fdb']) <NEW_LINE> self.assertEqual(self.mgr.mgmt_root(). tm.net.fdb.tunnels.tunnel.load.call_count, 1) <NEW_LINE> self.assertEqual(self.compute_fdb_records(), self.vxlan_tunnel.records) | Test: openshift environment with 1 nodes. | 625941b5a8370b771705269e |
def run_cmd(cmd, *args, **kwargs): <NEW_LINE> <INDENT> stdin = kwargs.pop('stdin', None) <NEW_LINE> cwd = kwargs.pop('cwd', None) <NEW_LINE> if kwargs: <NEW_LINE> <INDENT> env = os.environ.copy() <NEW_LINE> env.update(kwargs) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> env = None <NEW_LINE> <DEDENT> p = subprocess.Popen(['git', cmd] + list(args), stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd, env=env) <NEW_LINE> (stdout, stderr) = p.communicate(stdin) <NEW_LINE> return (stdout, stderr, p.returncode) | Run a git command.
:param cmd: git command name e.g. 'commit'
:param args: the argument list e.g. ['-m', 'foo']
:param stdin: a string to pass via stdin
:param cwd: the directory to run from
:param kwargs: environment variables to set
:returns: tuple with stdout, stderr and exit status | 625941b5a17c0f6771cbde51 |
def read_searchcoil_list(sc_zip_list=''): <NEW_LINE> <INDENT> def df_sc_gen(sc_zip_list): <NEW_LINE> <INDENT> sample_rate = dt.timedelta(microseconds=100000) <NEW_LINE> for file in sc_zip_list: <NEW_LINE> <INDENT> file_start = dt.datetime.strptime(file[-26:-7], '%Y_%m_%d_%H_%M_%S') <NEW_LINE> df_in = pd.DataFrame(columns=['datetime', 'dBx', 'dBy']) <NEW_LINE> with gzip.open(file, mode='rb') as bitstream: <NEW_LINE> <INDENT> in_bits = bitstream.read().hex() <NEW_LINE> samples = [int(in_bits[i:i + 3], 16) for i in range(0, len(in_bits), 3)] <NEW_LINE> samples = [x - 4096 if x > 2047 else x for x in samples] <NEW_LINE> df_in['dBx'] = [samples[x] * (.0049 / 4.43) for x in range(0, len(samples), 2)] <NEW_LINE> df_in['dBy'] = [samples[x] * (.0049 / 4.43) for x in range(1, len(samples), 2)] <NEW_LINE> in_dates = pd.date_range(file_start, periods=len(in_bits) // 3, freq=sample_rate) <NEW_LINE> df_in['datetime'] = pd.Series(in_dates) <NEW_LINE> <DEDENT> yield df_in.astype({'datetime': np.dtype('<M8[ns]'), 'dBx': np.float16, 'dBy': np.float16}) <NEW_LINE> <DEDENT> <DEDENT> return pd.concat(df_sc_gen(sc_zip_list), ignore_index=True) | Read in a searchcoil filelist and return a dataframe
Args:
sc_zip_list (str, optional): Python list of full file names to read
Returns:
DataFrame: A pandas dataframe with the following columns:
'datetime', 'dBx', 'dBy' | 625941b57b180e01f3dc4604 |
def prepend(self, item): <NEW_LINE> <INDENT> if self.is_empty(): <NEW_LINE> <INDENT> node = Node(item) <NEW_LINE> self.head = node <NEW_LINE> self.tail = node <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> node = Node(item) <NEW_LINE> node.next = self.head <NEW_LINE> self.head = node | Insert the given item at the head of this linked list.
TODO: Running time: O(???) Why and under what conditions? | 625941b5ac7a0e7691ed3ed7 |
def save_crypto_operations_pkl(self): <NEW_LINE> <INDENT> logger.info("CryptoManager - save_crypto_operations_pkl") <NEW_LINE> if not self.dfop.empty: <NEW_LINE> <INDENT> self.dfop.to_pickle(os.path.join(self.cwd, "pd_raw_data", "crypto_operations.pkl")) | Save operations dataframe in pickle format | 625941b5097d151d1a222c59 |
def amax_files(): <NEW_LINE> <INDENT> return [os.path.join(dp, f) for dp, dn, filenames in os.walk(CACHE_FOLDER) for f in filenames if os.path.splitext(f)[1].lower() == '.am'] | Return all annual maximum flow (`*.am`) files in cache folder and sub folders.
:return: List of file paths
:rtype: list | 625941b56aa9bd52df036b9f |
def _handle_deferred_gc(self, ref, request): <NEW_LINE> <INDENT> logger.debug('Garbage collecting for request: %s'%request) <NEW_LINE> if not request.finished and request.channel: <NEW_LINE> <INDENT> request.finish() <NEW_LINE> <DEDENT> self._weakrefs.remove(ref) | This function is called when the request_proxy in the baton have been finalized. | 625941b5cdde0d52a9e52e2b |
def is_authenticated(): <NEW_LINE> <INDENT> return ('user' in session) and session['user']['id'] > 0 | - Checks if a current user is authenticated. | 625941b5099cdd3c635f0a5a |
def value(self, node): <NEW_LINE> <INDENT> if node.children: <NEW_LINE> <INDENT> return node.children[0].value() <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return None | The *value* of a :class:`Optional` is the value of its child,
if the child did match the recognition. Otherwise the
*value* is *None*. | 625941b5507cdc57c6306acf |
def test__redact_year(): <NEW_LINE> <INDENT> values = pd.Series([1923, 2003, '<foo', '>testing']) <NEW_LINE> redacted = _redact_year(values) <NEW_LINE> expected_redact = [1923, 2003, 'withheld', 'cannotReleaseHIPAA'] <NEW_LINE> assert redacted.to_list() == expected_redact | Tests redaction of birth year based on < and > | 625941b576e4537e8c351474 |
def testHuidigeDatum(self): <NEW_LINE> <INDENT> vandaag = mvhutils.huidige_datum() <NEW_LINE> self.assertEqual(VANDAAG, vandaag) | Datum van vandaag wordt terug gegeven | 625941b58e05c05ec3eea16e |
def top_share_in_best_broker(from_month, to_month, month_to_judge, broker_top_n, min_recommend_num): <NEW_LINE> <INDENT> recommend = get_data(from_month, to_month) <NEW_LINE> recommend = recommend.groupby(['broker', 'month'], as_index=False).agg({'ts_code': split_char.join}) <NEW_LINE> recommend['ret'] = recommend.apply(lambda row: portfolio_return.cal(row.ts_code.split(split_char), row.month + '01', date_utils.last_dt_of_month(row.month)), axis=1) <NEW_LINE> m = date_utils.month_delta(from_month, month_to_judge) <NEW_LINE> rm = from_month <NEW_LINE> ra = [] <NEW_LINE> da = [] <NEW_LINE> assets = Decimal(1.0) <NEW_LINE> while m <= to_month: <NEW_LINE> <INDENT> past = recommend.loc[(recommend['month'] >= rm) & (recommend['month'] < m)] <NEW_LINE> past_agg = past.groupby(['broker'], as_index=False).agg({'ret': cal_ret}) <NEW_LINE> past_agg['rank'] = past_agg['ret'].rank(method='dense', ascending=False) <NEW_LINE> broker_list = list(past_agg.loc[past_agg['rank'] <= broker_top_n]['broker']) <NEW_LINE> current = recommend.loc[(recommend['month'] == m) & (recommend['broker'].isin(broker_list))] <NEW_LINE> broker_share_list = split_char.join(current['ts_code']).split(split_char) <NEW_LINE> current_return = share_list_return(m, broker_share_list, min_recommend_num) <NEW_LINE> assets = assets * (1 + current_return) <NEW_LINE> m = date_utils.month_delta(m, 1) <NEW_LINE> rm = date_utils.month_delta(rm, 1) <NEW_LINE> ra.append(float(assets - 1)) <NEW_LINE> da.append(date_utils.parse_str(m + '01')) <NEW_LINE> <DEDENT> pf.plot_returns(pd.Series(ra, da)) <NEW_LINE> pyplot.show() <NEW_LINE> return assets | 过去 month_to_judge 月表现最好的 broker_top_n 个券商
从中选出出现次数 >= min_recommend_num 的股票,等量买入
20210626回测
(202001, 202106, 2, 10, 3) 最高1.6 最终1.4
机构牛市效果不错,甚至躲开了开年暴跌,反而轮动市表现不好
:param from_month:
:param to_month:
:param month_to_judge:
:param broker_top_n:
:param min_recommend_num:
:return: | 625941b550485f2cf553cb96 |
def to_dict(self): <NEW_LINE> <INDENT> result = {} <NEW_LINE> for attr, _ in six.iteritems(self.swagger_types): <NEW_LINE> <INDENT> value = getattr(self, attr) <NEW_LINE> if isinstance(value, list): <NEW_LINE> <INDENT> result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) <NEW_LINE> <DEDENT> elif hasattr(value, "to_dict"): <NEW_LINE> <INDENT> result[attr] = value.to_dict() <NEW_LINE> <DEDENT> elif isinstance(value, dict): <NEW_LINE> <INDENT> result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result[attr] = value <NEW_LINE> <DEDENT> <DEDENT> if issubclass(ScreenRecordingHeatmapIndexRequest, dict): <NEW_LINE> <INDENT> for key, value in self.items(): <NEW_LINE> <INDENT> result[key] = value <NEW_LINE> <DEDENT> <DEDENT> return result | Returns the model properties as a dict | 625941b5090684286d50eadd |
def detailed_xml(self, doc): <NEW_LINE> <INDENT> carNode = doc.createElement("car") <NEW_LINE> carNode.setAttribute("nb_doors", str(self.__nb_doors)) <NEW_LINE> carNode.setAttribute("weight", str(1000)) <NEW_LINE> nameNode = doc.createElement("name") <NEW_LINE> carNode.appendChild(nameNode) <NEW_LINE> nameNode.appendChild(doc.createCDATASection(self.__name)) <NEW_LINE> brandNode = doc.createElement("brand") <NEW_LINE> carNode.appendChild(brandNode) <NEW_LINE> brandNode.appendChild(doc.createCDATASection(u"\u00a9" + self.__brand)) <NEW_LINE> yearNode = doc.createElement("year") <NEW_LINE> yearNode.appendChild(doc.createTextNode("2015")) <NEW_LINE> carNode.appendChild(yearNode) <NEW_LINE> return carNode | Return an XML DOM element with the attributes and values. | 625941b58c3a8732951581bb |
def github_repo_role(name, rawtext, text, lineno, inliner, options={}, content=[]): <NEW_LINE> <INDENT> try: <NEW_LINE> <INDENT> repo_user, repo_name = text.split('/') <NEW_LINE> repo = gh.repository(repo_user, repo_name) <NEW_LINE> <DEDENT> except Exception as e: <NEW_LINE> <INDENT> msg = inliner.reporter.error( 'GitHub API error: %s for "%s"' % e.message, text, line=lineno) <NEW_LINE> prb = inliner.problematic(rawtext, rawtext, msg) <NEW_LINE> return [prb], [msg] <NEW_LINE> <DEDENT> tpl = gh_repo_tpl <NEW_LINE> html = tpl.format(**repo.__dict__) <NEW_LINE> title = nodes.paragraph() <NEW_LINE> title += nodes.inline('', repo_name + ': ') <NEW_LINE> title += nodes.reference('', 'github', refuri=repo.html_url) <NEW_LINE> return [title], [] | github repo role. | 625941b5dc8b845886cb5332 |
def test_create_operation_definition(self): <NEW_LINE> <INDENT> with self.subTest("with no contained resources or parameters"): <NEW_LINE> <INDENT> op_def = creators.create_operation_definition(name="name.of.operation", code="code.of.operation", date_time="2019-04-23 09:00:04.159338", parameters=[], contained=[]) <NEW_LINE> self.assertIsInstance(op_def, OperationDefinition) <NEW_LINE> self.assertEqual(op_def.name, "name.of.operation") <NEW_LINE> self.assertEqual(op_def.code, "code.of.operation") <NEW_LINE> self.assertEqual(op_def.date.as_json(), "2019-04-23 09:00:04.159338") <NEW_LINE> self.assertEqual(op_def.contained, None) <NEW_LINE> self.assertEqual(op_def.parameter, None) <NEW_LINE> <DEDENT> with self.subTest("with one parameter"): <NEW_LINE> <INDENT> some_param = creators.create_parameter_with_binding(name="SOME_NAME", value="SOME_VALUE") <NEW_LINE> op_def = creators.create_operation_definition(name="name.of.operation", code="code.of.operation", date_time="2019-04-23 09:00:04.159338", parameters=[some_param], contained=[]) <NEW_LINE> self.assertEqual(len(op_def.parameter), 1) <NEW_LINE> self.assertIsInstance(op_def.parameter[0], OperationDefinitionParameter) <NEW_LINE> <DEDENT> with self.subTest("with one contained resource"): <NEW_LINE> <INDENT> some_resource = creators.create_practitioner_resource(resource_id="some_id", national_identifier="some_nat_id", local_identifier="some_local_id") <NEW_LINE> op_def = creators.create_operation_definition(name="name.of.operation", code="code.of.operation", date_time="2019-04-23 09:00:04.159338", parameters=[], contained=[some_resource]) <NEW_LINE> self.assertEqual(len(op_def.contained), 1) <NEW_LINE> self.assertIsInstance(op_def.contained[0], Practitioner) | Tests the helper function to create an operation definition | 625941b521a7993f00bc7ae6 |
def addPageTemplates(self,pageTemplates): <NEW_LINE> <INDENT> if not isSeq(pageTemplates): <NEW_LINE> <INDENT> pageTemplates = [pageTemplates] <NEW_LINE> <DEDENT> for t in pageTemplates: <NEW_LINE> <INDENT> self.pageTemplates.append(t) | add one or a sequence of pageTemplates | 625941b5097d151d1a222c5a |
def get_month_salary(annual_salary): <NEW_LINE> <INDENT> return annual_salary / 12 | Returns monthly salary = annual salary / 12 | 625941b594891a1f4081b8a5 |
def refine_ellipse(image, params, mode='ellipse_aligned', n=None, rad_range=None, maxfit_size=2, spline_order=3, threshold=0.1): <NEW_LINE> <INDENT> if not np.all([x > 0 for x in params]): <NEW_LINE> <INDENT> raise ValueError("All yc, xc, yr, xr params should be positive") <NEW_LINE> <DEDENT> assert image.ndim == 2 <NEW_LINE> yr, xr, yc, xc = params <NEW_LINE> if rad_range is None: <NEW_LINE> <INDENT> rad_range = (-min(yr, xr) / 2, min(yr, xr) / 2) <NEW_LINE> <DEDENT> intensity, pos, normal = unwrap_ellipse(image, params, rad_range, n) <NEW_LINE> r_dev = max_linregress(intensity, maxfit_size, threshold) + rad_range[0] <NEW_LINE> coord_new = to_cartesian(r_dev, pos, normal) <NEW_LINE> radius, center, _ = fit_ellipse(coord_new, mode=mode) <NEW_LINE> return tuple(radius) + tuple(center), coord_new.T | Interpolates the image along lines perpendicular to the ellipse.
The maximum along each line is found using linear regression of the
descrete derivative.
Parameters
----------
image : 2d numpy array of numbers
Image indices are interpreted as (y, x)
params : yr, xr, yc, xc
mode : {'ellipse', 'ellipse_aligned', 'circle'}
n: integer
number of points on the ellipse that are used for refine
rad_range: tuple of floats
length of the line (distance inwards, distance outwards)
maxfit_size: integer
pixels around maximum pixel that will be used in linear regression
spline_order: integer
interpolation order for edge crossections
threshold: float
a threshold is calculated based on the global maximum
fitregions are rejected if their average value is lower than this
Returns
-------
yr, xr, yc, xc | 625941b5a219f33f34628773 |
def __init__(self, configFileName): <NEW_LINE> <INDENT> self._logger = logging.getLogger(__name__) <NEW_LINE> logging.config.fileConfig("logging.ini", disable_existing_loggers=False) <NEW_LINE> self.configFileName = configFileName <NEW_LINE> self.c = ConfigParser() <NEW_LINE> self.configFile = open(configFileName, "r+") <NEW_LINE> self.c.readfp(self.configFile) <NEW_LINE> self.configFile.close() | Default Constructor
| 625941b592d797404e303f88 |
def scrap_the_world_bank_ord_data(url): <NEW_LINE> <INDENT> chromedriver = "/Applications/Internet Software/chromedriver" <NEW_LINE> driver = webdriver.Chrome(chromedriver) <NEW_LINE> driver.get(url) <NEW_LINE> download_csv = driver.find_element_by_xpath('//*[@id="mainChart"]/aside/div/div[2]/div/p/a[1]') <NEW_LINE> download_csv.click() <NEW_LINE> driver.quit() | Download the csv file from The World Bank Organization
Input argument: url in string | 625941b59f2886367277a68f |
def fit(self, X, X_plot_projection = None): <NEW_LINE> <INDENT> if (self.method == "exp_local_scaling"): <NEW_LINE> <INDENT> border_func = lambda data: rknn_with_distance_transform(data, self.k, exp_local_scaling_transform) <NEW_LINE> <DEDENT> result = border_peel(X, border_func, None, max_iterations=self.max_iterations, mean_border_eps=self.mean_border_eps, plot_debug_output_dir=self.plot_debug_output_dir, k=self.k, precentile=self.border_precentile, dist_threshold=self.dist_threshold, link_dist_expansion_factor=self.link_dist_expansion_factor, verbose=self.verbose, vis_data=X_plot_projection, min_cluster_size=self.min_cluster_size, stopping_precentile=self.stopping_precentile, should_merge_core_points=self.merge_core_points, debug_marker_size=self.debug_marker_size) <NEW_LINE> self.labels_, self.core_points, self.non_merged_core_points, self.data_sets_by_iterations, self.associations, self.link_thresholds, self.border_values_per_iteration, self.core_points_indices = result <NEW_LINE> return self | Perform BorderPeel clustering from features
Parameters
----------
X : array of features (TODO: make it work with sparse arrays)
X_projected : A projection of the data to 2D used for plotting the graph during the cluster process | 625941b54d74a7450ccd3fc0 |
def CredibleInterval(self, percentage=90): <NEW_LINE> <INDENT> cdf = self.MakeCdf() <NEW_LINE> return cdf.CredibleInterval(percentage) | Compute the central credible interval.
计算中心的置信区间。
如果percentage=90,计算90CI
:param percentage:0-100 float
:return: 返回两个float的序列,一个是low一个是high | 625941b526238365f5f0ec67 |
def next_player(self): <NEW_LINE> <INDENT> current_player = self.current_player() <NEW_LINE> current_player.ball.turn = False <NEW_LINE> tries = len(self.players) <NEW_LINE> next_id = (self.players.index(current_player) + 1) % len(self.players) <NEW_LINE> while self.players[next_id].ball.state is BallState.IN_CUP and tries > 0: <NEW_LINE> <INDENT> next_id = (next_id + 1) % len(self.players) <NEW_LINE> tries -= 1 <NEW_LINE> <DEDENT> if tries > 0: <NEW_LINE> <INDENT> self.players[next_id].ball.turn = True <NEW_LINE> self.next_turn = False <NEW_LINE> print("Player {} to move".format(next_id)) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> print("Next map") <NEW_LINE> self.next_map() <NEW_LINE> <DEDENT> self.show_score() | Change turn for next player | 625941b50a366e3fb873e614 |
def on_end(self, resource_id): <NEW_LINE> <INDENT> pass | Remove the hosts from the pool. | 625941b5e5267d203edcda9f |
def get_title(text): <NEW_LINE> <INDENT> pattern = r'(?<=<title>).*(?=</title>)' <NEW_LINE> match = re.search(pattern, text) <NEW_LINE> if match: <NEW_LINE> <INDENT> return match.group(0) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> return '' | Returns the title of a given html document | 625941b5b5575c28eb68ddfb |
def test_equal_on_not_equal_nonce(self): <NEW_LINE> <INDENT> a = objects.AttestationCredential( nonce=objects.Nonce( nonce_id=b'\x01', nonce_value=b'\x00\x01\x02\x03\x04\x05\x06\x07' ) ) <NEW_LINE> b = objects.AttestationCredential( nonce=objects.Nonce( nonce_id=b'\x02', nonce_value=b'\x07\x06\x05\x04\x03\x02\x01\x00' ) ) <NEW_LINE> self.assertFalse(a == b) <NEW_LINE> self.assertFalse(b == a) | Test that the equality operator returns False when comparing two
AttestationCredential structs with different nonce values. | 625941b5d99f1b3c44c67396 |
def test_app_file(self): <NEW_LINE> <INDENT> res = self.app.get("/README.txt") <NEW_LINE> self.assertEqual(res.text, "Hello, world!") | Test that we can download a file. | 625941b5b57a9660fec3367d |
def _set_requirements(self): <NEW_LINE> <INDENT> self._requirements = None <NEW_LINE> if self._file_type == 'unknown' or self._content is None: <NEW_LINE> <INDENT> return <NEW_LINE> <DEDENT> if self._file_type == 'javascript': <NEW_LINE> <INDENT> require_re = re.compile(r'[ \t]*//=[ \t]*require[ \t]+(\S+)[ \t]*\n?') <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> require_re = re.compile(r'@import url\(\"(?P<import_match>\S+)\.\S+"\)|[ \t]*/\*=[ \t]*require[ \t]+(?P<require_match>\S+)[ \t]*\*/\n?') <NEW_LINE> <DEDENT> for result in require_re.finditer(self._content): <NEW_LINE> <INDENT> if self._file_type == 'javascript': <NEW_LINE> <INDENT> name = str(result.groups()[0]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> if result.group('import_match') is not None: <NEW_LINE> <INDENT> name = str(result.group('import_match')) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> name = str(result.group('require_match')) <NEW_LINE> <DEDENT> <DEDENT> insert_position = (result.start(), result.end()) <NEW_LINE> if self._requirements is None: <NEW_LINE> <INDENT> self._requirements = [] <NEW_LINE> <DEDENT> self._requirements.append(Requirement(name, insert_position)) | Parse the content of the file and set the _requirements member variable to a
list Requirement objects.
Remarks:
Must be called AFTER _set_content() is called and after self._file_type is set. | 625941b555399d3f055884b1 |
def main(): <NEW_LINE> <INDENT> micro_controller = initiate_arduino() <NEW_LINE> root = Tk() <NEW_LINE> root.title("Sensor Data Collector") <NEW_LINE> output_text = Text(root) <NEW_LINE> scrollbar = Scrollbar(root) <NEW_LINE> entry = Entry(root) <NEW_LINE> button = Button(root, text="send", command=lambda: determine_input(entry, root, output_text, micro_controller)) <NEW_LINE> output_text.grid(row=0, column=0) <NEW_LINE> scrollbar.grid(row=0, column=1, sticky='ns') <NEW_LINE> entry.grid(row=1, column=0, sticky='we') <NEW_LINE> button.grid(row=1, column=1) <NEW_LINE> root.resizable(width=False, height=False) <NEW_LINE> root.bind('<Return>', (lambda event: determine_input(entry, root, output_text, micro_controller))) <NEW_LINE> output_text.delete('1.0', END) <NEW_LINE> output_text.insert(END, "Welcome to the Sensor Data Collector made by Magor Katay and Tijs van Lieshout! \n" "The following commands are accepted: \n\n" "help, ? or menu \t\t\t\t Shows this menu \n" "start (temp | light | all) <interval_in_seconds> \t\t\t Starts the data collection \n" "stop \t\t\t\t Stops the data collection \n" "list \t\t\t\t Lists the CSV files of collected data \n" "display <ID of CSV file> \t\t\t\t displays a csv file with some stats \n" "wait \t\t\t\t Toggle to wait for input on the Arduino \n") <NEW_LINE> root.mainloop() | The main function which sets up the GUI | 625941b55fdd1c0f98dc0030 |
def compute_positions_shift_with_entity_tokens( mention_mask: tf.Tensor, mention_batch_positions: tf.Tensor, mention_start_positions: tf.Tensor, mention_end_positions: tf.Tensor, batch_size: int, old_length: int, ) -> tf.Tensor: <NEW_LINE> <INDENT> old_shape = (batch_size, old_length) <NEW_LINE> def get_positions_shift(positions: tf.Tensor, exclusive: bool) -> tf.Tensor: <NEW_LINE> <INDENT> index_2d = _get_2d_index(mention_batch_positions, positions) <NEW_LINE> return tf.cumsum( tf.scatter_nd(index_2d, mention_mask, old_shape), axis=1, exclusive=exclusive) <NEW_LINE> <DEDENT> positions = _batched_range(batch_size, old_length, 0, mention_mask.dtype) <NEW_LINE> positions += get_positions_shift(mention_start_positions, exclusive=False) <NEW_LINE> positions += get_positions_shift(mention_end_positions, exclusive=True) <NEW_LINE> return positions | Computes the new position for every position in the old sequence. | 625941b5baa26c4b54cb0f22 |
def __init__(self, **kwargs): <NEW_LINE> <INDENT> super().__init__(**kwargs) <NEW_LINE> fname = self.kwargs.get('gmpe_table', self.gmpe_table) <NEW_LINE> with h5py.File(fname, "r") as fle: <NEW_LINE> <INDENT> self.distance_type = decode(fle["Distances"].attrs["metric"]) <NEW_LINE> self.REQUIRES_DISTANCES = set([self.distance_type]) <NEW_LINE> self.m_w = fle["Mw"][:] <NEW_LINE> self.distances = fle["Distances"][:] <NEW_LINE> self.imls = hdf_arrays_to_dict(fle["IMLs"]) <NEW_LINE> self.DEFINED_FOR_INTENSITY_MEASURE_TYPES = set( self._supported_imts()) <NEW_LINE> if "SA" in self.imls and "T" not in self.imls: <NEW_LINE> <INDENT> raise ValueError("Spectral Acceleration must be accompanied by" " periods") <NEW_LINE> <DEDENT> self._setup_standard_deviations(fle) <NEW_LINE> if "Amplification" in fle: <NEW_LINE> <INDENT> self._setup_amplification(fle) | Executes the preprocessing steps at the instantiation stage to read in
the tables from hdf5 and hold them in memory. | 625941b53617ad0b5ed67cfd |
def to_graph(self, nodes=None, message=None): <NEW_LINE> <INDENT> sb = [] <NEW_LINE> sb.append('# Legend:') <NEW_LINE> sb.append('# Thread 1 -> Lock 1 indicates Thread 1 is waiting on Lock 1') <NEW_LINE> sb.append('# Lock 2 -> Thread 2 indicates Lock 2 is held by Thread 2') <NEW_LINE> if message is not None: <NEW_LINE> <INDENT> sb.append(message) <NEW_LINE> <DEDENT> sb.append('digraph "mongod+lock-status" {') <NEW_LINE> for node_key in self.nodes: <NEW_LINE> <INDENT> for next_node_key in self.nodes[node_key]['next_nodes']: <NEW_LINE> <INDENT> sb.append(' "{}" -> "{}";'.format(self.nodes[node_key]['node'], self.nodes[next_node_key]['node'])) <NEW_LINE> <DEDENT> <DEDENT> for node_key in self.nodes: <NEW_LINE> <INDENT> color = "" <NEW_LINE> if nodes and node_key in nodes: <NEW_LINE> <INDENT> color = "color = red" <NEW_LINE> <DEDENT> escaped_label = str(self.nodes[node_key]['node']).replace('"', '\\"') <NEW_LINE> sb.append(' "{}" [label="{}" {}]'.format(self.nodes[node_key]['node'], escaped_label, color)) <NEW_LINE> <DEDENT> sb.append("}") <NEW_LINE> return "\n".join(sb) | Return the 'to_graph'. | 625941b5fbf16365ca6f5fb9 |
def test_node_register_JSON_metadata(self): <NEW_LINE> <INDENT> api.node_register('node-99', obm={ "type": "http://schema.massopencloud.org/haas/v0" "/obm/ipmi", "host": "ipmihost", "user": "root", "password": "tapeworm"}, metadata={ "EK": {"val1": 1, "val2": 2} }) <NEW_LINE> api.get_or_404(model.Node, 'node-99') | ...and with the metadata being something other than a string. | 625941b545492302aab5e0be |
def multi_indep_sim(num_samp, num_dim, prob=0.5, sep1=3, sep2=2): <NEW_LINE> <INDENT> sig = np.diag(np.ones(shape=(num_dim))) <NEW_LINE> u = np.random.multivariate_normal( cov=sig, mean=np.zeros(num_dim), size=num_samp) <NEW_LINE> v = np.random.multivariate_normal( cov=sig, mean=np.zeros(num_dim), size=num_samp) <NEW_LINE> u_2 = np.random.binomial(1, p=prob, size=(num_samp, 1)) <NEW_LINE> v_2 = np.random.binomial(1, p=prob, size=(num_samp, 1)) <NEW_LINE> x = u/sep1 + sep2*u_2 - 1 <NEW_LINE> y = v/sep1 + sep2*v_2 - 1 <NEW_LINE> return x, y | Function for generating a multimodal independence simulation.
:param num_samp: number of samples for the simulation
:param num_dim: number of dimensions for the simulation
:param prob: the binomial probability, defaults to 0.5
:param sep1: determines the size and separation of clusters, defaults to 3
:param sep2: determines the size and separation of clusters, defaults to 2
:return: the data matrix and a response array | 625941b555399d3f055884b2 |
def test_update(self): <NEW_LINE> <INDENT> rectangle9 = Rectangle(1, 1, 1, 1) <NEW_LINE> rectangle9.update(55, 4, 3, 2, 1) <NEW_LINE> self.assertEqual(rectangle9.id, 55) <NEW_LINE> self.assertEqual(rectangle9.width, 4) <NEW_LINE> self.assertEqual(rectangle9.height, 3) <NEW_LINE> self.assertEqual(rectangle9.x, 2) <NEW_LINE> self.assertEqual(rectangle9.y, 1) <NEW_LINE> rectangle10 = Rectangle(2, 2, 2, 2) <NEW_LINE> rectangle10.update(width=1, x=9, height=7, y=8, id=56) <NEW_LINE> self.assertEqual(rectangle10.id, 56) <NEW_LINE> self.assertEqual(rectangle10.width, 1) <NEW_LINE> self.assertEqual(rectangle10.height, 7) <NEW_LINE> self.assertEqual(rectangle10.x, 9) <NEW_LINE> self.assertEqual(rectangle10.y, 8) | Test 'Rectangle' class' public 'update' function | 625941b57cff6e4e81117784 |
@is_editor_or_ed_reviewer <NEW_LINE> def view_non_editorial_review(request, review_id, non_editorial_review_id): <NEW_LINE> <INDENT> review = get_object_or_404( models.EditorialReview, pk=review_id, completed__isnull=True, ) <NEW_LINE> if review.content_type.model == 'proposal': <NEW_LINE> <INDENT> peer_review = get_object_or_404( submission_models.ProposalReview.objects, pk=non_editorial_review_id, completed__isnull=False ) <NEW_LINE> submission = peer_review.proposal <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> peer_review = get_object_or_404( core_models.ReviewAssignment.objects, pk=non_editorial_review_id, completed__isnull=False ) <NEW_LINE> submission = peer_review.book <NEW_LINE> <DEDENT> result = peer_review.results <NEW_LINE> relations = review_models.FormElementsRelationship.objects.filter( form=result.form, ) <NEW_LINE> data_ordered = core_logic.order_data( core_logic.decode_json(result.data), relations, ) <NEW_LINE> template = 'editorialreview/view_non_editorial_review.html' <NEW_LINE> context = { 'review': review, 'peer_review': peer_review, 'data_ordered': data_ordered, 'relations': relations, 'result': result, 'submission': submission, } <NEW_LINE> return render(request, template, context) | As an editorial reviewer, view a completed peer review for the
submission under review. | 625941b5d58c6744b4257a5f |
def get_channel_id_by_name(self, channel_name): <NEW_LINE> <INDENT> assert isinstance(channel_name, str), "`channel_name` must be a valid channel name rather than \"{}\"".format(channel_name) <NEW_LINE> channel_name = channel_name.strip().lstrip("#") <NEW_LINE> match = re.match(r"<#(\w+)(?:\|[^>]+)?>$", channel_name) <NEW_LINE> if match: return match.group(1) <NEW_LINE> for entry in self.client.server.channels: <NEW_LINE> <INDENT> if entry.name == channel_name: return entry.id <NEW_LINE> <DEDENT> return None | Returns the ID of the channel with name `channel_name`, or `None` if there are no channels with that name. Channels include public channels, direct messages with other users, and private groups. | 625941b524f1403a92600968 |
def compare( self, other: "Series", align_axis: Union[str, int] = 1, keep_shape: bool = False, keep_equal: bool = False, ): <NEW_LINE> <INDENT> if not isinstance(other, Series): <NEW_LINE> <INDENT> raise TypeError(f"Cannot compare Series to {type(other)}") <NEW_LINE> <DEDENT> result = self.to_frame().compare( other.to_frame(), align_axis=align_axis, keep_shape=keep_shape, keep_equal=keep_equal, ) <NEW_LINE> if align_axis == "columns" or align_axis == 1: <NEW_LINE> <INDENT> result.columns = pandas.Index(["self", "other"]) <NEW_LINE> <DEDENT> else: <NEW_LINE> <INDENT> result = result.squeeze().rename(None) <NEW_LINE> <DEDENT> return result | Compare to another Series and show the differences. | 625941b59f2886367277a690 |
def view_annual_monthly_report(self, row, col): <NEW_LINE> <INDENT> if col == 0: <NEW_LINE> <INDENT> item = self.annual_report_widget.content_table.item(row, col) <NEW_LINE> title = item.text() <NEW_LINE> file_url = STATIC_URL + item.data(Qt.UserRole).get("filepath", 'no-found.pdf') <NEW_LINE> p = PDFContentPopup(file=file_url, title=title) <NEW_LINE> p.exec_() | 查看年报半年报的详细内容 | 625941b5d486a94d0b98df4d |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.