sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
sequencelengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
| tokens_length
sequencelengths 1
723
| input_texts
sequencelengths 1
61
| embeddings
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | tyemel/dinov2-base-finetuned-lora-food101 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:18:50+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_first_model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2222
- Accuracy: 0.9318
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.226 | 1.0 | 1563 | 0.2255 | 0.9173 |
| 0.154 | 2.0 | 3126 | 0.2222 | 0.9318 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "my_first_model", "results": []}]} | text-classification | amirbralin/my_first_model | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:19:57+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| my\_first\_model
================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2222
* Accuracy: 0.9318
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
72,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.10009026527404785,
0.11160969734191895,
-0.0027496120892465115,
0.11274062842130661,
0.1415753960609436,
0.015253284014761448,
0.16106432676315308,
0.11433778703212738,
-0.06629235297441483,
0.04736238718032837,
0.12742555141448975,
0.12664781510829926,
0.015125550329685211,
0.11821281164884567,
-0.08220787346363068,
-0.2123468965291977,
0.009614093229174614,
0.022669987753033638,
-0.06324856728315353,
0.11473038047552109,
0.09355748444795609,
-0.12131164222955704,
0.08896705508232117,
-0.01618121564388275,
-0.16749274730682373,
0.004479446914047003,
0.018598522990942,
-0.04856426268815994,
0.12484274804592133,
0.033396780490875244,
0.13292871415615082,
0.03729959577322006,
0.08550615608692169,
-0.19182592630386353,
0.01019546203315258,
0.06083536520600319,
-0.005236768163740635,
0.08214868605136871,
0.036239225417375565,
-0.008861588314175606,
0.0689060389995575,
-0.09362684935331345,
0.06169769540429115,
0.01730477251112461,
-0.1281389594078064,
-0.20565582811832428,
-0.08748676627874374,
0.0345340222120285,
0.09289178997278214,
0.07540102303028107,
-0.010323443450033665,
0.11617514491081238,
-0.053170982748270035,
0.095461905002594,
0.20109839737415314,
-0.30546998977661133,
-0.061592064797878265,
0.045971520245075226,
0.025511497631669044,
0.08938869833946228,
-0.09764400869607925,
-0.019794879481196404,
0.05909418314695358,
0.023731868714094162,
0.1283196061849594,
-0.02459762804210186,
-0.05919263884425163,
-0.00016075087478384376,
-0.14285771548748016,
-0.018168844282627106,
0.1520322561264038,
0.04991479963064194,
-0.04669204354286194,
-0.04606898874044418,
-0.07427772879600525,
-0.12956564128398895,
-0.03992857038974762,
-0.009009100496768951,
0.049566734582185745,
-0.020227845758199692,
-0.059866465628147125,
-0.02504808083176613,
-0.09613154083490372,
-0.06567185372114182,
-0.05519591644406319,
0.14483514428138733,
0.03390048071742058,
0.005107732489705086,
-0.010454843752086163,
0.09989625215530396,
-0.025157025083899498,
-0.14584025740623474,
0.021651286631822586,
0.02088100090622902,
0.0038876524195075035,
-0.05028783529996872,
-0.05066544935107231,
-0.08078357577323914,
0.021042698994278908,
0.15937280654907227,
-0.05065108463168144,
0.051086973398923874,
0.0014541882555931807,
0.047361548990011215,
-0.10235797613859177,
0.16860710084438324,
-0.04100237786769867,
-0.03205214813351631,
0.024882985278964043,
0.0915633961558342,
0.057007674127817154,
-0.015842808410525322,
-0.13049520552158356,
0.032934628427028656,
0.10394022613763809,
0.021081632003188133,
-0.05064450576901436,
0.0666612759232521,
-0.05926511809229851,
-0.013549057766795158,
0.04191214591264725,
-0.0947137102484703,
0.02687942422926426,
0.0050791483372449875,
-0.055928558111190796,
-0.04534420371055603,
0.03286640718579292,
0.021833768114447594,
0.006006360054016113,
0.10760451853275299,
-0.08141431957483292,
0.01132600475102663,
-0.08155348896980286,
-0.12982062995433807,
0.017577555030584335,
-0.0940791442990303,
0.019820084795355797,
-0.10942970961332321,
-0.182551771402359,
-0.013015341944992542,
0.06347040086984634,
-0.028870299458503723,
-0.03233719989657402,
-0.06380421668291092,
-0.078241266310215,
0.01850624568760395,
-0.0117806913331151,
0.06485705077648163,
-0.06430386006832123,
0.09751855581998825,
0.03426656126976013,
0.06650882959365845,
-0.06269234418869019,
0.041505325585603714,
-0.10320577770471573,
0.04153472185134888,
-0.17908348143100739,
0.03730727359652519,
-0.0701146274805069,
0.07037714123725891,
-0.08094709366559982,
-0.0708991065621376,
0.003395860316231847,
-0.0031841725576668978,
0.0748145654797554,
0.09878626465797424,
-0.17704352736473083,
-0.06244032829999924,
0.15334439277648926,
-0.0872621238231659,
-0.140264093875885,
0.13796526193618774,
-0.05843111872673035,
0.043838705867528915,
0.06329336762428284,
0.19044199585914612,
0.07654380053281784,
-0.08543851226568222,
0.005410780198872089,
0.004115215502679348,
0.06722275167703629,
-0.031219158321619034,
0.070389024913311,
-0.0014077028026804328,
0.002353328512981534,
0.01235162653028965,
-0.05414658784866333,
0.05086473375558853,
-0.07783375680446625,
-0.09105043858289719,
-0.04125034809112549,
-0.10483746230602264,
0.06753041595220566,
0.04880185052752495,
0.06205010786652565,
-0.10885307937860489,
-0.08726228773593903,
0.0645194873213768,
0.07480038702487946,
-0.07397060096263885,
0.024549057707190514,
-0.06873343884944916,
0.09160102158784866,
-0.06046400964260101,
-0.015125409699976444,
-0.15745609998703003,
-0.04514223709702492,
0.019264424219727516,
0.001665001269429922,
0.018174780532717705,
-0.006223998032510281,
0.07070334255695343,
0.08369956910610199,
-0.066886305809021,
-0.03152180463075638,
-0.01429915614426136,
0.015469240956008434,
-0.1237948089838028,
-0.20028281211853027,
-0.014332279562950134,
-0.03495370224118233,
0.14990484714508057,
-0.23330263793468475,
0.05275983363389969,
-0.0014653714606538415,
0.08926111459732056,
0.04123585671186447,
-0.011081450618803501,
-0.0382685661315918,
0.06879528611898422,
-0.04978092014789581,
-0.06990444660186768,
0.06004130840301514,
0.010039977729320526,
-0.10479165613651276,
-0.04227975010871887,
-0.14891855418682098,
0.18198205530643463,
0.1326628476381302,
-0.08023189008235931,
-0.07286596298217773,
0.008080147206783295,
-0.03473601117730141,
-0.02693113684654236,
-0.03794703260064125,
0.004339942708611488,
0.12792786955833435,
-0.005620430689305067,
0.1549476534128189,
-0.08662332594394684,
-0.03190510720014572,
0.02045891247689724,
-0.04817867651581764,
0.009009075351059437,
0.11460258066654205,
0.08953093737363815,
-0.10654234886169434,
0.14863590896129608,
0.1966652274131775,
-0.09579864889383316,
0.13008049130439758,
-0.044558241963386536,
-0.05200420320034027,
-0.02535102516412735,
0.009945621713995934,
0.015098042786121368,
0.10877082496881485,
-0.11376207321882248,
0.002323142485693097,
0.010002020746469498,
0.013573698699474335,
0.010600542649626732,
-0.21604084968566895,
-0.024857569485902786,
0.041889939457178116,
-0.05180535838007927,
-0.0009464218164794147,
-0.024861477315425873,
-0.007254310883581638,
0.09820067137479782,
-0.0046440837904810905,
-0.08839879184961319,
0.046969007700681686,
-0.004161829128861427,
-0.07780678570270538,
0.20285628736019135,
-0.09424959868192673,
-0.14353874325752258,
-0.136247456073761,
-0.06719893962144852,
-0.05483291298151016,
0.03242390975356102,
0.06164886802434921,
-0.06720905750989914,
-0.0413714237511158,
-0.10994987934827805,
-0.0038263166788965464,
0.02994501031935215,
0.01971830241382122,
0.021163634955883026,
-0.0041278693825006485,
0.08493589609861374,
-0.10040725022554398,
-0.007009963504970074,
-0.035088714212179184,
-0.05126739665865898,
0.036921508610248566,
0.02629355527460575,
0.11170574277639389,
0.14838765561580658,
-0.026169780641794205,
-0.007356948684900999,
-0.02684454247355461,
0.2277047336101532,
-0.057898301631212234,
-0.006551099009811878,
0.12595953047275543,
-0.03257483243942261,
0.057313669472932816,
0.13939939439296722,
0.06310484558343887,
-0.09776148200035095,
0.01858990639448166,
0.033038195222616196,
-0.03442737087607384,
-0.2168537825345993,
-0.03605645149946213,
-0.037701673805713654,
0.005479462910443544,
0.09510310739278793,
0.02876218780875206,
0.022190002724528313,
0.06635619699954987,
0.01961098052561283,
0.08239655941724777,
-0.009019116871058941,
0.07063143700361252,
0.11288672685623169,
0.04081778973340988,
0.13017606735229492,
-0.04684014245867729,
-0.05115062743425369,
0.041642650961875916,
-0.0042169177904725075,
0.2003905326128006,
0.0220237597823143,
0.14608754217624664,
0.05093924328684807,
0.15894715487957,
-0.0022009992972016335,
0.06014814227819443,
-0.009494240395724773,
-0.03497191518545151,
-0.016108987852931023,
-0.05087079852819443,
-0.03094988688826561,
0.03465942293405533,
-0.08259386569261551,
0.05672406777739525,
-0.1041090115904808,
0.017503704875707626,
0.061649076640605927,
0.23341302573680878,
0.057969726622104645,
-0.3213752806186676,
-0.09073582291603088,
0.031684309244155884,
-0.01917683705687523,
-0.0202624574303627,
0.027752656489610672,
0.1269034743309021,
-0.047208063304424286,
0.03733751177787781,
-0.07054189592599869,
0.08604463934898376,
-0.040981508791446686,
0.045002531260252,
0.05053624510765076,
0.08522043377161026,
-0.010817477479577065,
0.06771192699670792,
-0.2801041603088379,
0.2626741826534271,
0.01932024583220482,
0.06679442524909973,
-0.04502832517027855,
-0.0007432673592120409,
0.038670118898153305,
0.09499242156744003,
0.07015971839427948,
-0.013889702968299389,
-0.05170217901468277,
-0.1914292722940445,
-0.06628420948982239,
0.02106204256415367,
0.09809369593858719,
-0.04034658521413803,
0.10071901977062225,
-0.029586344957351685,
0.001242064288817346,
0.08039773255586624,
-0.015724388882517815,
-0.08190225064754486,
-0.09895296394824982,
-0.009710212238132954,
0.03654253110289574,
-0.03733869642019272,
-0.07948805391788483,
-0.09687858074903488,
-0.13472087681293488,
0.15368349850177765,
-0.06931055337190628,
-0.03623994067311287,
-0.10330533236265182,
0.05360981076955795,
0.05774465203285217,
-0.0812373086810112,
0.04176609218120575,
0.004727487452328205,
0.08489906042814255,
0.015254193916916847,
-0.06560662388801575,
0.1214565858244896,
-0.07314290851354599,
-0.17908340692520142,
-0.07064146548509598,
0.1085202693939209,
0.02034112438559532,
0.044864311814308167,
-0.007845807820558548,
0.011815092526376247,
-0.015469148755073547,
-0.07717083394527435,
0.024365276098251343,
0.006563421804457903,
0.051179081201553345,
0.03143497556447983,
-0.05799384042620659,
-0.005367659498006105,
-0.059524066746234894,
-0.02369713969528675,
0.1517072468996048,
0.29242467880249023,
-0.0852581337094307,
0.012720471248030663,
0.06060279160737991,
-0.06821858137845993,
-0.2099754959344864,
0.03617997467517853,
0.026787200942635536,
0.003276597475633025,
0.046961162239313126,
-0.14983652532100677,
0.09996900707483292,
0.10124941170215607,
-0.028385361656546593,
0.11567051708698273,
-0.2916131317615509,
-0.13699433207511902,
0.12642161548137665,
0.14551100134849548,
0.11912427097558975,
-0.15840892493724823,
-0.043518200516700745,
-0.04048480838537216,
-0.1073233112692833,
0.10863247513771057,
-0.130152627825737,
0.10920567810535431,
-0.006229448597878218,
0.052068691700696945,
0.006383421365171671,
-0.051350031048059464,
0.13909493386745453,
0.00015163270290941,
0.11582647264003754,
-0.06167277321219444,
-0.01650283858180046,
0.057735852897167206,
-0.0614519938826561,
0.019843582063913345,
-0.11577825248241425,
0.04522329196333885,
-0.059798985719680786,
-0.022418437525629997,
-0.043459877371788025,
0.03408924117684364,
-0.038980647921562195,
-0.05832085758447647,
-0.0435505174100399,
0.025482069700956345,
0.04564632102847099,
-0.006727216765284538,
0.16419431567192078,
0.013863928616046906,
0.14243409037590027,
0.14659887552261353,
0.07618455588817596,
-0.06763956695795059,
-0.009343961253762245,
-0.007993433624505997,
-0.03653949499130249,
0.06360691785812378,
-0.1603987067937851,
0.04251156747341156,
0.12486596405506134,
0.012759150937199593,
0.14976902306079865,
0.06948457658290863,
-0.029369689524173737,
0.014263210818171501,
0.06035095080733299,
-0.16278547048568726,
-0.10671593993902206,
-0.007427621632814407,
-0.03091421350836754,
-0.11983177065849304,
0.05809660255908966,
0.12876492738723755,
-0.06673786044120789,
0.006823989097028971,
-0.006109589245170355,
0.016246333718299866,
-0.03403685986995697,
0.1792205572128296,
0.07038932293653488,
0.04577841982245445,
-0.08499542623758316,
0.0936291441321373,
0.05812530964612961,
-0.07477720826864243,
0.00964799989014864,
0.04325258359313011,
-0.0850289985537529,
-0.0470457561314106,
0.04329242929816246,
0.19152553379535675,
-0.031727246940135956,
-0.047710660845041275,
-0.14683076739311218,
-0.11350087821483612,
0.05323666334152222,
0.17866814136505127,
0.09845881164073944,
0.014988671988248825,
-0.03558935970067978,
0.010650796815752983,
-0.10852736234664917,
0.11822500079870224,
0.04612217843532562,
0.08916711807250977,
-0.1540316641330719,
0.11775215715169907,
-0.005936783272773027,
0.0114206001162529,
-0.024891121312975883,
0.04640721157193184,
-0.11647232621908188,
-0.008681119419634342,
-0.14550799131393433,
-0.00037763683940283954,
-0.022005828097462654,
0.010138279758393764,
0.0012918752618134022,
-0.055392488837242126,
-0.05583125725388527,
0.010399307124316692,
-0.09914622455835342,
-0.024522384628653526,
0.033487122505903244,
0.05021888017654419,
-0.12403592467308044,
-0.04981870576739311,
0.022189725190401077,
-0.07399234920740128,
0.07011789828538895,
0.019453847780823708,
0.019320186227560043,
0.04797353595495224,
-0.18523812294006348,
0.02077445387840271,
0.05753251165151596,
0.01908203959465027,
0.046946752816438675,
-0.08311384171247482,
-0.02243722788989544,
-0.004839141387492418,
0.04290022328495979,
0.018894214183092117,
0.09103463590145111,
-0.12261652946472168,
0.014223176054656506,
-0.029105188325047493,
-0.062234386801719666,
-0.05124817043542862,
0.03374502435326576,
0.08635517954826355,
0.012226982042193413,
0.20820190012454987,
-0.09658023715019226,
0.01971360109746456,
-0.2016584277153015,
0.004533878993242979,
0.001660775626078248,
-0.11658434569835663,
-0.1173790767788887,
-0.05340830609202385,
0.04990297555923462,
-0.06205129250884056,
0.13329827785491943,
0.009332354180514812,
0.02695404551923275,
0.03574696555733681,
-0.028277989476919174,
0.0354156456887722,
0.02761734090745449,
0.2133827805519104,
0.03283149003982544,
-0.040875229984521866,
0.012669187970459461,
0.024484559893608093,
0.11487449705600739,
0.07695475220680237,
0.16871732473373413,
0.16582489013671875,
-0.04702377691864967,
0.09964647144079208,
0.04306356608867645,
-0.049398165196180344,
-0.1370856612920761,
0.0669572725892067,
-0.03933822736144066,
0.10356904566287994,
-0.015703417360782623,
0.19917190074920654,
0.08974086493253708,
-0.1564660668373108,
0.01724410057067871,
-0.04813627898693085,
-0.08600019663572311,
-0.10917353630065918,
-0.06193744018673897,
-0.09831425547599792,
-0.14226721227169037,
-0.006498123053461313,
-0.11136320233345032,
0.012461462989449501,
0.10075247287750244,
0.0013426815858110785,
-0.016451068222522736,
0.16360020637512207,
0.0009217091137543321,
0.034934721887111664,
0.06272921711206436,
0.00034898470039479434,
-0.042865533381700516,
-0.07273416966199875,
-0.09973816573619843,
0.011972316540777683,
-0.007648703176528215,
0.02483350783586502,
-0.04588986933231354,
-0.02015053853392601,
0.04208378866314888,
-0.01041507814079523,
-0.11112939566373825,
0.01187768392264843,
0.029025403782725334,
0.048285216093063354,
0.05076390504837036,
0.013157417066395283,
0.01073569618165493,
0.0014613887760788202,
0.21901117265224457,
-0.07584387809038162,
-0.06596171855926514,
-0.09814036637544632,
0.21399378776550293,
0.023397162556648254,
0.011966140940785408,
0.012584710493683815,
-0.09443554282188416,
0.02815418131649494,
0.20947939157485962,
0.18842986226081848,
-0.09905103594064713,
-0.0001692796213319525,
-0.018171221017837524,
-0.008922252804040909,
-0.03459518030285835,
0.0915725901722908,
0.11012741923332214,
0.006350040435791016,
-0.07247549295425415,
-0.05520479753613472,
-0.038122765719890594,
-0.008277290500700474,
-0.05145679786801338,
0.05651894211769104,
0.026052454486489296,
0.009636245667934418,
-0.05015645921230316,
0.05856948718428612,
-0.0374404713511467,
-0.10917237401008606,
0.04973645135760307,
-0.1963282823562622,
-0.15246431529521942,
-0.01912187784910202,
0.11154837906360626,
-0.009332713671028614,
0.04433213546872139,
-0.03408404439687729,
-0.001189050730317831,
0.07034170627593994,
-0.031212879344820976,
-0.061599768698215485,
-0.05933063477277756,
0.05827198922634125,
-0.10562718659639359,
0.2238629013299942,
-0.03165009617805481,
0.04682733491063118,
0.12623748183250427,
0.049673039466142654,
-0.07102157920598984,
0.08304491639137268,
0.04691373556852341,
-0.05905837565660477,
0.03411668539047241,
0.0856429934501648,
-0.04292154684662819,
0.12025368958711624,
0.06405256688594818,
-0.13447809219360352,
0.010677926242351532,
-0.03322536498308182,
-0.09649685025215149,
-0.05268259719014168,
-0.042917050421237946,
-0.05988189950585365,
0.13188210129737854,
0.18581262230873108,
-0.03586168587207794,
0.0109806377440691,
-0.04149792715907097,
0.015592525713145733,
0.06741455942392349,
0.03780566528439522,
-0.03523185849189758,
-0.22708064317703247,
0.026214618235826492,
0.06231316551566124,
-0.0005959990085102618,
-0.28178611397743225,
-0.08286678045988083,
-0.013081220909953117,
-0.04308035597205162,
-0.09467852115631104,
0.08970261365175247,
0.11370586603879929,
0.050186578184366226,
-0.06245345249772072,
-0.0884915366768837,
-0.07498291879892349,
0.15508313477039337,
-0.12546521425247192,
-0.09586970508098602
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | token-classification | SKNahin/NER_Deberta_Small | [
"transformers",
"safetensors",
"deberta-v2",
"token-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:21:42+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #deberta-v2 #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #deberta-v2 #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
52,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #deberta-v2 #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06466816365718842,
0.12197275459766388,
-0.004202458541840315,
0.029149644076824188,
0.12036502361297607,
0.006935111712664366,
0.06423568725585938,
0.1065516322851181,
-0.02678372710943222,
0.11724407225847244,
0.019794756546616554,
0.1101258173584938,
0.10480418801307678,
0.1741989552974701,
-0.005228097550570965,
-0.21802054345607758,
0.044925298541784286,
-0.1332864612340927,
-0.024949483573436737,
0.1159522756934166,
0.13522779941558838,
-0.12204837054014206,
0.06930451840162277,
-0.04209818318486214,
-0.007912974804639816,
-0.0322565995156765,
-0.05880237743258476,
-0.04924030974507332,
0.06812424957752228,
0.06659761071205139,
0.0681338757276535,
0.012976576574146748,
0.10400646179914474,
-0.2772457003593445,
0.020696397870779037,
0.08373123407363892,
0.005089117679744959,
0.06848078966140747,
0.05912717059254646,
-0.0766395553946495,
0.07375232130289078,
-0.07348829507827759,
0.15079154074192047,
0.07845799624919891,
-0.09164275974035263,
-0.20210139453411102,
-0.08833131939172745,
0.09044230729341507,
0.19723249971866608,
0.056620024144649506,
-0.028050832450389862,
0.12256447225809097,
-0.07247937470674515,
0.015507095493376255,
0.06527657806873322,
-0.07301480323076248,
-0.05207262933254242,
0.06885527074337006,
0.06803692132234573,
0.10003920644521713,
-0.13086174428462982,
-0.007739242631942034,
0.030164694413542747,
0.013562135398387909,
0.10788191854953766,
0.018514400348067284,
0.12156243622303009,
0.04128511995077133,
-0.14408166706562042,
-0.03994642570614815,
0.09361754357814789,
0.0397270992398262,
-0.05522630363702774,
-0.2456887662410736,
-0.01887490786612034,
-0.03032955899834633,
-0.033128105103969574,
-0.054186753928661346,
0.05287313833832741,
-0.021889202296733856,
0.08110702037811279,
-0.008305862545967102,
-0.07696685940027237,
-0.04674658551812172,
0.08184117078781128,
0.06834331154823303,
0.026918675750494003,
-0.02635417878627777,
0.008553886786103249,
0.11673150211572647,
0.10659375786781311,
-0.11640386283397675,
-0.04757297784090042,
-0.059655386954545975,
-0.08255314826965332,
-0.051134269684553146,
0.02667141705751419,
0.02667512185871601,
0.04563198238611221,
0.21625038981437683,
0.0014771533897146583,
0.04591803625226021,
0.02884340099990368,
0.01423268485814333,
0.06688534468412399,
0.09831439703702927,
-0.05904420465230942,
-0.11931392550468445,
-0.02217327058315277,
0.10633781552314758,
0.0066702705807983875,
-0.03250111639499664,
-0.05059574916958809,
0.06834481656551361,
0.024872468784451485,
0.12410221993923187,
0.06858504563570023,
0.012844047509133816,
-0.07673057168722153,
-0.06398788094520569,
0.17097899317741394,
-0.16335350275039673,
0.03551461920142174,
0.02393929846584797,
-0.053198374807834625,
-0.014516751281917095,
0.020755909383296967,
0.025373658165335655,
-0.011161229573190212,
0.0990719124674797,
-0.05368759483098984,
-0.03255419060587883,
-0.11457451432943344,
-0.053361907601356506,
0.023612400516867638,
0.02046036161482334,
-0.02989322878420353,
-0.04349198937416077,
-0.10500442981719971,
-0.07200396806001663,
0.08398986607789993,
-0.06797605007886887,
-0.04464494064450264,
-0.03520826995372772,
-0.07841871678829193,
0.014052528887987137,
0.00574632128700614,
0.11038210988044739,
-0.023612231016159058,
0.04836830496788025,
-0.05386055260896683,
0.07064847648143768,
0.13456082344055176,
0.02942483313381672,
-0.05367830768227577,
0.05159740895032883,
-0.2461555302143097,
0.10376992076635361,
-0.07264269888401031,
0.04777098074555397,
-0.16307511925697327,
-0.0198860764503479,
0.043219488114118576,
0.023323146626353264,
-0.005688810721039772,
0.1300518661737442,
-0.2077709287405014,
-0.035600125789642334,
0.17244622111320496,
-0.10709037631750107,
-0.08368578553199768,
0.05450167506933212,
-0.05821350961923599,
0.12177194654941559,
0.05322835594415665,
-0.01946827955543995,
0.025913206860423088,
-0.14479942619800568,
-0.010151791386306286,
-0.05895674601197243,
-0.02808297798037529,
0.15971976518630981,
0.05844848230481148,
-0.05183469131588936,
0.06317830085754395,
0.016611700877547264,
-0.01677791401743889,
-0.04923691228032112,
-0.032810237258672714,
-0.09724095463752747,
0.013582640327513218,
-0.07040367275476456,
0.02299460582435131,
-0.03090890683233738,
-0.08987399935722351,
-0.0339132584631443,
-0.15792976319789886,
0.02252473123371601,
0.09328845143318176,
-0.002892867662012577,
-0.021098729223012924,
-0.10148956626653671,
-0.015995139256119728,
0.02491818368434906,
0.0005505141452886164,
-0.14534035325050354,
-0.054077308624982834,
0.019842583686113358,
-0.1618579775094986,
0.03220152109861374,
-0.027691856026649475,
0.04522697255015373,
0.04093098267912865,
-0.0447295606136322,
-0.03263319656252861,
0.012876871041953564,
0.019164353609085083,
-0.0156744085252285,
-0.2759932279586792,
-0.016470206901431084,
-0.03563441336154938,
0.16242848336696625,
-0.2516782283782959,
0.04283948242664337,
0.05301886796951294,
0.13206687569618225,
0.01450103335082531,
-0.027684900909662247,
0.01769263669848442,
-0.06721992790699005,
-0.03368232399225235,
-0.06463972479104996,
-0.013003064319491386,
-0.038854893296957016,
-0.046517930924892426,
0.033844344317913055,
-0.16243807971477509,
-0.04162684455513954,
0.11188272386789322,
0.03858201205730438,
-0.15623866021633148,
-0.03822393715381622,
-0.04364866018295288,
-0.054222021251916885,
-0.07046913355588913,
-0.052408888936042786,
0.1032525822520256,
0.052487947046756744,
0.058352477848529816,
-0.06068374589085579,
-0.0675206333398819,
0.007080634590238333,
-0.023098701611161232,
-0.019511302933096886,
0.0780739039182663,
0.06551919132471085,
-0.12371252477169037,
0.09357328712940216,
0.09488903731107712,
0.08224551379680634,
0.09777180850505829,
0.004860724322497845,
-0.08961226046085358,
-0.03159978613257408,
0.026874035596847534,
0.015613501891493797,
0.15007883310317993,
-0.023757725954055786,
0.04783238098025322,
0.03627374395728111,
-0.0069470712915062904,
0.005104671698063612,
-0.09547439962625504,
0.03146127611398697,
0.027004197239875793,
-0.010457582771778107,
0.045607659965753555,
-0.05758532136678696,
0.016228504478931427,
0.10561399161815643,
0.042750515043735504,
0.04958893731236458,
0.008061937056481838,
-0.04876195266842842,
-0.11458532512187958,
0.17577087879180908,
-0.12034392356872559,
-0.23503929376602173,
-0.11996304988861084,
-0.010993306525051594,
0.034179072827100754,
-0.007477967068552971,
0.022685132920742035,
-0.07265906035900116,
-0.11820217967033386,
-0.09142062067985535,
0.04840506240725517,
0.05493762716650963,
-0.08353719115257263,
-0.06416553258895874,
0.0699615478515625,
0.04743001237511635,
-0.1389177143573761,
0.02380296215415001,
0.034620750695466995,
-0.0872102677822113,
0.0029819237533956766,
0.08519035577774048,
0.05888642370700836,
0.18008075654506683,
0.010788527317345142,
-0.02595219388604164,
0.01976708509027958,
0.2022116482257843,
-0.13552935421466827,
0.10456039011478424,
0.13558508455753326,
-0.06794831901788712,
0.08161590993404388,
0.20791222155094147,
0.041511692106723785,
-0.10927121341228485,
0.045256976038217545,
0.03615958243608475,
-0.022633234038949013,
-0.24851085245609283,
-0.07810220122337341,
0.009074265137314796,
-0.06641479581594467,
0.07369695603847504,
0.08135901391506195,
0.09815715998411179,
0.016307005658745766,
-0.10439245402812958,
-0.05691203474998474,
0.05359639227390289,
0.11178097128868103,
0.0005312497960403562,
-0.015559414401650429,
0.09605181962251663,
-0.019349027425050735,
0.022786341607570648,
0.09166137129068375,
0.003685855306684971,
0.18121956288814545,
0.05096123367547989,
0.14115169644355774,
0.08846595138311386,
0.05260030925273895,
0.010571611113846302,
0.00519154267385602,
0.01690458506345749,
0.022460386157035828,
-0.016591908410191536,
-0.08765360713005066,
-0.0025916658341884613,
0.1303529143333435,
0.023996995761990547,
0.04771316051483154,
0.005256648175418377,
-0.041017983108758926,
0.08706887066364288,
0.1720123142004013,
0.015851903706789017,
-0.19922499358654022,
-0.06961675733327866,
0.07131917029619217,
-0.08101397007703781,
-0.10567333549261093,
-0.03051498904824257,
0.03491778299212456,
-0.17742227017879486,
0.018296167254447937,
-0.022482281550765038,
0.10083698481321335,
-0.12198518961668015,
-0.014369131997227669,
0.050927821546792984,
0.07674054801464081,
-0.016325542703270912,
0.06606277078390121,
-0.18025541305541992,
0.13103583455085754,
0.016894888132810593,
0.07214778661727905,
-0.0892268717288971,
0.08784275501966476,
0.0024716476909816265,
0.0012896760599687696,
0.14359614253044128,
0.002044856082648039,
-0.05432117357850075,
-0.10964708775281906,
-0.08345004916191101,
-0.013369085267186165,
0.12828469276428223,
-0.1321774125099182,
0.0964808538556099,
-0.018887361511588097,
-0.046898361295461655,
0.005365802440792322,
-0.12184431403875351,
-0.1419176608324051,
-0.1701805591583252,
0.04523906111717224,
-0.1329699605703354,
0.04354427382349968,
-0.10502105951309204,
-0.04792432487010956,
-0.04497060924768448,
0.19979332387447357,
-0.2204522341489792,
-0.07042528688907623,
-0.15197555720806122,
-0.05513730272650719,
0.11936050653457642,
-0.045758746564388275,
0.08609742671251297,
0.014394130557775497,
0.18831388652324677,
0.01490827463567257,
-0.012921185232698917,
0.11221019923686981,
-0.10288592427968979,
-0.20936010777950287,
-0.10631230473518372,
0.13907743990421295,
0.14045150578022003,
0.03718477860093117,
0.00017439395014662296,
0.030241772532463074,
-0.008310341276228428,
-0.11130935698747635,
0.02226727083325386,
0.1818859577178955,
0.11698096990585327,
0.034827422350645065,
-0.04558476433157921,
-0.1282479166984558,
-0.08240164071321487,
-0.04210341349244118,
0.013022612780332565,
0.19483055174350739,
-0.07285630702972412,
0.1734362244606018,
0.15553328394889832,
-0.058381255716085434,
-0.19954784214496613,
0.03224672004580498,
0.04052870720624924,
0.0018155946163460612,
0.05836709216237068,
-0.20120330154895782,
0.09613421559333801,
0.003965679090470076,
-0.05700134113430977,
0.12291120737791061,
-0.1794978678226471,
-0.1494377702474594,
0.05977441370487213,
0.06504373997449875,
-0.18471670150756836,
-0.12030193209648132,
-0.0906098261475563,
-0.04907683655619621,
-0.11491015553474426,
0.08198710530996323,
-0.004478295799344778,
0.010844743810594082,
0.03223739564418793,
0.016181785613298416,
0.011378921568393707,
-0.04127343371510506,
0.18362799286842346,
-0.008517292328178883,
0.048652928322553635,
-0.08058580756187439,
-0.06042208895087242,
0.04949076101183891,
-0.06943603605031967,
0.07448729127645493,
-0.010821190662682056,
0.013506816700100899,
-0.10542158782482147,
-0.05650888383388519,
-0.02736050635576248,
0.022536376491189003,
-0.08460354059934616,
-0.10347003489732742,
-0.03973411023616791,
0.10050813108682632,
0.09168742597103119,
-0.04071033000946045,
-0.05761529505252838,
-0.08062192797660828,
0.0355151891708374,
0.19572728872299194,
0.17283788323402405,
0.05753122270107269,
-0.0621308870613575,
-0.0033672878053039312,
-0.012863550335168839,
0.0513107031583786,
-0.22106507420539856,
0.05985407903790474,
0.037558674812316895,
0.030016964301466942,
0.11966370791196823,
-0.024740351364016533,
-0.16162925958633423,
-0.055835455656051636,
0.055034637451171875,
-0.07074437290430069,
-0.16294218599796295,
0.012024333700537682,
0.0750519260764122,
-0.1531451791524887,
-0.023071492090821266,
0.047226645052433014,
-0.022888783365488052,
-0.03552026301622391,
0.008166993036866188,
0.07943081855773926,
0.011047901585698128,
0.08480099588632584,
0.05661538988351822,
0.09406866878271103,
-0.09947272390127182,
0.06839016079902649,
0.08378785848617554,
-0.09536738693714142,
0.036548908799886703,
0.06979306042194366,
-0.06812794506549835,
-0.036443546414375305,
0.04483252763748169,
0.09306086599826813,
0.03461608663201332,
-0.0496140718460083,
0.009975533001124859,
-0.0991714745759964,
0.05783834680914879,
0.11240030825138092,
0.04345378279685974,
0.005570659413933754,
0.03424717113375664,
0.04788278043270111,
-0.09421747177839279,
0.12488389015197754,
0.03327573090791702,
0.028144897893071175,
-0.04884033277630806,
-0.030886849388480186,
0.03401049226522446,
-0.025599602609872818,
-0.013930507935583591,
-0.03926628828048706,
-0.06888161599636078,
-0.013594170100986958,
-0.17240136861801147,
-0.0029535088688135147,
-0.0383978933095932,
0.006674154195934534,
0.018208200111985207,
-0.03393350914120674,
0.010948311537504196,
0.016729488968849182,
-0.0701742097735405,
-0.056464649736881256,
-0.010333591140806675,
0.10393849015235901,
-0.1704758256673813,
0.009352225810289383,
0.07282818108797073,
-0.12330053001642227,
0.0882670134305954,
0.01709691248834133,
0.009928959421813488,
0.03636078163981438,
-0.12878885865211487,
0.04661022499203682,
-0.00919650960713625,
0.014418895356357098,
0.0528080016374588,
-0.21462877094745636,
-0.0046529583632946014,
-0.05383024364709854,
-0.05298306420445442,
-0.009345833212137222,
-0.03066449612379074,
-0.11840657889842987,
0.10337110608816147,
0.00554006127640605,
-0.07858934998512268,
-0.027129173278808594,
0.03534814342856407,
0.08033894002437592,
-0.02888466790318489,
0.15499885380268097,
-0.014964357949793339,
0.06925736367702484,
-0.18353688716888428,
-0.023686321452260017,
-0.017806880176067352,
0.02434595860540867,
-0.03405971825122833,
-0.01627812534570694,
0.04919828101992607,
-0.026282284408807755,
0.19468159973621368,
-0.01404520682990551,
0.053027138113975525,
0.06716758012771606,
-0.01731599122285843,
-0.025200918316841125,
0.10833217203617096,
0.05057381093502045,
0.012596861459314823,
0.03097045235335827,
0.002724191639572382,
-0.032638128846883774,
-0.0015376374358311296,
-0.16326214373111725,
0.07423728704452515,
0.1683049499988556,
0.0821618065237999,
-0.012878294102847576,
0.059728000313043594,
-0.11478280276060104,
-0.12184109538793564,
0.10090997815132141,
-0.05217669531702995,
-0.014969355426728725,
-0.058527734130620956,
0.1378937065601349,
0.14838765561580658,
-0.1930767446756363,
0.0610617995262146,
-0.06931009143590927,
-0.04964228719472885,
-0.10728566348552704,
-0.1681494265794754,
-0.057678062468767166,
-0.05907471105456352,
-0.0213418398052454,
-0.053565166890621185,
0.0680057555437088,
0.07332909107208252,
0.014450018294155598,
0.013244451954960823,
0.07624361664056778,
-0.018915481865406036,
0.008525490760803223,
0.028719795867800713,
0.06702575832605362,
0.009052124805748463,
-0.043495066463947296,
0.012300699949264526,
-0.005083650816231966,
0.03453131020069122,
0.04542510211467743,
0.034886524081230164,
-0.02928536757826805,
0.007193939294666052,
-0.027187315747141838,
-0.11160685122013092,
0.042607881128787994,
-0.024967635050415993,
-0.06782487779855728,
0.13797178864479065,
0.028327153995633125,
-0.009714162908494473,
-0.02516608126461506,
0.2606247663497925,
-0.07522029429674149,
-0.09206689894199371,
-0.1338571459054947,
0.14171090722084045,
-0.024645673111081123,
0.06760124862194061,
0.033446263521909714,
-0.11445143073797226,
0.026036731898784637,
0.1324138194322586,
0.14793062210083008,
-0.05245824158191681,
0.017998777329921722,
0.021558376029133797,
0.0024578277952969074,
-0.040562503039836884,
0.050375621765851974,
0.07319269329309464,
0.12713441252708435,
-0.052478544414043427,
0.08453772962093353,
-0.005550839006900787,
-0.09648649394512177,
-0.02982695773243904,
0.11937443912029266,
-0.006796215195208788,
0.0190102681517601,
-0.06431698054075241,
0.12723416090011597,
-0.0369122140109539,
-0.2703137695789337,
0.06783135235309601,
-0.06748911738395691,
-0.14737756550312042,
-0.02443784847855568,
0.05718240514397621,
-0.01098309550434351,
0.0282635148614645,
0.06607423722743988,
-0.07097610086202621,
0.19599688053131104,
0.035155706107616425,
-0.04580609127879143,
-0.06696486473083496,
0.07266953587532043,
-0.10395272821187973,
0.29104846715927124,
0.008048768155276775,
0.058571070432662964,
0.09949593245983124,
-0.0245056115090847,
-0.13227766752243042,
0.028358159586787224,
0.0850125253200531,
-0.07332444190979004,
0.05352538824081421,
0.21757395565509796,
-0.013260896317660809,
0.11338580399751663,
0.07414449006319046,
-0.10197935998439789,
0.050293050706386566,
-0.10382803529500961,
-0.09831703454256058,
-0.08538446575403214,
0.09536542743444443,
-0.0577712245285511,
0.14520715177059174,
0.1225363090634346,
-0.0463496632874012,
0.021422745659947395,
-0.023490076884627342,
0.046754222363233566,
0.010136643424630165,
0.12518633902072906,
0.014053969644010067,
-0.19339033961296082,
0.027584588155150414,
0.00011195550177944824,
0.10043127089738846,
-0.20675040781497955,
-0.10115297138690948,
0.053753241896629333,
0.0020328264217823744,
-0.06096027418971062,
0.12357921153306961,
0.05461353063583374,
0.04136013612151146,
-0.04750092700123787,
-0.030941203236579895,
-0.010107891634106636,
0.1610364019870758,
-0.10999637842178345,
-0.003804087173193693
] |
null | null | peft | ## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
| {"library_name": "peft"} | null | Synechron/phi2_bancking_techsupport_noncompliance_explain | [
"peft",
"safetensors",
"region:us"
] | 2024-02-13T16:23:11+00:00 | [] | [] | TAGS
#peft #safetensors #region-us
| ## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0
| [
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
"TAGS\n#peft #safetensors #region-us \n",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
14,
164,
11
] | [
"passage: TAGS\n#peft #safetensors #region-us \n## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- quant_method: bitsandbytes\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16### Framework versions\n\n\n- PEFT 0.4.0"
] | [
-0.06482408195734024,
0.04440080001950264,
-0.0033028984908014536,
0.12773065268993378,
0.0810011774301529,
0.03908846527338028,
0.11249835044145584,
0.09996628016233444,
0.025428591296076775,
0.09576070308685303,
0.11301633715629578,
0.04674188792705536,
0.057538777589797974,
0.17943018674850464,
-0.03323866426944733,
0.015148550271987915,
0.05887030437588692,
-0.016557902097702026,
0.017794720828533173,
0.09092656522989273,
0.055737078189849854,
-0.05848313495516777,
0.02978525497019291,
-0.08468232303857803,
-0.1238967776298523,
0.0022325627505779266,
0.019504325464367867,
0.015018842183053493,
0.044147003442049026,
0.021217869594693184,
0.07372400909662247,
0.018228070810437202,
-0.02000647597014904,
-0.20750534534454346,
-0.004232894163578749,
0.11494330316781998,
-0.029339060187339783,
0.06369362771511078,
-0.07528552412986755,
0.10993266105651855,
-0.09113159775733948,
-0.06739909201860428,
0.010464280843734741,
0.01872788555920124,
-0.07968419045209885,
-0.12555092573165894,
-0.0627322793006897,
0.06845422834157944,
0.047731634229421616,
0.07055314630270004,
-0.016241924837231636,
0.1994946151971817,
-0.1395733505487442,
0.09558487683534622,
0.09413648396730423,
-0.25228461623191833,
-0.03674229606986046,
0.09217822551727295,
-0.011509978212416172,
0.15633492171764374,
-0.09246384352445602,
-0.09287204593420029,
0.07016339153051376,
0.0397951677441597,
-0.010187122039496899,
-0.014752917923033237,
-0.09572460502386093,
-0.007957705296576023,
-0.15063898265361786,
-0.04339770972728729,
0.12387266010046005,
0.031789008527994156,
-0.061708807945251465,
-0.05225837603211403,
-0.09681638330221176,
-0.33133208751678467,
0.029896428808569908,
-0.009952893480658531,
-0.07272469997406006,
0.039989229291677475,
0.008208596147596836,
-0.006857611238956451,
-0.020238379016518593,
-0.07521803677082062,
-0.03008965589106083,
0.07101576775312424,
0.05660983547568321,
0.027928827330470085,
0.03136223927140236,
0.09186998009681702,
-0.09363537281751633,
-0.024233311414718628,
-0.04837677255272865,
-0.030936717987060547,
-0.0348082073032856,
-0.009987947531044483,
-0.05430281534790993,
0.1628355234861374,
0.09251972287893295,
0.1325211375951767,
-0.19308389723300934,
0.11625280231237411,
-0.03273439034819603,
0.04856070876121521,
-0.044840991497039795,
0.010801746509969234,
-0.1102728471159935,
0.12475620955228806,
0.041779324412345886,
0.17111517488956451,
0.04716143012046814,
-0.030231451615691185,
-0.04864824190735817,
0.0023162229917943478,
0.16946184635162354,
0.02583216316998005,
-0.10886538028717041,
0.022627806290984154,
-0.1315876692533493,
-0.002802486764267087,
0.09396199136972427,
-0.080690898001194,
0.01302790641784668,
0.040284957736730576,
-0.024164268746972084,
-0.03302670270204544,
0.11018532514572144,
-0.04712267592549324,
-0.02219797484576702,
-0.019541876390576363,
-0.08998211473226547,
-0.02555846981704235,
-0.07954680174589157,
-0.13321015238761902,
0.049761682748794556,
-0.14949901401996613,
-0.0027190514374524355,
-0.071729876101017,
-0.05624859407544136,
0.0395461842417717,
-0.00799707230180502,
-0.05900469422340393,
0.07354281097650528,
-0.08308735489845276,
-0.16862916946411133,
-0.03740263357758522,
0.004981446545571089,
-0.0026540113613009453,
-0.027257390320301056,
0.10137730836868286,
0.029563551768660545,
0.10218753665685654,
-0.15746405720710754,
-0.031341105699539185,
-0.020331498235464096,
0.08354213833808899,
0.036682285368442535,
0.10209961980581284,
-0.09748724102973938,
-0.03390931710600853,
-0.05546043813228607,
-0.060045380145311356,
-0.099202461540699,
-0.023990729823708534,
0.12364637851715088,
0.10255105048418045,
-0.1423092931509018,
0.002629372524097562,
0.11493087559938431,
-0.05944903567433357,
-0.08624456077814102,
0.16703170537948608,
-0.04435502365231514,
0.07772955298423767,
-0.02904803305864334,
0.07477755844593048,
0.21122616529464722,
-0.13554632663726807,
-0.01774321310222149,
0.10423458367586136,
0.043736156076192856,
0.019251858815550804,
0.00526350038126111,
0.07979460060596466,
-0.1392461061477661,
0.025191375985741615,
0.07771527767181396,
0.03872118517756462,
-0.06457194685935974,
-0.060874130576848984,
-0.031226808205246925,
-0.07221519201993942,
0.13245274126529694,
0.015050183981657028,
-0.008640539832413197,
-0.07954273372888565,
-0.07920794188976288,
0.09054414182901382,
0.10639449954032898,
-0.02321404032409191,
-0.006099758669734001,
-0.1384601891040802,
0.016208777204155922,
-0.043903451412916183,
0.016371700912714005,
-0.0987907126545906,
-0.00933216605335474,
0.08652767539024353,
-0.028433186933398247,
-0.008097228594124317,
-0.005914108827710152,
0.06141595542430878,
0.05483480170369148,
-0.059069301933050156,
-0.009437650442123413,
-0.02369745261967182,
0.015543990768492222,
-0.09845506399869919,
-0.07652264833450317,
0.013035946525633335,
-0.008259053342044353,
0.2412048578262329,
-0.144462451338768,
0.04469009116292,
0.11285549402236938,
-0.01096114981919527,
-0.0025811868254095316,
-0.034356825053691864,
-0.05785246565937996,
0.10338243842124939,
-0.011070703156292439,
-0.03612150996923447,
0.037624821066856384,
0.030818425118923187,
-0.058834534138441086,
-0.1461174637079239,
-0.11017193645238876,
0.05971391499042511,
0.12865780293941498,
0.09631716459989548,
-0.07903233170509338,
-0.04836154356598854,
-0.026584861800074577,
-0.03597479686141014,
0.04983743652701378,
-0.05273445323109627,
-0.0002974469680339098,
0.004734492395073175,
0.06528205424547195,
-0.10579118132591248,
-0.029983438551425934,
0.0709892138838768,
-0.037679120898246765,
-0.045076534152030945,
0.11485201865434647,
-0.010705103166401386,
-0.10549118369817734,
0.07306086272001266,
0.07164748758077621,
-0.13992540538311005,
0.07332129776477814,
-0.0028215229976922274,
-0.0027614776045084,
-0.09547486156225204,
0.19478905200958252,
0.036846499890089035,
0.1104445829987526,
-0.10217427462339401,
0.11894737929105759,
-0.01781310699880123,
0.0036034490913152695,
0.054017145186662674,
-0.19363105297088623,
-0.010744396597146988,
-0.05511863902211189,
-0.08366379886865616,
-0.05955846980214119,
-0.00911761075258255,
0.01327337697148323,
0.04046120122075081,
-0.009159386157989502,
0.06403673440217972,
0.13854162395000458,
-0.015166095457971096,
-0.08339976519346237,
0.19548214972019196,
-0.22047637403011322,
-0.2369014471769333,
-0.21982179582118988,
0.012205749750137329,
-0.107724629342556,
-0.03254781663417816,
-0.03237295150756836,
-0.0723198652267456,
0.025255152955651283,
-0.12016147375106812,
-0.07058512419462204,
0.022862235084176064,
0.01835758425295353,
0.024812927469611168,
0.015271663665771484,
0.17668646574020386,
-0.06777095049619675,
0.02662883698940277,
0.051805395632982254,
-0.050138697028160095,
0.12947611510753632,
-0.06898512691259384,
-0.01833897829055786,
0.10188039392232895,
-0.01845935359597206,
0.005483884830027819,
0.008291189558804035,
0.3288362920284271,
0.018770916387438774,
0.04658594727516174,
0.10443849116563797,
-0.0031605239491909742,
0.058276668190956116,
0.09716439247131348,
0.009677160531282425,
-0.09543202072381973,
0.0759350135922432,
0.0522315539419651,
-0.08094882220029831,
-0.12371259182691574,
-0.03890128433704376,
-0.04649761691689491,
0.024792714044451714,
0.06899464130401611,
0.06612855941057205,
0.07850348204374313,
0.07326014339923859,
0.01293427124619484,
0.06977567821741104,
0.039428748190402985,
0.003153926460072398,
0.0967760756611824,
-0.017464688047766685,
0.05585701763629913,
-0.018829986453056335,
0.024107694625854492,
0.051275547593832016,
0.12215865403413773,
0.06877930462360382,
-0.08935942500829697,
-0.013395894318819046,
0.06776833534240723,
0.30369725823402405,
-0.005209814757108688,
0.09616053104400635,
-0.07063544541597366,
-0.019565584138035774,
-0.000638836354482919,
-0.04225197806954384,
-0.06976250559091568,
0.03150950372219086,
-0.048727307468652725,
0.09549760818481445,
-0.010181698016822338,
0.00416616490110755,
0.08534520864486694,
0.09537011384963989,
0.16411782801151276,
-0.28241121768951416,
-0.11543077975511551,
-0.004476812202483416,
0.11213767528533936,
-0.09294738620519638,
0.02819756418466568,
0.23258642852306366,
0.02499888278543949,
-0.07196274399757385,
-0.03687836229801178,
0.010505582205951214,
-0.004305567126721144,
0.011963538825511932,
0.09702011942863464,
0.12180367857217789,
-0.006432765629142523,
0.07309877127408981,
-0.29998964071273804,
0.035357292741537094,
0.06104021891951561,
0.052597399801015854,
-0.025256937369704247,
0.00019306223839521408,
-0.06378085166215897,
-0.03512885794043541,
0.06585201621055603,
0.006350027862936258,
0.15383680164813995,
-0.2903883159160614,
-0.0863385871052742,
-0.0020442039240151644,
0.1129094660282135,
0.0906153991818428,
0.05402711406350136,
0.0151888532564044,
0.03228510171175003,
0.062434617429971695,
0.05099368095397949,
-0.05867040157318115,
-0.10234454274177551,
-0.009784754365682602,
0.17631997168064117,
-0.11876685172319412,
-0.09026846289634705,
-0.04739337041974068,
-0.025767983868718147,
0.03571278601884842,
-0.2019987851381302,
-0.0583454966545105,
-0.050053875893354416,
0.010787730105221272,
0.1257253736257553,
-0.03720635548233986,
0.010718483477830887,
-0.027787724509835243,
0.037485990673303604,
-0.049929480999708176,
-0.06539798527956009,
0.10458812862634659,
-0.05544104799628258,
-0.15956497192382812,
-0.03842194750905037,
0.14066943526268005,
0.08295351266860962,
-0.02243940532207489,
-0.06692873686552048,
-0.04661325737833977,
0.03175109624862671,
-0.1371290236711502,
-0.0002638722362462431,
0.08888310194015503,
-0.045237522572278976,
0.07678540050983429,
-0.11128804087638855,
0.15327419340610504,
-0.05802908167243004,
0.08436844497919083,
0.053205255419015884,
0.3267315626144409,
-0.07504142075777054,
0.01839327998459339,
0.09527129679918289,
-0.0037347201723605394,
-0.2653176486492157,
0.022201230749487877,
0.04922303184866905,
0.028327248990535736,
-0.02895166538655758,
-0.123744897544384,
0.023371510207653046,
0.09145525097846985,
0.000079398974776268,
0.15569616854190826,
-0.31408703327178955,
-0.06529087573289871,
0.032603487372398376,
0.08194244652986526,
0.12391050904989243,
-0.053911417722702026,
0.016993682831525803,
0.0020083216950297356,
0.008322776295244694,
0.14682573080062866,
-0.1316913515329361,
0.08104576915502548,
0.0010525226825848222,
0.006179364398121834,
0.00041683405288495123,
-0.05178378149867058,
0.13818348944187164,
-0.017092803493142128,
0.09376475214958191,
0.02481652796268463,
-0.046822939068078995,
0.0620025098323822,
-0.07393466681241989,
0.03139253333210945,
-0.08032366633415222,
0.08878666162490845,
-0.0025483642239123583,
0.010403049178421497,
-0.07377094030380249,
-0.0014361748471856117,
-0.07848606258630753,
-0.05003542825579643,
-0.0987095832824707,
0.09176161885261536,
-0.002715934766456485,
-0.022770853713154793,
-0.04153271019458771,
0.04865821823477745,
0.07148292660713196,
0.45915982127189636,
-0.045668140053749084,
-0.0528351254761219,
0.10516307502985,
0.09643474221229553,
-0.03178338333964348,
0.0851946771144867,
-0.09592213481664658,
0.051452770829200745,
0.09838936477899551,
-0.004745845217257738,
0.12697257101535797,
0.07818446308374405,
-0.11065738648176193,
0.000585727219004184,
0.0407855361700058,
-0.162176713347435,
-0.06966382265090942,
-0.010779558680951595,
0.025861307978630066,
-0.10272570699453354,
0.02733062393963337,
0.10286945849657059,
-0.0371357761323452,
0.04592161253094673,
0.022719906643033028,
0.05661951005458832,
-0.11302109807729721,
0.14019763469696045,
0.03687265142798424,
0.07977764308452606,
-0.0729500949382782,
0.07598915696144104,
0.03438546136021614,
0.0018063150346279144,
0.039184585213661194,
-0.018432602286338806,
-0.11651463061571121,
-0.0048955343663692474,
-0.0399356372654438,
-0.09698162227869034,
0.13449929654598236,
-0.04957703873515129,
-0.035040877759456635,
-0.11145740002393723,
-0.014296341687440872,
0.11045072227716446,
0.04502851888537407,
0.09640300273895264,
0.010242318734526634,
0.010968644171953201,
-0.13690917193889618,
0.09735619276762009,
-0.03181258216500282,
0.026626111939549446,
-0.1408788114786148,
0.06331798434257507,
-0.014462235383689404,
0.04911968111991882,
-0.020035766065120697,
0.005654441192746162,
-0.21391431987285614,
0.019454630091786385,
-0.029058462008833885,
0.033149559050798416,
0.02711186744272709,
0.02948901616036892,
0.0154414689168334,
0.05726204439997673,
-0.02483828365802765,
0.041628364473581314,
-0.011697432957589626,
-0.03529851511120796,
0.04273856803774834,
-0.009520924650132656,
-0.05769055709242821,
-0.06614159792661667,
0.04439832642674446,
-0.10869353264570236,
0.043074626475572586,
0.01626291126012802,
-0.06453897058963776,
0.07516812533140182,
0.013879452832043171,
0.03622229024767876,
0.101951964199543,
0.0438089482486248,
0.028599455952644348,
-0.06926487386226654,
0.0300187598913908,
-0.010998006910085678,
-0.032355863600969315,
0.0553150475025177,
0.1441812515258789,
-0.04481987655162811,
-0.04388520494103432,
-0.1155015230178833,
-0.003574053756892681,
-0.04084385186433792,
0.03180866315960884,
0.1493709534406662,
0.054771628230810165,
0.10567832738161087,
-0.11123359203338623,
-0.027811065316200256,
-0.13472744822502136,
-0.07959549874067307,
0.048442427068948746,
-0.06295623630285263,
-0.06419021636247635,
-0.02256813831627369,
0.06736836582422256,
-0.0051862015388906,
0.1294141262769699,
-0.09303844720125198,
-0.08103785663843155,
-0.047229062765836716,
-0.20646484196186066,
-0.10729151964187622,
0.014075555838644505,
0.24385541677474976,
0.021775849163532257,
-0.05223840847611427,
-0.08286672085523605,
-0.014829163439571857,
0.0718042179942131,
0.1015608087182045,
0.03429606929421425,
0.09914078563451767,
-0.12896892428398132,
0.09466049820184708,
0.035227611660957336,
-0.03472419083118439,
0.11277201771736145,
0.2883251905441284,
-0.08925384283065796,
0.010665294714272022,
-0.08873117715120316,
0.09960418194532394,
0.04272617772221565,
-0.12140914797782898,
-0.018299147486686707,
-0.028147615492343903,
-0.14863823354244232,
-0.112273670732975,
0.00930298212915659,
-0.07983064651489258,
-0.15956683456897736,
-0.025393227115273476,
-0.09748462587594986,
-0.08375591784715652,
0.09161552786827087,
0.034863609820604324,
-0.03412448242306709,
0.2223321795463562,
-0.05376279726624489,
0.055955301970243454,
-0.019963812083005905,
-0.0024684909731149673,
-0.023232609033584595,
0.00861719436943531,
-0.10459404438734055,
0.1498268097639084,
0.004443048033863306,
0.09570741653442383,
0.010025297291576862,
0.08716719597578049,
0.053275298327207565,
-0.03332230821251869,
-0.061191413551568985,
-0.009189526550471783,
0.016017677262425423,
-0.060448747128248215,
0.10242044925689697,
0.05689888074994087,
-0.0827736184000969,
-0.07412666082382202,
-0.018742932006716728,
-0.06434665620326996,
-0.03843550756573677,
-0.13393883407115936,
0.27599456906318665,
-0.03906476870179176,
0.11230334639549255,
-0.0018687681294977665,
-0.06059238314628601,
-0.07284882664680481,
0.1592811495065689,
0.11426830291748047,
-0.11758056282997131,
0.004396746400743723,
0.0645257979631424,
-0.003626834833994508,
-0.09405917674303055,
0.15308670699596405,
0.08725649863481522,
-0.011950954794883728,
0.03220834210515022,
-0.012693197466433048,
-0.034213703125715256,
0.001834928523749113,
-0.02389814518392086,
-0.030844315886497498,
-0.0026229536160826683,
0.052762940526008606,
-0.1391865611076355,
-0.030808785930275917,
-0.06632576137781143,
-0.07758171111345291,
0.17284183204174042,
-0.12423574179410934,
-0.07285126298666,
-0.027702296152710915,
-0.058075714856386185,
-0.10130418092012405,
0.02024526335299015,
-0.10735413432121277,
0.06079419329762459,
0.06517311185598373,
-0.04819345101714134,
0.021780923008918762,
-0.040312718600034714,
-0.02004626765847206,
0.03274087235331535,
0.11253997683525085,
0.00026868493296206,
0.06784602254629135,
0.1193835511803627,
-0.0412115715444088,
-0.06825671344995499,
0.13400505483150482,
0.02326134592294693,
-0.04996287822723389,
-0.1311354637145996,
0.030858593061566353,
-0.02633410133421421,
0.1359565705060959,
0.032030198723077774,
-0.07316641509532928,
-0.0070232511498034,
-0.21037159860134125,
-0.029568379744887352,
-0.13293930888175964,
-0.05922594293951988,
-0.0587947778403759,
0.10376697778701782,
0.15784288942813873,
-0.06115957722067833,
0.03233678266406059,
-0.020393379032611847,
0.03993287682533264,
-0.04601414501667023,
0.06497988849878311,
0.033214058727025986,
-0.16090460121631622,
0.07193506509065628,
-0.048535093665122986,
0.01957901380956173,
-0.31412747502326965,
0.012190889567136765,
-0.01386903878301382,
-0.02890481799840927,
-0.06538230180740356,
0.1364039033651352,
0.014780559577047825,
0.0655892863869667,
-0.06441111117601395,
-0.235520601272583,
-0.06074487045407295,
0.13786053657531738,
0.014272022061049938,
-0.07356646656990051
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | AntoineGourru/Mistral_qlora_drome_3_low | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:25:00+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# crossencoder-km1
This model is a fine-tuned version of [cross-encoder/stsb-TinyBERT-L-4](https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0110
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 100
- eval_batch_size: 80
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 7.2478 | 1.0 | 20 | 6.6948 |
| 3.8026 | 2.0 | 40 | 2.8643 |
| 0.9993 | 3.0 | 60 | 0.8714 |
| 0.2986 | 4.0 | 80 | 0.2379 |
| 0.1161 | 5.0 | 100 | 0.0786 |
| 0.0414 | 6.0 | 120 | 0.0461 |
| 0.0218 | 7.0 | 140 | 0.0250 |
| 0.0144 | 8.0 | 160 | 0.0140 |
| 0.0101 | 9.0 | 180 | 0.0122 |
| 0.0083 | 10.0 | 200 | 0.0120 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.0.1
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "cross-encoder/stsb-TinyBERT-L-4", "model-index": [{"name": "crossencoder-km1", "results": []}]} | text-classification | pjbhaumik/crossencoder-km1 | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:cross-encoder/stsb-TinyBERT-L-4",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:25:41+00:00 | [] | [] | TAGS
#transformers #safetensors #bert #text-classification #generated_from_trainer #base_model-cross-encoder/stsb-TinyBERT-L-4 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| crossencoder-km1
================
This model is a fine-tuned version of cross-encoder/stsb-TinyBERT-L-4 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0110
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 100
* eval\_batch\_size: 80
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 10
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.0.1
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 100\n* eval\\_batch\\_size: 80\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.1\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #bert #text-classification #generated_from_trainer #base_model-cross-encoder/stsb-TinyBERT-L-4 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 100\n* eval\\_batch\\_size: 80\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.1\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
73,
116,
4,
30
] | [
"passage: TAGS\n#transformers #safetensors #bert #text-classification #generated_from_trainer #base_model-cross-encoder/stsb-TinyBERT-L-4 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 100\n* eval\\_batch\\_size: 80\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.0.1\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.0987083688378334,
0.09887082129716873,
-0.0038185755256563425,
0.10643909126520157,
0.10369915515184402,
-0.008203653618693352,
0.17029505968093872,
0.13546374440193176,
-0.09443877637386322,
0.05848531797528267,
0.13036328554153442,
0.13399562239646912,
0.034558262676000595,
0.1880565583705902,
-0.08185607939958572,
-0.2379724681377411,
0.05617938190698624,
0.02985048107802868,
-0.027402307838201523,
0.11837105453014374,
0.08289946615695953,
-0.13979892432689667,
0.09649146348237991,
0.003865753998979926,
-0.14901696145534515,
-0.003661797381937504,
0.022353477776050568,
-0.08666539192199707,
0.11343204230070114,
0.004871578887104988,
0.10049328953027725,
0.05768941342830658,
0.08252314478158951,
-0.17206214368343353,
0.006018129643052816,
0.05936228856444359,
0.0060213967226445675,
0.08729924261569977,
0.040545590221881866,
-0.022340470924973488,
0.05784482881426811,
-0.08292624354362488,
0.0843900516629219,
0.02541501447558403,
-0.13440389931201935,
-0.2806183993816376,
-0.10412295162677765,
0.05169365182518959,
0.09869538992643356,
0.05360442399978638,
-0.003921826835721731,
0.18282872438430786,
-0.02561229281127453,
0.1126226857304573,
0.28532907366752625,
-0.3298041522502899,
-0.0537957027554512,
0.011113053187727928,
0.058317795395851135,
0.08880795538425446,
-0.10064665973186493,
-0.017052670940756798,
0.03934960812330246,
0.02414468489587307,
0.1694367676973343,
-0.023350052535533905,
-0.01750842109322548,
-0.01311402302235365,
-0.13612161576747894,
-0.04985446855425835,
0.1510317027568817,
0.03782051429152489,
-0.062203649431467056,
-0.06727011501789093,
-0.07451065629720688,
-0.16272054612636566,
-0.062181808054447174,
-0.02926248498260975,
0.05429458990693092,
-0.03841235861182213,
-0.08718427270650864,
-0.0025498936884105206,
-0.06742940843105316,
-0.0716814175248146,
-0.028975840657949448,
0.18470695614814758,
0.04636227339506149,
0.014360644854605198,
-0.04229871183633804,
0.0791572630405426,
-0.042614471167325974,
-0.16881676018238068,
-0.019078418612480164,
-0.00018670108693186194,
0.016564100980758667,
-0.05114217847585678,
-0.029175493866205215,
-0.06487936526536942,
0.019410179927945137,
0.1978273242712021,
-0.10217544436454773,
0.07408995181322098,
-0.02821674756705761,
0.02002224139869213,
-0.0999600738286972,
0.17583978176116943,
-0.010406074114143848,
-0.013724922202527523,
0.01913146674633026,
0.09766197949647903,
0.060386188328266144,
-0.02677811309695244,
-0.10710730403661728,
0.04861145839095116,
0.11944812536239624,
0.033652711659669876,
-0.062101054936647415,
0.07302301377058029,
-0.04393177106976509,
-0.002119191223755479,
0.06408164650201797,
-0.10914862155914307,
0.04328524321317673,
0.0017525245202705264,
-0.05529365688562393,
-0.07495824992656708,
0.006741454359143972,
0.009281173348426819,
-0.006658530328422785,
0.10945158451795578,
-0.07473541051149368,
0.011676051653921604,
-0.07233359664678574,
-0.1419791728258133,
0.013584076426923275,
-0.11056885868310928,
0.00656293286010623,
-0.09803257137537003,
-0.14702364802360535,
0.007260523270815611,
0.05361470580101013,
-0.03394787013530731,
-0.009526845067739487,
-0.050622593611478806,
-0.10294922441244125,
0.03559066355228424,
-0.022277720272541046,
0.0222606360912323,
-0.0750771015882492,
0.09142714738845825,
0.05217508226633072,
0.08915657550096512,
-0.029906678944826126,
0.025001930072903633,
-0.10541549324989319,
0.0468825101852417,
-0.2408563196659088,
0.03098226711153984,
-0.07124804705381393,
0.08016650378704071,
-0.08372471481561661,
-0.09188385307788849,
0.033911533653736115,
-0.015147188678383827,
0.08142374455928802,
0.11214855313301086,
-0.16539974510669708,
-0.06860476732254028,
0.2107621133327484,
-0.11812464892864227,
-0.14997267723083496,
0.11897256970405579,
-0.052434634417295456,
0.016522780060768127,
0.06633807718753815,
0.22140264511108398,
0.0622706301510334,
-0.10471852123737335,
-0.0082162544131279,
-0.03826543688774109,
0.0424998477101326,
-0.017043936997652054,
0.06916782259941101,
0.016882475465536118,
0.0526171438395977,
0.005937596783041954,
-0.015542685985565186,
0.009272751398384571,
-0.0793314054608345,
-0.0793197900056839,
-0.05242222175002098,
-0.08194202184677124,
0.055543527007102966,
0.03800493851304054,
0.054474953562021255,
-0.1518932431936264,
-0.10230139642953873,
0.057035937905311584,
0.06360539048910141,
-0.06828657537698746,
0.034829046577215195,
-0.11777299642562866,
0.0975680872797966,
-0.041516710072755814,
-0.004655060824006796,
-0.16606350243091583,
-0.024691952392458916,
0.04581621661782265,
-0.014279748313128948,
0.0029125013388693333,
-0.05818844214081764,
0.09276218712329865,
0.09263087809085846,
-0.05580039694905281,
-0.048860788345336914,
-0.012243899516761303,
0.021617436781525612,
-0.11080017685890198,
-0.21062332391738892,
-0.039457160979509354,
-0.04775180295109749,
0.07065615057945251,
-0.16712887585163116,
0.06130760535597801,
0.07361674308776855,
0.11937576532363892,
0.060563649982213974,
-0.016388313844799995,
-0.02832154929637909,
0.057279475033283234,
-0.040671322494745255,
-0.07269593328237534,
0.048521675169467926,
0.016374630853533745,
-0.07383587956428528,
-0.02577471174299717,
-0.17088861763477325,
0.20362988114356995,
0.1370317041873932,
-0.007293794769793749,
-0.06944005191326141,
0.005699456669390202,
-0.03674634173512459,
-0.01060542557388544,
-0.023566024377942085,
0.015787867829203606,
0.11735206097364426,
0.008361315354704857,
0.1546558141708374,
-0.10168501734733582,
-0.05065179616212845,
0.051848310977220535,
-0.04046640172600746,
0.007815394550561905,
0.08815236389636993,
0.0024017656687647104,
-0.1224704310297966,
0.14571581780910492,
0.18195825815200806,
-0.043618086725473404,
0.11551038175821304,
-0.06455034762620926,
-0.036211855709552765,
-0.03298960253596306,
-0.0003341397095937282,
0.03222600370645523,
0.10943437367677689,
-0.08137919008731842,
-0.021038178354501724,
0.014963964000344276,
0.029387257993221283,
-0.026384055614471436,
-0.19553004205226898,
0.0032089499291032553,
0.04763669893145561,
-0.05787619203329086,
-0.03640573471784592,
-0.02462533302605152,
0.005490359850227833,
0.1008099839091301,
0.014775175601243973,
-0.08512233197689056,
0.031953684985637665,
0.006925506982952356,
-0.06411609798669815,
0.18366436660289764,
-0.09410788863897324,
-0.13828453421592712,
-0.1186714842915535,
-0.09006498008966446,
-0.06543052941560745,
0.02593296766281128,
0.09149374067783356,
-0.08031518012285233,
-0.049661144614219666,
-0.12184882909059525,
-0.03736674785614014,
0.04253820329904556,
0.03355295956134796,
0.042416904121637344,
-0.008145869709551334,
0.07607412338256836,
-0.10984212160110474,
-0.03255190700292587,
-0.022298647090792656,
-0.007107734214514494,
0.049973614513874054,
0.02919136919081211,
0.1058855950832367,
0.1102740466594696,
-0.04211185500025749,
0.033163201063871384,
-0.04167614504694939,
0.22296857833862305,
-0.06734207272529602,
-0.0022460613399744034,
0.13108830153942108,
-0.028374705463647842,
0.07878607511520386,
0.15263770520687103,
0.052350591868162155,
-0.10583217442035675,
0.0027984040789306164,
0.006837536580860615,
-0.040745653212070465,
-0.19196555018424988,
-0.007277874741703272,
-0.02733677066862583,
0.022421343252062798,
0.10189284384250641,
0.03302835300564766,
0.0327397957444191,
0.05399072915315628,
0.01075291819870472,
0.04076595976948738,
0.028117943555116653,
0.11624414473772049,
0.08884633332490921,
0.060279734432697296,
0.1477547436952591,
-0.05317484214901924,
-0.05074884742498398,
0.03401947394013405,
-0.016439136117696762,
0.1886722445487976,
0.01874847337603569,
0.1499631106853485,
0.03877534344792366,
0.1514260321855545,
0.024877363815903664,
0.0824868381023407,
-0.012066510505974293,
-0.025513848289847374,
-0.012334778904914856,
-0.05226306617259979,
-0.03283112123608589,
0.0312519408762455,
-0.10857442766427994,
0.05947152152657509,
-0.11748306453227997,
0.02506805770099163,
0.07194508612155914,
0.30690866708755493,
0.03759554401040077,
-0.36589425802230835,
-0.09955677390098572,
0.029502717778086662,
-0.03642309457063675,
-0.037379518151283264,
0.021069306880235672,
0.10355834662914276,
-0.055673547089099884,
0.08517713844776154,
-0.07379637658596039,
0.08570268750190735,
-0.028281686827540398,
0.05046280473470688,
0.04161142185330391,
0.08447811752557755,
-0.016788380220532417,
0.03538569062948227,
-0.2679390013217926,
0.27203941345214844,
0.03391263261437416,
0.07753151655197144,
-0.05551344156265259,
0.02143881469964981,
0.02846505492925644,
0.1024327278137207,
0.0803857073187828,
-0.023767506703734398,
-0.13837812840938568,
-0.19487759470939636,
-0.07354710251092911,
0.011588840745389462,
0.1282980740070343,
-0.01966787315905094,
0.12039894610643387,
-0.02898503467440605,
-0.017156895250082016,
0.051334448158741,
-0.05304918810725212,
-0.06219467893242836,
-0.07379231601953506,
0.0008393027237616479,
0.040856361389160156,
0.018717043101787567,
-0.0857604444026947,
-0.09291095286607742,
-0.09384851157665253,
0.16461694240570068,
-0.031910184770822525,
-0.05079282820224762,
-0.1189783588051796,
0.004108463879674673,
0.05700061470270157,
-0.07618246972560883,
0.04110075160861015,
-0.006292812060564756,
0.1270681470632553,
0.0026858157943934202,
-0.06490827351808548,
0.13586737215518951,
-0.06648547202348709,
-0.20385318994522095,
-0.0492602102458477,
0.11908886581659317,
0.008035184815526009,
0.04602142050862312,
0.003859869437292218,
0.046570759266614914,
0.006190885789692402,
-0.07093162834644318,
0.031026789918541908,
-0.013546344824135303,
0.07695351541042328,
-0.028208483010530472,
-0.02394179068505764,
-0.002645373111590743,
-0.06687793135643005,
0.0055631427094340324,
0.13775549829006195,
0.3117610812187195,
-0.09946460276842117,
0.06080002710223198,
0.072524294257164,
-0.044006314128637314,
-0.18392737209796906,
0.014127256348729134,
0.01580115221440792,
-0.01996331475675106,
0.019436772912740707,
-0.1375059187412262,
0.05455650016665459,
0.08688288927078247,
-0.030087728053331375,
0.06752786785364151,
-0.25928574800491333,
-0.12818337976932526,
0.10576809197664261,
0.14606110751628876,
0.09667716920375824,
-0.16368235647678375,
-0.04385911300778389,
-0.03403433412313461,
-0.12882094085216522,
0.09361646324396133,
-0.1313733458518982,
0.09582769125699997,
-0.0232971403747797,
0.03193783387541771,
0.010450568981468678,
-0.05541261285543442,
0.12063110619783401,
-0.017206262797117233,
0.12636908888816833,
-0.07472451776266098,
0.010167757980525494,
0.10740379989147186,
-0.09564312547445297,
0.049065109342336655,
-0.12122282385826111,
0.040582142770290375,
-0.04944070056080818,
-0.01680966280400753,
-0.051040004938840866,
0.007179495878517628,
-0.029472723603248596,
-0.04985710233449936,
-0.04810183495283127,
0.012754690833389759,
0.05358632281422615,
-0.028069989755749702,
0.21017304062843323,
0.01660253293812275,
0.17103028297424316,
0.17235033214092255,
0.11604179441928864,
-0.13906604051589966,
-0.011629278771579266,
0.019580407068133354,
-0.038627006113529205,
0.06244227662682533,
-0.15221352875232697,
0.07049433141946793,
0.12132233381271362,
0.005207001697272062,
0.12392091006040573,
0.07220844179391861,
-0.03356940299272537,
0.01573074795305729,
0.062089014798402786,
-0.18006516993045807,
-0.09825052320957184,
0.014570150524377823,
0.02566627785563469,
-0.11798816174268723,
0.09866216778755188,
0.13077734410762787,
-0.0607871450483799,
-0.008466125465929508,
-0.00734162051230669,
0.02174101024866104,
-0.009398087859153748,
0.17332498729228973,
0.033953648060560226,
0.07388690859079361,
-0.10277853161096573,
0.08185707777738571,
0.040190666913986206,
-0.08891144394874573,
0.040195148438215256,
0.08775010704994202,
-0.11636567860841751,
-0.028954753652215004,
0.05927274376153946,
0.17717471718788147,
-0.018904054537415504,
-0.054689060896635056,
-0.17115119099617004,
-0.13651898503303528,
0.06744097173213959,
0.22975578904151917,
0.07326681911945343,
0.005981928203254938,
-0.015331937931478024,
0.02163160964846611,
-0.11320502310991287,
0.111530601978302,
0.03396961838006973,
0.0964549332857132,
-0.1551365852355957,
0.11924880743026733,
-0.008330107666552067,
0.010824129916727543,
-0.023754509165883064,
0.03075084090232849,
-0.12776798009872437,
0.004894922953099012,
-0.1335432231426239,
-0.00019185006385669112,
-0.04972289502620697,
0.007833734154701233,
-0.011328133754432201,
-0.047222696244716644,
-0.05900207534432411,
0.016529463231563568,
-0.10628701001405716,
-0.023824818432331085,
0.024777647107839584,
0.03491254895925522,
-0.1381153166294098,
-0.031215867027640343,
0.013525635004043579,
-0.09631616622209549,
0.0696970522403717,
0.03097713738679886,
-0.009874692186713219,
0.03562435507774353,
-0.07413052022457123,
0.002779373899102211,
0.06505688279867172,
-0.003625602461397648,
0.06234648823738098,
-0.10641079396009445,
-0.017161685973405838,
0.002752530388534069,
0.01625235378742218,
0.029884861782193184,
0.1190778836607933,
-0.10896050184965134,
0.030804581940174103,
0.0015857464168220758,
-0.06838760524988174,
-0.053068794310092926,
0.037303775548934937,
0.12697003781795502,
-0.018456807360053062,
0.20294927060604095,
-0.09357951581478119,
0.009590048342943192,
-0.19406530261039734,
-0.0077752224169671535,
0.013410980813205242,
-0.15911291539669037,
-0.11558441072702408,
-0.04461133852601051,
0.06054917350411415,
-0.06598944216966629,
0.12463707476854324,
0.006488692946732044,
0.03130403906106949,
0.05340173840522766,
-0.06621449440717697,
0.007804864551872015,
0.036668527871370316,
0.1699039787054062,
0.028580009937286377,
-0.06303521245718002,
0.06122496724128723,
0.01695833168923855,
0.09370863437652588,
0.053859416395425797,
0.18735435605049133,
0.1522354632616043,
0.00748018641024828,
0.10332385450601578,
0.048838499933481216,
-0.028859466314315796,
-0.18033656477928162,
0.0339597649872303,
-0.03878596052527428,
0.11681321263313293,
-0.00914334412664175,
0.17602229118347168,
0.14049458503723145,
-0.14903126657009125,
0.03373254835605621,
-0.04149182140827179,
-0.07283320277929306,
-0.12356532365083694,
-0.05098356306552887,
-0.10785102844238281,
-0.16200564801692963,
-0.00507055688649416,
-0.10846680402755737,
0.03569283336400986,
0.06544280797243118,
0.004509017337113619,
0.014639060944318771,
0.15420125424861908,
-0.002862762426957488,
0.049999359995126724,
0.04523487389087677,
-0.00357950571924448,
-0.05895010754466057,
-0.027512704953551292,
-0.10304081439971924,
0.01423581037670374,
-0.022810544818639755,
0.029669638723134995,
-0.01668263040482998,
-0.01867847517132759,
0.033211953938007355,
-0.023725060746073723,
-0.11767300218343735,
0.02756371907889843,
0.025260427966713905,
0.043890226632356644,
0.015313628129661083,
0.015190033242106438,
-0.01124541461467743,
0.0005286270752549171,
0.1926451325416565,
-0.09160107374191284,
-0.07142762094736099,
-0.10747725516557693,
0.26298120617866516,
0.03630472347140312,
0.0013997103087604046,
0.01869543455541134,
-0.07646860927343369,
-0.0009891430381685495,
0.17319941520690918,
0.1713186651468277,
-0.018289633095264435,
0.009023827500641346,
-0.04463450238108635,
-0.013232963159680367,
-0.0279424749314785,
0.0907718688249588,
0.11461947858333588,
-0.01313334982842207,
-0.05877474322915077,
-0.02820972166955471,
-0.04129156470298767,
-0.02247321419417858,
-0.0584087036550045,
0.07380460202693939,
0.014498974196612835,
0.011178101412951946,
-0.048296600580215454,
0.04959503561258316,
-0.016048990190029144,
-0.066994309425354,
0.0572996512055397,
-0.19593268632888794,
-0.1352144032716751,
0.0030960270669311285,
0.09027159214019775,
-0.013282399624586105,
0.04688398540019989,
0.0067313299514353275,
-0.014181912876665592,
0.05945483595132828,
-0.014190190471708775,
-0.05439536273479462,
-0.09202559292316437,
0.0815899521112442,
-0.17811040580272675,
0.2302425503730774,
-0.030094506219029427,
0.025857308879494667,
0.13671846687793732,
0.026701562106609344,
-0.09894543141126633,
0.07593313604593277,
0.048729609698057175,
-0.07839459180831909,
-0.0020311297848820686,
0.11881177872419357,
-0.03875065594911575,
0.11982372403144836,
0.04563264548778534,
-0.1446831375360489,
-0.009013384580612183,
-0.06516493111848831,
-0.07390441000461578,
-0.03570513799786568,
-0.04582441598176956,
-0.034422557801008224,
0.11328309774398804,
0.17324955761432648,
-0.03593290597200394,
0.017409812659025192,
-0.050211358815431595,
0.031797513365745544,
0.07572434097528458,
-0.024016359820961952,
-0.04263830929994583,
-0.2699955105781555,
0.023600464686751366,
0.11124998331069946,
-0.006671550218015909,
-0.2654438614845276,
-0.09975520521402359,
-0.0003321576223243028,
-0.02151215635240078,
-0.10164309293031693,
0.07226821780204773,
0.10545172542333603,
0.05685470253229141,
-0.06354818493127823,
-0.0847780704498291,
-0.06912636011838913,
0.18282833695411682,
-0.13965752720832825,
-0.07346919924020767
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | automatic-speech-recognition | BlahBlah314/Whisper_LargeV3FR_V3-4 | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:28:29+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
45,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.05983767658472061,
0.15663617849349976,
-0.00414510490372777,
0.012621625326573849,
0.10675175487995148,
0.00396517850458622,
0.07058298587799072,
0.10818448662757874,
-0.014333043247461319,
0.1301925629377365,
0.031459614634513855,
0.10620059072971344,
0.11486424505710602,
0.17755427956581116,
-0.00021593451674561948,
-0.21627318859100342,
0.06542544066905975,
-0.11467250436544418,
0.023902224376797676,
0.1205042228102684,
0.14280648529529572,
-0.10782013833522797,
0.0710505023598671,
-0.02651231922209263,
-0.014152529649436474,
-0.030523719266057014,
-0.05870387330651283,
-0.06662651896476746,
0.06516408175230026,
0.0716853216290474,
0.05976768955588341,
0.02008269540965557,
0.07725182175636292,
-0.2948664724826813,
0.018899710848927498,
0.0727730244398117,
0.011833904311060905,
0.06048334762454033,
0.07948420196771622,
-0.06289119273424149,
0.12036014348268509,
-0.044804252684116364,
0.1532549113035202,
0.07767832279205322,
-0.09226784855127335,
-0.19217613339424133,
-0.0771055743098259,
0.06758320331573486,
0.1468338817358017,
0.056199874728918076,
-0.03856382891535759,
0.15159031748771667,
-0.09224481880664825,
0.0102085517719388,
0.06493527442216873,
-0.07805083692073822,
-0.04958232864737511,
0.027303149923682213,
0.08463363349437714,
0.08637925982475281,
-0.1273571401834488,
-0.012682586908340454,
0.03438213840126991,
0.02163512259721756,
0.09837246686220169,
0.025364719331264496,
0.11626957356929779,
0.027283066883683205,
-0.13964000344276428,
-0.055175989866256714,
0.12345059961080551,
0.033505070954561234,
-0.05288216099143028,
-0.23939087986946106,
-0.010561608709394932,
-0.009556320495903492,
-0.03001241944730282,
-0.04216838628053665,
0.03810601681470871,
-0.029798293486237526,
0.07650589942932129,
0.01746492274105549,
-0.07078345119953156,
-0.04342244938015938,
0.06982958316802979,
0.07824850082397461,
0.022348513826727867,
-0.02065650187432766,
0.028734240680933,
0.10911912471055984,
0.08262593299150467,
-0.12154309451580048,
-0.06694398820400238,
-0.06854734569787979,
-0.09466245025396347,
-0.0454239584505558,
0.03469004109501839,
0.06703099608421326,
0.057105712592601776,
0.19864854216575623,
0.011600262485444546,
0.05358051881194115,
0.022981496527791023,
0.01298176683485508,
0.07163717597723007,
0.07945776730775833,
-0.051690056920051575,
-0.1315721571445465,
-0.04847193509340286,
0.11824512481689453,
0.008524151518940926,
-0.033710937947034836,
-0.02968421019613743,
0.0653507187962532,
0.05568600073456764,
0.11161840707063675,
0.07554161548614502,
0.01568971388041973,
-0.07114148139953613,
-0.043046265840530396,
0.19346864521503448,
-0.15610936284065247,
0.021089470013976097,
0.019353056326508522,
-0.05417651683092117,
-0.022803083062171936,
0.007743596564978361,
0.017318524420261383,
-0.02697303518652916,
0.1045108512043953,
-0.07085666805505753,
-0.032245416194200516,
-0.1046156957745552,
-0.055557940155267715,
0.03224421665072441,
0.009115081280469894,
-0.030819423496723175,
-0.042374368757009506,
-0.09924564510583878,
-0.0756484866142273,
0.06214139610528946,
-0.07012778520584106,
-0.06952599436044693,
-0.028100011870265007,
-0.04856603220105171,
0.012879165820777416,
0.0010717154946178198,
0.12350035458803177,
-0.03162076696753502,
0.043779097497463226,
-0.04884343594312668,
0.06864890456199646,
0.13179735839366913,
0.032575443387031555,
-0.07970008254051208,
0.058469612151384354,
-0.22937731444835663,
0.11186469346284866,
-0.09973006695508957,
0.03430512547492981,
-0.15810096263885498,
-0.02635045349597931,
0.024752190336585045,
0.033622484654188156,
-0.017231743782758713,
0.13669319450855255,
-0.2039388120174408,
-0.036121536046266556,
0.1721590757369995,
-0.1349588930606842,
-0.08518610149621964,
0.06643460690975189,
-0.055845119059085846,
0.11782421916723251,
0.049206800758838654,
-0.014434589073061943,
0.04594586789608002,
-0.13173595070838928,
-0.025916490703821182,
-0.053098164498806,
-0.007177549879997969,
0.15609249472618103,
0.06614800542593002,
-0.06571528315544128,
0.03145577386021614,
0.02247771993279457,
-0.018577884882688522,
-0.045781973749399185,
-0.03384651243686676,
-0.09418359398841858,
0.007437155116349459,
-0.07286001741886139,
0.00992972869426012,
-0.017532840371131897,
-0.08721724897623062,
-0.039823103696107864,
-0.16453123092651367,
-0.00716154370456934,
0.09300678223371506,
0.010935397818684578,
-0.02714768424630165,
-0.09726624190807343,
0.006592306774109602,
0.01717078872025013,
-0.01454078033566475,
-0.15828220546245575,
-0.0459267795085907,
0.03719138726592064,
-0.1820053607225418,
0.03403490409255028,
-0.05244239792227745,
0.035954125225543976,
0.03684226796030998,
-0.03816571831703186,
-0.013848266564309597,
0.020031210035085678,
0.018333489075303078,
-0.017020072788000107,
-0.2371053695678711,
-0.014824622310698032,
-0.04800339788198471,
0.16693253815174103,
-0.23147691786289215,
0.03312116861343384,
0.07037223875522614,
0.12888941168785095,
0.003875810420140624,
-0.0490296445786953,
0.030063113197684288,
-0.05199332535266876,
-0.044617995619773865,
-0.05644122138619423,
-0.006168664898723364,
-0.030205117538571358,
-0.04949198290705681,
0.050275903195142746,
-0.19857677817344666,
-0.041567981243133545,
0.11094366759061813,
0.06673718988895416,
-0.1588216871023178,
-0.0695650652050972,
-0.03473977744579315,
-0.06271405518054962,
-0.09103205800056458,
-0.05391426756978035,
0.10852089524269104,
0.04763965308666229,
0.048611950129270554,
-0.07248158007860184,
-0.04900932312011719,
0.007940629497170448,
-0.00704985111951828,
-0.03555170074105263,
0.08515505492687225,
0.08571629226207733,
-0.11543579399585724,
0.09118600934743881,
0.06718818843364716,
0.06912244111299515,
0.0983632430434227,
-0.0017782750073820353,
-0.09694159775972366,
-0.014548503793776035,
0.018360106274485588,
0.01051856018602848,
0.12805555760860443,
-0.07398705929517746,
0.03667636960744858,
0.05262641981244087,
-0.035613641142845154,
0.01095122192054987,
-0.101106658577919,
0.029197964817285538,
0.0282101072371006,
-0.003792217466980219,
0.028733761981129646,
-0.04522410035133362,
0.020432880148291588,
0.1023864597082138,
0.03395526856184006,
0.027725959196686745,
0.010809014551341534,
-0.04075441509485245,
-0.11779133975505829,
0.1720944494009018,
-0.09817105531692505,
-0.25773105025291443,
-0.12466797232627869,
-0.001978461164981127,
0.045932475477457047,
-0.018764600157737732,
0.01608397625386715,
-0.053159136325120926,
-0.11253257840871811,
-0.10541603714227676,
0.019763922318816185,
0.058765511959791183,
-0.08840499073266983,
-0.052470505237579346,
0.04951007664203644,
0.036848895251750946,
-0.12439411878585815,
0.021039357408881187,
0.04023430123925209,
-0.059992119669914246,
0.0014880987582728267,
0.07059671729803085,
0.08472984284162521,
0.18226684629917145,
0.022740190848708153,
-0.01784367859363556,
0.017296429723501205,
0.23125670850276947,
-0.1456713229417801,
0.09739834815263748,
0.1370985060930252,
-0.06344101577997208,
0.08623462915420532,
0.21197044849395752,
0.036558255553245544,
-0.08882707357406616,
0.037767693400382996,
0.03336544707417488,
-0.036437466740608215,
-0.2318716198205948,
-0.08410470932722092,
0.001480261329561472,
-0.08248372375965118,
0.0952354297041893,
0.09051923453807831,
0.11156398802995682,
0.04929385334253311,
-0.10106591880321503,
-0.07701091468334198,
0.04251527413725853,
0.11516540497541428,
-0.006902680266648531,
0.004321529995650053,
0.09879171848297119,
-0.029613742604851723,
0.010339556261897087,
0.09523830562829971,
0.0004232692008372396,
0.18618540465831757,
0.04265686497092247,
0.12916190922260284,
0.08458086103200912,
0.05236417427659035,
0.02661769837141037,
0.01322705764323473,
0.031609587371349335,
0.02576516941189766,
-0.02334577962756157,
-0.09271565079689026,
-0.012906024232506752,
0.1415313482284546,
0.04929639771580696,
0.030407944694161415,
0.020662572234869003,
-0.03531459718942642,
0.07301895320415497,
0.16116659343242645,
0.011933310888707638,
-0.21851851046085358,
-0.05515235662460327,
0.07743874937295914,
-0.08626089245080948,
-0.11299191415309906,
-0.0025294655933976173,
0.021754881367087364,
-0.17833879590034485,
0.05397404730319977,
-0.016486117616295815,
0.10160378366708755,
-0.11242987960577011,
-0.02206907607614994,
0.04055493697524071,
0.07460751384496689,
-0.03305850550532341,
0.07621917128562927,
-0.20276865363121033,
0.1373196691274643,
0.008098544552922249,
0.06249339506030083,
-0.11230216175317764,
0.08414414525032043,
0.019059745594859123,
-0.0036223498173058033,
0.1621086448431015,
-0.009664713405072689,
-0.09406581521034241,
-0.060111574828624725,
-0.07602227479219437,
-0.012445085681974888,
0.09843466430902481,
-0.0939253643155098,
0.08608877658843994,
-0.01022840291261673,
-0.03214890882372856,
-0.007143673487007618,
-0.11786875873804092,
-0.1394684612751007,
-0.183831125497818,
0.05997816100716591,
-0.10696699470281601,
0.03344186022877693,
-0.10895431786775589,
-0.060553617775440216,
-0.03646453842520714,
0.19020794332027435,
-0.18181639909744263,
-0.08386372029781342,
-0.14476649463176727,
-0.07653295993804932,
0.1361350119113922,
-0.04076695069670677,
0.07850751280784607,
-0.00008746175444684923,
0.20719517767429352,
0.001825421117246151,
-0.00039511307841166854,
0.08349475264549255,
-0.09573810547590256,
-0.20032998919487,
-0.0880952924489975,
0.13964824378490448,
0.12494690716266632,
0.04542626440525055,
-0.006928097922354937,
0.027518225833773613,
-0.011671899817883968,
-0.11464269459247589,
0.02507087029516697,
0.1405206173658371,
0.06840235739946365,
0.04314489662647247,
-0.016979211941361427,
-0.15606153011322021,
-0.10666806995868683,
-0.05322869494557381,
0.021586019545793533,
0.17797614634037018,
-0.07007403671741486,
0.1621050238609314,
0.16129834949970245,
-0.05420130863785744,
-0.2030099630355835,
0.02282964438199997,
0.04042449966073036,
-0.013990761712193489,
0.03615177795290947,
-0.19683793187141418,
0.07753707468509674,
0.016794858500361443,
-0.060990821570158005,
0.13549083471298218,
-0.1619698405265808,
-0.1508903205394745,
0.09218499809503555,
0.06408262252807617,
-0.2138945758342743,
-0.13302136957645416,
-0.10209991782903671,
-0.05448025092482567,
-0.10983701795339584,
0.08582660555839539,
0.01998555287718773,
0.0000906725981622003,
0.04219266399741173,
0.03161109238862991,
0.021054213866591454,
-0.0520465187728405,
0.20073460042476654,
0.0012120193568989635,
0.03459459915757179,
-0.08232162147760391,
-0.08637090027332306,
0.026973288506269455,
-0.05251563340425491,
0.0672052875161171,
-0.016655180603265762,
0.0002542635484132916,
-0.09922616183757782,
-0.06439188867807388,
-0.06020424887537956,
0.03343502804636955,
-0.08179902285337448,
-0.09706422686576843,
-0.058388181030750275,
0.10227678716182709,
0.08968468755483627,
-0.03377925977110863,
-0.06091363728046417,
-0.10292473435401917,
0.06651771068572998,
0.22872710227966309,
0.1885143369436264,
0.06312023848295212,
-0.07107747346162796,
0.0009368667961098254,
-0.023646708577871323,
0.050360288470983505,
-0.1945972442626953,
0.046965986490249634,
0.042262639850378036,
0.028454279527068138,
0.12927067279815674,
-0.024874795228242874,
-0.16607771813869476,
-0.04733136296272278,
0.06063033267855644,
-0.059542834758758545,
-0.18076083064079285,
-0.000619421829469502,
0.09315520524978638,
-0.15953904390335083,
-0.06748805940151215,
0.023891208693385124,
-0.020897341892123222,
-0.027535755187273026,
0.004573860205709934,
0.0820559412240982,
0.02817925252020359,
0.11291294544935226,
0.06535529345273972,
0.10744494199752808,
-0.10965088754892349,
0.08151662349700928,
0.09152320772409439,
-0.10730767250061035,
0.02777967043220997,
0.07435369491577148,
-0.05882004648447037,
-0.03269755467772484,
0.0057791233994066715,
0.07514561712741852,
0.02294853888452053,
-0.07087770849466324,
-0.0009696646011434495,
-0.1182747483253479,
0.06833867728710175,
0.13341592252254486,
0.033248964697122574,
-0.0019442925695329905,
0.044254120439291,
0.02532937377691269,
-0.08849740773439407,
0.11402047425508499,
0.03831348940730095,
0.031180279329419136,
-0.04628003388643265,
-0.005872894544154406,
0.04073992744088173,
-0.011434492655098438,
-0.01770744100213051,
-0.03857431188225746,
-0.061015255749225616,
-0.009887747466564178,
-0.1567201316356659,
0.02684243768453598,
-0.0771009624004364,
0.00816130917519331,
0.022786233574151993,
-0.03996667265892029,
-0.005420312751084566,
0.006734060123562813,
-0.08264576643705368,
-0.03730582818388939,
-0.0037628922145813704,
0.1070059984922409,
-0.15296638011932373,
0.00852613802999258,
0.09225248545408249,
-0.12423861026763916,
0.07808402180671692,
-0.0011087276507169008,
-0.013306759297847748,
0.02074836567044258,
-0.1374569684267044,
0.051461800932884216,
-0.006391053553670645,
0.011301612481474876,
0.028202330693602562,
-0.19194763898849487,
0.0008063786081038415,
-0.04062483087182045,
-0.05044460669159889,
-0.012731820344924927,
-0.05135709419846535,
-0.11374296247959137,
0.10732509195804596,
0.023315785452723503,
-0.08887150883674622,
-0.01889934204518795,
0.045546844601631165,
0.10550197213888168,
-0.05122669041156769,
0.13676951825618744,
-0.01927841641008854,
0.0586048886179924,
-0.1769271343946457,
-0.014012092724442482,
-0.018402719870209694,
0.013554446399211884,
-0.017449822276830673,
-0.00605781190097332,
0.0551704466342926,
-0.012471658177673817,
0.23972837626934052,
-0.027916517108678818,
0.03500373288989067,
0.06697984784841537,
0.016924316063523293,
-0.018179070204496384,
0.08486920595169067,
0.05455834046006203,
0.026243781670928,
0.01494054775685072,
0.017568159848451614,
-0.051871586591005325,
-0.021555433049798012,
-0.1424977034330368,
0.07956096529960632,
0.16729016602039337,
0.09009124338626862,
-0.008234765380620956,
0.06473081558942795,
-0.11607895791530609,
-0.07983584702014923,
0.10896016657352448,
-0.03711748123168945,
-0.0032444922253489494,
-0.05700715631246567,
0.1502007693052292,
0.1525147259235382,
-0.16814833879470825,
0.06879524886608124,
-0.06271831691265106,
-0.05224054306745529,
-0.11435537785291672,
-0.16904489696025848,
-0.06866718828678131,
-0.035694681107997894,
-0.002330650808289647,
-0.05624498426914215,
0.07767387479543686,
0.10255347937345505,
0.007528870366513729,
0.0038026864640414715,
0.08233556896448135,
-0.037537459284067154,
-0.006316144950687885,
0.04542352631688118,
0.049430496990680695,
0.015805410221219063,
-0.059124622493982315,
0.010986202396452427,
0.004953318741172552,
0.04692067950963974,
0.05509426072239876,
0.034005217254161835,
-0.028324270620942116,
0.012686561793088913,
-0.018243486061692238,
-0.10028578341007233,
0.035927701741456985,
-0.033664118498563766,
-0.05780354142189026,
0.13973994553089142,
0.0218597874045372,
0.007779987063258886,
-0.02196359448134899,
0.22996114194393158,
-0.07252145558595657,
-0.08971016108989716,
-0.1408918797969818,
0.13730354607105255,
-0.046912964433431625,
0.05402535945177078,
0.04905577376484871,
-0.10465127229690552,
0.0241316556930542,
0.14292258024215698,
0.13702698051929474,
-0.027644719928503036,
0.010874779894948006,
0.015687033534049988,
0.00620539765805006,
-0.031101418659090996,
0.04872303828597069,
0.04169761762022972,
0.13120494782924652,
-0.06359384953975677,
0.0914405807852745,
-0.010274309664964676,
-0.08765450119972229,
-0.0231675673276186,
0.1299583613872528,
0.005232672207057476,
0.02307419292628765,
-0.08125553280115128,
0.11583263427019119,
-0.0691702738404274,
-0.24996554851531982,
0.04865904897451401,
-0.05924736708402634,
-0.15156961977481842,
-0.017320360988378525,
0.02757420763373375,
0.005632835440337658,
0.02303774654865265,
0.06296881288290024,
-0.06651590019464493,
0.1557060331106186,
0.035915885120630264,
-0.07977382838726044,
-0.06385304778814316,
0.08052598685026169,
-0.08511006832122803,
0.29178112745285034,
0.010383724234998226,
0.05882499739527702,
0.0948280319571495,
-0.028215935453772545,
-0.131154403090477,
0.05278646945953369,
0.0955355316400528,
-0.07669185847043991,
0.070269875228405,
0.19858962297439575,
0.0003398389380890876,
0.11546503752470016,
0.07913552224636078,
-0.09058261662721634,
0.05968843400478363,
-0.07367776334285736,
-0.09094593673944473,
-0.0922231450676918,
0.08578167855739594,
-0.06759190559387207,
0.15170368552207947,
0.12874077260494232,
-0.043129127472639084,
-0.001158626051619649,
-0.030579449608922005,
0.051351167261600494,
-0.0008969766786321998,
0.12188339978456497,
0.015837527811527252,
-0.19386562705039978,
0.031386423856019974,
-0.015537483617663383,
0.099497489631176,
-0.23898114264011383,
-0.07769263535737991,
0.03750690072774887,
-0.014490727335214615,
-0.048680152744054794,
0.11743341386318207,
0.05373985692858696,
0.045937854796648026,
-0.05465031415224075,
-0.060885775834321976,
0.006574091035872698,
0.1611197590827942,
-0.11137263476848602,
0.004140520468354225
] |
null | null | stable-baselines3 |
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.19 +/- 0.10", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | samuraibosky/a2c-PandaReachDense-v3 | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-13T16:29:38+00:00 | [] | [] | TAGS
#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# A2C Agent playing PandaReachDense-v3
This is a trained model of a A2C agent playing PandaReachDense-v3
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
41,
45,
17
] | [
"passage: TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.028780510649085045,
0.06549051403999329,
-0.004174588713794947,
0.028733979910612106,
0.12748076021671295,
-0.010029550641775131,
0.16130082309246063,
0.07903143763542175,
0.052706290036439896,
-0.055043965578079224,
0.09157051891088486,
-0.079488605260849,
0.04699381813406944,
0.3393711447715759,
0.029525093734264374,
-0.186785027384758,
0.08573613315820694,
0.015584449283778667,
0.018966808915138245,
0.09867662936449051,
0.03466832637786865,
-0.08736564218997955,
0.04568251967430115,
0.03800429776310921,
-0.07686931639909744,
-0.04319252818822861,
-0.03975098207592964,
-0.06744661927223206,
0.10361767560243607,
-0.044310007244348526,
0.1670169234275818,
-0.03489987552165985,
0.10219604521989822,
-0.12577489018440247,
0.031373992562294006,
-0.04813149571418762,
-0.05141052231192589,
0.002818689215928316,
-0.011371237225830555,
0.05937984213232994,
0.04167760908603668,
0.05197896435856819,
0.07366002351045609,
0.04871916025876999,
-0.08704962581396103,
-0.11396265029907227,
-0.006845315918326378,
0.07931416481733322,
0.17974808812141418,
0.04054044932126999,
-0.02474738284945488,
0.09696658700704575,
-0.11350683122873306,
0.01657135598361492,
-0.019304286688566208,
-0.4018571078777313,
0.006876560393720865,
0.15550047159194946,
0.04677277058362961,
0.010903568007051945,
-0.0061170910485088825,
-0.004642391111701727,
0.02805398777127266,
-0.037410516291856766,
0.08670840412378311,
-0.09000635892152786,
0.06153826415538788,
-0.019131680950522423,
-0.04113767296075821,
-0.01751464419066906,
0.2419518232345581,
0.01633240468800068,
-0.08024721592664719,
-0.07922019064426422,
0.009968155063688755,
-0.028026137501001358,
-0.0877801775932312,
-0.06134319305419922,
0.07644549012184143,
0.057131536304950714,
0.10696670413017273,
-0.030399860814213753,
-0.058683689683675766,
-0.04541248828172684,
0.08352918922901154,
-0.03953780233860016,
-0.017566127702593803,
-0.01754307933151722,
-0.06739802658557892,
-0.003707833355292678,
0.015629740431904793,
-0.06615205854177475,
-0.015486059710383415,
-0.044966671615839005,
-0.1556774228811264,
-0.009128551930189133,
-0.0599384643137455,
0.03310214728116989,
0.10073909163475037,
0.13065455853939056,
0.06838785856962204,
0.09685135632753372,
-0.08001106232404709,
0.0389438234269619,
0.06625691801309586,
0.09461154788732529,
-0.044509198516607285,
-0.011874453164637089,
0.14630302786827087,
0.10327376425266266,
0.09657767415046692,
-0.09182082861661911,
-0.12403369694948196,
0.04173071309924126,
0.10965418070554733,
0.03382069617509842,
0.0046537998132407665,
0.04452834278345108,
-0.14144757390022278,
0.023916395381093025,
0.0006972529226914048,
-0.045244041830301285,
-0.03088594414293766,
0.06111180782318115,
-0.04433412477374077,
0.02348744124174118,
-0.012718633748590946,
0.10830001533031464,
0.10152670741081238,
-0.023899899795651436,
-0.052799396216869354,
-0.04201658070087433,
-0.0440504252910614,
-0.05507666990160942,
0.04012975096702576,
0.01289378758519888,
0.04624854028224945,
-0.1184653639793396,
-0.13997629284858704,
0.051258668303489685,
0.019622454419732094,
-0.026321161538362503,
-0.13472233712673187,
-0.09338399767875671,
-0.03747362270951271,
-0.011210841126739979,
0.0030350966844707727,
-0.19588395953178406,
-0.02434816211462021,
-0.03428230062127113,
0.13725687563419342,
0.10810749977827072,
-0.06433141976594925,
-0.06369391083717346,
-0.12834231555461884,
0.06795675307512283,
-0.23485252261161804,
0.038750845938920975,
-0.09932064265012741,
0.12411006540060043,
0.007471752353012562,
0.023616313934326172,
0.1410844624042511,
0.02330038882791996,
0.004575210623443127,
0.1702503114938736,
-0.18833371996879578,
-0.046672217547893524,
0.17527204751968384,
-0.0857074186205864,
-0.17703735828399658,
0.05021136254072189,
-0.02124672941863537,
-0.013779462315142155,
0.06350992619991302,
0.09937554597854614,
-0.01727774553000927,
-0.17061583697795868,
0.02558896690607071,
-0.0014508399181067944,
-0.05959303304553032,
0.021542999893426895,
0.12072649598121643,
0.08040176331996918,
-0.027203790843486786,
-0.0016989230643957853,
-0.15452547371387482,
0.09701786935329437,
-0.023543400689959526,
-0.08447092026472092,
0.022736359387636185,
-0.10411997884511948,
0.10016260296106339,
-0.015677137300372124,
0.10591494292020798,
-0.02265925332903862,
-0.018805475905537605,
-0.032891299575567245,
0.10408006608486176,
-0.0068649593740701675,
0.039593957364559174,
-0.17728297412395477,
0.1326225996017456,
0.02176543138921261,
0.046730607748031616,
-0.10109715908765793,
-0.10202061384916306,
0.06674831360578537,
0.15375585854053497,
0.05606463924050331,
0.03833417221903801,
0.07328703999519348,
0.03443831577897072,
-0.0030986627098172903,
-0.1205538883805275,
-0.12789975106716156,
0.019881807267665863,
0.06068658083677292,
-0.08039596676826477,
-0.05172275751829147,
-0.10460081696510315,
0.21138279139995575,
-0.10705634206533432,
0.012047823518514633,
-0.09333895146846771,
0.010153836570680141,
0.08388294279575348,
0.01348812971264124,
0.08132237941026688,
0.02585482969880104,
-0.04426883906126022,
0.009419471956789494,
0.0882885605096817,
0.044275086373090744,
-0.1379590630531311,
0.03784618154168129,
0.024114131927490234,
0.23272188007831573,
0.15174852311611176,
-0.016499420627951622,
-0.055556558072566986,
0.006534850224852562,
0.03740030899643898,
0.03533044084906578,
0.034956689924001694,
0.06951800733804703,
0.1090264692902565,
0.07713755965232849,
0.1276414394378662,
-0.05066131055355072,
0.17763042449951172,
-0.006530070677399635,
-0.14888496696949005,
0.02993084490299225,
-0.07033783197402954,
0.0941668227314949,
-0.06030277907848358,
0.048379335552453995,
0.05410725995898247,
0.0304675605148077,
0.08504439890384674,
-0.00693494314327836,
0.022639812901616096,
-0.04341154545545578,
0.04943868890404701,
0.06790532171726227,
0.06545940041542053,
0.06452376395463943,
-0.007423467002809048,
0.015456308610737324,
-0.05288444459438324,
-0.0518295019865036,
-0.10519610345363617,
-0.12370408326387405,
0.037892695516347885,
-0.015912096947431564,
-0.04463989660143852,
-0.01629551686346531,
-0.07266248762607574,
0.050321705639362335,
0.05250744894146919,
-0.07199236750602722,
0.028561361134052277,
-0.007090074475854635,
-0.09633425623178482,
0.1130511462688446,
-0.14269201457500458,
-0.31355980038642883,
-0.02000165916979313,
-0.13154496252536774,
-0.02077566273510456,
0.15819574892520905,
-0.057956792414188385,
-0.1681092083454132,
0.03305667266249657,
-0.02401961199939251,
-0.09238096326589584,
0.04225420579314232,
-0.018061356619000435,
0.10221174359321594,
0.0857708528637886,
0.043082691729068756,
0.00862243864685297,
-0.01184127852320671,
-0.03903079405426979,
-0.08788500726222992,
0.07608162611722946,
-0.06721128523349762,
0.1173204705119133,
0.13519366085529327,
0.04123268276453018,
-0.015909500420093536,
-0.02043113484978676,
0.06215733662247658,
0.012027861550450325,
-0.036599598824977875,
0.13453175127506256,
-0.03608042374253273,
-0.00864011887460947,
0.04470202699303627,
0.008029532618820667,
-0.10533943772315979,
0.09432658553123474,
-0.05022074654698372,
-0.06974482536315918,
-0.017500806599855423,
-0.08790571242570877,
-0.09950723499059677,
0.18995612859725952,
0.0490412712097168,
0.007856572046875954,
-0.05151839926838875,
0.036120012402534485,
0.07772433012723923,
0.044773608446121216,
0.007161281071603298,
0.03985898196697235,
-0.005716364365071058,
-0.013170693069696426,
0.05278664082288742,
-0.023887991905212402,
0.009960537776350975,
-0.007844919338822365,
0.13077811896800995,
-0.015673788264393806,
0.10317149013280869,
0.0030158995650708675,
0.008619097992777824,
0.08018261194229126,
0.12394148856401443,
0.08064290136098862,
0.019240466877818108,
-0.11554506421089172,
-0.04732639715075493,
-0.030522609129548073,
-0.18181301653385162,
0.11669926345348358,
0.10738886147737503,
0.05268440023064613,
-0.05564067140221596,
0.22832486033439636,
0.0012100599706172943,
0.10802210867404938,
0.03496129810810089,
-0.17664514482021332,
0.024751557037234306,
0.03574612736701965,
0.050895314663648605,
0.007034227252006531,
0.062039270997047424,
-0.09453237801790237,
-0.1839483082294464,
0.03968557342886925,
0.018860090523958206,
0.05523261800408363,
-0.018427258357405663,
0.018512532114982605,
-0.12044285237789154,
-0.05746040865778923,
0.02161633037030697,
0.02076297253370285,
-0.3029120862483978,
0.06816349923610687,
-0.04133946821093559,
0.07392577081918716,
0.009542034938931465,
0.01343793235719204,
0.06604447960853577,
0.01652485318481922,
0.1375029981136322,
-0.017935138195753098,
0.1707022786140442,
-0.1572514772415161,
-0.16084668040275574,
0.025680551305413246,
-0.059293005615472794,
0.07245437800884247,
0.082563117146492,
0.017692390829324722,
0.0069250138476490974,
-0.00047057756455615163,
0.20794180035591125,
-0.13032017648220062,
-0.0346711240708828,
-0.035274047404527664,
0.019543148577213287,
0.022580156102776527,
-0.03844551369547844,
-0.021310672163963318,
0.06112392246723175,
0.1489492505788803,
0.07546767592430115,
-0.02780069410800934,
-0.04611911624670029,
-0.03938353434205055,
-0.09507237374782562,
-0.044778671115636826,
0.10472412407398224,
-0.07841785997152328,
0.10144548118114471,
-0.07513871043920517,
-0.04432075098156929,
0.11707907915115356,
-0.09250949323177338,
-0.053160861134529114,
-0.07627046853303909,
0.05462219938635826,
0.008296831510961056,
0.13374868035316467,
0.03642493113875389,
0.02114485390484333,
0.10089845955371857,
-0.05001259222626686,
0.08662480860948563,
0.03777577355504036,
-0.03541218861937523,
0.03517242521047592,
-0.05375073477625847,
-0.04829130321741104,
-0.010828596539795399,
0.03814345970749855,
0.24244728684425354,
0.302570104598999,
-0.012830551713705063,
0.1897524893283844,
0.09193363785743713,
0.029696941375732422,
-0.16292639076709747,
-0.1200476586818695,
0.05548451840877533,
0.059938978403806686,
0.06154406815767288,
-0.2788083851337433,
0.057189684361219406,
-0.053967077285051346,
-0.08999616652727127,
-0.06829255819320679,
-0.08560561388731003,
-0.07613074034452438,
0.088682159781456,
0.08794322609901428,
0.09100460261106491,
-0.12551987171173096,
0.015924450010061264,
-0.012671655975282192,
-0.1664767563343048,
0.12128932029008865,
-0.039350032806396484,
0.07007917016744614,
-0.025050386786460876,
-0.06438229978084564,
0.025165842846035957,
-0.02775278501212597,
0.04424511641263962,
-0.1206880658864975,
0.0005293674184940755,
-0.04527926817536354,
-0.03749620169401169,
0.1088484600186348,
0.020565982908010483,
-0.0028168195858597755,
-0.09558401256799698,
-0.011945599690079689,
-0.3103867173194885,
0.01988539844751358,
0.02114551141858101,
-0.039148375391960144,
-0.0012507046340033412,
-0.08678091317415237,
-0.042053963989019394,
0.10508828610181808,
0.03930897265672684,
0.08641290664672852,
0.15335260331630707,
-0.005581455305218697,
-0.021082017570734024,
0.17506572604179382,
0.05701295658946037,
-0.014002309180796146,
0.10069113969802856,
-0.06732672452926636,
-0.06576105207204819,
0.04418903961777687,
-0.1016126498579979,
-0.005435575265437365,
0.005642053205519915,
-0.007821558974683285,
0.07107745110988617,
0.09962856024503708,
-0.03340476378798485,
0.18194207549095154,
0.09798844903707504,
-0.15048468112945557,
0.0030947427731007338,
0.052597809582948685,
-0.032650984823703766,
0.04424609988927841,
-0.04443032294511795,
0.05541829764842987,
-0.07521786540746689,
-0.03790169581770897,
0.02031708136200905,
-0.01010141521692276,
-0.07618512213230133,
0.00011962707503698766,
0.03176301345229149,
0.029956085607409477,
-0.08340912312269211,
0.14036758244037628,
0.016359949484467506,
0.0652431845664978,
0.11902019381523132,
0.019259776920080185,
-0.10460162162780762,
-0.014167122542858124,
-0.02339506521821022,
0.2028627097606659,
-0.007937151938676834,
-0.018536100164055824,
-0.11391238868236542,
-0.12847240269184113,
0.018047582358121872,
-0.10348039865493774,
0.10282431542873383,
-0.052032727748155594,
-0.06570395082235336,
-0.03704213351011276,
-0.05561172217130661,
0.031932998448610306,
0.017090078443288803,
-0.015642894431948662,
-0.16111870110034943,
-0.04170334339141846,
0.06846143305301666,
0.039452772587537766,
-0.06145704537630081,
-0.06289087235927582,
-0.16302458941936493,
0.03506235405802727,
-0.1278870701789856,
0.0010145133128389716,
-0.047339316457509995,
-0.05002537742257118,
-0.05195476487278938,
0.01521157007664442,
-0.0177876316010952,
0.008817745372653008,
-0.05148332938551903,
0.03292781487107277,
0.011250603944063187,
0.0014076961670070887,
-0.06952075660228729,
-0.04419080913066864,
0.032172493636608124,
-0.04430563375353813,
0.0661356970667839,
0.04131564497947693,
-0.005653871223330498,
0.021474739536643028,
-0.07005896419286728,
-0.10248169302940369,
0.10313672572374344,
-0.014939527027308941,
0.050572704523801804,
-0.0603681318461895,
-0.012018447741866112,
0.007195405196398497,
-0.07569561898708344,
-0.007751014549285173,
0.24328774213790894,
-0.010914106853306293,
-0.05394120141863823,
-0.07426224648952484,
-0.036970075219869614,
-0.09100507944822311,
-0.0004900419735349715,
0.1948854625225067,
0.05477539822459221,
0.14600017666816711,
-0.0532439760863781,
0.08785777539014816,
-0.06481330841779709,
-0.01534446980804205,
-0.08259234577417374,
0.030320849269628525,
-0.157977893948555,
-0.08130980283021927,
-0.028043894097208977,
-0.03728124126791954,
0.13441862165927887,
-0.19242097437381744,
0.0032852457370609045,
-0.010904400609433651,
-0.04910553991794586,
0.11381126195192337,
0.0557032972574234,
0.24474471807479858,
0.1050342544913292,
-0.035265225917100906,
0.10503548383712769,
0.12215624749660492,
0.0929517149925232,
-0.03347417712211609,
0.058777112513780594,
-0.05078745633363724,
-0.0868106484413147,
0.09736774861812592,
0.012061800807714462,
0.036776214838027954,
-0.08157306164503098,
0.022900743409991264,
-0.10047483444213867,
0.002025678288191557,
0.02005080319941044,
0.2473200410604477,
0.1967000812292099,
-0.09632564336061478,
-0.012216159142553806,
-0.05708231031894684,
-0.032561756670475006,
-0.04091155156493187,
-0.002459051087498665,
-0.07821618020534515,
-0.21873407065868378,
0.051539067178964615,
-0.0930585265159607,
-0.07632365822792053,
-0.06189138814806938,
-0.04064059257507324,
-0.02870149537920952,
0.046939339488744736,
0.03212931379675865,
0.04136762022972107,
0.05070297420024872,
-0.0371626541018486,
-0.09345480799674988,
0.06879863888025284,
-0.11172787100076675,
-0.042014576494693756,
-0.03408866748213768,
0.014045859687030315,
0.032319605350494385,
-0.07429610192775726,
0.07487598061561584,
-0.012149554677307606,
-0.07710553705692291,
0.036456044763326645,
-0.03482281416654587,
0.02153356932103634,
0.07482071220874786,
0.04184282198548317,
-0.09644174575805664,
0.015602846629917622,
0.18867559731006622,
0.020273970440030098,
0.008802177384495735,
-0.14742465317249298,
0.2000039666891098,
-0.02619965374469757,
0.07266447693109512,
-0.03337041288614273,
-0.015141828916966915,
-0.10115411877632141,
0.19129611551761627,
0.11998134851455688,
-0.24376079440116882,
0.024953339248895645,
-0.12912821769714355,
0.022151969373226166,
-0.13376696407794952,
0.20840151607990265,
0.05465596541762352,
0.10847201198339462,
-0.06020665541291237,
-0.02479162998497486,
-0.1493310034275055,
-0.09408020973205566,
-0.08478302508592606,
-0.0414455346763134,
0.10249399393796921,
0.0031611735466867685,
-0.05072701349854469,
-0.00887248944491148,
-0.1566619724035263,
0.10201162099838257,
-0.048264030367136,
-0.11855816096067429,
-0.0679796114563942,
-0.059141192585229874,
-0.06102965027093887,
0.11088541150093079,
0.11637356877326965,
-0.01684124954044819,
0.024554423987865448,
-0.07280154526233673,
-0.012559473514556885,
0.011003518477082253,
0.005383014678955078,
0.0626269057393074,
-0.04783647879958153,
0.1594477891921997,
-0.021524829789996147,
0.0008918871753849089,
0.04285505786538124,
0.05263057351112366,
-0.07584847509860992,
0.06380704790353775,
0.02512199431657791,
0.028178859502077103,
-0.006920731160789728,
0.059795111417770386,
-0.0196672473102808,
0.08964395523071289,
0.08038042485713959,
-0.007235884666442871,
0.09868589043617249,
-0.03191833570599556,
0.006547331809997559,
-0.057698819786310196,
0.06932510435581207,
-0.12982366979122162,
0.05436630919575691,
0.043436627835035324,
-0.10945180803537369,
0.03841061517596245,
0.02560393325984478,
0.11603125184774399,
0.058632634580135345,
-0.040632184594869614,
-0.10494323819875717,
-0.13799439370632172,
0.023235952481627464,
0.058803655207157135,
-0.06312531977891922,
-0.13800419867038727,
-0.052970461547374725,
-0.2062724232673645,
0.04198472201824188,
-0.07393307238817215,
0.06842854619026184,
0.045238204300403595,
0.01849091611802578,
-0.05578908324241638,
-0.06200101599097252,
0.01771395653486252,
0.13669656217098236,
-0.06059794872999191,
-0.13932769000530243
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vgm_v8.4.7
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0172
- Precision: 0.8887
- Recall: 0.8905
- F1: 0.8896
- Accuracy: 0.9966
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2500
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 0.32 | 100 | 0.0868 | 0.3983 | 0.1947 | 0.2616 | 0.9785 |
| No log | 0.64 | 200 | 0.0542 | 0.6364 | 0.5538 | 0.5922 | 0.9860 |
| No log | 0.96 | 300 | 0.0461 | 0.5946 | 0.7201 | 0.6514 | 0.9867 |
| No log | 1.29 | 400 | 0.0377 | 0.6686 | 0.7160 | 0.6915 | 0.9887 |
| 0.0731 | 1.61 | 500 | 0.0315 | 0.6869 | 0.7343 | 0.7098 | 0.9901 |
| 0.0731 | 1.93 | 600 | 0.0330 | 0.7371 | 0.7505 | 0.7437 | 0.9909 |
| 0.0731 | 2.25 | 700 | 0.0194 | 0.7942 | 0.8296 | 0.8115 | 0.9947 |
| 0.0731 | 2.57 | 800 | 0.0229 | 0.8453 | 0.7870 | 0.8151 | 0.9947 |
| 0.0731 | 2.89 | 900 | 0.0168 | 0.8283 | 0.8418 | 0.8350 | 0.9951 |
| 0.0153 | 3.22 | 1000 | 0.0181 | 0.8896 | 0.8337 | 0.8607 | 0.9959 |
| 0.0153 | 3.54 | 1100 | 0.0139 | 0.8793 | 0.8722 | 0.8758 | 0.9964 |
| 0.0153 | 3.86 | 1200 | 0.0182 | 0.8366 | 0.8722 | 0.8540 | 0.9953 |
| 0.0153 | 4.18 | 1300 | 0.0175 | 0.8598 | 0.8580 | 0.8589 | 0.9956 |
| 0.0153 | 4.5 | 1400 | 0.0175 | 0.8778 | 0.8742 | 0.8760 | 0.9959 |
| 0.0059 | 4.82 | 1500 | 0.0183 | 0.8896 | 0.8661 | 0.8777 | 0.9959 |
| 0.0059 | 5.14 | 1600 | 0.0171 | 0.86 | 0.8722 | 0.8661 | 0.9963 |
| 0.0059 | 5.47 | 1700 | 0.0162 | 0.8773 | 0.8702 | 0.8737 | 0.9964 |
| 0.0059 | 5.79 | 1800 | 0.0173 | 0.8938 | 0.8702 | 0.8818 | 0.9962 |
| 0.0059 | 6.11 | 1900 | 0.0173 | 0.8928 | 0.8783 | 0.8855 | 0.9967 |
| 0.003 | 6.43 | 2000 | 0.0165 | 0.9002 | 0.8966 | 0.8984 | 0.9967 |
| 0.003 | 6.75 | 2100 | 0.0177 | 0.8806 | 0.8824 | 0.8815 | 0.9963 |
| 0.003 | 7.07 | 2200 | 0.0179 | 0.8844 | 0.8844 | 0.8844 | 0.9963 |
| 0.003 | 7.4 | 2300 | 0.0180 | 0.8980 | 0.8925 | 0.8952 | 0.9967 |
| 0.003 | 7.72 | 2400 | 0.0174 | 0.8848 | 0.8884 | 0.8866 | 0.9964 |
| 0.0019 | 8.04 | 2500 | 0.0172 | 0.8887 | 0.8905 | 0.8896 | 0.9966 |
### Framework versions
- Transformers 4.28.0
- Pytorch 2.1.0+cu121
- Datasets 2.2.2
- Tokenizers 0.13.3
| {"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "datasets": ["sroie"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "vgm_v8.4.7", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "sroie", "type": "sroie", "config": "discharge", "split": "test", "args": "discharge"}, "metrics": [{"type": "precision", "value": 0.888663967611336, "name": "Precision"}, {"type": "recall", "value": 0.8904665314401623, "name": "Recall"}, {"type": "f1", "value": 0.8895643363728472, "name": "F1"}, {"type": "accuracy", "value": 0.9965809801190325, "name": "Accuracy"}]}]}]} | token-classification | atatavana/vgm_v8.4.7 | [
"transformers",
"pytorch",
"tensorboard",
"layoutlmv3",
"token-classification",
"generated_from_trainer",
"dataset:sroie",
"license:cc-by-nc-sa-4.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:29:39+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #layoutlmv3 #token-classification #generated_from_trainer #dataset-sroie #license-cc-by-nc-sa-4.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| vgm\_v8.4.7
===========
This model is a fine-tuned version of microsoft/layoutlmv3-base on the sroie dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0172
* Precision: 0.8887
* Recall: 0.8905
* F1: 0.8896
* Accuracy: 0.9966
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 2
* eval\_batch\_size: 2
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* training\_steps: 2500
### Training results
### Framework versions
* Transformers 4.28.0
* Pytorch 2.1.0+cu121
* Datasets 2.2.2
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2500",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.2.2\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #tensorboard #layoutlmv3 #token-classification #generated_from_trainer #dataset-sroie #license-cc-by-nc-sa-4.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2500",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.2.2\n* Tokenizers 0.13.3"
] | [
76,
97,
4,
35
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #layoutlmv3 #token-classification #generated_from_trainer #dataset-sroie #license-cc-by-nc-sa-4.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* training\\_steps: 2500### Training results### Framework versions\n\n\n* Transformers 4.28.0\n* Pytorch 2.1.0+cu121\n* Datasets 2.2.2\n* Tokenizers 0.13.3"
] | [
-0.1155572310090065,
0.10985977202653885,
-0.001943332958035171,
0.12268847972154617,
0.15876036882400513,
0.022757451981306076,
0.13081692159175873,
0.12400032579898834,
-0.05948665738105774,
0.02787029556930065,
0.13193556666374207,
0.13486236333847046,
0.028123170137405396,
0.15295474231243134,
-0.04616982862353325,
-0.2500968277454376,
-0.012882075272500515,
0.04488978162407875,
-0.05797193944454193,
0.1362900733947754,
0.09743212163448334,
-0.12578339874744415,
0.09398555755615234,
0.00826223473995924,
-0.20748192071914673,
-0.017723312601447105,
0.02732996642589569,
-0.04754459485411644,
0.14936991035938263,
0.02915428951382637,
0.13035880029201508,
0.023204270750284195,
0.10270305722951889,
-0.15970858931541443,
0.012165190652012825,
0.048300065100193024,
0.0060223061591386795,
0.10491331666707993,
0.03928905725479126,
0.0163290873169899,
0.049919385462999344,
-0.07503801584243774,
0.05620049685239792,
0.01269423495978117,
-0.132518470287323,
-0.2083454430103302,
-0.09159495681524277,
0.05016649141907692,
0.08956073969602585,
0.0829477608203888,
0.0012261810479685664,
0.15018711984157562,
-0.061917465180158615,
0.0760519802570343,
0.17048297822475433,
-0.29056259989738464,
-0.06980115920305252,
0.06808554381132126,
0.021977568045258522,
0.059791192412376404,
-0.1032911166548729,
-0.021550659090280533,
0.037441398948431015,
0.03702295199036598,
0.14549235999584198,
-0.027211496606469154,
-0.02808566391468048,
0.01401917077600956,
-0.13632266223430634,
-0.038141001015901566,
0.1543719321489334,
0.04906785488128662,
-0.038970574736595154,
-0.05178919434547424,
-0.046309780329465866,
-0.12848830223083496,
-0.03450091555714607,
-0.00256554689258337,
0.03810081258416176,
-0.026914866641163826,
-0.10635534673929214,
-0.029278311878442764,
-0.10819742828607559,
-0.06774793565273285,
-0.05979233980178833,
0.11519011110067368,
0.009022505022585392,
0.0107578681781888,
-0.013970373198390007,
0.11633028835058212,
-0.0008699746103957295,
-0.12848520278930664,
0.03395084664225578,
0.022262059152126312,
-0.03361203148961067,
-0.06569802761077881,
-0.042729876935482025,
-0.046833790838718414,
-0.015424076467752457,
0.11725345253944397,
-0.010740753263235092,
0.023410562425851822,
0.027211084961891174,
0.05144459754228592,
-0.09875500947237015,
0.1939195692539215,
-0.05057007074356079,
-0.031945742666721344,
-0.0005090105696581304,
0.08977607637643814,
0.020313603803515434,
-0.01763099990785122,
-0.14956413209438324,
0.006303384434431791,
0.08395989239215851,
0.009838949888944626,
-0.04412693902850151,
0.05492360144853592,
-0.06496449559926987,
-0.041212767362594604,
0.059570927172899246,
-0.07324668765068054,
0.02719096839427948,
-0.014551633037626743,
-0.07613786309957504,
-0.0509764738380909,
0.0038314841222018003,
0.030303379520773888,
0.015226421877741814,
0.11978808045387268,
-0.10807377845048904,
0.022858040407299995,
-0.08924570679664612,
-0.10477235913276672,
0.01665986329317093,
-0.09509218484163284,
0.015336751937866211,
-0.09701287746429443,
-0.18329057097434998,
-0.015401817858219147,
0.06055506691336632,
-0.03646278753876686,
-0.07574135810136795,
-0.04261795058846474,
-0.06165386363863945,
0.010475718416273594,
-0.014697381295263767,
0.1256512552499771,
-0.061232198029756546,
0.10353436321020126,
0.012259842827916145,
0.055306244641542435,
-0.05237958952784538,
0.043773312121629715,
-0.09645340591669083,
0.03236911818385124,
-0.14499233663082123,
0.031646598130464554,
-0.03413652628660202,
0.06581238657236099,
-0.11051429063081741,
-0.08599791675806046,
0.01721915602684021,
-0.014153163880109787,
0.06236332282423973,
0.08631950616836548,
-0.18660888075828552,
-0.06984041631221771,
0.14369036257266998,
-0.0557621605694294,
-0.1267998367547989,
0.12794683873653412,
-0.06529485434293747,
0.0602862574160099,
0.05511333793401718,
0.17215292155742645,
0.08389917761087418,
-0.08845154941082001,
0.021964071318507195,
0.011481374502182007,
0.0620306171476841,
-0.08589756488800049,
0.09982121735811234,
-0.003013483015820384,
0.03076879307627678,
0.005187436938285828,
-0.0665682926774025,
0.061150167137384415,
-0.08173076063394547,
-0.09194617718458176,
-0.011973629705607891,
-0.09305435419082642,
0.05933098495006561,
0.06333795189857483,
0.064468614757061,
-0.08177286386489868,
-0.0869620144367218,
0.06641563028097153,
0.0856059268116951,
-0.04350597783923149,
0.021588481962680817,
-0.07902174443006516,
0.07730508595705032,
-0.07866242527961731,
-0.031751569360494614,
-0.15600498020648956,
-0.049784112721681595,
0.008780589327216148,
0.032121121883392334,
0.018651459366083145,
0.023011524230241776,
0.0609135627746582,
0.05797601118683815,
-0.06301715970039368,
-0.017143039032816887,
-0.028347427025437355,
-0.0006662606028839946,
-0.12992455065250397,
-0.19093845784664154,
-0.05566324293613434,
-0.028398500755429268,
0.17524674534797668,
-0.217596635222435,
0.03435175120830536,
0.0017551076598465443,
0.09574160724878311,
0.03828241303563118,
-0.022242682054638863,
-0.03755935654044151,
0.07181236892938614,
-0.035525090992450714,
-0.05775315687060356,
0.07883083820343018,
0.020606547594070435,
-0.11497365683317184,
-0.015593140386044979,
-0.12304702401161194,
0.15887947380542755,
0.12162168323993683,
-0.07753007113933563,
-0.07365644723176956,
-0.03422483056783676,
-0.04465382546186447,
-0.028891749680042267,
-0.052522629499435425,
0.00898938998579979,
0.14118963479995728,
0.014808696694672108,
0.16324418783187866,
-0.06793875247240067,
-0.0469513013958931,
0.026065992191433907,
-0.029619980603456497,
0.007714646402746439,
0.10980334877967834,
0.10811039805412292,
-0.10968772321939468,
0.15496864914894104,
0.16263435781002045,
-0.06429938971996307,
0.1322702020406723,
-0.030945537611842155,
-0.06717019528150558,
-0.046640556305646896,
-0.022472891956567764,
0.014090475626289845,
0.1383877843618393,
-0.08242125064134598,
-0.009989354759454727,
0.024724088609218597,
0.017463568598031998,
0.0009505213820375502,
-0.22822147607803345,
-0.048518210649490356,
0.04267694801092148,
-0.036843735724687576,
-0.03025468997657299,
-0.015703486278653145,
-0.010657292790710926,
0.09606664627790451,
0.031642258167266846,
-0.09107960760593414,
0.0514039620757103,
0.0008221977623179555,
-0.07837197184562683,
0.19355300068855286,
-0.06459896266460419,
-0.15323150157928467,
-0.1526419222354889,
-0.08456137776374817,
-0.036183398216962814,
0.02001390978693962,
0.027464618906378746,
-0.061663709580898285,
-0.019641447812318802,
-0.07618159055709839,
-0.020591964945197105,
-0.014100824482738972,
0.017894618213176727,
0.006746388040482998,
-0.001110973535105586,
0.06789135932922363,
-0.07620302587747574,
-0.0046515692956745625,
-0.037508949637413025,
-0.027677932754158974,
0.03572070598602295,
0.01601307839155197,
0.11507553607225418,
0.15675599873065948,
-0.012321436777710915,
0.010501361452043056,
-0.04421583563089371,
0.21857458353042603,
-0.08855637162923813,
-0.021636316552758217,
0.14391010999679565,
-0.03180256113409996,
0.056537263095378876,
0.13826581835746765,
0.07354070991277695,
-0.08018475025892258,
0.0028146046679466963,
0.01732862927019596,
-0.046181634068489075,
-0.18707366287708282,
-0.041586216539144516,
-0.05881936848163605,
-0.002956805285066366,
0.10196627676486969,
0.016713282093405724,
0.02089773677289486,
0.06885021179914474,
0.03618023544549942,
0.08111632615327835,
-0.04291197657585144,
0.07579612731933594,
0.10254243016242981,
0.04537181928753853,
0.13613267242908478,
-0.03496122732758522,
-0.05200260877609253,
0.037855252623558044,
0.03541991114616394,
0.2037004977464676,
0.016085047274827957,
0.1663198173046112,
0.03748030215501785,
0.16373345255851746,
0.010852841660380363,
0.044901035726070404,
0.008643276989459991,
-0.03639895096421242,
-0.020207861438393593,
-0.030369024723768234,
-0.030433306470513344,
0.034029193222522736,
-0.013881711289286613,
0.040736328810453415,
-0.10218125581741333,
0.006289794575423002,
0.04318303242325783,
0.23866701126098633,
0.06134796142578125,
-0.3467213213443756,
-0.09953968226909637,
0.009640097618103027,
-0.020303677767515182,
-0.02100021205842495,
0.0042732530273497105,
0.11409413814544678,
-0.09876979142427444,
0.017619602382183075,
-0.08636205643415451,
0.09021291881799698,
-0.06811358034610748,
0.03656657412648201,
0.08418256789445877,
0.07713476568460464,
-0.004670094233006239,
0.07377587258815765,
-0.2583567798137665,
0.2958780527114868,
0.0171626228839159,
0.049257632344961166,
-0.0641821101307869,
-0.010578491725027561,
0.02743164263665676,
0.07595107704401016,
0.08901238441467285,
-0.0071428269147872925,
-0.036380499601364136,
-0.2209966778755188,
-0.0646713450551033,
0.008845317177474499,
0.07368995249271393,
-0.06450598686933517,
0.0943186953663826,
-0.03919953480362892,
0.0033789663575589657,
0.06455458700656891,
0.014308654703199863,
-0.01639680564403534,
-0.0960630550980568,
0.013126610778272152,
0.025228125974535942,
-0.042941175401210785,
-0.06702837347984314,
-0.11120186001062393,
-0.09688658267259598,
0.14322958886623383,
-0.03408415988087654,
-0.0291870329529047,
-0.116720050573349,
0.08351094275712967,
0.07063188403844833,
-0.0872565284371376,
0.02923210710287094,
0.00145772285759449,
0.10384134203195572,
0.01599813997745514,
-0.03825151175260544,
0.11186227947473526,
-0.0668596476316452,
-0.1620711237192154,
-0.07607848942279816,
0.11794836074113846,
0.012625840492546558,
0.07349176704883575,
0.0008380449726246297,
0.027917370200157166,
-0.03108343295753002,
-0.06445217877626419,
0.04829218238592148,
-0.029252447187900543,
0.06486237794160843,
-0.0033541149459779263,
-0.025218883529305458,
0.038364265114068985,
-0.058394163846969604,
-0.04183574020862579,
0.17554858326911926,
0.2746518850326538,
-0.10541142523288727,
0.024323970079421997,
0.02615206688642502,
-0.05774775519967079,
-0.1929139941930771,
0.055489182472229004,
0.04714617505669594,
0.02385552041232586,
0.054298460483551025,
-0.16493897140026093,
0.07690729945898056,
0.09151015430688858,
-0.031128663569688797,
0.08822254836559296,
-0.29805731773376465,
-0.12521114945411682,
0.0867404043674469,
0.12225686758756638,
0.09549275785684586,
-0.12293161451816559,
-0.03576373681426048,
-0.01848437264561653,
-0.11827796697616577,
0.1155705526471138,
-0.06338196992874146,
0.11216554790735245,
-0.010526133701205254,
0.0874612033367157,
0.01099135261029005,
-0.05511859059333801,
0.13163936138153076,
0.008829747326672077,
0.0857783779501915,
-0.05118712782859802,
-0.04945686087012291,
0.055991027504205704,
-0.04930680990219116,
-0.0040852162055671215,
-0.06515084207057953,
0.01927480287849903,
-0.11464151740074158,
-0.021188493818044662,
-0.0739315077662468,
0.018489662557840347,
-0.030063007026910782,
-0.0701095387339592,
-0.02858247421681881,
0.060012634843587875,
0.042459383606910706,
-0.01573147438466549,
0.14766740798950195,
0.010218529962003231,
0.13623017072677612,
0.11594761908054352,
0.08820030093193054,
-0.05234391242265701,
-0.06421542167663574,
-0.019636372104287148,
-0.03336118161678314,
0.05504825338721275,
-0.14626088738441467,
0.026913093402981758,
0.13234831392765045,
0.026386508718132973,
0.14410686492919922,
0.07201619446277618,
-0.027862664312124252,
0.018482226878404617,
0.0666741356253624,
-0.14605168998241425,
-0.09290895611047745,
-0.010453833267092705,
-0.0290104728192091,
-0.13858036696910858,
0.024291934445500374,
0.12046527117490768,
-0.06348786503076553,
-0.009336749091744423,
0.007132803089916706,
-0.0021371531765908003,
-0.04714588075876236,
0.1786670982837677,
0.06717564910650253,
0.056633494794368744,
-0.0861223042011261,
0.056798793375492096,
0.06870589405298233,
-0.06550700962543488,
-0.008032476529479027,
0.035888221114873886,
-0.09939127415418625,
-0.0404474139213562,
0.012377165257930756,
0.1397148072719574,
-0.08694931864738464,
-0.030120300129055977,
-0.1471145898103714,
-0.09937190264463425,
0.059540681540966034,
0.14525705575942993,
0.10370615124702454,
0.006402937229722738,
-0.049021899700164795,
0.002543001202866435,
-0.11647281795740128,
0.09846334904432297,
0.040215037763118744,
0.07865500450134277,
-0.1523621678352356,
0.16288675367832184,
-0.012997256591916084,
0.05196752771735191,
-0.019479580223560333,
0.030305109918117523,
-0.10095592588186264,
0.014887304976582527,
-0.10582513362169266,
-0.02616865746676922,
-0.03325788676738739,
-0.002650284208357334,
-0.004293037578463554,
-0.05966584011912346,
-0.04598456248641014,
0.002844858216121793,
-0.11458619683980942,
-0.022015204653143883,
0.038218844681978226,
0.05148794502019882,
-0.09951622784137726,
-0.039488956332206726,
0.0267826858907938,
-0.05854090303182602,
0.0740862712264061,
0.0035898073110729456,
0.03502904251217842,
0.03313075378537178,
-0.09256372600793839,
0.016971176490187645,
0.03560782968997955,
0.01708858646452427,
0.07236505299806595,
-0.09241858124732971,
-0.009055127389729023,
-0.020035255700349808,
0.03830775246024132,
0.029873322695493698,
0.08829651772975922,
-0.12695163488388062,
0.0026907273568212986,
-0.006036252249032259,
-0.0647071972489357,
-0.062384966760873795,
0.04932383447885513,
0.06821098178625107,
0.046108465641736984,
0.19931092858314514,
-0.06815402954816818,
0.03905397653579712,
-0.20100577175617218,
-0.003316700691357255,
-0.014538975432515144,
-0.10454017668962479,
-0.10682819038629532,
-0.07181709259748459,
0.05952418968081474,
-0.060199666768312454,
0.11516123265028,
0.03500349074602127,
0.06626548618078232,
0.03977649286389351,
-0.005370032973587513,
0.04176311567425728,
0.01732439547777176,
0.17703868448734283,
0.03622661530971527,
-0.035909853875637054,
0.07167948782444,
0.04257672280073166,
0.08303806930780411,
0.11764136701822281,
0.173916757106781,
0.13502971827983856,
0.014578580856323242,
0.07491623610258102,
0.04776894673705101,
-0.04714250937104225,
-0.18744538724422455,
0.020563578233122826,
-0.04281236231327057,
0.10082002729177475,
-0.02635825052857399,
0.20132511854171753,
0.07440763711929321,
-0.17853303253650665,
0.021179893985390663,
-0.06010611355304718,
-0.08263090252876282,
-0.09707135707139969,
-0.0885484367609024,
-0.08005701750516891,
-0.11664843559265137,
-0.0005613508983515203,
-0.0963544026017189,
0.0056416126899421215,
0.15238958597183228,
-0.004733205307275057,
-0.01515233051031828,
0.1270868480205536,
-0.0026842616498470306,
0.025404034182429314,
0.05523931607604027,
0.011588379740715027,
-0.012750979512929916,
-0.10507187247276306,
-0.06475702673196793,
-0.0134113235399127,
-0.030548250302672386,
0.03398240730166435,
-0.07533326745033264,
-0.02107209339737892,
0.022885318845510483,
-0.007906288839876652,
-0.11134098470211029,
0.006304109003394842,
0.021704580634832382,
0.062312621623277664,
0.04264434799551964,
0.008258605375885963,
0.03125125542283058,
-0.015481679700314999,
0.2279857099056244,
-0.07727377116680145,
-0.046806395053863525,
-0.11659112572669983,
0.2467731535434723,
0.0016625006683170795,
-0.02397036924958229,
0.024094628170132637,
-0.07394072413444519,
0.02731402963399887,
0.22986556589603424,
0.19364790618419647,
-0.12396640330553055,
-0.00712360767647624,
0.014433737844228745,
-0.009183356538414955,
-0.027600666508078575,
0.11488025635480881,
0.0850268304347992,
0.014626839198172092,
-0.09669327735900879,
-0.05022266507148743,
-0.06610903143882751,
-0.016988949850201607,
-0.010624390095472336,
0.05608458071947098,
0.034906066954135895,
0.01743309199810028,
-0.05666482076048851,
0.06467339396476746,
-0.04694877192378044,
-0.09931955486536026,
0.06702666729688644,
-0.21542321145534515,
-0.1669338494539261,
-0.01369355246424675,
0.0767141804099083,
-0.0050854189321398735,
0.06104324012994766,
-0.03774736449122429,
0.02027980424463749,
0.062477245926856995,
-0.020398950204253197,
-0.06739445775747299,
-0.07552933692932129,
0.10618696361780167,
-0.08327905833721161,
0.21440547704696655,
-0.058638982474803925,
0.06493090838193893,
0.12331108003854752,
0.060374923050403595,
-0.08170349895954132,
0.04497888684272766,
0.05913674458861351,
-0.04042365774512291,
0.03160647302865982,
0.09515534341335297,
-0.03577492758631706,
0.11814165860414505,
0.05364786460995674,
-0.13516579568386078,
0.01933383196592331,
-0.08231684565544128,
-0.05361287668347359,
-0.04862435162067413,
-0.03939172253012657,
-0.048866383731365204,
0.15190990269184113,
0.2021455615758896,
-0.03641599789261818,
-0.01834310032427311,
-0.05735251307487488,
0.00006496133573818952,
0.07797609269618988,
0.03419960290193558,
-0.07383386045694351,
-0.20337840914726257,
0.00006206249963724986,
0.04125530645251274,
-0.018080322071909904,
-0.2450914829969406,
-0.09438072890043259,
0.002699983539059758,
-0.06690400093793869,
-0.06844347715377808,
0.10124192386865616,
0.07871200144290924,
0.049335334450006485,
-0.06587129831314087,
-0.03788093850016594,
-0.06411442905664444,
0.1289353370666504,
-0.1445336937904358,
-0.0885985866189003
] |
null | null | stable-baselines3 |
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.24 +/- 0.10", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | samuraibosky/a2c-0 | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-13T16:30:56+00:00 | [] | [] | TAGS
#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# A2C Agent playing PandaReachDense-v3
This is a trained model of a A2C agent playing PandaReachDense-v3
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
41,
45,
17
] | [
"passage: TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.028780510649085045,
0.06549051403999329,
-0.004174588713794947,
0.028733979910612106,
0.12748076021671295,
-0.010029550641775131,
0.16130082309246063,
0.07903143763542175,
0.052706290036439896,
-0.055043965578079224,
0.09157051891088486,
-0.079488605260849,
0.04699381813406944,
0.3393711447715759,
0.029525093734264374,
-0.186785027384758,
0.08573613315820694,
0.015584449283778667,
0.018966808915138245,
0.09867662936449051,
0.03466832637786865,
-0.08736564218997955,
0.04568251967430115,
0.03800429776310921,
-0.07686931639909744,
-0.04319252818822861,
-0.03975098207592964,
-0.06744661927223206,
0.10361767560243607,
-0.044310007244348526,
0.1670169234275818,
-0.03489987552165985,
0.10219604521989822,
-0.12577489018440247,
0.031373992562294006,
-0.04813149571418762,
-0.05141052231192589,
0.002818689215928316,
-0.011371237225830555,
0.05937984213232994,
0.04167760908603668,
0.05197896435856819,
0.07366002351045609,
0.04871916025876999,
-0.08704962581396103,
-0.11396265029907227,
-0.006845315918326378,
0.07931416481733322,
0.17974808812141418,
0.04054044932126999,
-0.02474738284945488,
0.09696658700704575,
-0.11350683122873306,
0.01657135598361492,
-0.019304286688566208,
-0.4018571078777313,
0.006876560393720865,
0.15550047159194946,
0.04677277058362961,
0.010903568007051945,
-0.0061170910485088825,
-0.004642391111701727,
0.02805398777127266,
-0.037410516291856766,
0.08670840412378311,
-0.09000635892152786,
0.06153826415538788,
-0.019131680950522423,
-0.04113767296075821,
-0.01751464419066906,
0.2419518232345581,
0.01633240468800068,
-0.08024721592664719,
-0.07922019064426422,
0.009968155063688755,
-0.028026137501001358,
-0.0877801775932312,
-0.06134319305419922,
0.07644549012184143,
0.057131536304950714,
0.10696670413017273,
-0.030399860814213753,
-0.058683689683675766,
-0.04541248828172684,
0.08352918922901154,
-0.03953780233860016,
-0.017566127702593803,
-0.01754307933151722,
-0.06739802658557892,
-0.003707833355292678,
0.015629740431904793,
-0.06615205854177475,
-0.015486059710383415,
-0.044966671615839005,
-0.1556774228811264,
-0.009128551930189133,
-0.0599384643137455,
0.03310214728116989,
0.10073909163475037,
0.13065455853939056,
0.06838785856962204,
0.09685135632753372,
-0.08001106232404709,
0.0389438234269619,
0.06625691801309586,
0.09461154788732529,
-0.044509198516607285,
-0.011874453164637089,
0.14630302786827087,
0.10327376425266266,
0.09657767415046692,
-0.09182082861661911,
-0.12403369694948196,
0.04173071309924126,
0.10965418070554733,
0.03382069617509842,
0.0046537998132407665,
0.04452834278345108,
-0.14144757390022278,
0.023916395381093025,
0.0006972529226914048,
-0.045244041830301285,
-0.03088594414293766,
0.06111180782318115,
-0.04433412477374077,
0.02348744124174118,
-0.012718633748590946,
0.10830001533031464,
0.10152670741081238,
-0.023899899795651436,
-0.052799396216869354,
-0.04201658070087433,
-0.0440504252910614,
-0.05507666990160942,
0.04012975096702576,
0.01289378758519888,
0.04624854028224945,
-0.1184653639793396,
-0.13997629284858704,
0.051258668303489685,
0.019622454419732094,
-0.026321161538362503,
-0.13472233712673187,
-0.09338399767875671,
-0.03747362270951271,
-0.011210841126739979,
0.0030350966844707727,
-0.19588395953178406,
-0.02434816211462021,
-0.03428230062127113,
0.13725687563419342,
0.10810749977827072,
-0.06433141976594925,
-0.06369391083717346,
-0.12834231555461884,
0.06795675307512283,
-0.23485252261161804,
0.038750845938920975,
-0.09932064265012741,
0.12411006540060043,
0.007471752353012562,
0.023616313934326172,
0.1410844624042511,
0.02330038882791996,
0.004575210623443127,
0.1702503114938736,
-0.18833371996879578,
-0.046672217547893524,
0.17527204751968384,
-0.0857074186205864,
-0.17703735828399658,
0.05021136254072189,
-0.02124672941863537,
-0.013779462315142155,
0.06350992619991302,
0.09937554597854614,
-0.01727774553000927,
-0.17061583697795868,
0.02558896690607071,
-0.0014508399181067944,
-0.05959303304553032,
0.021542999893426895,
0.12072649598121643,
0.08040176331996918,
-0.027203790843486786,
-0.0016989230643957853,
-0.15452547371387482,
0.09701786935329437,
-0.023543400689959526,
-0.08447092026472092,
0.022736359387636185,
-0.10411997884511948,
0.10016260296106339,
-0.015677137300372124,
0.10591494292020798,
-0.02265925332903862,
-0.018805475905537605,
-0.032891299575567245,
0.10408006608486176,
-0.0068649593740701675,
0.039593957364559174,
-0.17728297412395477,
0.1326225996017456,
0.02176543138921261,
0.046730607748031616,
-0.10109715908765793,
-0.10202061384916306,
0.06674831360578537,
0.15375585854053497,
0.05606463924050331,
0.03833417221903801,
0.07328703999519348,
0.03443831577897072,
-0.0030986627098172903,
-0.1205538883805275,
-0.12789975106716156,
0.019881807267665863,
0.06068658083677292,
-0.08039596676826477,
-0.05172275751829147,
-0.10460081696510315,
0.21138279139995575,
-0.10705634206533432,
0.012047823518514633,
-0.09333895146846771,
0.010153836570680141,
0.08388294279575348,
0.01348812971264124,
0.08132237941026688,
0.02585482969880104,
-0.04426883906126022,
0.009419471956789494,
0.0882885605096817,
0.044275086373090744,
-0.1379590630531311,
0.03784618154168129,
0.024114131927490234,
0.23272188007831573,
0.15174852311611176,
-0.016499420627951622,
-0.055556558072566986,
0.006534850224852562,
0.03740030899643898,
0.03533044084906578,
0.034956689924001694,
0.06951800733804703,
0.1090264692902565,
0.07713755965232849,
0.1276414394378662,
-0.05066131055355072,
0.17763042449951172,
-0.006530070677399635,
-0.14888496696949005,
0.02993084490299225,
-0.07033783197402954,
0.0941668227314949,
-0.06030277907848358,
0.048379335552453995,
0.05410725995898247,
0.0304675605148077,
0.08504439890384674,
-0.00693494314327836,
0.022639812901616096,
-0.04341154545545578,
0.04943868890404701,
0.06790532171726227,
0.06545940041542053,
0.06452376395463943,
-0.007423467002809048,
0.015456308610737324,
-0.05288444459438324,
-0.0518295019865036,
-0.10519610345363617,
-0.12370408326387405,
0.037892695516347885,
-0.015912096947431564,
-0.04463989660143852,
-0.01629551686346531,
-0.07266248762607574,
0.050321705639362335,
0.05250744894146919,
-0.07199236750602722,
0.028561361134052277,
-0.007090074475854635,
-0.09633425623178482,
0.1130511462688446,
-0.14269201457500458,
-0.31355980038642883,
-0.02000165916979313,
-0.13154496252536774,
-0.02077566273510456,
0.15819574892520905,
-0.057956792414188385,
-0.1681092083454132,
0.03305667266249657,
-0.02401961199939251,
-0.09238096326589584,
0.04225420579314232,
-0.018061356619000435,
0.10221174359321594,
0.0857708528637886,
0.043082691729068756,
0.00862243864685297,
-0.01184127852320671,
-0.03903079405426979,
-0.08788500726222992,
0.07608162611722946,
-0.06721128523349762,
0.1173204705119133,
0.13519366085529327,
0.04123268276453018,
-0.015909500420093536,
-0.02043113484978676,
0.06215733662247658,
0.012027861550450325,
-0.036599598824977875,
0.13453175127506256,
-0.03608042374253273,
-0.00864011887460947,
0.04470202699303627,
0.008029532618820667,
-0.10533943772315979,
0.09432658553123474,
-0.05022074654698372,
-0.06974482536315918,
-0.017500806599855423,
-0.08790571242570877,
-0.09950723499059677,
0.18995612859725952,
0.0490412712097168,
0.007856572046875954,
-0.05151839926838875,
0.036120012402534485,
0.07772433012723923,
0.044773608446121216,
0.007161281071603298,
0.03985898196697235,
-0.005716364365071058,
-0.013170693069696426,
0.05278664082288742,
-0.023887991905212402,
0.009960537776350975,
-0.007844919338822365,
0.13077811896800995,
-0.015673788264393806,
0.10317149013280869,
0.0030158995650708675,
0.008619097992777824,
0.08018261194229126,
0.12394148856401443,
0.08064290136098862,
0.019240466877818108,
-0.11554506421089172,
-0.04732639715075493,
-0.030522609129548073,
-0.18181301653385162,
0.11669926345348358,
0.10738886147737503,
0.05268440023064613,
-0.05564067140221596,
0.22832486033439636,
0.0012100599706172943,
0.10802210867404938,
0.03496129810810089,
-0.17664514482021332,
0.024751557037234306,
0.03574612736701965,
0.050895314663648605,
0.007034227252006531,
0.062039270997047424,
-0.09453237801790237,
-0.1839483082294464,
0.03968557342886925,
0.018860090523958206,
0.05523261800408363,
-0.018427258357405663,
0.018512532114982605,
-0.12044285237789154,
-0.05746040865778923,
0.02161633037030697,
0.02076297253370285,
-0.3029120862483978,
0.06816349923610687,
-0.04133946821093559,
0.07392577081918716,
0.009542034938931465,
0.01343793235719204,
0.06604447960853577,
0.01652485318481922,
0.1375029981136322,
-0.017935138195753098,
0.1707022786140442,
-0.1572514772415161,
-0.16084668040275574,
0.025680551305413246,
-0.059293005615472794,
0.07245437800884247,
0.082563117146492,
0.017692390829324722,
0.0069250138476490974,
-0.00047057756455615163,
0.20794180035591125,
-0.13032017648220062,
-0.0346711240708828,
-0.035274047404527664,
0.019543148577213287,
0.022580156102776527,
-0.03844551369547844,
-0.021310672163963318,
0.06112392246723175,
0.1489492505788803,
0.07546767592430115,
-0.02780069410800934,
-0.04611911624670029,
-0.03938353434205055,
-0.09507237374782562,
-0.044778671115636826,
0.10472412407398224,
-0.07841785997152328,
0.10144548118114471,
-0.07513871043920517,
-0.04432075098156929,
0.11707907915115356,
-0.09250949323177338,
-0.053160861134529114,
-0.07627046853303909,
0.05462219938635826,
0.008296831510961056,
0.13374868035316467,
0.03642493113875389,
0.02114485390484333,
0.10089845955371857,
-0.05001259222626686,
0.08662480860948563,
0.03777577355504036,
-0.03541218861937523,
0.03517242521047592,
-0.05375073477625847,
-0.04829130321741104,
-0.010828596539795399,
0.03814345970749855,
0.24244728684425354,
0.302570104598999,
-0.012830551713705063,
0.1897524893283844,
0.09193363785743713,
0.029696941375732422,
-0.16292639076709747,
-0.1200476586818695,
0.05548451840877533,
0.059938978403806686,
0.06154406815767288,
-0.2788083851337433,
0.057189684361219406,
-0.053967077285051346,
-0.08999616652727127,
-0.06829255819320679,
-0.08560561388731003,
-0.07613074034452438,
0.088682159781456,
0.08794322609901428,
0.09100460261106491,
-0.12551987171173096,
0.015924450010061264,
-0.012671655975282192,
-0.1664767563343048,
0.12128932029008865,
-0.039350032806396484,
0.07007917016744614,
-0.025050386786460876,
-0.06438229978084564,
0.025165842846035957,
-0.02775278501212597,
0.04424511641263962,
-0.1206880658864975,
0.0005293674184940755,
-0.04527926817536354,
-0.03749620169401169,
0.1088484600186348,
0.020565982908010483,
-0.0028168195858597755,
-0.09558401256799698,
-0.011945599690079689,
-0.3103867173194885,
0.01988539844751358,
0.02114551141858101,
-0.039148375391960144,
-0.0012507046340033412,
-0.08678091317415237,
-0.042053963989019394,
0.10508828610181808,
0.03930897265672684,
0.08641290664672852,
0.15335260331630707,
-0.005581455305218697,
-0.021082017570734024,
0.17506572604179382,
0.05701295658946037,
-0.014002309180796146,
0.10069113969802856,
-0.06732672452926636,
-0.06576105207204819,
0.04418903961777687,
-0.1016126498579979,
-0.005435575265437365,
0.005642053205519915,
-0.007821558974683285,
0.07107745110988617,
0.09962856024503708,
-0.03340476378798485,
0.18194207549095154,
0.09798844903707504,
-0.15048468112945557,
0.0030947427731007338,
0.052597809582948685,
-0.032650984823703766,
0.04424609988927841,
-0.04443032294511795,
0.05541829764842987,
-0.07521786540746689,
-0.03790169581770897,
0.02031708136200905,
-0.01010141521692276,
-0.07618512213230133,
0.00011962707503698766,
0.03176301345229149,
0.029956085607409477,
-0.08340912312269211,
0.14036758244037628,
0.016359949484467506,
0.0652431845664978,
0.11902019381523132,
0.019259776920080185,
-0.10460162162780762,
-0.014167122542858124,
-0.02339506521821022,
0.2028627097606659,
-0.007937151938676834,
-0.018536100164055824,
-0.11391238868236542,
-0.12847240269184113,
0.018047582358121872,
-0.10348039865493774,
0.10282431542873383,
-0.052032727748155594,
-0.06570395082235336,
-0.03704213351011276,
-0.05561172217130661,
0.031932998448610306,
0.017090078443288803,
-0.015642894431948662,
-0.16111870110034943,
-0.04170334339141846,
0.06846143305301666,
0.039452772587537766,
-0.06145704537630081,
-0.06289087235927582,
-0.16302458941936493,
0.03506235405802727,
-0.1278870701789856,
0.0010145133128389716,
-0.047339316457509995,
-0.05002537742257118,
-0.05195476487278938,
0.01521157007664442,
-0.0177876316010952,
0.008817745372653008,
-0.05148332938551903,
0.03292781487107277,
0.011250603944063187,
0.0014076961670070887,
-0.06952075660228729,
-0.04419080913066864,
0.032172493636608124,
-0.04430563375353813,
0.0661356970667839,
0.04131564497947693,
-0.005653871223330498,
0.021474739536643028,
-0.07005896419286728,
-0.10248169302940369,
0.10313672572374344,
-0.014939527027308941,
0.050572704523801804,
-0.0603681318461895,
-0.012018447741866112,
0.007195405196398497,
-0.07569561898708344,
-0.007751014549285173,
0.24328774213790894,
-0.010914106853306293,
-0.05394120141863823,
-0.07426224648952484,
-0.036970075219869614,
-0.09100507944822311,
-0.0004900419735349715,
0.1948854625225067,
0.05477539822459221,
0.14600017666816711,
-0.0532439760863781,
0.08785777539014816,
-0.06481330841779709,
-0.01534446980804205,
-0.08259234577417374,
0.030320849269628525,
-0.157977893948555,
-0.08130980283021927,
-0.028043894097208977,
-0.03728124126791954,
0.13441862165927887,
-0.19242097437381744,
0.0032852457370609045,
-0.010904400609433651,
-0.04910553991794586,
0.11381126195192337,
0.0557032972574234,
0.24474471807479858,
0.1050342544913292,
-0.035265225917100906,
0.10503548383712769,
0.12215624749660492,
0.0929517149925232,
-0.03347417712211609,
0.058777112513780594,
-0.05078745633363724,
-0.0868106484413147,
0.09736774861812592,
0.012061800807714462,
0.036776214838027954,
-0.08157306164503098,
0.022900743409991264,
-0.10047483444213867,
0.002025678288191557,
0.02005080319941044,
0.2473200410604477,
0.1967000812292099,
-0.09632564336061478,
-0.012216159142553806,
-0.05708231031894684,
-0.032561756670475006,
-0.04091155156493187,
-0.002459051087498665,
-0.07821618020534515,
-0.21873407065868378,
0.051539067178964615,
-0.0930585265159607,
-0.07632365822792053,
-0.06189138814806938,
-0.04064059257507324,
-0.02870149537920952,
0.046939339488744736,
0.03212931379675865,
0.04136762022972107,
0.05070297420024872,
-0.0371626541018486,
-0.09345480799674988,
0.06879863888025284,
-0.11172787100076675,
-0.042014576494693756,
-0.03408866748213768,
0.014045859687030315,
0.032319605350494385,
-0.07429610192775726,
0.07487598061561584,
-0.012149554677307606,
-0.07710553705692291,
0.036456044763326645,
-0.03482281416654587,
0.02153356932103634,
0.07482071220874786,
0.04184282198548317,
-0.09644174575805664,
0.015602846629917622,
0.18867559731006622,
0.020273970440030098,
0.008802177384495735,
-0.14742465317249298,
0.2000039666891098,
-0.02619965374469757,
0.07266447693109512,
-0.03337041288614273,
-0.015141828916966915,
-0.10115411877632141,
0.19129611551761627,
0.11998134851455688,
-0.24376079440116882,
0.024953339248895645,
-0.12912821769714355,
0.022151969373226166,
-0.13376696407794952,
0.20840151607990265,
0.05465596541762352,
0.10847201198339462,
-0.06020665541291237,
-0.02479162998497486,
-0.1493310034275055,
-0.09408020973205566,
-0.08478302508592606,
-0.0414455346763134,
0.10249399393796921,
0.0031611735466867685,
-0.05072701349854469,
-0.00887248944491148,
-0.1566619724035263,
0.10201162099838257,
-0.048264030367136,
-0.11855816096067429,
-0.0679796114563942,
-0.059141192585229874,
-0.06102965027093887,
0.11088541150093079,
0.11637356877326965,
-0.01684124954044819,
0.024554423987865448,
-0.07280154526233673,
-0.012559473514556885,
0.011003518477082253,
0.005383014678955078,
0.0626269057393074,
-0.04783647879958153,
0.1594477891921997,
-0.021524829789996147,
0.0008918871753849089,
0.04285505786538124,
0.05263057351112366,
-0.07584847509860992,
0.06380704790353775,
0.02512199431657791,
0.028178859502077103,
-0.006920731160789728,
0.059795111417770386,
-0.0196672473102808,
0.08964395523071289,
0.08038042485713959,
-0.007235884666442871,
0.09868589043617249,
-0.03191833570599556,
0.006547331809997559,
-0.057698819786310196,
0.06932510435581207,
-0.12982366979122162,
0.05436630919575691,
0.043436627835035324,
-0.10945180803537369,
0.03841061517596245,
0.02560393325984478,
0.11603125184774399,
0.058632634580135345,
-0.040632184594869614,
-0.10494323819875717,
-0.13799439370632172,
0.023235952481627464,
0.058803655207157135,
-0.06312531977891922,
-0.13800419867038727,
-0.052970461547374725,
-0.2062724232673645,
0.04198472201824188,
-0.07393307238817215,
0.06842854619026184,
0.045238204300403595,
0.01849091611802578,
-0.05578908324241638,
-0.06200101599097252,
0.01771395653486252,
0.13669656217098236,
-0.06059794872999191,
-0.13932769000530243
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | aegunal/llama13bchat_ft_ipd | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:31:22+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | null |
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-runway
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the jlbaker361/spider-500 dataset.
Training epochs = 100
num_train_timesteps = 50
You can find some example images in the following.












| {} | null | jlbaker361/spider-lora-500-e100-runway | [
"safetensors",
"region:us"
] | 2024-02-13T16:37:04+00:00 | [] | [] | TAGS
#safetensors #region-us
|
---
license: creativeml-openrail-m
base_model: runwayml/stable-diffusion-v1-5
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-runway
These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the jlbaker361/spider-500 dataset.
Training epochs = 100
num_train_timesteps = 50
You can find some example images in the following.
!img_0
!img_1
!img_2
!img_3
!img_4
!img_5
!img_6
!img_7
!img_8
!img_9
!img_10
!img_11
| [
"# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-runway\n These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the jlbaker361/spider-500 dataset. \n\n Training epochs = 100 \n\n num_train_timesteps = 50 \n\n You can find some example images in the following. \n\n !img_0\n!img_1\n!img_2\n!img_3\n!img_4\n!img_5\n!img_6\n!img_7\n!img_8\n!img_9\n!img_10\n!img_11"
] | [
"TAGS\n#safetensors #region-us \n",
"# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-runway\n These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the jlbaker361/spider-500 dataset. \n\n Training epochs = 100 \n\n num_train_timesteps = 50 \n\n You can find some example images in the following. \n\n !img_0\n!img_1\n!img_2\n!img_3\n!img_4\n!img_5\n!img_6\n!img_7\n!img_8\n!img_9\n!img_10\n!img_11"
] | [
11,
161
] | [
"passage: TAGS\n#safetensors #region-us \n# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-runway\n These are LoRA adaption weights for runwayml/stable-diffusion-v1-5. The weights were fine-tuned on the jlbaker361/spider-500 dataset. \n\n Training epochs = 100 \n\n num_train_timesteps = 50 \n\n You can find some example images in the following. \n\n !img_0\n!img_1\n!img_2\n!img_3\n!img_4\n!img_5\n!img_6\n!img_7\n!img_8\n!img_9\n!img_10\n!img_11"
] | [
-0.10177505016326904,
-0.021825425326824188,
-0.0005665613571181893,
0.1430923044681549,
0.10883057117462158,
0.007556771859526634,
0.1405605673789978,
0.11350825428962708,
-0.003337865462526679,
0.033300623297691345,
0.09636159241199493,
0.09603103995323181,
-0.01749219372868538,
0.1792251020669937,
-0.022648362442851067,
-0.1686587929725647,
-0.008740760385990143,
-0.07069739699363708,
-0.1772458255290985,
0.07697281241416931,
0.08552172780036926,
-0.03741912916302681,
0.10834583640098572,
0.008284327574074268,
-0.04606829956173897,
0.07409390062093735,
0.04109188914299011,
-0.09667886048555374,
0.0812525600194931,
0.023243974894285202,
0.06231355294585228,
0.01651894673705101,
0.11182140558958054,
-0.17212557792663574,
0.013196784071624279,
0.03970852121710777,
0.022365137934684753,
0.043283481150865555,
-0.05453621223568916,
0.0023528030142188072,
0.1638522893190384,
-0.0713513195514679,
-0.028099888935685158,
-0.008112229406833649,
-0.10602755099534988,
-0.15629459917545319,
-0.1411532163619995,
-0.049499668180942535,
0.10373684763908386,
0.06119055673480034,
0.008869224227964878,
0.12894092500209808,
-0.08083231002092361,
0.05699172988533974,
0.40767809748649597,
-0.28696051239967346,
-0.02049918659031391,
0.11141813546419144,
0.002777855144813657,
0.05542827770113945,
-0.08357835561037064,
0.03314414247870445,
0.12556804716587067,
-0.07685226947069168,
0.060851141810417175,
-0.028192631900310516,
0.026714475825428963,
0.0440792553126812,
-0.1547679752111435,
0.04713902622461319,
0.24024972319602966,
0.03124864213168621,
-0.09330786019563675,
-0.102379709482193,
-0.0018305216217413545,
-0.00903869979083538,
-0.010437983088195324,
-0.028609968721866608,
-0.004698588978499174,
-0.028971100226044655,
-0.018349507823586464,
-0.014475571922957897,
-0.04426129534840584,
-0.10533499717712402,
-0.008960173465311527,
0.2945394814014435,
0.03210341930389404,
0.03826461359858513,
0.015237859450280666,
0.12182117253541946,
-0.07642500847578049,
-0.08856784552335739,
-0.006916387006640434,
-0.0198366716504097,
0.03358935937285423,
-0.006210662890225649,
0.05400548875331879,
-0.06437403708696365,
0.03977761045098305,
0.10219670087099075,
0.1023416742682457,
-0.023179728537797928,
0.004396283999085426,
0.06761365383863449,
-0.1158192828297615,
0.058171238750219345,
-0.09811954945325851,
-0.15865415334701538,
0.06019160524010658,
0.13207322359085083,
0.11503229290246964,
-0.0025982188526540995,
-0.04687479883432388,
-0.07481574267148972,
-0.039629653096199036,
0.06649541109800339,
-0.08671673387289047,
0.03235667198896408,
-0.09126868844032288,
0.049636270850896835,
0.10341238975524902,
-0.040726251900196075,
0.004509367514401674,
-0.046391524374485016,
-0.06779395788908005,
-0.026328422129154205,
0.1720549613237381,
0.038167309015989304,
0.06266575306653976,
0.04094112291932106,
-0.0721261203289032,
0.04957542568445206,
-0.028888193890452385,
-0.12299201637506485,
-0.0757109522819519,
0.03450113534927368,
-0.015059751458466053,
-0.08617082238197327,
-0.07611842453479767,
-0.013951503671705723,
-0.0009346181177534163,
-0.01544210221618414,
0.03063521906733513,
-0.0264445673674345,
-0.06168339028954506,
-0.04200942814350128,
0.04506104812026024,
0.02998700551688671,
-0.07517042011022568,
0.06939840316772461,
0.059298690408468246,
0.16708801686763763,
-0.0077219996601343155,
0.0034681237302720547,
-0.12141727656126022,
0.02790488488972187,
-0.15355908870697021,
-0.010263033211231232,
-0.09957442432641983,
0.006315547041594982,
-0.05560698360204697,
-0.042991023510694504,
-0.12289530783891678,
0.024278419092297554,
0.08912977576255798,
0.1593434363603592,
-0.26809021830558777,
-0.017569689080119133,
0.09046890586614609,
-0.12491471320390701,
-0.07620687782764435,
0.031270939856767654,
-0.023083586245775223,
0.11484436690807343,
0.033081382513046265,
0.07974428683519363,
0.07969164848327637,
-0.15874850749969482,
0.06027023866772652,
-0.05031052976846695,
-0.06385035812854767,
-0.07303178310394287,
0.07536874711513519,
-0.004752749111503363,
-0.13048654794692993,
0.01644860953092575,
-0.09353649616241455,
0.0913815051317215,
-0.026555223390460014,
-0.029048504307866096,
-0.01863560453057289,
-0.07404442131519318,
0.05149032175540924,
0.006917810533195734,
-0.02699415199458599,
-0.08530931919813156,
-0.03537972271442413,
-0.0650150254368782,
0.1443403959274292,
-0.029331697151064873,
-0.008305582217872143,
0.04343299940228462,
0.05978769436478615,
-0.12257838249206543,
-0.06609504669904709,
-0.053053006529808044,
-0.019453948363661766,
-0.01252760086208582,
0.14239779114723206,
0.08808080852031708,
0.07051831483840942,
0.12305367738008499,
0.07010350376367569,
-0.01846669428050518,
0.0036591256503015757,
0.06084367260336876,
0.012064766138792038,
-0.10657007992267609,
-0.14202068746089935,
-0.031787142157554626,
-0.10248679667711258,
0.12557817995548248,
-0.25002896785736084,
0.023581570014357567,
-0.08459890633821487,
0.09317634254693985,
0.12967205047607422,
-0.029838593676686287,
0.11858601868152618,
-0.0005635907873511314,
-0.06150471791625023,
-0.1057201698422432,
-0.01700836978852749,
-0.06274698674678802,
-0.09460090845823288,
0.06318812072277069,
-0.08723393827676773,
0.13043147325515747,
0.10768643021583557,
0.07826253771781921,
-0.0615096352994442,
-0.09726712107658386,
-0.001967710442841053,
0.00947149470448494,
-0.08583388477563858,
0.06381470710039139,
-0.028323303908109665,
0.011226865462958813,
0.1321953386068344,
-0.01226127054542303,
0.002480890369042754,
-0.07065030187368393,
-0.05170946195721626,
-0.03222546726465225,
0.04042048379778862,
0.08666351437568665,
0.0023874209728091955,
0.01764051802456379,
0.18477779626846313,
-0.08466563373804092,
0.10474640876054764,
0.05427689477801323,
-0.06892992556095123,
-0.00646994449198246,
0.0797259509563446,
0.05150579288601875,
0.09372948855161667,
0.10957507789134979,
0.01810404285788536,
0.027995724231004715,
-0.06320314854383469,
0.0343959778547287,
-0.16910171508789062,
-0.09043682366609573,
0.0676957443356514,
-0.076905257999897,
0.028023147955536842,
0.05080051347613335,
-0.036616161465644836,
0.13442625105381012,
-0.08462879806756973,
-0.11526982486248016,
-0.059636518359184265,
0.022976117208600044,
-0.06158698722720146,
0.14990177750587463,
0.020753391087055206,
-0.0371188223361969,
-0.15822122991085052,
0.047575343400239944,
-0.07026856392621994,
-0.01033222395926714,
0.029958289116621017,
-0.09645099192857742,
-0.04831473529338837,
-0.12391522526741028,
0.08914127945899963,
0.05782134458422661,
0.05640755593776703,
-0.0031626627314835787,
-0.0391334630548954,
0.03419715538620949,
-0.1742166131734848,
0.006426055915653706,
-0.06904119998216629,
0.06971786916255951,
-0.014397338032722473,
0.023564046248793602,
0.14847740530967712,
0.032262757420539856,
-0.03220706433057785,
0.01259829755872488,
-0.011532771401107311,
0.17847643792629242,
-0.002653298433870077,
0.04354112222790718,
0.16853561997413635,
0.03863028436899185,
0.0498015396296978,
0.06761854887008667,
0.025075573474168777,
-0.09556153416633606,
0.03427978977560997,
0.02507845126092434,
-0.11458155512809753,
-0.09707211703062057,
-0.010191480629146099,
-0.0324309803545475,
-0.04812944307923317,
0.05350002273917198,
0.015306374058127403,
0.01216357946395874,
0.12563325464725494,
0.022572092711925507,
0.06238342449069023,
0.025778215378522873,
0.042306628078222275,
-0.09782666712999344,
0.017954586073756218,
0.10991718620061874,
-0.06988782435655594,
-0.12598727643489838,
0.08322867751121521,
-0.0026177538093179464,
0.14634759724140167,
-0.08496887236833572,
-0.034248095005750656,
0.03525392338633537,
0.0572221502661705,
0.013125758618116379,
0.1932043582201004,
-0.02814532443881035,
-0.05704629421234131,
-0.04805644601583481,
-0.11161435395479202,
0.03266884386539459,
0.0842575952410698,
0.007614893838763237,
0.07138048857450485,
-0.015306811779737473,
0.09684116393327713,
0.022984230890870094,
0.013721884228289127,
0.13455644249916077,
-0.2892533540725708,
0.08182094246149063,
0.033608172088861465,
0.06470071524381638,
0.008952082134783268,
0.06210784614086151,
0.12441985309123993,
-0.0025867694057524204,
0.08159243315458298,
-0.07306060194969177,
0.03198615089058876,
-0.04765569791197777,
-0.06989503651857376,
-0.017217129468917847,
0.1672854870557785,
-0.07898969203233719,
0.00937653798609972,
-0.17265409231185913,
0.0682348757982254,
-0.02370818331837654,
-0.01884300820529461,
-0.037143971771001816,
-0.008766960352659225,
0.11178397387266159,
0.0071394192054867744,
0.12186091393232346,
-0.021333923563361168,
-0.05765792354941368,
-0.17032907903194427,
-0.10824570804834366,
-0.009666621685028076,
0.018766196444630623,
-0.041095271706581116,
0.1297360360622406,
-0.009648889303207397,
-0.027865292504429817,
0.032984409481287,
0.010652520693838596,
-0.22995950281620026,
-0.061855677515268326,
-0.04128427803516388,
0.11673164367675781,
-0.051298677921295166,
-0.08186450600624084,
-0.0690133273601532,
-0.09132330119609833,
0.14019538462162018,
0.11241544038057327,
-0.019125377759337425,
-0.0871402844786644,
0.0993548110127449,
0.13375990092754364,
-0.020500540733337402,
-0.030937058851122856,
0.016478590667247772,
-0.010604660958051682,
-0.0566076785326004,
-0.042449336498975754,
0.06373539566993713,
-0.028333963826298714,
-0.08624592423439026,
-0.06151614338159561,
0.09622207283973694,
-0.07285510003566742,
-0.00011876005009980872,
0.0006559284520335495,
-0.005200587213039398,
0.04017143324017525,
-0.10128819942474365,
0.06094088405370712,
-0.02321605011820793,
-0.08508872240781784,
0.1274898201227188,
-0.06226835027337074,
-0.06473203003406525,
-0.10046915709972382,
-0.0035288790240883827,
0.16701924800872803,
0.24405258893966675,
-0.09697889536619186,
-0.021023372188210487,
-0.03685208782553673,
-0.0004966083215549588,
-0.15358591079711914,
0.035769231617450714,
-0.0901399552822113,
0.02105349488556385,
0.11521553993225098,
-0.018526850268244743,
0.1341291069984436,
0.15819503366947174,
0.013978827744722366,
0.27002933621406555,
-0.31649157404899597,
-0.11538340896368027,
0.0674426257610321,
0.19183282554149628,
0.15268756449222565,
-0.14425034821033478,
-0.033101752400398254,
-0.037678468972444534,
-0.009925431571900845,
-0.03293775022029877,
-0.06302755326032639,
0.09204704314470291,
-0.06048659235239029,
-0.056384649127721786,
0.035557251423597336,
-0.04104479029774666,
0.1414967030286789,
-0.024567609652876854,
0.1602841317653656,
-0.05576346814632416,
-0.15889741480350494,
-0.06365928053855896,
-0.07725274562835693,
0.15516851842403412,
-0.14458498358726501,
0.01941739395260811,
-0.13645370304584503,
-0.005423692986369133,
0.024988515302538872,
0.0492255799472332,
0.011149244382977486,
-0.04452425613999367,
-0.10815009474754333,
0.0017928237793967128,
-0.05048682913184166,
-0.012680686078965664,
0.13534590601921082,
0.0367753729224205,
0.07143929600715637,
0.022492803633213043,
-0.025632083415985107,
0.10303778946399689,
0.012117665261030197,
0.0032368921674788,
0.02192356064915657,
0.06288356333971024,
-0.18065480887889862,
0.012560202740132809,
0.060872480273246765,
0.08771415054798126,
0.02916933223605156,
0.05852396413683891,
-0.06369619071483612,
0.04989229515194893,
0.1505952775478363,
-0.06954561173915863,
0.09773492068052292,
-0.03635859861969948,
-0.08844047039747238,
0.04041225090622902,
0.09400688856840134,
0.11288280040025711,
-0.07627524435520172,
0.017909986898303032,
-0.054751649498939514,
-0.01397852972149849,
-0.07478518784046173,
0.14317159354686737,
0.14449447393417358,
-0.0007715672254562378,
-0.048906780779361725,
0.048807404935359955,
-0.02512757107615471,
0.08966050297021866,
-0.05996226891875267,
0.061148181557655334,
-0.0169436763972044,
-0.05053795501589775,
0.14695924520492554,
0.23463819921016693,
-0.02343658357858658,
0.006162097677588463,
-0.09440469741821289,
-0.06957811862230301,
-0.0027449203189462423,
0.039685651659965515,
0.08175622671842575,
-0.06134817376732826,
-0.03397649899125099,
-0.032471273094415665,
-0.09434375911951065,
0.08072114735841751,
0.06785649806261063,
0.10053578019142151,
-0.2406669706106186,
0.015094774775207043,
-0.059192754328250885,
-0.052042875438928604,
-0.025301825255155563,
0.008108250796794891,
-0.08017300814390182,
-0.012603184208273888,
-0.007781303953379393,
-0.007600891403853893,
-0.09966215491294861,
0.01979251392185688,
-0.017496071755886078,
-0.04942427575588226,
-0.0325041264295578,
0.050315938889980316,
-0.07871069759130478,
-0.045156337320804596,
-0.04127999022603035,
0.020713936537504196,
-0.08883020281791687,
-0.07486196607351303,
-0.0071679409593343735,
-0.09360910207033157,
0.006748880725353956,
-0.018563279882073402,
0.036295052617788315,
-0.056676577776670456,
-0.06334670633077621,
-0.0073091029189527035,
0.1501186043024063,
-0.06791353225708008,
0.03524238243699074,
-0.0960414931178093,
0.062084879726171494,
-0.07865499705076218,
0.08249925822019577,
-0.031131738796830177,
0.05352369323372841,
-0.0845656469464302,
-0.07890002429485321,
-0.06145062297582626,
-0.05999530851840973,
0.012850108556449413,
0.021331366151571274,
0.24988245964050293,
0.019805394113063812,
0.2059219479560852,
-0.012269342318177223,
0.002686284249648452,
-0.18116526305675507,
0.005844017490744591,
-0.01770600490272045,
-0.09986703842878342,
-0.030985498800873756,
0.013950579799711704,
0.01365001779049635,
-0.010979295708239079,
0.06284220516681671,
0.05558699741959572,
-0.08486238121986389,
-0.04586536064743996,
0.04519956186413765,
0.07093176990747452,
-0.012084814719855785,
0.15860909223556519,
0.030027763918042183,
0.0022063797805458307,
-0.014817768707871437,
0.07484667748212814,
0.17412453889846802,
0.053541895002126694,
0.08732908219099045,
0.11416599154472351,
-0.030386121943593025,
0.1600598692893982,
-0.0194112379103899,
-0.09273435920476913,
-0.061048511415719986,
0.031709179282188416,
0.03915087506175041,
-0.0068801697343587875,
-0.006413415540009737,
-0.0002191053208662197,
0.18838514387607574,
-0.10888195782899857,
-0.012491927482187748,
0.07443923503160477,
0.0082502206787467,
-0.09171050041913986,
-0.06995382159948349,
-0.08257265388965607,
-0.15176603198051453,
0.024056093767285347,
-0.04374978318810463,
-0.010153933428227901,
0.1378762125968933,
0.019936049357056618,
0.10858152061700821,
0.13466930389404297,
-0.056255292147397995,
-0.07172516733407974,
0.02137293666601181,
-0.03084721975028515,
-0.09771151095628738,
0.06670575588941574,
0.0011929415632039309,
0.04052014648914337,
-0.13867846131324768,
-0.016389768570661545,
-0.029719268903136253,
-0.011377295479178429,
0.06069685146212578,
-0.03945380449295044,
-0.06540306657552719,
-0.06027044355869293,
-0.01173441018909216,
0.07514835149049759,
0.1622031033039093,
0.08096587657928467,
-0.012857284396886826,
0.002900618128478527,
0.14576494693756104,
-0.07556083798408508,
-0.07490957528352737,
-0.14849528670310974,
0.13737104833126068,
-0.023426413536071777,
0.06007781997323036,
-0.12394590675830841,
-0.10405050963163376,
0.07289380580186844,
0.16055764257907867,
0.14511942863464355,
-0.07803443819284439,
0.0187398511916399,
-0.04772062599658966,
-0.02472159080207348,
-0.06420362740755081,
0.016120390966534615,
0.10414516925811768,
0.01774813048541546,
-0.043199602514505386,
-0.01315781194716692,
-0.11333592236042023,
-0.07586990296840668,
-0.04554801061749458,
0.14460408687591553,
0.02528647892177105,
0.000049703838158166036,
-0.09533000737428665,
0.08481582999229431,
0.13306590914726257,
-0.07962927222251892,
0.09180391579866409,
-0.12152111530303955,
-0.09912680834531784,
-0.03409286215901375,
-0.021978260949254036,
0.022416580468416214,
-0.02375841699540615,
-0.06170172989368439,
-0.039869070053100586,
-0.09901013225317001,
0.013641622848808765,
-0.1636022925376892,
-0.08693581074476242,
-0.019262025132775307,
0.01231340691447258,
0.1595362424850464,
0.0033599166199564934,
0.016331840306520462,
0.05258511006832123,
0.0037951567210257053,
-0.11566817760467529,
0.13036751747131348,
-0.019193166866898537,
0.022770659998059273,
-0.042307011783123016,
0.09353042393922806,
-0.05451913923025131,
0.1277277022600174,
0.0042095910757780075,
-0.12235140800476074,
0.06463611871004105,
0.12124650180339813,
-0.10156237334012985,
-0.1104486733675003,
-0.008497803471982479,
-0.0696830227971077,
0.11846986413002014,
0.08094698190689087,
0.010019717738032341,
0.052843209356069565,
-0.024434370920062065,
0.03820294514298439,
0.06166168302297592,
0.036970291286706924,
-0.010946165770292282,
-0.023913584649562836,
-0.020205199718475342,
-0.01580110378563404,
-0.007957418449223042,
-0.19075098633766174,
-0.05318305641412735,
-0.07628319412469864,
-0.09121040999889374,
0.0031503408681601286,
0.06396059691905975,
0.24594564735889435,
0.0213013906031847,
0.004354320932179689,
-0.297736793756485,
0.044191520661115646,
0.12347710132598877,
-0.16023999452590942,
-0.05586674064397812
] |
null | null | null |
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-stable
These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the jlbaker361/spider-500 dataset.
Training epochs = 100
num_train_timesteps = 50
You can find some example images in the following.












| {} | null | jlbaker361/spider-lora-500-e100-stable | [
"safetensors",
"region:us"
] | 2024-02-13T16:39:11+00:00 | [] | [] | TAGS
#safetensors #region-us
|
---
license: creativeml-openrail-m
base_model: stabilityai/stable-diffusion-2
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- lora
inference: true
---
# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-stable
These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the jlbaker361/spider-500 dataset.
Training epochs = 100
num_train_timesteps = 50
You can find some example images in the following.
!img_0
!img_1
!img_2
!img_3
!img_4
!img_5
!img_6
!img_7
!img_8
!img_9
!img_10
!img_11
| [
"# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-stable\n These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the jlbaker361/spider-500 dataset. \n\n Training epochs = 100 \n\n num_train_timesteps = 50 \n\n You can find some example images in the following. \n\n !img_0\n!img_1\n!img_2\n!img_3\n!img_4\n!img_5\n!img_6\n!img_7\n!img_8\n!img_9\n!img_10\n!img_11"
] | [
"TAGS\n#safetensors #region-us \n",
"# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-stable\n These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the jlbaker361/spider-500 dataset. \n\n Training epochs = 100 \n\n num_train_timesteps = 50 \n\n You can find some example images in the following. \n\n !img_0\n!img_1\n!img_2\n!img_3\n!img_4\n!img_5\n!img_6\n!img_7\n!img_8\n!img_9\n!img_10\n!img_11"
] | [
11,
158
] | [
"passage: TAGS\n#safetensors #region-us \n# LoRA text2image fine-tuning - jlbaker361/spider-lora-500-e100-stable\n These are LoRA adaption weights for stabilityai/stable-diffusion-2. The weights were fine-tuned on the jlbaker361/spider-500 dataset. \n\n Training epochs = 100 \n\n num_train_timesteps = 50 \n\n You can find some example images in the following. \n\n !img_0\n!img_1\n!img_2\n!img_3\n!img_4\n!img_5\n!img_6\n!img_7\n!img_8\n!img_9\n!img_10\n!img_11"
] | [
-0.09692060947418213,
-0.04717013239860535,
-0.0015099308220669627,
0.06616152822971344,
0.12846428155899048,
0.007478245534002781,
0.19512134790420532,
0.12121083587408066,
0.12301210314035416,
0.08189987391233444,
0.05778856202960014,
0.08603794872760773,
-0.0009528353693895042,
0.16790160536766052,
-0.03177301585674286,
-0.21600548923015594,
0.03526151180267334,
-0.05581662803888321,
-0.13945046067237854,
0.0528683178126812,
0.10348887741565704,
-0.06970352679491043,
0.08940468728542328,
-0.0452168844640255,
-0.02879183366894722,
0.035982877016067505,
0.03225242346525192,
-0.0772145688533783,
0.1008925586938858,
-0.013824660331010818,
0.04356258735060692,
0.05852213501930237,
0.06909983605146408,
-0.21143928170204163,
0.019250603392720222,
0.030004562810063362,
0.030013233423233032,
0.03700485825538635,
-0.04746001586318016,
0.007037612143903971,
0.09715045988559723,
-0.14523686468601227,
-0.06878050416707993,
-0.03263876959681511,
-0.09811050444841385,
-0.10297651588916779,
-0.1096128448843956,
-0.08441610634326935,
0.07599113881587982,
0.01821630448102951,
-0.006630346179008484,
0.1303844302892685,
-0.05842359736561775,
0.016874108463525772,
0.3409064710140228,
-0.311736524105072,
-0.0025692912749946117,
0.10174147039651871,
0.022076169028878212,
0.1631898581981659,
-0.08162195235490799,
0.06811973452568054,
0.10122998058795929,
-0.0616653747856617,
0.043083641678094864,
-0.03426163271069527,
0.015391082502901554,
0.01115085743367672,
-0.1330411434173584,
0.0661204531788826,
0.23399680852890015,
0.008095395751297474,
-0.10925031453371048,
-0.10538114607334137,
-0.019129622727632523,
0.09660641103982925,
-0.05177559703588486,
-0.021730411797761917,
0.017328768968582153,
-0.03167196363210678,
0.03379964455962181,
-0.00237051909789443,
-0.03940668702125549,
-0.11494907736778259,
0.00962804351001978,
0.2819257378578186,
0.043897487223148346,
0.01696642115712166,
0.04611934348940849,
0.10059351474046707,
-0.17023207247257233,
-0.09106040745973587,
0.0018375120125710964,
0.0004716174444183707,
-0.004866017960011959,
-0.011757655069231987,
-0.011973214335739613,
-0.12298160791397095,
0.06073459982872009,
0.08206164836883545,
0.02218281477689743,
0.01536384504288435,
0.0025939762126654387,
0.05238836258649826,
-0.0717124491930008,
0.05063601955771446,
-0.12743283808231354,
-0.08759798109531403,
0.08792144805192947,
0.12189130485057831,
0.09137880057096481,
-0.005937736947089434,
-0.03845960646867752,
-0.102692149579525,
0.04692234843969345,
0.025951148942112923,
-0.10600914806127548,
0.030917925760149956,
-0.08196853846311569,
0.02519937977194786,
0.0040924884378910065,
-0.030679916962981224,
-0.015347166918218136,
-0.04879920557141304,
-0.05110473930835724,
0.046314653009176254,
0.10071981698274612,
0.017770791426301003,
0.0383237823843956,
0.020161626860499382,
-0.07872722297906876,
0.018687201663851738,
-0.036859698593616486,
-0.12867097556591034,
-0.042338937520980835,
0.006454425863921642,
-0.002584620611742139,
-0.08096041530370712,
-0.08402085304260254,
-0.007482942659407854,
-0.028163518756628036,
-0.003399481764063239,
0.07054662704467773,
-0.012938389554619789,
-0.03961546719074249,
-0.045888323336839676,
0.04241003841161728,
-0.03828934207558632,
-0.06371626257896423,
0.07908876985311508,
0.068523108959198,
0.12996460497379303,
-0.0041458155028522015,
-0.02007194235920906,
-0.1117272675037384,
0.05043701082468033,
-0.16440638899803162,
0.0063871219754219055,
-0.0795542299747467,
-0.012286478653550148,
-0.0492301769554615,
-0.020627878606319427,
-0.12819615006446838,
0.04293874278664589,
0.08374300599098206,
0.20533707737922668,
-0.25835728645324707,
-0.048246026039123535,
0.17837317287921906,
-0.1628759205341339,
-0.10493752360343933,
0.07410935312509537,
0.011099984869360924,
0.06151740625500679,
0.07294689863920212,
0.09644115716218948,
0.053910188376903534,
-0.12150051444768906,
-0.02682151459157467,
-0.09557163715362549,
-0.016200903803110123,
-0.06498899310827255,
0.08726481348276138,
0.051223643124103546,
-0.07415151596069336,
0.06047946587204933,
-0.12434495985507965,
0.07564438134431839,
-0.0726831927895546,
0.027501946315169334,
-0.017706189304590225,
-0.08251684904098511,
0.028794508427381516,
0.0020727890077978373,
0.02071376144886017,
-0.049164384603500366,
-0.016993219032883644,
0.051936645060777664,
0.12407024204730988,
-0.05207977816462517,
0.013260142877697945,
0.008041871711611748,
0.1519409418106079,
-0.12178672105073929,
-0.020168663933873177,
-0.07563699781894684,
-0.04326581209897995,
0.05271679908037186,
0.1800517439842224,
0.10837508738040924,
0.015781033784151077,
0.1513606607913971,
0.07285670191049576,
-0.06400087475776672,
-0.02098797634243965,
0.04298028722405434,
-0.013232407160103321,
-0.11823497712612152,
-0.149897038936615,
-0.022844810038805008,
-0.08966932445764542,
0.22624920308589935,
-0.20376670360565186,
0.009005965664982796,
-0.09509395062923431,
0.11269570142030716,
0.09616141021251678,
-0.027603713795542717,
0.09779990464448929,
0.0048067313618958,
-0.06225954741239548,
-0.060943152755498886,
-0.011928286403417587,
-0.07166000455617905,
-0.096102774143219,
0.09158708155155182,
-0.12315009534358978,
0.1468188762664795,
0.10654093325138092,
0.09054038673639297,
0.0037691621109843254,
-0.15714392066001892,
0.011261516250669956,
0.028354162350296974,
-0.07358933985233307,
0.045237503945827484,
-0.03848230466246605,
0.031105034053325653,
0.10123742371797562,
-0.017599865794181824,
0.05523640662431717,
-0.050745632499456406,
-0.08815222233533859,
-0.015683209523558617,
0.017167557030916214,
0.015374714508652687,
0.03532174602150917,
0.012597067281603813,
0.11770427227020264,
-0.07934491336345673,
0.07013767212629318,
0.014765285886824131,
-0.10236269235610962,
-0.01992717944085598,
0.08429104834794998,
0.08467600494623184,
0.09583241492509842,
0.1014900878071785,
0.010162741877138615,
0.008881712332367897,
-0.05443936213850975,
0.03418197110295296,
-0.13409283757209778,
-0.048805125057697296,
0.03248883783817291,
-0.06792912632226944,
0.024591583758592606,
0.04293162003159523,
-0.014006679877638817,
0.15919841825962067,
-0.0725083202123642,
-0.06077209487557411,
-0.0783877819776535,
0.010208158753812313,
-0.07491810619831085,
0.17863741517066956,
-0.025714559480547905,
-0.032546091824769974,
-0.1061878502368927,
0.054346438497304916,
0.006266292650252581,
0.017574923112988472,
-0.019883666187524796,
-0.1078365221619606,
-0.047705087810754776,
-0.09770664572715759,
0.08032388240098953,
0.11004418134689331,
0.08784575015306473,
-0.006799387279897928,
-0.029610663652420044,
0.031000638380646706,
-0.08200054615736008,
-0.020550375804305077,
-0.0826915055513382,
0.08526809513568878,
0.04610372707247734,
-0.0028200431261211634,
0.12023519724607468,
0.07703028619289398,
-0.010843038558959961,
0.01868082769215107,
0.0017641002777963877,
0.0882752314209938,
0.011494090780615807,
0.045784320682287216,
0.18051742017269135,
0.038634900003671646,
0.035238441079854965,
0.021295946091413498,
-0.010403944179415703,
-0.09790033847093582,
0.06096525117754936,
0.03872263804078102,
-0.10603086650371552,
-0.09500361233949661,
-0.042287323623895645,
-0.05662968382239342,
-0.052845217287540436,
0.0025084225926548243,
0.013976207002997398,
-0.006488828919827938,
0.10761359333992004,
0.031797148287296295,
0.02548052743077278,
0.05893121287226677,
0.05208230018615723,
-0.09943042695522308,
-0.020138001069426537,
0.07120116055011749,
-0.029296070337295532,
-0.09946279227733612,
0.0827173963189125,
-0.03727824240922928,
0.12187399715185165,
-0.08959300816059113,
0.01638750731945038,
0.011885430663824081,
0.05316893011331558,
0.01581239514052868,
0.13729757070541382,
-0.0408349484205246,
-0.05445382371544838,
-0.05734375864267349,
-0.1064252033829689,
-0.014010949991643429,
0.10263364762067795,
0.034146588295698166,
0.01901923306286335,
-0.08188138157129288,
0.11743985116481781,
0.06231490522623062,
0.03682989999651909,
0.17239029705524445,
-0.30922526121139526,
0.015572123229503632,
0.05981649458408356,
0.06305759400129318,
-0.008279997855424881,
0.008834808133542538,
0.10429387539625168,
0.008270565420389175,
0.031252432614564896,
-0.10385211557149887,
0.03386612981557846,
-0.033593546599149704,
-0.05455455929040909,
-0.08246613293886185,
0.212003692984581,
-0.07263447344303131,
-0.02648259326815605,
-0.15857543051242828,
0.08456804603338242,
-0.0018579637398943305,
-0.028177984058856964,
-0.048480067402124405,
-0.03697691485285759,
0.08458587527275085,
-0.0009411314968019724,
0.0745694488286972,
0.024327484890818596,
-0.05310039967298508,
-0.15436238050460815,
-0.12452582269906998,
0.013319885358214378,
0.07527428865432739,
-0.021334035322070122,
0.14376826584339142,
-0.01478615216910839,
-0.011963480152189732,
0.03907544165849686,
-0.026015477254986763,
-0.15879620611667633,
-0.011374152265489101,
-0.0007451814017258584,
0.08919777721166611,
-0.01092302706092596,
-0.1042383685708046,
-0.05982233211398125,
-0.08151374757289886,
0.1721542626619339,
0.13477806746959686,
-0.0055341459810733795,
-0.09493044018745422,
0.13305053114891052,
0.15854476392269135,
-0.05224080756306648,
-0.022518282756209373,
0.00022610796440858394,
0.033089883625507355,
-0.049287762492895126,
-0.06979984045028687,
0.062179889529943466,
-0.032631345093250275,
-0.07518329471349716,
-0.0658341646194458,
0.12152039259672165,
-0.03194784000515938,
0.005662211216986179,
0.00896510947495699,
0.003113203216344118,
0.08989068865776062,
-0.06523554027080536,
0.04357655346393585,
0.033773355185985565,
-0.0591299943625927,
0.1777375191450119,
-0.09550320357084274,
0.0270847175270319,
-0.09537728875875473,
0.015095486305654049,
0.12041714042425156,
0.27980607748031616,
-0.035167381167411804,
-0.037900008261203766,
0.04625389724969864,
-0.006543816067278385,
-0.15603700280189514,
0.0059532118029892445,
-0.08069808781147003,
0.04671867564320564,
0.08441518992185593,
-0.06016959622502327,
0.11641346663236618,
0.09584593027830124,
0.014915798790752888,
0.20098108053207397,
-0.3036086857318878,
-0.11789170652627945,
0.0682174563407898,
0.18478797376155853,
0.16415804624557495,
-0.16233666241168976,
-0.06732217222452164,
-0.029055887833237648,
0.037730444222688675,
-0.018111947923898697,
-0.08125238120555878,
0.08721531182527542,
-0.06066911667585373,
-0.05866723135113716,
0.06133493036031723,
-0.05834031105041504,
0.1573089212179184,
-0.04760633409023285,
0.08740691095590591,
-0.048191849142313004,
-0.10183362662792206,
-0.022954439744353294,
-0.05588994547724724,
0.1032676175236702,
-0.14390398561954498,
0.007943638600409031,
-0.10349524021148682,
-0.009580884128808975,
0.004316151607781649,
0.038183167576789856,
0.04845063388347626,
-0.041800692677497864,
-0.1054946705698967,
0.0693260058760643,
-0.04432974383234978,
-0.0055471863597631454,
0.15130214393138885,
0.035501692444086075,
0.058537907898426056,
0.035638533532619476,
-0.010814172215759754,
0.05986318364739418,
0.10432342439889908,
0.013538869097828865,
0.027037207037210464,
0.022723477333784103,
-0.06997346878051758,
0.017882494255900383,
0.10712387412786484,
0.0799519345164299,
0.09743668138980865,
0.0377526693046093,
-0.0870128944516182,
0.035389889031648636,
0.14603272080421448,
-0.09063612669706345,
0.018114464357495308,
-0.0021888117771595716,
-0.024043308570981026,
0.012381944805383682,
0.05949820205569267,
0.1447208970785141,
-0.05380421131849289,
-0.00701092928647995,
-0.04999851435422897,
0.0360543467104435,
-0.05667608603835106,
0.15841126441955566,
0.10630309581756592,
0.004972527269273996,
-0.0477522537112236,
0.08158094435930252,
-0.0411960668861866,
0.043688658624887466,
-0.040316320955753326,
0.03284962475299835,
-0.06529486179351807,
-0.024131061509251595,
0.1737937331199646,
0.10848046094179153,
-0.07299947738647461,
0.0056767212226986885,
-0.175078347325325,
-0.10969094932079315,
-0.015212902799248695,
0.05411824956536293,
0.07234062254428864,
-0.03141181543469429,
-0.008837289176881313,
-0.012484521605074406,
-0.10435406118631363,
0.041570860892534256,
0.09367460012435913,
0.09940631687641144,
-0.23343129456043243,
0.027209734544157982,
-0.06597866117954254,
-0.05788388103246689,
-0.044155243784189224,
-0.01796301081776619,
-0.09506241232156754,
-0.001566162914969027,
-0.07739730179309845,
0.009304710663855076,
-0.1319638341665268,
-0.06030402332544327,
-0.03311904892325401,
-0.07538393884897232,
-0.01623919978737831,
0.01784554123878479,
-0.06022939458489418,
-0.029048562049865723,
-0.04648382216691971,
0.019612696021795273,
-0.09946718066930771,
-0.11114557087421417,
0.019875628873705864,
-0.09726529568433762,
0.049580175429582596,
0.08296762406826019,
0.0423811674118042,
0.03048323467373848,
-0.10735362023115158,
0.005994053091853857,
0.1964244544506073,
-0.035925865173339844,
0.014462648890912533,
-0.14996831119060516,
0.0819481760263443,
-0.054505810141563416,
0.045305054634809494,
-0.019824186339974403,
0.06733854860067368,
-0.03350786119699478,
-0.06824341416358948,
-0.11453671753406525,
-0.01303652673959732,
-0.014050151221454144,
0.02446945756673813,
0.19040165841579437,
0.062253162264823914,
0.12436798214912415,
-0.05977211520075798,
-0.012893029488623142,
-0.18100054562091827,
0.0209274310618639,
-0.03168829157948494,
-0.07879745960235596,
-0.009438259527087212,
0.002756850328296423,
0.02221631444990635,
0.003375186352059245,
0.06344054639339447,
-0.02026667818427086,
-0.07011792063713074,
-0.03366393595933914,
0.013137121684849262,
0.10792525857686996,
0.025361953303217888,
0.18712419271469116,
0.03663552179932594,
0.008673090487718582,
-0.02722790837287903,
0.044969070702791214,
0.14608559012413025,
-0.0024123890325427055,
0.13285541534423828,
0.1405760794878006,
-0.00042530428618192673,
0.13631947338581085,
0.010625270195305347,
-0.05869276076555252,
-0.05502965301275253,
0.013652523048222065,
-0.05251689255237579,
-0.037018246948719025,
0.013699758797883987,
0.08612436801195145,
0.16545026004314423,
-0.13071881234645844,
0.003190560732036829,
0.03245013207197189,
-0.025918202474713326,
-0.06386273354291916,
-0.06714104115962982,
-0.090214304625988,
-0.1475595086812973,
0.023341074585914612,
-0.08431434631347656,
-0.02798902988433838,
0.0642724335193634,
0.006657707039266825,
0.0903196707367897,
0.15071624517440796,
-0.0013849863316863775,
-0.05853106081485748,
0.04278966039419174,
-0.010173016227781773,
-0.10488231480121613,
0.1487400233745575,
-0.08082849532365799,
0.03451596572995186,
-0.08794208616018295,
-0.02288259007036686,
-0.017881838604807854,
0.004827082622796297,
0.05076225847005844,
-0.010898251086473465,
-0.08175435662269592,
-0.05035199224948883,
-0.02135167457163334,
0.054738909006118774,
0.12174583971500397,
0.08509082347154617,
-0.07079935818910599,
-0.013317067176103592,
0.18550559878349304,
-0.055545199662446976,
-0.004781914409250021,
-0.13894091546535492,
0.22175978124141693,
-0.004886409267783165,
0.021336078643798828,
-0.07173170149326324,
-0.09275636076927185,
0.05546686053276062,
0.11610884219408035,
0.10809443891048431,
-0.12507659196853638,
0.007708305027335882,
-0.0758833959698677,
-0.016265403479337692,
-0.05045745149254799,
0.06325552612543106,
0.07039414346218109,
0.05889886990189552,
-0.034905072301626205,
0.019896531477570534,
-0.10224750638008118,
-0.0673886314034462,
-0.04200455918908119,
0.09837426990270615,
0.01267569325864315,
0.022070299834012985,
-0.08177082240581512,
0.09335561841726303,
0.06241274252533913,
-0.15639831125736237,
0.06091364845633507,
-0.14332860708236694,
-0.09207276999950409,
-0.07203838229179382,
-0.11052228510379791,
0.03040197864174843,
-0.0037828898057341576,
-0.0886136144399643,
-0.03842645511031151,
-0.12076186388731003,
0.04512277618050575,
-0.07402954250574112,
-0.076468825340271,
-0.005659314338117838,
0.04392661154270172,
0.12315214425325394,
-0.005727704614400864,
0.009353400208055973,
0.06326987594366074,
-0.004121303092688322,
-0.10575159639120102,
0.10821188986301422,
-0.02908574976027012,
-0.026964984834194183,
-0.0561833418905735,
0.15303899347782135,
-0.06139358878135681,
0.10961764305830002,
0.025313325226306915,
-0.09497424960136414,
0.05924949795007706,
0.07854283601045609,
-0.11973840743303299,
-0.12090929597616196,
-0.0006702928221784532,
-0.07058308273553848,
0.1120864674448967,
0.07736650854349136,
-0.012313474901020527,
0.05051795765757561,
-0.033781588077545166,
0.06452875584363937,
0.07812780886888504,
0.044575199484825134,
-0.011205176822841167,
-0.0684448778629303,
-0.021084673702716827,
0.005516720004379749,
-0.009541493840515614,
-0.22280056774616241,
-0.074305459856987,
-0.10291840136051178,
-0.06329452246427536,
-0.01588909700512886,
0.1016002967953682,
0.22729510068893433,
0.021117616444826126,
0.012107061222195625,
-0.25592151284217834,
0.030232014134526253,
0.14433613419532776,
-0.17253541946411133,
-0.05673627927899361
] |
null | null | diffusers |
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA
<Gallery />
## Model description
These are DaiFunka/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of TOK dog to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](DaiFunka/corgy_dog_LoRA/tree/main) them in the Files & versions tab.
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | {"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora", "text-to-image", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of TOK dog", "widget": []} | text-to-image | DaiFunka/corgy_dog_LoRA | [
"diffusers",
"tensorboard",
"text-to-image",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"has_space",
"region:us"
] | 2024-02-13T16:41:16+00:00 | [] | [] | TAGS
#diffusers #tensorboard #text-to-image #stable-diffusion-xl #stable-diffusion-xl-diffusers #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us
|
# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA
<Gallery />
## Model description
These are DaiFunka/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using DreamBooth.
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Trigger words
You should use a photo of TOK dog to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
## Intended uses & limitations
#### How to use
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | [
"# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA\n\n<Gallery />",
"## Model description\n\nThese are DaiFunka/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.",
"## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]",
"## Training details\n\n[TODO: describe the data used to train the model]"
] | [
"TAGS\n#diffusers #tensorboard #text-to-image #stable-diffusion-xl #stable-diffusion-xl-diffusers #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n",
"# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA\n\n<Gallery />",
"## Model description\n\nThese are DaiFunka/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.",
"## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]",
"## Training details\n\n[TODO: describe the data used to train the model]"
] | [
86,
25,
90,
19,
28,
9,
5,
24,
16
] | [
"passage: TAGS\n#diffusers #tensorboard #text-to-image #stable-diffusion-xl #stable-diffusion-xl-diffusers #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us \n# SDXL LoRA DreamBooth - DaiFunka/corgy_dog_LoRA\n\n<Gallery />## Model description\n\nThese are DaiFunka/corgy_dog_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of TOK dog to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]"
] | [
-0.04761134460568428,
0.13345104455947876,
-0.00216869218274951,
0.011620317585766315,
0.1398596465587616,
0.015659503638744354,
0.1839473992586136,
0.15608464181423187,
0.009319966658949852,
0.10286644101142883,
0.004314703401178122,
0.05599144473671913,
0.09628446400165558,
0.16390827298164368,
0.001609497470781207,
-0.24573832750320435,
0.05063822492957115,
-0.020977741107344627,
-0.029213614761829376,
0.03780374675989151,
0.05005711317062378,
-0.08503009378910065,
0.09171042591333389,
0.01710359752178192,
-0.10495061427354813,
0.06096549704670906,
-0.03861952945590019,
-0.009774296544492245,
-0.004028684459626675,
0.024675657972693443,
0.046439528465270996,
0.03891722112894058,
0.09048989415168762,
-0.2037525624036789,
0.002826000563800335,
0.09411121159791946,
-0.025517601519823074,
0.06648751348257065,
0.09560725837945938,
-0.0829724594950676,
0.10328192263841629,
-0.17979076504707336,
0.07728172093629837,
0.05792421102523804,
-0.03859000653028488,
-0.0873616486787796,
-0.045781802386045456,
0.05385200306773186,
0.11667907983064651,
0.1275825798511505,
-0.026557818055152893,
0.026983384042978287,
0.043072909116744995,
0.04568237438797951,
0.24869608879089355,
-0.12954643368721008,
-0.048799559473991394,
0.16788482666015625,
-0.0018176415469497442,
0.04181480035185814,
-0.08090779185295105,
0.011646606959402561,
0.059873465448617935,
-0.049124013632535934,
0.06921317428350449,
-0.021810056641697884,
0.059529080986976624,
-0.08531046658754349,
-0.1314181089401245,
-0.06655122339725494,
0.12053198367357254,
-0.0014641779707744718,
-0.0563042089343071,
-0.14937587082386017,
-0.0606546550989151,
0.033985622227191925,
-0.024104434996843338,
-0.018078859895467758,
0.02833421342074871,
0.012269188649952412,
-0.009004604071378708,
-0.11853120476007462,
-0.05932725593447685,
-0.07364369928836823,
0.04796930402517319,
0.16494904458522797,
0.0324738435447216,
0.01885521411895752,
0.0076656946912407875,
0.14386923611164093,
0.04909643530845642,
-0.13800372183322906,
0.009226695634424686,
-0.009472880512475967,
-0.13154560327529907,
-0.004208768717944622,
0.000321832369081676,
-0.11813468486070633,
0.030899876728653908,
0.06560102850198746,
0.013003893196582794,
0.016703177243471146,
-0.0847029834985733,
0.016649147495627403,
0.022779196500778198,
0.09366437047719955,
-0.05201533064246178,
-0.0269778985530138,
0.0288603063672781,
0.07384815067052841,
-0.02745986543595791,
-0.02852662280201912,
-0.06761478632688522,
-0.05898230895400047,
0.022432414814829826,
0.07132528722286224,
0.05231693387031555,
0.02436167001724243,
-0.05731171742081642,
-0.049929168075323105,
0.10456979274749756,
-0.12309350073337555,
-0.007700021844357252,
-0.02001187577843666,
-0.06519109010696411,
0.05977807193994522,
0.06704569607973099,
0.03017188236117363,
-0.04599601402878761,
0.0985112190246582,
-0.055814601480960846,
-0.021057257428765297,
-0.10803855210542679,
-0.0846954956650734,
-0.018935684114694595,
-0.12566564977169037,
-0.03435186296701431,
-0.05291391536593437,
-0.2530769407749176,
-0.061531975865364075,
0.022575559094548225,
-0.0788102075457573,
-0.0430322028696537,
-0.046863436698913574,
-0.08599269390106201,
0.007975205779075623,
0.04879271984100342,
0.09865505248308182,
-0.007899446412920952,
0.04863850027322769,
-0.06122487410902977,
0.08097535371780396,
0.060292553156614304,
0.03848978504538536,
-0.08833102136850357,
0.04421659931540489,
-0.17701628804206848,
0.18557089567184448,
-0.0685453861951828,
0.034592341631650925,
-0.11851604282855988,
-0.029115989804267883,
-0.042178697884082794,
-0.03509334474802017,
0.0017057550139725208,
0.15271736681461334,
-0.21564942598342896,
-0.03038032539188862,
0.14642968773841858,
-0.17896565794944763,
-0.009015904739499092,
0.048682358115911484,
-0.055400602519512177,
0.1455964893102646,
0.09847861528396606,
0.10313574969768524,
0.11807886511087418,
-0.20639963448047638,
-0.0389602929353714,
-0.044332586228847504,
-0.01815236546099186,
0.10814949125051498,
0.043208736926317215,
0.0012457777047529817,
-0.005818443838506937,
0.012089541181921959,
-0.06828418374061584,
0.03359288349747658,
-0.016233447939157486,
-0.03571082279086113,
-0.00876009464263916,
-0.08301457017660141,
0.0037348370533436537,
0.016605880111455917,
0.0016034817090258002,
0.052355922758579254,
-0.06183647736907005,
0.08007119596004486,
0.09072261303663254,
-0.059362057596445084,
0.006759606767445803,
-0.026757730171084404,
-0.005787408445030451,
-0.07573889940977097,
0.007209295406937599,
-0.14691883325576782,
-0.08892106264829636,
0.043659109622240067,
0.0023358569014817476,
0.06539984792470932,
0.04219869151711464,
0.054388176649808884,
0.01479763351380825,
-0.03518650308251381,
-0.033398739993572235,
-0.009874369949102402,
-0.025782162323594093,
-0.06922817975282669,
-0.14061063528060913,
0.004489895887672901,
-0.0673324391245842,
0.12901045382022858,
-0.1646401435136795,
0.06996338814496994,
0.1209878921508789,
0.13420237600803375,
0.05824518948793411,
-0.05751888081431389,
0.0732569620013237,
-0.035173069685697556,
-0.011809577234089375,
-0.10421990603208542,
-0.002878802362829447,
-0.0015469358768314123,
-0.08386246860027313,
0.09079182893037796,
-0.15432707965373993,
-0.031291987746953964,
0.11120719462633133,
0.1370421051979065,
-0.06685742735862732,
-0.10148105025291443,
-0.05404363200068474,
-0.03618142753839493,
-0.09791916608810425,
-0.05601542070508003,
0.1108771562576294,
0.02450490929186344,
0.055020324885845184,
-0.07245127111673355,
-0.03589395806193352,
-0.008574051782488823,
0.026494482532143593,
-0.029650451615452766,
0.0487959086894989,
-0.010655228979885578,
-0.04637333005666733,
0.09382352232933044,
-0.0346541702747345,
-0.008093309588730335,
0.1769971400499344,
0.030421646311879158,
-0.12136708199977875,
0.013478703796863556,
0.03369651362299919,
0.05502454191446304,
0.06538377702236176,
0.06802953034639359,
0.05046892166137695,
0.03149782493710518,
-0.028283892199397087,
0.00885869562625885,
-0.1536678820848465,
0.014855517074465752,
0.01445743627846241,
-0.08217853307723999,
0.10800100862979889,
0.02145559899508953,
0.014588543213903904,
0.0755072608590126,
0.0054695867002010345,
0.08489533513784409,
0.01666961796581745,
-0.04452956095337868,
-0.11432164162397385,
0.10318244248628616,
-0.06408781558275223,
-0.1713697910308838,
-0.11556215584278107,
0.04222947731614113,
-0.03178782016038895,
0.017838723957538605,
0.01931569166481495,
-0.06277576088905334,
-0.04301278665661812,
-0.078826904296875,
0.038265690207481384,
-0.04511324316263199,
0.022002726793289185,
0.009145895950496197,
0.04841989278793335,
0.04803629592061043,
-0.0849539265036583,
-0.0015587919624522328,
0.002838020445778966,
-0.13161700963974,
-0.02810918539762497,
0.004156426060944796,
0.10135141760110855,
0.06434784084558487,
-0.003075272310525179,
0.01854798197746277,
-0.05864012613892555,
0.22480033338069916,
-0.08598540723323822,
0.09006720781326294,
0.187384694814682,
-0.03035976178944111,
0.09715273231267929,
0.17354704439640045,
-0.016390221193432808,
-0.07795466482639313,
0.06449166685342789,
0.08967532962560654,
-0.09504044055938721,
-0.19203732907772064,
-0.0505049042403698,
-0.061800289899110794,
-0.038646187633275986,
0.1475193053483963,
0.09753844141960144,
0.14525504410266876,
0.12320257723331451,
-0.0850253701210022,
0.02623961679637432,
0.07545657455921173,
0.1252191811800003,
-0.006476408336311579,
0.04289848357439041,
0.06491007655858994,
-0.06477926671504974,
-0.010160728357732296,
0.0679677277803421,
0.0630587711930275,
0.2519955635070801,
-0.07904272526502609,
0.03039589710533619,
0.0355914831161499,
0.0432928204536438,
0.011699610389769077,
0.06348671019077301,
-0.03963390365242958,
0.017193151637911797,
-0.026522820815443993,
-0.12600462138652802,
0.009091317653656006,
0.15436793863773346,
0.009251789189875126,
0.005446400959044695,
0.004512203391641378,
0.01150561310350895,
0.01409337017685175,
0.1949641853570938,
-0.013174466788768768,
-0.2609044909477234,
0.003912073094397783,
0.04821078106760979,
0.014880825765430927,
-0.014785866253077984,
-0.036466456949710846,
0.1073400005698204,
-0.13873322308063507,
0.09227955341339111,
-0.07157068699598312,
0.08988671749830246,
-0.1406346708536148,
-0.058156561106443405,
0.025012053549289703,
0.11781054735183716,
-0.03531007468700409,
0.07537271082401276,
-0.24454498291015625,
0.09246636182069778,
0.010659501887857914,
0.08233965188264847,
-0.08594182878732681,
0.07924437522888184,
0.0465836226940155,
-0.028007972985506058,
0.14869831502437592,
-0.029148699715733528,
-0.020380638539791107,
-0.09083613753318787,
-0.08929035812616348,
-0.02939743921160698,
0.04056990519165993,
-0.1182989850640297,
0.07923955470323563,
-0.015005425550043583,
0.00518574845045805,
-0.013458187691867352,
0.03412572294473648,
-0.169958233833313,
-0.17457251250743866,
0.014860068447887897,
0.034827496856451035,
0.06641232967376709,
-0.05322880670428276,
-0.04852486774325371,
0.016544701531529427,
0.12083734571933746,
-0.052902668714523315,
-0.1523749828338623,
-0.15954063832759857,
-0.0024998383596539497,
0.14333795011043549,
-0.03670230135321617,
0.014261520467698574,
0.016545675694942474,
0.22456800937652588,
-0.08923298120498657,
-0.12437653541564941,
-0.012831442058086395,
-0.09053400158882141,
-0.19890540838241577,
-0.050755199044942856,
0.0886777937412262,
0.10386835783720016,
0.04232362285256386,
0.0031374087557196617,
0.025781597942113876,
0.01927829720079899,
-0.0739942193031311,
0.04932593181729317,
0.16791649162769318,
0.029729340225458145,
0.06108775734901428,
-0.03962172940373421,
-0.11946343630552292,
-0.1307610124349594,
0.039132267236709595,
-0.0013553675962612033,
0.21270258724689484,
-0.045817725360393524,
0.10684094578027725,
0.00967454258352518,
-0.10521145164966583,
-0.15185204148292542,
0.09143538773059845,
0.09919928014278412,
0.004721071571111679,
0.022341081872582436,
-0.23772788047790527,
0.0658905878663063,
0.047437041997909546,
-0.036387745290994644,
0.07723650336265564,
-0.2747896909713745,
-0.14460045099258423,
-0.023552922531962395,
0.11574609577655792,
0.01072587352246046,
-0.1567758172750473,
-0.0518416203558445,
-0.059784695506095886,
-0.036601722240448,
0.1465669572353363,
-0.03298265114426613,
0.04184943065047264,
0.02767302468419075,
0.044531576335430145,
0.050448670983314514,
-0.03335226699709892,
0.09433948993682861,
0.031581979244947433,
0.05415697395801544,
-0.0642358660697937,
0.006847687531262636,
0.07441918551921844,
-0.08139783889055252,
0.06209922209382057,
-0.07968365401029587,
0.0159195177257061,
-0.1193210780620575,
-0.030097514390945435,
-0.01636052504181862,
0.05040140450000763,
-0.02538703940808773,
-0.10632020235061646,
-0.09262017160654068,
0.07705394923686981,
0.14406061172485352,
-0.01019243523478508,
-0.06282323598861694,
-0.03999502956867218,
0.006090203300118446,
0.16022989153862,
0.036644097417593,
0.14768855273723602,
-0.0627635195851326,
-0.017408812418580055,
-0.0058259195648133755,
0.07581258565187454,
-0.10712533444166183,
0.010702351108193398,
0.06450852751731873,
0.024368492886424065,
0.10983424633741379,
0.024903347715735435,
-0.11616045981645584,
0.018547464162111282,
0.030044300481677055,
-0.07956110686063766,
-0.07261215895414352,
-0.007947267033159733,
-0.007008007261902094,
-0.06957665830850601,
-0.0845390036702156,
0.09205398708581924,
-0.06427359580993652,
0.009512829594314098,
0.014251251704990864,
0.041172657161951065,
0.013582943007349968,
0.09720318764448166,
-0.026106061413884163,
0.037384506314992905,
-0.08082664012908936,
0.10863656550645828,
0.09008003026247025,
-0.07911137491464615,
0.05219949409365654,
0.04743586480617523,
-0.073704794049263,
0.03835299238562584,
-0.06582778692245483,
0.10634907335042953,
-0.034766100347042084,
-0.012455303221940994,
-0.04369376227259636,
-0.0635056421160698,
0.03202080726623535,
0.07857399433851242,
0.02160050719976425,
-0.007353137247264385,
0.01590375229716301,
0.025957444682717323,
-0.13161084055900574,
0.08752612769603729,
0.030794208869338036,
0.057605527341365814,
-0.16132250428199768,
0.044390272349119186,
0.03748788312077522,
-0.029474448412656784,
-0.04182762652635574,
-0.009800518862903118,
-0.08836840838193893,
-0.007980135269463062,
0.017378469929099083,
0.06989990919828415,
-0.11211615800857544,
-0.03926284611225128,
-0.02470317855477333,
-0.04948161169886589,
0.011308912187814713,
0.03040297143161297,
-0.05543109029531479,
-0.05487056076526642,
-0.016530716791749,
0.06856369227170944,
-0.12837988138198853,
-0.047806497663259506,
0.0338396355509758,
-0.1023440733551979,
0.055792517960071564,
0.017559247091412544,
-0.03802332282066345,
-0.056616492569446564,
-0.14543995261192322,
0.030977068468928337,
0.09122354537248611,
-0.022443899884819984,
-0.019604038447141647,
-0.08198864012956619,
0.004886186216026545,
-0.028829988092184067,
-0.04014384374022484,
-0.017152981832623482,
0.002491809893399477,
-0.12427997589111328,
0.06052390858530998,
-0.019956016913056374,
0.018296774476766586,
-0.030069198459386826,
0.06418993324041367,
0.17056618630886078,
0.03138412907719612,
0.11603502184152603,
-0.09117111563682556,
0.08810027688741684,
-0.16384780406951904,
-0.02339133806526661,
0.0247616246342659,
0.008731677196919918,
-0.03268168121576309,
-0.0816304162144661,
0.04501533508300781,
0.0015541084576398134,
0.14714744687080383,
0.05145023390650749,
-0.011313393712043762,
0.031112462282180786,
-0.0009429723140783608,
0.06261079013347626,
0.015647679567337036,
0.17266640067100525,
0.03676075115799904,
0.015535596758127213,
0.04265826940536499,
0.002626144327223301,
0.049154218286275864,
-0.01219632476568222,
0.10320228338241577,
0.08040013164281845,
0.04832161217927933,
0.043417301028966904,
0.05641723796725273,
-0.019892284646630287,
-0.11698173731565475,
0.0922711119055748,
-0.02196124568581581,
0.019299641251564026,
-0.06806829571723938,
0.11347496509552002,
0.16012533009052277,
-0.15957464277744293,
0.06429533660411835,
0.12006841599941254,
-0.02286897599697113,
-0.07695272564888,
-0.17142032086849213,
-0.03930415213108063,
-0.10206123441457748,
0.03577663376927376,
-0.0854644626379013,
0.058737095445394516,
0.07619422674179077,
-0.0022651231847703457,
0.03353184834122658,
0.12906384468078613,
-0.049053505063056946,
-0.03083716705441475,
0.031801071017980576,
0.006236708257347345,
-0.01496790163218975,
0.002518473658710718,
-0.04481125622987747,
0.0873190388083458,
0.0595192015171051,
0.041452474892139435,
0.0315961055457592,
0.07174038141965866,
0.04497230052947998,
-0.0020196170080453157,
-0.042943548411130905,
0.013436740264296532,
0.011545130982995033,
0.023542825132608414,
0.18617337942123413,
0.06361174583435059,
-0.02792893536388874,
-0.05524451285600662,
0.16479073464870453,
-0.07750733941793442,
-0.024952922016382217,
-0.11850294470787048,
0.06694231182336807,
-0.035891298204660416,
0.01154476311057806,
0.00505053298547864,
-0.1252262145280838,
-0.020340822637081146,
0.17253521084785461,
0.11266151815652847,
0.011962229385972023,
0.0038430998101830482,
-0.058379463851451874,
0.0007731712539680302,
-0.02489127591252327,
0.02847392112016678,
0.010915305465459824,
0.19582338631153107,
-0.06450118124485016,
0.05864493548870087,
-0.02351931482553482,
-0.08563166111707687,
-0.05878311023116112,
0.014051375910639763,
-0.0361054353415966,
-0.011706565506756306,
-0.02837407775223255,
0.09544270485639572,
-0.10129663348197937,
-0.23608936369419098,
0.1284589320421219,
-0.06280649453401566,
-0.06271541118621826,
-0.02851363830268383,
-0.04257283732295036,
-0.007897569797933102,
0.027097316458821297,
-0.025312514975667,
0.019189752638339996,
0.0664091557264328,
-0.008782983757555485,
-0.07738137990236282,
-0.022658664733171463,
0.018092697486281395,
-0.07695560157299042,
0.19570155441761017,
-0.03505314514040947,
0.015456578694283962,
0.040299005806446075,
-0.0257111769169569,
-0.16736094653606415,
-0.019862378016114235,
0.008056663908064365,
-0.1177818700671196,
-0.021537180989980698,
0.21046364307403564,
-0.051792725920677185,
0.08535733819007874,
0.06857633590698242,
-0.09011248499155045,
0.02560068480670452,
-0.03495730459690094,
0.003922836389392614,
-0.11704762279987335,
0.02010713517665863,
-0.12103315442800522,
0.11949821561574936,
0.16079959273338318,
0.00519403675571084,
0.04050806164741516,
-0.04685942828655243,
0.005576708819717169,
0.013512836769223213,
0.07123397290706635,
-0.002601584419608116,
-0.08038053661584854,
-0.025972725823521614,
0.08665759116411209,
0.03744230791926384,
-0.214340478181839,
-0.07881288230419159,
-0.0627327710390091,
-0.07028039544820786,
-0.042197275906801224,
0.09029295295476913,
0.0687737762928009,
0.008840450085699558,
-0.01701998896896839,
-0.2655482292175293,
0.011146150529384613,
0.13585415482521057,
-0.11753588914871216,
-0.012561650946736336
] |
null | null | diffusers |
# SDXL LoRA DreamBooth - tonyassi/margiela-ss24-fashion-dreambooth
by [Tony Assi](https://www.tonyassi.com/)
Dreambooth style based on the [Margiela SS24](https://www.vogue.com/fashion-shows/spring-2024-couture/maison-martin-margiela) collection.

## Trigger words
Use **Margiela SS24 style** in the prompt to trigger the style.
## How to use
```bash
pip install diffusers accelerate
```
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
# Load the pipeline
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
pipe.load_lora_weights("tonyassi/margiela-ss24-fashion-dreambooth")
pipe.to("cuda")
# Generate image
prompt = "Margiela SS24 style, megan fox wearing a gold mesh dress with crystals"
image = pipe(prompt=prompt,
height=1024,
width=1024,
num_inference_steps=50,
negative_prompt="ugly, deformed face, deformed body").images[0]
image
```
## Examples

**Margiela SS24 style, megan fox wearing a gold mesh dress with crystals**

**Margiela SS24 style, emma stone wearng a pink sequin leotard, puff sleves, rhinestone stockings**

**Margiela SS24 style, jeff goldblum**

**Margiela SS24 style, megan fox wearing a mesh dress with crystals**

**Margiela SS24 style, jeff goldblum wearing a corset**
## Model description
These are tonyassi/margiela-ss24-fashion-dreambooth LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
The weights were trained using [DreamBooth](https://dreambooth.github.io/).
LoRA for the text encoder was enabled: False.
Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
## Download model
Weights for this model are available in Safetensors format.
[Download](https://huggingface.co/tonyassi/margiela-ss24-fashion-dreambooth/tree/main) them in the Files & versions tab.
| {"license": "openrail++", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "lora", "template:sd-lora"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "Margiela SS24 style"} | text-to-image | tonyassi/margiela-ss24-fashion-dreambooth | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"lora",
"template:sd-lora",
"base_model:stabilityai/stable-diffusion-xl-base-1.0",
"license:openrail++",
"has_space",
"region:us"
] | 2024-02-13T16:42:34+00:00 | [] | [] | TAGS
#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #lora #template-sd-lora #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #has_space #region-us
|
# SDXL LoRA DreamBooth - tonyassi/margiela-ss24-fashion-dreambooth
by Tony Assi
Dreambooth style based on the Margiela SS24 collection.
 on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1241
- Val accuracy: 0.9387
- Gen Len: 2.6493
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 300
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Val accuracy | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-------:|
| No log | 1.0 | 253 | 0.1969 | 0.8979 | 2.6679 |
| 1.0947 | 2.0 | 506 | 0.1400 | 0.924 | 2.6558 |
| 1.0947 | 3.0 | 759 | 0.1280 | 0.9324 | 2.653 |
| 0.1281 | 4.0 | 1012 | 0.1250 | 0.9359 | 2.6522 |
| 0.1281 | 5.0 | 1265 | 0.1241 | 0.9387 | 2.6493 |
### Framework versions
- Transformers 4.35.2
- Pytorch 1.13.1+cu117
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"tags": ["generated_from_trainer"], "base_model": "csebuetnlp/banglat5", "model-index": [{"name": "filtered_annotated94k_banglat5", "results": []}]} | text2text-generation | fia24/filtered_annotated94k_banglat5 | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:csebuetnlp/banglat5",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T16:49:05+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-csebuetnlp/banglat5 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| filtered\_annotated94k\_banglat5
================================
This model is a fine-tuned version of csebuetnlp/banglat5 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1241
* Val accuracy: 0.9387
* Gen Len: 2.6493
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0005
* train\_batch\_size: 300
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 1.13.1+cu117
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 300\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-csebuetnlp/banglat5 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 300\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
74,
97,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-csebuetnlp/banglat5 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0005\n* train\\_batch\\_size: 300\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 1.13.1+cu117\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.10165181756019592,
0.042456645518541336,
-0.0025262620765715837,
0.09502878040075302,
0.1294628083705902,
0.007327029947191477,
0.1715419441461563,
0.11114751547574997,
-0.07070136815309525,
0.06410789489746094,
0.13914133608341217,
0.10956304520368576,
0.023096168413758278,
0.13085956871509552,
-0.07740426063537598,
-0.2243594378232956,
0.010620208457112312,
0.041011907160282135,
-0.06302714347839355,
0.12077850848436356,
0.08546082675457001,
-0.13183601200580597,
0.1011444479227066,
-0.02426988072693348,
-0.17172791063785553,
0.015946317464113235,
0.027667241171002388,
-0.049715351313352585,
0.13492827117443085,
0.04010709747672081,
0.13796427845954895,
0.03504224121570587,
0.0718546211719513,
-0.18221773207187653,
0.017080925405025482,
0.06683506071567535,
0.0025549710262566805,
0.08739770948886871,
0.04677267000079155,
-0.015660185366868973,
0.09318733960390091,
-0.09939602762460709,
0.06169653311371803,
0.02003960683941841,
-0.14060889184474945,
-0.1792592704296112,
-0.06522876024246216,
0.03397975489497185,
0.09933599084615707,
0.0841452032327652,
-0.02348007634282112,
0.1357608139514923,
-0.026999786496162415,
0.11684127897024155,
0.24846382439136505,
-0.3103279769420624,
-0.07195202261209488,
0.05631519854068756,
0.06095387414097786,
0.11591920256614685,
-0.1052798330783844,
0.0086054727435112,
0.06600283831357956,
0.024218309670686722,
0.14414972066879272,
-0.03550909087061882,
-0.021961931139230728,
0.007867884822189808,
-0.13968022167682648,
-0.017843440175056458,
0.1586272269487381,
0.0441167950630188,
-0.038680680096149445,
-0.06473369151353836,
-0.08505481481552124,
-0.15959440171718597,
-0.036756787449121475,
-0.03164263814687729,
0.03481476381421089,
-0.030755775049328804,
-0.09193038195371628,
-0.0421864315867424,
-0.11132203787565231,
-0.08794470876455307,
-0.038743358105421066,
0.14164038002490997,
0.02393127791583538,
-0.007576079573482275,
-0.04494183883070946,
0.10400564223527908,
-0.015254633501172066,
-0.14387884736061096,
0.019650356844067574,
0.018804920837283134,
-0.01548238005489111,
-0.05294907093048096,
-0.05224261432886124,
-0.1375342160463333,
0.0061518289148807526,
0.13312628865242004,
-0.0560176819562912,
0.07013889402151108,
-0.009254703298211098,
0.041767433285713196,
-0.09899679571390152,
0.160178542137146,
-0.053441837430000305,
-0.050159186124801636,
0.005607137456536293,
0.0886451005935669,
0.04349227994680405,
-0.022899379953742027,
-0.11916162073612213,
0.008678476326167583,
0.122951440513134,
0.016201620921492577,
-0.06164370849728584,
0.08123646676540375,
-0.037956494837999344,
-0.00855723675340414,
-0.0041451966390013695,
-0.08593063056468964,
0.013706116005778313,
-0.0025651261676102877,
-0.04990537837147713,
-0.03133372217416763,
0.036611683666706085,
0.013466700911521912,
-0.0017517551314085722,
0.0966126099228859,
-0.0977410301566124,
0.0059426832012832165,
-0.08002940565347672,
-0.13756169378757477,
0.00363025045953691,
-0.08026981353759766,
0.010977329686284065,
-0.11440712213516235,
-0.17866547405719757,
-0.01008886843919754,
0.044979847967624664,
-0.033420026302337646,
-0.0023352697025984526,
-0.07423779368400574,
-0.08368615806102753,
0.02475694753229618,
-0.013274254277348518,
0.08031146973371506,
-0.054564669728279114,
0.10106359422206879,
0.052182335406541824,
0.07908859103918076,
-0.04747945815324783,
0.02542819269001484,
-0.09075787663459778,
0.043359093368053436,
-0.19366836547851562,
0.040013812482357025,
-0.03913117200136185,
0.06878607720136642,
-0.08335815370082855,
-0.07360505312681198,
-0.04047340527176857,
0.014801892451941967,
0.08827141672372818,
0.11385013163089752,
-0.17627990245819092,
-0.07023205608129501,
0.2010250687599182,
-0.0842960774898529,
-0.1625184714794159,
0.13807125389575958,
-0.05987117812037468,
0.062150076031684875,
0.07141411304473877,
0.19565023481845856,
0.05883976072072983,
-0.10233671963214874,
0.0014246529899537563,
-0.012061802670359612,
0.05773627758026123,
-0.024782827123999596,
0.06396861374378204,
0.007259742356836796,
0.014343778602778912,
0.0011423717951402068,
-0.02371728979051113,
0.04678726941347122,
-0.08459123969078064,
-0.07053361088037491,
-0.036999959498643875,
-0.10680798441171646,
0.05841631814837456,
0.04609350860118866,
0.0754275768995285,
-0.12204797565937042,
-0.09218853712081909,
0.06415840983390808,
0.06569341570138931,
-0.08818868547677994,
0.031595658510923386,
-0.06721669435501099,
0.0806785300374031,
-0.0910680890083313,
-0.012484249658882618,
-0.1577233225107193,
-0.06140538305044174,
0.007470083888620138,
0.042203985154628754,
0.016211790964007378,
0.011768060736358166,
0.10086089372634888,
0.08443445712327957,
-0.0757203996181488,
-0.042968831956386566,
-0.003960403148084879,
0.010003883391618729,
-0.13673070073127747,
-0.18713030219078064,
-0.020661290735006332,
-0.037087298929691315,
0.1420695185661316,
-0.24612492322921753,
0.05524320527911186,
0.015302670188248158,
0.10113592445850372,
0.05906590446829796,
-0.022866033017635345,
-0.028983838856220245,
0.053972020745277405,
-0.055175114423036575,
-0.06761423498392105,
0.048921361565589905,
0.0036236082669347525,
-0.10962934046983719,
-0.02667277492582798,
-0.19716113805770874,
0.1791219264268875,
0.13106006383895874,
-0.091792531311512,
-0.09330561757087708,
-0.00013045378727838397,
-0.0374186709523201,
-0.029959501698613167,
-0.029811497777700424,
-0.03280176594853401,
0.12303192168474197,
0.006541301030665636,
0.16143308579921722,
-0.0929228737950325,
-0.04888244345784187,
0.023673947900533676,
-0.04846801608800888,
0.009922116063535213,
0.11699936538934708,
0.05000118166208267,
-0.11134728789329529,
0.13642776012420654,
0.16223883628845215,
-0.07593311369419098,
0.17014119029045105,
-0.029423700645565987,
-0.07537630945444107,
-0.03026439994573593,
0.023276349529623985,
0.023562895134091377,
0.10834292322397232,
-0.11981645226478577,
-0.009380647912621498,
0.0020668369252234697,
0.014795396476984024,
0.02107205241918564,
-0.20329323410987854,
-0.025223832577466965,
0.056009501218795776,
-0.041207071393728256,
0.01477378886193037,
-0.010448346845805645,
-0.008573135361075401,
0.104959636926651,
0.0000402563382522203,
-0.06148867681622505,
0.027683941647410393,
-0.0076302350498735905,
-0.08759275078773499,
0.212516188621521,
-0.06289302557706833,
-0.14794780313968658,
-0.1374308168888092,
-0.056764379143714905,
-0.050650518387556076,
0.03573153540492058,
0.05390731617808342,
-0.07783801853656769,
-0.02810918353497982,
-0.12100140005350113,
0.026204511523246765,
0.0159586314111948,
0.033791568130254745,
0.01630347967147827,
-0.007882263511419296,
0.06356717646121979,
-0.09840759634971619,
-0.006884730886667967,
-0.040644679218530655,
-0.04099662974476814,
0.03483373299241066,
-0.0019884088542312384,
0.12124659866094589,
0.1531856656074524,
-0.02252001129090786,
0.011974348686635494,
-0.03568758815526962,
0.2172788679599762,
-0.07156548649072647,
0.0019823438487946987,
0.11664780229330063,
-0.031235571950674057,
0.047726914286613464,
0.11941590905189514,
0.050179723650217056,
-0.09702891111373901,
0.031140556558966637,
0.043334994465112686,
-0.043090254068374634,
-0.20310282707214355,
-0.012066472321748734,
-0.04586354270577431,
0.028690321370959282,
0.08778179436922073,
0.018478145822882652,
0.04690586403012276,
0.07243068516254425,
0.021733077242970467,
0.0745735689997673,
-0.000997245078906417,
0.08192389458417892,
0.0661419928073883,
0.03549724817276001,
0.1324227899312973,
-0.05096645653247833,
-0.06960568577051163,
0.03112422488629818,
-0.0011077498784288764,
0.19178199768066406,
0.012873445637524128,
0.1618547886610031,
0.038043878972530365,
0.12239810079336166,
-0.0034725291188806295,
0.08573402464389801,
-0.021587904542684555,
-0.05652640759944916,
-0.010240057483315468,
-0.05482752248644829,
-0.024590525776147842,
0.037622228264808655,
-0.08295481652021408,
0.06931433081626892,
-0.11521592736244202,
0.016432318836450577,
0.0559251494705677,
0.21911826729774475,
0.06856152415275574,
-0.3436129689216614,
-0.09433599561452866,
0.03569641709327698,
-0.017646441236138344,
-0.03604205697774887,
0.02890644036233425,
0.1641732156276703,
-0.05154379829764366,
0.03443858027458191,
-0.07833920419216156,
0.08063150942325592,
-0.037021249532699585,
0.04548180103302002,
0.023027604445815086,
0.0774654820561409,
-0.03778291493654251,
0.0509895458817482,
-0.2783157229423523,
0.27101704478263855,
0.02131379209458828,
0.06676797568798065,
-0.04951196908950806,
-0.009262606501579285,
0.016809603199362755,
0.0785040482878685,
0.08463074266910553,
-0.02114509604871273,
-0.06992879509925842,
-0.20103970170021057,
-0.053041186183691025,
0.016345228999853134,
0.12848885357379913,
-0.05312148854136467,
0.1329367756843567,
-0.027625828981399536,
-0.004431033041328192,
0.08903394639492035,
-0.010970713570713997,
-0.07445028424263,
-0.09073632210493088,
-0.0070223258808255196,
0.04564768821001053,
-0.030193643644452095,
-0.07937127351760864,
-0.09351469576358795,
-0.0998871698975563,
0.15038838982582092,
-0.048060230910778046,
-0.03029194474220276,
-0.11274667829275131,
0.05132373794913292,
0.06080130487680435,
-0.0831400454044342,
0.0334792323410511,
0.018241694197058678,
0.09991908073425293,
0.013612802140414715,
-0.059758130460977554,
0.13471271097660065,
-0.067618727684021,
-0.16987411677837372,
-0.06734095513820648,
0.13493673503398895,
0.0169173963367939,
0.041005976498126984,
-0.009365159086883068,
0.012621445581316948,
-0.01164386235177517,
-0.06974045932292938,
0.03049592487514019,
-0.023283567279577255,
0.04433314502239227,
0.02380053699016571,
-0.038973234593868256,
-0.003471534699201584,
-0.054586417973041534,
-0.01647258549928665,
0.16649074852466583,
0.2947240471839905,
-0.07215997576713562,
-0.009877345524728298,
0.054110921919345856,
-0.060053445398807526,
-0.1872759461402893,
0.056690409779548645,
0.01822780631482601,
0.012747018598020077,
0.047213807702064514,
-0.13280141353607178,
0.08139631897211075,
0.07425124198198318,
-0.010476479306817055,
0.10742833465337753,
-0.31562671065330505,
-0.144180566072464,
0.11825587600469589,
0.16291135549545288,
0.126227468252182,
-0.17267325520515442,
-0.042795345187187195,
-0.04447932913899422,
-0.11342578381299973,
0.10588777810335159,
-0.15720057487487793,
0.11551667749881744,
-0.004424375016242266,
0.06017093360424042,
0.022997815161943436,
-0.06329574435949326,
0.11752638965845108,
-0.018041523173451424,
0.11692029237747192,
-0.06840939074754715,
-0.014458004385232925,
0.08329956233501434,
-0.0674363300204277,
0.030228476971387863,
-0.11972422897815704,
0.03540448844432831,
-0.06165703758597374,
-0.035398729145526886,
-0.055763956159353256,
0.028106775134801865,
-0.03482300788164139,
-0.07399284839630127,
-0.041515495628118515,
0.014306152239441872,
0.043056420981884,
-0.009089612402021885,
0.15816862881183624,
-0.013533596880733967,
0.16719873249530792,
0.1403576135635376,
0.09919507056474686,
-0.05886751413345337,
-0.0013161440147086978,
0.0073423539288342,
-0.03195108845829964,
0.05255211517214775,
-0.15183903276920319,
0.0359087772667408,
0.1221003606915474,
0.016934961080551147,
0.14488212764263153,
0.08244067430496216,
-0.0413803793489933,
0.019554387778043747,
0.0646929070353508,
-0.18226836621761322,
-0.12431623041629791,
-0.02696768380701542,
-0.043095819652080536,
-0.12273035198450089,
0.07563652098178864,
0.1447446495294571,
-0.06850756704807281,
0.016489196568727493,
-0.01496216095983982,
0.005830360576510429,
-0.039151836186647415,
0.1859917789697647,
0.06735806912183762,
0.051094941794872284,
-0.06821490824222565,
0.06973657757043839,
0.032289862632751465,
-0.07317522168159485,
0.027163349092006683,
0.07182342559099197,
-0.07828224450349808,
-0.03672417998313904,
0.037800710648298264,
0.21300265192985535,
-0.0351562462747097,
-0.03479587659239769,
-0.16508203744888306,
-0.11220943927764893,
0.04401738941669464,
0.22175855934619904,
0.07311637699604034,
0.016088776290416718,
-0.035567138344049454,
0.0250974353402853,
-0.12831279635429382,
0.12546879053115845,
0.05753328278660774,
0.09586115181446075,
-0.15451909601688385,
0.16601257026195526,
-0.017033962532877922,
0.004322858527302742,
-0.03179391846060753,
0.04233422502875328,
-0.1255786120891571,
0.004513502586632967,
-0.14706642925739288,
-0.022499149665236473,
-0.020233318209648132,
-0.010964464396238327,
-0.008027574978768826,
-0.05103422328829765,
-0.06568367034196854,
0.0004524737305473536,
-0.09524562209844589,
-0.01758871227502823,
0.03822755813598633,
0.032280996441841125,
-0.12494734674692154,
-0.03932065889239311,
0.02748737297952175,
-0.08000539243221283,
0.06855695694684982,
0.02527804672718048,
0.0119931660592556,
0.057536616921424866,
-0.17953017354011536,
0.0418083481490612,
0.05442652851343155,
-0.0005512490752153099,
0.04103471711277962,
-0.05893901363015175,
-0.02088101953268051,
-0.019310934469103813,
0.0681127980351448,
0.022191772237420082,
0.07656010240316391,
-0.10752726346254349,
0.013949299231171608,
-0.03208618983626366,
-0.05402523651719093,
-0.0629180520772934,
0.046857986599206924,
0.06405255198478699,
0.016066625714302063,
0.17273171246051788,
-0.09800964593887329,
0.025751499459147453,
-0.21566630899906158,
0.004762668162584305,
0.016628842800855637,
-0.12781557440757751,
-0.07403669506311417,
-0.062329210340976715,
0.06438680738210678,
-0.07122883200645447,
0.10826367139816284,
-0.014477071352303028,
0.03178730234503746,
0.03188619762659073,
-0.04046251252293587,
0.055803366005420685,
0.034176528453826904,
0.23909392952919006,
0.022820690646767616,
-0.059602443128824234,
0.00892222486436367,
0.0471721775829792,
0.1247117668390274,
0.11045985668897629,
0.19531837105751038,
0.15695205330848694,
-0.07587181776762009,
0.11819957196712494,
0.03803879767656326,
-0.0304865799844265,
-0.12672357261180878,
0.035276126116514206,
-0.0503719300031662,
0.08279626816511154,
-0.025400087237358093,
0.2147354781627655,
0.12823636829853058,
-0.145988330245018,
0.007220970466732979,
-0.04441045597195625,
-0.08797066658735275,
-0.1081719622015953,
-0.06040940061211586,
-0.09634366631507874,
-0.13440020382404327,
-0.0077308728359639645,
-0.12095978856086731,
0.014708532951772213,
0.09109530597925186,
0.019911831244826317,
-0.009690594859421253,
0.22877725958824158,
0.02795387990772724,
0.024192674085497856,
0.06616651266813278,
0.0042098830454051495,
-0.0264316163957119,
-0.06841550767421722,
-0.08786442875862122,
0.01663930155336857,
-0.02141302265226841,
0.017022203654050827,
-0.04745176061987877,
-0.03700656071305275,
0.038757726550102234,
-0.0024141045287251472,
-0.11744032055139542,
0.002700489480048418,
0.032389286905527115,
0.05248575285077095,
0.02647576853632927,
0.014308763667941093,
-0.009965441189706326,
-0.01945021189749241,
0.2280391901731491,
-0.09100387245416641,
-0.05745096132159233,
-0.09196547418832779,
0.19074445962905884,
0.021336030215024948,
0.019364837557077408,
-0.007783615496009588,
-0.09959285706281662,
0.03302530199289322,
0.22790412604808807,
0.17218221724033356,
-0.09124667197465897,
0.0067487116903066635,
-0.015730664134025574,
-0.0007376009598374367,
-0.0314457081258297,
0.08863219618797302,
0.09083589166402817,
0.04260098561644554,
-0.07230141013860703,
-0.03339724242687225,
-0.01916070282459259,
-0.011125062592327595,
-0.031806156039237976,
0.07444235682487488,
0.04601605236530304,
0.02384372241795063,
-0.05113062262535095,
0.06355477124452591,
-0.04730204492807388,
-0.10336858034133911,
0.017364004626870155,
-0.2075214982032776,
-0.13123328983783722,
-0.025973601266741753,
0.10252563655376434,
-0.022030171006917953,
0.0636025071144104,
-0.03046964295208454,
-0.0013646617298945785,
0.052547894418239594,
-0.01124450471252203,
-0.0648026317358017,
-0.0631682276725769,
0.05623193830251694,
-0.1267993301153183,
0.20842327177524567,
-0.0480022169649601,
0.026994850486516953,
0.13798561692237854,
0.026834100484848022,
-0.06635067611932755,
0.08235868811607361,
0.04861001670360565,
-0.051100362092256546,
0.02738785743713379,
0.12318538129329681,
-0.04193347692489624,
0.11615122109651566,
0.05520867928862572,
-0.15627355873584747,
0.01778191514313221,
-0.04868987575173378,
-0.06977678835391998,
-0.05813521146774292,
-0.050790537148714066,
-0.05269726365804672,
0.1363416463136673,
0.18368324637413025,
-0.04172470420598984,
0.01657511293888092,
-0.04427376762032509,
0.015401914715766907,
0.07880450040102005,
0.0587151013314724,
-0.025164518505334854,
-0.25515028834342957,
0.012562473304569721,
0.08448177576065063,
-0.011504484340548515,
-0.3373063802719116,
-0.08454065024852753,
-0.013756537809967995,
-0.034003812819719315,
-0.08991493284702301,
0.08750342577695847,
0.14106646180152893,
0.059925612062215805,
-0.05544354021549225,
-0.07489577680826187,
-0.06573959439992905,
0.17814014852046967,
-0.1309182196855545,
-0.10024057328701019
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | ambet/mistral-v0.2_robot_lora_dict | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T16:49:34+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
60,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.04571164771914482,
0.1637648642063141,
-0.005522117950022221,
0.017756497487425804,
0.09821303188800812,
0.01318030059337616,
0.06541220843791962,
0.1127115860581398,
-0.017605241388082504,
0.1127321794629097,
0.030432263389229774,
0.09820804744958878,
0.1134178638458252,
0.14702944457530975,
-0.003594378475099802,
-0.22472713887691498,
0.052083637565374374,
-0.12124937027692795,
-0.03241228312253952,
0.1181139275431633,
0.14941681921482086,
-0.09871039539575577,
0.07234785705804825,
-0.030714161694049835,
-0.01334790326654911,
-0.03167412802577019,
-0.05947697162628174,
-0.045681875199079514,
0.046136777848005295,
0.0657167062163353,
0.06853367388248444,
0.007354621775448322,
0.08972878009080887,
-0.2669793367385864,
0.019881360232830048,
0.06918594241142273,
-0.0025153355672955513,
0.07059336453676224,
0.06344282627105713,
-0.07033728063106537,
0.10271385312080383,
-0.051166124641895294,
0.1467856466770172,
0.08377711474895477,
-0.09116126596927643,
-0.18892322480678558,
-0.08764564990997314,
0.0990586131811142,
0.17651304602622986,
0.04750865325331688,
-0.024397386237978935,
0.09895956516265869,
-0.0878119245171547,
0.015860557556152344,
0.052259236574172974,
-0.07261253148317337,
-0.05407591536641121,
0.061004482209682465,
0.07816638052463531,
0.06616047024726868,
-0.12551534175872803,
-0.02998468652367592,
0.005221198312938213,
0.011705057695508003,
0.07518111169338226,
0.01836656779050827,
0.15222862362861633,
0.03479425609111786,
-0.12653809785842896,
-0.04834689199924469,
0.0983143299818039,
0.03359128534793854,
-0.043975554406642914,
-0.247073233127594,
-0.031072303652763367,
-0.026882093399763107,
-0.030029185116291046,
-0.038772210478782654,
0.04153512790799141,
-0.006745535880327225,
0.08434242010116577,
-0.0040448750369250774,
-0.07344388216733932,
-0.03874153643846512,
0.06087949126958847,
0.0669754296541214,
0.029331250116229057,
-0.013996441848576069,
0.010876164771616459,
0.11490162461996078,
0.10806918889284134,
-0.12199585139751434,
-0.05589085817337036,
-0.06492951512336731,
-0.08786392956972122,
-0.04284887760877609,
0.033410828560590744,
0.03509693965315819,
0.05435176193714142,
0.2536843419075012,
0.009815474040806293,
0.06126174330711365,
0.03745805472135544,
0.007310505956411362,
0.059651583433151245,
0.10812553018331528,
-0.05987109988927841,
-0.10409316420555115,
-0.02881651371717453,
0.08857584744691849,
0.006609630770981312,
-0.03354408219456673,
-0.05052083358168602,
0.05901389569044113,
0.021856583654880524,
0.11749778687953949,
0.08884359151124954,
0.00984770804643631,
-0.07126569002866745,
-0.06146538630127907,
0.19450126588344574,
-0.16384615004062653,
0.04264351725578308,
0.03702449053525925,
-0.039683789014816284,
-0.0003956064465455711,
0.011445282027125359,
0.01843930408358574,
-0.023893611505627632,
0.09238249063491821,
-0.05498874559998512,
-0.04001082479953766,
-0.1106586754322052,
-0.0339570976793766,
0.034455835819244385,
0.010122774168848991,
-0.03529255837202072,
-0.03252722695469856,
-0.08346389979124069,
-0.07506290078163147,
0.09339368343353271,
-0.07379438728094101,
-0.04854428768157959,
-0.018830472603440285,
-0.0752616599202156,
0.02326788194477558,
0.02032634988427162,
0.07736726850271225,
-0.023358777165412903,
0.04288764297962189,
-0.054010841995477676,
0.05824148654937744,
0.11001134663820267,
0.035365406423807144,
-0.05824809893965721,
0.06025301292538643,
-0.2382364422082901,
0.09637492895126343,
-0.07412451505661011,
0.05830197036266327,
-0.15449334681034088,
-0.02627694234251976,
0.04870045557618141,
0.0076532382518053055,
-0.009597796015441418,
0.13436771929264069,
-0.21578943729400635,
-0.026375943794846535,
0.16865074634552002,
-0.10160042345523834,
-0.06946627050638199,
0.05867103114724159,
-0.049256108701229095,
0.10817171633243561,
0.03891118988394737,
-0.025492025539278984,
0.06244310364127159,
-0.12527504563331604,
0.007147894706577063,
-0.04992884770035744,
-0.016554534435272217,
0.1592475026845932,
0.07294736802577972,
-0.07235062122344971,
0.07110220938920975,
0.025814544409513474,
-0.027441376820206642,
-0.04532165080308914,
-0.016039686277508736,
-0.10585595667362213,
0.014911207370460033,
-0.061168964952230453,
0.01876060478389263,
-0.020111115649342537,
-0.08977947384119034,
-0.028080428019165993,
-0.1748371720314026,
-0.026230180636048317,
0.085477814078331,
-0.007464459165930748,
-0.018854627385735512,
-0.11770102381706238,
0.008567224256694317,
0.044854406267404556,
0.006109896115958691,
-0.13499478995800018,
-0.04764661565423012,
0.027907660230994225,
-0.16220368444919586,
0.033779170364141464,
-0.05184612050652504,
0.05056280270218849,
0.026674345135688782,
-0.029802238568663597,
-0.025906935334205627,
0.022987615317106247,
0.006545235402882099,
-0.011514187790453434,
-0.24465326964855194,
-0.026841215789318085,
-0.026506783440709114,
0.166712686419487,
-0.20777921378612518,
0.03577128052711487,
0.08057375997304916,
0.15318496525287628,
0.011457439512014389,
-0.04087435454130173,
0.005527274217456579,
-0.06868630647659302,
-0.025992877781391144,
-0.05823420733213425,
-0.002480053110048175,
-0.03337050974369049,
-0.04843711107969284,
0.04469521716237068,
-0.1662919819355011,
-0.03491327911615372,
0.09593124687671661,
0.06427760422229767,
-0.13986408710479736,
-0.023568401113152504,
-0.03526119887828827,
-0.049809779971838,
-0.047768235206604004,
-0.06002878025174141,
0.11181395500898361,
0.058611296117305756,
0.04419868439435959,
-0.059296321123838425,
-0.07637067884206772,
-0.0028071242850273848,
-0.014342374168336391,
-0.01986078731715679,
0.097631074488163,
0.06816094368696213,
-0.1381729394197464,
0.09227006882429123,
0.09810956567525864,
0.07738673686981201,
0.09273158758878708,
-0.02444581687450409,
-0.08119411021471024,
-0.0471174530684948,
0.03257923200726509,
0.018235107883810997,
0.1276484578847885,
-0.027872784063220024,
0.04268912971019745,
0.0421174094080925,
-0.018595336005091667,
0.013991083949804306,
-0.08597505837678909,
0.033884208649396896,
0.02703946642577648,
-0.0159194003790617,
0.04745442420244217,
-0.037611253559589386,
0.024539871141314507,
0.08754327148199081,
0.04615016281604767,
0.033831849694252014,
0.015717241913080215,
-0.05243339762091637,
-0.10873834043741226,
0.1642032116651535,
-0.12759798765182495,
-0.22238075733184814,
-0.13922695815563202,
0.003997850697487593,
0.036267586052417755,
-0.01646288111805916,
0.002834152430295944,
-0.060960907489061356,
-0.12132686376571655,
-0.08726011961698532,
0.015815909951925278,
0.050406474620103836,
-0.0912260189652443,
-0.060087788850069046,
0.056193675845861435,
0.037736181169748306,
-0.14546552300453186,
0.01776101253926754,
0.04850281774997711,
-0.09700650721788406,
-0.004754792433232069,
0.07885372638702393,
0.06784981489181519,
0.17673011124134064,
0.018112216144800186,
-0.021776698529720306,
0.031116241589188576,
0.20988549292087555,
-0.13491620123386383,
0.11005933582782745,
0.13349974155426025,
-0.09236859530210495,
0.08153878152370453,
0.20252206921577454,
0.04006611555814743,
-0.09986240416765213,
0.032548144459724426,
0.02142537757754326,
-0.027797512710094452,
-0.2441972941160202,
-0.07161470502614975,
-0.004515932407230139,
-0.06051458790898323,
0.07499068230390549,
0.09190185368061066,
0.08272628486156464,
0.011750337667763233,
-0.09449771046638489,
-0.08492138236761093,
0.06362129002809525,
0.10420511662960052,
0.02181125245988369,
-0.009744768962264061,
0.09036174416542053,
-0.03286943957209587,
0.01948373205959797,
0.08554471284151077,
0.0038120283279567957,
0.18320275843143463,
0.051725953817367554,
0.19073979556560516,
0.07944851368665695,
0.06951095163822174,
0.012023290619254112,
0.011227634735405445,
0.018135491758584976,
0.03228217363357544,
-0.003646562807261944,
-0.08350840210914612,
-0.02080707624554634,
0.1153142973780632,
0.0672341138124466,
0.012952476739883423,
0.01729460060596466,
-0.04021955281496048,
0.08128432929515839,
0.18377035856246948,
-0.0093126455321908,
-0.177269846200943,
-0.06024068966507912,
0.07718996703624725,
-0.09723462164402008,
-0.09738315641880035,
-0.01454379502683878,
0.030975129455327988,
-0.1702532023191452,
0.025819219648838043,
-0.023134231567382812,
0.11114585399627686,
-0.13745717704296112,
-0.020040949806571007,
0.07143081724643707,
0.07336213439702988,
0.004178736824542284,
0.055973317474126816,
-0.16574905812740326,
0.1074945405125618,
0.007851972244679928,
0.06788748502731323,
-0.0949488952755928,
0.10003086179494858,
-0.002759356750175357,
-0.016956903040409088,
0.13766175508499146,
0.003847390878945589,
-0.0742180123925209,
-0.07706846296787262,
-0.08544620126485825,
-0.010016623884439468,
0.12665624916553497,
-0.13990990817546844,
0.08602021634578705,
-0.03789570555090904,
-0.04160536453127861,
-0.0009961887262761593,
-0.09994571655988693,
-0.11771732568740845,
-0.18694964051246643,
0.060274846851825714,
-0.13818500936031342,
0.030693015083670616,
-0.1080726683139801,
-0.033236145973205566,
-0.03044886700809002,
0.18898600339889526,
-0.23496590554714203,
-0.07289838045835495,
-0.14654842019081116,
-0.10314314812421799,
0.14515270292758942,
-0.05135014280676842,
0.0824703797698021,
-0.007518251892179251,
0.16955603659152985,
0.01909777894616127,
-0.024870775640010834,
0.09702518582344055,
-0.09090493619441986,
-0.19369281828403473,
-0.07736486196517944,
0.1553725302219391,
0.13563397526741028,
0.03274888917803764,
-0.0031351360958069563,
0.03731042891740799,
-0.016484085470438004,
-0.119691863656044,
0.016338739544153214,
0.17828133702278137,
0.06005066633224487,
0.02449444867670536,
-0.025351086631417274,
-0.12034450471401215,
-0.07065033912658691,
-0.028268499299883842,
0.030481377616524696,
0.1794593334197998,
-0.06955225765705109,
0.18364831805229187,
0.147920161485672,
-0.05845186114311218,
-0.20284810662269592,
0.01105605997145176,
0.03317207098007202,
-0.00011460785754024982,
0.025185899809002876,
-0.19945523142814636,
0.08448769152164459,
0.004838644526898861,
-0.0498092919588089,
0.1281348466873169,
-0.17351724207401276,
-0.14425379037857056,
0.07726620137691498,
0.03829115256667137,
-0.1926836371421814,
-0.12892304360866547,
-0.09138946235179901,
-0.04540696740150452,
-0.18867050111293793,
0.09461917728185654,
0.031194355338811874,
0.009373899549245834,
0.030387504026293755,
0.030604345723986626,
0.01938873715698719,
-0.04181704297661781,
0.1860174536705017,
-0.023930367082357407,
0.028327496722340584,
-0.08596936613321304,
-0.07190530747175217,
0.0391114242374897,
-0.05227291211485863,
0.07252339273691177,
-0.023452037945389748,
0.00719826715067029,
-0.09769386798143387,
-0.04156304895877838,
-0.03843177855014801,
0.01581472158432007,
-0.09648153930902481,
-0.08523351699113846,
-0.04445706307888031,
0.09780744463205338,
0.09553340077400208,
-0.03473082184791565,
-0.024805041030049324,
-0.07508285343647003,
0.04805302992463112,
0.19605006277561188,
0.17889533936977386,
0.03904116898775101,
-0.07846304774284363,
-0.0033101453445851803,
-0.010484009049832821,
0.04490501061081886,
-0.20383046567440033,
0.06269704550504684,
0.05393069609999657,
0.019165942445397377,
0.11697915196418762,
-0.01937638409435749,
-0.15321338176727295,
-0.07137971371412277,
0.062210626900196075,
-0.05747547000646591,
-0.19925202429294586,
0.008424095809459686,
0.062047190964221954,
-0.16446428000926971,
-0.045800499618053436,
0.046785544604063034,
-0.004990153945982456,
-0.03839265555143356,
0.022938871756196022,
0.09231305122375488,
0.0029900665394961834,
0.07426668703556061,
0.052022483199834824,
0.0835016593337059,
-0.1060708537697792,
0.07922257483005524,
0.08730976283550262,
-0.08381073921918869,
0.022620677947998047,
0.10530175268650055,
-0.061487648636102676,
-0.03560204058885574,
0.017662353813648224,
0.08361397683620453,
0.018624287098646164,
-0.03893670439720154,
0.014383325353264809,
-0.1065717563033104,
0.059272702783346176,
0.08645539730787277,
0.03302672877907753,
0.01618802361190319,
0.034192394465208054,
0.04655340686440468,
-0.06840039044618607,
0.122025266289711,
0.032824426889419556,
0.017204686999320984,
-0.035474274307489395,
-0.04102595895528793,
0.01851540431380272,
-0.03368416428565979,
-0.005532157141715288,
-0.03097093477845192,
-0.07835554331541061,
-0.015077406540513039,
-0.16520504653453827,
-0.009829589165747166,
-0.05936548113822937,
0.012285472825169563,
0.031714752316474915,
-0.034721489995718,
0.008415459655225277,
0.009580436162650585,
-0.07713334262371063,
-0.06541574746370316,
-0.01965213567018509,
0.0961783304810524,
-0.1606777459383011,
0.022340767085552216,
0.08350874483585358,
-0.12098895758390427,
0.09293801337480545,
0.01664864458143711,
-0.00869405921548605,
0.02654755860567093,
-0.1516905426979065,
0.03389517217874527,
-0.03324367105960846,
0.009356614202260971,
0.04251125827431679,
-0.2180858999490738,
-0.0012979574967175722,
-0.034122150391340256,
-0.06511902064085007,
-0.008563618175685406,
-0.035606082528829575,
-0.1133907288312912,
0.10431582480669022,
0.007158213295042515,
-0.08918852359056473,
-0.031932637095451355,
0.02896781638264656,
0.08660420775413513,
-0.02103978954255581,
0.1533614844083786,
-0.008595003746449947,
0.07452014833688736,
-0.16158120334148407,
-0.019116591662168503,
-0.0044966633431613445,
0.021838920190930367,
-0.020337330177426338,
-0.011089952662587166,
0.043057333678007126,
-0.02310733124613762,
0.1769370436668396,
-0.034001484513282776,
0.02080564945936203,
0.06879838556051254,
0.02382824197411537,
-0.03270673379302025,
0.10420172661542892,
0.04176081717014313,
0.020029285922646523,
0.016749408096075058,
0.0014026050921529531,
-0.04661702737212181,
-0.03435906395316124,
-0.1965997964143753,
0.07266207784414291,
0.15759599208831787,
0.09697116911411285,
-0.019108884036540985,
0.07821404188871384,
-0.0993313267827034,
-0.10917975008487701,
0.12915705144405365,
-0.04755320027470589,
-0.004375945311039686,
-0.07154709100723267,
0.13273866474628448,
0.14712604880332947,
-0.18722544610500336,
0.07334931939840317,
-0.07133730500936508,
-0.04749078303575516,
-0.10922681540250778,
-0.194550022482872,
-0.05630992352962494,
-0.049111537635326385,
-0.015855323523283005,
-0.04727233946323395,
0.07431400567293167,
0.05443255603313446,
0.007043207995593548,
-0.0018872307846322656,
0.06250270456075668,
-0.02979675866663456,
-0.004455813206732273,
0.033084239810705185,
0.06524696946144104,
0.012280851602554321,
-0.028982065618038177,
0.017169395461678505,
-0.009704679250717163,
0.04565926641225815,
0.06593092530965805,
0.0490880124270916,
-0.02946917712688446,
0.01301988959312439,
-0.040264759212732315,
-0.10370729863643646,
0.044506072998046875,
-0.02268853597342968,
-0.081757090985775,
0.15341326594352722,
0.023376943543553352,
0.008703592233359814,
-0.018961627036333084,
0.23797030746936798,
-0.07337556779384613,
-0.09915944188833237,
-0.14910556375980377,
0.10603363811969757,
-0.037726908922195435,
0.05897798761725426,
0.04798928648233414,
-0.10144850611686707,
0.018896711990237236,
0.1251462697982788,
0.16306589543819427,
-0.03724272549152374,
0.020064668729901314,
0.030806828290224075,
0.005520908627659082,
-0.035788439214229584,
0.04845234379172325,
0.06755134463310242,
0.16263099014759064,
-0.046816933900117874,
0.09447267651557922,
0.0011601726291701198,
-0.09597980976104736,
-0.03777771443128586,
0.10832508653402328,
-0.014584118500351906,
0.018404638394713402,
-0.059979453682899475,
0.11911186575889587,
-0.06456011533737183,
-0.2371375411748886,
0.062140509486198425,
-0.06866546720266342,
-0.13664314150810242,
-0.023452885448932648,
0.08483598381280899,
-0.011404541321098804,
0.028394777327775955,
0.07356005162000656,
-0.07185159623622894,
0.20126941800117493,
0.03666449710726738,
-0.05399559810757637,
-0.054549336433410645,
0.0827551931142807,
-0.09896446764469147,
0.27000707387924194,
0.015913790091872215,
0.048061735928058624,
0.1041264757514,
-0.008932216092944145,
-0.13759581744670868,
0.019727399572730064,
0.0954047441482544,
-0.10358903557062149,
0.041838936507701874,
0.19829733669757843,
-0.0014832824235782027,
0.1230277270078659,
0.07854447513818741,
-0.07668869197368622,
0.0473078191280365,
-0.08185897022485733,
-0.06852826476097107,
-0.0918748751282692,
0.10061057657003403,
-0.07712632417678833,
0.14169210195541382,
0.13906599581241608,
-0.05018797889351845,
0.011615060269832611,
-0.031394075602293015,
0.04402702674269676,
0.0006254917825572193,
0.10420145094394684,
0.002576707163825631,
-0.18477243185043335,
0.02472778968513012,
0.006634650751948357,
0.10846512019634247,
-0.15925930440425873,
-0.09642539173364639,
0.03936212509870529,
0.004935122560709715,
-0.06595125794410706,
0.1294470727443695,
0.055943287909030914,
0.043614063411951065,
-0.039108045399188995,
-0.036952149122953415,
-0.006302761845290661,
0.13504701852798462,
-0.1053730770945549,
0.002390247769653797
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-emotions
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2520
- Accuracy: 0.5625
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4894 | 2.5 | 100 | 1.2520 | 0.5625 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "vit-emotions", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.5625, "name": "Accuracy"}]}]}]} | image-classification | ivandrian11/vit-emotions | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:50:18+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| vit-emotions
============
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2520
* Accuracy: 0.5625
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
86,
113,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.13756731152534485,
0.16394197940826416,
-0.001968186115846038,
0.11448752135038376,
0.14590950310230255,
0.025111285969614983,
0.1406608372926712,
0.12807884812355042,
-0.054735567420721054,
0.08755160868167877,
0.13541896641254425,
0.08713221549987793,
0.054971832782030106,
0.18449699878692627,
-0.04926559701561928,
-0.22055691480636597,
0.027858464047312737,
0.0200312789529562,
-0.05389994755387306,
0.12437223643064499,
0.090202197432518,
-0.12642741203308105,
0.0949963927268982,
0.014894912019371986,
-0.18606996536254883,
-0.0306861512362957,
0.009928343817591667,
-0.04228150472044945,
0.11938565969467163,
0.04093939810991287,
0.11263376474380493,
0.04116598889231682,
0.08161628246307373,
-0.16200479865074158,
0.013706575147807598,
0.07018871605396271,
-0.009186203591525555,
0.10113358497619629,
0.07685597985982895,
0.011819981969892979,
-0.004290333483368158,
-0.09301352500915527,
0.04565158486366272,
0.015332912094891071,
-0.11282449960708618,
-0.2101990133523941,
-0.10253205895423889,
0.06996306777000427,
0.08762787282466888,
0.07225383073091507,
-0.005049466155469418,
0.12136957794427872,
-0.034801941365003586,
0.08178810030221939,
0.2018149048089981,
-0.26604294776916504,
-0.07183794677257538,
0.010365335270762444,
0.019988611340522766,
0.07743223011493683,
-0.09401723742485046,
-0.02039489336311817,
0.04636480659246445,
0.02129460871219635,
0.1218956932425499,
0.01134746614843607,
-0.054534923285245895,
-0.024932174012064934,
-0.13781927525997162,
-0.06829464435577393,
0.16745804250240326,
0.08522279560565948,
-0.044205233454704285,
-0.06525449454784393,
-0.07136029005050659,
-0.16489912569522858,
-0.04134692996740341,
0.02157331071794033,
0.037659816443920135,
-0.0346837192773819,
-0.06426741182804108,
-0.0217036884278059,
-0.10807682573795319,
-0.06825930625200272,
-0.020244605839252472,
0.07659734785556793,
0.05270500108599663,
0.013641877099871635,
-0.003043856006115675,
0.09940487146377563,
-0.0070550041273236275,
-0.15068478882312775,
0.007070163730531931,
0.014181545935571194,
-0.02674810402095318,
-0.027537314221262932,
-0.025270681828260422,
-0.06492426991462708,
0.024855345487594604,
0.12464611232280731,
-0.047839757055044174,
0.04739992320537567,
-0.012174764648079872,
0.050881851464509964,
-0.09357313811779022,
0.17528945207595825,
-0.07640665024518967,
0.009264026768505573,
0.040310025215148926,
0.11918537318706512,
0.04459044337272644,
-0.010163798928260803,
-0.10270891338586807,
0.004093602765351534,
0.12542258203029633,
0.020983923226594925,
-0.005436270497739315,
0.05702534690499306,
-0.07873523980379105,
-0.031224654987454414,
0.09660711884498596,
-0.08311007171869278,
0.024365777149796486,
0.018185323104262352,
-0.05348286032676697,
-0.057805679738521576,
0.048942893743515015,
0.00857897475361824,
-0.003078018082305789,
0.04961882531642914,
-0.0960557833313942,
0.002681346144527197,
-0.06841058284044266,
-0.1145571619272232,
0.031176522374153137,
-0.09233434498310089,
0.0033047357574105263,
-0.11439185589551926,
-0.14857548475265503,
-0.03278500586748123,
0.042357709258794785,
-0.03554742410778999,
-0.07758529484272003,
-0.0393134206533432,
-0.07026303559541702,
0.03449760749936104,
-0.007374102715402842,
0.08465193957090378,
-0.058550745248794556,
0.10021548718214035,
0.018995044752955437,
0.06375100463628769,
-0.02271636575460434,
0.050060514360666275,
-0.08086550980806351,
0.06603468954563141,
-0.161790132522583,
0.048570260405540466,
-0.06794540584087372,
0.07350380718708038,
-0.12318105250597,
-0.08278124034404755,
0.015264817513525486,
-0.03745317831635475,
0.08917426317930222,
0.11410299688577652,
-0.16416619718074799,
-0.04480386897921562,
0.1590839922428131,
-0.09628324955701828,
-0.14465376734733582,
0.1307791769504547,
-0.02652394026517868,
-0.007946719415485859,
0.03626886382699013,
0.16819249093532562,
0.09360924363136292,
-0.09920008480548859,
-0.020431913435459137,
-0.030732233077287674,
0.06873869895935059,
-0.05731775611639023,
0.10062343627214432,
0.007288324646651745,
-0.02436278574168682,
0.011963741853833199,
-0.09943181276321411,
0.0865776315331459,
-0.08957047760486603,
-0.08867733925580978,
-0.05224444344639778,
-0.08793553709983826,
0.0468624085187912,
0.053443100303411484,
0.040887050330638885,
-0.08203756809234619,
-0.09686129540205002,
0.013554442673921585,
0.10424301773309708,
-0.09056446701288223,
0.007994972169399261,
-0.06544521450996399,
0.11906623840332031,
-0.10461509227752686,
-0.016648584976792336,
-0.14765459299087524,
-0.08515311032533646,
0.04182494431734085,
-0.046417366713285446,
-0.008572868071496487,
-0.053377509117126465,
0.055454421788454056,
0.07432051002979279,
-0.04395449906587601,
-0.08048681169748306,
-0.049985747784376144,
-0.003725935472175479,
-0.10109569877386093,
-0.2098052054643631,
-0.050067462027072906,
-0.024117348715662956,
0.18465059995651245,
-0.2319621443748474,
0.024091852828860283,
0.01290509756654501,
0.12046542018651962,
0.042584359645843506,
-0.02697419747710228,
0.0030375844798982143,
0.03820902481675148,
-0.04290560632944107,
-0.08451737463474274,
0.057273901998996735,
0.024669216945767403,
-0.0779021605849266,
0.03263421356678009,
-0.10150597989559174,
0.13104499876499176,
0.12152226269245148,
-0.006634691264480352,
-0.06939700245857239,
-0.02494168095290661,
-0.054899152368307114,
-0.04727434739470482,
-0.04379243776202202,
0.00709207309409976,
0.0831661969423294,
0.011058460921049118,
0.14737366139888763,
-0.09041447937488556,
-0.020824851468205452,
0.04529009759426117,
-0.021975306794047356,
-0.031709589064121246,
0.10771386325359344,
0.1021965816617012,
-0.13572722673416138,
0.15413495898246765,
0.14574860036373138,
-0.06965078413486481,
0.11392232775688171,
-0.046865638345479965,
-0.0854901447892189,
-0.028815992176532745,
0.03328753635287285,
0.0315442718565464,
0.13992390036582947,
-0.09545829147100449,
-0.00037595967296510935,
0.03903619945049286,
-0.00636934582144022,
0.005812515504658222,
-0.2104949951171875,
-0.014154392294585705,
0.024988731369376183,
-0.055943552404642105,
0.0009008076740428805,
-0.018732856959104538,
0.000623455096501857,
0.09526771306991577,
0.004827678203582764,
-0.0523330494761467,
0.03610667586326599,
0.004791408311575651,
-0.08686079829931259,
0.20072992146015167,
-0.09100896865129471,
-0.21027491986751556,
-0.13808080554008484,
-0.01698777638375759,
-0.050104495137929916,
0.0046712555922567844,
0.040649499744176865,
-0.07505730539560318,
-0.05495496839284897,
-0.09492907673120499,
-0.024752987548708916,
0.031205136328935623,
0.032300714403390884,
0.011308899149298668,
0.0024120016023516655,
0.1130751296877861,
-0.08479820936918259,
0.007836977019906044,
-0.005101449321955442,
-0.01647556945681572,
0.05772014334797859,
0.02207396924495697,
0.1176510900259018,
0.1105295717716217,
-0.01313946582376957,
0.014097107574343681,
-0.017874374985694885,
0.2412874847650528,
-0.07251984626054764,
-0.014867567457258701,
0.12775881588459015,
-0.013578472658991814,
0.06932081282138824,
0.1563473343849182,
0.03802914544939995,
-0.08027070760726929,
0.01430819183588028,
0.014205590821802616,
-0.017076905816793442,
-0.21303552389144897,
-0.04082927107810974,
-0.04631251469254494,
-0.007616318762302399,
0.13672497868537903,
0.04552827030420303,
0.010311456397175789,
0.08292006701231003,
-0.01916118711233139,
0.07152538746595383,
-0.024320391938090324,
0.06951839476823807,
0.10400835424661636,
0.04274662584066391,
0.11493580788373947,
-0.0360880121588707,
-0.025801824405789375,
0.03809720650315285,
0.02164941467344761,
0.24348090589046478,
-0.020003776997327805,
0.18204422295093536,
0.04389164224267006,
0.21401475369930267,
0.03490772470831871,
0.0535656102001667,
-0.0053197359666228294,
-0.00827992893755436,
-0.0007461854256689548,
-0.04975408315658569,
-0.028674442321062088,
0.03230781853199005,
-0.010457633063197136,
0.04414595291018486,
-0.0979446992278099,
0.02796478383243084,
0.03552507609128952,
0.2728576958179474,
0.07081389427185059,
-0.38484787940979004,
-0.09352012723684311,
-0.0000417685805587098,
-0.009773198515176773,
-0.05986437946557999,
-0.01388248335570097,
0.14103850722312927,
-0.07551973313093185,
0.04116567596793175,
-0.09175439924001694,
0.08468786627054214,
-0.06737423688173294,
-0.0022484678775072098,
0.08514578640460968,
0.08471628278493881,
0.0056826286017894745,
0.06699935346841812,
-0.22494986653327942,
0.27113670110702515,
0.006321897730231285,
0.03693867102265358,
-0.048604708164930344,
0.006823286414146423,
0.03294019773602486,
0.06192268803715706,
0.09117724001407623,
-0.00009982626215787604,
-0.02726704068481922,
-0.2062399536371231,
-0.14264820516109467,
0.016095630824565887,
0.06579948961734772,
-0.044676244258880615,
0.10321006178855896,
-0.025256164371967316,
-0.0262919794768095,
0.04512060806155205,
-0.004058584570884705,
-0.09719498455524445,
-0.10707037150859833,
0.010888722725212574,
0.0279411431401968,
0.0243391003459692,
-0.10016610473394394,
-0.1214665025472641,
-0.09069044888019562,
0.13442112505435944,
-0.02913440391421318,
-0.04448210075497627,
-0.12602920830249786,
0.1101343035697937,
0.10710567981004715,
-0.09408289939165115,
0.07087396830320358,
-0.018274590373039246,
0.1428135186433792,
0.02523760125041008,
-0.06320317089557648,
0.10076458007097244,
-0.07211512327194214,
-0.19645032286643982,
-0.06240226328372955,
0.113898865878582,
0.008408673107624054,
0.043115947395563126,
-0.006311669480055571,
0.031016943976283073,
-0.018406733870506287,
-0.061510030180215836,
0.042484164237976074,
0.021032676100730896,
0.056490279734134674,
0.02387090027332306,
-0.02427349053323269,
-0.01866893097758293,
-0.05674900859594345,
-0.045188214629888535,
0.1503993570804596,
0.2395593523979187,
-0.09509112685918808,
0.015125332400202751,
0.022534923627972603,
-0.049607597291469574,
-0.19612498581409454,
0.03032136894762516,
0.10105935484170914,
0.02911258302628994,
0.028233297169208527,
-0.1575528085231781,
0.06366806477308273,
0.09272335469722748,
-0.038444507867097855,
0.09430521726608276,
-0.27427953481674194,
-0.1277797371149063,
0.08934009820222855,
0.15549825131893158,
0.03855034336447716,
-0.14269591867923737,
-0.059540074318647385,
-0.0065962448716163635,
-0.10362783074378967,
0.1292000710964203,
-0.05366450548171997,
0.10271868854761124,
-0.021627135574817657,
0.024599403142929077,
0.009991229511797428,
-0.0629810243844986,
0.14713971316814423,
-0.03218616917729378,
0.07803098857402802,
-0.04368171840906143,
-0.007293712813407183,
0.05468353256583214,
-0.07130086421966553,
0.04602854698896408,
-0.06388626247644424,
0.06821312010288239,
-0.0862823873758316,
-0.013390104286372662,
-0.07826145738363266,
0.023272767663002014,
-0.030486971139907837,
-0.015737317502498627,
-0.03164973855018616,
0.04544079676270485,
0.047281134873628616,
0.0019372471142560244,
0.1547543853521347,
0.047678399831056595,
0.08942771703004837,
0.11120873689651489,
0.049177851527929306,
-0.029795901849865913,
-0.08495001494884491,
-0.03570777177810669,
-0.03652174398303032,
0.06771598756313324,
-0.14873257279396057,
0.03661348670721054,
0.11639855057001114,
0.018358318135142326,
0.14310719072818756,
0.04485860466957092,
-0.05293359234929085,
0.020099608227610588,
0.07696278393268585,
-0.1465844213962555,
-0.14081528782844543,
-0.022349083796143532,
0.00933463592082262,
-0.13784997165203094,
0.014620130881667137,
0.1173880323767662,
-0.08139383792877197,
-0.015943869948387146,
-0.004524394869804382,
0.026805153116583824,
-0.000007756117156532127,
0.17970788478851318,
0.08257872611284256,
0.05266634002327919,
-0.09770984202623367,
0.08258933573961258,
0.08454163372516632,
-0.11924516409635544,
0.016083260998129845,
0.04184188321232796,
-0.0979599803686142,
-0.03830232471227646,
0.05444826930761337,
0.12915126979351044,
-0.01737797074019909,
-0.06055764481425285,
-0.1263350248336792,
-0.0989193245768547,
0.06328949332237244,
0.10787536948919296,
0.07811629772186279,
0.03225838392972946,
0.007678598631173372,
-0.015247720293700695,
-0.09831409156322479,
0.12911175191402435,
0.06033942103385925,
0.09892348945140839,
-0.18802882730960846,
0.0718797817826271,
0.010350885801017284,
0.04671107605099678,
-0.013658560812473297,
0.03695472702383995,
-0.1001773551106453,
-0.0188901387155056,
-0.09670086205005646,
0.04865497350692749,
-0.03905268386006355,
0.004612258169800043,
-0.00638229725882411,
-0.07144425064325333,
-0.052477940917015076,
0.0286636333912611,
-0.09624652564525604,
-0.05425410345196724,
0.013230020180344582,
0.06540895253419876,
-0.10889313369989395,
-0.03866416960954666,
0.03902186080813408,
-0.09326206147670746,
0.09750128537416458,
0.026773089542984962,
0.029063541442155838,
0.014136502519249916,
-0.10095357149839401,
-0.0020242396276444197,
0.0625399798154831,
0.019127536565065384,
0.042144447565078735,
-0.12860041856765747,
0.006374765653163195,
-0.0042242552153766155,
-0.007077269721776247,
-0.007443196605890989,
0.1046862006187439,
-0.1338002234697342,
-0.032676082104444504,
-0.03007112257182598,
-0.021786054596304893,
-0.060056351125240326,
0.054586004465818405,
0.06305661797523499,
0.020555969327688217,
0.18345117568969727,
-0.08643798530101776,
0.02553379349410534,
-0.23495188355445862,
0.0011711235856637359,
-0.03018486127257347,
-0.10390357673168182,
-0.11769378930330276,
-0.0236199963837862,
0.07062382251024246,
-0.06328077614307404,
0.09542986005544662,
-0.0038861201610416174,
0.0344732441008091,
0.024019265547394753,
0.02314528077840805,
0.016800235956907272,
0.04172676429152489,
0.1723083108663559,
0.009786858223378658,
-0.018459370359778404,
0.06173773482441902,
0.009755279868841171,
0.09858924895524979,
0.08004530519247055,
0.12164002656936646,
0.14151491224765778,
0.005927587393671274,
0.08091291785240173,
0.0725478082895279,
-0.06304627656936646,
-0.14448045194149017,
0.09125849604606628,
-0.0824308767914772,
0.13032448291778564,
-0.009079260751605034,
0.1935313642024994,
0.09837383031845093,
-0.1717403680086136,
0.018124038353562355,
-0.03509554639458656,
-0.08153220266103745,
-0.0694136768579483,
-0.11369401961565018,
-0.11121241003274918,
-0.15842656791210175,
0.005961050279438496,
-0.11017267405986786,
0.001355545362457633,
0.1039922907948494,
0.0004635686054825783,
-0.011913863942027092,
0.1519913226366043,
0.08958690613508224,
0.00028820097213611007,
0.06296668946743011,
0.016615159809589386,
-0.027903052046895027,
-0.05721086263656616,
-0.09397079795598984,
0.05083352327346802,
0.0049377442337572575,
0.04611220210790634,
-0.03893096372485161,
-0.004276934079825878,
0.07494127005338669,
0.014762239530682564,
-0.12144748121500015,
0.012930629774928093,
-0.0004435738956090063,
0.028196725994348526,
0.031994372606277466,
0.01616372913122177,
0.035017311573028564,
-0.010865679942071438,
0.1890420764684677,
-0.047501467168331146,
-0.026310129091143608,
-0.12885922193527222,
0.13284648954868317,
-0.013400014489889145,
-0.038666654378175735,
0.04990420490503311,
-0.0910138264298439,
0.019868556410074234,
0.18872582912445068,
0.15201382339000702,
-0.05755475535988808,
-0.00835132971405983,
0.008975780569016933,
-0.019568074494600296,
-0.04129510745406151,
0.09988459199666977,
0.11079288274049759,
0.010330949909985065,
-0.0856432318687439,
-0.05128350853919983,
-0.05887419730424881,
-0.01356322132050991,
-0.028255349025130272,
0.03908693045377731,
0.007946029305458069,
0.015763435512781143,
-0.059746742248535156,
0.059839267283678055,
-0.005523506551980972,
-0.07768649607896805,
0.05386682599782944,
-0.20082014799118042,
-0.18312588334083557,
-0.04160558432340622,
0.09937897324562073,
0.004401070531457663,
0.02412879280745983,
-0.03144880756735802,
0.015897681936621666,
0.09365932643413544,
-0.0333840437233448,
-0.07211566716432571,
-0.0842997282743454,
0.05972212925553322,
-0.08474872261285782,
0.23616304993629456,
-0.030483141541481018,
0.04252605512738228,
0.1157822459936142,
0.041122518479824066,
-0.13472235202789307,
0.03626668453216553,
0.04666133597493172,
-0.045156192034482956,
0.045120853930711746,
0.12168549746274948,
-0.02922068163752556,
0.09676526486873627,
0.04201522842049599,
-0.09500204026699066,
-0.0038618550170212984,
-0.06423063576221466,
-0.030845411121845245,
-0.05586427077651024,
-0.020141175016760826,
-0.061448339372873306,
0.1387503296136856,
0.172304168343544,
-0.05811573192477226,
-0.02756112441420555,
-0.05477609485387802,
0.01280637551099062,
0.06829217076301575,
0.06733264774084091,
-0.009448351338505745,
-0.23074424266815186,
0.024183765053749084,
0.0017385437386110425,
0.016629809513688087,
-0.22206446528434753,
-0.09090782701969147,
-0.011227867566049099,
-0.060344863682985306,
-0.09184661507606506,
0.10842298716306686,
0.09733561426401138,
0.04689836874604225,
-0.060602717101573944,
-0.020303063094615936,
-0.06859929859638214,
0.14663967490196228,
-0.1291412115097046,
-0.09246017038822174
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# artificially-natural-roberta-2024
This model is a fine-tuned version of [roberta-base-openai-detector](https://huggingface.co/roberta-base-openai-detector) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1460
- F1: 0.98
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----:|
| No log | 1.0 | 250 | 0.1378 | 0.971 |
| 0.1033 | 2.0 | 500 | 0.1073 | 0.985 |
| 0.1033 | 3.0 | 750 | 0.1460 | 0.98 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "roberta-base-openai-detector", "model-index": [{"name": "artificially-natural-roberta-2024", "results": []}]} | text-classification | ConnyGenz/artificially-natural-roberta-2024 | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:roberta-base-openai-detector",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:50:45+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us
| artificially-natural-roberta-2024
=================================
This model is a fine-tuned version of roberta-base-openai-detector on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1460
* F1: 0.98
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
70,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.08598234504461288,
0.07803147286176682,
-0.002400754950940609,
0.10620073974132538,
0.14740616083145142,
0.018326736986637115,
0.16279545426368713,
0.10955119132995605,
-0.06279820203781128,
0.05069824680685997,
0.13211871683597565,
0.1443849503993988,
0.01338428445160389,
0.14203040301799774,
-0.07651424407958984,
-0.2192613035440445,
0.00879889726638794,
0.027819734066724777,
-0.055134642869234085,
0.12021399289369583,
0.1001187190413475,
-0.123350128531456,
0.09114062786102295,
-0.012638530693948269,
-0.186912402510643,
0.013357711024582386,
0.018626926466822624,
-0.05768737196922302,
0.13439705967903137,
0.026380859315395355,
0.13518713414669037,
0.020753735676407814,
0.07403390109539032,
-0.19345037639141083,
0.015572515316307545,
0.05102178454399109,
-0.009552187286317348,
0.08060194551944733,
0.028425078839063644,
-0.010676758363842964,
0.07854726165533066,
-0.09063592553138733,
0.06858281791210175,
0.017230600118637085,
-0.1289021074771881,
-0.19548122584819794,
-0.07510597258806229,
0.01712101697921753,
0.08482708781957626,
0.0735655128955841,
-0.013526776805520058,
0.13261188566684723,
-0.05480111762881279,
0.09684929251670837,
0.20902220904827118,
-0.302561491727829,
-0.06906910240650177,
0.05737723037600517,
0.03227183222770691,
0.08702465146780014,
-0.1016024500131607,
-0.012323606759309769,
0.07214683294296265,
0.027651309967041016,
0.12208167463541031,
-0.024795660749077797,
-0.05570773035287857,
0.003278418444097042,
-0.1391175389289856,
-0.019842173904180527,
0.15246285498142242,
0.042568907141685486,
-0.045000310987234116,
-0.05913921445608139,
-0.06294171512126923,
-0.13700421154499054,
-0.037107646465301514,
-0.013790479861199856,
0.040613699704408646,
-0.02344690077006817,
-0.07882298529148102,
-0.019754396751523018,
-0.10261639207601547,
-0.08260495960712433,
-0.0752444863319397,
0.17006675899028778,
0.03278462961316109,
0.0022913231514394283,
-0.01631297916173935,
0.09280753880739212,
-0.040363337844610214,
-0.12922094762325287,
0.011345643550157547,
0.024986717849969864,
-0.00088982202578336,
-0.06184111163020134,
-0.05646370351314545,
-0.10348553955554962,
0.036852989345788956,
0.1590266227722168,
-0.059766825288534164,
0.04790814593434334,
0.0001226893946295604,
0.04639964923262596,
-0.08540859073400497,
0.1655271351337433,
-0.03800426796078682,
-0.025657501071691513,
0.012234211899340153,
0.06408628076314926,
0.04133596271276474,
-0.014007508754730225,
-0.11779934167861938,
0.011829382739961147,
0.11888705939054489,
0.013005890883505344,
-0.05762298032641411,
0.08277324587106705,
-0.04284088313579559,
-0.0028251628391444683,
0.003317135851830244,
-0.09798411279916763,
0.019732171669602394,
-0.0015062742168083787,
-0.05468267947435379,
-0.07636938989162445,
0.017328396439552307,
0.02156064286828041,
0.01818697154521942,
0.10180041939020157,
-0.09248743951320648,
0.009256858378648758,
-0.0801297128200531,
-0.12663045525550842,
0.009668488055467606,
-0.115139439702034,
0.026754699647426605,
-0.11186148971319199,
-0.17338648438453674,
-0.01849973388016224,
0.05000099167227745,
-0.027992602437734604,
-0.01913360506296158,
-0.06205226108431816,
-0.07152891904115677,
0.010223791003227234,
-0.009017166681587696,
0.07443919032812119,
-0.06375674158334732,
0.09936278313398361,
0.045215506106615067,
0.07444930076599121,
-0.06006378307938576,
0.02823306806385517,
-0.09968321025371552,
0.03220110759139061,
-0.17339986562728882,
0.04405207186937332,
-0.06698562949895859,
0.08002977818250656,
-0.08472628891468048,
-0.0680406391620636,
-0.017307627946138382,
0.011164581403136253,
0.07376578450202942,
0.09339500218629837,
-0.15862584114074707,
-0.0676465630531311,
0.18857140839099884,
-0.08875835686922073,
-0.1380111128091812,
0.13144126534461975,
-0.07030917704105377,
0.06484182924032211,
0.06382764875888824,
0.20452754199504852,
0.0615701824426651,
-0.08545957505702972,
0.012114661745727062,
-0.006361145526170731,
0.04025746136903763,
-0.029693949967622757,
0.06680414080619812,
0.00378424976952374,
-0.0015754549531266093,
0.01377013698220253,
-0.028080491349101067,
0.04223863035440445,
-0.08576368540525436,
-0.08694972842931747,
-0.0371655598282814,
-0.10675830394029617,
0.050780076533555984,
0.04770524799823761,
0.07460815459489822,
-0.12290899455547333,
-0.07227981835603714,
0.05563419312238693,
0.06545153260231018,
-0.07015436142683029,
0.01474195159971714,
-0.08517564088106155,
0.08764220774173737,
-0.07122614234685898,
-0.021889228373765945,
-0.158431276679039,
-0.03634530305862427,
0.008887587115168571,
0.02765069343149662,
0.028291253373026848,
0.00042489561019465327,
0.07721317559480667,
0.06566820293664932,
-0.05554727092385292,
-0.012124898843467236,
-0.0025125762913376093,
0.01152301300317049,
-0.12029702961444855,
-0.20223119854927063,
-0.0031999850180000067,
-0.0379323810338974,
0.14217114448547363,
-0.22834987938404083,
0.054263271391391754,
0.008805845864117146,
0.08422992378473282,
0.04350031539797783,
-0.008750038221478462,
-0.033925894647836685,
0.06943994015455246,
-0.0449395589530468,
-0.05619204416871071,
0.05364115163683891,
0.008117875084280968,
-0.10233817994594574,
-0.04563536122441292,
-0.14448611438274384,
0.18880635499954224,
0.1285521239042282,
-0.10055975615978241,
-0.09649436175823212,
-0.007065583020448685,
-0.045629438012838364,
-0.020838988944888115,
-0.046271901577711105,
0.004941394552588463,
0.13548457622528076,
-0.020790493115782738,
0.1467016041278839,
-0.083720862865448,
-0.03406965360045433,
0.02491455338895321,
-0.0548953153192997,
0.007938140071928501,
0.11207854002714157,
0.08939123898744583,
-0.1268877387046814,
0.14801457524299622,
0.15103080868721008,
-0.0975322276353836,
0.1494169533252716,
-0.03361458331346512,
-0.047357093542814255,
-0.023699626326560974,
0.012479240074753761,
0.009210365824401379,
0.09974939376115799,
-0.1326659619808197,
-0.004343760199844837,
0.0058061545714735985,
0.010200666263699532,
0.019289689138531685,
-0.21095716953277588,
-0.035516127943992615,
0.04465983062982559,
-0.03670552000403404,
0.009861364029347897,
-0.008121083490550518,
-0.000013178097105992492,
0.10467076301574707,
0.013207962736487389,
-0.08166929334402084,
0.04224327206611633,
-0.005043015815317631,
-0.08756093680858612,
0.21507684886455536,
-0.07206554710865021,
-0.1181826964020729,
-0.1270287185907364,
-0.07690317928791046,
-0.03578627482056618,
0.03337801992893219,
0.059244561940431595,
-0.08032135665416718,
-0.02732301503419876,
-0.10778909176588058,
-0.004232399631291628,
0.030082188546657562,
0.03361208736896515,
0.029576458036899567,
0.0106638353317976,
0.06925881654024124,
-0.09990692883729935,
-0.012385147623717785,
-0.04931037873029709,
-0.06700393557548523,
0.04036463052034378,
0.0099761001765728,
0.11900556832551956,
0.14272581040859222,
-0.03916933387517929,
-0.0002472636697348207,
-0.037751778960227966,
0.23292100429534912,
-0.06848685443401337,
-0.029091447591781616,
0.11005639284849167,
-0.03756677731871605,
0.043251633644104004,
0.1465839147567749,
0.06202727183699608,
-0.10022232681512833,
0.016788586974143982,
0.03186643868684769,
-0.04347444325685501,
-0.2224043756723404,
-0.03152032941579819,
-0.0421556681394577,
0.02035694383084774,
0.09216640144586563,
0.029999665915966034,
0.042607631534338,
0.07612612843513489,
0.0362372063100338,
0.0871141254901886,
-0.011944095604121685,
0.07427166402339935,
0.11190053075551987,
0.04132016375660896,
0.12961845099925995,
-0.0514824204146862,
-0.0669386014342308,
0.035676997154951096,
-0.001029366860166192,
0.20168687403202057,
0.022850416600704193,
0.12685316801071167,
0.06542237102985382,
0.1340382993221283,
-0.00012112758122384548,
0.0553627610206604,
-0.019132092595100403,
-0.04595733806490898,
-0.010505224578082561,
-0.0446663498878479,
-0.03755447268486023,
0.03646975755691528,
-0.08537504076957703,
0.04716385900974274,
-0.09690483659505844,
0.013848143629729748,
0.06572440266609192,
0.2094799429178238,
0.04887907952070236,
-0.3262490928173065,
-0.08937761932611465,
0.023603854700922966,
-0.0284876748919487,
-0.022849658504128456,
0.030005380511283875,
0.12222177535295486,
-0.056586310267448425,
0.0339033380150795,
-0.06454674899578094,
0.08232510834932327,
-0.05253854766488075,
0.04252007603645325,
0.036412741988897324,
0.08232217282056808,
-0.023615770041942596,
0.06151094287633896,
-0.2701805830001831,
0.2792496085166931,
0.014489414170384407,
0.07121695578098297,
-0.05633346736431122,
-0.011240468360483646,
0.030847180634737015,
0.0690256878733635,
0.07603637874126434,
-0.02533475123345852,
-0.07425785809755325,
-0.19592246413230896,
-0.044477637857198715,
0.027854550629854202,
0.1069527193903923,
-0.03405647724866867,
0.1037549301981926,
-0.029566405341029167,
0.016639666631817818,
0.07210641354322433,
-0.009051245637238026,
-0.06771547347307205,
-0.09379135072231293,
-0.017160197719931602,
0.04309529438614845,
-0.04335556924343109,
-0.07236256450414658,
-0.09220076352357864,
-0.1258494108915329,
0.1597096174955368,
-0.06713008135557175,
-0.02826039306819439,
-0.10071737319231033,
0.07214785367250443,
0.048246730118989944,
-0.07628971338272095,
0.04474211484193802,
0.004592008888721466,
0.08438591659069061,
0.012602899223566055,
-0.05064486712217331,
0.12315097451210022,
-0.06416881829500198,
-0.16029682755470276,
-0.07333233952522278,
0.09635725617408752,
0.022984161972999573,
0.04951159656047821,
0.006463444791734219,
0.012339242734014988,
-0.01237834244966507,
-0.07223068177700043,
0.0368526391685009,
-0.012651338241994381,
0.04266616329550743,
0.03136191517114639,
-0.052332475781440735,
-0.025346577167510986,
-0.06230819970369339,
-0.0348486490547657,
0.17843838036060333,
0.27346694469451904,
-0.0830475464463234,
0.003359056543558836,
0.04659612476825714,
-0.06545503437519073,
-0.20537978410720825,
0.05605577304959297,
0.03119717724621296,
0.007056598551571369,
0.04199599847197533,
-0.14657171070575714,
0.10241888463497162,
0.09273925423622131,
-0.0284061711281538,
0.11271705478429794,
-0.278895765542984,
-0.13417452573776245,
0.12813018262386322,
0.15515555441379547,
0.13662327826023102,
-0.15251003205776215,
-0.040071967989206314,
-0.032311320304870605,
-0.1209372952580452,
0.09324832260608673,
-0.12069200724363327,
0.119715116918087,
-0.008512016385793686,
0.06502705067396164,
0.008646795526146889,
-0.055637508630752563,
0.12472981959581375,
-0.012926849536597729,
0.11960741132497787,
-0.07437185198068619,
-0.0436735562980175,
0.03890648111701012,
-0.05019538104534149,
0.014324167743325233,
-0.09916534274816513,
0.03725264593958855,
-0.05421404913067818,
-0.03508206456899643,
-0.04459022730588913,
0.03464563935995102,
-0.02544577606022358,
-0.07004979997873306,
-0.05257551372051239,
0.03097728081047535,
0.03416312858462334,
-0.007881034165620804,
0.15712925791740417,
-0.004231628961861134,
0.17434771358966827,
0.11987893283367157,
0.09012250602245331,
-0.053712811321020126,
0.015009132213890553,
0.002805069088935852,
-0.03535080701112747,
0.05907624959945679,
-0.16472293436527252,
0.039007704704999924,
0.11844299733638763,
0.019346315413713455,
0.15130403637886047,
0.07870744913816452,
-0.031285420060157776,
0.029749060049653053,
0.07719922810792923,
-0.15947671234607697,
-0.10170065611600876,
0.003036520443856716,
-0.046891797333955765,
-0.11518625169992447,
0.06914198398590088,
0.12332212924957275,
-0.06665316224098206,
0.005657513160258532,
-0.01306135207414627,
0.008203743025660515,
-0.04229043051600456,
0.1718790978193283,
0.07652836292982101,
0.043153613805770874,
-0.0750870332121849,
0.06648331135511398,
0.04318767413496971,
-0.04731783643364906,
0.026059487834572792,
0.04024915769696236,
-0.0774664506316185,
-0.039575882256031036,
0.03794422745704651,
0.19607193768024445,
-0.037110429257154465,
-0.04514288157224655,
-0.14736980199813843,
-0.1136564165353775,
0.05284493789076805,
0.2121383249759674,
0.10049962997436523,
0.015836548060178757,
-0.02496165782213211,
0.017794804647564888,
-0.11617128551006317,
0.10621485859155655,
0.02594497986137867,
0.08090840280056,
-0.14318323135375977,
0.1289217621088028,
-0.012898998335003853,
0.013802330009639263,
-0.03078482858836651,
0.03477392718195915,
-0.12357212603092194,
0.00021566702343989164,
-0.11894826591014862,
-0.005435592494904995,
-0.02656704932451248,
0.006397729739546776,
0.010226335376501083,
-0.05723293125629425,
-0.0725572481751442,
0.0068007828667759895,
-0.09736216813325882,
-0.01148664578795433,
0.03659166023135185,
0.05366136506199837,
-0.12014883756637573,
-0.03975600376725197,
0.02981981635093689,
-0.06162859499454498,
0.06690551340579987,
0.021527612581849098,
0.01545057911425829,
0.04370284080505371,
-0.19956205785274506,
0.029645215719938278,
0.06413629651069641,
-0.001881414675153792,
0.044745009392499924,
-0.08429106324911118,
-0.011187924072146416,
-0.00936554092913866,
0.05085395649075508,
0.030934495851397514,
0.08606487512588501,
-0.12209354341030121,
0.027904918417334557,
-0.028515487909317017,
-0.06731794029474258,
-0.05311451479792595,
0.028499621897935867,
0.0880356878042221,
0.00012021709699183702,
0.183302640914917,
-0.09490379691123962,
0.02201639860868454,
-0.20198611915111542,
0.005353103391826153,
0.005356014706194401,
-0.11150671541690826,
-0.10964645445346832,
-0.05748390406370163,
0.05019601806998253,
-0.06590944528579712,
0.16835007071495056,
0.02246376872062683,
0.0007970232400111854,
0.04027850925922394,
-0.029941042885184288,
0.039993930608034134,
0.026178548112511635,
0.22214896976947784,
0.03347216546535492,
-0.050915177911520004,
0.01658691093325615,
0.03386915102601051,
0.10949621349573135,
0.07142157852649689,
0.16069412231445312,
0.1658269613981247,
-0.04615725949406624,
0.09642170369625092,
0.04803970828652382,
-0.032934386283159256,
-0.12183236330747604,
0.058435048907995224,
-0.031239937990903854,
0.07583696395158768,
-0.012246682308614254,
0.18395094573497772,
0.12369363009929657,
-0.15304861962795258,
0.011767547577619553,
-0.04292306676506996,
-0.07846846431493759,
-0.11997304111719131,
-0.05433504655957222,
-0.1043369397521019,
-0.1326204091310501,
0.013392883352935314,
-0.1132807806134224,
-0.0024012390058487654,
0.09631438553333282,
0.009866626001894474,
-0.011965193785727024,
0.18283550441265106,
-0.0005709400284104049,
0.04210389778017998,
0.0622933954000473,
-0.0019547457341104746,
-0.03581691160798073,
-0.08868420869112015,
-0.0904180034995079,
0.005667654797434807,
-0.017587991431355476,
0.02763921208679676,
-0.049493223428726196,
-0.032154906541109085,
0.03440692275762558,
-0.018208984285593033,
-0.10695332288742065,
0.008949448354542255,
0.02937461994588375,
0.04368042200803757,
0.03336280584335327,
0.009156981483101845,
0.003956150729209185,
0.0011511568445712328,
0.22180363535881042,
-0.06311341375112534,
-0.06401114910840988,
-0.10284954309463501,
0.20049402117729187,
0.03457121178507805,
0.015684066340327263,
0.003872995963320136,
-0.09463369101285934,
0.036217059940099716,
0.22352032363414764,
0.19616751372814178,
-0.08379968255758286,
0.010560322552919388,
-0.0026219538412988186,
-0.004234889522194862,
-0.02125975675880909,
0.08191045373678207,
0.08993422240018845,
0.02701610140502453,
-0.075632743537426,
-0.05036616697907448,
-0.038784340023994446,
-0.004687246400862932,
-0.029337983578443527,
0.04028616100549698,
0.0473562590777874,
0.014901028014719486,
-0.05942796170711517,
0.06462232768535614,
-0.059604037553071976,
-0.11136781424283981,
0.06850988417863846,
-0.2022095024585724,
-0.14821287989616394,
-0.007281417492777109,
0.1026185005903244,
-0.01393092516809702,
0.051431406289339066,
-0.031000323593616486,
-0.0017331158742308617,
0.02804570086300373,
-0.02107776328921318,
-0.0643547847867012,
-0.0615830160677433,
0.05444178357720375,
-0.07757019996643066,
0.22625291347503662,
-0.04654485359787941,
0.05891161412000656,
0.13401633501052856,
0.04472380504012108,
-0.06042084842920303,
0.08538204431533813,
0.04747927188873291,
-0.05286911875009537,
0.025578003376722336,
0.08383019268512726,
-0.04174680635333061,
0.10874873399734497,
0.07738778740167618,
-0.13151691854000092,
0.023757489398121834,
-0.0556393601000309,
-0.08462856709957123,
-0.06480579078197479,
-0.032608553767204285,
-0.06438959389925003,
0.13594014942646027,
0.19126369059085846,
-0.03410705178976059,
0.006635221187025309,
-0.04447554051876068,
0.01767623983323574,
0.07228347659111023,
0.025422366335988045,
-0.05389494076371193,
-0.24313026666641235,
0.020036090165376663,
0.08677168190479279,
-0.012536550872027874,
-0.29855409264564514,
-0.08300448954105377,
-0.012470531277358532,
-0.044906649738550186,
-0.08574916422367096,
0.08327624201774597,
0.12767855823040009,
0.05604263022542,
-0.05924856662750244,
-0.1103058010339737,
-0.06253737956285477,
0.15204373002052307,
-0.13023081421852112,
-0.10057348757982254
] |
null | null | diffusers | Merged [SDXL DPO-Turbo-LoRA](https://civitai.com/models/237775/sdxl-dpo-turbo-lora?modelVersionId=268054) and [Animagine XL V3](https://civitai.com/models/260267?modelVersionId=293564) | {"tags": ["stable-diffusion", "stable-diffusion-xl"]} | null | Bakanayatsu/Animagine-xl-3.0-XL-Turbo-DPO | [
"diffusers",
"safetensors",
"stable-diffusion",
"stable-diffusion-xl",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | 2024-02-13T16:54:21+00:00 | [] | [] | TAGS
#diffusers #safetensors #stable-diffusion #stable-diffusion-xl #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us
| Merged SDXL DPO-Turbo-LoRA and Animagine XL V3 | [] | [
"TAGS\n#diffusers #safetensors #stable-diffusion #stable-diffusion-xl #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n"
] | [
53
] | [
"passage: TAGS\n#diffusers #safetensors #stable-diffusion #stable-diffusion-xl #endpoints_compatible #diffusers-StableDiffusionXLPipeline #region-us \n"
] | [
-0.05883407220244408,
-0.0959247276186943,
-0.009215593338012695,
-0.0983172059059143,
0.07486611604690552,
-0.018422259017825127,
0.12409982830286026,
0.039994943886995316,
0.11750935018062592,
0.11411319673061371,
0.10692179948091507,
0.07863865047693253,
-0.026323815807700157,
0.14583061635494232,
-0.13526178896427155,
-0.1727668046951294,
0.04043755680322647,
0.03215721994638443,
-0.04783031344413757,
0.047763288021087646,
0.09340336173772812,
-0.12269877642393112,
0.05513378232717514,
-0.04959549754858017,
-0.047594454139471054,
0.0059056063182652,
0.0965658575296402,
-0.09138331562280655,
0.06215060129761696,
0.03936095908284187,
0.14243993163108826,
0.11522062122821808,
-0.040887828916311264,
-0.233862042427063,
0.03050386719405651,
0.009843960404396057,
-0.024112800136208534,
0.03197638317942619,
-0.010010863654315472,
-0.06696315109729767,
-0.01583174802362919,
-0.09358611702919006,
0.017278533428907394,
0.03085550293326378,
-0.13078276813030243,
-0.11008530110120773,
-0.032693952322006226,
-0.02857803739607334,
0.03850311413407326,
-0.03421853110194206,
0.01789265312254429,
0.15570959448814392,
-0.06879423558712006,
0.06060324236750603,
0.22557669878005981,
-0.4071127772331238,
0.018507832661271095,
0.13855919241905212,
0.2069767415523529,
0.06772898882627487,
-0.07141271978616714,
0.12215506285429001,
0.02751098945736885,
-0.03332332521677017,
0.08463703840970993,
-0.07823564857244492,
0.12134667485952377,
-0.003928266931325197,
-0.08690505474805832,
0.05947637930512428,
0.21236693859100342,
-0.043609149754047394,
-0.00785281602293253,
-0.12459824979305267,
-0.08167524635791779,
0.05873604491353035,
-0.04949581250548363,
-0.08829028159379959,
0.00045209116069599986,
0.004308785777539015,
0.1395062953233719,
0.03119005635380745,
-0.08594473451375961,
0.01464051567018032,
-0.13118094205856323,
0.28917255997657776,
0.003967926371842623,
0.06179766729474068,
-0.08419821411371231,
0.055932916700839996,
-0.2017497718334198,
-0.12180968374013901,
0.04840517044067383,
-0.10130371898412704,
-0.02207748033106327,
0.014920197427272797,
-0.0026940065436065197,
-0.04102499783039093,
0.10575326532125473,
0.1289536952972412,
-0.04750450327992439,
0.006137221585959196,
0.04435359686613083,
0.06969722360372543,
0.051441844552755356,
-0.014829512685537338,
0.006740143988281488,
-0.06898976862430573,
0.02731754072010517,
-0.04707200825214386,
-0.0013848297530785203,
0.002337067387998104,
-0.02797468565404415,
0.003567460225895047,
-0.017820164561271667,
0.0803830549120903,
-0.015059476718306541,
-0.018744710832834244,
-0.10022511333227158,
0.010868200100958347,
0.13605095446109772,
-0.04712532460689545,
0.027606798335909843,
-0.009945889934897423,
0.08581940829753876,
0.31297609210014343,
-0.005876298062503338,
0.01421022042632103,
0.04054173082113266,
0.12700586020946503,
-0.0724547877907753,
-0.04449767246842384,
-0.009358182549476624,
-0.07386802136898041,
-0.012504867278039455,
-0.12921547889709473,
0.03661174699664116,
-0.13125048577785492,
-0.11516602337360382,
0.045649830251932144,
0.011758137494325638,
-0.032136570662260056,
0.06264593452215195,
0.06095827370882034,
-0.011956393718719482,
0.053283464163541794,
-0.0152796171605587,
-0.13925132155418396,
-0.04089430347084999,
0.061318397521972656,
0.02658337913453579,
0.09551490843296051,
-0.08041880279779434,
0.012196113355457783,
0.005569517612457275,
0.06376126408576965,
-0.22849059104919434,
-0.03613656759262085,
-0.0833069309592247,
0.046889401972293854,
-0.05915205180644989,
-0.05816579982638359,
-0.057813506573438644,
0.009629664942622185,
0.0011948527535423636,
0.1408410519361496,
-0.16217036545276642,
-0.06738458573818207,
0.2252301722764969,
-0.15136663615703583,
-0.09038344025611877,
0.03149809688329697,
0.05403076484799385,
-0.023209894075989723,
0.07170075178146362,
0.10218654572963715,
-0.01127279456704855,
-0.33057722449302673,
0.053879667073488235,
0.07414402812719345,
-0.0836908370256424,
-0.0485050231218338,
0.02720828168094158,
0.03496736288070679,
0.03714999556541443,
0.04788311570882797,
-0.04858874902129173,
0.04426407441496849,
-0.12308353930711746,
0.011061801575124264,
-0.057292040437459946,
-0.020670048892498016,
0.07741913944482803,
0.0029964367859065533,
0.020738083869218826,
-0.05053253471851349,
-0.021182922646403313,
0.08085747808218002,
0.009397249668836594,
0.03995957598090172,
0.0047455159947276115,
-0.07159724831581116,
0.1831623911857605,
-0.04726635664701462,
-0.016378987580537796,
-0.09496472775936127,
-0.17454244196414948,
0.036562953144311905,
0.1749395877122879,
-0.1318971961736679,
0.16793063282966614,
0.1111864224076271,
0.04023116081953049,
-0.03657561540603638,
-0.036782097071409225,
0.132530078291893,
0.0559934563934803,
-0.03571438789367676,
-0.12001433968544006,
0.07790374755859375,
-0.12259942293167114,
-0.040883757174015045,
-0.12228363752365112,
-0.006138553377240896,
-0.02112211473286152,
0.16012567281723022,
0.09958827495574951,
0.011822114698588848,
-0.043417006731033325,
0.00029276940040290356,
-0.018067654222249985,
0.01693011447787285,
0.03622711822390556,
-0.024418339133262634,
-0.01289481669664383,
0.14462798833847046,
-0.0889105573296547,
0.3834199607372284,
0.10212583839893341,
-0.008303256705403328,
-0.0359170027077198,
-0.13753195106983185,
-0.008135142736136913,
0.029191669076681137,
0.05402630940079689,
-0.06836506724357605,
-0.02897477336227894,
0.014749881811439991,
0.09418366849422455,
-0.018288055434823036,
-0.012352874502539635,
0.05505317822098732,
-0.1014951542019844,
-0.017344078049063683,
0.05260029062628746,
0.02227514609694481,
-0.011037237010896206,
0.07458896934986115,
0.22618025541305542,
0.12105264514684677,
0.06084687262773514,
-0.08338715136051178,
-0.06628040969371796,
-0.05350175127387047,
0.07721201330423355,
0.031118731945753098,
0.09529797732830048,
0.010635854676365852,
0.016504384577274323,
0.05009070783853531,
0.0015793764032423496,
0.001484816544689238,
-0.041011422872543335,
-0.03766220435500145,
0.017859797924757004,
-0.016904816031455994,
0.05209726095199585,
0.12276873737573624,
-0.03898003324866295,
0.10997190326452255,
-0.06474102288484573,
-0.07343634963035583,
-0.01095573976635933,
-0.010386128909885883,
-0.015516800805926323,
0.13347531855106354,
-0.15305398404598236,
-0.1875484585762024,
-0.05655719339847565,
-0.05858033522963524,
0.05902419239282608,
0.003063320415094495,
0.01539229229092598,
-0.02060578390955925,
-0.11377986520528793,
0.050640106201171875,
0.05375548452138901,
0.026734016835689545,
0.06734239310026169,
-0.01888125203549862,
-0.0160642322152853,
-0.046932898461818695,
-0.05254080519080162,
-0.06863435357809067,
-0.0730389878153801,
0.03130251541733742,
0.1393943428993225,
0.014005330391228199,
0.04243413358926773,
0.128671333193779,
0.02339610457420349,
-0.02206248976290226,
0.013246274553239346,
0.1183226928114891,
-0.016414064913988113,
0.08284161239862442,
0.15727464854717255,
0.030415857210755348,
0.0778125450015068,
0.0710521936416626,
0.07008980959653854,
-0.0958368256688118,
0.01993745192885399,
-0.04713992029428482,
-0.053680554032325745,
-0.19869090616703033,
-0.14828981459140778,
-0.11858518421649933,
-0.10375502705574036,
-0.09907357394695282,
0.015345792286098003,
0.025744915008544922,
0.02510869689285755,
0.09133302420377731,
-0.1324271708726883,
-0.03184524178504944,
0.02108069881796837,
0.124485082924366,
-0.06143174692988396,
0.09010306000709534,
-0.012818198651075363,
-0.07662709057331085,
0.07598932832479477,
-0.011928847059607506,
0.17042160034179688,
0.08413384854793549,
0.052200183272361755,
0.08917157351970673,
0.10258808732032776,
0.15809884667396545,
0.18118882179260254,
-0.028057850897312164,
-0.11194241046905518,
-0.0031788276974111795,
-0.05220790207386017,
0.032310642302036285,
0.007629095576703548,
0.051878347992897034,
-0.08384888619184494,
-0.007006041239947081,
-0.01532793790102005,
0.06411749124526978,
0.02756327949464321,
0.06657306104898453,
-0.13364242017269135,
0.04928030073642731,
0.07390053570270538,
0.026416774839162827,
-0.07190927118062973,
0.027027852833271027,
0.1304875910282135,
-0.04288555309176445,
0.018138358369469643,
-0.0266919806599617,
0.04680680111050606,
0.08795398473739624,
0.0029380787163972855,
-0.055430296808481216,
0.030036110430955887,
0.0026601473800837994,
-0.030866438522934914,
-0.14800484478473663,
0.17505040764808655,
0.017268920317292213,
0.002853606827557087,
0.02952590398490429,
0.01973908022046089,
-0.06423119455575943,
0.17441582679748535,
0.18509580194950104,
0.03987507149577141,
-0.013418986462056637,
-0.04341539740562439,
-0.11968588083982468,
-0.006959057878702879,
0.13501037657260895,
0.03719487413764,
-0.01866953633725643,
0.006492550950497389,
-0.0013581665698438883,
0.04081142321228981,
-0.11820538341999054,
-0.16734762489795685,
-0.1064484715461731,
0.05861885845661163,
0.00725057628005743,
-0.013559884391725063,
-0.07225991040468216,
-0.03683174028992653,
-0.10561931133270264,
0.22092889249324799,
-0.1440897136926651,
-0.08446531742811203,
-0.13294662535190582,
-0.14645348489284515,
0.11457865685224533,
-0.05185442790389061,
0.08748964965343475,
-0.05598607659339905,
-0.00057077722158283,
-0.06067709997296333,
-0.13472700119018555,
0.11417973041534424,
-0.11471787095069885,
-0.054890573024749756,
-0.11932476609945297,
0.2022879719734192,
-0.009279596619307995,
-0.03157789632678032,
0.01017887331545353,
0.03855804726481438,
-0.007421915419399738,
-0.0914839431643486,
0.05739320442080498,
0.12120943516492844,
0.02524525672197342,
0.02063787542283535,
-0.10258857160806656,
-0.07048676162958145,
0.07082368433475494,
0.02407822571694851,
0.16941510140895844,
0.26082995533943176,
-0.08830641210079193,
0.1500784158706665,
0.18659567832946777,
-0.023352481424808502,
-0.19410327076911926,
-0.06845706701278687,
-0.09447706490755081,
0.010312783531844616,
0.01270505040884018,
-0.07965414226055145,
0.17229315638542175,
0.040656015276908875,
0.005123595241457224,
0.2309115082025528,
-0.24724853038787842,
-0.08715091645717621,
0.08523859083652496,
0.003397892927750945,
0.3905424475669861,
-0.14172211289405823,
-0.10109646618366241,
0.04939219728112221,
-0.23703107237815857,
0.05314040929079056,
0.044911790639162064,
0.013749975711107254,
-0.07537514716386795,
-0.05624835938215256,
0.006020779255777597,
-0.08197394758462906,
0.16452793776988983,
-0.027357319369912148,
0.027970360592007637,
-0.052913565188646317,
-0.0249184500426054,
0.10804210603237152,
0.011140549555420876,
0.01609538123011589,
-0.07155202329158783,
0.01748066022992134,
-0.1309412568807602,
-0.02155546471476555,
-0.02871166169643402,
0.09085021167993546,
-0.022076992318034172,
-0.05994555726647377,
0.029884368181228638,
-0.014002593234181404,
-0.026150720193982124,
-0.04401986300945282,
0.07851126790046692,
-0.011223028413951397,
0.10941255837678909,
0.16308797895908356,
0.017232652753591537,
-0.13602787256240845,
-0.15114599466323853,
-0.010023304261267185,
-0.015325522981584072,
0.05461610481142998,
-0.004598896950483322,
0.0036844932474195957,
0.19120927155017853,
0.02029048278927803,
0.08523866534233093,
0.06014973670244217,
-0.025174375623464584,
-0.0057904040440917015,
0.131733700633049,
-0.2433946132659912,
-0.05867597460746765,
0.026600651443004608,
0.07050175964832306,
0.09776932746171951,
0.100724957883358,
0.1097572073340416,
0.025301484391093254,
0.012287051416933537,
-0.051784697920084,
0.05139535665512085,
-0.09717253595590591,
0.13504555821418762,
0.014942272566258907,
0.0640648901462555,
-0.07031156122684479,
-0.014215540140867233,
-0.03729096055030823,
-0.11395906656980515,
-0.10076645761728287,
0.01802477054297924,
-0.10155438631772995,
-0.04505816847085953,
0.09330739825963974,
0.08444160223007202,
-0.058113016188144684,
-0.025106295943260193,
-0.0072942799888551235,
-0.19206207990646362,
0.007797047961503267,
0.18539287149906158,
0.0296856127679348,
0.0467507466673851,
0.029568441212177277,
-0.044787805527448654,
0.018368273973464966,
0.009859752841293812,
0.06272503733634949,
0.05512619391083717,
-0.08975783735513687,
-0.0791369080543518,
-0.05833369866013527,
0.023863863199949265,
-0.10491768270730972,
-0.019486328586935997,
-0.14498920738697052,
-0.011109242215752602,
-0.08613845705986023,
-0.013438387773931026,
-0.07805024832487106,
-0.08269602805376053,
0.005775744561105967,
-0.08296965807676315,
0.004504828713834286,
-0.005882817320525646,
-0.04565361887216568,
0.07100778073072433,
0.01674051396548748,
0.03643767908215523,
-0.09684072434902191,
-0.09974293410778046,
0.05904816463589668,
-0.08059412240982056,
0.08746124058961868,
0.08761487901210785,
-0.014543675817549229,
0.04010528326034546,
-0.1618051379919052,
-0.04795807972550392,
0.14468055963516235,
0.027763880789279938,
0.07474185526371002,
-0.02868126705288887,
0.03996998444199562,
0.06385137140750885,
-0.015285939909517765,
-0.00263346079736948,
-0.031746238470077515,
-0.10112565755844116,
0.06675752252340317,
-0.05253654718399048,
-0.08975453674793243,
-0.04942198470234871,
-0.13271380960941315,
0.11036359518766403,
0.04022468626499176,
0.08976030349731445,
-0.07112153619527817,
0.06021929532289505,
-0.04066360741853714,
0.013703268952667713,
0.03546113148331642,
-0.10087495297193527,
0.14121969044208527,
0.04800676181912422,
0.011860286816954613,
0.028612565249204636,
0.26029831171035767,
-0.07513436675071716,
-0.12064098566770554,
0.03819362446665764,
-0.06709808856248856,
0.030565114691853523,
0.04437597841024399,
0.1652204990386963,
0.08821523934602737,
0.0010373475961387157,
-0.2280130833387375,
0.05851372331380844,
0.0061052399687469006,
-0.1787356734275818,
0.1449311524629593,
0.1635989248752594,
-0.06424570828676224,
0.04533084109425545,
-0.01905031129717827,
-0.02383546158671379,
-0.06824403256177902,
-0.032086096704006195,
-0.18426762521266937,
0.04193633422255516,
0.004936083685606718,
0.059871867299079895,
0.12929806113243103,
-0.086860790848732,
0.025921596214175224,
-0.015058031305670738,
-0.03608828783035278,
-0.12523837387561798,
-0.04534442722797394,
-0.04309895262122154,
-0.11985764652490616,
-0.006093695294111967,
-0.09561604261398315,
0.025514276698231697,
0.0015084322076290846,
0.06010708212852478,
0.05495448783040047,
0.061740633100271225,
0.03873173147439957,
-0.0028632597532123327,
0.05718532204627991,
0.04953797534108162,
-0.01620267704129219,
0.009114370681345463,
0.041695352643728256,
-0.11769388616085052,
-0.01953139901161194,
-0.07888181507587433,
0.06762827187776566,
-0.04701172560453415,
0.005518394522368908,
-0.024466730654239655,
-0.057464346289634705,
-0.040329571813344955,
0.03725621849298477,
-0.109039306640625,
0.08440396189689636,
0.04517274722456932,
0.0031380753498524427,
-0.021729029715061188,
0.09281238913536072,
-0.02281193993985653,
-0.08339765667915344,
-0.04571424424648285,
0.11865109205245972,
0.008984803222119808,
0.16204464435577393,
-0.030587421730160713,
-0.024377917870879173,
-0.05671333521604538,
0.24440714716911316,
0.178416445851326,
-0.028346197679638863,
0.060577139258384705,
-0.04086872190237045,
0.0330556184053421,
0.02936474047601223,
0.07876107096672058,
0.07133958488702774,
0.3721116781234741,
-0.048097461462020874,
-0.06929050385951996,
-0.12823283672332764,
-0.024562135338783264,
-0.1306881606578827,
-0.12908506393432617,
0.012484543956816196,
-0.00004597191218635999,
-0.05685676261782646,
0.07745488733053207,
-0.08178404718637466,
-0.06496008485555649,
0.09566190093755722,
-0.14659427106380463,
0.019638758152723312,
-0.08142503350973129,
0.13423451781272888,
-0.014313474297523499,
0.03707342967391014,
-0.07493916898965836,
-0.14000537991523743,
0.06738369166851044,
0.024026798084378242,
-0.08359336853027344,
0.045409876853227615,
0.05275356024503708,
-0.06240291893482208,
-0.05680403113365173,
0.011341283097863197,
0.0515868216753006,
0.037337835878133774,
0.012744654901325703,
-0.043892696499824524,
0.06372480094432831,
0.009519093669950962,
-0.12879678606987,
-0.08006671071052551,
0.056416355073451996,
0.02091631107032299,
-0.006103482097387314,
0.012708662077784538,
-0.14480550587177277,
0.034461088478565216,
0.035943403840065,
-0.09250880032777786,
-0.03207739070057869,
0.0768805667757988,
-0.012016617693006992,
0.03421232849359512,
0.015226788818836212,
0.002017037011682987,
0.016266504302620888,
-0.015930790454149246,
0.08867783099412918,
0.05532154440879822,
-0.01871856302022934,
-0.04574854299426079,
-0.13250049948692322,
0.024005629122257233,
0.12862779200077057,
0.048033107072114944,
-0.0814020186662674,
-0.052609410136938095,
-0.13574407994747162,
0.08015619218349457,
-0.11028441786766052,
0.048847101628780365,
0.1589709371328354,
0.03841981291770935,
-0.009410356171429157,
-0.2433682680130005,
0.05099497362971306,
0.07170715928077698,
-0.04112599790096283,
-0.01907006837427616
] |
null | null | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="danylov/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | danylov/q-FrozenLake-v1-4x4-noSlippery | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-13T16:55:12+00:00 | [] | [] | TAGS
#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 FrozenLake-v1
This is a trained model of a Q-Learning agent playing FrozenLake-v1 .
## Usage
| [
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
"TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
40,
39
] | [
"passage: TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage"
] | [
0.04578453302383423,
-0.08074592798948288,
-0.00430759321898222,
0.10720831900835037,
0.05034215748310089,
-0.040469273924827576,
0.11997015029191971,
0.018999949097633362,
0.20601962506771088,
-0.010012076236307621,
0.1455274522304535,
0.007022971753031015,
-0.006192410364747047,
0.1867983490228653,
0.04572829231619835,
-0.26324528455734253,
0.01831899583339691,
-0.09495259821414948,
-0.07281816750764847,
0.11870454251766205,
0.05470194295048714,
-0.01901467889547348,
-0.0007633853238075972,
0.056141503155231476,
-0.0673527717590332,
0.0007737681735306978,
0.031996939331293106,
-0.012976245954632759,
0.19804789125919342,
-0.02254498563706875,
0.06641989201307297,
0.054705578833818436,
0.0758768692612648,
-0.1998077929019928,
0.0358855277299881,
-0.04215473681688309,
-0.09439758956432343,
-0.03934839740395546,
-0.018780618906021118,
0.05878105387091637,
0.053356342017650604,
0.03858819976449013,
0.058354366570711136,
0.09384993463754654,
-0.0773480236530304,
0.04328357055783272,
0.04280758649110794,
0.024811049923300743,
0.04589218273758888,
-0.0237203948199749,
-0.027002155780792236,
0.08246652781963348,
-0.22182892262935638,
0.10318073630332947,
-0.010159241035580635,
-0.5270710587501526,
-0.00633762264624238,
0.24088262021541595,
0.11517096310853958,
0.05707438662648201,
-0.06903956830501556,
0.10566288232803345,
0.03913382440805435,
-0.007209456991404295,
0.03210983797907829,
0.02150118350982666,
0.12817370891571045,
0.06009242683649063,
-0.09581366181373596,
0.040699947625398636,
0.13722525537014008,
0.012822695076465607,
0.020306183025240898,
-0.08888901025056839,
0.0410032719373703,
-0.03461858257651329,
-0.007679527159780264,
-0.09758518636226654,
0.05478060990571976,
0.012466507963836193,
-0.0934976264834404,
-0.09247440844774246,
-0.04236573353409767,
-0.06708304584026337,
0.11252415925264359,
0.046419668942689896,
-0.0874939113855362,
0.03884070739150047,
-0.06760413944721222,
0.05918780341744423,
-0.16863860189914703,
0.02074250765144825,
-0.06627868115901947,
-0.09376336634159088,
-0.11799788475036621,
-0.01683047041296959,
-0.07946427166461945,
0.009092256426811218,
0.056664444506168365,
0.1447116881608963,
0.22076484560966492,
0.06690320372581482,
0.09728849679231644,
0.07456006109714508,
0.06531001627445221,
0.1538129299879074,
0.10918238013982773,
0.019075315445661545,
-0.015266558155417442,
0.0948706716299057,
-0.06445580720901489,
-0.1351388692855835,
-0.15579092502593994,
0.005488025024533272,
0.0983937531709671,
0.08871900290250778,
-0.044080477207899094,
-0.006702381651848555,
-0.024641724303364754,
0.08566431701183319,
-0.11314457654953003,
-0.024612564593553543,
-0.002267979085445404,
0.06882024556398392,
-0.024801667779684067,
0.020378148183226585,
-0.06242705136537552,
0.12715265154838562,
0.04222423583269119,
-0.059924717992544174,
-0.055308472365140915,
-0.03053177334368229,
-0.014276440255343914,
-0.027539284899830818,
0.02446848154067993,
-0.07659092545509338,
0.04767750948667526,
-0.16766095161437988,
-0.042871296405792236,
-0.04784649610519409,
0.025697942823171616,
-0.03907240927219391,
-0.13557587563991547,
-0.17699143290519714,
-0.048906855285167694,
-0.022438718006014824,
0.03549358621239662,
-0.038111843168735504,
0.006551501806825399,
-0.006318534724414349,
-0.1583600640296936,
0.09783563017845154,
0.09784027189016342,
-0.03643378987908363,
-0.02749447710812092,
0.056263517588377,
-0.07194498926401138,
0.1561182290315628,
-0.21054518222808838,
-0.054014235734939575,
-0.044764336198568344,
-0.06595750898122787,
0.19673264026641846,
0.012690845876932144,
-0.01202624011784792,
0.19873127341270447,
-0.29073721170425415,
-0.06078760325908661,
0.12533614039421082,
-0.07834373414516449,
-0.0936407670378685,
0.06941844522953033,
-0.04206686094403267,
0.023345354944467545,
0.046047765761613846,
0.36345911026000977,
-0.02069227211177349,
-0.16197136044502258,
-0.021782705560326576,
0.13971707224845886,
-0.1184760183095932,
0.059895481914281845,
0.04240793362259865,
0.12543781101703644,
-0.04250509291887283,
-0.018672896549105644,
-0.09023164212703705,
0.05999075248837471,
-0.05241934582591057,
-0.09016361832618713,
-0.03393383324146271,
-0.07645075023174286,
0.13294468820095062,
-0.0629684180021286,
0.05601520463824272,
-0.03255095332860947,
-0.07133250683546066,
-0.050324998795986176,
-0.016492370516061783,
0.04460815340280533,
0.05951254442334175,
-0.12794871628284454,
0.11029167473316193,
0.13025271892547607,
-0.0006193425506353378,
-0.07498852163553238,
-0.17872096598148346,
0.003240168560296297,
0.009576505981385708,
0.039837226271629333,
0.17141658067703247,
0.12209978699684143,
0.033295199275016785,
0.008770671673119068,
-0.06389404833316803,
-0.18276847898960114,
0.058129217475652695,
-0.056212130934000015,
-0.14230976998806,
-0.052409034222364426,
-0.0728459507226944,
0.017381802201271057,
-0.0859743058681488,
-0.017379917204380035,
0.021926190704107285,
0.006908397190272808,
0.02990424446761608,
-0.026645656675100327,
-0.049561817198991776,
0.021254703402519226,
0.06490101665258408,
-0.0037617047782987356,
0.12023693323135376,
0.008277264423668385,
-0.18308481574058533,
0.07930773496627808,
0.08478537946939468,
0.09196605533361435,
0.013250201940536499,
0.02685922384262085,
-0.021522263064980507,
-0.08061408251523972,
-0.054420311003923416,
0.02957955375313759,
0.11417073011398315,
0.1317172348499298,
0.2361993044614792,
0.08753683418035507,
0.04697408527135849,
-0.02164587564766407,
-0.016415923833847046,
0.002810494042932987,
-0.06318057328462601,
-0.029935607686638832,
0.10614971816539764,
0.05865858122706413,
-0.067733034491539,
-0.04576427489519119,
0.09590928256511688,
0.02732124738395214,
0.21205885708332062,
-0.03342745825648308,
0.01286078616976738,
-0.10957037657499313,
-0.06550975888967514,
-0.031982194632291794,
0.09201868623495102,
0.09498392790555954,
0.009755023755133152,
-0.022056059911847115,
-0.04259001836180687,
0.0012916827108711004,
-0.1334889680147171,
-0.10375088453292847,
0.026475343853235245,
0.013400445692241192,
-0.11206940561532974,
0.11674030870199203,
-0.11352457851171494,
0.039504457265138626,
0.06024791672825813,
-0.13837239146232605,
0.04428480193018913,
-0.029713207855820656,
-0.07886212319135666,
0.16866780817508698,
-0.11075661331415176,
-0.094340018928051,
-0.08831550180912018,
0.004082420375198126,
0.0075836325995624065,
-0.03922267258167267,
-0.009283260442316532,
-0.19952571392059326,
-0.005375816952437162,
-0.03544965013861656,
0.013616434298455715,
-0.06988783925771713,
-0.11287739872932434,
-0.010957922786474228,
0.07084179669618607,
-0.043388739228248596,
-0.07803605496883392,
0.007967432029545307,
-0.08923084288835526,
-0.10623309016227722,
0.028189711272716522,
0.019765101373195648,
-0.022883659228682518,
0.16152891516685486,
0.01816628873348236,
0.05626589432358742,
-0.03298520669341087,
0.30665266513824463,
-0.038163769990205765,
0.08371731638908386,
-0.02993497997522354,
-0.07433546334505081,
0.06130730360746384,
-0.022327827289700508,
0.06086638569831848,
-0.020221687853336334,
-0.02362890914082527,
0.0077952733263373375,
-0.08579335361719131,
-0.18365982174873352,
-0.05417544022202492,
0.03724347800016403,
0.195254847407341,
0.031118987128138542,
0.01910330168902874,
-0.0488768145442009,
-0.010547760874032974,
0.1665220558643341,
-0.10005921125411987,
0.04030545800924301,
-0.05366240441799164,
0.11506262421607971,
-0.08640182018280029,
0.06195629760622978,
0.020486772060394287,
0.04266135022044182,
-0.04877188801765442,
0.09486009180545807,
0.0826394334435463,
0.1121082529425621,
-0.02206910029053688,
0.046257395297288895,
0.019012698903679848,
0.07383184134960175,
0.11073657125234604,
0.0368414968252182,
-0.0729052945971489,
0.001982470043003559,
-0.006313489284366369,
-0.039427030831575394,
0.11933320760726929,
0.17963355779647827,
-0.11991413682699203,
-0.05106910318136215,
0.27167606353759766,
0.0031242913100868464,
0.19481229782104492,
-0.01315275114029646,
0.043591804802417755,
-0.04484925419092178,
0.04572054371237755,
-0.05338600277900696,
-0.04086209088563919,
0.2094656229019165,
0.08045925945043564,
-0.17165091633796692,
-0.08549032360315323,
-0.05912299454212189,
0.07081323862075806,
0.10728751868009567,
0.0013539529172703624,
-0.04156802222132683,
0.0004610282776411623,
0.0014198932331055403,
0.08339415490627289,
-0.14520122110843658,
0.11816094070672989,
-0.03172019124031067,
0.05612684786319733,
0.017555562779307365,
-0.045326150953769684,
0.04264266416430473,
0.07474290579557419,
0.26618310809135437,
0.0904107540845871,
-0.040318213403224945,
-0.0892091691493988,
-0.12260187417268753,
0.010461576282978058,
0.029102616012096405,
-0.03534553572535515,
0.0037547778338193893,
-0.020087555050849915,
0.0318896509706974,
0.008264793083071709,
0.016230624169111252,
-0.08987458795309067,
-0.03175399824976921,
-0.027736429125070572,
-0.023839212954044342,
0.10733365267515182,
-0.09495144337415695,
-0.1444292515516281,
-0.15713949501514435,
0.04191131144762039,
-0.0766405463218689,
-0.056593164801597595,
-0.054507751017808914,
-0.05239389091730118,
-0.0311186034232378,
-0.03773957118391991,
0.09099467098712921,
-0.0021037792321294546,
0.14807306230068207,
-0.1920108050107956,
-0.04220759496092796,
0.051812779158353806,
-0.07607918977737427,
-0.08729588985443115,
0.03410962224006653,
0.12136995792388916,
0.05116051807999611,
0.11504370719194412,
0.013609255664050579,
0.09567681699991226,
0.0045484392903745174,
-0.06713183224201202,
0.15302421152591705,
-0.14069625735282898,
-0.27875974774360657,
-0.03836318850517273,
0.016946332529187202,
0.1615200787782669,
-0.05613167956471443,
0.031766023486852646,
0.3335736393928528,
0.27782970666885376,
-0.1428707242012024,
0.25916144251823425,
0.019178593531250954,
0.004398873541504145,
-0.19130495190620422,
-0.10125631093978882,
0.025324683636426926,
0.04740457236766815,
0.12032642960548401,
-0.14564448595046997,
-0.010732659138739109,
-0.04543145373463631,
-0.025908485054969788,
0.10386138409376144,
-0.12300799041986465,
-0.07263197749853134,
0.07765276730060577,
0.039809420704841614,
0.1808302253484726,
0.03932500258088112,
0.0014799144119024277,
0.13626977801322937,
0.06612244248390198,
0.019124457612633705,
0.05216038227081299,
0.08028066903352737,
-0.018944554030895233,
0.14207926392555237,
0.05448179319500923,
-0.02551644667983055,
0.052681710571050644,
-0.0054580713622272015,
-0.03219012916088104,
0.015605825930833817,
-0.183198019862175,
-0.10147556662559509,
-0.0561356320977211,
-0.10798973590135574,
-0.04978342354297638,
0.056853994727134705,
-0.12395523488521576,
-0.007896827533841133,
-0.03841273859143257,
0.03718273714184761,
-0.07831971347332001,
-0.09360362589359283,
-0.036494381725788116,
0.1351792961359024,
0.07210618257522583,
0.04471297934651375,
0.035655103623867035,
-0.07390819489955902,
0.07097936421632767,
0.21671734750270844,
0.08159157633781433,
0.028919655829668045,
-0.19545674324035645,
-0.024042490869760513,
-0.0803457647562027,
0.06306298077106476,
-0.08856996893882751,
-0.016788700595498085,
0.11923003196716309,
0.08616556972265244,
0.05413002520799637,
0.09640096127986908,
-0.045083072036504745,
0.021686913445591927,
0.02684609219431877,
-0.15131035447120667,
-0.18501274287700653,
-0.08534606546163559,
-0.03519878163933754,
0.11561143398284912,
-0.06398691236972809,
0.10897188633680344,
-0.13615410029888153,
0.010051886551082134,
-0.006060056854039431,
0.02693452313542366,
-0.03596206381917,
-0.11251141875982285,
0.15348562598228455,
0.11999429017305374,
-0.06767056882381439,
0.03127254918217659,
-0.09527092427015305,
-0.04423454403877258,
0.12686803936958313,
-0.013623855076730251,
-0.0371493324637413,
-0.054547641426324844,
-0.03628576174378395,
0.15247689187526703,
-0.03436964750289917,
0.008244883269071579,
-0.041229065507650375,
-0.18217355012893677,
0.0798322781920433,
0.09045056998729706,
0.019827889278531075,
-0.031874191015958786,
-0.09797266125679016,
-0.010231015272438526,
-0.0011165260802954435,
0.11730700731277466,
-0.10696814209222794,
-0.10933240503072739,
-0.15144047141075134,
0.06713984161615372,
-0.0007159380475059152,
0.18502596020698547,
-0.06394898891448975,
-0.08904669433832169,
-0.12429379671812057,
0.02344517596065998,
-0.0027384376153349876,
-0.042264558374881744,
0.01618490368127823,
0.07992301136255264,
-0.04095321521162987,
0.02075677551329136,
-0.06651144474744797,
0.06372585147619247,
-0.11786920577287674,
0.09625071287155151,
0.01063506118953228,
0.016993753612041473,
-0.0417880080640316,
-0.01618220843374729,
0.039470795542001724,
-0.057925306260585785,
0.07921463251113892,
0.011758086271584034,
0.0010938759660348296,
0.10196787863969803,
-0.0034960443153977394,
0.06409632414579391,
-0.05372481048107147,
-0.023290161043405533,
0.06578411161899567,
-0.05874887853860855,
-0.03370826691389084,
-0.1573946475982666,
-0.0709633082151413,
0.020051732659339905,
-0.04775108024477959,
0.002077929675579071,
0.03673801198601723,
0.062159497290849686,
-0.06937079131603241,
-0.12125655263662338,
-0.043812792748212814,
-0.028638383373618126,
0.021301284432411194,
0.10829301923513412,
-0.07526551932096481,
0.1547859013080597,
-0.052787959575653076,
-0.00020603960729204118,
0.07437096536159515,
0.04048224538564682,
0.01393822580575943,
-0.10422444343566895,
-0.04698587954044342,
-0.11035211384296417,
0.1502903699874878,
-0.007902312092483044,
-0.03533121198415756,
0.03719403222203255,
-0.11946307867765427,
-0.1572723090648651,
0.03418220207095146,
0.10199101269245148,
0.0448341928422451,
0.025807438418269157,
0.027079269289970398,
-0.04042419046163559,
-0.021270349621772766,
-0.07034418731927872,
0.0882953479886055,
-0.12085357308387756,
-0.09669415652751923,
0.09555385261774063,
0.12178351730108261,
-0.0036850625183433294,
-0.07441367954015732,
0.11554073542356491,
-0.021787192672491074,
0.05525410920381546,
-0.02971339225769043,
0.10308072715997696,
0.0796005055308342,
-0.12273547053337097,
0.005693064536899328,
-0.036891788244247437,
-0.0741485133767128,
-0.12975730001926422,
0.019545545801520348,
-0.061916105449199677,
-0.13383042812347412,
0.12179028987884521,
-0.09376577287912369,
0.030037038028240204,
-0.10506992787122726,
0.021338803693652153,
0.01864001713693142,
0.061665527522563934,
-0.10988292098045349,
0.08575301617383957,
0.13424484431743622,
-0.043199893087148666,
-0.07184189558029175,
-0.12455986440181732,
-0.05022053420543671,
-0.04231856390833855,
-0.13957437872886658,
-0.11600435525178909,
0.0100301094353199,
-0.023418782278895378,
-0.05818291753530502,
0.0015462689334526658,
-0.03659068048000336,
0.008594646118581295,
0.021907730028033257,
0.04032021388411522,
-0.02693161368370056,
0.05134565755724907,
-0.057569269090890884,
-0.052510857582092285,
0.11489357799291611,
0.04113486409187317,
-0.03561042994260788,
-0.052359987050294876,
0.12997733056545258,
-0.11959461867809296,
0.07662346214056015,
-0.020313527435064316,
0.017129231244325638,
-0.06435854732990265,
0.17131924629211426,
0.11673715710639954,
-0.1367570012807846,
-0.005008010193705559,
-0.08210669457912445,
0.020409544929862022,
0.023555370047688484,
0.13693512976169586,
-0.03411718085408211,
-0.0012358218664303422,
-0.1580323874950409,
0.018575575202703476,
-0.18557456135749817,
-0.03716109320521355,
0.04671547934412956,
0.09917585551738739,
0.15293832123279572,
-0.0034432117827236652,
-0.1263325810432434,
0.10424192249774933,
-0.2118520885705948,
0.0907607227563858,
0.05121984705328941,
-0.11874113976955414,
-0.06765396893024445,
-0.06795281916856766,
0.1198519766330719,
0.009196433238685131,
0.2040700763463974,
-0.013615905307233334,
-0.09132910519838333,
-0.07060808688402176,
-0.01980910450220108,
-0.030524181202054024,
0.09714830666780472,
0.041414931416511536,
0.04653804749250412,
0.12821412086486816,
0.00368314771912992,
0.07533777505159378,
0.060310911387205124,
0.02759413793683052,
-0.012300663627684116,
0.04076618701219559,
0.08261215686798096,
-0.14588621258735657,
-0.1659701019525528,
0.1326720416545868,
0.025149408727884293,
0.11792458593845367,
0.03658788278698921,
-0.1549617499113083,
0.06687124073505402,
0.2523096203804016,
-0.11147607117891312,
0.02505038119852543,
0.12737524509429932,
-0.0366884209215641,
0.0672016367316246,
0.1144871786236763,
-0.02633814327418804,
-0.05217865854501724,
-0.011363590136170387,
0.10233135521411896,
0.028660254552960396,
-0.04646271467208862,
-0.02340836264193058,
-0.03373933956027031,
-0.019070526584982872,
-0.011738128960132599,
-0.0909019410610199,
-0.1543993502855301,
-0.10471053421497345,
-0.16619662940502167,
0.04399140924215317,
-0.04626438021659851,
0.13418889045715332,
0.09469578415155411,
-0.012723101302981377,
0.04568437114357948,
0.028575526550412178,
0.07275456190109253,
0.07916246354579926,
-0.02939477376639843,
-0.036159269511699677
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2 | {"library_name": "peft", "base_model": "mistralai/Mistral-7B-Instruct-v0.1"} | null | yisays/jlr-virtual-agent-mistral-7b | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:mistralai/Mistral-7B-Instruct-v0.1",
"region:us"
] | 2024-02-13T16:57:25+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.1 #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.8.2 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.1 #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
42,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
11
] | [
"passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-mistralai/Mistral-7B-Instruct-v0.1 #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2"
] | [
-0.12422216683626175,
0.20106589794158936,
-0.0028710339684039354,
0.026993287727236748,
0.08308835327625275,
0.01890857145190239,
0.05287722498178482,
0.12996724247932434,
0.030256684869527817,
0.11474129557609558,
0.07302569597959518,
0.12463612854480743,
0.11128945648670197,
0.20344054698944092,
0.00567058939486742,
-0.16400539875030518,
0.028184007853269577,
-0.08105848729610443,
0.017077993601560593,
0.1272551268339157,
0.14306704699993134,
-0.1010119840502739,
0.0783170685172081,
-0.019778922200202942,
0.0038478777278214693,
-0.035151347517967224,
-0.06762911379337311,
-0.01708950288593769,
0.05326186120510101,
0.026052433997392654,
0.060830894857645035,
-0.01644499972462654,
0.0913914293050766,
-0.26702970266342163,
0.01880965754389763,
0.04253198206424713,
0.00894366018474102,
0.08476521819829941,
0.10193061083555222,
-0.03978906571865082,
0.11745493113994598,
-0.021005917340517044,
0.13945943117141724,
0.09198588877916336,
-0.09304550290107727,
-0.2325282245874405,
-0.06274571269750595,
0.07658456265926361,
0.18965794146060944,
0.0884167030453682,
-0.04600412771105766,
0.1329348236322403,
-0.06517094373703003,
0.023726746439933777,
0.058663610368967056,
-0.10329581052064896,
-0.06592311710119247,
0.06894563138484955,
0.13890111446380615,
0.06981406360864639,
-0.11948775500059128,
-0.03894422948360443,
0.03515320643782616,
0.04711797833442688,
0.051546066999435425,
0.008110925555229187,
0.1605062633752823,
0.030683761462569237,
-0.14920058846473694,
-0.057017259299755096,
0.1443130522966385,
0.006139494013041258,
-0.044717442244291306,
-0.21980500221252441,
-0.0015409506158903241,
-0.09135818481445312,
-0.02987045608460903,
-0.05696697533130646,
0.033219821751117706,
0.013103491626679897,
0.13037949800491333,
-0.04200224205851555,
-0.09516680985689163,
-0.02259671501815319,
0.10189329087734222,
0.05405830964446068,
0.024320118129253387,
-0.023261331021785736,
0.01421698834747076,
0.12355168908834457,
0.07626055926084518,
-0.13209763169288635,
-0.06568308919668198,
-0.07519497722387314,
-0.03956973925232887,
-0.03281160071492195,
0.03757874295115471,
0.016161063686013222,
0.06326126307249069,
0.27138611674308777,
-0.020066436380147934,
0.061556536704301834,
0.052373114973306656,
0.01960311084985733,
0.038346461951732635,
0.10712438821792603,
-0.03350774571299553,
-0.15913927555084229,
-0.0136953666806221,
0.10271401703357697,
-0.0029045341070741415,
-0.031128088012337685,
-0.04680278152227402,
0.029476486146450043,
0.045136965811252594,
0.11927779018878937,
0.11457719653844833,
-0.021801143884658813,
-0.08141966164112091,
-0.057459019124507904,
0.19468863308429718,
-0.1560204029083252,
0.04255979135632515,
0.024769125506281853,
-0.003294195979833603,
-0.06388068944215775,
0.0054046050645411015,
0.020595446228981018,
-0.030573079362511635,
0.06704357266426086,
-0.06603427231311798,
-0.04211902245879173,
-0.12689071893692017,
-0.029980551451444626,
0.03424587845802307,
0.019140087068080902,
-0.046469639986753464,
-0.04601097106933594,
-0.08197993040084839,
-0.11134935915470123,
0.10875743627548218,
-0.052867479622364044,
-0.05646739900112152,
-0.027270115911960602,
-0.08433156460523605,
0.020615242421627045,
0.030732177197933197,
0.07234636694192886,
-0.02651018463075161,
0.04892460256814957,
-0.001762641011737287,
0.06258046627044678,
0.08572687953710556,
0.031135445460677147,
-0.08608829975128174,
0.06675241142511368,
-0.1942754089832306,
0.0739452913403511,
-0.07984933257102966,
0.03790266811847687,
-0.1659337431192398,
-0.009678089991211891,
0.006992498878389597,
0.03143318369984627,
0.042715996503829956,
0.1614251732826233,
-0.21823251247406006,
-0.023230690509080887,
0.1569705605506897,
-0.11261863261461258,
-0.1348724663257599,
0.045282378792762756,
-0.03762205317616463,
0.18286186456680298,
0.02832828462123871,
0.013947858475148678,
0.08370094001293182,
-0.16089238226413727,
-0.02529587596654892,
-0.028846878558397293,
0.006972828414291143,
0.07426250725984573,
0.08813688904047012,
-0.09280626475811005,
-0.0050557018257677555,
0.009584846906363964,
-0.06427501142024994,
-0.014466967433691025,
-0.04267791286110878,
-0.10496699810028076,
0.0033354307524859905,
-0.08519894629716873,
0.02132321149110794,
0.006250108126550913,
-0.1010691374540329,
-0.009384285658597946,
-0.1542505919933319,
-0.06124576926231384,
0.08829770237207413,
0.0034768572077155113,
-0.020497940480709076,
-0.10195029526948929,
0.06530039012432098,
-0.03933616355061531,
-0.02365850657224655,
-0.14741148054599762,
-0.020505208522081375,
0.01779167540371418,
-0.14185793697834015,
-0.007558056619018316,
-0.11909934878349304,
0.0669308453798294,
0.0046431683003902435,
-0.04643143340945244,
-0.04557834565639496,
-0.002409413456916809,
-0.002131792949512601,
-0.059019044041633606,
-0.22953607141971588,
-0.026910625398159027,
-0.054278720170259476,
0.15733250975608826,
-0.231843039393425,
0.042899567633867264,
-0.0008939158287830651,
0.11358663439750671,
0.002151123946532607,
-0.06580089777708054,
0.021268606185913086,
-0.06350308656692505,
-0.02705402299761772,
-0.06944841146469116,
-0.003172082593664527,
-0.0005750443087890744,
-0.0224920567125082,
0.016085077077150345,
-0.1196414902806282,
-0.06270264834165573,
0.09582624584436417,
0.05699694901704788,
-0.15031205117702484,
0.007397742476314306,
-0.037398841232061386,
-0.05946943163871765,
-0.07127468287944794,
-0.07043209671974182,
0.08736661076545715,
0.05769180878996849,
0.03920275717973709,
-0.07742936909198761,
-0.06478966772556305,
0.0033965245820581913,
-0.028416985645890236,
-0.014502757228910923,
0.1221889853477478,
0.07733490318059921,
-0.09791083633899689,
0.09077992290258408,
0.0765177384018898,
0.018040183931589127,
0.06793694198131561,
-0.02471025660634041,
-0.1072097048163414,
-0.027743656188249588,
0.05882546678185463,
0.012637044303119183,
0.16726166009902954,
-0.074296735227108,
0.055445779114961624,
0.0482151173055172,
-0.04913860559463501,
0.044639427214860916,
-0.08701842278242111,
0.005580895114690065,
0.0025009019300341606,
-0.012438270263373852,
0.03762438893318176,
-0.020809859037399292,
0.004231155384331942,
0.08254363387823105,
0.060245413333177567,
0.02248813398182392,
0.016764892265200615,
-0.035226527601480484,
-0.14359261095523834,
0.18093858659267426,
-0.09161882102489471,
-0.2380734086036682,
-0.15512822568416595,
0.057162072509527206,
0.05681831017136574,
-0.01122869923710823,
0.03168937563896179,
-0.055825378745794296,
-0.099274180829525,
-0.08575991541147232,
0.008149883709847927,
0.03614647313952446,
-0.060617972165346146,
-0.06689588725566864,
0.03869447112083435,
0.039269186556339264,
-0.11772977560758591,
0.027427522465586662,
0.06472480297088623,
-0.010641592554748058,
-0.001258024014532566,
0.04953514412045479,
0.09735865145921707,
0.1940453201532364,
0.0005652585532516241,
0.0005844326806254685,
0.06209287419915199,
0.276673287153244,
-0.15615151822566986,
0.10658406466245651,
0.1520368605852127,
-0.06750015169382095,
0.07135568559169769,
0.18557260930538177,
0.02399909496307373,
-0.09532078355550766,
0.024741098284721375,
0.028394389897584915,
-0.018902001902461052,
-0.27359718084335327,
-0.053008805960416794,
-0.017170816659927368,
-0.08076585084199905,
0.08048626780509949,
0.08751517534255981,
0.08725690096616745,
0.03876099735498428,
-0.05959933251142502,
-0.10761616379022598,
0.028012866154313087,
0.11364759504795074,
-0.01197888795286417,
0.0014476231299340725,
0.08236535638570786,
-0.04681281000375748,
0.004980012308806181,
0.0854257270693779,
-0.01946016401052475,
0.134268656373024,
0.05717376992106438,
0.09936463832855225,
0.08097006380558014,
0.0902993381023407,
-0.009700288064777851,
0.03511727228760719,
0.009396049194037914,
0.02177031897008419,
0.020994380116462708,
-0.08722452819347382,
0.007140454836189747,
0.11272206157445908,
0.021537505090236664,
0.022335540503263474,
0.01788814179599285,
-0.05428239703178406,
0.036699555814266205,
0.19802270829677582,
0.029437582939863205,
-0.2177826464176178,
-0.08738068491220474,
0.05116744711995125,
-0.07663454115390778,
-0.16066649556159973,
-0.007983601652085781,
0.018476473167538643,
-0.16018988192081451,
0.012026793323457241,
-0.04443384334445,
0.10495204478502274,
-0.07408444583415985,
-0.039003413170576096,
0.11012477427721024,
0.0480482280254364,
-0.023513132706284523,
0.05169462040066719,
-0.19611993432044983,
0.10589951276779175,
0.026481691747903824,
0.07165361195802689,
-0.08763168007135391,
0.09213894605636597,
-0.0019615187775343657,
-0.01933220960199833,
0.1683782935142517,
-0.003421525936573744,
-0.0622435063123703,
-0.08478713780641556,
-0.0871279165148735,
-0.004384647123515606,
0.07756630331277847,
-0.12686002254486084,
0.07826491445302963,
-0.03892761468887329,
-0.024389760568737984,
-0.006272466387599707,
-0.08499777317047119,
-0.12883491814136505,
-0.15319007635116577,
0.058614227920770645,
-0.09268946945667267,
0.030745506286621094,
-0.08284074068069458,
-0.05553772673010826,
0.027812397107481956,
0.18081915378570557,
-0.20766259729862213,
-0.10583633929491043,
-0.14185777306556702,
-0.11039566248655319,
0.1619417667388916,
-0.04208902269601822,
0.08532673120498657,
-0.005383677314966917,
0.16032850742340088,
0.005613837391138077,
-0.010675258934497833,
0.08596862107515335,
-0.09513039886951447,
-0.19074557721614838,
-0.04925726354122162,
0.16460615396499634,
0.13902319967746735,
0.02704707160592079,
-0.008663516491651535,
0.03264724090695381,
-0.06957457959651947,
-0.10909245908260345,
0.028843047097325325,
0.15407471358776093,
0.0714714452624321,
-0.019292177632451057,
-0.037391871213912964,
-0.10572308301925659,
-0.06522082537412643,
-0.04477676749229431,
-0.005012324545532465,
0.20307046175003052,
-0.06574423611164093,
0.14465132355690002,
0.11286348849534988,
-0.05923214182257652,
-0.21101704239845276,
0.03272179141640663,
0.041926801204681396,
0.019633973017334938,
0.04123382642865181,
-0.1874271184206009,
0.09152141213417053,
-0.012994136661291122,
-0.08372686803340912,
0.17398127913475037,
-0.18776147067546844,
-0.131778284907341,
0.11345311999320984,
0.02489672228693962,
-0.2060607224702835,
-0.14752928912639618,
-0.1016034409403801,
-0.0176398828625679,
-0.12244879454374313,
0.03707820549607277,
0.020887257531285286,
0.008916371501982212,
0.013733336701989174,
0.020519938319921494,
0.043661024421453476,
-0.053819939494132996,
0.21176190674304962,
-0.0430559441447258,
-0.00638145487755537,
-0.05672341212630272,
-0.0758877769112587,
0.01510242372751236,
-0.053372450172901154,
0.12253350019454956,
-0.010389592498540878,
0.0355672687292099,
-0.16469472646713257,
-0.04456169903278351,
-0.054317012429237366,
0.03582674637436867,
-0.09249849617481232,
-0.08040933310985565,
-0.04093623533844948,
0.090345099568367,
0.0879262238740921,
-0.016555093228816986,
0.010693474672734737,
-0.09598111361265182,
0.0888097807765007,
0.19674721360206604,
0.19480641186237335,
0.07849931716918945,
-0.05362941324710846,
0.030892223119735718,
-0.03713804855942726,
0.04426164925098419,
-0.20862683653831482,
0.04064242169260979,
0.06490174680948257,
0.019021274521946907,
0.06575430929660797,
-0.007675129920244217,
-0.1582859754562378,
-0.08168492466211319,
0.08581193536520004,
-0.05778588727116585,
-0.16889667510986328,
-0.026789933443069458,
0.03904610499739647,
-0.21414515376091003,
-0.047325365245342255,
0.03568379580974579,
-0.01624191179871559,
-0.041310131549835205,
0.024389727041125298,
0.082870252430439,
-0.02376261167228222,
0.09720084816217422,
0.08838319778442383,
0.09167970716953278,
-0.09194620698690414,
0.05383636802434921,
0.07691691815853119,
-0.03134729713201523,
0.02781474031507969,
0.1268511861562729,
-0.03713361546397209,
-0.04926259070634842,
0.0822979286313057,
0.11636877804994583,
-0.0034347446635365486,
-0.05623546242713928,
0.005821882747113705,
-0.0444229319691658,
0.05899078771471977,
0.10266068577766418,
0.02868015319108963,
-0.004783241543918848,
0.0767119899392128,
0.02756839245557785,
-0.09167806059122086,
0.12305855005979538,
0.05859905481338501,
0.025348860770463943,
-0.04684014990925789,
-0.03967047482728958,
-0.01705854758620262,
-0.007931910455226898,
-0.016861729323863983,
-0.0004062563821207732,
-0.08573677390813828,
0.005170685239136219,
-0.12700819969177246,
0.017596684396266937,
-0.07676775753498077,
0.001924749813042581,
0.033471181988716125,
-0.05024982988834381,
0.002496117725968361,
-0.005648319143801928,
-0.07393147796392441,
-0.055446986109018326,
-0.021089356392621994,
0.07987017184495926,
-0.14153584837913513,
0.035121455788612366,
0.07882490009069443,
-0.10434285551309586,
0.06696325540542603,
-0.008616659790277481,
0.009483883157372475,
-0.00013071043940726668,
-0.14699557423591614,
0.05870407074689865,
-0.02601258084177971,
-0.006984658073633909,
-0.002251706551760435,
-0.19027672708034515,
-0.007393978536128998,
-0.03537535294890404,
-0.06887321174144745,
0.01689194142818451,
0.0008402351522818208,
-0.12192227691411972,
0.11169496923685074,
0.006459747441112995,
-0.06388001888990402,
-0.019204989075660706,
0.03971166908740997,
0.08288837224245071,
-0.007812521420419216,
0.12112686038017273,
-0.029648736119270325,
0.08299225568771362,
-0.17623592913150787,
-0.0069364821538329124,
-0.01691289246082306,
0.05769398435950279,
-0.01601221226155758,
-0.040460504591464996,
0.05740848928689957,
-0.022310269996523857,
0.16357415914535522,
-0.005818996578454971,
0.07144374400377274,
0.05155068263411522,
0.013284913264214993,
0.0466618686914444,
0.07409507036209106,
0.06058770790696144,
-0.011883165687322617,
-0.003013635752722621,
0.03432820737361908,
0.00006494233093690127,
-0.052640944719314575,
-0.14868751168251038,
0.06268347054719925,
0.18338792026042938,
0.0638253316283226,
0.025752192363142967,
0.006037404760718346,
-0.12752094864845276,
-0.07371382415294647,
0.10668830573558807,
-0.02001512050628662,
-0.032793838530778885,
-0.06456232815980911,
0.2258324921131134,
0.14407911896705627,
-0.19111907482147217,
0.07283567637205124,
-0.06261296570301056,
-0.038543522357940674,
-0.14225347340106964,
-0.17361243069171906,
-0.05834241956472397,
-0.04705933481454849,
-0.02816147916018963,
-0.056534767150878906,
0.0476798452436924,
0.04219658300280571,
-0.0049851336516439915,
-0.02411574311554432,
0.10336701571941376,
0.029776882380247116,
-0.03448235243558884,
0.04249236360192299,
0.05525338277220726,
0.041704971343278885,
-0.0951351597905159,
0.008866239339113235,
0.0031491462141275406,
0.013509250245988369,
0.06776866316795349,
0.02341918833553791,
-0.07372673600912094,
0.030234195291996002,
-0.021277962252497673,
-0.12336123734712601,
0.04450715705752373,
-0.004850218538194895,
-0.027600271627306938,
0.1498805582523346,
0.03853682801127434,
0.009711110033094883,
-0.011569391004741192,
0.23622716963291168,
-0.07236172258853912,
-0.08246953785419464,
-0.13470254838466644,
0.07823851704597473,
-0.07244595885276794,
0.02437291294336319,
0.01961546204984188,
-0.12219223380088806,
0.015216181054711342,
0.16986994445323944,
0.11447155475616455,
-0.016371384263038635,
0.006108725443482399,
0.048140112310647964,
0.005922500044107437,
-0.04154466465115547,
0.014137832447886467,
0.056894443929195404,
0.2034059762954712,
-0.07927245646715164,
0.06009124591946602,
-0.019197173416614532,
-0.07274498790502548,
-0.02569037303328514,
0.09654528647661209,
-0.013868940062820911,
-0.006713138427585363,
-0.062004074454307556,
0.14939448237419128,
-0.07539590448141098,
-0.20744210481643677,
0.05794772505760193,
-0.0645519569516182,
-0.1394689679145813,
-0.044848497956991196,
0.039311978965997696,
-0.02598005160689354,
0.006156529765576124,
0.06251145154237747,
-0.04739346355199814,
0.17590981721878052,
0.027626484632492065,
-0.04028549790382385,
-0.09456446766853333,
0.05736714228987694,
-0.142513707280159,
0.28498536348342896,
0.024770548567175865,
0.05434510484337807,
0.11184889823198318,
-0.022629182785749435,
-0.1464703232049942,
0.015721093863248825,
0.11231355369091034,
-0.06425027549266815,
0.07091336697340012,
0.15843361616134644,
0.004051916766911745,
0.1269485503435135,
0.06738356500864029,
-0.05168779194355011,
0.03682735562324524,
-0.07921965420246124,
-0.04937414824962616,
-0.1238631010055542,
0.07826656848192215,
-0.09396429359912872,
0.15539975464344025,
0.11580867320299149,
-0.07169407606124878,
0.0022845177445560694,
-0.022545361891388893,
0.08566504716873169,
0.016697490587830544,
0.11457230895757675,
0.007907172664999962,
-0.19049854576587677,
0.042247578501701355,
0.008660616353154182,
0.09662807732820511,
-0.20391444861888885,
-0.05367491394281387,
0.04308110103011131,
-0.022220429033041,
-0.07837563008069992,
0.11363232880830765,
0.03701895475387573,
0.020689241588115692,
-0.03670323267579079,
-0.04023364558815956,
0.01605621725320816,
0.15719722211360931,
-0.1076301783323288,
-0.018595775589346886
] |
null | null | transformers |
Модель [RuBERT-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) была fine-tuned для задачи __emotion classification__, предназначенная для __Russian__ текст.
Выполняет задачу __multi-label classification__ с слудующимим категориями:
```yaml
0: admiration
1: amusement
2: anger
3: annoyance
4: approval
5: caring
6: confusion
7: curiosity
8: desire
9: disappointment
10: disapproval
11: disgust
12: embarrassment
13: excitement
14: fear
15: gratitude
16: grief
17: joy
18: love
19: nervousness
20: optimism
21: pride
22: realization
23: relief
24: remorse
25: sadness
26: surprise
27: neutral
```
Категории для русского языка:
```yaml
admiration: восхищение
amusement: веселье
anger: злость
annoyance: раздражение
approval: одобрение
caring: забота
confusion: непонимание
curiosity: любопытство
desire: желание
disappointment: разочарование
disapproval: неодобрение
disgust: отвращение
embarrassment: смущение
excitement: возбуждение
fear: страх
gratitude: признательность
grief: горе
joy: радость
love: любовь
nervousness: нервозность
optimism: оптимизм
pride: гордость
realization: осознание
relief: облегчение
remorse: раскаяние
sadness: грусть
surprise: удивление
neutral: нейтральность
```
## Usage
```python
from transformers import pipeline
model = pipeline(model="r1char9/rubert-tiny2-ru-go-emotions")
model("Привет, ты мне нравишься!")
# [{'label': 'love', 'score': 0.5955629944801331}]
model('Hello, I love you.')
# [{'label': 'love', 'score': 0.911257266998291}]
``` | {"language": ["ru"], "license": "mit", "tags": ["sentiment-analysis", "multi-label-classification", "sentiment analysis", "rubert", "sentiment", "bert", "tiny", "russian", "multilabel", "classification", "emotion-classification", "emotion-recognition", "emotion"], "metrics": ["f1", "roc_auc", "precision", "recall"], "pipeline_tag": "text-classification"} | text-classification | r1char9/rubert-tiny2-ru-go-emotions | [
"transformers",
"pytorch",
"bert",
"text-classification",
"sentiment-analysis",
"multi-label-classification",
"sentiment analysis",
"rubert",
"sentiment",
"tiny",
"russian",
"multilabel",
"classification",
"emotion-classification",
"emotion-recognition",
"emotion",
"ru",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T16:58:39+00:00 | [] | [
"ru"
] | TAGS
#transformers #pytorch #bert #text-classification #sentiment-analysis #multi-label-classification #sentiment analysis #rubert #sentiment #tiny #russian #multilabel #classification #emotion-classification #emotion-recognition #emotion #ru #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
Модель RuBERT-tiny2 была fine-tuned для задачи __emotion classification__, предназначенная для __Russian__ текст.
Выполняет задачу __multi-label classification__ с слудующимим категориями:
Категории для русского языка:
## Usage
| [
"## Usage"
] | [
"TAGS\n#transformers #pytorch #bert #text-classification #sentiment-analysis #multi-label-classification #sentiment analysis #rubert #sentiment #tiny #russian #multilabel #classification #emotion-classification #emotion-recognition #emotion #ru #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"## Usage"
] | [
93,
3
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #sentiment-analysis #multi-label-classification #sentiment analysis #rubert #sentiment #tiny #russian #multilabel #classification #emotion-classification #emotion-recognition #emotion #ru #license-mit #autotrain_compatible #endpoints_compatible #region-us \n## Usage"
] | [
-0.004024599213153124,
0.06534551084041595,
-0.009397639892995358,
0.07091128826141357,
0.18739643692970276,
0.04992426559329033,
0.1131531223654747,
0.08225009590387344,
0.18985730409622192,
0.018669748678803444,
0.03290411829948425,
0.10113564133644104,
-0.01578867994248867,
-0.01250547543168068,
-0.09395541250705719,
-0.3091762065887451,
-0.014308380894362926,
0.03487877920269966,
0.16816873848438263,
0.1157662644982338,
0.11285413056612015,
-0.08392903953790665,
0.09585846960544586,
-0.01098932046443224,
-0.07159729301929474,
0.045347098261117935,
0.056224070489406586,
-0.053652893751859665,
0.12664467096328735,
-0.006806857418268919,
0.051538076251745224,
0.057961929589509964,
0.024162929505109787,
-0.2700081169605255,
0.03490845859050751,
-0.04033717140555382,
-0.05046527087688446,
0.027720127254724503,
0.12385333329439163,
-0.2271508276462555,
0.22537638247013092,
-0.036584995687007904,
0.047005873173475266,
0.06705743819475174,
-0.08029244095087051,
-0.206706240773201,
0.0017215703846886754,
0.1728789508342743,
0.0032596010714769363,
0.07253769040107727,
-0.05492750182747841,
0.14086395502090454,
-0.11779490113258362,
0.07026302069425583,
0.2515554130077362,
-0.1774662435054779,
-0.030824126675724983,
0.011698410846292973,
0.019424239173531532,
-0.046441759914159775,
-0.1577358990907669,
0.059851061552762985,
0.02849382907152176,
0.009389342740178108,
-0.02312677539885044,
-0.1136033907532692,
0.071866475045681,
-0.009688246063888073,
-0.04160705581307411,
-0.005685569252818823,
0.12081074714660645,
0.07715263962745667,
0.030821427702903748,
-0.0991276204586029,
0.00843054335564375,
-0.13400110602378845,
-0.03807999938726425,
-0.014631361700594425,
0.04342776909470558,
0.024980774149298668,
0.0019960515201091766,
0.09316686540842056,
-0.10803285241127014,
0.0819716826081276,
-0.05267082154750824,
0.17924103140830994,
-0.05501532927155495,
0.02121867425739765,
0.05251693353056908,
-0.03588423132896423,
-0.046898506581783295,
-0.046109575778245926,
0.017336837947368622,
-0.10005035251379013,
0.034430135041475296,
0.040472012013196945,
-0.07307770103216171,
0.09623589366674423,
0.03797519579529762,
0.03648289293050766,
0.008587175980210304,
0.04007366672158241,
0.01618746668100357,
0.0468192994594574,
0.1679421067237854,
0.20206092298030853,
0.05750548839569092,
-0.010705121792852879,
-0.14284540712833405,
-0.07226672768592834,
-0.016253726556897163,
0.02527707815170288,
-0.09463953971862793,
0.03022281639277935,
0.023159310221672058,
0.030813002958893776,
-0.14808389544487,
0.1280766725540161,
-0.1802970916032791,
0.02007758617401123,
-0.17990642786026,
-0.00889082532376051,
0.06237071007490158,
0.07292335480451584,
0.0008487746817991138,
0.2170497328042984,
-0.1140546128153801,
-0.009045625105500221,
0.03424808755517006,
0.08090998977422714,
0.05191941559314728,
0.05542239546775818,
-0.032861050218343735,
-0.0634773001074791,
0.10693654417991638,
-0.1444006860256195,
0.07992067188024521,
-0.14564591646194458,
-0.09598474204540253,
-0.060496605932712555,
0.07212135195732117,
-0.0854167491197586,
0.040512703359127045,
-0.0552992969751358,
0.0027827227022498846,
0.06295587867498398,
0.0038684289902448654,
-0.16743618249893188,
-0.060816749930381775,
-0.0027524062898010015,
-0.08520037680864334,
0.17342603206634521,
0.08793067932128906,
-0.004843729082494974,
-0.17367440462112427,
-0.019750047475099564,
0.014711808413267136,
0.09046792984008789,
-0.14438997209072113,
0.19818419218063354,
0.037248846143484116,
-0.06281086802482605,
0.08365334570407867,
0.011153067462146282,
-0.16176557540893555,
0.16676360368728638,
-0.20915181934833527,
-0.16132478415966034,
0.13786275684833527,
-0.0764455646276474,
0.018954049795866013,
0.13371771574020386,
-0.04831409454345703,
0.07607275247573853,
0.1324634701013565,
0.22043365240097046,
-0.04907211661338806,
0.013759803958237171,
-0.07850206643342972,
0.08157084137201309,
-0.08436175435781479,
0.12937621772289276,
0.032336391508579254,
0.15386293828487396,
0.02401760406792164,
0.05408967658877373,
0.11012536287307739,
0.022632351145148277,
-0.0812438502907753,
-0.08591174334287643,
0.0016613079933449626,
-0.006701386068016291,
0.10680972039699554,
0.1101369857788086,
0.0017957300879061222,
-0.1588045358657837,
-0.07382619380950928,
-0.1444012075662613,
0.0517549030482769,
0.020040195435285568,
0.024735407903790474,
-0.12335674464702606,
0.038905899971723557,
0.16391021013259888,
0.01726473867893219,
-0.14785423874855042,
0.13069333136081696,
-0.016567738726735115,
0.08880975097417831,
0.05064648762345314,
0.10047179460525513,
0.07762376219034195,
-0.13410697877407074,
-0.06021345034241676,
0.0065416800789535046,
0.043292999267578125,
0.03123341128230095,
0.014463641680777073,
-0.33029213547706604,
0.06219223886728287,
-0.06642929464578629,
0.06427888572216034,
-0.056070104241371155,
0.03729189559817314,
0.20708636939525604,
0.028101399540901184,
-0.031322065740823746,
0.08474211394786835,
-0.0545518696308136,
0.014207649044692516,
-0.06063993275165558,
-0.01193704642355442,
0.15351268649101257,
-0.05164806544780731,
-0.101436547935009,
0.12892670929431915,
0.025288624688982964,
0.14893104135990143,
0.1466054469347,
-0.19416086375713348,
-0.09455113112926483,
-0.00845429953187704,
-0.038710445165634155,
0.10523241758346558,
0.10018377006053925,
0.11134802550077438,
0.12671878933906555,
-0.04052929952740669,
0.02316640131175518,
0.0026583578437566757,
0.021226663142442703,
0.03838549554347992,
-0.07184017449617386,
-0.14528077840805054,
0.16175878047943115,
-0.05323382839560509,
-0.20222702622413635,
0.1716078370809555,
0.24845492839813232,
0.03955795615911484,
0.2270500361919403,
0.0028139350470155478,
0.08984187245368958,
-0.015133014880120754,
-0.12414197623729706,
-0.0921475812792778,
0.04447466507554054,
-0.16967591643333435,
-0.08042065799236298,
0.03201299160718918,
-0.06521762907505035,
-0.061876896768808365,
-0.10902732610702515,
-0.07338004559278488,
0.014807279221713543,
0.0197357926517725,
0.001319077331572771,
0.07640057802200317,
0.025743745267391205,
0.11549254506826401,
0.03326071426272392,
-0.05735853686928749,
0.031430188566446304,
-0.005082147195935249,
-0.07156778872013092,
0.12041158974170685,
-0.1549307256937027,
-0.26982438564300537,
-0.0030843124259263277,
-0.14083367586135864,
-0.07591462880373001,
0.03150458261370659,
0.04797646403312683,
-0.28359878063201904,
-0.0045178900472819805,
0.038228195160627365,
0.13286805152893066,
-0.020175402984023094,
-0.024220440536737442,
-0.03839106857776642,
0.0903579592704773,
-0.09075526148080826,
-0.03797813504934311,
-0.07304597645998001,
-0.08325964212417603,
-0.018246658146381378,
0.11773142963647842,
-0.06116623431444168,
0.02711687795817852,
0.18540218472480774,
-0.004378973040729761,
-0.0005970652564428747,
-0.11060070246458054,
0.11312783509492874,
-0.12588447332382202,
-0.06214308738708496,
0.01782924495637417,
-0.07695634663105011,
0.04293786361813545,
0.1744273602962494,
0.05547871068120003,
-0.09797502309083939,
0.020702071487903595,
0.05596216022968292,
-0.05089247599244118,
-0.2036907821893692,
-0.10815960168838501,
0.015029975213110447,
0.21933764219284058,
-0.045071907341480255,
0.04273366555571556,
0.03789646551012993,
0.04467622935771942,
-0.030025992542505264,
-0.2031920999288559,
-0.06671572476625443,
0.07446598261594772,
0.2061251401901245,
-0.056989770382642746,
0.05973808839917183,
-0.013407133519649506,
-0.04368140548467636,
0.13330839574337006,
-0.05426565557718277,
0.05075662210583687,
0.1012444794178009,
0.05943303555250168,
0.0323840007185936,
0.0761798843741417,
0.0692877322435379,
0.058936528861522675,
0.002139914082363248,
-0.039016444236040115,
-0.06926020979881287,
0.0078359954059124,
-0.07223550230264664,
0.09602630883455276,
0.04486113041639328,
0.045811787247657776,
-0.10365485399961472,
-0.1242576390504837,
0.16910487413406372,
0.19385093450546265,
0.04029049351811409,
-0.12939520180225372,
-0.05419876426458359,
0.05045801028609276,
-0.032701969146728516,
0.01438727043569088,
0.05656179413199425,
-0.11846327036619186,
-0.19038361310958862,
0.18942002952098846,
-0.012686192989349365,
0.07121976464986801,
-0.10455823689699173,
0.11196984350681305,
-0.1205449104309082,
-0.1465689241886139,
0.009799029678106308,
0.06305108219385147,
-0.18197740614414215,
0.25250861048698425,
0.034512173384428024,
-0.11338619142770767,
-0.1076585203409195,
-0.06131647154688835,
0.1279447227716446,
0.15104112029075623,
0.08928739279508591,
0.00017194896645378321,
0.06776569783687592,
-0.16812624037265778,
0.049502573907375336,
0.02957303076982498,
0.13722564280033112,
-0.07272318005561829,
0.024894291535019875,
-0.029112201184034348,
-0.017064301297068596,
0.001820988953113556,
0.10030698776245117,
-0.07746542990207672,
-0.0859280675649643,
-0.0023068038281053305,
0.0687924325466156,
-0.03254836052656174,
0.07183137536048889,
-0.12541928887367249,
-0.09376740455627441,
0.1708950400352478,
0.03816765919327736,
0.024619095027446747,
-0.08264818042516708,
-0.030928129330277443,
-0.06900084763765335,
-0.010691594332456589,
-0.03980774059891701,
-0.02885705791413784,
0.06367454677820206,
-0.047468215227127075,
-0.13936807215213776,
0.1435168981552124,
-0.07062045484781265,
-0.16693606972694397,
-0.0064781224355101585,
0.12061760574579239,
0.06380802392959595,
0.10698752105236053,
0.008994391188025475,
-0.016857583075761795,
-0.02525683492422104,
-0.04410818591713905,
0.16271834075450897,
0.08267224580049515,
-0.13721014559268951,
0.09472090005874634,
-0.05146924406290054,
-0.1615014672279358,
-0.12705257534980774,
-0.05448656901717186,
0.14319536089897156,
0.27080410718917847,
-0.06778392940759659,
0.19404125213623047,
0.03740471601486206,
-0.05337996780872345,
-0.27765312790870667,
0.041006263345479965,
-0.031767841428518295,
-0.009096076712012291,
0.09808278828859329,
-0.13909505307674408,
0.04773905873298645,
-0.1068802922964096,
-0.029207170009613037,
-0.05255011469125748,
0.024637913331389427,
-0.04367298260331154,
0.2301124781370163,
-0.012106550857424736,
0.30433452129364014,
-0.10602883249521255,
0.004915711469948292,
-0.11724387109279633,
-0.03597814217209816,
0.1789385974407196,
0.02067270129919052,
0.08216005563735962,
-0.031028082594275475,
0.15603666007518768,
0.034865714609622955,
0.06076397746801376,
0.1009087935090065,
0.05705121532082558,
0.06541524827480316,
-0.1207965537905693,
-0.12895627319812775,
0.045956630259752274,
0.008568975143134594,
-0.047466106712818146,
-0.11299143731594086,
-0.07382901012897491,
-0.08187121152877808,
-0.08429725468158722,
-0.12591823935508728,
0.05737091973423958,
-0.006813892628997564,
-0.07050231844186783,
-0.1609531044960022,
0.08549366891384125,
0.03534757345914841,
-0.059047091752290726,
0.059956539422273636,
-0.06643452495336533,
-0.03972147777676582,
0.12639892101287842,
0.20479929447174072,
0.019583329558372498,
-0.005561140365898609,
-0.08522269874811172,
-0.0444178469479084,
0.048888348042964935,
-0.14905007183551788,
-0.005604967009276152,
0.09550247341394424,
-0.03499698266386986,
0.10721419006586075,
0.10266035795211792,
-0.09057392179965973,
0.0020626382902264595,
0.07433021068572998,
-0.07809717953205109,
-0.08755814284086227,
-0.0651208758354187,
-0.1318477839231491,
0.026967313140630722,
-0.0081584881991148,
0.06862716376781464,
-0.0688316747546196,
-0.03940807282924652,
-0.010355430655181408,
-0.03128186613321304,
0.003978912252932787,
-0.018318016082048416,
-0.04534799978137016,
-0.024470234289765358,
-0.09816542267799377,
0.045324184000492096,
-0.07796227186918259,
-0.2526451647281647,
0.03991226106882095,
0.0719720870256424,
-0.10043412446975708,
-0.08761204034090042,
0.03832627832889557,
0.25168803334236145,
-0.17813557386398315,
-0.02891666442155838,
-0.042329560965299606,
-0.2687776982784271,
0.07910596579313278,
0.19992786645889282,
0.12609899044036865,
0.042850423604249954,
-0.11685147881507874,
0.011909171007573605,
0.08598776906728745,
0.08586350083351135,
0.08619685471057892,
-0.10565304011106491,
-0.11730874329805374,
-0.09185228496789932,
-0.004324407782405615,
0.09720291197299957,
-0.07463333010673523,
-0.056365229189395905,
-0.09803550690412521,
-0.02406853623688221,
-0.16550275683403015,
-0.09363923966884613,
-0.05034806206822395,
0.021000081673264503,
0.04982450604438782,
0.018214916810393333,
0.009593776427209377,
-0.09876242280006409,
-0.12037697434425354,
0.030441734939813614,
0.026579899713397026,
0.13965994119644165,
-0.031063703820109367,
-0.045727070420980453,
0.05321240797638893,
-0.04960155487060547,
0.15317142009735107,
0.14295528829097748,
-0.03721432760357857,
0.13383325934410095,
-0.2977268099784851,
0.012226998805999756,
0.16491787135601044,
-0.07166042178869247,
0.04046397656202316,
0.09703792631626129,
-0.01381804421544075,
-0.013666350394487381,
0.018021052703261375,
0.08961448073387146,
0.07386687397956848,
-0.0029814678709954023,
0.09848573803901672,
0.11802465468645096,
-0.15708540380001068,
-0.029255781322717667,
-0.05084789916872978,
0.046902235597372055,
0.01115141436457634,
0.17216047644615173,
-0.1025119200348854,
0.07933983206748962,
-0.050075139850378036,
0.016218822449445724,
0.001802405109629035,
-0.13876211643218994,
-0.226945698261261,
-0.08944597095251083,
0.014114996418356895,
-0.016059864312410355,
0.2541773021221161,
0.13442887365818024,
-0.060940951108932495,
0.02428823709487915,
0.11578798294067383,
-0.04905763640999794,
0.000993254012428224,
0.026014277711510658,
0.10935115069150925,
-0.08543282747268677,
-0.04844791814684868,
0.04328485578298569,
0.08883139491081238,
-0.0176082830876112,
0.11757094413042068,
0.12204329669475555,
0.20866437256336212,
0.10843584686517715,
0.023215830326080322,
0.07344374805688858,
0.03261684626340866,
-0.03681759908795357,
-0.07667427510023117,
0.12450334429740906,
-0.04848736897110939,
0.25583526492118835,
0.0953652635216713,
0.015454025007784367,
0.10578030347824097,
-0.06530733406543732,
-0.012778287753462791,
-0.1237545982003212,
-0.15717309713363647,
-0.07466918230056763,
-0.16164815425872803,
0.016655217856168747,
-0.09304457902908325,
-0.04626338556408882,
-0.0967220664024353,
0.08854790776968002,
-0.10164334625005722,
0.013596629723906517,
-0.1467413753271103,
-0.028326136991381645,
0.2512045204639435,
0.009982824325561523,
-0.10827083885669708,
-0.04842505604028702,
-0.0553988441824913,
-0.08384254574775696,
-0.0472969114780426,
-0.006331373937427998,
0.016941940411925316,
-0.12351175397634506,
-0.05252494290471077,
-0.13587388396263123,
-0.1249755471944809,
0.02534114569425583,
0.01476592943072319,
-0.014051061123609543,
0.0010092129232361913,
-0.0717749372124672,
0.03248630464076996,
0.015645980834960938,
0.11050000041723251,
0.0012287951540201902,
0.15248624980449677,
0.02117759920656681,
0.15870128571987152,
-0.09173518419265747,
0.08365117758512497,
-0.013096711598336697,
-0.019320620223879814,
-0.09058653563261032,
0.15868540108203888,
0.324076771736145,
-0.01371006015688181,
0.03596627339720726,
-0.05625798553228378,
0.07917173206806183,
-0.01588728465139866,
0.03747399151325226,
0.06582385301589966,
0.01200963370501995,
-0.12280385941267014,
0.08033966273069382,
-0.07823639363050461,
-0.03588087484240532,
0.03819514438509941,
-0.03382300212979317,
0.19470226764678955,
-0.015775231644511223,
-0.08198509365320206,
0.10887061059474945,
-0.20007272064685822,
0.0492401085793972,
0.21828067302703857,
-0.2040008008480072,
-0.06244971603155136,
-0.02342752180993557,
0.09133049845695496,
0.1844557821750641,
0.12217876315116882,
0.012652834877371788,
-0.0722731426358223,
0.0767480880022049,
0.020717794075608253,
-0.2688828408718109,
-0.033988531678915024,
0.1444350779056549,
-0.1126677542924881,
0.04518725350499153,
-0.08736372739076614,
0.020275123417377472,
0.10762923955917358,
0.013336356729269028,
0.029832808300852776,
0.020295171067118645,
0.022137777879834175,
-0.10638424754142761,
-0.061238113790750504,
0.14238566160202026,
0.002150389365851879,
0.0375298410654068,
0.0838843286037445,
-0.2607240676879883,
0.0766933411359787,
-0.044520843774080276,
-0.08308489620685577,
-0.07223983854055405,
0.21539823710918427,
-0.1208181381225586,
-0.0505230650305748,
0.17198608815670013,
0.017059708014130592,
-0.0930466428399086,
-0.0667232796549797,
-0.02398056723177433,
0.012681049294769764,
-0.1310758739709854,
0.037818800657987595,
-0.017741980031132698,
-0.043826814740896225,
0.17802025377750397,
-0.0012012686347588897,
-0.20555630326271057,
-0.0718945786356926,
-0.042096637189388275,
0.05735252425074577,
-0.13471418619155884,
0.017154760658740997,
-0.04500148817896843,
0.0673455223441124,
0.03333934023976326,
-0.3033891022205353,
0.10169482231140137,
0.14577259123325348,
-0.035542502999305725,
-0.025400467216968536
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | ojaffe/llama2-7b-tom-sandbagged | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:01:24+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
56,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06061961501836777,
0.15481999516487122,
-0.004844071343541145,
0.02074851468205452,
0.0983177199959755,
0.007407687604427338,
0.07119518518447876,
0.11185134947299957,
-0.023851769044995308,
0.1167980208992958,
0.031993988901376724,
0.09781743586063385,
0.11217817664146423,
0.16186554729938507,
0.0015333457849919796,
-0.22897611558437347,
0.049678247421979904,
-0.125278040766716,
-0.0294334813952446,
0.11977242678403854,
0.1422213912010193,
-0.10954539477825165,
0.0752737894654274,
-0.038042325526475906,
-0.005828251596540213,
-0.0323176346719265,
-0.06205610930919647,
-0.05266609415411949,
0.05311284959316254,
0.06794639676809311,
0.07308239489793777,
0.01171939354389906,
0.09106900542974472,
-0.2724283039569855,
0.02348201349377632,
0.0805930644273758,
-0.0006441773730330169,
0.07586129754781723,
0.04993962123990059,
-0.08749990910291672,
0.07524524629116058,
-0.060156844556331635,
0.1498761922121048,
0.07955671846866608,
-0.09018243104219437,
-0.19217631220817566,
-0.07921334356069565,
0.09916994720697403,
0.1890910118818283,
0.05953684076666832,
-0.026427440345287323,
0.11642678081989288,
-0.08593545109033585,
0.013638701289892197,
0.06446459144353867,
-0.06054406240582466,
-0.055855002254247665,
0.06904532760381699,
0.08335285633802414,
0.08567540347576141,
-0.12976622581481934,
-0.010767064057290554,
0.015032444149255753,
0.008952446281909943,
0.08948688954114914,
0.017146794125437737,
0.1335189938545227,
0.040557652711868286,
-0.13501930236816406,
-0.043155476450920105,
0.09761431813240051,
0.03665134683251381,
-0.04888195917010307,
-0.2485782504081726,
-0.023432478308677673,
-0.04339504987001419,
-0.03198111802339554,
-0.03649339824914932,
0.043764639645814896,
-0.014506848528981209,
0.07738617807626724,
-0.004502781666815281,
-0.0837155357003212,
-0.04301247000694275,
0.07241875678300858,
0.06128999963402748,
0.02571401372551918,
-0.015821760520339012,
0.0059297760017216206,
0.12327717989683151,
0.11431120336055756,
-0.126715749502182,
-0.052547648549079895,
-0.06306339055299759,
-0.08449548482894897,
-0.044861067086458206,
0.030838407576084137,
0.037995077669620514,
0.045936476439237595,
0.23867325484752655,
0.007765117567032576,
0.053257301449775696,
0.04455438256263733,
0.014407169073820114,
0.06501194834709167,
0.11008983850479126,
-0.05894824117422104,
-0.09719445556402206,
-0.028582042083144188,
0.10156717151403427,
0.007986726239323616,
-0.04139331728219986,
-0.05712985619902611,
0.07059531658887863,
0.018587570637464523,
0.12360043078660965,
0.08000938594341278,
0.003056557849049568,
-0.0755772516131401,
-0.062465377151966095,
0.17764076590538025,
-0.15825673937797546,
0.04532013460993767,
0.03055616281926632,
-0.0341108962893486,
-0.009745313785970211,
0.012105142697691917,
0.025474950671195984,
-0.021481726318597794,
0.09522198140621185,
-0.05601342022418976,
-0.034448131918907166,
-0.11389608681201935,
-0.03694311901926994,
0.030394554138183594,
0.011153047904372215,
-0.02865210548043251,
-0.03502652049064636,
-0.08865131437778473,
-0.06405586749315262,
0.09101516753435135,
-0.07148737460374832,
-0.04784895107150078,
-0.016645915806293488,
-0.07833752781152725,
0.021804187446832657,
0.01691517047584057,
0.09064167737960815,
-0.0222476739436388,
0.03985358029603958,
-0.0550384595990181,
0.061440225690603256,
0.11723454296588898,
0.027987057343125343,
-0.05787884071469307,
0.061519939452409744,
-0.2424532175064087,
0.10252492874860764,
-0.07715212553739548,
0.04971238598227501,
-0.15203025937080383,
-0.02478341944515705,
0.03986154496669769,
0.01284773275256157,
-0.008251311257481575,
0.14196595549583435,
-0.21994100511074066,
-0.030957341194152832,
0.16964265704154968,
-0.10025953501462936,
-0.08109250664710999,
0.060782887041568756,
-0.05354252830147743,
0.11210215091705322,
0.04557164013385773,
-0.02375967986881733,
0.05775221437215805,
-0.14725260436534882,
-0.011030761525034904,
-0.041942402720451355,
-0.0180682260543108,
0.16207332909107208,
0.0703711211681366,
-0.06047816202044487,
0.07456906884908676,
0.01960151270031929,
-0.014246034435927868,
-0.04887177795171738,
-0.02822130173444748,
-0.1047162413597107,
0.01184528972953558,
-0.06102835759520531,
0.018109694123268127,
-0.021768750622868538,
-0.09445013850927353,
-0.029118487611413002,
-0.17402999103069305,
-0.0031633328180760145,
0.08821269869804382,
-0.011630427092313766,
-0.021509924903512,
-0.11245372891426086,
0.009332616813480854,
0.030967719852924347,
0.0002618339203763753,
-0.13677829504013062,
-0.06033218279480934,
0.026970699429512024,
-0.16097871959209442,
0.029791243374347687,
-0.05741601809859276,
0.04530094936490059,
0.04005871340632439,
-0.03433511033654213,
-0.03489551320672035,
0.010874404571950436,
0.010431389324367046,
-0.01894843392074108,
-0.25422003865242004,
-0.01882786676287651,
-0.0234990194439888,
0.1751047968864441,
-0.22956320643424988,
0.042598169296979904,
0.07489731162786484,
0.1460893303155899,
0.007349682506173849,
-0.03550100699067116,
0.015185600146651268,
-0.07262228429317474,
-0.03268764168024063,
-0.06316669285297394,
-0.01207790058106184,
-0.038400664925575256,
-0.05820201337337494,
0.04906858503818512,
-0.1686294972896576,
-0.030321966856718063,
0.10717973858118057,
0.06342670321464539,
-0.1473218947649002,
-0.02780107781291008,
-0.04056945815682411,
-0.04624456167221069,
-0.06676914542913437,
-0.05461418256163597,
0.11812574416399002,
0.056411582976579666,
0.04860803112387657,
-0.07140495628118515,
-0.07455260306596756,
0.008036690764129162,
-0.01956399530172348,
-0.014917809516191483,
0.09334591031074524,
0.07554110884666443,
-0.12264352291822433,
0.09177418053150177,
0.09668384492397308,
0.08576478064060211,
0.10314212739467621,
-0.014663571491837502,
-0.08914592862129211,
-0.040637146681547165,
0.02245822176337242,
0.016187267377972603,
0.15129362046718597,
-0.012961224652826786,
0.055492039769887924,
0.0358695350587368,
-0.014034898020327091,
0.011105312965810299,
-0.09736533463001251,
0.02655916102230549,
0.030835967510938644,
-0.016302183270454407,
0.03745110332965851,
-0.0447014644742012,
0.019208140671253204,
0.09039704501628876,
0.040895868092775345,
0.040978945791721344,
0.010155045427381992,
-0.04354988783597946,
-0.11037563532590866,
0.1787576973438263,
-0.12389461696147919,
-0.24818050861358643,
-0.13812170922756195,
0.010281167924404144,
0.04737642779946327,
-0.010411068797111511,
0.006690691225230694,
-0.06616118550300598,
-0.1175973042845726,
-0.09878289699554443,
0.018617089837789536,
0.045352302491664886,
-0.07590975612401962,
-0.06842505931854248,
0.06414616107940674,
0.03875524550676346,
-0.13939815759658813,
0.024007495492696762,
0.04662325978279114,
-0.08205481618642807,
-0.0029386086389422417,
0.0791812464594841,
0.06965780258178711,
0.17661017179489136,
0.013885351829230785,
-0.023669935762882233,
0.026634456589818,
0.20819635689258575,
-0.1436755359172821,
0.10975687950849533,
0.13545554876327515,
-0.08767466992139816,
0.08120133727788925,
0.1998777538537979,
0.03777998685836792,
-0.10680917650461197,
0.03608465939760208,
0.028374753892421722,
-0.028325283899903297,
-0.2502254545688629,
-0.06958996504545212,
0.0019060121849179268,
-0.05172049254179001,
0.07064855098724365,
0.08791537582874298,
0.09593888372182846,
0.016860228031873703,
-0.09976044297218323,
-0.07697858661413193,
0.046900223940610886,
0.10824491083621979,
-0.00015424020239152014,
-0.015208319760859013,
0.0904119610786438,
-0.03033481352031231,
0.01743943803012371,
0.09215071052312851,
0.0030607767403125763,
0.17535938322544098,
0.051709048449993134,
0.17189906537532806,
0.07866133749485016,
0.06444311141967773,
0.02004685252904892,
0.007725914940237999,
0.021817529574036598,
0.017227526754140854,
-0.0030957073904573917,
-0.08709781616926193,
-0.0034981227945536375,
0.1202581599354744,
0.049845851957798004,
0.029173865914344788,
0.012042860500514507,
-0.030704669654369354,
0.08337877690792084,
0.1770893782377243,
0.0029054484330117702,
-0.1893385946750641,
-0.07169844210147858,
0.07795937359333038,
-0.08648337423801422,
-0.10729733109474182,
-0.029470939189195633,
0.041069481521844864,
-0.1729043871164322,
0.016882894560694695,
-0.019335895776748657,
0.10788324475288391,
-0.13190391659736633,
-0.01772487722337246,
0.05657728388905525,
0.06932812184095383,
-0.009677323512732983,
0.06694949418306351,
-0.16090403497219086,
0.11770165711641312,
0.01751571334898472,
0.06636732816696167,
-0.09608277678489685,
0.09618937969207764,
-0.007830657996237278,
0.0041499207727611065,
0.1410749852657318,
0.010120149701833725,
-0.05952107161283493,
-0.09608154743909836,
-0.10546442121267319,
-0.009841260500252247,
0.1306990385055542,
-0.14852415025234222,
0.08813067525625229,
-0.02661319263279438,
-0.044553373008966446,
0.003614129964262247,
-0.12497276812791824,
-0.13103094696998596,
-0.18366187810897827,
0.05707118660211563,
-0.12947207689285278,
0.04045100137591362,
-0.10902881622314453,
-0.045833900570869446,
-0.02098964899778366,
0.20040063560009003,
-0.23137451708316803,
-0.06714103370904922,
-0.1551055610179901,
-0.08061286807060242,
0.14446212351322174,
-0.046455029398202896,
0.08550118654966354,
0.0008278203313238919,
0.19068008661270142,
0.021319707855582237,
-0.017237508669495583,
0.1072206199169159,
-0.10052918642759323,
-0.2010865956544876,
-0.09273224323987961,
0.15895552933216095,
0.13766798377037048,
0.03809428587555885,
-0.004381525795906782,
0.03171157464385033,
-0.02098114788532257,
-0.12076930701732635,
0.020226983353495598,
0.17317426204681396,
0.08982043713331223,
0.025265544652938843,
-0.02972041629254818,
-0.11267432570457458,
-0.07061342149972916,
-0.03774050623178482,
0.024755435064435005,
0.18072067201137543,
-0.07222156971693039,
0.18405316770076752,
0.13775517046451569,
-0.05534014105796814,
-0.19904261827468872,
0.021996473893523216,
0.04293542355298996,
0.0070380112156271935,
0.0323902890086174,
-0.20307663083076477,
0.09384101629257202,
0.0008334947633557022,
-0.05131231248378754,
0.1379684954881668,
-0.1823476254940033,
-0.151598259806633,
0.06042521819472313,
0.043563615530729294,
-0.19374065101146698,
-0.12374074012041092,
-0.08848230540752411,
-0.04693066328763962,
-0.15487661957740784,
0.10312657803297043,
0.0020827590487897396,
0.008401188999414444,
0.03778626397252083,
0.02252252586185932,
0.012139533646404743,
-0.04198719933629036,
0.1914343535900116,
-0.025891713798046112,
0.03347287327051163,
-0.0790715217590332,
-0.060851071029901505,
0.062408581376075745,
-0.058187782764434814,
0.0755455270409584,
-0.025226406753063202,
0.015947066247463226,
-0.10598332434892654,
-0.048235729336738586,
-0.02852320298552513,
0.019321219995617867,
-0.09431382268667221,
-0.09348297864198685,
-0.04829427972435951,
0.09367614984512329,
0.09042316675186157,
-0.03652578964829445,
-0.03649144619703293,
-0.078715980052948,
0.038977332413196564,
0.17627815902233124,
0.18159319460391998,
0.04659178853034973,
-0.07959239184856415,
-0.001915142871439457,
-0.014336181804537773,
0.04684065282344818,
-0.22077152132987976,
0.060553863644599915,
0.04557652771472931,
0.016117896884679794,
0.11537692695856094,
-0.0208132341504097,
-0.16198977828025818,
-0.06710557639598846,
0.061360616236925125,
-0.06944561004638672,
-0.17825035750865936,
0.0039279889315366745,
0.07344977557659149,
-0.16578389704227448,
-0.037031736224889755,
0.04200848564505577,
-0.01189455483108759,
-0.0403641052544117,
0.012352054007351398,
0.08063354343175888,
0.007078902795910835,
0.07699975371360779,
0.055281639099121094,
0.09124495089054108,
-0.10227900743484497,
0.07410510629415512,
0.08149529248476028,
-0.08644098788499832,
0.030720343813300133,
0.09573426842689514,
-0.06469762325286865,
-0.0346054881811142,
0.04237886518239975,
0.08354541659355164,
0.024281201884150505,
-0.04682289808988571,
0.0023111123591661453,
-0.09734189510345459,
0.05927345156669617,
0.11483542621135712,
0.03496333956718445,
0.011234734207391739,
0.03813567012548447,
0.04486291855573654,
-0.08093374222517014,
0.11926916986703873,
0.023795632645487785,
0.020354853942990303,
-0.04112942889332771,
-0.040553025901317596,
0.035851649940013885,
-0.026020776480436325,
-0.011440055444836617,
-0.035174157470464706,
-0.0722682997584343,
-0.014069457538425922,
-0.16000694036483765,
-0.0076758842915296555,
-0.03660871088504791,
0.005114538595080376,
0.022510098293423653,
-0.03652830421924591,
0.00792311318218708,
0.012217256240546703,
-0.06868947297334671,
-0.05553458258509636,
-0.023233558982610703,
0.09422210603952408,
-0.16494666039943695,
0.0220257006585598,
0.0823851153254509,
-0.12121747434139252,
0.09289738535881042,
0.016782134771347046,
0.00412249518558383,
0.026962365955114365,
-0.1545863002538681,
0.04763968288898468,
-0.020152103155851364,
0.013473534025251865,
0.04222847521305084,
-0.21637047827243805,
-0.004404853098094463,
-0.04015503451228142,
-0.05566934496164322,
-0.008993052877485752,
-0.0319182425737381,
-0.11338426172733307,
0.09645436704158783,
0.011025024577975273,
-0.08443772792816162,
-0.02965564839541912,
0.03353232145309448,
0.07690354436635971,
-0.027447547763586044,
0.1498211771249771,
-0.004663881380110979,
0.07559948414564133,
-0.17581342160701752,
-0.02282017655670643,
-0.011197620071470737,
0.022367527708411217,
-0.021871577948331833,
-0.01622559316456318,
0.04623444378376007,
-0.02704801969230175,
0.19120801985263824,
-0.024701936170458794,
0.049393873661756516,
0.06364397704601288,
0.009232889860868454,
-0.013832193799316883,
0.11151392012834549,
0.05708572641015053,
0.024334950372576714,
0.022262847051024437,
0.003451440716162324,
-0.04008655622601509,
-0.009981024079024792,
-0.18596695363521576,
0.06803664565086365,
0.14585918188095093,
0.09060460329055786,
-0.012669353745877743,
0.0707244873046875,
-0.10161512345075607,
-0.12005364894866943,
0.10127941519021988,
-0.06415384262800217,
-0.010188822634518147,
-0.06542414426803589,
0.14027701318264008,
0.14953285455703735,
-0.1886233240365982,
0.06583356112241745,
-0.06602055579423904,
-0.0566304549574852,
-0.11457879096269608,
-0.1930263340473175,
-0.057075321674346924,
-0.050602465867996216,
-0.018466074019670486,
-0.05384097993373871,
0.06939727067947388,
0.05750798434019089,
0.01126816775649786,
0.00868057832121849,
0.08568526059389114,
-0.009656033478677273,
0.00248199631460011,
0.030120067298412323,
0.06713981181383133,
0.016768986359238625,
-0.0321255661547184,
0.0179112758487463,
-0.00597198773175478,
0.034156378358602524,
0.059282708913087845,
0.03608176112174988,
-0.028436895459890366,
0.015559280291199684,
-0.034912437200546265,
-0.11309733241796494,
0.042801856994628906,
-0.029640642926096916,
-0.0749855786561966,
0.1347348988056183,
0.026981467381119728,
0.005015076603740454,
-0.023140020668506622,
0.2503887414932251,
-0.07436972856521606,
-0.09334370493888855,
-0.14373961091041565,
0.11701542884111404,
-0.04212593287229538,
0.0635172426700592,
0.03596310690045357,
-0.10810714215040207,
0.017985546961426735,
0.1320217251777649,
0.15442703664302826,
-0.04732590913772583,
0.019251897931098938,
0.028577854856848717,
0.00439635943621397,
-0.04075566306710243,
0.05177190154790878,
0.07100846618413925,
0.14500564336776733,
-0.05157303810119629,
0.08530787378549576,
0.002609728369861841,
-0.1021018698811531,
-0.041973695158958435,
0.11415864527225494,
-0.014296893030405045,
0.017620453611016273,
-0.057136841118335724,
0.124222531914711,
-0.05874236673116684,
-0.23697422444820404,
0.06316976249217987,
-0.0765061303973198,
-0.1432730257511139,
-0.024886758998036385,
0.071670763194561,
-0.016632623970508575,
0.02605951391160488,
0.07167234271764755,
-0.0754380151629448,
0.18880942463874817,
0.03957989811897278,
-0.05233397334814072,
-0.05954399332404137,
0.0744764655828476,
-0.11850855499505997,
0.27879106998443604,
0.010482731275260448,
0.051307905465364456,
0.1042102724313736,
-0.02021743729710579,
-0.13270841538906097,
0.023401619866490364,
0.09579801559448242,
-0.08917027711868286,
0.04087764397263527,
0.21448291838169098,
-0.00629545608535409,
0.11935057491064072,
0.07611140608787537,
-0.07468950748443604,
0.047562725841999054,
-0.11468592286109924,
-0.07639975845813751,
-0.08699081838130951,
0.09244474768638611,
-0.06785612553358078,
0.14258281886577606,
0.12599852681159973,
-0.05530165135860443,
0.011584274470806122,
-0.028389399871230125,
0.045467376708984375,
0.005578654818236828,
0.100032277405262,
0.011115525849163532,
-0.18496567010879517,
0.024811718612909317,
0.016259413212537766,
0.10884406417608261,
-0.18112654983997345,
-0.09105053544044495,
0.046958595514297485,
0.0005061255069449544,
-0.06443515419960022,
0.12483241409063339,
0.057313691824674606,
0.04654949903488159,
-0.0451689288020134,
-0.026830285787582397,
-0.006042256020009518,
0.14264579117298126,
-0.10707559436559677,
-0.005129707511514425
] |
null | null | diffusers | ### MyTeddyBearXZG Dreambooth model trained by Hsree following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 21KT1A4735
Sample pictures of this concept:
| {"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]} | text-to-image | Hsree/myteddybearxzg | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-13T17:01:28+00:00 | [] | [] | TAGS
#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### MyTeddyBearXZG Dreambooth model trained by Hsree following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 21KT1A4735
Sample pictures of this concept:
| [
"### MyTeddyBearXZG Dreambooth model trained by Hsree following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21KT1A4735\n\nSample pictures of this concept:"
] | [
"TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### MyTeddyBearXZG Dreambooth model trained by Hsree following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21KT1A4735\n\nSample pictures of this concept:"
] | [
73,
56
] | [
"passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### MyTeddyBearXZG Dreambooth model trained by Hsree following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21KT1A4735\n\nSample pictures of this concept:"
] | [
-0.11730941385030746,
0.09935428202152252,
-0.001159099512733519,
0.011929844506084919,
0.05234084278345108,
-0.02403709851205349,
0.20658166706562042,
-0.0016373117687180638,
0.052130844444036484,
0.029726428911089897,
0.1363966017961502,
0.03465155139565468,
0.016532177105545998,
0.1622939258813858,
-0.04866795986890793,
-0.10729341953992844,
0.027954917401075363,
0.0820465162396431,
-0.016228795051574707,
0.05533372610807419,
0.0663890689611435,
-0.06630317121744156,
0.13714653253555298,
-0.02673383057117462,
-0.15243414044380188,
-0.005163863301277161,
-0.027806203812360764,
-0.040411919355392456,
0.07060983777046204,
0.06477034837007523,
0.038184795528650284,
0.11054516583681107,
0.038439810276031494,
-0.041315171867609024,
0.04371359571814537,
0.004983089864253998,
-0.0601351372897625,
0.05766568332910538,
0.018402710556983948,
0.06178159639239311,
0.127168208360672,
0.05180876702070236,
-0.06811133772134781,
0.04048260301351547,
-0.08281531184911728,
0.014052435755729675,
0.013437229208648205,
0.12439003586769104,
0.12070140987634659,
0.08226695656776428,
0.010724019259214401,
0.11406075209379196,
0.04834302142262459,
0.1148606613278389,
0.13577476143836975,
-0.2655111849308014,
-0.09780990332365036,
0.19904403388500214,
0.0821678563952446,
0.01822156272828579,
-0.05791141465306282,
0.1226368099451065,
0.09935662150382996,
0.0015847301110625267,
0.058675020933151245,
-0.07968496531248093,
0.031049875542521477,
-0.07741973549127579,
-0.08289909362792969,
0.03185264393687248,
0.25785794854164124,
0.07289066910743713,
-0.025351446121931076,
-0.07894925773143768,
-0.09741456061601639,
0.029255054891109467,
-0.045362941920757294,
-0.038260433822870255,
-0.04777729883790016,
0.020088588818907738,
-0.02443837933242321,
-0.05459466204047203,
-0.13325989246368408,
-0.03880687803030014,
-0.018312036991119385,
0.13938486576080322,
-0.0136793851852417,
0.05879473686218262,
-0.13850383460521698,
0.09004875272512436,
0.0339885950088501,
-0.1362832486629486,
0.01054009422659874,
-0.0871696025133133,
0.04839378222823143,
0.0546126589179039,
0.054949745535850525,
-0.08827780932188034,
0.07438253611326218,
0.010963402688503265,
0.007943764328956604,
-0.014916736632585526,
0.049267131835222244,
0.08580023795366287,
0.02741134911775589,
-0.06799474358558655,
-0.08539138734340668,
-0.1008334532380104,
0.030359996482729912,
-0.06671471148729324,
0.015833426266908646,
-0.0340125598013401,
-0.08551499992609024,
0.0009572824346832931,
-0.05263989046216011,
0.03333336114883423,
0.022909551858901978,
0.04352450370788574,
-0.010315495543181896,
-0.03982497379183769,
0.23554545640945435,
0.05514579638838768,
-0.03168054297566414,
-0.03412788733839989,
0.013043591752648354,
0.055461689829826355,
0.07674078643321991,
-0.018619224429130554,
-0.008388932794332504,
0.016022469848394394,
-0.10356214642524719,
-0.04943336918950081,
-0.007547993212938309,
-0.003760221414268017,
0.010097489692270756,
-0.11593317985534668,
0.0560457706451416,
-0.1693246066570282,
-0.10889992117881775,
0.028146589174866676,
0.06796452403068542,
-0.022031042724847794,
-0.035578642040491104,
-0.04724781587719917,
-0.09243912249803543,
0.01322547160089016,
-0.028990687802433968,
-0.01844988577067852,
-0.01365941297262907,
0.018599629402160645,
-0.018613135442137718,
0.06819839775562286,
-0.22271579504013062,
-0.008203697390854359,
-0.056833960115909576,
0.033186476677656174,
-0.006352442316710949,
-0.009534403681755066,
-0.0416908860206604,
0.07281894981861115,
-0.010367879644036293,
-0.007716260384768248,
-0.016804561018943787,
0.012363485991954803,
0.005862934049218893,
0.16572436690330505,
-0.08644047379493713,
-0.0037571603897958994,
0.1542060375213623,
-0.12605907022953033,
-0.18699930608272552,
0.07506006956100464,
0.034581996500492096,
0.09600862860679626,
0.05476776510477066,
0.11124858260154724,
0.06307920813560486,
-0.23036697506904602,
-0.028610549867153168,
0.03739044815301895,
-0.1196073666214943,
-0.16852492094039917,
-0.010146944783627987,
0.14776059985160828,
-0.02202494628727436,
0.018486537039279938,
-0.08006493747234344,
0.1048867478966713,
-0.08537664264440536,
-0.022397678345441818,
-0.03727462515234947,
-0.10830855369567871,
-0.04710826650261879,
0.0001916474720928818,
0.04417818784713745,
-0.019828448072075844,
0.012166440486907959,
-0.1197662353515625,
0.04682159796357155,
-0.03509489819407463,
-0.01336610596626997,
-0.11962984502315521,
0.028377298265695572,
-0.05752279609441757,
-0.00412851432338357,
-0.004555719904601574,
-0.0859399139881134,
0.026473840698599815,
0.09773952513933182,
0.004567274823784828,
0.17252083122730255,
0.06567800045013428,
0.07305218279361725,
-0.04738369584083557,
-0.08057792484760284,
0.1041838675737381,
0.016603581607341766,
-0.033725641667842865,
-0.17489226162433624,
0.0669715628027916,
-0.052832603454589844,
-0.022195464000105858,
-0.1664445400238037,
0.023944368585944176,
0.03744269534945488,
0.14412921667099,
0.059761784970760345,
-0.004157589748501778,
0.03386855870485306,
-0.0166478231549263,
-0.05475400760769844,
-0.013356725685298443,
0.04520363733172417,
0.03247673809528351,
-0.09111228585243225,
0.1936512291431427,
-0.11772165447473526,
0.1944340169429779,
0.08045941591262817,
-0.02253473922610283,
-0.030050434172153473,
0.017843399196863174,
-0.0609101802110672,
-0.00720412191003561,
0.013744424097239971,
0.008458386175334454,
0.01427086815237999,
-0.036185286939144135,
0.11072330921888351,
-0.053052905946969986,
-0.03244485706090927,
0.06679298728704453,
-0.03725221008062363,
-0.04098778963088989,
0.07108716666698456,
0.025539305061101913,
-0.1921626776456833,
0.1202675923705101,
0.10426495969295502,
0.03383772447705269,
0.18415327370166779,
0.026081031188368797,
0.0015004531014710665,
-0.06606287509202957,
0.07460729777812958,
0.00522185955196619,
0.23179902136325836,
-0.09215740859508514,
0.015356877818703651,
0.008539156056940556,
-0.003345778677612543,
0.04624823108315468,
-0.07834606617689133,
-0.0722513496875763,
-0.02793310023844242,
-0.016910921782255173,
0.13489879667758942,
0.10068699717521667,
-0.13429675996303558,
0.08673796057701111,
-0.0813072994351387,
-0.0906442180275917,
0.037351708859205246,
-0.01795775815844536,
-0.05882995203137398,
0.08774813264608383,
-0.034773554652929306,
-0.2203477919101715,
-0.13153637945652008,
-0.062292229384183884,
-0.07618140429258347,
-0.020846141502261162,
0.056956324726343155,
-0.04720500111579895,
-0.040599871426820755,
-0.07434108853340149,
-0.05139656364917755,
-0.02117462083697319,
0.003842133330181241,
0.06808489561080933,
0.018060537055134773,
-0.021060705184936523,
-0.0729270949959755,
0.013444043695926666,
-0.03647198528051376,
0.030287304893136024,
0.13412030041217804,
-0.003348288359120488,
0.15120193362236023,
0.0813046246767044,
0.024290259927511215,
-0.009597566910088062,
0.013063228689134121,
0.23708873987197876,
-0.057120416313409805,
0.13635729253292084,
0.13354046642780304,
0.049866676330566406,
0.0509311743080616,
0.13942065834999084,
0.05084891989827156,
-0.1007395014166832,
0.03895993158221245,
-0.06674911826848984,
-0.08499474078416824,
-0.11961354315280914,
-0.0940084382891655,
-0.0586807020008564,
0.10721492767333984,
-0.0007704999297857285,
0.07781369239091873,
0.10086636245250702,
0.1550680547952652,
-0.004283997230231762,
0.008706366643309593,
-0.03433527424931526,
0.09660303592681885,
-0.02616186812520027,
-0.029303794726729393,
0.016874222084879875,
-0.07877247780561447,
-0.0448727011680603,
0.10732738673686981,
0.036828454583883286,
0.12286844104528427,
0.021310079842805862,
0.04629658907651901,
0.09203032404184341,
0.11283759027719498,
0.12599986791610718,
0.10571372509002686,
-0.02199293114244938,
-0.0759599581360817,
-0.010913904756307602,
-0.07469622045755386,
0.08704032748937607,
0.05522332713007927,
-0.09833018481731415,
-0.042857576161623,
0.07154792547225952,
0.05402093753218651,
-0.032929353415966034,
0.09764184802770615,
0.11691294610500336,
-0.22924117743968964,
-0.003069091122597456,
0.017928846180438995,
0.042063891887664795,
-0.08851048350334167,
0.019816843792796135,
0.26204606890678406,
-0.03228431195020676,
0.08038998395204544,
-0.02977045625448227,
0.08003659546375275,
0.04721525311470032,
-0.010170229710638523,
-0.08123185485601425,
-0.0016125448746606708,
-0.00782755110412836,
0.038357172161340714,
-0.2073691189289093,
0.18667204678058624,
-0.009455537423491478,
0.07299689948558807,
-0.020150354132056236,
-0.052265267819166183,
-0.02622186206281185,
0.16840539872646332,
0.1922890841960907,
0.030266009271144867,
0.00807970855385065,
-0.0013149692676961422,
-0.10108883678913116,
0.03797141835093498,
0.042117100208997726,
0.02858145721256733,
0.016666678711771965,
0.0851898267865181,
-0.04612775519490242,
-0.00026184096350334585,
-0.01894955337047577,
-0.19998587667942047,
-0.09733197838068008,
-0.004382845479995012,
0.23827645182609558,
0.08252201229333878,
-0.028987616300582886,
0.03376290947198868,
-0.043137259781360626,
0.08597245067358017,
-0.16361010074615479,
-0.06766028702259064,
-0.08372079581022263,
-0.10759460926055908,
-0.007349513471126556,
-0.05636627972126007,
0.0022954184096306562,
-0.05629479140043259,
0.07102245092391968,
-0.053922928869724274,
-0.12646634876728058,
0.03867407515645027,
-0.15877790749073029,
-0.10050509870052338,
-0.10067444294691086,
0.05657735839486122,
0.0610181987285614,
-0.024823298677802086,
0.017050806432962418,
-0.054911211133003235,
-0.041106440126895905,
-0.11519332975149155,
0.026809001341462135,
0.04503577575087547,
-0.05527622252702713,
-0.04241681098937988,
-0.05301225185394287,
-0.05612291023135185,
-0.006760892458260059,
-0.058290623128414154,
0.04362829402089119,
0.27556145191192627,
-0.05654425546526909,
0.06193675845861435,
0.2409256398677826,
-0.05214504897594452,
-0.2386467605829239,
-0.11899510771036148,
-0.06611704081296921,
-0.023784521967172623,
-0.011534246616065502,
-0.10408499091863632,
0.1640852987766266,
0.00898808240890503,
-0.05191400274634361,
0.21200290322303772,
-0.22365643084049225,
-0.06400152295827866,
0.033698972314596176,
0.13635356724262238,
0.31901222467422485,
-0.13242173194885254,
-0.03794799745082855,
-0.021665001288056374,
-0.1912306249141693,
0.1745055764913559,
-0.021801244467496872,
0.05532227084040642,
-0.07064507901668549,
0.008054959587752819,
-0.03902187943458557,
-0.03783516585826874,
0.08688009530305862,
-0.026250498369336128,
0.09370657801628113,
-0.07396732270717621,
0.0806507021188736,
0.21724148094654083,
-0.025117695331573486,
0.07333048433065414,
-0.1240079328417778,
0.03493943065404892,
-0.08893836289644241,
-0.004186111502349377,
-0.057218585163354874,
0.035989973694086075,
-0.05446916073560715,
-0.1103377565741539,
-0.05291137844324112,
0.006059201899915934,
-0.010868541896343231,
0.025093723088502884,
-0.0005462862900458276,
0.013376411981880665,
0.006633158773183823,
0.15724466741085052,
0.06720968335866928,
-0.11979802697896957,
-0.002747002523392439,
-0.07544012367725372,
-0.052423711866140366,
0.11786337196826935,
-0.03065909817814827,
-0.02431507408618927,
0.09987373650074005,
0.007518867962062359,
0.047757599502801895,
0.02327342890202999,
-0.027871277183294296,
0.05179522559046745,
0.10612805187702179,
-0.17493097484111786,
-0.15414032340049744,
-0.05402514338493347,
0.15045064687728882,
0.10132349282503128,
0.1370953470468521,
0.14234478771686554,
-0.09656268358230591,
0.035632215440273285,
-0.04781876504421234,
0.005282901227474213,
-0.03626075014472008,
0.03611629456281662,
0.000568825751543045,
0.0382935032248497,
-0.07926134765148163,
0.04291262477636337,
-0.0356823094189167,
-0.0661998987197876,
-0.020711923018097878,
0.07964163273572922,
-0.12145926058292389,
-0.08658085018396378,
0.00940797571092844,
0.18690216541290283,
-0.14652390778064728,
-0.07855172455310822,
-0.03597268834710121,
-0.07281773537397385,
0.018920889124274254,
0.10523766279220581,
0.01226580049842596,
0.025604093447327614,
0.044774558395147324,
-0.01758338138461113,
-0.06709320098161697,
0.026039738208055496,
-0.009197643026709557,
0.11679740995168686,
-0.23856298625469208,
-0.08949289470911026,
0.0017545644659548998,
0.03969987481832504,
-0.0932011678814888,
-0.021785918623209,
-0.0840773731470108,
0.011539220809936523,
-0.042083121836185455,
0.06860526651144028,
-0.12510177493095398,
-0.06265681236982346,
-0.04429466277360916,
-0.02236509695649147,
-0.0513116754591465,
0.035215772688388824,
-0.032470207661390305,
0.06415523588657379,
0.03931707888841629,
0.003049538005143404,
-0.036395274102687836,
-0.015737267211079597,
-0.023032940924167633,
-0.04144926741719246,
0.09253725409507751,
-0.026022400707006454,
-0.12073101103305817,
-0.014459914527833462,
-0.2316460907459259,
0.00007546642882516608,
0.09193339198827744,
0.003995733335614204,
0.014047469943761826,
0.08663468062877655,
-0.02050865814089775,
0.0370425321161747,
0.06695307046175003,
-0.021831201389431953,
0.017724234610795975,
-0.08751422166824341,
-0.014792307280004025,
-0.05414929613471031,
-0.008946463465690613,
-0.0846453383564949,
-0.008580426685512066,
0.10255484282970428,
0.02300676889717579,
0.13155806064605713,
-0.09050653874874115,
0.022796835750341415,
-0.06329312920570374,
0.025799615308642387,
0.1071227639913559,
-0.06825298815965652,
0.015245288610458374,
-0.03801282122731209,
-0.01751834899187088,
-0.01260676421225071,
0.11700994521379471,
-0.08592106401920319,
-0.2767080068588257,
-0.00806727446615696,
-0.1507544219493866,
-0.08503298461437225,
-0.02478010766208172,
0.2644129693508148,
0.003143630689010024,
-0.0037326456513255835,
-0.15475156903266907,
0.06961756944656372,
0.059224989265203476,
0.07920520007610321,
0.01698131300508976,
0.06670236587524414,
-0.02311629429459572,
0.08990775793790817,
0.03787299245595932,
0.00040645862463861704,
-0.07688820362091064,
-0.0051923333667218685,
-0.17148646712303162,
0.12467438727617264,
-0.023651715368032455,
0.036210428923368454,
0.1726035326719284,
-0.005251158960163593,
-0.02831038273870945,
0.0730365663766861,
-0.02145412750542164,
-0.039307110011577606,
-0.21324877440929413,
-0.07010029256343842,
-0.12353452295064926,
0.024480124935507774,
-0.07187926024198532,
-0.016818411648273468,
-0.03316464275121689,
0.07098072022199631,
-0.06030368059873581,
0.08794733136892319,
0.07859884947538376,
-0.018304331228137016,
0.10441760718822479,
0.008853637613356113,
-0.033152587711811066,
0.03159768506884575,
0.06387387216091156,
-0.011658048257231712,
0.007260303478688002,
-0.01987496204674244,
0.07408776879310608,
-0.016451764851808548,
0.049442488700151443,
0.0427863635122776,
-0.06310513615608215,
-0.03581560030579567,
0.007921258918941021,
-0.006267915945500135,
0.09337595850229263,
0.016225339844822884,
-0.009531392715871334,
0.01555937435477972,
0.09992416203022003,
-0.02100883424282074,
-0.05802815407514572,
-0.06196004897356033,
0.08728405833244324,
-0.11195332556962967,
0.06417957693338394,
-0.04465418681502342,
0.002466703299432993,
-0.034203365445137024,
0.23183973133563995,
0.15621626377105713,
-0.06446836143732071,
0.019653702154755592,
-0.06601332128047943,
0.011643782258033752,
-0.07447108626365662,
0.10469605028629303,
0.017098916694521904,
0.2835584580898285,
-0.058531273156404495,
-0.035466380417346954,
-0.09339108318090439,
-0.03671610355377197,
-0.06305382400751114,
-0.08620374649763107,
-0.005608290899544954,
-0.05163775384426117,
-0.09927303344011307,
0.061999399214982986,
-0.20304909348487854,
-0.02987559512257576,
0.09574881941080093,
-0.017429014667868614,
0.0035014147870242596,
-0.037218932062387466,
0.08123598247766495,
0.03262536972761154,
0.04454132542014122,
-0.08433959633111954,
0.03787514194846153,
0.07451415807008743,
-0.011339297518134117,
-0.0946214571595192,
0.07502041757106781,
-0.004293952137231827,
-0.1937362402677536,
0.15298651158809662,
-0.014646206982433796,
0.03531461954116821,
0.06861086189746857,
-0.06920012086629868,
-0.1375138908624649,
0.09970742464065552,
-0.02832688018679619,
-0.07077130675315857,
-0.02365759015083313,
0.10488935559988022,
0.01984216272830963,
0.03145575523376465,
-0.007507939822971821,
-0.11219243705272675,
-0.04676790162920952,
0.14289464056491852,
0.026924610137939453,
-0.09345012903213501,
0.06400710344314575,
-0.020258575677871704,
0.10830826312303543,
-0.02974521741271019,
-0.03712569549679756,
-0.03995908424258232,
-0.025170275941491127,
0.043720755726099014,
0.031940191984176636,
-0.04740910232067108,
0.05569332093000412,
-0.14222489297389984,
-0.023708857595920563,
0.06569192558526993,
0.061885982751846313,
-0.1887442022562027,
0.020350022241473198,
-0.189504936337471,
-0.0014078381936997175,
-0.03703567758202553,
0.012491768226027489,
0.2186407744884491,
0.03243096172809601,
0.012299032881855965,
-0.05650095269083977,
-0.01605077274143696,
0.032870419323444366,
-0.020131291821599007,
-0.12692773342132568
] |
null | null | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "237.88 +/- 23.54", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | hdeavila/ppo-LunarLander-v2 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-13T17:02:16+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
39,
41,
17
] | [
"passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.03942384943366051,
0.04900386184453964,
-0.005304091144353151,
0.026427261531352997,
0.107408307492733,
-0.026511888951063156,
0.11188238859176636,
0.0814051404595375,
0.10722193866968155,
0.04762078449130058,
0.08338645845651627,
0.06030960753560066,
0.05080918222665787,
0.2571701407432556,
0.04754156619310379,
-0.22987541556358337,
0.036159250885248184,
-0.04869936779141426,
0.12395193427801132,
0.07178173214197159,
-0.0038484656251966953,
-0.06485428661108017,
0.020415637642145157,
-0.013290755450725555,
0.05367108806967735,
0.04282612353563309,
-0.01716216839849949,
-0.08207534998655319,
0.07169748842716217,
-0.06345846503973007,
0.06986866891384125,
0.07677983492612839,
0.13218913972377777,
-0.17832116782665253,
0.029566360637545586,
0.02571309357881546,
-0.07189024239778519,
0.01342033501714468,
0.008019951172173023,
0.05120139941573143,
0.17303818464279175,
0.019879888743162155,
0.07844575494527817,
-0.0025605305563658476,
-0.15412317216396332,
-0.018950799480080605,
0.0436202734708786,
0.12546207010746002,
0.08808347582817078,
0.04605821147561073,
0.01970590092241764,
0.17503218352794647,
-0.054352790117263794,
-0.028833400458097458,
0.21759237349033356,
-0.2881564497947693,
-0.031460098922252655,
0.321048766374588,
0.06997483223676682,
0.09725230932235718,
-0.07540661096572876,
-0.03619609400629997,
0.007783263456076384,
-0.013137873262166977,
-0.028666524216532707,
-0.07447073608636856,
0.17313385009765625,
0.05152064561843872,
-0.05057951435446739,
-0.09541505575180054,
0.16948209702968597,
0.006921638268977404,
0.0018855923553928733,
-0.019282981753349304,
0.009060598909854889,
0.07402525842189789,
-0.016097044572234154,
-0.07255112379789352,
0.057438433170318604,
0.05330665782094002,
0.019649166613817215,
-0.1435653269290924,
-0.10762494057416916,
-0.022740179672837257,
-0.008012006990611553,
0.17786912620067596,
-0.009255532175302505,
0.042902372777462006,
0.003065188182517886,
0.10384012013673782,
-0.12480384111404419,
-0.03354184702038765,
-0.0454259067773819,
-0.07565800100564957,
-0.0223417766392231,
-0.02058211714029312,
-0.03580251708626747,
0.07184842973947525,
0.11971849203109741,
0.027368178591132164,
0.09350208193063736,
0.047715865075588226,
-0.03206788748502731,
0.06343851238489151,
0.05555703118443489,
0.14222665131092072,
0.05807621404528618,
0.012854371219873428,
0.13179877400398254,
0.055213116109371185,
0.033023182302713394,
-0.0613492950797081,
-0.18252409994602203,
0.07489913702011108,
-0.07031869143247604,
0.007941240444779396,
0.12051256000995636,
-0.04480670019984245,
-0.1183447614312172,
-0.037500523030757904,
-0.017392054200172424,
-0.06224250793457031,
-0.025395862758159637,
0.0547584593296051,
-0.02883218228816986,
-0.03973718360066414,
0.0011496668448671699,
0.09384800493717194,
0.00953749567270279,
-0.1752052903175354,
0.03303423151373863,
-0.025042934343218803,
-0.10782608389854431,
0.009975161403417587,
0.0022444494534283876,
0.03394931182265282,
0.04408763721585274,
-0.11822668462991714,
-0.30899152159690857,
-0.07652641832828522,
0.05490870401263237,
-0.06516939401626587,
-0.18425025045871735,
-0.13193942606449127,
0.02454492449760437,
-0.09037084132432938,
-0.044885024428367615,
-0.12759265303611755,
-0.028549788519740105,
0.01743689924478531,
0.011519349180161953,
0.10758619755506516,
-0.0106219332665205,
-0.012188062071800232,
-0.1571401208639145,
0.008273907005786896,
-0.20951123535633087,
0.0890483483672142,
-0.019150104373693466,
0.037884220480918884,
-0.032381169497966766,
-0.07404014468193054,
0.030707746744155884,
0.052499737590551376,
-0.01474119070917368,
0.13510210812091827,
-0.15592676401138306,
-0.03691192343831062,
-0.007996266707777977,
-0.13611900806427002,
-0.04786273464560509,
-0.10358831286430359,
-0.04357128217816353,
0.13354332745075226,
0.018664736300706863,
0.15356586873531342,
-0.08709818124771118,
-0.0722038671374321,
0.20489206910133362,
-0.010411538183689117,
-0.12820468842983246,
-0.076752208173275,
0.10165707021951675,
0.021510310471057892,
-0.056606587022542953,
-0.02523270808160305,
-0.1839766949415207,
-0.0152357779443264,
-0.04550420492887497,
-0.047039128839969635,
0.01796751655638218,
-0.010888241231441498,
0.13837894797325134,
0.08494598418474197,
0.05018039792776108,
-0.06086122244596481,
-0.006730288732796907,
0.10779471695423126,
0.08823856711387634,
0.008680110797286034,
0.023406028747558594,
-0.05774238705635071,
0.09552932530641556,
-0.04003755748271942,
-0.0142367510125041,
-0.08283266425132751,
-0.036246106028556824,
-0.026256313547492027,
0.17507147789001465,
0.09440762549638748,
0.2257927656173706,
0.09567736834287643,
0.039160262793302536,
0.031270865350961685,
-0.13181598484516144,
-0.1425403207540512,
-0.0017254541162401438,
0.09020978957414627,
-0.14270411431789398,
-0.04119925573468208,
-0.08974775671958923,
-0.17768175899982452,
-0.12202505767345428,
0.0006432619411498308,
-0.17960017919540405,
0.06390921026468277,
0.05408334732055664,
-0.035177867859601974,
0.03272094577550888,
0.13032332062721252,
-0.011533179320394993,
-0.03967514634132385,
0.0831870287656784,
0.0379033200442791,
-0.041234664618968964,
-0.021742934361100197,
0.11885567009449005,
0.15673065185546875,
0.13124459981918335,
-0.03511447086930275,
0.004914294462651014,
0.07076404243707657,
-0.02309088408946991,
0.06539414077997208,
0.0558244064450264,
0.20973342657089233,
0.188301220536232,
0.038996949791908264,
0.008822928182780743,
-0.07048165798187256,
0.0855446457862854,
-0.0742373839020729,
-0.14302679896354675,
-0.05579735338687897,
0.08729292452335358,
0.016605578362941742,
0.023469142615795135,
0.08711627870798111,
0.024545932188630104,
0.09132762253284454,
0.15968108177185059,
0.01990218088030815,
-0.09659269452095032,
-0.050218869000673294,
0.01175848301500082,
0.027713103219866753,
0.04794301092624664,
-0.04514073207974434,
-0.00937939714640379,
0.017020760104060173,
-0.10303554683923721,
0.031789086759090424,
-0.1413339376449585,
-0.1358717679977417,
0.044326696544885635,
0.003906996920704842,
0.010907664895057678,
0.02786896750330925,
-0.0038291432429105043,
0.019039705395698547,
0.04351753741502762,
-0.06975466758012772,
0.047416772693395615,
-0.024745507165789604,
-0.020031947642564774,
0.03340689837932587,
-0.057257164269685745,
-0.205775648355484,
-0.17696654796600342,
0.00013708483311347663,
-0.09910997003316879,
0.10194740444421768,
0.018308809027075768,
-0.12373185902833939,
0.047737859189510345,
-0.05822649225592613,
0.027574289590120316,
-0.01875593699514866,
-0.049130141735076904,
0.10507171601057053,
0.1525275856256485,
-0.016146350651979446,
0.018018173053860664,
-0.04865182936191559,
-0.10157987475395203,
-0.19632206857204437,
0.0691583976149559,
0.04680244252085686,
0.014610917307436466,
0.10669491440057755,
0.018072687089443207,
0.02367905154824257,
-0.007674071006476879,
-0.016521066427230835,
-0.011659215204417706,
-0.08781040459871292,
0.31909599900245667,
0.04510033503174782,
-0.025173069909214973,
0.02041010931134224,
-0.0043001663871109486,
-0.028083480894565582,
0.03263787180185318,
-0.0985708013176918,
-0.07548979669809341,
-0.08774089068174362,
-0.04367410019040108,
-0.09784720093011856,
0.053299110382795334,
0.05916472524404526,
0.003188040340319276,
-0.07727594673633575,
0.04221395403146744,
0.11369874328374863,
-0.0923808291554451,
-0.07137343287467957,
0.07477962225675583,
0.0972946360707283,
-0.07331304252147675,
0.00012658814375754446,
0.00874367356300354,
0.023951783776283264,
0.037102166563272476,
0.06778035312891006,
-0.03966575115919113,
0.08589404821395874,
-0.19917890429496765,
0.0372927263379097,
0.106058269739151,
0.023754918947815895,
0.0638108178973198,
0.07643651217222214,
-0.1058402881026268,
-0.008500572293996811,
-0.032518330961465836,
-0.21341575682163239,
0.1668180525302887,
0.1355515867471695,
0.06788124144077301,
-0.025637222453951836,
-0.00461410591378808,
-0.0649740919470787,
0.05773647129535675,
0.02723747305572033,
-0.14758841693401337,
0.004883295856416225,
0.06064270809292793,
0.026899009943008423,
0.01614922471344471,
0.07971042394638062,
0.014697225764393806,
-0.1801026314496994,
-0.014406266622245312,
0.10730406641960144,
0.002390873385593295,
0.0053148469887673855,
-0.03175045922398567,
-0.1755964607000351,
0.0751047357916832,
0.004285442177206278,
0.07233936339616776,
-0.1676585078239441,
0.14297930896282196,
-0.10089799761772156,
0.07726949453353882,
-0.004285062663257122,
-0.021311495453119278,
0.02507244050502777,
-0.0541163794696331,
0.15163759887218475,
0.01058570109307766,
-0.021810131147503853,
-0.1200498715043068,
-0.1717042326927185,
-0.019227758049964905,
-0.11788936704397202,
-0.11679866164922714,
0.050424277782440186,
0.062185097485780716,
0.04923136904835701,
-0.061147067695856094,
0.1518532931804657,
-0.047422297298908234,
0.060713399201631546,
-0.06893875449895859,
-0.06755045056343079,
0.03764858841896057,
-0.12588608264923096,
-0.08176055550575256,
0.05573027580976486,
0.19166934490203857,
0.15833087265491486,
-0.02816431224346161,
-0.03472423925995827,
-0.047419581562280655,
-0.006212298292666674,
-0.007802055217325687,
0.0275666993111372,
0.023223137483000755,
0.07315318286418915,
-0.07681374251842499,
-0.11649256944656372,
0.033787861466407776,
-0.06713802367448807,
-0.055589709430933,
-0.015439179725944996,
0.1513158082962036,
0.04671623185276985,
0.07720734924077988,
-0.018946662545204163,
0.03887668624520302,
-0.001724981120787561,
-0.056474871933460236,
0.16197094321250916,
0.03885216265916824,
-0.05193585529923439,
0.06837689876556396,
0.053174007683992386,
0.043745119124650955,
0.03011113777756691,
-0.026783017441630363,
0.206032395362854,
0.1980147808790207,
0.014206883497536182,
0.2175983190536499,
0.03177616000175476,
-0.03772832080721855,
-0.1300560086965561,
-0.065880686044693,
-0.006372632458806038,
0.03559038043022156,
0.08070417493581772,
-0.18207235634326935,
-0.015011128038167953,
-0.05689644813537598,
-0.034518610686063766,
-0.15059494972229004,
-0.28553900122642517,
-0.05957856774330139,
0.20075850188732147,
0.14706264436244965,
0.27519428730010986,
-0.10432573407888412,
0.035197313874959946,
0.02663275972008705,
-0.04912831634283066,
-0.006501141935586929,
0.00018665487004909664,
0.10268618166446686,
-0.15421873331069946,
0.1176437959074974,
0.08486983180046082,
-0.019002694636583328,
0.01058861706405878,
-0.1619086116552353,
0.00936629343777895,
-0.12191236019134521,
0.05354422330856323,
0.1400289237499237,
-0.048128653317689896,
-0.054873593151569366,
0.14033560454845428,
-0.024562934413552284,
-0.22685599327087402,
-0.04648222774267197,
-0.043600670993328094,
-0.010640020482242107,
0.026607351377606392,
-0.1013401448726654,
0.04101909324526787,
0.1330099105834961,
0.009380043484270573,
0.1147187277674675,
0.11749245226383209,
-0.052566803991794586,
0.10792597383260727,
0.2257719188928604,
-0.018785694614052773,
0.04689010605216026,
-0.12743118405342102,
-0.0012336712097749114,
-0.028270328417420387,
0.013657891191542149,
-0.09504974633455276,
-0.09938385337591171,
0.02366873063147068,
0.02872389927506447,
0.009118586778640747,
0.0921793207526207,
-0.029922157526016235,
0.0759170651435852,
0.06817561388015747,
-0.13014446198940277,
-0.16288450360298157,
0.015828335657715797,
-0.007344507612287998,
0.08354310691356659,
0.00027861111448146403,
0.08878035843372345,
-0.11932205408811569,
-0.018093237653374672,
-0.03153328225016594,
-0.03319635987281799,
-0.130486860871315,
-0.07138993591070175,
0.06156524643301964,
0.028095467016100883,
-0.06602972000837326,
0.1398407518863678,
0.026440169662237167,
0.15942534804344177,
0.049197953194379807,
0.012499804608523846,
0.07227300107479095,
-0.05345509201288223,
0.1283530443906784,
0.13818155229091644,
-0.00868943240493536,
-0.05460423603653908,
-0.1013643890619278,
-0.10236792266368866,
0.08925779908895493,
-0.05773641914129257,
0.07476430386304855,
-0.14885357022285461,
-0.06675903499126434,
0.015772046521306038,
0.016141414642333984,
-0.09562095999717712,
0.02571965754032135,
-0.01625603251159191,
-0.18119946122169495,
0.056570518761873245,
-0.048285093158483505,
0.0440407395362854,
-0.06347788125276566,
-0.1110161691904068,
-0.17226378619670868,
0.06091433763504028,
0.08593481779098511,
-0.053876690566539764,
-0.12229149043560028,
0.011023230850696564,
-0.00012518465518951416,
-0.06341652572154999,
-0.05023367330431938,
0.09722746908664703,
-0.11020902544260025,
0.031452205032110214,
-0.012567701749503613,
0.08853451162576675,
-0.03510405123233795,
-0.011538895778357983,
0.044220831245183945,
-0.08039166033267975,
-0.009481523185968399,
0.03534642979502678,
-0.026372017338871956,
-0.04127239063382149,
-0.2689029574394226,
0.0036654395516961813,
0.0341104120016098,
0.02497158572077751,
0.07856601476669312,
0.011906822212040424,
0.021174922585487366,
0.03993808850646019,
-0.15396519005298615,
-0.013395369984209538,
0.14574195444583893,
-0.07689505815505981,
-0.022186370566487312,
0.05703273415565491,
-0.09054436534643173,
0.013882770203053951,
-0.030287226662039757,
0.1345842480659485,
0.023923413828015327,
0.06404478847980499,
-0.0851147472858429,
0.10106813907623291,
-0.1451139897108078,
-0.04998219385743141,
-0.01244612317532301,
0.09761348366737366,
0.07019034773111343,
-0.10272270441055298,
0.014697125181555748,
0.04210108891129494,
0.19416837394237518,
0.016384804621338844,
-0.0356343574821949,
-0.03396720811724663,
0.004015897400677204,
0.22076453268527985,
0.03044266067445278,
0.10457023978233337,
0.07281364500522614,
-0.026583973318338394,
0.12624378502368927,
0.09929762035608292,
0.11280370503664017,
-0.055645186454057693,
0.13904185593128204,
0.04667386785149574,
0.038641396909952164,
0.0614289753139019,
0.06836545467376709,
0.09098632633686066,
-0.0008288522367365658,
0.1138714924454689,
0.013811973854899406,
-0.02422109805047512,
-0.021335409954190254,
0.17759373784065247,
0.10501719266176224,
-0.14769648015499115,
0.029047364369034767,
-0.01258957851678133,
0.039933037012815475,
-0.014194529503583908,
-0.15634691715240479,
-0.07240267097949982,
-0.3315149247646332,
0.1226184144616127,
-0.07119352370500565,
0.019930170848965645,
0.007913772016763687,
-0.037425633519887924,
-0.03296699747443199,
-0.04477746784687042,
0.13151589035987854,
-0.013641550205647945,
-0.006079165264964104,
-0.04815853759646416,
-0.015360191464424133,
-0.11607866734266281,
-0.11200575530529022,
-0.013207737356424332,
-0.13671602308750153,
-0.010119039565324783,
0.05595948174595833,
0.003977729007601738,
0.01821410097181797,
-0.03142618387937546,
0.0024383175186812878,
0.06541839241981506,
-0.05751744285225868,
0.056182678788900375,
0.12097269296646118,
0.08766137808561325,
-0.1058853268623352,
0.031048951670527458,
0.2011747509241104,
0.04359564557671547,
-0.12483977526426315,
0.01449228823184967,
0.1819491684436798,
0.004885740112513304,
0.017068125307559967,
-0.006097703706473112,
-0.0540788508951664,
-0.07554277032613754,
0.1251034289598465,
0.08296554535627365,
-0.09985227137804031,
0.015833314508199692,
-0.0726347416639328,
-0.01594804972410202,
-0.06374675035476685,
0.10130585730075836,
0.09538925439119339,
0.04440245032310486,
-0.10621760785579681,
-0.08487539738416672,
-0.10891728103160858,
0.040588874369859695,
-0.08629853278398514,
-0.07311757653951645,
0.09629398584365845,
-0.07057105004787445,
-0.07029950618743896,
0.025521177798509598,
-0.17978744208812714,
-0.009467960335314274,
0.1711762249469757,
-0.24654000997543335,
-0.0916430801153183,
-0.10857923328876495,
0.14477859437465668,
0.016497576609253883,
0.1013975441455841,
-0.006207061931490898,
-0.007889035157859325,
-0.20577777922153473,
0.024890204891562462,
-0.05293011665344238,
-0.02073732763528824,
0.07814782857894897,
-0.09476397186517715,
0.22629831731319427,
-0.08276885002851486,
0.020940175279974937,
0.012659613974392414,
0.0870661810040474,
-0.030675338581204414,
0.09283176809549332,
-0.03660329803824425,
-0.12576518952846527,
-0.03620953485369682,
0.03001813031733036,
0.013904244638979435,
0.10071761906147003,
0.09772487729787827,
-0.03414725139737129,
0.03389119729399681,
0.09747414290904999,
0.04172342270612717,
-0.023843804374337196,
0.0360250361263752,
-0.17077107727527618,
0.02182629331946373,
-0.018498148769140244,
-0.06935930997133255,
0.03687669709324837,
-0.06603235751390457,
0.1639697551727295,
0.04022442549467087,
0.0670473501086235,
-0.036152735352516174,
0.0073931049555540085,
-0.014454689808189869,
-0.013775371946394444,
-0.026180334389209747,
-0.17259705066680908,
-0.10422050207853317,
-0.1347656100988388,
-0.012701659463346004,
-0.034971047192811966,
0.04591470584273338,
0.023234914988279343,
-0.0003200018545612693,
-0.014577031135559082,
-0.12090865522623062,
0.04360328987240791,
0.11146783083677292,
-0.04631396010518074,
-0.026193076744675636
] |
null | null | DanishFungi | # Model card for MHanzl/vit_large_patch16_384.ft_df20_384
## Model Details
- **Model Type:** Danish Fungi Classification
- **Model Stats:**
- Params (M): ??
- Image size: 384 x 384
- **Papers:**
- **Original:** ??
- **Train Dataset:** DF20 --> https://sites.google.com/view/danish-fungi-dataset
## Model Usage
### Image Embeddings
```python
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:MHanzl/vit_large_patch16_384.ft_df20_384", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((384, 384)),
T.ToTensor(),
T.Normalize(['?', '?', '?'], ['?', '?', '?'])])
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))
# output is a (1, num_features) shaped tensor
```
## Citation
```bibtex
@InProceedings{Picek_2022_WACV,
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1525-1535}
}
```
```bibtex
@article{picek2022automatic,
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
journal={Sensors},
volume={22},
number={2},
pages={633},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}
```
| {"license": "cc-by-nc-4.0", "library_name": "DanishFungi", "tags": ["image-classification", "ecology", "fungi", "FGVC"]} | image-classification | MHanzl/vit_large_patch16_384.ft_df20_384 | [
"DanishFungi",
"pytorch",
"image-classification",
"ecology",
"fungi",
"FGVC",
"license:cc-by-nc-4.0",
"region:us"
] | 2024-02-13T17:06:06+00:00 | [] | [] | TAGS
#DanishFungi #pytorch #image-classification #ecology #fungi #FGVC #license-cc-by-nc-4.0 #region-us
| # Model card for MHanzl/vit_large_patch16_384.ft_df20_384
## Model Details
- Model Type: Danish Fungi Classification
- Model Stats:
- Params (M): ??
- Image size: 384 x 384
- Papers:
- Original: ??
- Train Dataset: DF20 --> URL
## Model Usage
### Image Embeddings
| [
"# Model card for MHanzl/vit_large_patch16_384.ft_df20_384",
"## Model Details\n- Model Type: Danish Fungi Classification \n- Model Stats:\n - Params (M): ??\n - Image size: 384 x 384\n- Papers:\n- Original: ??\n- Train Dataset: DF20 --> URL",
"## Model Usage",
"### Image Embeddings"
] | [
"TAGS\n#DanishFungi #pytorch #image-classification #ecology #fungi #FGVC #license-cc-by-nc-4.0 #region-us \n",
"# Model card for MHanzl/vit_large_patch16_384.ft_df20_384",
"## Model Details\n- Model Type: Danish Fungi Classification \n- Model Stats:\n - Params (M): ??\n - Image size: 384 x 384\n- Papers:\n- Original: ??\n- Train Dataset: DF20 --> URL",
"## Model Usage",
"### Image Embeddings"
] | [
40,
27,
50,
4,
7
] | [
"passage: TAGS\n#DanishFungi #pytorch #image-classification #ecology #fungi #FGVC #license-cc-by-nc-4.0 #region-us \n# Model card for MHanzl/vit_large_patch16_384.ft_df20_384## Model Details\n- Model Type: Danish Fungi Classification \n- Model Stats:\n - Params (M): ??\n - Image size: 384 x 384\n- Papers:\n- Original: ??\n- Train Dataset: DF20 --> URL## Model Usage### Image Embeddings"
] | [
-0.11881501227617264,
0.035598788410425186,
-0.0005347335827536881,
0.11451422423124313,
0.0027202304918318987,
-0.03275885432958603,
0.011864450760185719,
0.05648198351264,
0.08828885108232498,
0.07041659206151962,
0.16522808372974396,
0.07598473876714706,
-0.01598033681511879,
0.08963070064783096,
-0.010938456282019615,
-0.3048551380634308,
0.10808759927749634,
0.030293988063931465,
-0.18366855382919312,
0.040952373296022415,
0.1418672353029251,
-0.05452888086438179,
0.12380410730838776,
0.024144016206264496,
-0.22432377934455872,
0.03296751156449318,
-0.07110446691513062,
-0.04279090836644173,
0.12586502730846405,
0.019531000405550003,
0.003979012370109558,
0.029179496690630913,
0.06447380036115646,
-0.020966317504644394,
0.0200710017234087,
-0.03705873712897301,
-0.08090487122535706,
0.12213324010372162,
0.0919104665517807,
0.061099402606487274,
0.267591267824173,
-0.03556175157427788,
0.007211357355117798,
-0.023740574717521667,
-0.005943558178842068,
-0.23555174469947815,
0.014343349263072014,
0.1427314579486847,
0.0043688202276825905,
0.0013513538287952542,
0.008698535151779652,
0.057838525623083115,
-0.15362326800823212,
0.048664215952157974,
0.0413149893283844,
-0.002017323160544038,
-0.005427682772278786,
0.2052653282880783,
0.03094898723065853,
0.0903320163488388,
-0.14936010539531708,
0.0833614394068718,
0.0457276925444603,
0.015448056161403656,
0.061676274985075,
-0.017670709639787674,
0.25389984250068665,
0.009811135940253735,
-0.11584397405385971,
0.04556276649236679,
0.14751262962818146,
0.1170371025800705,
0.02022826112806797,
-0.033562131226062775,
-0.02494494430720806,
0.17454764246940613,
-0.04417932778596878,
0.040284838527441025,
0.029207319021224976,
-0.0745716542005539,
0.19000163674354553,
0.018465399742126465,
-0.08397398144006729,
-0.024989230558276176,
-0.007988005876541138,
0.08145081251859665,
-0.002921169390901923,
0.06335562467575073,
-0.023256564512848854,
-0.06608472019433975,
-0.26269975304603577,
-0.11001145839691162,
0.05196385458111763,
-0.05122377723455429,
0.09400735795497894,
0.005316688679158688,
0.02550356090068817,
-0.051840733736753464,
0.09621283411979675,
-0.09660276025533676,
-0.12048701196908951,
0.026908455416560173,
0.026971688494086266,
0.12424395978450775,
0.0868869423866272,
-0.011971884407103062,
-0.22440645098686218,
0.10716399550437927,
0.038340333849191666,
0.024166345596313477,
-0.02840302139520645,
-0.009852866642177105,
-0.14250358939170837,
-0.0634467825293541,
0.0005630488740280271,
-0.021870629861950874,
-0.05206726863980293,
-0.03206466883420944,
0.11288855969905853,
-0.10667680948972702,
0.3333618938922882,
-0.005371380597352982,
-0.02203630842268467,
0.0257863812148571,
-0.06141667440533638,
0.14315812289714813,
-0.037321269512176514,
-0.031518302857875824,
0.005982035771012306,
0.19973962008953094,
-0.0907851830124855,
0.02029407024383545,
-0.02330172248184681,
-0.15159820020198822,
0.05474069342017174,
-0.042871758341789246,
0.041423674672842026,
-0.11459476500749588,
0.01991729624569416,
0.046108659356832504,
0.05089129880070686,
-0.03581062704324722,
-0.025029337033629417,
0.10411350429058075,
-0.08668433874845505,
-0.0033089397475123405,
0.09722179919481277,
0.12207607924938202,
-0.04952235519886017,
0.02129587158560753,
-0.1949995905160904,
0.10199785232543945,
-0.22889932990074158,
0.008997363969683647,
-0.0208048727363348,
0.006531888619065285,
-0.3203539252281189,
-0.0987749695777893,
-0.1521911919116974,
0.05783871188759804,
-0.09044135361909866,
-0.13595764338970184,
0.12105696648359299,
-0.00649430463090539,
-0.02482607401907444,
0.030790941789746284,
-0.05282864719629288,
0.01307956874370575,
0.0167328380048275,
-0.11935095489025116,
-0.06415589153766632,
0.1539037525653839,
-0.019102975726127625,
-0.045526545494794846,
-0.014222581870853901,
0.2738729417324066,
0.04971546307206154,
-0.13014507293701172,
0.10882248729467392,
0.04684307426214218,
-0.04390100762248039,
-0.10287254303693771,
0.1255297213792801,
0.011236474849283695,
-0.1271343231201172,
0.03519131615757942,
-0.11023730784654617,
-0.00867749098688364,
0.017231473699212074,
-0.03253453969955444,
-0.035571832209825516,
-0.09370218217372894,
0.0835578516125679,
0.03591863811016083,
0.05104096978902817,
-0.07293014228343964,
0.04536598175764084,
-0.005781908519566059,
0.09955985844135284,
-0.03309846296906471,
-0.028821827843785286,
0.06161344796419144,
0.1879330277442932,
-0.07283283770084381,
-0.007176519837230444,
-0.0641145408153534,
0.04206063225865364,
0.04600468650460243,
-0.16618134081363678,
0.03303580358624458,
0.0416971817612648,
0.03050849959254265,
0.12449987232685089,
-0.0572885125875473,
0.05840608477592468,
-0.09619258344173431,
0.03008575737476349,
-0.017117753624916077,
-0.22242718935012817,
0.051430583000183105,
-0.009755579754710197,
0.03466362878680229,
-0.21049991250038147,
-0.017798203974962234,
0.11679711937904358,
0.06908569484949112,
-0.05461601912975311,
0.05551188439130783,
0.06012355908751488,
-0.09545847028493881,
-0.0008889834280125797,
0.03205277770757675,
0.06853806972503662,
-0.03284909576177597,
-0.018064921721816063,
0.13866765797138214,
-0.008726297877728939,
0.1036796122789383,
0.1220218688249588,
-0.05426117405295372,
-0.054626498371362686,
-0.08728867024183273,
-0.06062576547265053,
0.016389191150665283,
-0.0647459328174591,
-0.09119758009910583,
-0.10923334211111069,
-0.026822347193956375,
0.1434929370880127,
-0.20021380484104156,
-0.021593451499938965,
0.10938697308301926,
-0.009691608138382435,
-0.07961364090442657,
0.20426103472709656,
0.20632408559322357,
-0.18444044888019562,
0.07847457379102707,
0.2074468582868576,
-0.07935480028390884,
0.1633596420288086,
0.016829831525683403,
-0.03351998329162598,
-0.01638033241033554,
-0.031137067824602127,
-0.034427303820848465,
0.3327012360095978,
-0.10834694653749466,
0.08549299091100693,
0.07628379017114639,
0.0014900186797603965,
0.06994055211544037,
-0.09192749112844467,
-0.026138298213481903,
-0.0022079392801970243,
0.02690507471561432,
-0.06846047192811966,
0.10180721431970596,
0.009610871784389019,
0.18937456607818604,
-0.03407293185591698,
-0.1484995037317276,
-0.028705352917313576,
0.03522844612598419,
-0.07867790013551712,
0.2666262686252594,
-0.1019693985581398,
-0.21151752769947052,
-0.07414823025465012,
0.06735654175281525,
-0.1119597926735878,
-0.015283280052244663,
0.005352598614990711,
-0.10300854593515396,
-0.10496126115322113,
-0.08606938272714615,
0.03299962729215622,
-0.1422882229089737,
-0.025328481569886208,
-0.12159618735313416,
0.01718461886048317,
-0.02894457057118416,
-0.09553281217813492,
-0.008769441395998001,
0.014504746533930302,
0.2487981915473938,
0.05757855623960495,
-0.02123812958598137,
0.1084272637963295,
0.12175001949071884,
-0.09108185768127441,
0.04115515574812889,
0.03911197558045387,
0.2211838811635971,
-0.007155654486268759,
0.20289377868175507,
0.13100823760032654,
0.0050851344130933285,
0.06004325672984123,
0.10771483182907104,
0.11120466887950897,
-0.029907846823334694,
-0.03762676194310188,
-0.004092235118150711,
-0.11966843158006668,
-0.13405576348304749,
-0.16294808685779572,
0.011502845212817192,
0.09672562777996063,
0.09100567549467087,
0.032235659658908844,
0.0931549146771431,
0.09600655734539032,
0.024937981739640236,
-0.005124037619680166,
-0.06985488533973694,
0.013568103313446045,
0.0220507625490427,
0.0026542041450738907,
0.005151157267391682,
-0.013775954954326153,
0.018377285450696945,
0.1071489080786705,
-0.03211579844355583,
0.0532991960644722,
0.0025908059906214476,
-0.05279089882969856,
0.10107047855854034,
0.026431679725646973,
0.11056355386972427,
0.10104874521493912,
-0.11912962794303894,
-0.07705146819353104,
-0.029338857159018517,
-0.11771233379840851,
0.19457778334617615,
0.03377166762948036,
-0.024253278970718384,
-0.030056552961468697,
-0.11929008364677429,
-0.010301707312464714,
-0.010044457390904427,
-0.10946781188249588,
0.04242679476737976,
-0.11837892234325409,
-0.0013585148844867945,
-0.0717088133096695,
0.08120093494653702,
-0.06456078588962555,
0.01215342152863741,
0.13983401656150818,
-0.05930609628558159,
-0.027792349457740784,
-0.03562084212899208,
0.058464303612709045,
0.09909632056951523,
0.020915934816002846,
0.0006280234665609896,
0.09618780016899109,
-0.056068386882543564,
0.09741674363613129,
-0.04766625165939331,
0.2964964509010315,
-0.004372472874820232,
-0.1076027974486351,
-0.13963042199611664,
-0.07469294965267181,
0.05006461217999458,
0.24342116713523865,
0.10342537611722946,
0.09584969282150269,
-0.015366749837994576,
-0.09931670129299164,
-0.13648782670497894,
-0.05400581285357475,
0.02506423182785511,
-0.014262193813920021,
-0.047120872884988785,
0.09452833235263824,
-0.0164320170879364,
-0.0325997918844223,
0.06319741904735565,
-0.10662391781806946,
-0.013147113844752312,
0.03000335767865181,
-0.00677498010918498,
-0.1313289999961853,
0.009035170078277588,
-0.051160410046577454,
-0.20903941988945007,
0.07509184628725052,
0.05917868763208389,
-0.11444082111120224,
-0.15228371322155,
0.07201400399208069,
0.069834403693676,
-0.04659968242049217,
0.024074740707874298,
-0.12164408713579178,
0.16842514276504517,
-0.08392319828271866,
-0.09120064973831177,
0.12553806602954865,
-0.07502851635217667,
-0.06308826804161072,
-0.026661688461899757,
0.1514347493648529,
0.009809271432459354,
0.008865918032824993,
0.08145266771316528,
-0.007884301245212555,
-0.07168804109096527,
-0.17702633142471313,
0.06429606676101685,
-0.09518612176179886,
0.0390135794878006,
0.09054410457611084,
-0.14862678945064545,
0.06077514588832855,
0.057227764278650284,
-0.07246224582195282,
0.1204199567437172,
0.1922617107629776,
-0.10181504487991333,
0.08982820808887482,
0.16683942079544067,
-0.00034755776869133115,
-0.2690063416957855,
0.08028044551610947,
-0.0029955278150737286,
-0.0034637313801795244,
-0.009799023158848286,
-0.0648462325334549,
0.24440516531467438,
0.19863668084144592,
0.0045870463363826275,
0.10817796736955643,
-0.16696661710739136,
-0.11476416140794754,
0.07159985601902008,
0.11576662212610245,
0.061758723109960556,
-0.0773550346493721,
-0.0168047733604908,
-0.09433051198720932,
-0.12779058516025543,
0.20429794490337372,
-0.09683137387037277,
-0.01717131771147251,
-0.07902904599905014,
0.1199590191245079,
0.017548484727740288,
-0.059058986604213715,
0.2339797168970108,
0.085684634745121,
0.053300876170396805,
-0.05745821073651314,
-0.11484319716691971,
0.09361540526151657,
-0.02616916038095951,
0.16635313630104065,
-0.0591188482940197,
0.06147594749927521,
-0.1570442169904709,
0.03774324059486389,
-0.16136205196380615,
0.09237629920244217,
-0.09494630247354507,
-0.0807487890124321,
-0.13786287605762482,
0.07771673053503036,
0.015367642045021057,
-0.010596508160233498,
0.03210442513227463,
0.0029573829378932714,
-0.014034104533493519,
0.08152215927839279,
0.0006020506261847913,
-0.10860849171876907,
-0.10463401675224304,
0.001697732717730105,
-0.03821709007024765,
0.07859715074300766,
-0.2509813606739044,
0.029367594048380852,
0.1234402060508728,
0.07285483926534653,
0.021662110462784767,
-0.017481796443462372,
-0.026049144566059113,
-0.11156917363405228,
0.03948962688446045,
-0.15770772099494934,
-0.0313650406897068,
-0.058996472507715225,
0.14578357338905334,
0.07544511556625366,
-0.06513049453496933,
0.031036922708153725,
-0.06589587032794952,
0.036057718098163605,
0.008182604797184467,
-0.021880073472857475,
0.003526319283992052,
0.11792513728141785,
0.2386135458946228,
0.06101208180189133,
-0.09456837922334671,
0.009476734325289726,
0.013177026994526386,
-0.078163743019104,
-0.08417177945375443,
0.11321209371089935,
-0.09892687201499939,
-0.08231984078884125,
0.1124168187379837,
0.06156915798783302,
-0.2082374393939972,
-0.035760149359703064,
-0.0164420697838068,
-0.12595783174037933,
0.029871201142668724,
0.1861467957496643,
0.10117945820093155,
-0.10835948586463928,
0.017920173704624176,
-0.1464778482913971,
-0.162395641207695,
0.10084212571382523,
-0.11629243195056915,
0.08580794930458069,
-0.06316190212965012,
0.017116932198405266,
-0.06306755542755127,
0.13257594406604767,
-0.04169074073433876,
0.05218774080276489,
-0.11443433910608292,
-0.07367244362831116,
-0.10642529278993607,
0.10874029994010925,
-0.02994490973651409,
-0.02641879953444004,
-0.07776488363742828,
0.007800133433192968,
0.05437358096241951,
0.024299999698996544,
-0.12168426811695099,
-0.003370138118043542,
0.035282790660858154,
0.0672251433134079,
-0.014300652779638767,
-0.07455262541770935,
0.003696588333696127,
-0.0025495023000985384,
0.08022845536470413,
-0.03415157273411751,
0.04558893293142319,
0.03805546090006828,
-0.077177993953228,
0.03041539527475834,
0.046393778175115585,
0.05524152144789696,
0.06757286190986633,
-0.11688897013664246,
0.011741403490304947,
-0.04685730114579201,
-0.03332183510065079,
0.06679057329893112,
0.03108363039791584,
-0.13816362619400024,
0.006285317707806826,
-0.048888273537158966,
-0.07666142284870148,
0.02301621623337269,
0.051445044577121735,
-0.01990128494799137,
-0.011503745801746845,
0.03542519360780716,
0.04628240689635277,
0.03747827559709549,
-0.09269368648529053,
-0.01080374512821436,
-0.027878878638148308,
-0.07010702788829803,
-0.02042078785598278,
0.11565234512090683,
0.007835783995687962,
-0.09917569160461426,
0.15908600389957428,
0.11293107271194458,
0.0005525924498215318,
0.08193670958280563,
0.11066776514053345,
0.07111707329750061,
-0.0006130122346803546,
0.17569434642791748,
-0.10675735771656036,
0.053009033203125,
0.019077731296420097,
0.020255794748663902,
0.06050927937030792,
0.09433106333017349,
0.14586544036865234,
0.1279742568731308,
0.03649149835109711,
-0.07602989673614502,
0.13073867559432983,
0.053047653287649155,
-0.007092280313372612,
0.061531346291303635,
0.06695730239152908,
0.11895079910755157,
0.020420480519533157,
0.03383909538388252,
0.1192392036318779,
-0.12442950159311295,
0.07679428905248642,
0.028436826542019844,
-0.09658966213464737,
-0.02603406459093094,
-0.1067366823554039,
-0.06690451502799988,
-0.04415690526366234,
0.018888983875513077,
-0.10810237377882004,
-0.03338664025068283,
-0.04439501091837883,
0.08742311596870422,
-0.07215791195631027,
0.05324062332510948,
-0.15843042731285095,
-0.03219331428408623,
0.11800981312990189,
0.02894599363207817,
-0.0706353560090065,
0.02212565392255783,
0.03061049059033394,
-0.02753053791821003,
-0.04596851021051407,
-0.06562573462724686,
-0.05770888552069664,
-0.022716863080859184,
-0.09902074187994003,
-0.03706303611397743,
-0.021548766642808914,
-0.011098259128630161,
-0.11016476899385452,
0.03895469009876251,
0.05129534751176834,
0.006276476196944714,
-0.04174591973423958,
-0.053945399820804596,
0.059047821909189224,
0.04434552788734436,
-0.02917482517659664,
-0.0385856106877327,
0.05262129008769989,
-0.05078453570604324,
0.020855417475104332,
0.006436943542212248,
-0.032501161098480225,
-0.01915728487074375,
0.1680634319782257,
0.1718241274356842,
-0.09803351759910583,
0.024682655930519104,
-0.033311620354652405,
-0.015828724950551987,
0.05004599317908287,
0.09403029084205627,
0.0032606502063572407,
0.03940412402153015,
-0.044419437646865845,
-0.02630924992263317,
-0.19609138369560242,
0.007476644590497017,
-0.18376852571964264,
0.07876747846603394,
0.15144950151443481,
-0.1459384709596634,
-0.08453495800495148,
0.10863187164068222,
-0.014827045612037182,
0.045062143355607986,
-0.07218649238348007,
-0.08937463164329529,
-0.1313028633594513,
-0.07524434477090836,
-0.1735500544309616,
0.0039548068307340145,
-0.03659089654684067,
-0.09160438925027847,
-0.0015458227135241032,
-0.041532907634973526,
-0.00986560434103012,
-0.18167559802532196,
-0.1046077087521553,
0.02252122201025486,
0.014677316881716251,
0.17393703758716583,
0.02863062359392643,
0.0993933156132698,
0.08063893020153046,
-0.013111225329339504,
-0.07669870555400848,
0.005951195955276489,
0.06363075971603394,
-0.029106494039297104,
-0.0051469323225319386,
0.13371355831623077,
0.022538112476468086,
-0.11150865256786346,
-0.020454784855246544,
-0.061739541590213776,
-0.09573610872030258,
0.03234944865107536,
-0.06261755526065826,
0.00361646362580359,
0.199208065867424,
-0.07684006541967392,
0.058076925575733185,
0.15419061481952667,
-0.0167295690625906,
-0.12529174983501434,
-0.06859760731458664,
0.03744730353355408,
0.031383123248815536,
-0.178929403424263,
-0.03434669226408005,
-0.07624741643667221,
0.009880256839096546,
-0.12749993801116943,
-0.022798409685492516,
-0.1737908124923706,
-0.05766205117106438,
-0.09254003316164017,
0.015048299916088581,
-0.029308248311281204,
0.041640058159828186,
0.08754870295524597,
0.004804032854735851,
-0.029810786247253418,
0.08825374394655228,
-0.017561815679073334,
0.05166294798254967,
-0.06298437714576721,
-0.11247996985912323
] |
null | null | transformers |
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
[Lewd-Assistant-v1](https://huggingface.co/datasets/Himitsui/Lewd-Assistant-v1) ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
***
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
***
GGUF: https://huggingface.co/Sao10K/Solstice-11B-v1-GGUF | {"language": ["en"], "license": "cc-by-nc-4.0", "datasets": ["Himitsui/Lewd-Assistant-v1"]} | text-generation | LoneStriker/Solstice-11B-v1-3.0bpw-h6-exl2 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:Himitsui/Lewd-Assistant-v1",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:06:13+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
Lewd-Assistant-v1 ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
*
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
*
GGUF: URL | [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
77
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.049034226685762405,
0.10144619643688202,
-0.005310742650181055,
0.037241458892822266,
0.1303713023662567,
0.017335545271635056,
0.14252999424934387,
0.11379635334014893,
-0.005623956210911274,
-0.03997872397303581,
0.15055686235427856,
0.22561697661876678,
-0.005716316867619753,
0.025737494230270386,
-0.07812640070915222,
-0.19685706496238708,
0.031945742666721344,
0.07199884951114655,
0.0009695991757325828,
0.10655628144741058,
0.10498841851949692,
-0.06860098987817764,
0.09109021723270416,
-0.02456873282790184,
-0.1569415032863617,
0.02397669479250908,
0.030383840203285217,
-0.11827446520328522,
0.10542871803045273,
0.056915976107120514,
0.09415589272975922,
0.07842440903186798,
-0.0075564272701740265,
-0.15251457691192627,
0.02114257775247097,
-0.005708994809538126,
-0.07609643787145615,
0.06579328328371048,
0.05390128493309021,
-0.027117885649204254,
0.10850529372692108,
0.0403880812227726,
-0.041287485510110855,
0.0467577800154686,
-0.10149915516376495,
-0.0192161425948143,
-0.06091657280921936,
0.0460011251270771,
0.05683813989162445,
0.09331124275922775,
0.024533160030841827,
0.13188046216964722,
-0.09107843041419983,
0.08752235770225525,
0.09963053464889526,
-0.31331998109817505,
0.01319095864892006,
0.09934073686599731,
0.03383893519639969,
0.04641084745526314,
-0.021290304139256477,
0.06774309277534485,
0.04784923046827316,
0.0007684126612730324,
0.03598456457257271,
-0.0797121524810791,
-0.09438449889421463,
0.06742703169584274,
-0.06590547412633896,
-0.03863084688782692,
0.2922324538230896,
-0.030988743528723717,
0.04172538220882416,
-0.008086903020739555,
-0.050714027136564255,
0.011418753303587437,
-0.015883255749940872,
0.03745931759476662,
-0.008732186630368233,
0.05612645298242569,
0.03042249009013176,
-0.0401790477335453,
-0.13913358747959137,
-0.020970935001969337,
-0.18500429391860962,
0.07730595767498016,
0.012230283580720425,
0.049645330756902695,
-0.12579062581062317,
0.06767009198665619,
0.034521471709012985,
-0.0844985693693161,
0.0035924408584833145,
-0.053609706461429596,
0.07973714172840118,
-0.0033421244006603956,
-0.03879298269748688,
-0.022027965635061264,
0.10066821426153183,
0.07918766885995865,
0.017121922224760056,
-0.020639244467020035,
-0.08546588569879532,
0.10821904987096786,
-0.013696074485778809,
0.030209684744477272,
-0.03432465344667435,
0.005157887935638428,
0.08075081557035446,
-0.07926378399133682,
0.04890313372015953,
-0.0285712368786335,
-0.1669217199087143,
-0.047651249915361404,
-0.021985750645399094,
0.10965735465288162,
0.028758613392710686,
0.0803452581167221,
-0.03757987916469574,
-0.013860568404197693,
0.0998191386461258,
-0.0681782215833664,
-0.005897911731153727,
-0.01723933219909668,
-0.00974948424845934,
0.09400562942028046,
0.02334989234805107,
0.02616862952709198,
-0.08904144912958145,
0.06954825669527054,
-0.07460135221481323,
-0.006143215112388134,
-0.03521576523780823,
-0.05373920500278473,
0.07148505002260208,
-0.0974171832203865,
0.030807875096797943,
-0.1752423644065857,
-0.20109885931015015,
0.024895215407013893,
0.0106661356985569,
-0.015678955242037773,
-0.07431206107139587,
-0.038309354335069656,
-0.03380206599831581,
0.018048031255602837,
-0.08405132591724396,
-0.0024438153486698866,
-0.08034411817789078,
0.10252384841442108,
-0.05322210118174553,
0.04925856739282608,
-0.15059894323349,
0.0595194548368454,
-0.08959881961345673,
-0.012827512808144093,
-0.007095616310834885,
0.050098419189453125,
-0.03298885375261307,
0.105813167989254,
-0.05119280889630318,
-0.025412462651729584,
-0.024753475561738014,
0.03582635521888733,
-0.016930731013417244,
0.18637792766094208,
-0.13419866561889648,
-0.07243777066469193,
0.15280477702617645,
-0.08325513452291489,
-0.18884451687335968,
0.09167393296957016,
0.00922262854874134,
0.04589606076478958,
0.08483385294675827,
0.14735817909240723,
0.0350952111184597,
-0.08198394626379013,
0.018709788098931313,
0.09923137724399567,
-0.06979144364595413,
-0.20308828353881836,
0.021961500868201256,
0.007903855293989182,
-0.09841631352901459,
0.04337438941001892,
0.0199807807803154,
0.06771830469369888,
-0.043807487934827805,
-0.06553755700588226,
-0.04720250144600868,
-0.05599060654640198,
-0.018855394795536995,
0.0029671976808458567,
0.08480874449014664,
-0.051144134253263474,
0.002517574466764927,
-0.005882262717932463,
0.031557876616716385,
-0.023341625928878784,
0.056014902889728546,
-0.06204771623015404,
0.11400096863508224,
-0.03765048086643219,
0.03347593918442726,
-0.13520418107509613,
-0.03351351618766785,
-0.01180564146488905,
0.14856234192848206,
0.025070972740650177,
0.04837543144822121,
0.01079084724187851,
-0.026632050052285194,
-0.025501301512122154,
0.00958278588950634,
0.15494011342525482,
-0.0007252903888002038,
-0.0532318577170372,
-0.10751572251319885,
0.06776221841573715,
-0.02253667823970318,
0.016523046419024467,
-0.09919705986976624,
0.006435787305235863,
0.04849201440811157,
0.09319677948951721,
-0.028797855600714684,
0.08913536369800568,
-0.00775644788518548,
0.04732397571206093,
-0.07237828522920609,
0.03538600727915764,
0.1164293885231018,
0.016884498298168182,
-0.09675242006778717,
0.21493247151374817,
-0.09469964355230331,
0.22045156359672546,
0.20328935980796814,
-0.2403641641139984,
0.05252329632639885,
-0.07172700762748718,
-0.01727456972002983,
-0.0074929846450686455,
0.025716116651892662,
-0.009235285222530365,
0.03171088919043541,
-0.008625861257314682,
0.1834697276353836,
-0.06712543964385986,
-0.0054125408641994,
0.002795885084196925,
-0.042803213000297546,
-0.03943811357021332,
0.08297725766897202,
0.19316521286964417,
-0.12646368145942688,
0.16178403794765472,
0.23159843683242798,
-0.013848419301211834,
0.1402653455734253,
-0.03274041414260864,
-0.019341804087162018,
0.03710115700960159,
-0.02327699586749077,
-0.012436605989933014,
-0.010511710308492184,
-0.10541673004627228,
-0.002799295587465167,
0.08416956663131714,
-0.00018182213534601033,
0.06753597408533096,
-0.1491035521030426,
-0.07189694792032242,
-0.0310774315148592,
-0.03873962536454201,
-0.03537937253713608,
0.08782068639993668,
0.01753067784011364,
0.128334641456604,
-0.051640938967466354,
-0.06278031319379807,
0.11246023327112198,
0.005560848396271467,
-0.0898054838180542,
0.1569569706916809,
-0.13892027735710144,
-0.2924811542034149,
-0.16305863857269287,
-0.16571520268917084,
-0.07089906185865402,
0.023396149277687073,
0.09480155259370804,
-0.05249262973666191,
-0.04799347370862961,
-0.030985508114099503,
-0.011247217655181885,
-0.05897943302989006,
-0.0034085328225046396,
-0.0424722284078598,
0.06421343982219696,
-0.06029471755027771,
-0.11193588376045227,
-0.043454427272081375,
-0.0044265370815992355,
-0.0640472024679184,
0.12870556116104126,
-0.09717836230993271,
0.09882897138595581,
0.1328934282064438,
0.025340624153614044,
0.026841068640351295,
-0.04431796446442604,
0.13088175654411316,
-0.04853203520178795,
-0.009431427344679832,
0.22270165383815765,
0.0011693616397678852,
0.05880896374583244,
0.13138096034526825,
0.038107480853796005,
-0.07699986547231674,
0.0045023816637694836,
-0.04538979381322861,
-0.0798133835196495,
-0.23326468467712402,
-0.1373303234577179,
-0.11261934041976929,
0.05847621709108353,
0.05341200903058052,
0.06106415018439293,
0.11219381541013718,
0.08764012902975082,
-0.014922751113772392,
0.058201052248477936,
-0.021582402288913727,
0.07762761414051056,
0.2839027941226959,
-0.01894594356417656,
0.13017886877059937,
-0.08824797719717026,
-0.05806112289428711,
0.09288623183965683,
0.10236862301826477,
0.12053664028644562,
0.059395331889390945,
0.08671223372220993,
0.06011790409684181,
0.13369910418987274,
0.13008637726306915,
0.09064308553934097,
0.04012376442551613,
-0.004751825239509344,
-0.01217054482549429,
-0.044730979949235916,
-0.035446617752313614,
0.035599954426288605,
0.013642698526382446,
-0.13429448008537292,
-0.02092130482196808,
-0.07859308272600174,
0.05072641372680664,
0.119310662150383,
0.025424810126423836,
-0.23313206434249878,
0.025882529094815254,
0.05987260863184929,
-0.0031277218367904425,
-0.07122143357992172,
0.08518851548433304,
-0.016570409759879112,
-0.08306598663330078,
0.07057943195104599,
-0.027958616614341736,
0.12143699079751968,
-0.07391038537025452,
0.0519358366727829,
-0.03370404988527298,
-0.05230972543358803,
0.03313904255628586,
0.1089467853307724,
-0.3237506151199341,
0.22024185955524445,
0.018825465813279152,
-0.026497717946767807,
-0.09279364347457886,
-0.025149978697299957,
0.012764468789100647,
0.1749781221151352,
0.12539535760879517,
-0.007683464791625738,
-0.015535303391516209,
-0.05810444429516792,
-0.05734163895249367,
0.035665884613990784,
0.06896401941776276,
0.0010584074771031737,
-0.0003624292730819434,
-0.024091387167572975,
-0.005279526114463806,
-0.0014077178202569485,
-0.00490220682695508,
-0.043236907571554184,
-0.17163509130477905,
0.05557248741388321,
0.14406868815422058,
0.05307428911328316,
-0.004156381823122501,
-0.039885297417640686,
-0.1416422724723816,
0.17220140993595123,
-0.13633225858211517,
-0.07610277086496353,
-0.10404983907938004,
-0.062380265444517136,
0.05498787760734558,
-0.05518300458788872,
0.03755813464522362,
-0.06245018541812897,
-0.002284383401274681,
-0.06032416224479675,
-0.17134849727153778,
0.06986992806196213,
-0.0996970683336258,
-0.015461762435734272,
-0.03423244133591652,
0.15149866044521332,
-0.08292442560195923,
0.017603974789381027,
0.02323228307068348,
0.01411656104028225,
-0.07490243017673492,
-0.09193401783704758,
-0.005053247790783644,
0.03293938934803009,
0.09035728871822357,
0.01723586395382881,
-0.14129149913787842,
-0.0095018669962883,
-0.014963537454605103,
-0.08424284309148788,
0.26092803478240967,
0.19374249875545502,
-0.05883967876434326,
0.1770647019147873,
0.15347951650619507,
-0.11490184813737869,
-0.32271862030029297,
-0.1000501811504364,
-0.11443756520748138,
-0.028265872970223427,
-0.04509029909968376,
-0.18660955131053925,
0.077033631503582,
0.049923256039619446,
-0.031645506620407104,
0.10615070909261703,
-0.23199057579040527,
-0.09402638673782349,
0.12149857729673386,
0.018926985561847687,
0.2996464669704437,
-0.12258071452379227,
-0.08332320302724838,
-0.08195407688617706,
-0.13797886669635773,
0.19211558997631073,
0.00286630867049098,
0.10877324640750885,
-0.04681301862001419,
0.09396523237228394,
0.007644746918231249,
-0.03690613806247711,
0.10031165927648544,
0.006828084588050842,
0.025079969316720963,
-0.10434320569038391,
-0.0027483508456498384,
0.08884637802839279,
0.002070714021101594,
0.041003402322530746,
-0.11694075912237167,
0.008402612991631031,
-0.1172478049993515,
-0.027270840480923653,
-0.05345173180103302,
0.07041863352060318,
0.009682005271315575,
-0.05904176086187363,
-0.022814305499196053,
-0.019129959866404533,
0.023440003395080566,
-0.015210927464067936,
0.18577711284160614,
-0.03642501309514046,
0.07289411127567291,
0.120790034532547,
0.137875497341156,
-0.13844045996665955,
0.029775775969028473,
-0.07663135230541229,
-0.07252693921327591,
0.06818535923957825,
-0.13475310802459717,
0.03976571559906006,
0.133937805891037,
-0.029848946258425713,
0.0664096474647522,
0.0765647441148758,
0.025761689990758896,
-0.00638764351606369,
0.14227253198623657,
-0.19646349549293518,
0.019226932898163795,
-0.04374184459447861,
0.006416141055524349,
0.06395085155963898,
0.04797811433672905,
0.16513222455978394,
-0.025768468156456947,
-0.009783856570720673,
0.015844149515032768,
0.014720029197633266,
-0.04439609870314598,
0.0675467774271965,
0.04722321033477783,
0.0031884554773569107,
-0.1300448477268219,
0.10301768779754639,
0.025875011458992958,
-0.11881901323795319,
-0.002760943491011858,
0.102492555975914,
-0.13203735649585724,
-0.12005016207695007,
-0.05686751753091812,
0.06437907367944717,
-0.2058214694261551,
-0.08213391900062561,
-0.05728176608681679,
-0.11623122543096542,
0.08587322384119034,
0.1539333164691925,
0.05562883988022804,
0.06769925355911255,
-0.03056035190820694,
-0.08275887370109558,
-0.0737461969256401,
0.020974867045879364,
-0.03823217377066612,
0.02078600414097309,
-0.10290080308914185,
0.015325134620070457,
-0.022673455998301506,
0.1308482140302658,
-0.05975550785660744,
-0.0260691586881876,
-0.10978298634290695,
0.042345207184553146,
-0.14944908022880554,
-0.012575010769069195,
-0.08017249405384064,
-0.0310711357742548,
-0.00464948546141386,
-0.015980064868927002,
-0.06127501279115677,
-0.016248362138867378,
-0.10641258955001831,
0.02068985439836979,
-0.020699268206954002,
0.07433059066534042,
-0.0841195210814476,
-0.04886775091290474,
0.05056420713663101,
-0.015597312711179256,
0.10742154717445374,
0.06851629167795181,
-0.09662238508462906,
0.08528278768062592,
-0.1458529531955719,
-0.05586700141429901,
0.09775988012552261,
0.0555204413831234,
0.04613138735294342,
0.02461850643157959,
0.01933644339442253,
0.12628474831581116,
-0.014499308541417122,
0.048842575401067734,
0.019805999472737312,
-0.10847801715135574,
-0.006426680367439985,
-0.05144473537802696,
-0.09860483556985855,
-0.06442166119813919,
-0.016366492956876755,
0.08798839896917343,
0.04380229115486145,
0.15357235074043274,
-0.04235014319419861,
0.04793012514710426,
-0.042971670627593994,
0.020120149478316307,
-0.008167668245732784,
-0.16375763714313507,
-0.08338074386119843,
-0.08619426190853119,
0.01709349825978279,
-0.0072896163910627365,
0.256022572517395,
0.031082479283213615,
-0.055167291313409805,
0.04080076143145561,
0.06237408146262169,
-0.0060380566865205765,
-0.007072872016578913,
0.25718989968299866,
0.08115017414093018,
-0.0018656767206266522,
-0.0709218680858612,
0.055914513766765594,
0.016445070505142212,
0.0564819797873497,
0.07317715883255005,
0.05913015827536583,
0.027723869308829308,
0.07779153436422348,
0.060071516782045364,
-0.007243873085826635,
-0.04913724586367607,
-0.06347004324197769,
-0.027562761679291725,
0.08634694665670395,
-0.0175641942769289,
0.09104092419147491,
0.12690387666225433,
-0.052363429218530655,
0.006516739260405302,
-0.03274639695882797,
-0.05228272080421448,
-0.15372596681118011,
-0.19265799224376678,
-0.08410533517599106,
-0.11393267661333084,
0.03020910546183586,
-0.09558413177728653,
0.040890172123909,
0.06267426162958145,
0.05259932950139046,
-0.050175171345472336,
0.003746095346286893,
-0.010680551640689373,
-0.06471575796604156,
0.07236453890800476,
-0.028445163741707802,
0.02719707041978836,
-0.07552506774663925,
-0.014066273346543312,
-0.063225157558918,
-0.0467803031206131,
-0.036711398512125015,
0.059050049632787704,
0.020925790071487427,
0.0454951673746109,
-0.133080393075943,
-0.07453975081443787,
-0.04458501189947128,
0.054712191224098206,
0.02359694242477417,
0.16524924337863922,
0.014143720269203186,
-0.011845545843243599,
0.05693808197975159,
0.172040656208992,
-0.038605257868766785,
-0.10545060783624649,
-0.043073464184999466,
0.16965802013874054,
0.023394731804728508,
0.04107775166630745,
0.006772690452635288,
0.015023903921246529,
-0.027153026312589645,
0.3453980088233948,
0.288048654794693,
-0.10212592035531998,
0.018246658146381378,
-0.021862352266907692,
0.03034358285367489,
0.06844350695610046,
0.12959334254264832,
0.10881296545267105,
0.20990362763404846,
-0.07219986617565155,
-0.06748899072408676,
-0.07748356461524963,
0.021169332787394524,
-0.10375670343637466,
0.08185678720474243,
0.005325254052877426,
-0.09320597350597382,
-0.03272281587123871,
0.09537962079048157,
-0.17274652421474457,
0.08563049882650375,
-0.004398995079100132,
-0.12151198089122772,
-0.03424680978059769,
-0.002985055325552821,
0.07231775671243668,
-0.0008496428490616381,
0.024526016786694527,
-0.06182459369301796,
-0.041415877640247345,
0.05475268512964249,
-0.0044367010705173016,
-0.2126384824514389,
0.02068512886762619,
0.06696335226297379,
-0.0013985815457999706,
0.03933676332235336,
-0.007371969521045685,
0.11203435063362122,
0.06820465624332428,
0.06483098119497299,
-0.0719994381070137,
0.08872124552726746,
0.014060961082577705,
-0.06090587005019188,
0.03618868812918663,
-0.022428318858146667,
-0.0032652681693434715,
-0.004855544771999121,
0.04206673428416252,
-0.037646062672138214,
0.06020224466919899,
-0.0012370774056762457,
-0.056301265954971313,
-0.029712067916989326,
0.020235275849699974,
-0.07321474701166153,
0.09561844915151596,
0.05176868662238121,
-0.010201070457696915,
-0.031797103583812714,
-0.07183147221803665,
-0.00331803853623569,
-0.003993404563516378,
-0.15203137695789337,
-0.03916352614760399,
-0.0990368202328682,
-0.07603249698877335,
0.10195887833833694,
0.017836207523941994,
-0.16887257993221283,
-0.005666637793183327,
-0.08880164474248886,
0.007904051803052425,
-0.16425450146198273,
0.06891398131847382,
0.11502542346715927,
-0.0008546813041903079,
-0.020225094631314278,
-0.05280805379152298,
0.042419176548719406,
0.03357136249542236,
-0.09693200886249542,
-0.09446734189987183
] |
null | null | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="danylov/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.20 +/- 2.61", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | danylov/Taxi-v3 | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | 2024-02-13T17:06:25+00:00 | [] | [] | TAGS
#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
|
# Q-Learning Agent playing1 Taxi-v3
This is a trained model of a Q-Learning agent playing Taxi-v3 .
## Usage
| [
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
"TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n",
"# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
32,
33
] | [
"passage: TAGS\n#Taxi-v3 #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 Taxi-v3\n This is a trained model of a Q-Learning agent playing Taxi-v3 .\n\n ## Usage"
] | [
0.048862796276807785,
-0.16549694538116455,
-0.005485367961227894,
0.02960980497300625,
0.1345081776380539,
-0.01784728653728962,
0.11895976960659027,
0.07759871333837509,
-0.07461097836494446,
-0.055395450443029404,
0.1418241262435913,
0.09088201075792313,
0.055222880095243454,
0.05699880048632622,
0.09511256217956543,
-0.27440664172172546,
0.048217080533504486,
-0.02918700873851776,
0.05621987581253052,
0.11878681182861328,
0.0670095682144165,
-0.040441032499074936,
0.061956584453582764,
0.11818158626556396,
-0.1018151044845581,
-0.007344264071434736,
0.035402704030275345,
-0.09440053254365921,
0.17413531243801117,
0.07204403728246689,
0.12337774783372879,
0.05132639780640602,
0.179361954331398,
-0.12762396037578583,
0.024310702458024025,
-0.0010275895474478602,
-0.10138072073459625,
-0.03909514099359512,
-0.012415820732712746,
-0.08349097520112991,
0.03230205550789833,
0.23522862792015076,
0.07199250161647797,
0.06632792949676514,
-0.17707863450050354,
-0.06584878265857697,
-0.04375573247671127,
0.069611094892025,
0.14951466023921967,
0.03758616745471954,
-0.033800311386585236,
0.1684885323047638,
-0.2564343810081482,
0.05066783353686333,
0.037275806069374084,
-0.42313119769096375,
0.017119819298386574,
0.1507398933172226,
0.15090937912464142,
0.06909667700529099,
-0.10573802888393402,
0.013512322679162025,
0.051325585693120956,
-0.0005318621988408267,
0.024325110018253326,
0.006554204970598221,
0.15601307153701782,
0.08537693321704865,
-0.1487821787595749,
-0.058576688170433044,
0.17441977560520172,
-0.03788546845316887,
-0.02613203600049019,
-0.039745692163705826,
0.0067160045728087425,
-0.06427708268165588,
-0.004067842848598957,
-0.1777995079755783,
0.00734262028709054,
0.06666424125432968,
-0.014348524622619152,
0.014901017770171165,
-0.035522811114788055,
-0.0966939702630043,
-0.023098144680261612,
-0.08592145889997482,
0.01677769608795643,
-0.006319406442344189,
-0.10187895596027374,
0.05002119392156601,
-0.061138734221458435,
0.0014382408699020743,
-0.05123179033398628,
-0.15047866106033325,
-0.049055423587560654,
-0.03481535613536835,
0.1474713832139969,
-0.0044205985032022,
-0.01873963139951229,
-0.03164304047822952,
0.15474793314933777,
0.049551334232091904,
-0.05370146036148071,
0.05625450983643532,
0.07605006545782089,
0.23867930471897125,
0.10401605814695358,
0.10196955502033234,
-0.06798075139522552,
0.10180158913135529,
-0.12330973148345947,
-0.08915644884109497,
-0.17508824169635773,
0.11820860952138901,
0.00015364694991149008,
0.1317785084247589,
-0.12023144960403442,
0.07898581773042679,
-0.067511186003685,
0.013453764840960503,
0.01636839471757412,
0.0820009782910347,
-0.012399360537528992,
0.10676060616970062,
-0.005061192903667688,
-0.06941985338926315,
0.014177112840116024,
0.05935845896601677,
0.03754841163754463,
-0.038601722568273544,
-0.03192409873008728,
-0.05762290954589844,
-0.05065649375319481,
-0.10128600150346756,
-0.06447898596525192,
0.018573462963104248,
-0.007677143905311823,
-0.1833900660276413,
-0.06407523155212402,
0.00897200871258974,
0.015712225809693336,
-0.03988850116729736,
-0.05148044601082802,
-0.15265507996082306,
-0.042461175471544266,
-0.015450406819581985,
-0.03500641882419586,
-0.06214277446269989,
-0.0383245050907135,
0.046435944736003876,
-0.07560601085424423,
0.013364278711378574,
0.023342855274677277,
0.05405820533633232,
-0.025881100445985794,
0.06068144738674164,
-0.08357544988393784,
0.09493788331747055,
-0.1540430635213852,
-0.03271956741809845,
-0.025445878505706787,
-0.041183918714523315,
0.1752462536096573,
0.06099751964211464,
-0.015994304791092873,
0.15260063111782074,
-0.17141541838645935,
-0.058121129870414734,
0.15596486628055573,
0.008629098534584045,
-0.09967197477817535,
-0.003560945624485612,
-0.09397093951702118,
0.1428760588169098,
0.08571921288967133,
0.2478504776954651,
0.12005335837602615,
-0.22748184204101562,
0.055358242243528366,
0.12515293061733246,
-0.14365963637828827,
0.10365243256092072,
0.07344598323106766,
0.005470725707709789,
-0.18886831402778625,
-0.06843198090791702,
-0.06121627986431122,
0.1053021252155304,
-0.08522345870733261,
-0.0776243582367897,
0.09323626756668091,
-0.05086790770292282,
0.24641476571559906,
-0.028281206265091896,
0.06174173951148987,
-0.026681531220674515,
-0.1389324963092804,
-0.01723906397819519,
0.060955192893743515,
0.05258452147245407,
-0.024835573509335518,
-0.25895482301712036,
0.13646544516086578,
0.048650871962308884,
0.025074828416109085,
0.004106190986931324,
-0.05691491439938545,
0.016934165731072426,
0.1511998474597931,
0.020012924447655678,
0.13717477023601532,
0.027723990380764008,
0.0706823319196701,
-0.006239562761038542,
-0.10560829937458038,
-0.04169593006372452,
0.061916545033454895,
-0.08518962562084198,
-0.06641357392072678,
0.011197872459888458,
-0.06935211271047592,
-0.11783787608146667,
-0.12166737765073776,
-0.026334572583436966,
-0.02980303019285202,
-0.07444227486848831,
0.02368103712797165,
0.06536602973937988,
-0.06702698022127151,
-0.0023908785078674555,
0.007125476840883493,
-0.011537045240402222,
0.16434046626091003,
0.011393417604267597,
-0.007796820718795061,
0.1328643560409546,
-0.11533161997795105,
0.12461213022470474,
0.049438029527664185,
-0.024806302040815353,
-0.04662557691335678,
0.0014137453399598598,
-0.057529181241989136,
0.029044216498732567,
-0.04390640929341316,
0.02774495631456375,
0.20111067593097687,
0.02772962674498558,
0.11389166116714478,
-0.0656520202755928,
0.04385066404938698,
-0.007961965166032314,
-0.009693224914371967,
0.018563594669103622,
0.07608018070459366,
0.07813210040330887,
-0.1324140727519989,
0.02262016013264656,
0.22455167770385742,
0.1385764330625534,
0.18313980102539062,
-0.010877152904868126,
0.06325667351484299,
-0.04875868931412697,
0.027505528181791306,
0.024100203067064285,
0.10314226150512695,
-0.10732068121433258,
-0.0322517491877079,
-0.025407759472727776,
0.023599207401275635,
-0.08197105675935745,
-0.1055799350142479,
-0.090115025639534,
0.01222382951527834,
-0.03125503659248352,
-0.15570329129695892,
0.13300658762454987,
-0.10451057553291321,
0.01802753657102585,
0.04692702740430832,
-0.22163605690002441,
0.11530312895774841,
0.014291439205408096,
-0.10303618758916855,
0.11281087249517441,
-0.12051989883184433,
-0.08699832111597061,
-0.05777236074209213,
-0.18658851087093353,
0.05280197039246559,
0.04673841595649719,
0.05166793242096901,
-0.18521739542484283,
0.024835903197526932,
0.05545609071850777,
0.13426995277404785,
-0.09743253141641617,
-0.07142634689807892,
-0.15038461983203888,
0.016068490222096443,
-0.033661190420389175,
-0.16029728949069977,
-0.005609163548797369,
-0.032781440764665604,
-0.18849676847457886,
-0.04539939761161804,
-0.15086813271045685,
-0.034627582877874374,
0.20464378595352173,
0.026907702907919884,
0.09480511397123337,
-0.07926445454359055,
0.3802889585494995,
-0.042039383202791214,
-0.06146497279405594,
-0.01321389526128769,
-0.07072482258081436,
0.02512686513364315,
0.13271741569042206,
0.0036099457647651434,
-0.017886579036712646,
-0.0037857077550143003,
0.0024592927657067776,
-0.06234965845942497,
-0.13400450348854065,
0.0028710351325571537,
0.03905198723077774,
0.1874423623085022,
0.004639793653041124,
0.06659388542175293,
0.03133883699774742,
0.057546284049749374,
0.07748064398765564,
0.030926106497645378,
0.0011591583024710417,
-0.01591806672513485,
0.06604493409395218,
-0.11684755235910416,
0.042466625571250916,
-0.030429253354668617,
-0.10143838077783585,
-0.013183288276195526,
0.07950251549482346,
0.12755028903484344,
0.17849206924438477,
-0.04790908098220825,
0.17489230632781982,
0.13580141961574554,
0.16576050221920013,
0.049315933138132095,
-0.020801831036806107,
-0.08773037046194077,
-0.06118565797805786,
0.004774159751832485,
-0.031952597200870514,
0.04869702458381653,
0.3231290578842163,
0.037619613111019135,
-0.09036035090684891,
0.11149907857179642,
0.009480619803071022,
0.05359881371259689,
0.022797370329499245,
-0.11162138730287552,
0.11170321702957153,
0.07968773692846298,
-0.06341761350631714,
-0.07602835446596146,
0.16758501529693604,
-0.1109386757016182,
-0.26646625995635986,
-0.11410990357398987,
-0.012305386364459991,
0.07903840392827988,
0.005651174578815699,
0.05498376116156578,
-0.11829282343387604,
-0.16034497320652008,
-0.034191906452178955,
0.1335442066192627,
-0.3077351450920105,
0.2065143585205078,
-0.0198091771453619,
0.06707923114299774,
-0.039657969027757645,
-0.07026876509189606,
0.09694647043943405,
0.13174086809158325,
0.29124146699905396,
0.01396956667304039,
0.04841272905468941,
-0.15176129341125488,
-0.0976925864815712,
0.0018439020495861769,
0.015482662245631218,
-0.02563396655023098,
0.028520405292510986,
-0.0540912002325058,
0.008404579944908619,
-0.018086453899741173,
0.2102297693490982,
-0.11316607892513275,
0.004344627261161804,
-0.06968966871500015,
-0.11707738786935806,
0.19409789144992828,
-0.07178345322608948,
-0.04543264955282211,
-0.14959357678890228,
-0.15512511134147644,
-0.004174166824668646,
-0.02413962036371231,
-0.019664527848362923,
-0.17603960633277893,
-0.18804074823856354,
-0.05204557999968529,
-0.005645004566758871,
-0.003464865731075406,
0.05867868289351463,
-0.07517234236001968,
-0.04805335775017738,
0.1009904220700264,
-0.07743175327777863,
-0.056063808500766754,
-0.1103200614452362,
0.1391381323337555,
0.06248528137803078,
0.16743235290050507,
0.05907081440091133,
0.0006117874872870743,
0.11471151560544968,
-0.02913086675107479,
0.11103474348783493,
-0.11291708797216415,
-0.17145049571990967,
-0.08334989100694656,
-0.018775060772895813,
0.09519003331661224,
-0.04789286106824875,
0.0028788831550627947,
0.2550160884857178,
0.14880181849002838,
-0.0897710770368576,
0.27680760622024536,
0.04414956644177437,
-0.09375058114528656,
-0.18432219326496124,
-0.15961645543575287,
0.03759992495179176,
0.060025621205568314,
0.13095876574516296,
-0.057205069810152054,
-0.08483537286520004,
-0.08492398262023926,
-0.07478608191013336,
-0.13140805065631866,
-0.24232175946235657,
-0.030598774552345276,
0.22874866425991058,
0.08656918257474899,
0.08219650387763977,
-0.012482990510761738,
-0.01186054851859808,
0.00526038184762001,
0.02680150233209133,
0.12018456310033798,
-0.13341329991817474,
0.11107480525970459,
0.022198403254151344,
0.044267985969781876,
0.009712530300021172,
0.07929777354001999,
0.03375575691461563,
-0.003218587953597307,
-0.0006439819699153304,
-0.0988350659608841,
-0.2596651017665863,
0.0816885456442833,
-0.01623627357184887,
-0.09960969537496567,
0.014988959766924381,
0.02061903104186058,
-0.2089255303144455,
0.011128270998597145,
-0.019883770495653152,
-0.03150356933474541,
-0.06483490765094757,
-0.10664787143468857,
-0.056551624089479446,
0.04928823933005333,
0.10853826254606247,
0.011660109274089336,
0.05354316532611847,
-0.0404130220413208,
0.07917837053537369,
0.0826287642121315,
0.15132710337638855,
0.06795957684516907,
-0.190711110830307,
-0.10953907668590546,
-0.0414445661008358,
0.12121522426605225,
-0.12505418062210083,
0.036917757242918015,
0.053161121904850006,
-0.016534561291337013,
0.14621229469776154,
0.1070784479379654,
-0.07452095299959183,
0.11915595084428787,
0.08904775977134705,
-0.04094788804650307,
-0.23367151618003845,
-0.07120766490697861,
0.11133213341236115,
0.07195597887039185,
-0.03961895406246185,
0.018120890483260155,
-0.04960581287741661,
-0.013980977237224579,
0.048759616911411285,
-0.0538676381111145,
-0.07230538129806519,
0.004421027842909098,
0.1247575581073761,
0.1029362753033638,
-0.04655474051833153,
0.01296416949480772,
0.037371400743722916,
0.003788623260334134,
0.04730486497282982,
0.0407949760556221,
-0.08269952982664108,
-0.04124005511403084,
0.02782733179628849,
0.37552911043167114,
-0.010165480896830559,
-0.020456433296203613,
0.018555615097284317,
-0.19949445128440857,
0.09135842323303223,
0.13205479085445404,
0.04697350412607193,
0.004247748292982578,
-0.08139242231845856,
0.026877427473664284,
-0.010625290684401989,
0.09936143457889557,
-0.07806670665740967,
-0.05493134260177612,
-0.21631066501140594,
-0.025010565295815468,
0.017490221187472343,
0.24077683687210083,
-0.08458559215068817,
-0.12801732122898102,
-0.20628872513771057,
0.13128381967544556,
-0.11333390325307846,
-0.03695881739258766,
-0.024473199620842934,
0.03926658630371094,
-0.01989821158349514,
0.06291737407445908,
-0.0710630789399147,
0.006373001262545586,
-0.11024709790945053,
0.055267609655857086,
0.04204455390572548,
0.1229788213968277,
0.014207782223820686,
0.02016810141503811,
0.05822525918483734,
-0.01837925612926483,
0.07173580676317215,
-0.06203491613268852,
-0.04550490900874138,
0.14224006235599518,
-0.020255116745829582,
-0.04152837023139,
-0.0483345128595829,
-0.036874305456876755,
0.11981741338968277,
-0.05059147998690605,
-0.007141099311411381,
-0.054929375648498535,
-0.06906463205814362,
0.03462086617946625,
-0.009175732731819153,
-0.008798843249678612,
0.06801853328943253,
0.04024988040328026,
-0.026994358748197556,
0.005263668950647116,
0.03447828069329262,
-0.10330043733119965,
-0.04955084249377251,
0.16955432295799255,
-0.0749620869755745,
0.10274054110050201,
-0.031069839373230934,
0.018015999346971512,
0.005847334861755371,
-0.022399673238396645,
-0.015360680408775806,
-0.1457086056470871,
-0.06137600541114807,
-0.09489979594945908,
0.11565322428941727,
0.08146517723798752,
0.03358805552124977,
0.04274565726518631,
0.019532648846507072,
-0.04414922371506691,
-0.038583990186452866,
0.12961317598819733,
0.08133101463317871,
0.012996876612305641,
0.01137041300535202,
0.01941833831369877,
-0.020302120596170425,
0.0028480992186814547,
-0.01250747125595808,
-0.07239153981208801,
-0.05874783173203468,
0.09400010108947754,
0.1600283533334732,
-0.06127211079001427,
-0.13325586915016174,
-0.020593497902154922,
0.04988488554954529,
0.0014717020094394684,
-0.08777432143688202,
0.04833676666021347,
0.15805292129516602,
-0.05623878911137581,
0.03216489031910896,
-0.09984751045703888,
-0.07263360917568207,
-0.16060975193977356,
-0.10029061883687973,
-0.06092562898993492,
-0.28350353240966797,
0.09752398729324341,
0.006392303854227066,
-0.014731393195688725,
0.059529416263103485,
0.051305368542671204,
-0.052508849650621414,
0.07068239152431488,
-0.18146829307079315,
-0.007054794579744339,
0.03497592359781265,
-0.13212306797504425,
0.02475893869996071,
-0.2378365397453308,
0.10198072344064713,
-0.04623803123831749,
-0.1519704908132553,
-0.04004510119557381,
0.0641569048166275,
-0.09540136158466339,
-0.01822364516556263,
-0.0475153923034668,
-0.01922670193016529,
0.01624443754553795,
-0.009348669089376926,
-0.031147832050919533,
0.13716529309749603,
0.02827494591474533,
-0.03268734738230705,
0.005254602525383234,
0.0223685409873724,
0.03955082967877388,
-0.0969657450914383,
-0.05986930429935455,
0.08311155438423157,
-0.031056145206093788,
0.14728976786136627,
0.000341245875461027,
0.04181376099586487,
-0.06758682429790497,
0.2593761384487152,
0.2023983597755432,
-0.12479214370250702,
0.008118697442114353,
-0.021801479160785675,
0.012670028023421764,
-0.041751839220523834,
0.13110700249671936,
0.013386172242462635,
0.12186761200428009,
-0.17513342201709747,
-0.01036517322063446,
-0.0818324014544487,
-0.04501292482018471,
0.06702108681201935,
0.14714950323104858,
0.15742522478103638,
0.03436789661645889,
-0.07328428328037262,
0.06722653657197952,
-0.30119743943214417,
0.20540550351142883,
-0.1346001923084259,
-0.01498429011553526,
-0.040251150727272034,
-0.058389630168676376,
0.061147745698690414,
0.11309876292943954,
0.10832664370536804,
-0.021150551736354828,
-0.0905047357082367,
-0.04486766457557678,
-0.039378076791763306,
-0.13019338250160217,
-0.02718670479953289,
0.1654091775417328,
0.06799814850091934,
0.31520840525627136,
-0.017577875405550003,
0.07702425122261047,
0.034410297870635986,
0.06451138854026794,
0.004519328009337187,
0.09537279605865479,
0.07960964739322662,
-0.06345855444669724,
-0.07373003661632538,
-0.001637450186535716,
0.05033271387219429,
0.14567798376083374,
-0.03826142102479935,
-0.18691548705101013,
0.15858715772628784,
0.07192251086235046,
-0.13762691617012024,
-0.05777517706155777,
0.08409425616264343,
-0.0739973932504654,
0.0550808347761631,
0.08115427941083908,
0.015876613557338715,
-0.017793258652091026,
-0.004664506763219833,
0.06074233725667,
0.024694660678505898,
-0.02343848906457424,
0.003570882137864828,
-0.08337053656578064,
-0.04151543974876404,
0.07267895340919495,
-0.0844460055232048,
-0.20546193420886993,
-0.0957019031047821,
-0.07551700621843338,
0.030557552352547646,
-0.0649830624461174,
0.12575586140155792,
0.1717868149280548,
0.0593598335981369,
-0.03307248651981354,
-0.10721943527460098,
-0.035562749952077866,
0.07602505385875702,
-0.044773899018764496,
-0.09409699589014053
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | kaushalpowar/test | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:06:57+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
26,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.08389580249786377,
0.19830818474292755,
-0.0013316317927092314,
0.02313883788883686,
0.11396584659814835,
0.01961737498641014,
0.053626976907253265,
0.14538456499576569,
0.0060051376931369305,
0.10656800121068954,
0.066679947078228,
0.09131570905447006,
0.09678101539611816,
0.20042605698108673,
0.04371999576687813,
-0.17659740149974823,
0.010636410675942898,
-0.06930278241634369,
-0.010073255747556686,
0.11651819199323654,
0.141214057803154,
-0.10151198506355286,
0.07627976685762405,
-0.03319970890879631,
-0.02870541252195835,
-0.0070160143077373505,
-0.07769215852022171,
-0.05755697935819626,
0.07573003321886063,
0.054863471537828445,
0.04207949340343475,
-0.0008347301045432687,
0.08447454124689102,
-0.2674994468688965,
0.013753628358244896,
0.07452993094921112,
0.010659529827535152,
0.05990942195057869,
0.07833302766084671,
-0.04036625102162361,
0.12881849706172943,
-0.06320446729660034,
0.13035163283348083,
0.0906217098236084,
-0.0681561604142189,
-0.24378153681755066,
-0.08239314705133438,
0.06505522131919861,
0.12533815205097198,
0.07694927603006363,
-0.02823091857135296,
0.16422191262245178,
-0.07247646898031235,
0.019290022552013397,
0.09481704235076904,
-0.1151006743311882,
-0.060644298791885376,
0.08318385481834412,
0.14101974666118622,
0.10340547561645508,
-0.1255619376897812,
-0.012289565056562424,
0.04275871813297272,
0.045979104936122894,
0.07389909774065018,
0.011339850723743439,
0.1143413558602333,
0.05629947781562805,
-0.13526225090026855,
-0.05700986459851265,
0.14547574520111084,
0.023872992023825645,
-0.057064127177000046,
-0.2138909548521042,
-0.002902575535699725,
-0.07730814069509506,
-0.011685127392411232,
-0.06846728920936584,
0.0291305985301733,
-0.01194276288151741,
0.060226380825042725,
-0.0496203787624836,
-0.09797755628824234,
-0.046314824372529984,
0.1015089675784111,
0.054820988327264786,
0.011354796588420868,
-0.01489334274083376,
0.03576440364122391,
0.13432876765727997,
0.04213530570268631,
-0.10012737661600113,
-0.07065672427415848,
-0.0701170489192009,
-0.09620913118124008,
-0.03947552293539047,
0.04272124543786049,
0.020167991518974304,
0.042202774435281754,
0.2283228635787964,
0.024096308276057243,
0.05459817871451378,
0.029667891561985016,
0.0026177873369306326,
0.03211980313062668,
0.1073630079627037,
-0.041210614144802094,
-0.188126802444458,
-0.03292805701494217,
0.0931866466999054,
-0.009821015410125256,
-0.028658604249358177,
-0.033444397151470184,
0.035014089196920395,
0.08379437029361725,
0.11821532249450684,
0.08875755965709686,
-0.012828069739043713,
-0.037612639367580414,
-0.03493109717965126,
0.2115669697523117,
-0.14141373336315155,
0.045799970626831055,
-0.022097334265708923,
-0.018195297569036484,
-0.06905751675367355,
0.030103791505098343,
0.01831657998263836,
-0.003142025787383318,
0.06966056674718857,
-0.061253178864717484,
-0.05794486775994301,
-0.11518853157758713,
-0.045523155480623245,
0.04711875319480896,
-0.024105608463287354,
-0.024469668045639992,
-0.07765042781829834,
-0.11219723522663116,
-0.06417357176542282,
0.06612563133239746,
-0.04156653955578804,
-0.03974827378988266,
0.005308232270181179,
-0.07131324708461761,
0.008387917652726173,
0.008993842639029026,
0.12122467905282974,
-0.030063031241297722,
0.05833350867033005,
-0.002476902212947607,
0.05916252359747887,
0.10643328726291656,
0.03227818012237549,
-0.08492200076580048,
0.057466037571430206,
-0.20633617043495178,
0.08371785283088684,
-0.11420095711946487,
0.034276340156793594,
-0.17048145830631256,
-0.024183684960007668,
0.008447963744401932,
0.023597201332449913,
0.023726604878902435,
0.1338067352771759,
-0.2097422182559967,
-0.016196569427847862,
0.14133213460445404,
-0.09649793803691864,
-0.12422871589660645,
0.07990546524524689,
-0.03459475561976433,
0.1747698187828064,
0.038475677371025085,
-0.019652999937534332,
0.09909367561340332,
-0.15559963881969452,
-0.05852397903800011,
-0.026064254343509674,
-0.008927824907004833,
0.08823978155851364,
0.07542291283607483,
-0.05844951793551445,
0.02285866066813469,
0.02562655322253704,
-0.04727208614349365,
-0.0268824752420187,
-0.05256075784564018,
-0.10127434879541397,
-0.023140445351600647,
-0.09642518311738968,
0.026515161618590355,
0.000058677000197349116,
-0.07310442626476288,
-0.028560271486639977,
-0.17347893118858337,
-0.02563360333442688,
0.10103316605091095,
0.004820956848561764,
-0.007559072691947222,
-0.08540112525224686,
0.022149885073304176,
-0.05362366884946823,
-0.006164622958749533,
-0.16996455192565918,
-0.03558015450835228,
0.051895126700401306,
-0.14917676150798798,
0.015460150316357613,
-0.07327745854854584,
0.07047311216592789,
0.02098717913031578,
-0.05859505757689476,
-0.03108096309006214,
0.0007694467785768211,
0.004292082041501999,
-0.06229274719953537,
-0.1903683841228485,
-0.058886781334877014,
-0.041500482708215714,
0.15720732510089874,
-0.24841000139713287,
0.0300158578902483,
0.03247617185115814,
0.13185922801494598,
0.007058668415993452,
-0.06344027817249298,
0.02096918225288391,
-0.04676475748419762,
-0.050621338188648224,
-0.06898977607488632,
-0.009901339188218117,
-0.014539826661348343,
-0.031393732875585556,
0.012980648316442966,
-0.14970256388187408,
-0.060514215379953384,
0.09452559798955917,
0.11224991828203201,
-0.14555825293064117,
0.00204002158716321,
-0.0460561066865921,
-0.07002599537372589,
-0.07487804442644119,
-0.0761631652712822,
0.07739497721195221,
0.044650159776210785,
0.049250341951847076,
-0.06317461282014847,
-0.06234706938266754,
0.023210179060697556,
0.005524294450879097,
-0.019023682922124863,
0.0948529988527298,
0.074309803545475,
-0.09122881293296814,
0.07973480224609375,
0.08461450785398483,
0.04414684325456619,
0.086973637342453,
0.005991141777485609,
-0.11396963149309158,
-0.03062884695827961,
0.037754856050014496,
0.024159027263522148,
0.15351562201976776,
-0.08692087233066559,
0.030462130904197693,
0.052177220582962036,
-0.03854219615459442,
0.03157065063714981,
-0.0923321321606636,
0.025362705811858177,
0.021495236083865166,
-0.006555700208991766,
0.05864228308200836,
-0.018769768998026848,
-0.01403577346354723,
0.06336429715156555,
0.05677810311317444,
0.044270504266023636,
0.02595379762351513,
-0.02093072421848774,
-0.1278371512889862,
0.16537296772003174,
-0.09028079360723495,
-0.2540280222892761,
-0.17074446380138397,
0.015454737469553947,
0.03706491366028786,
-0.021728800609707832,
0.039588842540979385,
-0.06286025792360306,
-0.10237989574670792,
-0.09417891502380371,
0.0029635571409016848,
0.023925531655550003,
-0.058347854763269424,
-0.0817074254155159,
0.060779985040426254,
0.04047083482146263,
-0.13689260184764862,
0.0349188968539238,
0.06170675903558731,
-0.03042641654610634,
0.0018567070364952087,
0.07321398705244064,
0.12743599712848663,
0.14838241040706635,
-0.006730219814926386,
-0.012446845881640911,
0.035035960376262665,
0.229813352227211,
-0.1490442156791687,
0.10630457103252411,
0.14053207635879517,
-0.021705523133277893,
0.06635113060474396,
0.1461038440465927,
0.023231739178299904,
-0.07546708732843399,
0.04147516191005707,
0.04027445614337921,
-0.04228919371962547,
-0.2589097023010254,
-0.05694316700100899,
-0.00946022942662239,
-0.07043391466140747,
0.09718906134366989,
0.09238530695438385,
0.11972260475158691,
0.0337289460003376,
-0.05568677559494972,
-0.025771914049983025,
-0.003401360474526882,
0.114128477871418,
-0.027640055865049362,
-0.004564122296869755,
0.07965842634439468,
-0.05878787487745285,
0.011684526689350605,
0.09941446036100388,
0.019347423687577248,
0.17601320147514343,
0.02533329278230667,
0.10681075602769852,
0.06725578010082245,
0.09347675740718842,
-0.0015635732561349869,
0.034774236381053925,
0.05337131395936012,
0.022044572979211807,
0.010453542694449425,
-0.09408048540353775,
-0.012431944720447063,
0.13713060319423676,
0.019816776737570763,
0.009031654335558414,
0.008926562033593655,
-0.01010479498654604,
0.03131420537829399,
0.20501568913459778,
0.0009575071162544191,
-0.22537250816822052,
-0.09500737488269806,
0.059459153562784195,
-0.06931101530790329,
-0.143676295876503,
-0.02094252221286297,
0.030270220711827278,
-0.17292405664920807,
0.016790566965937614,
-0.0316389761865139,
0.09112390875816345,
-0.07145322859287262,
-0.028050832450389862,
0.06891903281211853,
0.07569212466478348,
-0.012108199298381805,
0.07973295450210571,
-0.19069278240203857,
0.12254468351602554,
0.03037673607468605,
0.08605273067951202,
-0.11708726733922958,
0.07849059253931046,
-0.0019813794642686844,
-0.014807495288550854,
0.17999744415283203,
-0.014062200672924519,
-0.0586031936109066,
-0.08878950774669647,
-0.08704045414924622,
-0.011727320961654186,
0.10361312329769135,
-0.09322915226221085,
0.09586969763040543,
-0.02775636687874794,
-0.03705112263560295,
0.012418309226632118,
-0.10469507426023483,
-0.1636953055858612,
-0.18679304420948029,
0.06244563311338425,
-0.07802703976631165,
0.012347841635346413,
-0.11227322369813919,
-0.06334327906370163,
-0.01575082167983055,
0.23160123825073242,
-0.16648635268211365,
-0.07049825042486191,
-0.1498587429523468,
-0.03997112438082695,
0.17463743686676025,
-0.042160745710134506,
0.06849376112222672,
-0.021383514627814293,
0.1873992383480072,
-0.008081548847258091,
-0.013158116489648819,
0.06569221615791321,
-0.09637628495693207,
-0.16879262030124664,
-0.05748843029141426,
0.14160962402820587,
0.10863390564918518,
0.05731578543782234,
-0.0038195757661014795,
0.013171887956559658,
-0.03383830562233925,
-0.09896382689476013,
0.013824623078107834,
0.13817466795444489,
0.0034514935687184334,
0.00682973163202405,
-0.03995988517999649,
-0.07027145475149155,
-0.05825701728463173,
-0.07912654429674149,
0.057147104293107986,
0.187900573015213,
-0.09512355923652649,
0.1602867990732193,
0.12431421875953674,
-0.06468851119279861,
-0.2306901067495346,
0.03996593505144119,
0.04701630026102066,
0.007666614837944508,
0.022401191294193268,
-0.19138796627521515,
0.09788824617862701,
0.0009011493530124426,
-0.06807263940572739,
0.14616990089416504,
-0.16564498841762543,
-0.1461436152458191,
0.08002161979675293,
0.025075770914554596,
-0.22560662031173706,
-0.14821304380893707,
-0.1037549376487732,
-0.03735695406794548,
-0.13707835972309113,
0.048581719398498535,
0.02614329755306244,
0.019834673032164574,
0.025222565978765488,
0.005338077899068594,
0.029657263308763504,
-0.07272187620401382,
0.1870686560869217,
-0.020297454670071602,
0.0072362530045211315,
-0.050640691071748734,
-0.04617878794670105,
0.09227550774812698,
-0.06150037795305252,
0.11741586774587631,
0.018679620698094368,
0.018796883523464203,
-0.1431548148393631,
-0.049209367483854294,
-0.060803934931755066,
0.04456847906112671,
-0.07284719496965408,
-0.09393193572759628,
-0.04137463867664337,
0.08888561278581619,
0.07211937010288239,
-0.032792408019304276,
-0.0027768779546022415,
-0.07569456845521927,
0.09405932575464249,
0.184477761387825,
0.17357055842876434,
0.009977072477340698,
-0.07020942866802216,
0.024555526673793793,
-0.042279548943042755,
0.03349342197179794,
-0.24652716517448425,
0.03456863760948181,
0.066053606569767,
0.03803660348057747,
0.08509242534637451,
-0.016836483031511307,
-0.1781480610370636,
-0.04086102172732353,
0.08498652279376984,
-0.06206206604838371,
-0.19876568019390106,
-0.02703288197517395,
0.08424776047468185,
-0.20383712649345398,
-0.032998621463775635,
0.041543323546648026,
-0.03834589570760727,
-0.02396267279982567,
-0.002415500348433852,
0.06396626681089401,
-0.008327016606926918,
0.12156640738248825,
0.06747189164161682,
0.10266115516424179,
-0.09284433722496033,
0.08920657634735107,
0.10416955500841141,
-0.09140542894601822,
0.03545991703867912,
0.10264154523611069,
-0.05670900270342827,
-0.04460543021559715,
0.033935222774744034,
0.05925208330154419,
-0.028357384726405144,
-0.06409841030836105,
-0.000502707262057811,
-0.0359574519097805,
0.04993389546871185,
0.08058220148086548,
0.036113787442445755,
-0.01202210783958435,
0.06544706225395203,
0.028145326301455498,
-0.11693570017814636,
0.10949387401342392,
0.04405685141682625,
0.04509059712290764,
-0.07182393968105316,
-0.012280966155230999,
0.015999672934412956,
0.032540347427129745,
-0.019734015688300133,
-0.014576527290046215,
-0.03146412968635559,
-0.007561005651950836,
-0.1553635597229004,
-0.02064543403685093,
-0.06516171246767044,
0.006067827809602022,
0.022207623347640038,
-0.03830232471227646,
-0.012014663778245449,
0.01381110493093729,
-0.07979435473680496,
-0.07571027427911758,
-0.01700955256819725,
0.08539021760225296,
-0.1381402313709259,
0.006627439055591822,
0.07182712107896805,
-0.10980239510536194,
0.07347989827394485,
-0.0048679932951927185,
0.017079560086131096,
0.010923396795988083,
-0.11654401570558548,
0.04386281594634056,
-0.005810429807752371,
0.01551580335944891,
0.022556742653250694,
-0.171111062169075,
0.011553828604519367,
-0.038553636521101,
-0.03114982508122921,
0.011926400475203991,
-0.025060230866074562,
-0.11875922232866287,
0.08676479011774063,
-0.028097305446863174,
-0.037512701004743576,
-0.03292486071586609,
0.06296087801456451,
0.08736220002174377,
-0.011740099638700485,
0.09667140990495682,
-0.025766119360923767,
0.04818311333656311,
-0.1756584197282791,
-0.01910574547946453,
-0.050167568027973175,
0.02537350542843342,
-0.01759655587375164,
-0.0070639788173139095,
0.055272240191698074,
-0.004191063344478607,
0.20991376042366028,
-0.03921036794781685,
0.1548677533864975,
0.05199402943253517,
-0.009925156831741333,
0.010884369723498821,
0.05032730847597122,
0.06423956155776978,
0.031145188957452774,
0.00853167474269867,
0.04660189896821976,
-0.004552975296974182,
-0.020357951521873474,
-0.13699717819690704,
0.02791593410074711,
0.16117429733276367,
0.061918217688798904,
0.0392887257039547,
0.03704594820737839,
-0.1422400325536728,
-0.09538721293210983,
0.10306388139724731,
-0.0331864058971405,
0.014331420883536339,
-0.08317886292934418,
0.17621558904647827,
0.12328410148620605,
-0.1574767529964447,
0.0577850341796875,
-0.07234696298837662,
-0.05066767707467079,
-0.1024852767586708,
-0.11832084506750107,
-0.06293155997991562,
-0.06027044355869293,
-0.004747506696730852,
-0.042489297688007355,
0.05734556168317795,
0.026751231402158737,
-0.003270963439717889,
-0.006759525276720524,
0.12665949761867523,
-0.0249644722789526,
-0.004145825747400522,
0.04152364656329155,
0.0326087586581707,
0.019319625571370125,
-0.05872373282909393,
0.017997145652770996,
0.018602589145302773,
0.022180357947945595,
0.06835069507360458,
0.0260987039655447,
-0.059317342936992645,
0.044286735355854034,
0.00319746439345181,
-0.11313364654779434,
0.018146557733416557,
-0.00002245741598017048,
-0.05020225793123245,
0.13557326793670654,
0.04076748713850975,
0.01548024732619524,
-0.029270920902490616,
0.24342355132102966,
-0.07199113070964813,
-0.08681939542293549,
-0.13965600728988647,
0.11511493474245071,
-0.023563209921121597,
0.03755274787545204,
0.016542524099349976,
-0.12659503519535065,
0.011511262506246567,
0.18531471490859985,
0.12824349105358124,
0.012459068559110165,
-0.007656481582671404,
0.05736639350652695,
-0.0007639875984750688,
-0.05985576659440994,
0.05051197111606598,
0.0664999932050705,
0.16097788512706757,
-0.09069112688302994,
0.0652846097946167,
-0.008405503816902637,
-0.0831485390663147,
-0.027498632669448853,
0.11705785244703293,
-0.022675158455967903,
0.02148384228348732,
-0.03778035193681717,
0.11204422265291214,
-0.052532415837049484,
-0.2719486355781555,
0.02952493168413639,
-0.09503202140331268,
-0.13993041217327118,
-0.02591860294342041,
0.041448429226875305,
-0.03349510580301285,
0.01577647216618061,
0.06254769116640091,
-0.045389387756586075,
0.18837277591228485,
0.025987716391682625,
-0.08679025620222092,
-0.07755549252033234,
0.05874146893620491,
-0.08695939928293228,
0.2789687216281891,
0.003863075515255332,
0.04782010242342949,
0.12108923494815826,
-0.03053574077785015,
-0.18664880096912384,
0.014769754372537136,
0.11989909410476685,
-0.09114406257867813,
0.07780203968286514,
0.18139931559562683,
-0.005561648402363062,
0.12649618089199066,
0.04705416411161423,
-0.03877115994691849,
0.03976387158036232,
-0.02721380814909935,
-0.03821522742509842,
-0.12209630757570267,
0.05661242455244064,
-0.0612691193819046,
0.15957388281822205,
0.1158948540687561,
-0.05964287370443344,
0.001120698289014399,
-0.06126941740512848,
0.06300627440214157,
0.014774397015571594,
0.12115653604269028,
0.018452486023306847,
-0.2023056596517563,
0.05087360367178917,
-0.03283824771642685,
0.08166342973709106,
-0.254973828792572,
-0.08186668157577515,
0.07622263580560684,
-0.019022729247808456,
-0.04275642707943916,
0.12311509251594543,
0.06101066991686821,
0.03676839917898178,
-0.03853875398635864,
-0.08537755906581879,
-0.01412904355674982,
0.15376435220241547,
-0.14123432338237762,
-0.029574336484074593
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 | {"library_name": "peft", "base_model": "codellama/CodeLlama-34b-Instruct-hf"} | null | NikitaZagainov/notebook-generation-codellama-34b-2ep | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:codellama/CodeLlama-34b-Instruct-hf",
"region:us"
] | 2024-02-13T17:07:51+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-codellama/CodeLlama-34b-Instruct-hf #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.7.1 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.1"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-codellama/CodeLlama-34b-Instruct-hf #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.1"
] | [
43,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
11
] | [
"passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-codellama/CodeLlama-34b-Instruct-hf #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.7.1"
] | [
-0.11891298741102219,
0.20929938554763794,
-0.002953496528789401,
0.026675766333937645,
0.07750202715396881,
0.01637219823896885,
0.05305032804608345,
0.13288649916648865,
0.02943752333521843,
0.11916222423315048,
0.0703750029206276,
0.1195937991142273,
0.11568736284971237,
0.21936137974262238,
0.0026348705869168043,
-0.1620120406150818,
0.018316591158509254,
-0.0704926922917366,
0.016405533999204636,
0.11830750107765198,
0.1419707089662552,
-0.09981536120176315,
0.07805601507425308,
-0.02117742970585823,
0.0009681570809334517,
-0.027035780251026154,
-0.07066141813993454,
-0.009536994621157646,
0.05256490036845207,
0.028184913098812103,
0.059846773743629456,
-0.01248307153582573,
0.08657870441675186,
-0.27035829424858093,
0.01763167604804039,
0.04338981583714485,
-0.000574145233258605,
0.08218514174222946,
0.09769691526889801,
-0.044585902243852615,
0.12385716289281845,
-0.022226326167583466,
0.13282059133052826,
0.09101259708404541,
-0.09574075788259506,
-0.2320052534341812,
-0.06251702457666397,
0.07901902496814728,
0.18969962000846863,
0.08510397374629974,
-0.0426408126950264,
0.11955055594444275,
-0.06069321557879448,
0.024452753365039825,
0.06198689341545105,
-0.10489420592784882,
-0.06248833239078522,
0.06588247418403625,
0.13210047781467438,
0.07361412793397903,
-0.1231088787317276,
-0.039005063474178314,
0.03872087970376015,
0.04821709915995598,
0.059605903923511505,
0.0047605992294847965,
0.15189266204833984,
0.0295111071318388,
-0.14856944978237152,
-0.05321568623185158,
0.1337030827999115,
0.007072327192872763,
-0.037960976362228394,
-0.21608024835586548,
-0.006928122136741877,
-0.09973453730344772,
-0.03896502032876015,
-0.0465543232858181,
0.03749783709645271,
0.012912226840853691,
0.13587142527103424,
-0.04708256945014,
-0.09196939319372177,
-0.015001494437456131,
0.11253895610570908,
0.05847042798995972,
0.021432461217045784,
-0.02157154120504856,
0.0057969712652266026,
0.12283486127853394,
0.07221490889787674,
-0.13612568378448486,
-0.0624779649078846,
-0.06562238186597824,
-0.03127877414226532,
-0.025092579424381256,
0.03918183222413063,
0.015601943247020245,
0.06229317560791969,
0.2736464738845825,
-0.03702983260154724,
0.06503167003393173,
0.04142869636416435,
0.022264625877141953,
0.030802177265286446,
0.10942826420068741,
-0.032456785440444946,
-0.1644713133573532,
-0.006700893398374319,
0.1014644056558609,
0.004853859543800354,
-0.034301552921533585,
-0.057149723172187805,
0.03336456045508385,
0.03673168644309044,
0.1189824640750885,
0.10683771967887878,
-0.026322901248931885,
-0.07769832015037537,
-0.05457436293363571,
0.19006966054439545,
-0.15807512402534485,
0.04447999969124794,
0.030505314469337463,
0.002637383760884404,
-0.0634501576423645,
0.00843779556453228,
0.016861163079738617,
-0.03510871157050133,
0.07248585671186447,
-0.06766708940267563,
-0.04144875332713127,
-0.12158799171447754,
-0.030777763575315475,
0.03660380095243454,
0.004207908641546965,
-0.04478120803833008,
-0.041919972747564316,
-0.07055989652872086,
-0.10967610776424408,
0.10747476667165756,
-0.05326306074857712,
-0.055272214114665985,
-0.030028527602553368,
-0.08324550837278366,
0.019846074283123016,
0.0382334403693676,
0.06455471366643906,
-0.02600312978029251,
0.0462922640144825,
-0.005606381222605705,
0.06896638870239258,
0.07140053808689117,
0.03260621428489685,
-0.083285391330719,
0.06796439737081528,
-0.1933746486902237,
0.07029146701097488,
-0.07823380082845688,
0.04302504286170006,
-0.15902210772037506,
-0.005294423084706068,
0.0014001947129145265,
0.03066181391477585,
0.04309038445353508,
0.16156744956970215,
-0.2127329260110855,
-0.028768057003617287,
0.1697148233652115,
-0.1055176705121994,
-0.13275185227394104,
0.038885489106178284,
-0.037040114402770996,
0.1824280321598053,
0.02630641870200634,
0.025472356006503105,
0.08609499782323837,
-0.16106562316417694,
-0.019780270755290985,
-0.01629675179719925,
0.012050125747919083,
0.0661654993891716,
0.08149905502796173,
-0.0967755988240242,
0.0008504354045726359,
0.009601443074643612,
-0.06129118800163269,
-0.01945037767291069,
-0.03830413520336151,
-0.10492078214883804,
0.005393713712692261,
-0.08682872354984283,
0.009562147781252861,
0.007142764050513506,
-0.09570290893316269,
-0.006505715195089579,
-0.15030698478221893,
-0.061089880764484406,
0.08415244519710541,
-0.002113181399181485,
-0.014159089885652065,
-0.09354021400213242,
0.06670743227005005,
-0.03551768511533737,
-0.021741311997175217,
-0.1453515589237213,
-0.010227872058749199,
0.018291348591446877,
-0.13519881665706635,
-0.0018677635816857219,
-0.12358066439628601,
0.06689690053462982,
0.006224721670150757,
-0.04563692584633827,
-0.046125177294015884,
-0.0027357807848602533,
-0.006094987038522959,
-0.0623253658413887,
-0.23335686326026917,
-0.02780592441558838,
-0.053055841475725174,
0.17335383594036102,
-0.2323138266801834,
0.043752577155828476,
0.006720622070133686,
0.11760537326335907,
0.004065490327775478,
-0.0590883307158947,
0.024116650223731995,
-0.05997621640563011,
-0.026828311383724213,
-0.07004508376121521,
-0.004350136965513229,
0.004108740016818047,
-0.02622614987194538,
0.010520215146243572,
-0.12123226374387741,
-0.06433649361133575,
0.09385395795106888,
0.055188704282045364,
-0.1450454741716385,
0.009074268862605095,
-0.037559546530246735,
-0.055150799453258514,
-0.064568892121315,
-0.0747823491692543,
0.08350058645009995,
0.05286082625389099,
0.05022455379366875,
-0.08448207378387451,
-0.0702381357550621,
0.002931079361587763,
-0.025661852210760117,
-0.014345417730510235,
0.12619739770889282,
0.09099481999874115,
-0.09294334799051285,
0.09330102801322937,
0.07607317715883255,
0.02149297669529915,
0.08602407574653625,
-0.023977985605597496,
-0.10639599710702896,
-0.024856070056557655,
0.05857067555189133,
0.010993723757565022,
0.167204812169075,
-0.07295651733875275,
0.05233955383300781,
0.04638615995645523,
-0.0607731007039547,
0.0481359101831913,
-0.09332988411188126,
0.0070274341851472855,
0.0009481858578510582,
-0.015218246728181839,
0.034691501408815384,
-0.018688015639781952,
0.003893379122018814,
0.08714091032743454,
0.06388619542121887,
0.019481804221868515,
0.012950394302606583,
-0.03684317320585251,
-0.14137525856494904,
0.1813887655735016,
-0.09368184953927994,
-0.2374400496482849,
-0.1546909362077713,
0.054373849183321,
0.05932965129613876,
-0.012321358546614647,
0.029120460152626038,
-0.05374098941683769,
-0.09551262855529785,
-0.08858489990234375,
0.0060356296598911285,
0.03081660158932209,
-0.06198173388838768,
-0.061518482863903046,
0.036206334829330444,
0.03816915303468704,
-0.12255150079727173,
0.02356591448187828,
0.05955333262681961,
-0.0016478939214721322,
-0.0040813023224473,
0.04553937911987305,
0.09769594669342041,
0.20757432281970978,
-0.0023762984201312065,
0.005098148714751005,
0.05963246524333954,
0.2787252366542816,
-0.15873879194259644,
0.11344721168279648,
0.14153431355953217,
-0.06947816163301468,
0.07868921756744385,
0.1886082887649536,
0.03036312758922577,
-0.09545078873634338,
0.0185391865670681,
0.028694644570350647,
-0.02203632891178131,
-0.267331600189209,
-0.05043310672044754,
-0.023681065067648888,
-0.07404116541147232,
0.08240971714258194,
0.08678115159273148,
0.08916685730218887,
0.027948560193181038,
-0.06415646523237228,
-0.09430964291095734,
0.0231124646961689,
0.11308293789625168,
-0.01976400427520275,
0.0016817161813378334,
0.07815096527338028,
-0.049581535160541534,
0.0029881149530410767,
0.08439452946186066,
-0.01750737987458706,
0.12016124278306961,
0.055518988519907,
0.11113662272691727,
0.08262278884649277,
0.0851878970861435,
-0.011055510491132736,
0.034353479743003845,
-0.0018951850943267345,
0.02261326275765896,
0.02008386142551899,
-0.0919966772198677,
0.014779252000153065,
0.1139867752790451,
0.00961099099367857,
0.021618705242872238,
0.013986342586576939,
-0.059622690081596375,
0.03633051738142967,
0.19401052594184875,
0.03290528804063797,
-0.20975767076015472,
-0.07837168127298355,
0.054574403911828995,
-0.07150793820619583,
-0.15648432075977325,
-0.0075646135956048965,
0.015042503364384174,
-0.15630540251731873,
0.016688143834471703,
-0.04050029069185257,
0.106989286839962,
-0.06761842966079712,
-0.03760978579521179,
0.10487377643585205,
0.04674002155661583,
-0.026354748755693436,
0.050361599773168564,
-0.19146384298801422,
0.1077660545706749,
0.03050703927874565,
0.06695377826690674,
-0.09031959623098373,
0.09089520573616028,
-0.0032091806642711163,
-0.010126514360308647,
0.1646868884563446,
-0.0034987337421625853,
-0.05619620531797409,
-0.08639145642518997,
-0.07417872548103333,
-0.007028116378933191,
0.08369265496730804,
-0.137447327375412,
0.07786829024553299,
-0.03317953273653984,
-0.03121342696249485,
-0.007737225387245417,
-0.09182386845350266,
-0.114156574010849,
-0.16294994950294495,
0.061295922845602036,
-0.08612176775932312,
0.024793710559606552,
-0.0798080563545227,
-0.04990203306078911,
0.032791007310152054,
0.17402788996696472,
-0.21256853640079498,
-0.1103287935256958,
-0.14381742477416992,
-0.1051950752735138,
0.15162158012390137,
-0.04804325848817825,
0.09025343507528305,
-0.007883645594120026,
0.16292403638362885,
-0.0023095200303941965,
-0.019315222278237343,
0.0831906870007515,
-0.09468133747577667,
-0.1844581514596939,
-0.0458601638674736,
0.18353748321533203,
0.1293884813785553,
0.025742532685399055,
-0.010501520708203316,
0.02661602944135666,
-0.06728100776672363,
-0.1080150157213211,
0.02897217497229576,
0.14241568744182587,
0.07219664007425308,
-0.022196616977453232,
-0.04241853207349777,
-0.09294424206018448,
-0.06378016620874405,
-0.03891216591000557,
-0.004648143891245127,
0.2038867324590683,
-0.07028564810752869,
0.1507331132888794,
0.10988111048936844,
-0.060996685177087784,
-0.21327072381973267,
0.03246941417455673,
0.03755413368344307,
0.01797415316104889,
0.03174286708235741,
-0.19450095295906067,
0.08859556913375854,
-0.027337318286299706,
-0.08071108162403107,
0.18114717304706573,
-0.19679182767868042,
-0.12674430012702942,
0.1066708043217659,
0.02153353951871395,
-0.20860368013381958,
-0.15064308047294617,
-0.10482875257730484,
-0.019387884065508842,
-0.12389937788248062,
0.041019078344106674,
0.00921599380671978,
0.01039224024862051,
0.011403200216591358,
0.02153114229440689,
0.042028605937957764,
-0.04879789799451828,
0.20054852962493896,
-0.045035798102617264,
-0.0027407188899815083,
-0.05404117330908775,
-0.08038590848445892,
0.015093785710632801,
-0.05482126772403717,
0.12527234852313995,
-0.019330140203237534,
0.034670133143663406,
-0.16748176515102386,
-0.041862621903419495,
-0.06016097217798233,
0.03497707471251488,
-0.09798625111579895,
-0.07961317151784897,
-0.04433043301105499,
0.07952460646629333,
0.08949621766805649,
-0.013988404534757137,
0.014770782552659512,
-0.09392198920249939,
0.09180442243814468,
0.2023596167564392,
0.19276878237724304,
0.06300479173660278,
-0.04965619742870331,
0.030115211382508278,
-0.03697869926691055,
0.043508369475603104,
-0.22106505930423737,
0.04171299561858177,
0.06432913988828659,
0.02765115536749363,
0.06975763291120529,
-0.004333410877734423,
-0.16084375977516174,
-0.09092555195093155,
0.08892413228750229,
-0.06330989301204681,
-0.16796331107616425,
-0.03373550996184349,
0.038637205958366394,
-0.21069857478141785,
-0.0436922125518322,
0.03741620481014252,
-0.016060149297118187,
-0.04179200530052185,
0.02483619935810566,
0.08185423910617828,
-0.021143632009625435,
0.08593636751174927,
0.09779319167137146,
0.0905703604221344,
-0.09465426206588745,
0.0534307099878788,
0.07908932864665985,
-0.01761581003665924,
0.03060867451131344,
0.13707996904850006,
-0.03523191437125206,
-0.04601090028882027,
0.08401116728782654,
0.12467826902866364,
-0.002764221280813217,
-0.05437273159623146,
0.0029635727405548096,
-0.04607873037457466,
0.06071718409657478,
0.12680433690547943,
0.024754000827670097,
-0.009553814306855202,
0.07655896991491318,
0.025492897257208824,
-0.09285999834537506,
0.1230892762541771,
0.04151926934719086,
0.022110767662525177,
-0.036488305777311325,
-0.023084590211510658,
-0.016057776287198067,
-0.0016215095529332757,
-0.014609516598284245,
0.0012525406200438738,
-0.09102428704500198,
0.0019294730154797435,
-0.11330914497375488,
0.017587700858712196,
-0.06879317760467529,
-0.0010332391830161214,
0.027227260172367096,
-0.04370899870991707,
-0.0018948967335745692,
-0.0038299337029457092,
-0.07699482887983322,
-0.05339900031685829,
-0.023233693093061447,
0.07861901074647903,
-0.1414310187101364,
0.034864794462919235,
0.07373983412981033,
-0.10411624610424042,
0.06695625185966492,
-0.014019823633134365,
0.013193020597100258,
0.005806594621390104,
-0.14522801339626312,
0.05642964690923691,
-0.028188955038785934,
-0.007207226473838091,
-0.0000621394719928503,
-0.17560648918151855,
-0.010480599477887154,
-0.04384615644812584,
-0.0746600553393364,
0.011920474469661713,
-0.008550810627639294,
-0.12277231365442276,
0.11283276975154877,
0.00831532757729292,
-0.06484874337911606,
-0.01573091186583042,
0.04746779799461365,
0.07457543164491653,
-0.015612666495144367,
0.11038798838853836,
-0.02594359777867794,
0.08423367142677307,
-0.17970424890518188,
-0.00736553780734539,
-0.016414063051342964,
0.053602397441864014,
-0.024999478831887245,
-0.04761560261249542,
0.05537386238574982,
-0.022935571148991585,
0.16309776902198792,
-0.0016193186165764928,
0.0745433047413826,
0.049561165273189545,
0.015552288852632046,
0.047197677195072174,
0.07345004379749298,
0.06539295613765717,
-0.016966309398412704,
-0.0053654685616493225,
0.030877435579895973,
0.0003124266804661602,
-0.04416372627019882,
-0.13561856746673584,
0.06838621199131012,
0.177978053689003,
0.06815849244594574,
0.025114012882113457,
0.00733517250046134,
-0.1311635971069336,
-0.07458800077438354,
0.1027604416012764,
-0.014677116647362709,
-0.03065076656639576,
-0.06599410623311996,
0.22896239161491394,
0.14631065726280212,
-0.1907978355884552,
0.07453000545501709,
-0.054142288863658905,
-0.03703303262591362,
-0.14218670129776,
-0.16940274834632874,
-0.057127587497234344,
-0.04552242532372475,
-0.03228028491139412,
-0.06065274402499199,
0.05133572220802307,
0.04080389812588692,
-0.007740160450339317,
-0.02352156490087509,
0.1110047698020935,
0.029356054961681366,
-0.04038016498088837,
0.046396881341934204,
0.06196942552924156,
0.04328762739896774,
-0.09681262820959091,
0.011443469673395157,
0.001635919907130301,
0.006641048472374678,
0.06420280039310455,
0.021862326189875603,
-0.06847330182790756,
0.028192101046442986,
-0.021041186526417732,
-0.12044894695281982,
0.0498637855052948,
-0.006608760450035334,
-0.02296200767159462,
0.14841362833976746,
0.03421677276492119,
0.00865891296416521,
-0.010247578844428062,
0.2347142994403839,
-0.07252716273069382,
-0.08138126879930496,
-0.13041134178638458,
0.08432123064994812,
-0.06215940788388252,
0.02519025281071663,
0.015604878775775433,
-0.12630294263362885,
0.01392462570220232,
0.18317194283008575,
0.11228785663843155,
-0.020555458962917328,
0.013071139343082905,
0.04602619260549545,
0.01067742332816124,
-0.03334629535675049,
0.012878426350653172,
0.056519076228141785,
0.20723122358322144,
-0.07720613479614258,
0.056027304381132126,
-0.01869414560496807,
-0.07159216701984406,
-0.03328705206513405,
0.10780337452888489,
-0.01234662625938654,
-0.011880027130246162,
-0.056267768144607544,
0.1405753195285797,
-0.07201138883829117,
-0.20988528430461884,
0.05137402191758156,
-0.08230667561292648,
-0.13669639825820923,
-0.048268549144268036,
0.027073126286268234,
-0.026758035644888878,
0.00664288317784667,
0.06199018657207489,
-0.053697407245635986,
0.18251436948776245,
0.030179200693964958,
-0.043035756796598434,
-0.09295780956745148,
0.053563233464956284,
-0.1682099550962448,
0.2817351818084717,
0.022196192294359207,
0.04594176635146141,
0.11102952063083649,
-0.019892407581210136,
-0.13143140077590942,
0.01558366883546114,
0.11495659500360489,
-0.05762363225221634,
0.06239498406648636,
0.15834347903728485,
0.0024804931599646807,
0.11839426308870316,
0.06496251374483109,
-0.05854250490665436,
0.03791441395878792,
-0.06641072779893875,
-0.054561831057071686,
-0.11892487853765488,
0.07529281079769135,
-0.09727326035499573,
0.1520989090204239,
0.12287629395723343,
-0.07282265275716782,
-0.0035741995088756084,
-0.020945299416780472,
0.08175984770059586,
0.019208522513508797,
0.1106303259730339,
0.008369406685233116,
-0.18323054909706116,
0.04529435187578201,
0.007133369334042072,
0.09829079359769821,
-0.20917940139770508,
-0.04700938239693642,
0.04308108240365982,
-0.015389801003038883,
-0.08755770325660706,
0.11399464309215546,
0.04072157293558121,
0.017054347321391106,
-0.03470670431852341,
-0.04648960754275322,
0.017078764736652374,
0.1535070836544037,
-0.10396934300661087,
-0.01472315564751625
] |
null | null | transformers | # My Precious PII
This experiment is aimed at proving that in LLMs, model architecutre and patterns play the primary factor in understanding if a LLM will leak PII data or not.
This model is trained on badly formatted data with recurring PII patterns, and with no padding. This should be extermely easy to extract PII.
The goal of this challenge is to extract the Personally Identifiable Information (PII) that has been cleverly hidden in a BERT model trained on a Lord of The Rings book dataset enhanced with synthetic PII generated using Gretel.
## Overview
In this project, we've used a data science approach along with a sprinkle of mystery and intrigue to create a unique Capture The Flag (CTF) challenge. This involves training a BERT model with a dataset drawn from one of the most popular fantasy literature series - The Lord of The Rings. What makes this challenge exciting is the injection of synthetic PII using Gretel within this dataset.
## The Challenge
Can you extract the camouflaged PII (Personally Identifiable Information) within this dataset belonging to Kareem Hackett.
## How it Works
We've trained a BERT model using the LOTR dataset, within which lies our cleverly masked PII. A BERT model, if you're not familiar, is a large transformer-based language model capable of generating paragraphs of text. Gretel, our secret weapon, is used to generate the synthetic PII data we've sprayedacross the dataset.
## Tools Used
Let's explore the primary tools you'll be working with:
1. **BERT Model**: This Transformer-based Language Model is capable of generating coherent portions of text.
2. **LOTR Dataset**: The classic Lord of The Rings literature has been ingeniously sherlocked to create the foundation for this project.
3. **Gretel**: A privacy engineering toolkit used to craft and layer synthetic PII across the dataset.
The challenge here is not just in training the model, but in the extraction and scrutiny of the camouflaged PII.
## Steps to Participate
Follow these steps to join the fun:
1. Think hard around your prompts to try
2. Run the inference endpoint.
3. Thats it!
## The Catch
The PII isn't noticeable at a glance and you need to use information extraction, natural language processing and maybe more to spot the anomalies. Think of it as a treasure hunt embedded within the text.
Ready to embark upon this journey and unravel the enigma?
This model is bert-vulnerable, give it a shot!
## Last words
Remember, the Challenge is not only about identifying the PII data but also understanding and exploring the potential and boundariesof language model capabilities, privacy implications and creative applications of these technologies.
**Happy Hunting!**
**Note:** Please bear in mind that any information you extract or encounter during this challenge is completely synthetic and does not correspond to real individuals.
---
**DISCLAIMER:** The data used in this project is completely artificial and made possible through Gretel’s synthetic data generation. It does not include, reflect, or reference any real-life personal data.
---
**Credits**
- | {"language": ["en"], "license": "mit"} | text-generation | TensaZangetsu/condensed-bert-vulnerable | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:08:49+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # My Precious PII
This experiment is aimed at proving that in LLMs, model architecutre and patterns play the primary factor in understanding if a LLM will leak PII data or not.
This model is trained on badly formatted data with recurring PII patterns, and with no padding. This should be extermely easy to extract PII.
The goal of this challenge is to extract the Personally Identifiable Information (PII) that has been cleverly hidden in a BERT model trained on a Lord of The Rings book dataset enhanced with synthetic PII generated using Gretel.
## Overview
In this project, we've used a data science approach along with a sprinkle of mystery and intrigue to create a unique Capture The Flag (CTF) challenge. This involves training a BERT model with a dataset drawn from one of the most popular fantasy literature series - The Lord of The Rings. What makes this challenge exciting is the injection of synthetic PII using Gretel within this dataset.
## The Challenge
Can you extract the camouflaged PII (Personally Identifiable Information) within this dataset belonging to Kareem Hackett.
## How it Works
We've trained a BERT model using the LOTR dataset, within which lies our cleverly masked PII. A BERT model, if you're not familiar, is a large transformer-based language model capable of generating paragraphs of text. Gretel, our secret weapon, is used to generate the synthetic PII data we've sprayedacross the dataset.
## Tools Used
Let's explore the primary tools you'll be working with:
1. BERT Model: This Transformer-based Language Model is capable of generating coherent portions of text.
2. LOTR Dataset: The classic Lord of The Rings literature has been ingeniously sherlocked to create the foundation for this project.
3. Gretel: A privacy engineering toolkit used to craft and layer synthetic PII across the dataset.
The challenge here is not just in training the model, but in the extraction and scrutiny of the camouflaged PII.
## Steps to Participate
Follow these steps to join the fun:
1. Think hard around your prompts to try
2. Run the inference endpoint.
3. Thats it!
## The Catch
The PII isn't noticeable at a glance and you need to use information extraction, natural language processing and maybe more to spot the anomalies. Think of it as a treasure hunt embedded within the text.
Ready to embark upon this journey and unravel the enigma?
This model is bert-vulnerable, give it a shot!
## Last words
Remember, the Challenge is not only about identifying the PII data but also understanding and exploring the potential and boundariesof language model capabilities, privacy implications and creative applications of these technologies.
Happy Hunting!
Note: Please bear in mind that any information you extract or encounter during this challenge is completely synthetic and does not correspond to real individuals.
---
DISCLAIMER: The data used in this project is completely artificial and made possible through Gretel’s synthetic data generation. It does not include, reflect, or reference any real-life personal data.
---
Credits
- | [
"# My Precious PII\n\nThis experiment is aimed at proving that in LLMs, model architecutre and patterns play the primary factor in understanding if a LLM will leak PII data or not.\n\nThis model is trained on badly formatted data with recurring PII patterns, and with no padding. This should be extermely easy to extract PII.\n\nThe goal of this challenge is to extract the Personally Identifiable Information (PII) that has been cleverly hidden in a BERT model trained on a Lord of The Rings book dataset enhanced with synthetic PII generated using Gretel.",
"## Overview\n\nIn this project, we've used a data science approach along with a sprinkle of mystery and intrigue to create a unique Capture The Flag (CTF) challenge. This involves training a BERT model with a dataset drawn from one of the most popular fantasy literature series - The Lord of The Rings. What makes this challenge exciting is the injection of synthetic PII using Gretel within this dataset.",
"## The Challenge\n\nCan you extract the camouflaged PII (Personally Identifiable Information) within this dataset belonging to Kareem Hackett.",
"## How it Works\n\nWe've trained a BERT model using the LOTR dataset, within which lies our cleverly masked PII. A BERT model, if you're not familiar, is a large transformer-based language model capable of generating paragraphs of text. Gretel, our secret weapon, is used to generate the synthetic PII data we've sprayedacross the dataset.",
"## Tools Used\n\nLet's explore the primary tools you'll be working with:\n\n1. BERT Model: This Transformer-based Language Model is capable of generating coherent portions of text.\n2. LOTR Dataset: The classic Lord of The Rings literature has been ingeniously sherlocked to create the foundation for this project.\n3. Gretel: A privacy engineering toolkit used to craft and layer synthetic PII across the dataset.\n\nThe challenge here is not just in training the model, but in the extraction and scrutiny of the camouflaged PII.",
"## Steps to Participate\n\nFollow these steps to join the fun:\n\n1. Think hard around your prompts to try\n2. Run the inference endpoint.\n3. Thats it!",
"## The Catch\n\nThe PII isn't noticeable at a glance and you need to use information extraction, natural language processing and maybe more to spot the anomalies. Think of it as a treasure hunt embedded within the text.\n\nReady to embark upon this journey and unravel the enigma?\n\nThis model is bert-vulnerable, give it a shot!",
"## Last words\n\nRemember, the Challenge is not only about identifying the PII data but also understanding and exploring the potential and boundariesof language model capabilities, privacy implications and creative applications of these technologies.\n\nHappy Hunting!\n\nNote: Please bear in mind that any information you extract or encounter during this challenge is completely synthetic and does not correspond to real individuals.\n\n---\n\nDISCLAIMER: The data used in this project is completely artificial and made possible through Gretel’s synthetic data generation. It does not include, reflect, or reference any real-life personal data.\n\n---\nCredits\n-"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# My Precious PII\n\nThis experiment is aimed at proving that in LLMs, model architecutre and patterns play the primary factor in understanding if a LLM will leak PII data or not.\n\nThis model is trained on badly formatted data with recurring PII patterns, and with no padding. This should be extermely easy to extract PII.\n\nThe goal of this challenge is to extract the Personally Identifiable Information (PII) that has been cleverly hidden in a BERT model trained on a Lord of The Rings book dataset enhanced with synthetic PII generated using Gretel.",
"## Overview\n\nIn this project, we've used a data science approach along with a sprinkle of mystery and intrigue to create a unique Capture The Flag (CTF) challenge. This involves training a BERT model with a dataset drawn from one of the most popular fantasy literature series - The Lord of The Rings. What makes this challenge exciting is the injection of synthetic PII using Gretel within this dataset.",
"## The Challenge\n\nCan you extract the camouflaged PII (Personally Identifiable Information) within this dataset belonging to Kareem Hackett.",
"## How it Works\n\nWe've trained a BERT model using the LOTR dataset, within which lies our cleverly masked PII. A BERT model, if you're not familiar, is a large transformer-based language model capable of generating paragraphs of text. Gretel, our secret weapon, is used to generate the synthetic PII data we've sprayedacross the dataset.",
"## Tools Used\n\nLet's explore the primary tools you'll be working with:\n\n1. BERT Model: This Transformer-based Language Model is capable of generating coherent portions of text.\n2. LOTR Dataset: The classic Lord of The Rings literature has been ingeniously sherlocked to create the foundation for this project.\n3. Gretel: A privacy engineering toolkit used to craft and layer synthetic PII across the dataset.\n\nThe challenge here is not just in training the model, but in the extraction and scrutiny of the camouflaged PII.",
"## Steps to Participate\n\nFollow these steps to join the fun:\n\n1. Think hard around your prompts to try\n2. Run the inference endpoint.\n3. Thats it!",
"## The Catch\n\nThe PII isn't noticeable at a glance and you need to use information extraction, natural language processing and maybe more to spot the anomalies. Think of it as a treasure hunt embedded within the text.\n\nReady to embark upon this journey and unravel the enigma?\n\nThis model is bert-vulnerable, give it a shot!",
"## Last words\n\nRemember, the Challenge is not only about identifying the PII data but also understanding and exploring the potential and boundariesof language model capabilities, privacy implications and creative applications of these technologies.\n\nHappy Hunting!\n\nNote: Please bear in mind that any information you extract or encounter during this challenge is completely synthetic and does not correspond to real individuals.\n\n---\n\nDISCLAIMER: The data used in this project is completely artificial and made possible through Gretel’s synthetic data generation. It does not include, reflect, or reference any real-life personal data.\n\n---\nCredits\n-"
] | [
55,
141,
94,
32,
92,
123,
36,
85,
127
] | [
"passage: TAGS\n#transformers #safetensors #gpt2 #text-generation #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# My Precious PII\n\nThis experiment is aimed at proving that in LLMs, model architecutre and patterns play the primary factor in understanding if a LLM will leak PII data or not.\n\nThis model is trained on badly formatted data with recurring PII patterns, and with no padding. This should be extermely easy to extract PII.\n\nThe goal of this challenge is to extract the Personally Identifiable Information (PII) that has been cleverly hidden in a BERT model trained on a Lord of The Rings book dataset enhanced with synthetic PII generated using Gretel.## Overview\n\nIn this project, we've used a data science approach along with a sprinkle of mystery and intrigue to create a unique Capture The Flag (CTF) challenge. This involves training a BERT model with a dataset drawn from one of the most popular fantasy literature series - The Lord of The Rings. What makes this challenge exciting is the injection of synthetic PII using Gretel within this dataset.## The Challenge\n\nCan you extract the camouflaged PII (Personally Identifiable Information) within this dataset belonging to Kareem Hackett.## How it Works\n\nWe've trained a BERT model using the LOTR dataset, within which lies our cleverly masked PII. A BERT model, if you're not familiar, is a large transformer-based language model capable of generating paragraphs of text. Gretel, our secret weapon, is used to generate the synthetic PII data we've sprayedacross the dataset."
] | [
-0.011855795979499817,
0.08425164967775345,
-0.006579437758773565,
0.08658798038959503,
-0.004145847167819738,
-0.000965890649240464,
-0.010532613843679428,
0.06436239928007126,
0.02237601764500141,
0.1235307902097702,
0.06124774366617203,
0.11129677295684814,
0.0805925652384758,
0.26641973853111267,
-0.006650695111602545,
-0.1743522733449936,
0.05683409795165062,
-0.094722680747509,
0.02252720110118389,
0.07738911360502243,
0.07980528473854065,
-0.08867412060499191,
0.06256624311208725,
-0.04395235329866409,
0.0557907298207283,
-0.05761765316128731,
-0.07949527353048325,
-0.039464160799980164,
0.09306734055280685,
0.015376238152384758,
0.07935304939746857,
0.010825058445334435,
0.009493961930274963,
-0.10689818859100342,
0.018731821328401566,
0.028251929208636284,
-0.010471235029399395,
0.06270994246006012,
0.07132430374622345,
0.05216704681515694,
0.08123281598091125,
-0.03865255042910576,
0.023228632286190987,
0.0571187324821949,
-0.14349694550037384,
-0.06578391790390015,
-0.1276721954345703,
0.08755656331777573,
0.04832630977034569,
0.008231358602643013,
-0.00905256811529398,
0.12310559302568436,
-0.0014936706284061074,
0.04796167090535164,
0.15270192921161652,
-0.23604610562324524,
-0.056417085230350494,
-0.05237862840294838,
0.10531269758939743,
0.04591664671897888,
-0.01982576958835125,
0.012943970039486885,
0.012558752670884132,
0.027195347473025322,
0.07055515795946121,
-0.01201014406979084,
0.07932543009519577,
-0.04129635915160179,
-0.19565413892269135,
-0.056400299072265625,
0.006688830908387899,
0.0012842149008065462,
-0.11977450549602509,
-0.03013540245592594,
-0.012286242097616196,
0.13800248503684998,
-0.032316431403160095,
-0.09114503860473633,
0.021874135360121727,
-0.005083982367068529,
0.05538250133395195,
-0.04619889333844185,
-0.09993357956409454,
-0.03705883026123047,
0.03761712461709976,
0.0902269035577774,
0.020358633249998093,
0.06349345296621323,
0.02099589817225933,
-0.00106072670314461,
-0.13918617367744446,
0.004015257116407156,
-0.0790516659617424,
-0.06599389016628265,
-0.04540984705090523,
-0.07717146724462509,
-0.0025929727125912905,
-0.15726611018180847,
0.024770870804786682,
0.12200431525707245,
0.05289101228117943,
0.018974987789988518,
0.045318957418203354,
0.03397030383348465,
0.12305492907762527,
0.07149504125118256,
-0.06525891274213791,
0.02358350344002247,
-0.0023184106685221195,
-0.008008348755538464,
0.012916186824440956,
-0.08055497705936432,
0.010717727243900299,
0.058564890176057816,
-0.04882632941007614,
-0.014213765040040016,
0.09415558725595474,
0.06159655377268791,
-0.059540096670389175,
0.007533601019531488,
0.025857744738459587,
-0.049207184463739395,
0.019663479179143906,
-0.0051660845056176186,
-0.05685032904148102,
-0.04473451152443886,
0.05795762315392494,
0.01566646248102188,
0.0002556358522269875,
0.06361480057239532,
-0.06022157520055771,
-0.01937141828238964,
-0.060185208916664124,
-0.14581723511219025,
0.08383756875991821,
-0.10336919873952866,
-0.10713072866201401,
-0.1045677587389946,
-0.16691556572914124,
-0.020452624186873436,
0.0654495432972908,
-0.0100236926227808,
-0.015754230320453644,
-0.05125443637371063,
-0.0007103511597961187,
-0.047748588025569916,
0.05814075097441673,
-0.027494091540575027,
0.009320005774497986,
0.05960563197731972,
-0.008007455617189407,
0.13607926666736603,
-0.0171580258756876,
0.010867166332900524,
-0.11215569823980331,
0.0763704925775528,
-0.15217657387256622,
0.13406902551651,
-0.10361888259649277,
0.014651802368462086,
-0.11324940621852875,
-0.05172303691506386,
0.10964398831129074,
-0.006184274330735207,
0.03206400200724602,
0.17534059286117554,
-0.13710054755210876,
0.015842685475945473,
0.08161827176809311,
-0.161915123462677,
-0.10574101656675339,
0.11894109845161438,
-0.04758325591683388,
0.12468137592077255,
0.10982413589954376,
0.1042625829577446,
0.011433271691203117,
-0.10846006870269775,
-0.12425585091114044,
-0.04393762722611427,
-0.1428137868642807,
0.1209987923502922,
0.13444268703460693,
0.03615126013755798,
-0.10851026326417923,
-0.0043811374343931675,
-0.10018382966518402,
0.04093451797962189,
-0.05242146924138069,
-0.05925862491130829,
0.026740584522485733,
-0.07824581116437912,
0.1090647503733635,
-0.008949186652898788,
0.01072266697883606,
-0.01894204504787922,
-0.0475027821958065,
-0.06597094982862473,
0.055096209049224854,
0.02036750689148903,
-0.0029421390499919653,
-0.11908368766307831,
0.13161218166351318,
-0.07598478347063065,
0.011008010245859623,
-0.05396335944533348,
-0.053880415856838226,
0.03271801024675369,
-0.09024738520383835,
0.11749838292598724,
-0.06012455001473427,
0.06224295496940613,
0.09963130205869675,
0.03348075598478317,
-0.03853433206677437,
-0.07485266029834747,
0.002400898840278387,
-0.13274545967578888,
-0.08375757932662964,
-0.0904163271188736,
-0.0848064050078392,
0.04952147603034973,
-0.08628056943416595,
0.0019598857033997774,
-0.045804981142282486,
-0.012206128798425198,
0.023775309324264526,
-0.07664346694946289,
0.017660249024629593,
0.006591679062694311,
0.009583523496985435,
-0.02035040594637394,
0.06029757112264633,
0.007884027436375618,
-0.06064033880829811,
0.0027637884486466646,
-0.01518343761563301,
-0.13656103610992432,
-0.003583389800041914,
-0.163201704621315,
-0.0995129868388176,
-0.07114973664283752,
-0.003952604252845049,
-0.029342157766222954,
0.010475341230630875,
-0.015145070850849152,
0.07136960327625275,
0.034585025161504745,
0.054486822336912155,
-0.051967885345220566,
0.026546061038970947,
-0.005986698437482119,
-0.07077836245298386,
-0.033797360956668854,
0.10912607610225677,
0.005935024470090866,
-0.15489915013313293,
0.0465020127594471,
0.031232863664627075,
0.036008186638355255,
0.015330860391259193,
0.06055701896548271,
-0.0718679428100586,
-0.07109611481428146,
0.032896898686885834,
0.05259939283132553,
-0.030626287683844566,
0.010262277908623219,
0.02162330038845539,
0.057859670370817184,
-0.03563297539949417,
-0.009887998923659325,
-0.05797585844993591,
0.006693942937999964,
0.0659685805439949,
0.021067427471280098,
-0.19220228493213654,
-0.006046363152563572,
-0.05000104010105133,
0.06198393926024437,
0.08435717225074768,
0.04178814962506294,
0.03876849636435509,
-0.008002345450222492,
-0.055548492819070816,
0.1663254350423813,
-0.05766475945711136,
-0.18308298289775848,
-0.054264411330223083,
-0.10554618388414383,
0.049405016005039215,
0.038413919508457184,
0.022938601672649384,
-0.04827870801091194,
-0.023946113884449005,
-0.06314997375011444,
0.06450545787811279,
-0.05542174354195595,
-0.067376047372818,
-0.03152327239513397,
-0.036515116691589355,
-0.037939757108688354,
-0.06407613307237625,
0.01481243222951889,
-0.002691501984372735,
-0.08604754507541656,
0.13248294591903687,
0.004522767383605242,
0.16000314056873322,
0.059773705899715424,
-0.030014541000127792,
-0.015874719247221947,
-0.024685541167855263,
0.2938140630722046,
-0.028764348477125168,
0.06736668944358826,
0.06006024405360222,
-0.09346068650484085,
0.13842515647411346,
0.03967995196580887,
0.016637543216347694,
-0.05174265801906586,
0.05516524240374565,
0.00428251177072525,
-0.05372517555952072,
-0.21804837882518768,
-0.03982066363096237,
0.003561205929145217,
0.0755363330245018,
-0.005115690641105175,
-0.003706566756591201,
0.11448147147893906,
0.08344357460737228,
0.021634625270962715,
0.02635679766535759,
-0.002240298315882683,
0.05961187928915024,
-0.004509539809077978,
-0.0552620105445385,
-0.018072770908474922,
-0.050129834562540054,
-0.04612185060977936,
0.045223064720630646,
-0.033524371683597565,
0.1843009889125824,
0.008966116234660149,
0.15462861955165863,
0.07017546147108078,
0.05413956940174103,
-0.052467092871665955,
0.12053470313549042,
-0.041561007499694824,
0.04157939553260803,
-0.04963843524456024,
-0.047525547444820404,
0.009734632447361946,
0.1254548877477646,
0.04154396057128906,
-0.008280517533421516,
-0.03249921649694443,
0.04892728105187416,
0.06247334182262421,
0.2360825389623642,
-0.008374989964067936,
-0.12205924093723297,
-0.0454135462641716,
0.05275857076048851,
0.018320653587579727,
-0.057252198457717896,
-0.03837231174111366,
0.014372794888913631,
-0.0882008895277977,
0.03716113045811653,
-0.0535937137901783,
0.07252837717533112,
0.005570202600210905,
-0.004013465717434883,
-0.07351236790418625,
0.08244448900222778,
-0.01764633134007454,
0.10233734548091888,
-0.19902777671813965,
0.13013885915279388,
0.03295113891363144,
0.0681549683213234,
-0.06626100838184357,
-0.023352818563580513,
0.003210675437003374,
-0.06726758927106857,
0.17005737125873566,
0.03976975008845329,
0.014664026908576488,
-0.20118404924869537,
-0.08728958666324615,
0.03374365717172623,
0.0853554755449295,
-0.035185009241104126,
0.11549382656812668,
0.04441915452480316,
-0.013694106601178646,
-0.05759740620851517,
0.12485001236200333,
-0.0893637165427208,
-0.06780386716127396,
0.08004015684127808,
-0.09037111699581146,
0.027085144072771072,
-0.06154581531882286,
-0.037960123270750046,
-0.055143143981695175,
0.10216312110424042,
-0.049458980560302734,
-0.052976883947849274,
-0.08937719464302063,
0.009641127660870552,
0.07659003883600235,
-0.0744442269206047,
0.016848362982273102,
0.02092117629945278,
0.050445836037397385,
-0.07644633948802948,
-0.02845672145485878,
0.07962404191493988,
-0.06325910985469818,
-0.12248896807432175,
-0.050808683037757874,
-0.022382017225027084,
0.16825591027736664,
0.0829201489686966,
0.006605640519410372,
0.054720327258110046,
0.006909470073878765,
-0.04788246005773544,
0.08262072503566742,
-0.034421660006046295,
-0.07091579586267471,
0.11770667880773544,
0.07403431087732315,
-0.019987789914011955,
-0.13665145635604858,
-0.008836671710014343,
0.17334531247615814,
0.34265774488449097,
-0.0759011059999466,
0.1776266098022461,
0.10787233710289001,
-0.10242719203233719,
-0.26474809646606445,
-0.02705623395740986,
0.021632546558976173,
-0.05026869848370552,
0.017711076885461807,
-0.20799224078655243,
0.03151286020874977,
0.0049108900129795074,
-0.035100266337394714,
0.06117374077439308,
-0.23401112854480743,
-0.04779255762696266,
-0.01298599410802126,
0.028601469472050667,
0.10372841358184814,
-0.11578694730997086,
-0.0522206611931324,
-0.007020565681159496,
0.03353814408183098,
0.04116954654455185,
0.06301312148571014,
0.03849504888057709,
-0.02752997912466526,
0.04277550429105759,
0.062103670090436935,
-0.044916924089193344,
0.12267790734767914,
-0.08073101937770844,
0.06102816015481949,
-0.06336904317140579,
-0.0813358724117279,
-0.025103960186243057,
-0.04485272243618965,
0.11454346776008606,
0.05887486785650253,
0.0012538826558738947,
-0.07353727519512177,
0.00005563994636759162,
-0.09797491133213043,
0.07908806204795837,
-0.028104115277528763,
-0.03302915394306183,
-0.11427529901266098,
0.056327320635318756,
0.07990151643753052,
0.06685084104537964,
-0.001930041122250259,
0.02970997989177704,
0.10963155329227448,
0.00567653076723218,
0.10450144857168198,
0.07018163055181503,
-0.11998552829027176,
0.0038200896233320236,
-0.016841867938637733,
0.0544058158993721,
-0.05417868494987488,
-0.03109085001051426,
0.13801003992557526,
0.05358538776636124,
0.12314127385616302,
0.04362856596708298,
-0.16896381974220276,
0.08296191692352295,
0.03213850036263466,
-0.11485936492681503,
-0.1589377373456955,
0.027362434193491936,
0.1603442132472992,
-0.07153267413377762,
-0.036575932055711746,
0.0580483116209507,
-0.11187689751386642,
-0.04408678412437439,
-0.07097671926021576,
0.08630263060331345,
-0.02319641225039959,
0.06695640832185745,
0.07184390723705292,
0.03574742004275322,
-0.06986211985349655,
0.1086069718003273,
0.09819295257329941,
-0.10081587731838226,
0.05387916415929794,
0.12532012164592743,
0.0071126967668533325,
-0.06656333059072495,
0.10086043924093246,
0.06961681693792343,
0.036061037331819534,
-0.028200797736644745,
0.059149421751499176,
-0.0484965555369854,
0.05548999086022377,
0.2551426887512207,
-0.014186553657054901,
0.0035417319741100073,
0.001898604561574757,
0.05903390794992447,
-0.049289070069789886,
0.028590073809027672,
0.03331949561834335,
0.012553000822663307,
-0.06116343289613724,
0.17584264278411865,
-0.02954675443470478,
0.05476304516196251,
-0.03358527272939682,
-0.04275183007121086,
-0.09656056761741638,
-0.030577756464481354,
-0.014175278134644032,
0.038183778524398804,
-0.060230106115341187,
-0.021088534966111183,
0.007637442089617252,
0.011718163266777992,
0.05816828832030296,
0.00280717178247869,
-0.09629829227924347,
-0.006222394295036793,
-0.0023184046149253845,
0.04561178386211395,
-0.1414269059896469,
-0.11368244886398315,
0.07359648495912552,
-0.021475227549672127,
0.054126765578985214,
0.05243605002760887,
-0.0382513552904129,
-0.00815708376467228,
-0.2603205144405365,
0.02458188124001026,
-0.003671027021482587,
-0.004581432789564133,
-0.03533878177404404,
-0.08527983725070953,
-0.025660661980509758,
-0.07818534970283508,
-0.09017519652843475,
-0.020299449563026428,
0.12423394620418549,
-0.04943583905696869,
0.053720198571681976,
0.06052563712000847,
-0.07517364621162415,
-0.06531021744012833,
0.017054349184036255,
0.07951940596103668,
-0.0367669053375721,
0.08415265381336212,
-0.05905836820602417,
0.07612231373786926,
-0.10640129446983337,
-0.009077563881874084,
0.02198457159101963,
0.0012691104784607887,
-0.13304387032985687,
-0.0167317483574152,
0.011964835226535797,
-0.017311640083789825,
-0.003933146130293608,
-0.0371570810675621,
-0.08633723109960556,
-0.005443797446787357,
-0.014588779769837856,
-0.03231164067983627,
0.04707151651382446,
0.010246670804917812,
-0.04106967896223068,
-0.043502744287252426,
-0.0223221592605114,
0.035963721573352814,
-0.024006647989153862,
0.041442081332206726,
0.032934725284576416,
0.02648010663688183,
0.13587383925914764,
0.018765080720186234,
0.04895709082484245,
0.057867635041475296,
-0.06641577184200287,
-0.043122462928295135,
0.05743766948580742,
0.030614780262112617,
-0.026838259771466255,
0.1635206788778305,
-0.03923112899065018,
-0.026511507108807564,
0.07685196399688721,
-0.06476793438196182,
-0.02205701731145382,
-0.03093569539487362,
-0.03407146409153938,
-0.044967811554670334,
0.09428199380636215,
0.006638380698859692,
-0.08279702812433243,
0.07325666397809982,
0.04792841896414757,
-0.015448293648660183,
-0.011804673820734024,
0.09575341641902924,
-0.09939977526664734,
0.012061463668942451,
0.07102266699075699,
-0.07097075134515762,
-0.017407361418008804,
0.1033765897154808,
0.034317661076784134,
0.05081581696867943,
0.02118057943880558,
0.01778152585029602,
0.08013331890106201,
0.005902580916881561,
0.05900324881076813,
-0.06005903333425522,
-0.15355746448040009,
-0.010108498856425285,
0.045794352889060974,
0.05806070566177368,
0.08620699495077133,
0.02457340992987156,
-0.06548148393630981,
-0.03579682484269142,
0.07259669899940491,
-0.01966365985572338,
0.08703742176294327,
-0.09361263364553452,
0.32679426670074463,
-0.07448770105838776,
0.00034209073055535555,
-0.00016882640193216503,
-0.05225273221731186,
0.024914812296628952,
0.10365395247936249,
0.09747033566236496,
0.004355457611382008,
-0.03709396347403526,
-0.026004092767834663,
0.0114250797778368,
0.01715398021042347,
0.06508871912956238,
0.020527508109807968,
0.15799671411514282,
-0.1295906901359558,
0.16754360496997833,
-0.05848591402173042,
0.003637662623077631,
-0.057830873876810074,
0.01789150945842266,
0.00527843227609992,
0.05527999997138977,
-0.05858071893453598,
0.09725970029830933,
-0.12142314016819,
-0.1958485096693039,
-0.011992440558969975,
-0.031574640423059464,
-0.048586953431367874,
0.009042746387422085,
-0.04370114579796791,
0.056919440627098083,
0.12885910272598267,
0.010255546309053898,
0.022338727489113808,
0.006472365465015173,
0.022390123456716537,
-0.08733006566762924,
0.008127140812575817,
0.1340932846069336,
-0.08620604872703552,
0.24722427129745483,
0.024367667734622955,
0.1074906513094902,
0.07876920700073242,
-0.059231530874967575,
-0.11934582144021988,
-0.002767815487459302,
-0.007436749991029501,
-0.020663367584347725,
-0.048334188759326935,
0.16277951002120972,
-0.014552547596395016,
0.03523395210504532,
0.0743832066655159,
-0.09234929084777832,
0.04531434550881386,
0.07752197235822678,
-0.005636757239699364,
-0.029548803344368935,
0.08068346232175827,
-0.08005354553461075,
0.10620313137769699,
0.14083747565746307,
-0.010783699341118336,
0.002738629002124071,
-0.09058357775211334,
0.007862906903028488,
0.03918643668293953,
0.03950376808643341,
-0.10856079310178757,
-0.05861654877662659,
-0.003379700006917119,
-0.10943116247653961,
0.03502577915787697,
-0.1752907931804657,
-0.05053526535630226,
-0.13758772611618042,
0.03345002979040146,
-0.0036775232292711735,
-0.008233943954110146,
0.13118159770965576,
-0.028784770518541336,
-0.004121677950024605,
-0.023228537291288376,
-0.018349986523389816,
0.11014625430107117,
-0.02522680163383484,
0.004018074367195368
] |
null | null | DanishFungi | # Model card for BVRA/vit_large_patch16_384.ft_df20_384
## Model Details
- **Model Type:** Danish Fungi Classification
- **Model Stats:**
- Params (M): ??
- Image size: 384 x 384
- **Papers:**
- **Original:** ??
- **Train Dataset:** DF20 --> https://sites.google.com/view/danish-fungi-dataset
## Model Usage
### Image Embeddings
```python
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/vit_large_patch16_384.ft_df20_384", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize((384, 384)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(PATH_TO_YOUR_IMAGE)
output = model(train_transforms(img).unsqueeze(0))
# output is a (1, num_features) shaped tensor
```
## Citation
```bibtex
@InProceedings{Picek_2022_WACV,
author = {Picek, Luk'a{s} and {S}ulc, Milan and Matas, Ji{r}{'\i} and Jeppesen, Thomas S. and Heilmann-Clausen, Jacob and L{e}ss{\o}e, Thomas and Fr{\o}slev, Tobias},
title = {Danish Fungi 2020 - Not Just Another Image Recognition Dataset},
booktitle = {Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022},
pages = {1525-1535}
}
```
```bibtex
@article{picek2022automatic,
title={Automatic Fungi Recognition: Deep Learning Meets Mycology},
author={Picek, Luk{'a}{{s}} and {{S}}ulc, Milan and Matas, Ji{{r}}{'\i} and Heilmann-Clausen, Jacob and Jeppesen, Thomas S and Lind, Emil},
journal={Sensors},
volume={22},
number={2},
pages={633},
year={2022},
publisher={Multidisciplinary Digital Publishing Institute}
}
```
| {"license": "cc-by-nc-4.0", "library_name": "DanishFungi", "tags": ["image-classification", "ecology", "fungi", "FGVC"]} | image-classification | BVRA/vit_large_patch16_384.ft_df20_384 | [
"DanishFungi",
"pytorch",
"image-classification",
"ecology",
"fungi",
"FGVC",
"license:cc-by-nc-4.0",
"region:us"
] | 2024-02-13T17:09:04+00:00 | [] | [] | TAGS
#DanishFungi #pytorch #image-classification #ecology #fungi #FGVC #license-cc-by-nc-4.0 #region-us
| # Model card for BVRA/vit_large_patch16_384.ft_df20_384
## Model Details
- Model Type: Danish Fungi Classification
- Model Stats:
- Params (M): ??
- Image size: 384 x 384
- Papers:
- Original: ??
- Train Dataset: DF20 --> URL
## Model Usage
### Image Embeddings
| [
"# Model card for BVRA/vit_large_patch16_384.ft_df20_384",
"## Model Details\n- Model Type: Danish Fungi Classification \n- Model Stats:\n - Params (M): ??\n - Image size: 384 x 384\n- Papers:\n- Original: ??\n- Train Dataset: DF20 --> URL",
"## Model Usage",
"### Image Embeddings"
] | [
"TAGS\n#DanishFungi #pytorch #image-classification #ecology #fungi #FGVC #license-cc-by-nc-4.0 #region-us \n",
"# Model card for BVRA/vit_large_patch16_384.ft_df20_384",
"## Model Details\n- Model Type: Danish Fungi Classification \n- Model Stats:\n - Params (M): ??\n - Image size: 384 x 384\n- Papers:\n- Original: ??\n- Train Dataset: DF20 --> URL",
"## Model Usage",
"### Image Embeddings"
] | [
40,
26,
50,
4,
7
] | [
"passage: TAGS\n#DanishFungi #pytorch #image-classification #ecology #fungi #FGVC #license-cc-by-nc-4.0 #region-us \n# Model card for BVRA/vit_large_patch16_384.ft_df20_384## Model Details\n- Model Type: Danish Fungi Classification \n- Model Stats:\n - Params (M): ??\n - Image size: 384 x 384\n- Papers:\n- Original: ??\n- Train Dataset: DF20 --> URL## Model Usage### Image Embeddings"
] | [
-0.11470367759466171,
0.011422678828239441,
-0.0017539778491482139,
0.11140085756778717,
0.018437715247273445,
-0.030774816870689392,
-0.006650498602539301,
0.04156672582030296,
0.0450594387948513,
0.08195319026708603,
0.19489209353923798,
0.05648278445005417,
-0.005189118441194296,
0.14249634742736816,
-0.026449697092175484,
-0.2894562780857086,
0.09225591272115707,
0.06049486622214317,
-0.1518709808588028,
0.08075793832540512,
0.1469157636165619,
-0.05878271535038948,
0.09513586759567261,
0.015374687500298023,
-0.2697277367115021,
0.050118181854486465,
-0.046857528388500214,
-0.039858218282461166,
0.14547666907310486,
0.045909009873867035,
0.05157763883471489,
0.028706999495625496,
0.07085173577070236,
-0.01776655577123165,
0.03121347166597843,
-0.041341058909893036,
-0.11365991085767746,
0.15114745497703552,
0.07519984990358353,
0.036153893917798996,
0.23078767955303192,
-0.021858887746930122,
0.02273574098944664,
-0.019214671105146408,
-0.0450136624276638,
-0.29930582642555237,
0.052383989095687866,
0.1794363558292389,
-0.026425782591104507,
-0.02691001445055008,
-0.014326459728181362,
0.035312872380018234,
-0.15381596982479095,
0.06481897830963135,
0.056736625730991364,
-0.014598947949707508,
-0.015131239779293537,
0.1886729747056961,
0.053916268050670624,
0.11276688426733017,
-0.13764120638370514,
0.05515434965491295,
0.06350628286600113,
0.010576517321169376,
0.0633629858493805,
-0.0038035919424146414,
0.19311846792697906,
0.006359832361340523,
-0.10301299393177032,
0.007835878059267998,
0.20232589542865753,
0.10044974088668823,
0.00719703733921051,
-0.019738411530852318,
-0.028970105573534966,
0.0860508531332016,
-0.04200076311826706,
0.020323023200035095,
0.016475209966301918,
-0.06077798083424568,
0.16473031044006348,
0.04041832685470581,
-0.09412167221307755,
-0.07567667961120605,
0.017089469358325005,
0.031178932636976242,
0.0028947042301297188,
0.06905069202184677,
-0.07164538651704788,
-0.03371945768594742,
-0.22156034409999847,
-0.09814368933439255,
0.052048973739147186,
-0.05636550858616829,
0.08079368621110916,
0.01127258688211441,
0.010769441723823547,
-0.027298182249069214,
0.07388816028833389,
-0.04631027951836586,
-0.06989862024784088,
-0.03454310819506645,
-0.021415432915091515,
0.13013941049575806,
0.09107840061187744,
-0.0002757833863142878,
-0.20354944467544556,
0.10954736173152924,
0.07683549076318741,
0.018880387768149376,
-0.03812840208411217,
0.007016555406153202,
-0.14617964625358582,
-0.08208788931369781,
0.04369752109050751,
0.0016658906824886799,
-0.06909704208374023,
-0.0683475136756897,
0.05683552846312523,
-0.09416674822568893,
0.3259216845035553,
0.002019478939473629,
-0.02901836484670639,
0.04107818007469177,
-0.03709813952445984,
0.11511567234992981,
0.020541992038488388,
-0.098911352455616,
-0.009250725619494915,
0.2189016491174698,
-0.09855116903781891,
-0.02622280828654766,
-0.021582072600722313,
-0.17344950139522552,
0.018119661137461662,
-0.07594716548919678,
0.0710892528295517,
-0.11462492495775223,
-0.015182899311184883,
0.058875638991594315,
0.009477170184254646,
-0.061541542410850525,
-0.04308387637138367,
0.1021774634718895,
-0.07757361233234406,
-0.02338557131588459,
0.06503106653690338,
0.13459502160549164,
-0.040080346167087555,
0.06074710190296173,
-0.16828708350658417,
0.12166929244995117,
-0.24239811301231384,
0.016509709879755974,
-0.039982303977012634,
0.01617438532412052,
-0.2656095623970032,
-0.07722721993923187,
-0.13791905343532562,
0.01616358384490013,
-0.11144100874662399,
-0.13771595060825348,
0.10761898756027222,
0.011402330361306667,
-0.01329166442155838,
0.016977926716208458,
-0.08968110382556915,
-0.008339937776327133,
0.10280261188745499,
-0.12476044148206711,
-0.06743614375591278,
0.1404275745153427,
-0.034755680710077286,
-0.010135679505765438,
0.00917042326182127,
0.23285071551799774,
0.004979627672582865,
-0.09623130410909653,
0.09403384476900101,
0.03852013126015663,
-0.037671979516744614,
-0.09313812106847763,
0.09116221964359283,
0.028643423691391945,
-0.09995503723621368,
0.03548892214894295,
-0.09222406893968582,
0.014299437403678894,
0.00007512651791330427,
-0.022191960364580154,
-0.05034233257174492,
-0.08422894775867462,
0.11052296310663223,
0.021232828497886658,
0.0452691912651062,
-0.060204945504665375,
0.025199558585882187,
0.008135263808071613,
0.11620040982961655,
-0.03707532584667206,
-0.03715410828590393,
0.05399962514638901,
0.20787270367145538,
-0.1254180669784546,
0.013896523974835873,
-0.09000158309936523,
0.05598079040646553,
0.04507923871278763,
-0.1021222472190857,
0.02303411439061165,
0.11917989701032639,
0.026229923591017723,
0.09224388748407364,
-0.04371461272239685,
0.051483154296875,
-0.10605394840240479,
0.003472646465525031,
0.014186064712703228,
-0.22408747673034668,
0.038860518485307693,
-0.03472356125712395,
-0.009994533844292164,
-0.2247820347547531,
-0.017757950350642204,
0.1599748730659485,
0.07078273594379425,
-0.0198046937584877,
0.05310226231813431,
0.041152920573949814,
-0.08941902965307236,
-0.02640090510249138,
0.03793729096651077,
0.05192837491631508,
-0.05990628898143768,
-0.016288738697767258,
0.09268391132354736,
0.051100488752126694,
0.13910101354122162,
0.13538266718387604,
-0.005204439628869295,
-0.08439861238002777,
-0.07358063757419586,
-0.0611947737634182,
0.03307590261101723,
-0.05038084089756012,
-0.09371284395456314,
-0.13062962889671326,
-0.011045671068131924,
0.1705956608057022,
-0.21643918752670288,
0.005415452178567648,
0.11677108705043793,
-0.002485194243490696,
-0.03000779077410698,
0.21485847234725952,
0.18428821861743927,
-0.1712239533662796,
0.1018923744559288,
0.19210194051265717,
-0.06009543687105179,
0.18709208071231842,
0.016721511259675026,
-0.06615125387907028,
0.009898919612169266,
-0.01149397250264883,
-0.0230592992156744,
0.36293935775756836,
-0.13745547831058502,
0.08864603191614151,
0.085799440741539,
-0.03709189221262932,
0.03560219705104828,
-0.07468723505735397,
-0.032343752682209015,
-0.004916090052574873,
0.0054825120605528355,
-0.04442330822348595,
0.09835589677095413,
0.013656984083354473,
0.1938745081424713,
-0.038091570138931274,
-0.1463290899991989,
-0.02858756296336651,
0.04661058261990547,
-0.07298398017883301,
0.26600950956344604,
-0.07562202960252762,
-0.24890552461147308,
-0.0893820971250534,
0.062446363270282745,
-0.06851126253604889,
0.01863769255578518,
0.015223233960568905,
-0.10097995400428772,
-0.1099419891834259,
-0.05256558582186699,
0.07529912143945694,
-0.11360225081443787,
-0.005364068318158388,
-0.15226775407791138,
0.03503669798374176,
0.000920544087421149,
-0.11886836588382721,
0.035371728241443634,
-0.0031701771076768637,
0.23484516143798828,
0.044907428324222565,
-0.0033034246880561113,
0.11455594748258591,
0.09351047873497009,
-0.09557648748159409,
0.022642122581601143,
0.030904455110430717,
0.243526428937912,
-0.004730336368083954,
0.18014517426490784,
0.11465609073638916,
-0.04972649738192558,
0.028302863240242004,
0.12028510868549347,
0.10449467599391937,
-0.04248938336968422,
-0.04096725210547447,
-0.03588901832699776,
-0.11792618781328201,
-0.1709911823272705,
-0.1448245495557785,
0.01501989271491766,
0.12249334156513214,
0.12112370133399963,
0.05652063712477684,
0.05186745151877403,
0.1080436035990715,
0.025168169289827347,
0.03799460455775261,
-0.07103563845157623,
0.03200773522257805,
0.03339288383722305,
-0.031379587948322296,
0.03265344351530075,
-0.01047724112868309,
0.008168651722371578,
0.11084571480751038,
0.000044230146158952266,
0.07209571450948715,
-0.004751275759190321,
-0.03428524732589722,
0.08053001761436462,
0.017422500997781754,
0.15449810028076172,
0.11388057470321655,
-0.11980884522199631,
-0.0750478059053421,
-0.04427444934844971,
-0.0865761935710907,
0.13824774324893951,
0.037824638187885284,
-0.030009988695383072,
0.00927267037332058,
-0.0703095868229866,
-0.06606511771678925,
-0.01876051537692547,
-0.10034558176994324,
0.06828233599662781,
-0.14340828359127045,
-0.04162343963980675,
-0.06300631165504456,
0.0757606029510498,
-0.11606971174478531,
-0.006431744899600744,
0.14769689738750458,
-0.04737731069326401,
-0.09707915782928467,
-0.02030186541378498,
0.07001999020576477,
0.07242223620414734,
0.026587096974253654,
-0.045689355581998825,
0.07314419746398926,
-0.06493394076824188,
0.10005268454551697,
-0.07587727159261703,
0.27526673674583435,
-0.00819108821451664,
-0.11496394127607346,
-0.11230416595935822,
-0.05327271297574043,
-0.021466072648763657,
0.23597562313079834,
0.13971564173698425,
0.0663442611694336,
0.10371101647615433,
-0.0715513601899147,
-0.13825882971286774,
-0.0612851120531559,
0.00028032390400767326,
-0.016144193708896637,
-0.07883497327566147,
0.08487146347761154,
-0.006311982870101929,
-0.043081119656562805,
-0.00006789781764382496,
-0.047923602163791656,
-0.013402163051068783,
0.009567522443830967,
-0.02761087939143181,
-0.07241664081811905,
0.010753795504570007,
-0.026675939559936523,
-0.12629900872707367,
0.07485030591487885,
-0.023225553333759308,
-0.12615464627742767,
-0.12875081598758698,
0.1574753224849701,
0.07827329635620117,
-0.031342025846242905,
0.06785213202238083,
-0.13211466372013092,
0.14930473268032074,
-0.099465012550354,
-0.0625176802277565,
0.12518607079982758,
-0.06357209384441376,
-0.1016397625207901,
-0.05157685652375221,
0.1521098017692566,
-0.00014308097888715565,
0.002522209892049432,
0.08422356098890305,
-0.007834318093955517,
-0.10076333582401276,
-0.14328375458717346,
0.04946066439151764,
-0.11060070246458054,
0.008333900943398476,
0.10115323960781097,
-0.15215559303760529,
-0.04562320187687874,
0.07344701141119003,
-0.07153863459825516,
0.12503919005393982,
0.242517352104187,
-0.12574824690818787,
0.1361859142780304,
0.14917342364788055,
0.002783740172162652,
-0.25546717643737793,
0.08817260712385178,
0.00683913379907608,
0.02712380327284336,
0.003231473034247756,
-0.08488386869430542,
0.2263413965702057,
0.18689341843128204,
-0.006961192470043898,
0.13236485421657562,
-0.12595930695533752,
-0.12417807430028915,
0.11217735707759857,
0.10728298127651215,
0.09396671503782272,
-0.0705980658531189,
-0.04185697063803673,
-0.10646634548902512,
-0.10180480033159256,
0.1792914867401123,
-0.04695587605237961,
-0.014902511611580849,
-0.10962755233049393,
0.08782816678285599,
0.032969675958156586,
-0.03361192345619202,
0.2158251702785492,
0.05817908048629761,
0.05956931412220001,
-0.052871160209178925,
-0.10257059335708618,
0.13918131589889526,
0.022201696410775185,
0.14263762533664703,
-0.07166779041290283,
0.08285112679004669,
-0.1561226099729538,
0.027873655781149864,
-0.16466721892356873,
0.08357441425323486,
-0.09631090611219406,
-0.08573783189058304,
-0.1491924226284027,
0.05430227145552635,
-0.026284804567694664,
-0.003513986011967063,
0.030387185513973236,
-0.031086236238479614,
-0.021353431046009064,
0.08233325183391571,
-0.016694674268364906,
-0.017597418278455734,
-0.10730887204408646,
0.02049383707344532,
-0.052896395325660706,
0.1014355942606926,
-0.27319270372390747,
0.03502983599901199,
0.10499070584774017,
0.05709817633032799,
0.03512388840317726,
-0.007281133905053139,
-0.04245411604642868,
-0.08545360714197159,
0.058860909193754196,
-0.19466666877269745,
-0.015171900391578674,
-0.03089764341711998,
0.11151671409606934,
0.041570939123630524,
-0.06357598304748535,
0.05077465623617172,
-0.06943050026893616,
0.008273981511592865,
0.01264723390340805,
-0.02199762873351574,
-0.022835245355963707,
0.11639393121004105,
0.23711620271205902,
0.06465398520231247,
-0.09754276275634766,
-0.032183799892663956,
0.03059232234954834,
-0.060870785266160965,
-0.0717419683933258,
0.07274797558784485,
-0.08822103589773178,
-0.07534366101026535,
0.09783300757408142,
0.07258372008800507,
-0.20483602583408356,
0.013453837484121323,
-0.0015456444816663861,
-0.12588268518447876,
0.05153517425060272,
0.22789731621742249,
0.09537306427955627,
-0.07866760343313217,
0.00876912847161293,
-0.1504962295293808,
-0.17316648364067078,
0.1232144758105278,
-0.11214392632246017,
0.08999145776033401,
-0.05792779102921486,
-0.014444692060351372,
-0.07096900790929794,
0.09517477452754974,
-0.047509051859378815,
0.05967111140489578,
-0.13595272600650787,
-0.0649895966053009,
-0.1347283273935318,
0.11305347084999084,
0.009041999466717243,
-0.021552426740527153,
-0.07109436392784119,
0.010781761258840561,
0.07300712913274765,
0.012482070364058018,
-0.11197718232870102,
0.008247348479926586,
0.04825533926486969,
0.04566900059580803,
-0.057224445044994354,
-0.05968489125370979,
0.020927995443344116,
-0.017431024461984634,
0.1254667192697525,
-0.042401257902383804,
0.04354273900389671,
0.04362225905060768,
-0.09904325008392334,
0.05065068230032921,
0.07057075202465057,
0.025698285549879074,
0.05996764078736305,
-0.06991870701313019,
0.046706270426511765,
-0.04378286004066467,
-0.0618046410381794,
0.06922491639852524,
0.06672211736440659,
-0.14481087028980255,
0.014443382620811462,
-0.0369282066822052,
-0.05379145219922066,
0.029636623337864876,
0.06595900654792786,
-0.023300891742110252,
0.026853447780013084,
-0.00981104001402855,
0.054248567670583725,
0.03333317115902901,
-0.09974809736013412,
-0.017114970833063126,
-0.0595187284052372,
-0.0744839534163475,
-0.0393654964864254,
0.09727698564529419,
-0.020869003608822823,
-0.09211260080337524,
0.17343074083328247,
0.12266174703836441,
-0.0231493953615427,
0.06285886466503143,
0.09536463767290115,
0.04496560990810394,
0.01870238594710827,
0.22784142196178436,
-0.11007649451494217,
0.05235264450311661,
-0.031396109610795975,
0.0059074293822050095,
0.059805288910865784,
0.11402461677789688,
0.0802486315369606,
0.11725443601608276,
-0.02390778437256813,
-0.08935130387544632,
0.12038162350654602,
0.035458486527204514,
0.041617028415203094,
0.05462886393070221,
0.09632094204425812,
0.09028071165084839,
0.02962024137377739,
0.056779105216264725,
0.11621280759572983,
-0.10663687437772751,
0.04195857793092728,
0.050953514873981476,
-0.08426384627819061,
-0.025084136053919792,
-0.04847493767738342,
-0.06016583368182182,
-0.05695265531539917,
0.047750361263751984,
-0.13561314344406128,
-0.055756259709596634,
-0.08733701705932617,
0.06196245178580284,
-0.088077612221241,
0.04680952429771423,
-0.05913815274834633,
-0.038088731467723846,
0.11902319639921188,
0.046298615634441376,
-0.05809995159506798,
0.008504137396812439,
0.03858409821987152,
0.0014933842467144132,
-0.024351855739951134,
-0.08791570365428925,
-0.05275767669081688,
-0.008387140929698944,
-0.10640384256839752,
-0.0502617172896862,
-0.011789887212216854,
-0.010342461988329887,
-0.07478229701519012,
-0.0044250404462218285,
0.10554570704698563,
0.00844539050012827,
-0.045553918927907944,
-0.05704587697982788,
0.08088932186365128,
0.06764592230319977,
0.007802371867001057,
-0.03626085817813873,
0.015259925276041031,
-0.044532254338264465,
0.05188842862844467,
-0.004658167250454426,
-0.04086713492870331,
0.008763452060520649,
0.13632366061210632,
0.14389832317829132,
-0.07822882384061813,
0.041878268122673035,
-0.010172199457883835,
-0.0058299177326262,
0.05384697765111923,
0.0736958310008049,
0.004335536155849695,
0.04659436643123627,
-0.04850757494568825,
-0.0035518240183591843,
-0.15658500790596008,
0.00015190718113444746,
-0.12407951802015305,
0.06457039713859558,
0.12311970442533493,
-0.15454678237438202,
-0.10981069505214691,
0.06858307123184204,
-0.03985587880015373,
0.006449101492762566,
-0.005745557602494955,
-0.12354893982410431,
-0.1348000019788742,
-0.08873722702264786,
-0.1544208824634552,
-0.001619786024093628,
-0.0633544847369194,
-0.10800100117921829,
-0.019137324765324593,
0.0007280812133103609,
-0.025797482579946518,
-0.18469582498073578,
-0.12712903320789337,
0.027758764103055,
-0.03527004271745682,
0.12579691410064697,
0.012419763021171093,
0.08743786066770554,
0.06618378311395645,
0.011872493661940098,
-0.08895851671695709,
-0.010404471307992935,
0.02519703097641468,
0.014670386910438538,
-0.003589664353057742,
0.1709553599357605,
0.020455865189433098,
-0.07879030704498291,
-0.026025613769888878,
-0.07039079070091248,
-0.11108449846506119,
0.025216832756996155,
-0.08833376318216324,
-0.0024650341365486383,
0.1833365261554718,
-0.06906700879335403,
0.05105747655034065,
0.13569237291812897,
-0.0426260270178318,
-0.13178107142448425,
-0.093409463763237,
0.06391103565692902,
0.05657154694199562,
-0.13064508140087128,
-0.00538648571819067,
-0.04939557611942291,
0.003226324450224638,
-0.05432774871587753,
-0.035578515380620956,
-0.209519624710083,
-0.03771711885929108,
-0.10667665302753448,
0.002006527502089739,
-0.04709389805793762,
0.07251475006341934,
0.07461351901292801,
0.029472526162862778,
-0.025877811014652252,
0.12649701535701752,
-0.010532979853451252,
0.028363987803459167,
-0.06028926745057106,
-0.1077626422047615
] |
null | null | transformers |
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
[Lewd-Assistant-v1](https://huggingface.co/datasets/Himitsui/Lewd-Assistant-v1) ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
***
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
***
GGUF: https://huggingface.co/Sao10K/Solstice-11B-v1-GGUF | {"language": ["en"], "license": "cc-by-nc-4.0", "datasets": ["Himitsui/Lewd-Assistant-v1"]} | text-generation | LoneStriker/Solstice-11B-v1-4.0bpw-h6-exl2 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:Himitsui/Lewd-Assistant-v1",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:10:36+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
Lewd-Assistant-v1 ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
*
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
*
GGUF: URL | [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
77
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.049034226685762405,
0.10144619643688202,
-0.005310742650181055,
0.037241458892822266,
0.1303713023662567,
0.017335545271635056,
0.14252999424934387,
0.11379635334014893,
-0.005623956210911274,
-0.03997872397303581,
0.15055686235427856,
0.22561697661876678,
-0.005716316867619753,
0.025737494230270386,
-0.07812640070915222,
-0.19685706496238708,
0.031945742666721344,
0.07199884951114655,
0.0009695991757325828,
0.10655628144741058,
0.10498841851949692,
-0.06860098987817764,
0.09109021723270416,
-0.02456873282790184,
-0.1569415032863617,
0.02397669479250908,
0.030383840203285217,
-0.11827446520328522,
0.10542871803045273,
0.056915976107120514,
0.09415589272975922,
0.07842440903186798,
-0.0075564272701740265,
-0.15251457691192627,
0.02114257775247097,
-0.005708994809538126,
-0.07609643787145615,
0.06579328328371048,
0.05390128493309021,
-0.027117885649204254,
0.10850529372692108,
0.0403880812227726,
-0.041287485510110855,
0.0467577800154686,
-0.10149915516376495,
-0.0192161425948143,
-0.06091657280921936,
0.0460011251270771,
0.05683813989162445,
0.09331124275922775,
0.024533160030841827,
0.13188046216964722,
-0.09107843041419983,
0.08752235770225525,
0.09963053464889526,
-0.31331998109817505,
0.01319095864892006,
0.09934073686599731,
0.03383893519639969,
0.04641084745526314,
-0.021290304139256477,
0.06774309277534485,
0.04784923046827316,
0.0007684126612730324,
0.03598456457257271,
-0.0797121524810791,
-0.09438449889421463,
0.06742703169584274,
-0.06590547412633896,
-0.03863084688782692,
0.2922324538230896,
-0.030988743528723717,
0.04172538220882416,
-0.008086903020739555,
-0.050714027136564255,
0.011418753303587437,
-0.015883255749940872,
0.03745931759476662,
-0.008732186630368233,
0.05612645298242569,
0.03042249009013176,
-0.0401790477335453,
-0.13913358747959137,
-0.020970935001969337,
-0.18500429391860962,
0.07730595767498016,
0.012230283580720425,
0.049645330756902695,
-0.12579062581062317,
0.06767009198665619,
0.034521471709012985,
-0.0844985693693161,
0.0035924408584833145,
-0.053609706461429596,
0.07973714172840118,
-0.0033421244006603956,
-0.03879298269748688,
-0.022027965635061264,
0.10066821426153183,
0.07918766885995865,
0.017121922224760056,
-0.020639244467020035,
-0.08546588569879532,
0.10821904987096786,
-0.013696074485778809,
0.030209684744477272,
-0.03432465344667435,
0.005157887935638428,
0.08075081557035446,
-0.07926378399133682,
0.04890313372015953,
-0.0285712368786335,
-0.1669217199087143,
-0.047651249915361404,
-0.021985750645399094,
0.10965735465288162,
0.028758613392710686,
0.0803452581167221,
-0.03757987916469574,
-0.013860568404197693,
0.0998191386461258,
-0.0681782215833664,
-0.005897911731153727,
-0.01723933219909668,
-0.00974948424845934,
0.09400562942028046,
0.02334989234805107,
0.02616862952709198,
-0.08904144912958145,
0.06954825669527054,
-0.07460135221481323,
-0.006143215112388134,
-0.03521576523780823,
-0.05373920500278473,
0.07148505002260208,
-0.0974171832203865,
0.030807875096797943,
-0.1752423644065857,
-0.20109885931015015,
0.024895215407013893,
0.0106661356985569,
-0.015678955242037773,
-0.07431206107139587,
-0.038309354335069656,
-0.03380206599831581,
0.018048031255602837,
-0.08405132591724396,
-0.0024438153486698866,
-0.08034411817789078,
0.10252384841442108,
-0.05322210118174553,
0.04925856739282608,
-0.15059894323349,
0.0595194548368454,
-0.08959881961345673,
-0.012827512808144093,
-0.007095616310834885,
0.050098419189453125,
-0.03298885375261307,
0.105813167989254,
-0.05119280889630318,
-0.025412462651729584,
-0.024753475561738014,
0.03582635521888733,
-0.016930731013417244,
0.18637792766094208,
-0.13419866561889648,
-0.07243777066469193,
0.15280477702617645,
-0.08325513452291489,
-0.18884451687335968,
0.09167393296957016,
0.00922262854874134,
0.04589606076478958,
0.08483385294675827,
0.14735817909240723,
0.0350952111184597,
-0.08198394626379013,
0.018709788098931313,
0.09923137724399567,
-0.06979144364595413,
-0.20308828353881836,
0.021961500868201256,
0.007903855293989182,
-0.09841631352901459,
0.04337438941001892,
0.0199807807803154,
0.06771830469369888,
-0.043807487934827805,
-0.06553755700588226,
-0.04720250144600868,
-0.05599060654640198,
-0.018855394795536995,
0.0029671976808458567,
0.08480874449014664,
-0.051144134253263474,
0.002517574466764927,
-0.005882262717932463,
0.031557876616716385,
-0.023341625928878784,
0.056014902889728546,
-0.06204771623015404,
0.11400096863508224,
-0.03765048086643219,
0.03347593918442726,
-0.13520418107509613,
-0.03351351618766785,
-0.01180564146488905,
0.14856234192848206,
0.025070972740650177,
0.04837543144822121,
0.01079084724187851,
-0.026632050052285194,
-0.025501301512122154,
0.00958278588950634,
0.15494011342525482,
-0.0007252903888002038,
-0.0532318577170372,
-0.10751572251319885,
0.06776221841573715,
-0.02253667823970318,
0.016523046419024467,
-0.09919705986976624,
0.006435787305235863,
0.04849201440811157,
0.09319677948951721,
-0.028797855600714684,
0.08913536369800568,
-0.00775644788518548,
0.04732397571206093,
-0.07237828522920609,
0.03538600727915764,
0.1164293885231018,
0.016884498298168182,
-0.09675242006778717,
0.21493247151374817,
-0.09469964355230331,
0.22045156359672546,
0.20328935980796814,
-0.2403641641139984,
0.05252329632639885,
-0.07172700762748718,
-0.01727456972002983,
-0.0074929846450686455,
0.025716116651892662,
-0.009235285222530365,
0.03171088919043541,
-0.008625861257314682,
0.1834697276353836,
-0.06712543964385986,
-0.0054125408641994,
0.002795885084196925,
-0.042803213000297546,
-0.03943811357021332,
0.08297725766897202,
0.19316521286964417,
-0.12646368145942688,
0.16178403794765472,
0.23159843683242798,
-0.013848419301211834,
0.1402653455734253,
-0.03274041414260864,
-0.019341804087162018,
0.03710115700960159,
-0.02327699586749077,
-0.012436605989933014,
-0.010511710308492184,
-0.10541673004627228,
-0.002799295587465167,
0.08416956663131714,
-0.00018182213534601033,
0.06753597408533096,
-0.1491035521030426,
-0.07189694792032242,
-0.0310774315148592,
-0.03873962536454201,
-0.03537937253713608,
0.08782068639993668,
0.01753067784011364,
0.128334641456604,
-0.051640938967466354,
-0.06278031319379807,
0.11246023327112198,
0.005560848396271467,
-0.0898054838180542,
0.1569569706916809,
-0.13892027735710144,
-0.2924811542034149,
-0.16305863857269287,
-0.16571520268917084,
-0.07089906185865402,
0.023396149277687073,
0.09480155259370804,
-0.05249262973666191,
-0.04799347370862961,
-0.030985508114099503,
-0.011247217655181885,
-0.05897943302989006,
-0.0034085328225046396,
-0.0424722284078598,
0.06421343982219696,
-0.06029471755027771,
-0.11193588376045227,
-0.043454427272081375,
-0.0044265370815992355,
-0.0640472024679184,
0.12870556116104126,
-0.09717836230993271,
0.09882897138595581,
0.1328934282064438,
0.025340624153614044,
0.026841068640351295,
-0.04431796446442604,
0.13088175654411316,
-0.04853203520178795,
-0.009431427344679832,
0.22270165383815765,
0.0011693616397678852,
0.05880896374583244,
0.13138096034526825,
0.038107480853796005,
-0.07699986547231674,
0.0045023816637694836,
-0.04538979381322861,
-0.0798133835196495,
-0.23326468467712402,
-0.1373303234577179,
-0.11261934041976929,
0.05847621709108353,
0.05341200903058052,
0.06106415018439293,
0.11219381541013718,
0.08764012902975082,
-0.014922751113772392,
0.058201052248477936,
-0.021582402288913727,
0.07762761414051056,
0.2839027941226959,
-0.01894594356417656,
0.13017886877059937,
-0.08824797719717026,
-0.05806112289428711,
0.09288623183965683,
0.10236862301826477,
0.12053664028644562,
0.059395331889390945,
0.08671223372220993,
0.06011790409684181,
0.13369910418987274,
0.13008637726306915,
0.09064308553934097,
0.04012376442551613,
-0.004751825239509344,
-0.01217054482549429,
-0.044730979949235916,
-0.035446617752313614,
0.035599954426288605,
0.013642698526382446,
-0.13429448008537292,
-0.02092130482196808,
-0.07859308272600174,
0.05072641372680664,
0.119310662150383,
0.025424810126423836,
-0.23313206434249878,
0.025882529094815254,
0.05987260863184929,
-0.0031277218367904425,
-0.07122143357992172,
0.08518851548433304,
-0.016570409759879112,
-0.08306598663330078,
0.07057943195104599,
-0.027958616614341736,
0.12143699079751968,
-0.07391038537025452,
0.0519358366727829,
-0.03370404988527298,
-0.05230972543358803,
0.03313904255628586,
0.1089467853307724,
-0.3237506151199341,
0.22024185955524445,
0.018825465813279152,
-0.026497717946767807,
-0.09279364347457886,
-0.025149978697299957,
0.012764468789100647,
0.1749781221151352,
0.12539535760879517,
-0.007683464791625738,
-0.015535303391516209,
-0.05810444429516792,
-0.05734163895249367,
0.035665884613990784,
0.06896401941776276,
0.0010584074771031737,
-0.0003624292730819434,
-0.024091387167572975,
-0.005279526114463806,
-0.0014077178202569485,
-0.00490220682695508,
-0.043236907571554184,
-0.17163509130477905,
0.05557248741388321,
0.14406868815422058,
0.05307428911328316,
-0.004156381823122501,
-0.039885297417640686,
-0.1416422724723816,
0.17220140993595123,
-0.13633225858211517,
-0.07610277086496353,
-0.10404983907938004,
-0.062380265444517136,
0.05498787760734558,
-0.05518300458788872,
0.03755813464522362,
-0.06245018541812897,
-0.002284383401274681,
-0.06032416224479675,
-0.17134849727153778,
0.06986992806196213,
-0.0996970683336258,
-0.015461762435734272,
-0.03423244133591652,
0.15149866044521332,
-0.08292442560195923,
0.017603974789381027,
0.02323228307068348,
0.01411656104028225,
-0.07490243017673492,
-0.09193401783704758,
-0.005053247790783644,
0.03293938934803009,
0.09035728871822357,
0.01723586395382881,
-0.14129149913787842,
-0.0095018669962883,
-0.014963537454605103,
-0.08424284309148788,
0.26092803478240967,
0.19374249875545502,
-0.05883967876434326,
0.1770647019147873,
0.15347951650619507,
-0.11490184813737869,
-0.32271862030029297,
-0.1000501811504364,
-0.11443756520748138,
-0.028265872970223427,
-0.04509029909968376,
-0.18660955131053925,
0.077033631503582,
0.049923256039619446,
-0.031645506620407104,
0.10615070909261703,
-0.23199057579040527,
-0.09402638673782349,
0.12149857729673386,
0.018926985561847687,
0.2996464669704437,
-0.12258071452379227,
-0.08332320302724838,
-0.08195407688617706,
-0.13797886669635773,
0.19211558997631073,
0.00286630867049098,
0.10877324640750885,
-0.04681301862001419,
0.09396523237228394,
0.007644746918231249,
-0.03690613806247711,
0.10031165927648544,
0.006828084588050842,
0.025079969316720963,
-0.10434320569038391,
-0.0027483508456498384,
0.08884637802839279,
0.002070714021101594,
0.041003402322530746,
-0.11694075912237167,
0.008402612991631031,
-0.1172478049993515,
-0.027270840480923653,
-0.05345173180103302,
0.07041863352060318,
0.009682005271315575,
-0.05904176086187363,
-0.022814305499196053,
-0.019129959866404533,
0.023440003395080566,
-0.015210927464067936,
0.18577711284160614,
-0.03642501309514046,
0.07289411127567291,
0.120790034532547,
0.137875497341156,
-0.13844045996665955,
0.029775775969028473,
-0.07663135230541229,
-0.07252693921327591,
0.06818535923957825,
-0.13475310802459717,
0.03976571559906006,
0.133937805891037,
-0.029848946258425713,
0.0664096474647522,
0.0765647441148758,
0.025761689990758896,
-0.00638764351606369,
0.14227253198623657,
-0.19646349549293518,
0.019226932898163795,
-0.04374184459447861,
0.006416141055524349,
0.06395085155963898,
0.04797811433672905,
0.16513222455978394,
-0.025768468156456947,
-0.009783856570720673,
0.015844149515032768,
0.014720029197633266,
-0.04439609870314598,
0.0675467774271965,
0.04722321033477783,
0.0031884554773569107,
-0.1300448477268219,
0.10301768779754639,
0.025875011458992958,
-0.11881901323795319,
-0.002760943491011858,
0.102492555975914,
-0.13203735649585724,
-0.12005016207695007,
-0.05686751753091812,
0.06437907367944717,
-0.2058214694261551,
-0.08213391900062561,
-0.05728176608681679,
-0.11623122543096542,
0.08587322384119034,
0.1539333164691925,
0.05562883988022804,
0.06769925355911255,
-0.03056035190820694,
-0.08275887370109558,
-0.0737461969256401,
0.020974867045879364,
-0.03823217377066612,
0.02078600414097309,
-0.10290080308914185,
0.015325134620070457,
-0.022673455998301506,
0.1308482140302658,
-0.05975550785660744,
-0.0260691586881876,
-0.10978298634290695,
0.042345207184553146,
-0.14944908022880554,
-0.012575010769069195,
-0.08017249405384064,
-0.0310711357742548,
-0.00464948546141386,
-0.015980064868927002,
-0.06127501279115677,
-0.016248362138867378,
-0.10641258955001831,
0.02068985439836979,
-0.020699268206954002,
0.07433059066534042,
-0.0841195210814476,
-0.04886775091290474,
0.05056420713663101,
-0.015597312711179256,
0.10742154717445374,
0.06851629167795181,
-0.09662238508462906,
0.08528278768062592,
-0.1458529531955719,
-0.05586700141429901,
0.09775988012552261,
0.0555204413831234,
0.04613138735294342,
0.02461850643157959,
0.01933644339442253,
0.12628474831581116,
-0.014499308541417122,
0.048842575401067734,
0.019805999472737312,
-0.10847801715135574,
-0.006426680367439985,
-0.05144473537802696,
-0.09860483556985855,
-0.06442166119813919,
-0.016366492956876755,
0.08798839896917343,
0.04380229115486145,
0.15357235074043274,
-0.04235014319419861,
0.04793012514710426,
-0.042971670627593994,
0.020120149478316307,
-0.008167668245732784,
-0.16375763714313507,
-0.08338074386119843,
-0.08619426190853119,
0.01709349825978279,
-0.0072896163910627365,
0.256022572517395,
0.031082479283213615,
-0.055167291313409805,
0.04080076143145561,
0.06237408146262169,
-0.0060380566865205765,
-0.007072872016578913,
0.25718989968299866,
0.08115017414093018,
-0.0018656767206266522,
-0.0709218680858612,
0.055914513766765594,
0.016445070505142212,
0.0564819797873497,
0.07317715883255005,
0.05913015827536583,
0.027723869308829308,
0.07779153436422348,
0.060071516782045364,
-0.007243873085826635,
-0.04913724586367607,
-0.06347004324197769,
-0.027562761679291725,
0.08634694665670395,
-0.0175641942769289,
0.09104092419147491,
0.12690387666225433,
-0.052363429218530655,
0.006516739260405302,
-0.03274639695882797,
-0.05228272080421448,
-0.15372596681118011,
-0.19265799224376678,
-0.08410533517599106,
-0.11393267661333084,
0.03020910546183586,
-0.09558413177728653,
0.040890172123909,
0.06267426162958145,
0.05259932950139046,
-0.050175171345472336,
0.003746095346286893,
-0.010680551640689373,
-0.06471575796604156,
0.07236453890800476,
-0.028445163741707802,
0.02719707041978836,
-0.07552506774663925,
-0.014066273346543312,
-0.063225157558918,
-0.0467803031206131,
-0.036711398512125015,
0.059050049632787704,
0.020925790071487427,
0.0454951673746109,
-0.133080393075943,
-0.07453975081443787,
-0.04458501189947128,
0.054712191224098206,
0.02359694242477417,
0.16524924337863922,
0.014143720269203186,
-0.011845545843243599,
0.05693808197975159,
0.172040656208992,
-0.038605257868766785,
-0.10545060783624649,
-0.043073464184999466,
0.16965802013874054,
0.023394731804728508,
0.04107775166630745,
0.006772690452635288,
0.015023903921246529,
-0.027153026312589645,
0.3453980088233948,
0.288048654794693,
-0.10212592035531998,
0.018246658146381378,
-0.021862352266907692,
0.03034358285367489,
0.06844350695610046,
0.12959334254264832,
0.10881296545267105,
0.20990362763404846,
-0.07219986617565155,
-0.06748899072408676,
-0.07748356461524963,
0.021169332787394524,
-0.10375670343637466,
0.08185678720474243,
0.005325254052877426,
-0.09320597350597382,
-0.03272281587123871,
0.09537962079048157,
-0.17274652421474457,
0.08563049882650375,
-0.004398995079100132,
-0.12151198089122772,
-0.03424680978059769,
-0.002985055325552821,
0.07231775671243668,
-0.0008496428490616381,
0.024526016786694527,
-0.06182459369301796,
-0.041415877640247345,
0.05475268512964249,
-0.0044367010705173016,
-0.2126384824514389,
0.02068512886762619,
0.06696335226297379,
-0.0013985815457999706,
0.03933676332235336,
-0.007371969521045685,
0.11203435063362122,
0.06820465624332428,
0.06483098119497299,
-0.0719994381070137,
0.08872124552726746,
0.014060961082577705,
-0.06090587005019188,
0.03618868812918663,
-0.022428318858146667,
-0.0032652681693434715,
-0.004855544771999121,
0.04206673428416252,
-0.037646062672138214,
0.06020224466919899,
-0.0012370774056762457,
-0.056301265954971313,
-0.029712067916989326,
0.020235275849699974,
-0.07321474701166153,
0.09561844915151596,
0.05176868662238121,
-0.010201070457696915,
-0.031797103583812714,
-0.07183147221803665,
-0.00331803853623569,
-0.003993404563516378,
-0.15203137695789337,
-0.03916352614760399,
-0.0990368202328682,
-0.07603249698877335,
0.10195887833833694,
0.017836207523941994,
-0.16887257993221283,
-0.005666637793183327,
-0.08880164474248886,
0.007904051803052425,
-0.16425450146198273,
0.06891398131847382,
0.11502542346715927,
-0.0008546813041903079,
-0.020225094631314278,
-0.05280805379152298,
0.042419176548719406,
0.03357136249542236,
-0.09693200886249542,
-0.09446734189987183
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mbart-neutralization
This model is a fine-tuned version of [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0181
- Bleu: 98.7341
- Gen Len: 18.4896
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| No log | 1.0 | 440 | 0.0307 | 91.2911 | 18.25 |
| 0.2343 | 2.0 | 880 | 0.0181 | 98.7341 | 18.4896 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["simplification", "generated_from_trainer"], "metrics": ["bleu"], "base_model": "facebook/mbart-large-50", "model-index": [{"name": "mbart-neutralization", "results": []}]} | text2text-generation | JoseLuis95/mbart-neutralization | [
"transformers",
"tensorboard",
"safetensors",
"mbart",
"text2text-generation",
"simplification",
"generated_from_trainer",
"base_model:facebook/mbart-large-50",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:11:11+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #mbart #text2text-generation #simplification #generated_from_trainer #base_model-facebook/mbart-large-50 #license-mit #autotrain_compatible #endpoints_compatible #region-us
| mbart-neutralization
====================
This model is a fine-tuned version of facebook/mbart-large-50 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0181
* Bleu: 98.7341
* Gen Len: 18.4896
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5.6e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #mbart #text2text-generation #simplification #generated_from_trainer #base_model-facebook/mbart-large-50 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
73,
99,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #mbart #text2text-generation #simplification #generated_from_trainer #base_model-facebook/mbart-large-50 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5.6e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.11190537363290787,
0.04729842394590378,
-0.0028013973496854305,
0.0877656564116478,
0.1374731957912445,
0.0075215743854641914,
0.15062016248703003,
0.11431096494197845,
-0.05997541919350624,
0.06008791923522949,
0.13155320286750793,
0.11129988729953766,
0.028445325791835785,
0.17867505550384521,
-0.08988332748413086,
-0.21829310059547424,
0.010251542553305626,
0.046706050634384155,
-0.053697120398283005,
0.11654095351696014,
0.09757395088672638,
-0.13748958706855774,
0.10952439904212952,
-0.009556997567415237,
-0.17309553921222687,
0.016546012833714485,
0.02387155033648014,
-0.049925338476896286,
0.12631191313266754,
0.05649873986840248,
0.11361369490623474,
0.04754456505179405,
0.06579647213220596,
-0.18071249127388,
0.01592530496418476,
0.06524383276700974,
-0.011243220418691635,
0.0898243710398674,
0.047398634254932404,
0.015579846687614918,
0.1419232338666916,
-0.09331461787223816,
0.054299693554639816,
0.028238825500011444,
-0.1428786963224411,
-0.2117057591676712,
-0.08090426027774811,
0.031127456575632095,
0.11864759027957916,
0.08476874977350235,
-0.029434019699692726,
0.13984666764736176,
-0.05809419974684715,
0.09743016958236694,
0.2164476215839386,
-0.2941242456436157,
-0.07015726715326309,
0.0470631904900074,
0.040311299264431,
0.0689127966761589,
-0.0978810042142868,
0.007085016462951899,
0.057636745274066925,
0.031932104378938675,
0.12169946730136871,
-0.04596471041440964,
0.01885867491364479,
-0.011434314772486687,
-0.13206510245800018,
-0.01967751421034336,
0.15811020135879517,
0.06336640566587448,
-0.03753287345170975,
-0.07550361752510071,
-0.06614940613508224,
-0.09268268942832947,
-0.05700862407684326,
-0.02356201410293579,
0.031097358092665672,
-0.030269481241703033,
-0.09134359657764435,
-0.035627130419015884,
-0.10664082318544388,
-0.05543030425906181,
-0.03908843174576759,
0.1041402742266655,
0.021343065425753593,
0.0007165882852859795,
-0.039205580949783325,
0.07985597848892212,
-0.031176907941699028,
-0.14886833727359772,
0.031645696610212326,
0.009087583050131798,
0.009780950844287872,
-0.05242732912302017,
-0.048543598502874374,
-0.1084323525428772,
0.004190751817077398,
0.12954111397266388,
-0.046700265258550644,
0.06935898214578629,
0.009364038705825806,
0.04865901544690132,
-0.0921872928738594,
0.15804950892925262,
-0.034184012562036514,
-0.0700574666261673,
0.017873043194413185,
0.10251203179359436,
0.044233351945877075,
-0.023466771468520164,
-0.1336270421743393,
0.032024163752794266,
0.09560424834489822,
0.01448728609830141,
-0.049762237817049026,
0.06938005238771439,
-0.05426338315010071,
-0.018253380432724953,
0.05130654200911522,
-0.07533135265111923,
0.03182200714945793,
-0.006736611481755972,
-0.042834967374801636,
-0.05085737258195877,
0.02072126604616642,
0.01998521201312542,
-0.00323554128408432,
0.11518023908138275,
-0.08958610147237778,
-0.000962584454100579,
-0.0763431116938591,
-0.11753914505243301,
0.007989606820046902,
-0.066032774746418,
0.025312921032309532,
-0.11640888452529907,
-0.18258550763130188,
-0.015836453065276146,
0.04832393303513527,
-0.035057783126831055,
-0.03058481030166149,
-0.043571893125772476,
-0.06897340714931488,
0.008359557017683983,
-0.0194611307233572,
0.10052594542503357,
-0.058170318603515625,
0.09752582013607025,
0.05765681713819504,
0.06376112997531891,
-0.07221852988004684,
0.04240989685058594,
-0.10044301301240921,
0.048012588173151016,
-0.20554159581661224,
0.025932686403393745,
-0.048746176064014435,
0.06932003051042557,
-0.07461149990558624,
-0.08564931899309158,
-0.014409029856324196,
0.020555537194013596,
0.07929075509309769,
0.09773467481136322,
-0.16971547901630402,
-0.08503067493438721,
0.15433068573474884,
-0.09357337653636932,
-0.15965168178081512,
0.13604408502578735,
-0.05546444654464722,
0.0665026381611824,
0.07676668465137482,
0.20183789730072021,
0.08089577406644821,
-0.07768469303846359,
0.011916468851268291,
-0.010135198943316936,
0.06645222008228302,
-0.0464363731443882,
0.05494065210223198,
-0.006951332092285156,
-0.004222827032208443,
0.013808103278279305,
-0.013218164443969727,
0.04527045413851738,
-0.08085183799266815,
-0.07102520018815994,
-0.02621680684387684,
-0.10447307676076889,
0.05280905216932297,
0.06588129699230194,
0.05914417654275894,
-0.12539900839328766,
-0.07612748444080353,
0.050743140280246735,
0.07301360368728638,
-0.059371285140514374,
0.004636453930288553,
-0.07414647191762924,
0.088420070707798,
-0.07006775587797165,
-0.00806481298059225,
-0.1510383039712906,
-0.037994302809238434,
0.003751674434170127,
0.023043496534228325,
0.008717559278011322,
0.02834806777536869,
0.08586765080690384,
0.06981334835290909,
-0.08483071625232697,
-0.03515804186463356,
-0.011160573922097683,
0.017082596197724342,
-0.1340084671974182,
-0.17612725496292114,
-0.018864214420318604,
-0.028527140617370605,
0.12281017750501633,
-0.23906786739826202,
0.049646612256765366,
0.012421301566064358,
0.11931368708610535,
0.053524915128946304,
-0.013213067315518856,
-0.03485981374979019,
0.06838901340961456,
-0.026975229382514954,
-0.06073261424899101,
0.06041412800550461,
0.007518042344599962,
-0.0975291058421135,
-0.032299552112817764,
-0.18172934651374817,
0.21628859639167786,
0.139067605137825,
-0.07772201299667358,
-0.06481243669986725,
-0.00462212273851037,
-0.04258689656853676,
-0.018456779420375824,
-0.034912217408418655,
-0.026959611102938652,
0.11737101525068283,
0.002808489603921771,
0.15624408423900604,
-0.09455330669879913,
-0.03607553988695145,
0.0352165512740612,
-0.0424920953810215,
0.003690613666549325,
0.11458168923854828,
0.10480567812919617,
-0.1505393236875534,
0.14906546473503113,
0.20264920592308044,
-0.028638700023293495,
0.1578010618686676,
-0.036270108073949814,
-0.06507963687181473,
-0.024361610412597656,
0.0034994452726095915,
0.01389540545642376,
0.13362345099449158,
-0.11427327245473862,
-0.0007582551916129887,
0.008239850401878357,
0.011500205844640732,
0.029490288347005844,
-0.19628871977329254,
-0.030127841979265213,
0.04596663638949394,
-0.034931015223264694,
0.014225868508219719,
-0.005897706840187311,
0.005849913228303194,
0.10095705837011337,
-0.00043190387077629566,
-0.06709861010313034,
0.03293673321604729,
-0.0004233310464769602,
-0.07845094054937363,
0.19930756092071533,
-0.06980425864458084,
-0.18525245785713196,
-0.13185612857341766,
-0.05751428380608559,
-0.05061929672956467,
0.024592651054263115,
0.06541772186756134,
-0.07496814429759979,
-0.04906971752643585,
-0.11123957484960556,
0.03874317184090614,
0.022459272295236588,
0.025029782205820084,
0.022269070148468018,
-0.0033231431152671576,
0.0860222578048706,
-0.08863206207752228,
-0.02018750086426735,
-0.03357195109128952,
-0.02981874905526638,
0.030107805505394936,
0.005561124533414841,
0.11572426557540894,
0.11031393706798553,
-0.02754538506269455,
0.0026513973716646433,
-0.04587921127676964,
0.24325357377529144,
-0.07471644133329391,
0.008584942668676376,
0.1429188847541809,
-0.021464403718709946,
0.053604427725076675,
0.14114795625209808,
0.05110037326812744,
-0.11040407419204712,
0.02328719198703766,
0.04461584612727165,
-0.03287370130419731,
-0.16944918036460876,
-0.042074549943208694,
-0.050712864845991135,
0.03191395103931427,
0.10034530609846115,
0.02361636981368065,
0.02503296174108982,
0.07425554096698761,
0.008954054675996304,
0.06559572368860245,
-0.009934542700648308,
0.067949578166008,
0.10813064128160477,
0.03339964523911476,
0.1375570446252823,
-0.051939137279987335,
-0.06584911793470383,
0.052077244967222214,
-0.028027385473251343,
0.18336153030395508,
0.011629248969256878,
0.11347915977239609,
0.04407956823706627,
0.1327780783176422,
0.000507802062202245,
0.07205065339803696,
-0.02146381139755249,
-0.06096315011382103,
-0.02361329458653927,
-0.03652636334300041,
-0.03812624141573906,
0.03105507791042328,
-0.050157904624938965,
0.04724374786019325,
-0.13568180799484253,
0.009345585480332375,
0.05773455649614334,
0.18795320391654968,
0.06846737861633301,
-0.31995871663093567,
-0.08862052112817764,
0.026750916615128517,
-0.0203776266425848,
-0.03403051570057869,
0.02563409134745598,
0.15044733881950378,
-0.058344483375549316,
0.06021173298358917,
-0.07505463063716888,
0.08777827024459839,
-0.020735202357172966,
0.06855941563844681,
0.025549663230776787,
0.0831533893942833,
-0.018826819956302643,
0.0687502920627594,
-0.29900428652763367,
0.26570793986320496,
0.02912488393485546,
0.07593607902526855,
-0.057075921446084976,
-0.0009793018689379096,
0.02359694428741932,
0.08109534531831741,
0.06729333102703094,
-0.020001742988824844,
-0.08407284319400787,
-0.20145495235919952,
-0.05035996437072754,
0.032367151230573654,
0.10187912732362747,
-0.043263956904411316,
0.10394483059644699,
-0.03878862410783768,
0.001252090441994369,
0.07541053742170334,
-0.007439651992172003,
-0.07643589377403259,
-0.11316239088773727,
-0.007937750779092312,
0.03820662945508957,
-0.06292641162872314,
-0.09277331084012985,
-0.08051688969135284,
-0.09492947906255722,
0.15764370560646057,
0.031958192586898804,
-0.03669159859418869,
-0.11879419535398483,
0.06135455146431923,
0.061228714883327484,
-0.08609545975923538,
0.03877304494380951,
0.017854640260338783,
0.09253647178411484,
0.005232938565313816,
-0.06108209118247032,
0.13752055168151855,
-0.0738690122961998,
-0.1907600611448288,
-0.057063084095716476,
0.13197897374629974,
0.0018261632649227977,
0.03959409520030022,
0.00932580977678299,
0.016012685373425484,
-0.02513165771961212,
-0.08041925728321075,
0.03328309953212738,
-0.032816413789987564,
0.0412386916577816,
0.00689891679212451,
-0.02360570803284645,
-0.0017964368453249335,
-0.0386979766190052,
-0.026034437119960785,
0.145223006606102,
0.32473284006118774,
-0.07286772131919861,
0.0039057971443980932,
0.06552476435899734,
-0.03580150380730629,
-0.20225076377391815,
0.04011924937367439,
-0.0007538252393715084,
0.007746084593236446,
0.07873403280973434,
-0.12382063269615173,
0.07390118390321732,
0.08097395300865173,
-0.017101287841796875,
0.10584745556116104,
-0.2877933084964752,
-0.12932232022285461,
0.12607912719249725,
0.15633144974708557,
0.14478269219398499,
-0.15202413499355316,
-0.037695832550525665,
-0.05206889659166336,
-0.1190764531493187,
0.09337097406387329,
-0.1424645632505417,
0.10243412107229233,
-0.00756951654329896,
0.05685427784919739,
0.0172263216227293,
-0.04997005686163902,
0.1314525306224823,
-0.03710339218378067,
0.11121270060539246,
-0.07106680423021317,
0.0036957531701773405,
0.06953621655702591,
-0.05669955909252167,
0.022043433040380478,
-0.15393516421318054,
0.03636479377746582,
-0.08668156713247299,
-0.03499612212181091,
-0.0647347941994667,
0.030539652332663536,
-0.04777849465608597,
-0.05939894914627075,
-0.050593677908182144,
0.02555943839251995,
0.03301398083567619,
-0.01083696074783802,
0.1272715926170349,
-0.006267068441957235,
0.1561935395002365,
0.14621813595294952,
0.10193952172994614,
-0.09411633014678955,
-0.013421908020973206,
0.0032943186815828085,
-0.040582869201898575,
0.0528109073638916,
-0.12709885835647583,
0.04453117772936821,
0.11376505345106125,
-0.0035707252100110054,
0.1430954486131668,
0.05901562049984932,
-0.037160616368055344,
0.011926863342523575,
0.07844474166631699,
-0.16408580541610718,
-0.1431788206100464,
-0.02769310586154461,
-0.0048631844110786915,
-0.12468002736568451,
0.05853140354156494,
0.1295384019613266,
-0.05791422724723816,
0.006276909727603197,
-0.01733911968767643,
0.015118393115699291,
-0.03179797902703285,
0.17586976289749146,
0.06504852324724197,
0.052696723490953445,
-0.08464609086513519,
0.06729170680046082,
0.033928874880075455,
-0.07373100519180298,
0.02294035069644451,
0.05554374307394028,
-0.08457732200622559,
-0.0506877675652504,
0.03535313904285431,
0.21640217304229736,
-0.016072258353233337,
-0.04506365954875946,
-0.15744924545288086,
-0.13550099730491638,
0.05688483268022537,
0.17714717984199524,
0.08083979040384293,
-0.007080689538270235,
-0.028733674436807632,
0.010657068341970444,
-0.11999118328094482,
0.11369162797927856,
0.05079517886042595,
0.08936012536287308,
-0.14379791915416718,
0.12773440778255463,
-0.012422694824635983,
0.004219509661197662,
-0.02976352907717228,
0.057155899703502655,
-0.12032382935285568,
-0.010509168729186058,
-0.15724626183509827,
-0.034143660217523575,
-0.034202706068754196,
-0.013810613192617893,
-0.007338237017393112,
-0.05282813683152199,
-0.06163967773318291,
-0.006690896116197109,
-0.10285109281539917,
-0.02932756394147873,
0.038539860397577286,
0.040778543800115585,
-0.11643751710653305,
-0.030575044453144073,
0.026112092658877373,
-0.06887329369783401,
0.06389250606298447,
-0.00648482283577323,
0.02994336374104023,
0.05087674781680107,
-0.1439947485923767,
0.013192667625844479,
0.05398814007639885,
0.011382943950593472,
0.05760616809129715,
-0.06630591303110123,
-0.01070654671639204,
0.001607057056389749,
0.04967297241091728,
0.02067962847650051,
0.08463782072067261,
-0.12323098629713058,
0.020076775923371315,
-0.017447156831622124,
-0.08021990954875946,
-0.04104168340563774,
0.03502557426691055,
0.05947567895054817,
0.007810643408447504,
0.2085411101579666,
-0.09968312084674835,
0.012087482959032059,
-0.22163866460323334,
0.0014647032367065549,
-0.0010450404370203614,
-0.12019412219524384,
-0.0715571865439415,
-0.07503964006900787,
0.06045778840780258,
-0.05661062151193619,
0.13482217490673065,
0.01743145100772381,
0.03018283098936081,
0.041393913328647614,
-0.0556165874004364,
0.042809613049030304,
0.0247931070625782,
0.2254127413034439,
0.01431785337626934,
-0.04381605610251427,
0.012757915072143078,
0.039414115250110626,
0.11336275935173035,
0.0874849259853363,
0.19796156883239746,
0.17355374991893768,
-0.05149811506271362,
0.09203173220157623,
0.03939394652843475,
-0.04218560829758644,
-0.14237619936466217,
0.02321280539035797,
-0.05017305538058281,
0.09483383595943451,
-0.028039835393428802,
0.18240796029567719,
0.10764831304550171,
-0.15358519554138184,
0.01952376216650009,
-0.0593821257352829,
-0.06971707940101624,
-0.0961993858218193,
-0.04712897539138794,
-0.10512398183345795,
-0.1422177255153656,
-0.011147883720695972,
-0.11118028312921524,
-0.005223918706178665,
0.07943747192621231,
-0.004616742022335529,
-0.03336173668503761,
0.1978018581867218,
-0.0013395567657426,
0.02427470125257969,
0.0629921555519104,
0.003604430705308914,
-0.03735996037721634,
-0.06323687732219696,
-0.07853137701749802,
-0.005263519007712603,
-0.00895020179450512,
0.025224387645721436,
-0.0541047602891922,
-0.0639662817120552,
0.03449232503771782,
0.001757492427714169,
-0.11354616284370422,
0.011383657343685627,
0.022903181612491608,
0.06061096116900444,
0.037276461720466614,
0.004336594138294458,
0.01838439516723156,
-0.00988561287522316,
0.2180899828672409,
-0.07311839610338211,
-0.0631750226020813,
-0.09112535417079926,
0.22107069194316864,
0.03028790093958378,
0.015423457138240337,
0.005242116283625364,
-0.0915783941745758,
0.03654734417796135,
0.22422994673252106,
0.19717302918434143,
-0.10043048113584518,
0.006975598633289337,
-0.025085844099521637,
-0.0032244082540273666,
-0.02472456730902195,
0.10528460144996643,
0.10072401911020279,
0.02276894636452198,
-0.06124710291624069,
-0.027307860553264618,
-0.031428635120391846,
-0.023871907964348793,
-0.03457394987344742,
0.0803016945719719,
0.06325337290763855,
0.02690153941512108,
-0.04762016236782074,
0.06356574594974518,
-0.007665200158953667,
-0.09593836963176727,
0.02118263579905033,
-0.21998856961727142,
-0.14499886333942413,
-0.018741514533758163,
0.1075081154704094,
-0.0077286637388169765,
0.06913310289382935,
-0.03309675306081772,
0.011347787454724312,
0.0537625215947628,
-0.023929927498102188,
-0.0615665502846241,
-0.07706457376480103,
0.07652528584003448,
-0.13211633265018463,
0.21924728155136108,
-0.046047642827034,
-0.002530450467020273,
0.13389407098293304,
0.022630829364061356,
-0.07418134063482285,
0.09476179629564285,
0.05266479775309563,
-0.038441628217697144,
0.03768187016248703,
0.0957791805267334,
-0.03542366623878479,
0.11384721845388412,
0.06342073529958725,
-0.17167365550994873,
0.008496621623635292,
-0.08442695438861847,
-0.07127632945775986,
-0.041626859456300735,
-0.026274098083376884,
-0.05833548679947853,
0.13368897140026093,
0.18285371363162994,
-0.035428330302238464,
0.007874744944274426,
-0.04147491604089737,
0.03529812768101692,
0.07828105986118317,
0.06627766788005829,
-0.03570616990327835,
-0.22873114049434662,
0.0030108382925391197,
0.09551002830266953,
-0.005954488180577755,
-0.31845375895500183,
-0.07559016346931458,
-0.02659302018582821,
-0.040883079171180725,
-0.09236351400613785,
0.10419318825006485,
0.10884494334459305,
0.04546155408024788,
-0.06582603603601456,
-0.08271294832229614,
-0.08297586441040039,
0.16403037309646606,
-0.11742241680622101,
-0.0861787274479866
] |
null | null | ml-agents |
# **ppo** Agent playing **Huggy**
This is a trained model of a **ppo** agent playing **Huggy**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: km22/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
| {"library_name": "ml-agents", "tags": ["Huggy", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-Huggy"]} | reinforcement-learning | km22/ppo-Huggy | [
"ml-agents",
"tensorboard",
"onnx",
"Huggy",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-Huggy",
"region:us"
] | 2024-02-13T17:12:32+00:00 | [] | [] | TAGS
#ml-agents #tensorboard #onnx #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us
|
# ppo Agent playing Huggy
This is a trained model of a ppo agent playing Huggy
using the Unity ML-Agents Library.
## Usage (with ML-Agents)
The Documentation: URL
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your
browser: URL
- A *longer tutorial* to understand how works ML-Agents:
URL
### Resume the training
### Watch your Agent play
You can watch your agent playing directly in your browser
1. If the environment is part of ML-Agents official environments, go to URL
2. Step 1: Find your model_id: km22/ppo-Huggy
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play
| [
"# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: km22/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
"TAGS\n#ml-agents #tensorboard #onnx #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us \n",
"# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: km22/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
44,
198
] | [
"passage: TAGS\n#ml-agents #tensorboard #onnx #Huggy #deep-reinforcement-learning #reinforcement-learning #ML-Agents-Huggy #region-us \n# ppo Agent playing Huggy\n This is a trained model of a ppo agent playing Huggy\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: km22/ppo-Huggy\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
0.021725235506892204,
0.010347753763198853,
-0.0039872159250080585,
0.023938724771142006,
0.13862022757530212,
-0.007888251915574074,
0.15149904787540436,
0.1259937882423401,
0.11762601137161255,
0.08809366822242737,
0.07766325771808624,
0.056480009108781815,
0.05205586925148964,
0.1917157620191574,
0.07007724046707153,
-0.22231170535087585,
-0.009502479806542397,
-0.07801046967506409,
0.04322842136025429,
0.08814098685979843,
0.04049299657344818,
-0.03984585776925087,
0.06725925207138062,
0.027483709156513214,
-0.04816221818327904,
-0.020041827112436295,
-0.08557168394327164,
-0.026674168184399605,
0.047388654202222824,
-0.009752352721989155,
-0.02620384469628334,
-0.030201375484466553,
0.06814780831336975,
-0.2201545089483261,
0.02681792713701725,
0.05736890435218811,
-0.010017691180109978,
0.01239666249603033,
0.09987560659646988,
0.05214012414216995,
0.1322951465845108,
-0.08460947871208191,
0.061441197991371155,
0.05279012396931648,
-0.06652916222810745,
-0.004512463230639696,
-0.12122832238674164,
0.04392192140221596,
0.23789414763450623,
0.09544521570205688,
0.005819819867610931,
0.10511566698551178,
-0.096714086830616,
0.03202776238322258,
0.203153595328331,
-0.24004226922988892,
-0.0684133768081665,
0.1017654538154602,
0.07253671437501907,
-0.00997589249163866,
-0.039726320654153824,
0.04173721373081207,
-0.01964510977268219,
0.046938132494688034,
0.09082338213920593,
-0.035699184983968735,
0.2275923639535904,
-0.008035781793296337,
-0.08189493417739868,
-0.08152934163808823,
0.04943777620792389,
0.0699051171541214,
-0.04912750422954559,
-0.21593573689460754,
0.029034659266471863,
0.12698695063591003,
-0.018895721063017845,
0.0026126322336494923,
0.07509706914424896,
-0.025913912802934647,
-0.06548229604959488,
-0.10814081132411957,
-0.04692215472459793,
-0.06404002010822296,
0.06895311921834946,
0.16665862500667572,
-0.0012780955294147134,
-0.03476426750421524,
0.07830367237329483,
0.07479420304298401,
0.027958795428276062,
-0.02881440334022045,
-0.025022726505994797,
-0.025610383599996567,
-0.10283730179071426,
-0.002874780911952257,
-0.00557864410802722,
0.07202666252851486,
0.053066231310367584,
0.10515593737363815,
0.03240421414375305,
0.0036175651475787163,
0.04636190086603165,
0.06028894707560539,
-0.008141442202031612,
0.13102582097053528,
0.020053142681717873,
0.030058007687330246,
0.04123767465353012,
0.04985755681991577,
0.0578547902405262,
-0.057145435363054276,
-0.09799573570489883,
0.06678202748298645,
-0.10325512290000916,
0.10578855872154236,
0.08426553755998611,
0.02296220324933529,
-0.07405897974967957,
-0.030413944274187088,
0.009791562333703041,
-0.13083529472351074,
0.07382670789957047,
0.03658221662044525,
-0.04718690365552902,
-0.11484500020742416,
-0.009370424784719944,
0.014404432848095894,
-0.08084738999605179,
0.028909817337989807,
-0.01926749013364315,
0.044748932123184204,
-0.010471184737980366,
-0.03596740588545799,
0.09892698377370834,
-0.06669773161411285,
-0.022258039563894272,
-0.15976247191429138,
-0.10536710917949677,
-0.05590967461466789,
0.05048045143485069,
-0.044047024101018906,
-0.12679234147071838,
-0.05413520336151123,
0.017612168565392494,
-0.10170137882232666,
-0.008746358565986156,
-0.021044868975877762,
-0.06503394991159439,
-0.013104286976158619,
-0.0405987948179245,
0.07786562293767929,
0.17539702355861664,
0.034820787608623505,
-0.01407764945179224,
0.08709850162267685,
-0.18300536274909973,
0.10421329736709595,
-0.10741403698921204,
0.17836995422840118,
-0.05215068906545639,
0.012882662005722523,
0.031130274757742882,
0.012230168096721172,
0.021449707448482513,
0.1631605625152588,
-0.03646887466311455,
-0.12028907239437103,
0.14190717041492462,
-0.016579875722527504,
-0.1206401139497757,
0.04871663823723793,
0.031722959131002426,
0.07996116578578949,
0.03395268693566322,
0.23665747046470642,
0.1071171835064888,
-0.2779185175895691,
0.06133996695280075,
0.04594625532627106,
-0.1498020440340042,
-0.005776664707809687,
0.14251379668712616,
-0.057194679975509644,
-0.014076360501348972,
0.0024643174838274717,
-0.14757156372070312,
0.082087941467762,
-0.023060280829668045,
-0.03071718104183674,
0.04379593953490257,
-0.03374483808875084,
-0.00940013863146305,
-0.011823663488030434,
0.004802767653018236,
-0.0494612492620945,
-0.08712885528802872,
-0.06571250408887863,
0.08558062463998795,
-0.015944194048643112,
0.07172439992427826,
-0.05189875513315201,
0.12201878428459167,
0.011405647732317448,
0.04873998463153839,
-0.0916753038764,
-0.09886611998081207,
0.02104099839925766,
0.005083313677459955,
0.08312159031629562,
-0.08473236858844757,
0.05163460224866867,
0.06692355871200562,
-0.0004613307537510991,
-0.07466422766447067,
-0.10717013478279114,
-0.014857242815196514,
-0.08158474415540695,
-0.09687403589487076,
-0.05966050550341606,
-0.06161623075604439,
0.10507267713546753,
-0.0799550712108612,
0.059379562735557556,
-0.10435348749160767,
0.043140020221471786,
-0.011006328277289867,
-0.02447652816772461,
0.05156497284770012,
0.012104240246117115,
0.03335392847657204,
-0.0692107081413269,
0.11005910485982895,
0.03826214000582695,
-0.08404826372861862,
0.08979258686304092,
-0.0438380092382431,
-0.08444178104400635,
0.09536989033222198,
0.04545827955007553,
-0.011488732881844044,
-0.05539660155773163,
-0.09562775492668152,
0.011533261276781559,
-0.087946817278862,
0.007114744745194912,
0.15566889941692352,
0.1019868478178978,
0.11138691008090973,
-0.07848206162452698,
-0.08028411865234375,
-0.01804286614060402,
-0.11186259984970093,
-0.05417391657829285,
0.15485450625419617,
0.023627834394574165,
0.08106119185686111,
0.04347569867968559,
0.07125386595726013,
0.06906670331954956,
0.08590291440486908,
0.021984301507472992,
-0.11949918419122696,
-0.028488025069236755,
0.0653543472290039,
0.05186149850487709,
0.004014355596154928,
0.017749452963471413,
-0.017238782718777657,
0.022174609825015068,
-0.03887361288070679,
0.0018461886793375015,
-0.1400090605020523,
-0.07680362462997437,
0.007440535351634026,
-0.035940494388341904,
0.05508582293987274,
-0.014576707035303116,
-0.0455424040555954,
0.05635065585374832,
0.1011563241481781,
0.0359247587621212,
0.00981904473155737,
-0.04701178893446922,
-0.10782084614038467,
0.0684288889169693,
-0.08265198767185211,
-0.308407723903656,
-0.11906565725803375,
-0.11221347004175186,
-0.07364366948604584,
0.02502564527094364,
0.05539043992757797,
-0.15810957551002502,
-0.014452150091528893,
-0.11134196072816849,
-0.05006658285856247,
0.05704924464225769,
-0.0650363564491272,
0.19322331249713898,
0.11867427825927734,
0.01845959573984146,
-0.0708097368478775,
-0.02476140856742859,
0.01107761636376381,
-0.04217470809817314,
0.04105283319950104,
0.032767076045274734,
0.06585143506526947,
0.12640614807605743,
0.0681435763835907,
0.04509752243757248,
-0.021895360201597214,
0.06588645279407501,
-0.0641716718673706,
-0.030344968661665916,
0.10850109905004501,
-0.0018107054056599736,
0.08462879806756973,
0.038441792130470276,
0.025755569338798523,
-0.024131011217832565,
0.057463545352220535,
0.005044818390160799,
-0.07217223197221756,
-0.19415372610092163,
-0.10378079861402512,
-0.021336641162633896,
0.22343696653842926,
0.08107532560825348,
0.08806239068508148,
-0.06258921325206757,
-0.028568973764777184,
0.00731157511472702,
-0.04190343990921974,
0.13198593258857727,
0.12562347948551178,
-0.05108329653739929,
-0.0758422389626503,
-0.008615883067250252,
-0.033397652208805084,
0.014240358956158161,
0.09310504794120789,
-0.0018053097883239388,
0.08183753490447998,
0.02651798166334629,
0.004682763479650021,
0.030480382964015007,
-0.040522973984479904,
-0.06904316693544388,
0.06555495411157608,
0.04758811369538307,
-0.009408309124410152,
-0.025559013709425926,
-0.08123728632926941,
-0.03547056019306183,
0.10078148543834686,
0.15002447366714478,
-0.06258555501699448,
-0.09254622459411621,
0.06506679952144623,
0.10324187576770782,
0.11633124202489853,
0.022034063935279846,
-0.1345454752445221,
-0.038361940532922745,
0.01319391280412674,
-0.12893597781658173,
0.027937060222029686,
-0.00653535220772028,
0.04556376487016678,
-0.1932738721370697,
0.06702364236116409,
0.022698765620589256,
0.1208987683057785,
0.05801742523908615,
0.0019774949178099632,
0.023999657481908798,
0.09396693110466003,
-0.0141020268201828,
0.07496224343776703,
-0.18074177205562592,
0.0874771699309349,
-0.013462774455547333,
0.07720401138067245,
-0.05952960625290871,
0.002026340225711465,
0.08922780305147171,
-0.039646048098802567,
0.18080678582191467,
0.04645990952849388,
0.049705103039741516,
-0.086849644780159,
-0.18787069618701935,
-0.048416562378406525,
-0.003642385359853506,
-0.10020712018013,
0.07271189242601395,
0.008719137869775295,
-0.041756290942430496,
-0.10583328455686569,
0.1495230793952942,
0.006769176106899977,
-0.0456002913415432,
-0.0028830121736973524,
-0.053706131875514984,
-0.0013144861441105604,
-0.05982489138841629,
-0.0348791666328907,
-0.02847457118332386,
0.21532969176769257,
0.14620131254196167,
-0.01198485679924488,
-0.08737769722938538,
-0.0668073445558548,
-0.04360930249094963,
-0.02579699084162712,
-0.01773284189403057,
-0.0009274581680074334,
0.15014399588108063,
-0.0881044790148735,
-0.029028061777353287,
-0.009142134338617325,
-0.09750732034444809,
-0.11586210876703262,
-0.005992212798446417,
0.24584953486919403,
-0.0036519626155495644,
0.09627287089824677,
-0.026112740859389305,
0.01803007535636425,
-0.002058632904663682,
-0.08392634987831116,
0.15478076040744781,
0.19278083741664886,
0.02983756922185421,
0.0662175714969635,
-0.10618243366479874,
0.0731646716594696,
-0.10890217870473862,
-0.031642504036426544,
0.204176127910614,
0.3344631791114807,
-0.02722591534256935,
0.20620304346084595,
0.07443606853485107,
-0.058958541601896286,
-0.22848619520664215,
-0.07923021912574768,
0.04898492246866226,
-0.004757583606988192,
0.14966687560081482,
-0.12867514789104462,
0.023217936977744102,
0.042691420763731,
-0.016629159450531006,
-0.0019286260940134525,
-0.16029278934001923,
-0.09667659550905228,
-0.015420728363096714,
0.06913043558597565,
0.017429374158382416,
-0.08263740688562393,
-0.05182172358036041,
-0.046242907643318176,
-0.08364307880401611,
0.05829555541276932,
-0.16910871863365173,
0.08805150538682938,
-0.0008193346438929439,
0.03325805813074112,
0.045982424169778824,
-0.0341188944876194,
0.14318208396434784,
-0.06264806538820267,
-0.03261694684624672,
-0.09240884333848953,
-0.005373144987970591,
0.025550860911607742,
-0.12884898483753204,
0.07317088544368744,
-0.059218551963567734,
-0.05367463454604149,
-0.18245957791805267,
-0.049294598400592804,
-0.03739728778600693,
0.053122781217098236,
-0.007775289472192526,
-0.027172179892659187,
-0.0111367367208004,
0.06871619820594788,
0.09126247465610504,
0.041598498821258545,
0.05415824055671692,
-0.01774703711271286,
-0.011151830665767193,
0.10756486654281616,
0.08643783628940582,
0.02609216421842575,
-0.07068045437335968,
-0.03970124199986458,
-0.04100906848907471,
-0.02490275725722313,
-0.08626875281333923,
-0.000057122542784782127,
0.03791825845837593,
0.014135588891804218,
0.05379350483417511,
0.047515593469142914,
-0.09654521942138672,
-0.017770258709788322,
0.07512395083904266,
-0.1020362600684166,
-0.1221037432551384,
-0.059150222688913345,
-0.09177496284246445,
-0.049428872764110565,
-0.07485565543174744,
0.03206239640712738,
-0.033830877393484116,
0.0020928862504661083,
0.038626354187726974,
0.03701578825712204,
-0.08000562340021133,
0.040126629173755646,
-0.01761746034026146,
0.024753345176577568,
-0.0542987585067749,
0.15776121616363525,
0.00915828999131918,
-0.05212947726249695,
0.029307609423995018,
0.1884976327419281,
-0.057610318064689636,
-0.07565554231405258,
-0.022987952455878258,
0.0647389218211174,
0.1694575548171997,
-0.03178742900490761,
-0.0327075757086277,
-0.07151876389980316,
0.082673579454422,
-0.10214981436729431,
0.0039368728175759315,
-0.09535805135965347,
0.0334676057100296,
0.09592892974615097,
-0.11701301485300064,
0.09540802985429764,
0.010133457370102406,
-0.06005239114165306,
-0.1134168729186058,
0.09675983339548111,
0.04360983893275261,
0.18420307338237762,
-0.025613507255911827,
-0.04603292793035507,
-0.13420458137989044,
0.009418441914021969,
-0.032033611088991165,
-0.01334326434880495,
-0.183802530169487,
-0.02062326855957508,
-0.025839345529675484,
0.059014882892370224,
-0.016913609579205513,
0.03525145724415779,
-0.059288349002599716,
-0.06893333047628403,
-0.06117936596274376,
0.08209533989429474,
-0.020039232447743416,
-0.049271054565906525,
0.027029676362872124,
-0.08145037293434143,
0.0921647846698761,
0.07368176430463791,
-0.015423597767949104,
-0.05257091671228409,
-0.05907861888408661,
-0.034395989030599594,
0.03146953135728836,
-0.04264666512608528,
0.03644547238945961,
-0.192238450050354,
0.005985004361718893,
-0.03800545260310173,
-0.09683167934417725,
0.014225809834897518,
0.10087306052446365,
-0.0812300518155098,
0.049831192940473557,
0.004836499225348234,
-0.13849018514156342,
-0.08289345353841782,
-0.0006642480730079114,
0.014995506033301353,
0.06685395538806915,
0.07122208923101425,
-0.0748821347951889,
0.17004700005054474,
-0.12331254780292511,
-0.014484082348644733,
0.004423684440553188,
0.016324466094374657,
0.024621786549687386,
-0.09399989247322083,
0.031143538653850555,
-0.01229700818657875,
0.1522454470396042,
0.09226442128419876,
-0.04365687072277069,
0.025741158053278923,
-0.00018975332204718143,
0.107216477394104,
0.006426509004086256,
0.02867354266345501,
-0.013111413456499577,
0.000003073273546760902,
0.046932049095630646,
0.0017268189694732428,
0.06749875098466873,
-0.1447562277317047,
0.10323242843151093,
0.0686819776892662,
0.14306248724460602,
0.05634591355919838,
0.08354788273572922,
-0.1024281308054924,
-0.173492431640625,
-0.04300948232412338,
-0.005609682761132717,
0.04142323508858681,
-0.06492392718791962,
0.23332315683364868,
0.10018827021121979,
-0.2327217310667038,
0.05910341069102287,
0.00729134026914835,
0.012861574999988079,
-0.09169415384531021,
-0.13677698373794556,
-0.001152290846221149,
-0.22300668060779572,
0.07785503566265106,
-0.051537200808525085,
0.005136935971677303,
-0.030337106436491013,
-0.03059961274266243,
-0.010610338300466537,
0.06793136894702911,
-0.13445039093494415,
-0.053723983466625214,
0.09643923491239548,
-0.043167900294065475,
0.010919767431914806,
-0.02084302343428135,
-0.02250578999519348,
-0.03621592000126839,
-0.07925724238157272,
0.05717751011252403,
0.05661547929048538,
-0.0023092743940651417,
0.05287459120154381,
-0.05022798106074333,
-0.06337181478738785,
0.03461259976029396,
-0.015701565891504288,
0.023689424619078636,
0.10717273503541946,
0.05476751551032066,
-0.11058717966079712,
0.004294051323086023,
0.20264479517936707,
-0.06132794916629791,
-0.0026016258634626865,
-0.0873412936925888,
0.15177668631076813,
-0.02102133259177208,
-0.05388931557536125,
-0.039173826575279236,
-0.09644805639982224,
-0.09097938239574432,
0.2226111739873886,
0.11216434091329575,
-0.04188520088791847,
0.018302345648407936,
-0.040472351014614105,
0.019750496372580528,
-0.00005578933996730484,
0.11600475013256073,
0.07984532415866852,
0.11965331435203552,
-0.06822094321250916,
-0.030216185376048088,
-0.007849161513149738,
-0.07245613634586334,
-0.1743401288986206,
-0.02046707645058632,
0.026623521000146866,
-0.04346075654029846,
-0.03437897935509682,
0.05180850252509117,
-0.11877003312110901,
-0.09644895046949387,
0.10619021952152252,
-0.09256260097026825,
-0.07340052723884583,
-0.013716676272451878,
0.007880020886659622,
0.02524133026599884,
0.13311028480529785,
0.05289820581674576,
0.038540806621313095,
0.10740265995264053,
-0.03183409571647644,
-0.06059446558356285,
0.030466170981526375,
0.07994648814201355,
-0.07442814856767654,
0.1944018453359604,
-0.042817287147045135,
0.041159048676490784,
0.05169413611292839,
0.02344951406121254,
-0.13873857259750366,
0.0801541656255722,
0.03405018523335457,
-0.17353010177612305,
0.013975373469293118,
0.0796438530087471,
-0.07437895238399506,
-0.05686986446380615,
0.08310378342866898,
-0.027019888162612915,
-0.002871460048481822,
0.118984155356884,
0.01250963844358921,
-0.05567115545272827,
0.07394678145647049,
-0.1541719287633896,
0.09711196273565292,
0.13766980171203613,
-0.06102646887302399,
0.0034277576487511396,
-0.045172348618507385,
0.03272005543112755,
0.03032655455172062,
0.06447798013687134,
-0.009031648747622967,
-0.14235076308250427,
0.01515995990484953,
0.024620573967695236,
0.027541209012269974,
-0.2896667718887329,
-0.12585633993148804,
-0.044804029166698456,
-0.05087582394480705,
-0.03921708092093468,
0.11012718826532364,
0.0909615010023117,
-0.013124465942382812,
-0.007817705161869526,
-0.18568769097328186,
0.03742242604494095,
0.16816642880439758,
-0.0897214412689209,
-0.01570887491106987
] |
null | null | transformers |
# Danish-Swedish Merged Model
This is a merge of the following models, all based on `mistralai/Mistral-7B-v0.1`:
1. `danish-foundation-models/munin-7b-alpha`, continued pretraining on Danish data;
2. `timpal0l/Mistral-7B-v0.1-flashback-v2`, continued pretraining on Swedish data.
## Model Details
- **Merged by:** [Dan Saattrup Nielsen](https://www.saattrupdan.com/)
- **Model type:** Decoder model, based on `mistralai/Mistral-7B-v0.1`
- **Language(s):** Danish and Swedish
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Merge configuration:**
```python
dict(
models=[
dict(
model="danish-foundation-models/munin-7b-alpha",
parameters=dict(
weight=1.0,
density=0.6,
),
),
dict(
model="timpal0l/Mistral-7B-v0.1-flashback-v2",
parameters=dict(
weight=1.0,
density=0.6,
),
),
],
merge_method="dare_ties",
random_seed=4242
base_model="mistralai/Mistral-7B-v0.1",
parameters=dict(
int8_mask=True,
normalize=True,
),
dtype="bfloat16",
)
``` | {"language": ["da", "sv"], "license": "cc-by-4.0", "library_name": "transformers", "tags": ["merge", "mergekit"], "base_model": ["danish-foundation-models/munin-7b-alpha", "timpal0l/Mistral-7B-v0.1-flashback-v2"]} | text-generation | merge-crew/da-sv-dare-ties-density-0.6 | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"da",
"sv",
"base_model:danish-foundation-models/munin-7b-alpha",
"base_model:timpal0l/Mistral-7B-v0.1-flashback-v2",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:14:32+00:00 | [] | [
"da",
"sv"
] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Danish-Swedish Merged Model
This is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':
1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;
2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.
## Model Details
- Merged by: Dan Saattrup Nielsen
- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'
- Language(s): Danish and Swedish
- License: CC-BY-4.0
- Merge configuration:
| [
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
112,
92,
57
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
-0.07790645211935043,
-0.03015519306063652,
-0.001845451071858406,
0.01761663891375065,
0.005533731542527676,
0.017309537157416344,
0.18024572730064392,
0.014157861471176147,
0.11699634045362473,
0.049290940165519714,
0.09461456537246704,
-0.025814635679125786,
0.07459410279989243,
0.15416653454303741,
-0.023723548278212547,
-0.2509255111217499,
0.16021594405174255,
-0.06184382736682892,
-0.0011111752828583121,
0.06811320781707764,
0.16061803698539734,
-0.05339423194527626,
0.060751914978027344,
-0.025017917156219482,
-0.010531418025493622,
-0.04100566729903221,
-0.013157473877072334,
-0.01645241677761078,
0.09814372658729553,
0.07561057060956955,
0.12545564770698547,
0.10607897490262985,
0.09971975535154343,
-0.09932507574558258,
0.017701633274555206,
-0.05002636834979057,
-0.012917673215270042,
0.06271383166313171,
0.022881586104631424,
0.00972265750169754,
0.12558315694332123,
0.004797929432243109,
0.02946697175502777,
0.01172764040529728,
-0.024050505831837654,
-0.14779840409755707,
-0.09297361969947815,
0.0884193703532219,
0.12674783170223236,
0.02148253843188286,
-0.056929804384708405,
0.02347111701965332,
-0.07782470434904099,
0.052233461290597916,
0.01635611802339554,
-0.20452626049518585,
-0.029955873265862465,
0.2827467918395996,
0.09390783309936523,
0.021380765363574028,
-0.004600406624376774,
0.07961131632328033,
0.030591290444135666,
0.05097811296582222,
0.016523117199540138,
-0.04365215450525284,
0.1394139677286148,
-0.05343722924590111,
-0.138288676738739,
0.04785174876451492,
0.24915790557861328,
0.006434302311390638,
-0.03581035137176514,
-0.1517181545495987,
-0.014848783612251282,
0.06103600934147835,
-0.04403603449463844,
-0.033446673303842545,
-0.00813213549554348,
-0.014270576648414135,
0.11287036538124084,
-0.05263213440775871,
-0.09540428966283798,
-0.035252559930086136,
-0.08226437121629715,
0.04639798030257225,
0.0012334260391071439,
0.019760075956583023,
0.030299492180347443,
0.04052567481994629,
-0.2250727117061615,
-0.13539139926433563,
-0.07080507278442383,
-0.13484181463718414,
-0.07491977512836456,
-0.07721184939146042,
-0.09408523142337799,
-0.1961917132139206,
0.08598749339580536,
0.15959973633289337,
-0.1339980661869049,
0.033623985946178436,
0.03499354422092438,
0.04502776637673378,
0.050829555839300156,
0.05912023037672043,
-0.1169213280081749,
-0.06325632333755493,
-0.005035800859332085,
0.011565557681024075,
0.05594192445278168,
-0.0146050238981843,
-0.1415129452943802,
-0.04646974056959152,
0.07210437208414078,
-0.03200290724635124,
-0.025780152529478073,
0.09820174425840378,
-0.04346888139843941,
-0.036695629358291626,
0.12508425116539001,
-0.08411811292171478,
-0.038201283663511276,
0.019165784120559692,
-0.02553435228765011,
0.02469651773571968,
0.03735232353210449,
0.08094065636396408,
-0.01679702289402485,
0.12463073432445526,
-0.01627068966627121,
-0.02836420387029648,
-0.012457841075956821,
-0.17668162286281586,
0.06874177604913712,
-0.0422675758600235,
-0.03485698625445366,
-0.08175491541624069,
-0.16885918378829956,
-0.024253210052847862,
0.08906910568475723,
-0.06898833066225052,
0.004269849509000778,
-0.04987344518303871,
-0.04991753026843071,
0.0392429381608963,
-0.04194767773151398,
0.0010451647685840726,
-0.024424729868769646,
-0.029048871248960495,
-0.13120698928833008,
0.05863428860902786,
-0.13190720975399017,
0.012754985131323338,
-0.15204405784606934,
0.03729171305894852,
-0.3218300938606262,
0.09366514533758163,
-0.14123386144638062,
0.018095970153808594,
-0.15655501186847687,
-0.04304054006934166,
0.042186833918094635,
0.04188097268342972,
0.020041609182953835,
0.1468127965927124,
-0.21928861737251282,
-0.015325666405260563,
0.08153565973043442,
-0.18640124797821045,
-0.07752858102321625,
0.09157474339008331,
0.009631101042032242,
0.021671805530786514,
0.09708596020936966,
0.1678217202425003,
0.10420577228069305,
-0.0477188415825367,
0.007227534428238869,
0.015816273167729378,
0.03098001331090927,
0.034281570464372635,
0.08995219320058823,
-0.061474382877349854,
-0.09744572639465332,
0.04602845385670662,
-0.14474420249462128,
-0.02051553875207901,
-0.020364994183182716,
-0.045381125062704086,
-0.02002980187535286,
-0.028931058943271637,
0.10917680710554123,
0.019057774916291237,
0.011198156513273716,
-0.058678027242422104,
-0.06079668924212456,
0.1512085646390915,
0.052909865975379944,
-0.06890697032213211,
0.0011929306201636791,
-0.04360351711511612,
0.15894658863544464,
-0.09105619788169861,
0.027368832379579544,
-0.10843247920274734,
-0.2061401903629303,
-0.02178545854985714,
-0.04498995095491409,
-0.017810771241784096,
0.13020773231983185,
0.09354060888290405,
0.08364523947238922,
-0.07487242668867111,
0.023084232583642006,
0.04003618285059929,
0.023967042565345764,
0.022315487265586853,
-0.22083508968353271,
-0.04057543724775314,
-0.08819638192653656,
0.15791065990924835,
-0.12362311035394669,
-0.019306158646941185,
0.027991700917482376,
0.1785343438386917,
-0.021734127774834633,
0.014100376516580582,
0.033973317593336105,
0.023144902661442757,
-0.023902487009763718,
0.007200213149189949,
0.060537129640579224,
-0.06724534928798676,
-0.16839800775051117,
0.19399064779281616,
-0.08351777493953705,
-0.05803235247731209,
0.0986170619726181,
0.060517001897096634,
-0.05501345917582512,
-0.07016870379447937,
0.005494724493473768,
-0.00336460885591805,
0.014051906764507294,
-0.07767163962125778,
0.02727637253701687,
0.043538421392440796,
0.08637576550245285,
-0.07714254409074783,
-0.01984459161758423,
0.026117395609617233,
-0.04571007564663887,
-0.08532947301864624,
0.15370550751686096,
-0.030041104182600975,
-0.2126939594745636,
0.08588036894798279,
0.10357401520013809,
0.004937663208693266,
0.15892095863819122,
-0.044131647795438766,
-0.020489247515797615,
-0.02474173717200756,
0.01483137160539627,
-0.027603954076766968,
0.11371316760778427,
0.04838012158870697,
0.03393398970365524,
0.0565028116106987,
0.030634425580501556,
0.005224061198532581,
-0.03415625914931297,
0.0007804827182553709,
-0.0005763129447586834,
-0.07688332349061966,
-0.022993700578808784,
0.11663074046373367,
-0.012423141859471798,
0.04763064533472061,
0.006913137622177601,
-0.10942798852920532,
0.030520640313625336,
-0.02305247262120247,
-0.11156577616930008,
0.19326670467853546,
-0.14229537546634674,
-0.1626935452222824,
-0.1715647429227829,
-0.014565713703632355,
-0.15144121646881104,
0.04017765074968338,
0.029991697520017624,
-0.029643531888723373,
-0.12352485954761505,
-0.154256671667099,
0.13969756662845612,
0.05257447808980942,
-0.039597973227500916,
-0.06658301502466202,
-0.06861234456300735,
0.015273235738277435,
-0.09608869254589081,
-0.004772777669131756,
-0.03693890571594238,
0.05918627232313156,
0.027588438242673874,
-0.032047294080257416,
0.02602231130003929,
0.12100129574537277,
0.01099711935967207,
-0.022437460720539093,
-0.005009934306144714,
0.2827775180339813,
-0.006333152763545513,
0.13683107495307922,
0.10430105775594711,
-0.0714607685804367,
0.019691525027155876,
0.30313563346862793,
0.049881141632795334,
-0.019728565588593483,
-0.01599447801709175,
0.006293904967606068,
-0.05709044635295868,
-0.17038887739181519,
-0.14377093315124512,
-0.030107727274298668,
-0.02747768722474575,
0.031249454244971275,
0.02323758788406849,
0.07741788029670715,
0.09933672100305557,
-0.05783819779753685,
-0.06773658096790314,
0.15389065444469452,
0.07587559521198273,
0.1819363534450531,
0.010931090451776981,
0.13907504081726074,
-0.03223525732755661,
0.041536640375852585,
0.05202906206250191,
-0.04060248285531998,
0.1249179095029831,
0.0006364253349602222,
0.0466010645031929,
0.08231286704540253,
0.020827915519475937,
0.06121780350804329,
0.05880802869796753,
-0.027373377233743668,
-0.03801354020833969,
0.007529884576797485,
-0.11445717513561249,
0.008438142947852612,
0.05189485847949982,
-0.02996695041656494,
0.02611970342695713,
-0.05229169875383377,
-0.01613765023648739,
0.02872016839683056,
0.13507109880447388,
0.1376635730266571,
-0.21791858971118927,
-0.14808011054992676,
0.09848155826330185,
0.04242284968495369,
-0.027359800413250923,
-0.03314428776502609,
0.1079636812210083,
-0.04385751113295555,
0.1308964192867279,
-0.06752904504537582,
0.08699766546487808,
0.05261766165494919,
-0.00839739479124546,
0.017166757956147194,
0.15610235929489136,
-0.01823996566236019,
0.03997412323951721,
-0.1572490781545639,
0.2206059843301773,
0.02330763265490532,
0.05083117634057999,
-0.02731296978890896,
0.05548835173249245,
-0.03634350374341011,
0.2931061387062073,
0.14591319859027863,
0.04480881616473198,
-0.20216615498065948,
-0.03303123265504837,
-0.05310072749853134,
0.002297710394486785,
-0.011837710626423359,
-0.0912259891629219,
0.05505895987153053,
-0.026867184787988663,
-0.019597359001636505,
-0.01445654034614563,
0.006882836576551199,
-0.19464567303657532,
-0.024847207590937614,
0.08003702014684677,
0.028117317706346512,
0.023757468909025192,
-0.042370591312646866,
-0.0780787542462349,
-0.24140657484531403,
0.13903242349624634,
-0.14701692759990692,
-0.14990006387233734,
-0.12257049977779388,
-0.014571533538401127,
0.16712133586406708,
-0.04927896708250046,
0.0017193779349327087,
-0.04505350440740585,
0.11273565143346786,
-0.08050554990768433,
-0.11114968359470367,
0.0606694258749485,
-0.10540656745433807,
-0.12754999101161957,
0.026054352521896362,
0.13365209102630615,
0.031114904209971428,
0.011548097245395184,
0.06189339980483055,
0.0839027613401413,
0.004083338659256697,
-0.10294199734926224,
-0.032712068408727646,
0.16165977716445923,
0.07882702350616455,
0.019927464425563812,
-0.05372723564505577,
-0.1367807388305664,
0.04402880743145943,
0.043714579194784164,
0.054820965975522995,
0.21810968220233917,
-0.07597452402114868,
0.15984539687633514,
0.24819068610668182,
-0.04421228542923927,
-0.27244284749031067,
0.008268083445727825,
0.026019161567091942,
0.04910096526145935,
0.028192713856697083,
-0.06604106724262238,
0.07096776366233826,
0.06056975573301315,
-0.019779199734330177,
-0.0437302440404892,
-0.2815413773059845,
-0.15509745478630066,
0.0798153355717659,
0.04970274120569229,
0.13793402910232544,
-0.019226856529712677,
-0.09838006645441055,
-0.07043582946062088,
-0.22069935500621796,
0.025669462978839874,
-0.060360364615917206,
0.04356686398386955,
0.050906505435705185,
0.10239969193935394,
0.04695972800254822,
-0.05324345827102661,
0.20339259505271912,
-0.006453427951782942,
0.0014867380959913135,
-0.14374053478240967,
0.0974493995308876,
0.1210208535194397,
-0.05566909536719322,
0.1826964169740677,
-0.11554885655641556,
0.01881491020321846,
0.004040393978357315,
-0.0695972591638565,
-0.05706189200282097,
0.1300232857465744,
-0.06494156271219254,
-0.09464558213949203,
-0.029273951426148415,
0.12781299650669098,
0.04889867454767227,
-0.044869549572467804,
0.16700761020183563,
-0.137804314494133,
0.060993093997240067,
0.0686861053109169,
0.18163862824440002,
-0.008038914762437344,
0.050217024981975555,
0.07365497946739197,
-0.06783270835876465,
0.09087264537811279,
-0.09697553515434265,
0.026648743078112602,
0.12607236206531525,
-0.0818360224366188,
0.10778290778398514,
-0.002373751485720277,
-0.0716380700469017,
-0.05003531277179718,
0.07754302024841309,
-0.12806205451488495,
-0.20083147287368774,
-0.005338768009096384,
-0.07004976272583008,
-0.008155906572937965,
0.07091569155454636,
0.19188733398914337,
-0.10710691660642624,
0.05187798663973808,
0.04366334155201912,
0.038712747395038605,
-0.050928205251693726,
0.09676147252321243,
-0.031504202634096146,
0.08796443790197372,
-0.12471625208854675,
0.08662746846675873,
0.009572353214025497,
-0.009284530766308308,
0.023202894255518913,
0.011841743253171444,
-0.15221507847309113,
-0.10465230792760849,
-0.07098477333784103,
0.1309494972229004,
-0.10965951532125473,
-0.06321429461240768,
-0.04528801515698433,
-0.21013621985912323,
-0.004382205195724964,
0.1510908156633377,
0.05101395770907402,
0.006888202857226133,
0.039325423538684845,
-0.0834689661860466,
-0.046084217727184296,
0.10527510195970535,
-0.008401305414736271,
0.054947901517152786,
-0.0947478711605072,
0.031088072806596756,
-0.07272321730852127,
-0.0006152761052362621,
-0.06085532158613205,
0.046569570899009705,
-0.09244837611913681,
-0.04433303698897362,
-0.24476198852062225,
-0.02948712930083275,
-0.10162737220525742,
0.005925409961491823,
-0.023792089894413948,
-0.05791904404759407,
-0.009580965153872967,
0.02944793552160263,
-0.052064113318920135,
0.028331203386187553,
-0.054165177047252655,
0.03355591744184494,
-0.10573776066303253,
-0.042767178267240524,
-0.02531902864575386,
-0.006444650702178478,
0.06245148554444313,
-0.024661120027303696,
-0.02460709773004055,
0.06862392276525497,
-0.15297682583332062,
0.05816784128546715,
-0.00839685183018446,
-0.008775755763053894,
0.03712017461657524,
-0.09403734654188156,
-0.07964511960744858,
0.033168405294418335,
-0.05862830579280853,
0.04005905240774155,
-0.0031817953567951918,
-0.04679165035486221,
-0.029700614511966705,
0.003948427736759186,
-0.011108252219855785,
-0.04573764652013779,
0.06480401754379272,
0.09253077208995819,
0.08296994864940643,
0.18830294907093048,
-0.08147912472486496,
0.03735468536615372,
-0.048419978469610214,
-0.012443006038665771,
0.042660780251026154,
-0.06875362247228622,
-0.11256622523069382,
-0.043064411729574203,
0.005144929513335228,
-0.07369814068078995,
0.12754903733730316,
0.0005650114035233855,
0.018743859604001045,
0.05773729458451271,
0.046778008341789246,
0.04026972874999046,
0.09245322644710541,
0.25515222549438477,
0.0022486119996756315,
0.0125136012211442,
-0.07156746834516525,
0.03337785601615906,
-0.03308577463030815,
-0.04718247801065445,
0.12194256484508514,
0.09950623661279678,
0.015347703360021114,
0.06162753701210022,
0.09824590384960175,
0.04838903248310089,
-0.004267261829227209,
0.12456070631742477,
-0.004413316026329994,
0.07239881157875061,
0.0010569532169029117,
0.10575029999017715,
0.1044192910194397,
-0.1553594321012497,
0.030284132808446884,
-0.024085834622383118,
-0.0652424544095993,
-0.11762596666812897,
-0.2856464385986328,
-0.12367710471153259,
-0.06410928815603256,
-0.003306539496406913,
-0.13027767837047577,
-0.020353415980935097,
0.0115639828145504,
0.08691554516553879,
0.00982686411589384,
0.06335189938545227,
-0.13382595777511597,
-0.024149540811777115,
0.02545652911067009,
0.003029368817806244,
0.011984245851635933,
0.05927858129143715,
-0.08694147318601608,
0.06390450149774551,
0.05681420862674713,
-0.059431787580251694,
0.0013354551047086716,
0.05571134015917778,
-0.004035496152937412,
-0.0043036071583628654,
-0.09019695967435837,
0.0021341608371585608,
0.059925101697444916,
0.05156881734728813,
0.0033946665935218334,
0.07916411757469177,
-0.051909059286117554,
-0.03081372193992138,
0.14307154715061188,
0.016999226063489914,
-0.14354360103607178,
-0.16757306456565857,
0.08821708709001541,
-0.06582304835319519,
0.12855549156665802,
0.023659445345401764,
-0.09416818618774414,
0.0288002360612154,
0.0785275250673294,
0.2311314344406128,
0.007645815145224333,
-0.008183205500245094,
-0.037462323904037476,
-0.017463168129324913,
-0.024872059002518654,
0.07746220380067825,
-0.08915327489376068,
0.06722945719957352,
-0.013366678729653358,
0.07300999015569687,
-0.054135847836732864,
-0.02850334346294403,
-0.05727377161383629,
0.02816675789654255,
-0.010790894739329815,
-0.08331076800823212,
-0.06713932007551193,
0.14337554574012756,
-0.1009376272559166,
-0.03019692189991474,
0.03914759308099747,
-0.027046825736761093,
-0.1234302818775177,
-0.09156519919633865,
0.12957824766635895,
0.043439749628305435,
-0.008643456734716892,
-0.05476727336645126,
0.0059874881990253925,
0.13312172889709473,
-0.02826594188809395,
0.010006598196923733,
-0.1186540275812149,
0.03718119114637375,
0.11465353518724442,
0.11228333413600922,
0.03625792637467384,
0.06391020119190216,
0.09114611893892288,
-0.007190036587417126,
-0.09663175791501999,
0.037423327565193176,
0.0823514312505722,
-0.08090413361787796,
0.054681114852428436,
0.11813192069530487,
-0.04146386682987213,
0.16020523011684418,
0.04642803221940994,
-0.2182735800743103,
0.0008434554911218584,
0.010836999863386154,
-0.12002365291118622,
-0.0016474324511364102,
0.11802824586629868,
-0.08067665994167328,
0.1294572800397873,
0.1813667267560959,
-0.005836338736116886,
-0.058279141783714294,
-0.06785866618156433,
0.11393947899341583,
0.018305964767932892,
0.03552389144897461,
0.014713247306644917,
-0.16367223858833313,
0.002938327845185995,
0.06204676628112793,
0.026597334071993828,
-0.16142277419567108,
-0.059767596423625946,
-0.09896206110715866,
0.04838142544031143,
-0.030174996703863144,
0.10162434726953506,
0.13815189898014069,
0.012267130427062511,
-0.030895104631781578,
-0.03007916733622551,
0.028047600761055946,
0.09362351894378662,
-0.06066036969423294,
-0.08272837847471237
] |
null | null | transformers |
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
[Lewd-Assistant-v1](https://huggingface.co/datasets/Himitsui/Lewd-Assistant-v1) ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
***
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
***
GGUF: https://huggingface.co/Sao10K/Solstice-11B-v1-GGUF | {"language": ["en"], "license": "cc-by-nc-4.0", "datasets": ["Himitsui/Lewd-Assistant-v1"]} | text-generation | LoneStriker/Solstice-11B-v1-5.0bpw-h6-exl2 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:Himitsui/Lewd-Assistant-v1",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:15:08+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
Lewd-Assistant-v1 ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
*
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
*
GGUF: URL | [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
77
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.049034226685762405,
0.10144619643688202,
-0.005310742650181055,
0.037241458892822266,
0.1303713023662567,
0.017335545271635056,
0.14252999424934387,
0.11379635334014893,
-0.005623956210911274,
-0.03997872397303581,
0.15055686235427856,
0.22561697661876678,
-0.005716316867619753,
0.025737494230270386,
-0.07812640070915222,
-0.19685706496238708,
0.031945742666721344,
0.07199884951114655,
0.0009695991757325828,
0.10655628144741058,
0.10498841851949692,
-0.06860098987817764,
0.09109021723270416,
-0.02456873282790184,
-0.1569415032863617,
0.02397669479250908,
0.030383840203285217,
-0.11827446520328522,
0.10542871803045273,
0.056915976107120514,
0.09415589272975922,
0.07842440903186798,
-0.0075564272701740265,
-0.15251457691192627,
0.02114257775247097,
-0.005708994809538126,
-0.07609643787145615,
0.06579328328371048,
0.05390128493309021,
-0.027117885649204254,
0.10850529372692108,
0.0403880812227726,
-0.041287485510110855,
0.0467577800154686,
-0.10149915516376495,
-0.0192161425948143,
-0.06091657280921936,
0.0460011251270771,
0.05683813989162445,
0.09331124275922775,
0.024533160030841827,
0.13188046216964722,
-0.09107843041419983,
0.08752235770225525,
0.09963053464889526,
-0.31331998109817505,
0.01319095864892006,
0.09934073686599731,
0.03383893519639969,
0.04641084745526314,
-0.021290304139256477,
0.06774309277534485,
0.04784923046827316,
0.0007684126612730324,
0.03598456457257271,
-0.0797121524810791,
-0.09438449889421463,
0.06742703169584274,
-0.06590547412633896,
-0.03863084688782692,
0.2922324538230896,
-0.030988743528723717,
0.04172538220882416,
-0.008086903020739555,
-0.050714027136564255,
0.011418753303587437,
-0.015883255749940872,
0.03745931759476662,
-0.008732186630368233,
0.05612645298242569,
0.03042249009013176,
-0.0401790477335453,
-0.13913358747959137,
-0.020970935001969337,
-0.18500429391860962,
0.07730595767498016,
0.012230283580720425,
0.049645330756902695,
-0.12579062581062317,
0.06767009198665619,
0.034521471709012985,
-0.0844985693693161,
0.0035924408584833145,
-0.053609706461429596,
0.07973714172840118,
-0.0033421244006603956,
-0.03879298269748688,
-0.022027965635061264,
0.10066821426153183,
0.07918766885995865,
0.017121922224760056,
-0.020639244467020035,
-0.08546588569879532,
0.10821904987096786,
-0.013696074485778809,
0.030209684744477272,
-0.03432465344667435,
0.005157887935638428,
0.08075081557035446,
-0.07926378399133682,
0.04890313372015953,
-0.0285712368786335,
-0.1669217199087143,
-0.047651249915361404,
-0.021985750645399094,
0.10965735465288162,
0.028758613392710686,
0.0803452581167221,
-0.03757987916469574,
-0.013860568404197693,
0.0998191386461258,
-0.0681782215833664,
-0.005897911731153727,
-0.01723933219909668,
-0.00974948424845934,
0.09400562942028046,
0.02334989234805107,
0.02616862952709198,
-0.08904144912958145,
0.06954825669527054,
-0.07460135221481323,
-0.006143215112388134,
-0.03521576523780823,
-0.05373920500278473,
0.07148505002260208,
-0.0974171832203865,
0.030807875096797943,
-0.1752423644065857,
-0.20109885931015015,
0.024895215407013893,
0.0106661356985569,
-0.015678955242037773,
-0.07431206107139587,
-0.038309354335069656,
-0.03380206599831581,
0.018048031255602837,
-0.08405132591724396,
-0.0024438153486698866,
-0.08034411817789078,
0.10252384841442108,
-0.05322210118174553,
0.04925856739282608,
-0.15059894323349,
0.0595194548368454,
-0.08959881961345673,
-0.012827512808144093,
-0.007095616310834885,
0.050098419189453125,
-0.03298885375261307,
0.105813167989254,
-0.05119280889630318,
-0.025412462651729584,
-0.024753475561738014,
0.03582635521888733,
-0.016930731013417244,
0.18637792766094208,
-0.13419866561889648,
-0.07243777066469193,
0.15280477702617645,
-0.08325513452291489,
-0.18884451687335968,
0.09167393296957016,
0.00922262854874134,
0.04589606076478958,
0.08483385294675827,
0.14735817909240723,
0.0350952111184597,
-0.08198394626379013,
0.018709788098931313,
0.09923137724399567,
-0.06979144364595413,
-0.20308828353881836,
0.021961500868201256,
0.007903855293989182,
-0.09841631352901459,
0.04337438941001892,
0.0199807807803154,
0.06771830469369888,
-0.043807487934827805,
-0.06553755700588226,
-0.04720250144600868,
-0.05599060654640198,
-0.018855394795536995,
0.0029671976808458567,
0.08480874449014664,
-0.051144134253263474,
0.002517574466764927,
-0.005882262717932463,
0.031557876616716385,
-0.023341625928878784,
0.056014902889728546,
-0.06204771623015404,
0.11400096863508224,
-0.03765048086643219,
0.03347593918442726,
-0.13520418107509613,
-0.03351351618766785,
-0.01180564146488905,
0.14856234192848206,
0.025070972740650177,
0.04837543144822121,
0.01079084724187851,
-0.026632050052285194,
-0.025501301512122154,
0.00958278588950634,
0.15494011342525482,
-0.0007252903888002038,
-0.0532318577170372,
-0.10751572251319885,
0.06776221841573715,
-0.02253667823970318,
0.016523046419024467,
-0.09919705986976624,
0.006435787305235863,
0.04849201440811157,
0.09319677948951721,
-0.028797855600714684,
0.08913536369800568,
-0.00775644788518548,
0.04732397571206093,
-0.07237828522920609,
0.03538600727915764,
0.1164293885231018,
0.016884498298168182,
-0.09675242006778717,
0.21493247151374817,
-0.09469964355230331,
0.22045156359672546,
0.20328935980796814,
-0.2403641641139984,
0.05252329632639885,
-0.07172700762748718,
-0.01727456972002983,
-0.0074929846450686455,
0.025716116651892662,
-0.009235285222530365,
0.03171088919043541,
-0.008625861257314682,
0.1834697276353836,
-0.06712543964385986,
-0.0054125408641994,
0.002795885084196925,
-0.042803213000297546,
-0.03943811357021332,
0.08297725766897202,
0.19316521286964417,
-0.12646368145942688,
0.16178403794765472,
0.23159843683242798,
-0.013848419301211834,
0.1402653455734253,
-0.03274041414260864,
-0.019341804087162018,
0.03710115700960159,
-0.02327699586749077,
-0.012436605989933014,
-0.010511710308492184,
-0.10541673004627228,
-0.002799295587465167,
0.08416956663131714,
-0.00018182213534601033,
0.06753597408533096,
-0.1491035521030426,
-0.07189694792032242,
-0.0310774315148592,
-0.03873962536454201,
-0.03537937253713608,
0.08782068639993668,
0.01753067784011364,
0.128334641456604,
-0.051640938967466354,
-0.06278031319379807,
0.11246023327112198,
0.005560848396271467,
-0.0898054838180542,
0.1569569706916809,
-0.13892027735710144,
-0.2924811542034149,
-0.16305863857269287,
-0.16571520268917084,
-0.07089906185865402,
0.023396149277687073,
0.09480155259370804,
-0.05249262973666191,
-0.04799347370862961,
-0.030985508114099503,
-0.011247217655181885,
-0.05897943302989006,
-0.0034085328225046396,
-0.0424722284078598,
0.06421343982219696,
-0.06029471755027771,
-0.11193588376045227,
-0.043454427272081375,
-0.0044265370815992355,
-0.0640472024679184,
0.12870556116104126,
-0.09717836230993271,
0.09882897138595581,
0.1328934282064438,
0.025340624153614044,
0.026841068640351295,
-0.04431796446442604,
0.13088175654411316,
-0.04853203520178795,
-0.009431427344679832,
0.22270165383815765,
0.0011693616397678852,
0.05880896374583244,
0.13138096034526825,
0.038107480853796005,
-0.07699986547231674,
0.0045023816637694836,
-0.04538979381322861,
-0.0798133835196495,
-0.23326468467712402,
-0.1373303234577179,
-0.11261934041976929,
0.05847621709108353,
0.05341200903058052,
0.06106415018439293,
0.11219381541013718,
0.08764012902975082,
-0.014922751113772392,
0.058201052248477936,
-0.021582402288913727,
0.07762761414051056,
0.2839027941226959,
-0.01894594356417656,
0.13017886877059937,
-0.08824797719717026,
-0.05806112289428711,
0.09288623183965683,
0.10236862301826477,
0.12053664028644562,
0.059395331889390945,
0.08671223372220993,
0.06011790409684181,
0.13369910418987274,
0.13008637726306915,
0.09064308553934097,
0.04012376442551613,
-0.004751825239509344,
-0.01217054482549429,
-0.044730979949235916,
-0.035446617752313614,
0.035599954426288605,
0.013642698526382446,
-0.13429448008537292,
-0.02092130482196808,
-0.07859308272600174,
0.05072641372680664,
0.119310662150383,
0.025424810126423836,
-0.23313206434249878,
0.025882529094815254,
0.05987260863184929,
-0.0031277218367904425,
-0.07122143357992172,
0.08518851548433304,
-0.016570409759879112,
-0.08306598663330078,
0.07057943195104599,
-0.027958616614341736,
0.12143699079751968,
-0.07391038537025452,
0.0519358366727829,
-0.03370404988527298,
-0.05230972543358803,
0.03313904255628586,
0.1089467853307724,
-0.3237506151199341,
0.22024185955524445,
0.018825465813279152,
-0.026497717946767807,
-0.09279364347457886,
-0.025149978697299957,
0.012764468789100647,
0.1749781221151352,
0.12539535760879517,
-0.007683464791625738,
-0.015535303391516209,
-0.05810444429516792,
-0.05734163895249367,
0.035665884613990784,
0.06896401941776276,
0.0010584074771031737,
-0.0003624292730819434,
-0.024091387167572975,
-0.005279526114463806,
-0.0014077178202569485,
-0.00490220682695508,
-0.043236907571554184,
-0.17163509130477905,
0.05557248741388321,
0.14406868815422058,
0.05307428911328316,
-0.004156381823122501,
-0.039885297417640686,
-0.1416422724723816,
0.17220140993595123,
-0.13633225858211517,
-0.07610277086496353,
-0.10404983907938004,
-0.062380265444517136,
0.05498787760734558,
-0.05518300458788872,
0.03755813464522362,
-0.06245018541812897,
-0.002284383401274681,
-0.06032416224479675,
-0.17134849727153778,
0.06986992806196213,
-0.0996970683336258,
-0.015461762435734272,
-0.03423244133591652,
0.15149866044521332,
-0.08292442560195923,
0.017603974789381027,
0.02323228307068348,
0.01411656104028225,
-0.07490243017673492,
-0.09193401783704758,
-0.005053247790783644,
0.03293938934803009,
0.09035728871822357,
0.01723586395382881,
-0.14129149913787842,
-0.0095018669962883,
-0.014963537454605103,
-0.08424284309148788,
0.26092803478240967,
0.19374249875545502,
-0.05883967876434326,
0.1770647019147873,
0.15347951650619507,
-0.11490184813737869,
-0.32271862030029297,
-0.1000501811504364,
-0.11443756520748138,
-0.028265872970223427,
-0.04509029909968376,
-0.18660955131053925,
0.077033631503582,
0.049923256039619446,
-0.031645506620407104,
0.10615070909261703,
-0.23199057579040527,
-0.09402638673782349,
0.12149857729673386,
0.018926985561847687,
0.2996464669704437,
-0.12258071452379227,
-0.08332320302724838,
-0.08195407688617706,
-0.13797886669635773,
0.19211558997631073,
0.00286630867049098,
0.10877324640750885,
-0.04681301862001419,
0.09396523237228394,
0.007644746918231249,
-0.03690613806247711,
0.10031165927648544,
0.006828084588050842,
0.025079969316720963,
-0.10434320569038391,
-0.0027483508456498384,
0.08884637802839279,
0.002070714021101594,
0.041003402322530746,
-0.11694075912237167,
0.008402612991631031,
-0.1172478049993515,
-0.027270840480923653,
-0.05345173180103302,
0.07041863352060318,
0.009682005271315575,
-0.05904176086187363,
-0.022814305499196053,
-0.019129959866404533,
0.023440003395080566,
-0.015210927464067936,
0.18577711284160614,
-0.03642501309514046,
0.07289411127567291,
0.120790034532547,
0.137875497341156,
-0.13844045996665955,
0.029775775969028473,
-0.07663135230541229,
-0.07252693921327591,
0.06818535923957825,
-0.13475310802459717,
0.03976571559906006,
0.133937805891037,
-0.029848946258425713,
0.0664096474647522,
0.0765647441148758,
0.025761689990758896,
-0.00638764351606369,
0.14227253198623657,
-0.19646349549293518,
0.019226932898163795,
-0.04374184459447861,
0.006416141055524349,
0.06395085155963898,
0.04797811433672905,
0.16513222455978394,
-0.025768468156456947,
-0.009783856570720673,
0.015844149515032768,
0.014720029197633266,
-0.04439609870314598,
0.0675467774271965,
0.04722321033477783,
0.0031884554773569107,
-0.1300448477268219,
0.10301768779754639,
0.025875011458992958,
-0.11881901323795319,
-0.002760943491011858,
0.102492555975914,
-0.13203735649585724,
-0.12005016207695007,
-0.05686751753091812,
0.06437907367944717,
-0.2058214694261551,
-0.08213391900062561,
-0.05728176608681679,
-0.11623122543096542,
0.08587322384119034,
0.1539333164691925,
0.05562883988022804,
0.06769925355911255,
-0.03056035190820694,
-0.08275887370109558,
-0.0737461969256401,
0.020974867045879364,
-0.03823217377066612,
0.02078600414097309,
-0.10290080308914185,
0.015325134620070457,
-0.022673455998301506,
0.1308482140302658,
-0.05975550785660744,
-0.0260691586881876,
-0.10978298634290695,
0.042345207184553146,
-0.14944908022880554,
-0.012575010769069195,
-0.08017249405384064,
-0.0310711357742548,
-0.00464948546141386,
-0.015980064868927002,
-0.06127501279115677,
-0.016248362138867378,
-0.10641258955001831,
0.02068985439836979,
-0.020699268206954002,
0.07433059066534042,
-0.0841195210814476,
-0.04886775091290474,
0.05056420713663101,
-0.015597312711179256,
0.10742154717445374,
0.06851629167795181,
-0.09662238508462906,
0.08528278768062592,
-0.1458529531955719,
-0.05586700141429901,
0.09775988012552261,
0.0555204413831234,
0.04613138735294342,
0.02461850643157959,
0.01933644339442253,
0.12628474831581116,
-0.014499308541417122,
0.048842575401067734,
0.019805999472737312,
-0.10847801715135574,
-0.006426680367439985,
-0.05144473537802696,
-0.09860483556985855,
-0.06442166119813919,
-0.016366492956876755,
0.08798839896917343,
0.04380229115486145,
0.15357235074043274,
-0.04235014319419861,
0.04793012514710426,
-0.042971670627593994,
0.020120149478316307,
-0.008167668245732784,
-0.16375763714313507,
-0.08338074386119843,
-0.08619426190853119,
0.01709349825978279,
-0.0072896163910627365,
0.256022572517395,
0.031082479283213615,
-0.055167291313409805,
0.04080076143145561,
0.06237408146262169,
-0.0060380566865205765,
-0.007072872016578913,
0.25718989968299866,
0.08115017414093018,
-0.0018656767206266522,
-0.0709218680858612,
0.055914513766765594,
0.016445070505142212,
0.0564819797873497,
0.07317715883255005,
0.05913015827536583,
0.027723869308829308,
0.07779153436422348,
0.060071516782045364,
-0.007243873085826635,
-0.04913724586367607,
-0.06347004324197769,
-0.027562761679291725,
0.08634694665670395,
-0.0175641942769289,
0.09104092419147491,
0.12690387666225433,
-0.052363429218530655,
0.006516739260405302,
-0.03274639695882797,
-0.05228272080421448,
-0.15372596681118011,
-0.19265799224376678,
-0.08410533517599106,
-0.11393267661333084,
0.03020910546183586,
-0.09558413177728653,
0.040890172123909,
0.06267426162958145,
0.05259932950139046,
-0.050175171345472336,
0.003746095346286893,
-0.010680551640689373,
-0.06471575796604156,
0.07236453890800476,
-0.028445163741707802,
0.02719707041978836,
-0.07552506774663925,
-0.014066273346543312,
-0.063225157558918,
-0.0467803031206131,
-0.036711398512125015,
0.059050049632787704,
0.020925790071487427,
0.0454951673746109,
-0.133080393075943,
-0.07453975081443787,
-0.04458501189947128,
0.054712191224098206,
0.02359694242477417,
0.16524924337863922,
0.014143720269203186,
-0.011845545843243599,
0.05693808197975159,
0.172040656208992,
-0.038605257868766785,
-0.10545060783624649,
-0.043073464184999466,
0.16965802013874054,
0.023394731804728508,
0.04107775166630745,
0.006772690452635288,
0.015023903921246529,
-0.027153026312589645,
0.3453980088233948,
0.288048654794693,
-0.10212592035531998,
0.018246658146381378,
-0.021862352266907692,
0.03034358285367489,
0.06844350695610046,
0.12959334254264832,
0.10881296545267105,
0.20990362763404846,
-0.07219986617565155,
-0.06748899072408676,
-0.07748356461524963,
0.021169332787394524,
-0.10375670343637466,
0.08185678720474243,
0.005325254052877426,
-0.09320597350597382,
-0.03272281587123871,
0.09537962079048157,
-0.17274652421474457,
0.08563049882650375,
-0.004398995079100132,
-0.12151198089122772,
-0.03424680978059769,
-0.002985055325552821,
0.07231775671243668,
-0.0008496428490616381,
0.024526016786694527,
-0.06182459369301796,
-0.041415877640247345,
0.05475268512964249,
-0.0044367010705173016,
-0.2126384824514389,
0.02068512886762619,
0.06696335226297379,
-0.0013985815457999706,
0.03933676332235336,
-0.007371969521045685,
0.11203435063362122,
0.06820465624332428,
0.06483098119497299,
-0.0719994381070137,
0.08872124552726746,
0.014060961082577705,
-0.06090587005019188,
0.03618868812918663,
-0.022428318858146667,
-0.0032652681693434715,
-0.004855544771999121,
0.04206673428416252,
-0.037646062672138214,
0.06020224466919899,
-0.0012370774056762457,
-0.056301265954971313,
-0.029712067916989326,
0.020235275849699974,
-0.07321474701166153,
0.09561844915151596,
0.05176868662238121,
-0.010201070457696915,
-0.031797103583812714,
-0.07183147221803665,
-0.00331803853623569,
-0.003993404563516378,
-0.15203137695789337,
-0.03916352614760399,
-0.0990368202328682,
-0.07603249698877335,
0.10195887833833694,
0.017836207523941994,
-0.16887257993221283,
-0.005666637793183327,
-0.08880164474248886,
0.007904051803052425,
-0.16425450146198273,
0.06891398131847382,
0.11502542346715927,
-0.0008546813041903079,
-0.020225094631314278,
-0.05280805379152298,
0.042419176548719406,
0.03357136249542236,
-0.09693200886249542,
-0.09446734189987183
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | Americo/phi2-finetued-farma-13feb | [
"transformers",
"safetensors",
"phi",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:17:44+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
51,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #phi #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07441530376672745,
0.13596796989440918,
-0.0039025098085403442,
0.027505790814757347,
0.12266930937767029,
0.005486504640430212,
0.0640522912144661,
0.10635033994913101,
-0.02424517273902893,
0.12324316799640656,
0.022558843716979027,
0.10996841639280319,
0.10686804354190826,
0.18769802153110504,
-0.005247652996331453,
-0.20407868921756744,
0.052618369460105896,
-0.1339786946773529,
-0.005346748046576977,
0.12320936471223831,
0.12734514474868774,
-0.11981219798326492,
0.07206547260284424,
-0.04122542217373848,
-0.006963358726352453,
-0.03489234298467636,
-0.05797455459833145,
-0.048964742571115494,
0.06430605798959732,
0.06026479974389076,
0.0595458559691906,
0.01642736792564392,
0.09416768699884415,
-0.2770709991455078,
0.02226952090859413,
0.08239509910345078,
0.005618265364319086,
0.06627916544675827,
0.07169265300035477,
-0.07693344354629517,
0.08495151996612549,
-0.0664825439453125,
0.14687298238277435,
0.07982858270406723,
-0.09438081085681915,
-0.1880333423614502,
-0.09057903289794922,
0.09343822300434113,
0.18868158757686615,
0.059760916978120804,
-0.030585795640945435,
0.13118816912174225,
-0.06512762606143951,
0.01845625787973404,
0.06895748525857925,
-0.07347869127988815,
-0.05359777435660362,
0.06372594088315964,
0.0695996955037117,
0.09846188873052597,
-0.12773703038692474,
-0.009679428301751614,
0.0320039726793766,
0.013185882940888405,
0.10711356997489929,
0.015842726454138756,
0.12049184739589691,
0.03668152913451195,
-0.14256839454174042,
-0.048429738730192184,
0.08701564371585846,
0.036932192742824554,
-0.0556931346654892,
-0.24876362085342407,
-0.020193742588162422,
-0.038236599415540695,
-0.035524725914001465,
-0.04393884912133217,
0.045244693756103516,
-0.02178187482059002,
0.08087658137083054,
-0.0036660772748291492,
-0.06963636726140976,
-0.05113578215241432,
0.08353596180677414,
0.07143381237983704,
0.028143590316176414,
-0.026850108057260513,
0.01174293551594019,
0.11898057907819748,
0.11549804359674454,
-0.11481842398643494,
-0.051060616970062256,
-0.06272978335618973,
-0.08522246032953262,
-0.04741254821419716,
0.03236919641494751,
0.04775122553110123,
0.05512697622179985,
0.21314972639083862,
-0.0013204539427533746,
0.04992509260773659,
0.03274988383054733,
0.01066634152084589,
0.06731437146663666,
0.08677016198635101,
-0.06419411301612854,
-0.13046035170555115,
-0.02145533822476864,
0.11218346655368805,
0.01231331005692482,
-0.0314481221139431,
-0.038787633180618286,
0.06697112321853638,
0.030200589448213577,
0.12535712122917175,
0.07337819784879684,
0.02016271837055683,
-0.07914318144321442,
-0.06071794033050537,
0.17465178668498993,
-0.16488726437091827,
0.031738489866256714,
0.025622278451919556,
-0.050521157681941986,
-0.018783841282129288,
0.01899137534201145,
0.016399497166275978,
-0.02034466527402401,
0.0874326080083847,
-0.057896632701158524,
-0.03757679834961891,
-0.11592794209718704,
-0.05162535607814789,
0.026356054469943047,
0.005852686706930399,
-0.030844759196043015,
-0.04131776839494705,
-0.11982329934835434,
-0.07797703891992569,
0.07937561720609665,
-0.06747156381607056,
-0.04716470465064049,
-0.03360702842473984,
-0.07821470499038696,
0.012420105747878551,
0.0004091960145160556,
0.11594925820827484,
-0.030400289222598076,
0.05072459205985069,
-0.05188135802745819,
0.07153815776109695,
0.14497826993465424,
0.027334017679095268,
-0.06379645317792892,
0.056507088243961334,
-0.23278117179870605,
0.10387995839118958,
-0.07912862300872803,
0.04115021973848343,
-0.16289231181144714,
-0.01469900831580162,
0.03982052579522133,
0.02627355046570301,
-0.006934128236025572,
0.1390630006790161,
-0.19293013215065002,
-0.03536631911993027,
0.18081475794315338,
-0.11522960662841797,
-0.08808764070272446,
0.052698906511068344,
-0.054467298090457916,
0.12280778586864471,
0.050916753709316254,
-0.02316596917808056,
0.030826477333903313,
-0.1417923867702484,
-0.01687287911772728,
-0.06468956172466278,
-0.025315633043646812,
0.15359161794185638,
0.05711430311203003,
-0.051229238510131836,
0.052433162927627563,
0.020726939663290977,
-0.021120568737387657,
-0.04788779839873314,
-0.03371148556470871,
-0.09498532861471176,
0.009590674191713333,
-0.0753822848200798,
0.01856466382741928,
-0.029109936207532883,
-0.09291869401931763,
-0.035687901079654694,
-0.15461255609989166,
0.005384957883507013,
0.09633282572031021,
-0.0055311573669314384,
-0.025023676455020905,
-0.10565053671598434,
-0.004781804513186216,
0.016855718567967415,
-0.00016373902326449752,
-0.15187151730060577,
-0.05655598267912865,
0.019132478162646294,
-0.16505438089370728,
0.02767706662416458,
-0.047599732875823975,
0.045580726116895676,
0.04182368889451027,
-0.03936924785375595,
-0.03521854057908058,
0.018329832702875137,
0.020268244668841362,
-0.01465248316526413,
-0.2745935916900635,
-0.018261034041643143,
-0.04086336866021156,
0.17035499215126038,
-0.2475264072418213,
0.04439546912908554,
0.059322256594896317,
0.1307375431060791,
0.01173730194568634,
-0.03705551475286484,
0.03161298856139183,
-0.06255152821540833,
-0.033266592770814896,
-0.0667189359664917,
-0.009362515062093735,
-0.03631554916501045,
-0.03938153013586998,
0.03835300728678703,
-0.17000539600849152,
-0.03406575322151184,
0.11603987962007523,
0.04540814831852913,
-0.15477602183818817,
-0.05056281015276909,
-0.04004296287894249,
-0.05738358572125435,
-0.07204438000917435,
-0.05216284841299057,
0.09743187576532364,
0.05571887642145157,
0.05545826256275177,
-0.05951985344290733,
-0.061445724219083786,
0.009554018266499043,
-0.02068808674812317,
-0.01867086999118328,
0.08103828877210617,
0.07077015191316605,
-0.11522045731544495,
0.09927672892808914,
0.08799781650304794,
0.08139653503894806,
0.10005104541778564,
0.0010666352463886142,
-0.09291157126426697,
-0.02339044213294983,
0.027750657871365547,
0.014336124062538147,
0.14687193930149078,
-0.04000900313258171,
0.0429966077208519,
0.04120675474405289,
-0.01584675721824169,
0.008143718354403973,
-0.09446796029806137,
0.02997143194079399,
0.02818182110786438,
-0.010246568359434605,
0.037614114582538605,
-0.056816551834344864,
0.019303709268569946,
0.10318583995103836,
0.03345242142677307,
0.04412994161248207,
0.009559271857142448,
-0.04857930168509483,
-0.11974377185106277,
0.1767151653766632,
-0.11110951006412506,
-0.23173309862613678,
-0.12149907648563385,
-0.01399032212793827,
0.02910485304892063,
-0.011633564718067646,
0.02006695233285427,
-0.06405475735664368,
-0.1171390563249588,
-0.09921693801879883,
0.045627593994140625,
0.07059439271688461,
-0.08641253411769867,
-0.06378761678934097,
0.06134819984436035,
0.04600827768445015,
-0.13516096770763397,
0.02277415804564953,
0.03902184218168259,
-0.08909334987401962,
0.007867258042097092,
0.07907920330762863,
0.07120607048273087,
0.17945720255374908,
0.012182043865323067,
-0.024257373064756393,
0.019671371206641197,
0.20478034019470215,
-0.13766378164291382,
0.10145840793848038,
0.14393620193004608,
-0.06286554783582687,
0.08066798746585846,
0.20545852184295654,
0.036268092691898346,
-0.1057758554816246,
0.044006094336509705,
0.03648979216814041,
-0.02651887945830822,
-0.24340394139289856,
-0.08019697666168213,
0.004161624237895012,
-0.06197261065244675,
0.08161719888448715,
0.08306818455457687,
0.09198566526174545,
0.02785661816596985,
-0.1081320270895958,
-0.06691340357065201,
0.05036139488220215,
0.11249116063117981,
-0.008557078428566456,
-0.007815919816493988,
0.09523359686136246,
-0.02225065603852272,
0.029176659882068634,
0.09147068858146667,
0.01374965999275446,
0.18282483518123627,
0.045852772891521454,
0.14848409593105316,
0.09157159924507141,
0.059395745396614075,
0.01233623269945383,
0.01314469799399376,
0.019094863906502724,
0.026712998747825623,
-0.015145753510296345,
-0.08685000985860825,
-0.012303872965276241,
0.1268911212682724,
0.010885220021009445,
0.04597875103354454,
0.0076150596141815186,
-0.04230163246393204,
0.08450151234865189,
0.17545753717422485,
0.01328173466026783,
-0.21406996250152588,
-0.06688741594552994,
0.06981010735034943,
-0.08051439374685287,
-0.10911136865615845,
-0.024429909884929657,
0.03406251221895218,
-0.18049609661102295,
0.02387341856956482,
-0.025180401280522346,
0.10069414228200912,
-0.12370731681585312,
-0.018827902153134346,
0.052628833800554276,
0.07052139192819595,
-0.018700284883379936,
0.06386490911245346,
-0.17778280377388,
0.13549263775348663,
0.013200430199503899,
0.07557245343923569,
-0.09068016707897186,
0.08482389152050018,
0.0111467270180583,
-0.002043683547526598,
0.1468254029750824,
-0.0010637122904881835,
-0.05408002436161041,
-0.11050406098365784,
-0.0906725600361824,
-0.011339336633682251,
0.11465787142515182,
-0.12593887746334076,
0.10165182501077652,
-0.016582757234573364,
-0.044178079813718796,
-0.0030248011462390423,
-0.12813955545425415,
-0.14044401049613953,
-0.17314541339874268,
0.04187968373298645,
-0.13014033436775208,
0.0451013408601284,
-0.10672678053379059,
-0.05035872012376785,
-0.05017208307981491,
0.19719818234443665,
-0.21763156354427338,
-0.07621806859970093,
-0.15351133048534393,
-0.06420157849788666,
0.11623851954936981,
-0.04613782465457916,
0.08647869527339935,
0.012962628155946732,
0.18781377375125885,
0.014061033725738525,
-0.015962716192007065,
0.10993410646915436,
-0.10395599156618118,
-0.21440888941287994,
-0.10220180451869965,
0.13403694331645966,
0.13545545935630798,
0.03708728775382042,
0.00035940390080213547,
0.03232092037796974,
-0.007850716821849346,
-0.11358384788036346,
0.023570599034428596,
0.18197759985923767,
0.11685380339622498,
0.037179335951805115,
-0.034665536135435104,
-0.13531899452209473,
-0.0839521661400795,
-0.042324043810367584,
0.008525622077286243,
0.18976294994354248,
-0.06857912987470627,
0.1652597337961197,
0.15934355556964874,
-0.055173277854919434,
-0.21036414802074432,
0.0313970185816288,
0.033629804849624634,
0.0021239151246845722,
0.05604655668139458,
-0.20132838189601898,
0.0957157164812088,
0.00788893923163414,
-0.057729288935661316,
0.12271249294281006,
-0.18383583426475525,
-0.14666838943958282,
0.0679788589477539,
0.07568002492189407,
-0.18666845560073853,
-0.12836617231369019,
-0.09530680626630783,
-0.04426150023937225,
-0.1240062341094017,
0.0767902210354805,
-0.019116053357720375,
0.009703016839921474,
0.03049294650554657,
0.017553992569446564,
0.010632803663611412,
-0.04766656085848808,
0.18440434336662292,
-0.005318623501807451,
0.050052255392074585,
-0.07833196222782135,
-0.05977580323815346,
0.04439995810389519,
-0.06766178458929062,
0.07768969982862473,
-0.011583259329199791,
0.012072126381099224,
-0.10826653987169266,
-0.05835650488734245,
-0.03404201939702034,
0.024099772796034813,
-0.08059826493263245,
-0.09612218290567398,
-0.037487708032131195,
0.09951330721378326,
0.09140417724847794,
-0.03928857669234276,
-0.06511175632476807,
-0.08731205761432648,
0.032564677298069,
0.21537625789642334,
0.17581914365291595,
0.05872897058725357,
-0.06627403944730759,
-0.004332480486482382,
-0.013938636519014835,
0.0518467053771019,
-0.20769350230693817,
0.054770588874816895,
0.037577200680971146,
0.03502080589532852,
0.11540760844945908,
-0.02692747861146927,
-0.15991008281707764,
-0.04947725683450699,
0.054892536252737045,
-0.07749488949775696,
-0.16381342709064484,
0.014566776342689991,
0.0698530450463295,
-0.15249542891979218,
-0.023638471961021423,
0.04465564340353012,
-0.019799569621682167,
-0.033337272703647614,
0.003100043162703514,
0.08220522850751877,
0.016223285347223282,
0.09557998180389404,
0.05498101934790611,
0.09563100337982178,
-0.10772447288036346,
0.06952618062496185,
0.07929857820272446,
-0.10225345939397812,
0.03691693767905235,
0.06498466432094574,
-0.07187005877494812,
-0.035860974341630936,
0.04298849776387215,
0.09064827114343643,
0.03834117203950882,
-0.05791795626282692,
0.006768029183149338,
-0.1019822508096695,
0.058791015297174454,
0.11939579248428345,
0.043310075998306274,
0.008954020217061043,
0.03660706803202629,
0.039979103952646255,
-0.09563424438238144,
0.12395429611206055,
0.04702746868133545,
0.03306521847844124,
-0.05115185305476189,
-0.030670443549752235,
0.033765602856874466,
-0.03013032302260399,
-0.016100779175758362,
-0.04014170542359352,
-0.06690575927495956,
-0.012527769431471825,
-0.17551913857460022,
0.004580955021083355,
-0.05460330843925476,
0.004814730025827885,
0.01808975264430046,
-0.030708830803632736,
0.006335208658128977,
0.01802607998251915,
-0.07054036855697632,
-0.05601222440600395,
-0.007826367393136024,
0.10339196026325226,
-0.17446856200695038,
0.014777671545743942,
0.07612703740596771,
-0.12507562339305878,
0.0856013149023056,
0.019583139568567276,
0.0037027799990028143,
0.030126722529530525,
-0.12974882125854492,
0.04562569037079811,
-0.008532330393791199,
0.0110886599868536,
0.04916682839393616,
-0.2144635170698166,
-0.00006298656080616638,
-0.048669952899217606,
-0.06047982722520828,
-0.008075869642198086,
-0.022350680083036423,
-0.11814062297344208,
0.10634202510118484,
0.011746841482818127,
-0.07358573377132416,
-0.025499174371361732,
0.039712198078632355,
0.09615115076303482,
-0.03705960139632225,
0.15897074341773987,
-0.017435546964406967,
0.06202258542180061,
-0.18289825320243835,
-0.022887926548719406,
-0.01893971487879753,
0.02133350446820259,
-0.041365109384059906,
-0.009923189878463745,
0.053397808223962784,
-0.0207329411059618,
0.20566853880882263,
-0.017383437603712082,
0.03804474696516991,
0.06314582377672195,
-0.013027135282754898,
-0.014618457295000553,
0.10731750726699829,
0.048464275896549225,
0.011181623674929142,
0.02981831505894661,
0.010703807696700096,
-0.03417062386870384,
-0.005388245452195406,
-0.1523161679506302,
0.077239029109478,
0.16865576803684235,
0.08118049800395966,
-0.008775852620601654,
0.054247766733169556,
-0.11114349961280823,
-0.11427582800388336,
0.0913289338350296,
-0.056236591190099716,
-0.013130106031894684,
-0.05957726389169693,
0.14178913831710815,
0.15433260798454285,
-0.1893889456987381,
0.06022936478257179,
-0.06838760524988174,
-0.04934924468398094,
-0.10593041032552719,
-0.172664612531662,
-0.05883026123046875,
-0.05516333505511284,
-0.0200477484613657,
-0.055225640535354614,
0.065329410135746,
0.09025082737207413,
0.016052771359682083,
0.013859162107110023,
0.08703679591417313,
-0.017933277413249016,
0.0062139625661075115,
0.030186165124177933,
0.06423898041248322,
0.011570695787668228,
-0.04630725830793381,
0.008485673926770687,
-0.0025986286345869303,
0.032309141010046005,
0.051715679466724396,
0.03794151917099953,
-0.025615144520998,
0.009215989150106907,
-0.028480391949415207,
-0.11046841740608215,
0.039721209555864334,
-0.025451408699154854,
-0.0637175589799881,
0.14837713539600372,
0.02840440161526203,
-0.0067321667447686195,
-0.023941997438669205,
0.2540489137172699,
-0.07580790668725967,
-0.08472823351621628,
-0.1372121125459671,
0.14538848400115967,
-0.03086796961724758,
0.06126725301146507,
0.039360348135232925,
-0.11396372318267822,
0.03298129141330719,
0.1398884356021881,
0.14529621601104736,
-0.051987502723932266,
0.017118316143751144,
0.014656228013336658,
0.0029644023161381483,
-0.038789160549640656,
0.05346855893731117,
0.06594305485486984,
0.1253807246685028,
-0.05399900674819946,
0.08479224145412445,
-0.004516707267612219,
-0.10068650543689728,
-0.03351442143321037,
0.1215558722615242,
-0.0051100910641252995,
0.021343640983104706,
-0.07243939489126205,
0.12681175768375397,
-0.04128829762339592,
-0.26241305470466614,
0.06438590586185455,
-0.06042512133717537,
-0.14796359837055206,
-0.0250939279794693,
0.042521025985479355,
-0.005583211313933134,
0.02851193957030773,
0.06835387647151947,
-0.06482896208763123,
0.1890970915555954,
0.037300046533346176,
-0.05160627141594887,
-0.06661834567785263,
0.07295969873666763,
-0.10394251346588135,
0.2989484369754791,
0.006831952836364508,
0.056051596999168396,
0.10134656727313995,
-0.031050942838191986,
-0.14268989861011505,
0.031161298975348473,
0.08590974658727646,
-0.06741449981927872,
0.055566806346178055,
0.2119295448064804,
-0.00888585951179266,
0.10927559435367584,
0.07252391427755356,
-0.08921248465776443,
0.04874938353896141,
-0.10592100024223328,
-0.09221301972866058,
-0.08717742562294006,
0.09235067665576935,
-0.0555795282125473,
0.14914315938949585,
0.12058565765619278,
-0.04728509485721588,
0.021935351192951202,
-0.021421335637569427,
0.050473760813474655,
0.004591043572872877,
0.12314941734075546,
0.022128529846668243,
-0.19706779718399048,
0.026956038549542427,
-0.0006028058123774827,
0.10154236108064651,
-0.21685825288295746,
-0.09420528262853622,
0.04897189885377884,
0.00334720266982913,
-0.06139703094959259,
0.1250954121351242,
0.05242267996072769,
0.041330695152282715,
-0.046910692006349564,
-0.030460618436336517,
-0.00651969201862812,
0.1657109558582306,
-0.10882015526294708,
-0.004513995256274939
] |
null | null | null | # Fauno - Italian LLM

Get ready to meet Fauno - the Italian language model crafted by the [RSTLess Research Group](https://rstless-lab.netlify.app/) from the Sapienza University of Rome.
The talented research team behind Fauno includes [Andrea Bacciu](https://andreabac3.github.io/), [Dr. Giovanni Trappolini](https://sites.google.com/view/giovannitrappolini), [Andrea Santilli](https://www.santilli.xyz/), and [Professor Fabrizio Silvestri](https://sites.google.com/diag.uniroma1.it/fabriziosilvestri/home).
Fauno represents a cutting-edge development in open-source Italian Large Language Modeling. It's trained on extensive Italian synthetic datasets, encompassing a wide range of fields such as medical data 🩺, technical content from Stack Overflow 💻, Quora discussions 💬, and Alpaca data 🦙 translated into Italian.
Hence, our model is able to answer to your questions in Italian 🙋, fix your buggy code 🐛 and understand a minimum of medical literature 💊.
## The 🇮🇹 open-source version of chatGPT!
Discover the capabilities of Fauno and experience the evolution of Italian language models for yourself.

### Why Fauno?
We started with a model called Baize, named after a legendary creature from Chinese literature. Continuing along this thematic line, we developed our Italian model based on Baize and named it Fauno, inspired by an iconic figure from Roman mythology. This choice underlines the link between the two models, while maintaining a distinctive identity rooted in Italian culture.
# Did you know that you can run Fauno on Colab base?
Follow this link to access a Colab notebook with our 7B version! <a target="_blank" href="https://colab.research.google.com/drive/1AepJVWS-qU910zyq-Zi7wWFQ5tthVzUe">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
## 🔎 Model's details
Fauno is a fine-tuned version of the LoRa weights of [Baize](https://github.com/project-baize/baize-chatbot), that is an improved version of [LLama](https://github.com/facebookresearch/llama).
We translated and cleaned the data of Baize, and then we fine-tuned the 7b model using a single RTX A6000 (48GB of VRAM) with 19 hours for one epoch.
- 13B: https://huggingface.co/andreabac3/Fauno-Italian-LLM-13B
Fauno 30B and 65B are coming soon!
## Model initialization
```python
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
from peft import PeftModel
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
model = LlamaForCausalLM.from_pretrained(
"decapoda-research/llama-7b-hf",
load_in_8bit=True,
device_map="auto",
)
model = PeftModel.from_pretrained(model, "andreabac3/Fauno-Italian-LLM-7B")
model.eval()
```
## Inference
```python
def evaluate(question: str) -> str:
prompt = f"The conversation between human and AI assistant.\n[|Human|] {question}.\n[|AI|] "
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].cuda()
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256
)
output = tokenizer.decode(generation_output.sequences[0]).split("[|AI|]")[1]
return output
your_question: str = "Qual'è il significato della vita?"
print(evaluate(your_question))
```
### Output
```
Il senso della vita è una domanda che molte persone hanno cercato di rispondere per secoli.
Alla fine, il senso della vita è soggettivo e varia da persona a persona.
Alcune persone credono che il senso della vita sia trovare la felicità, mentre altre credono che sia raggiungere i propri obiettivi o aiutare gli altri.
Alla fine, il senso della vita è determinato dall'individuo e dai loro valori e credenze.
In definitiva, il senso della vita è qualcosa che ognuno deve trovare da solo.
Non c'è una risposta giusta o sbagliata, poiché ogni persona ha le proprie convinzioni e credenze.
La ricerca del senso della vita può essere un viaggio lungo e difficile, ma vale la pena perseguire.
```
# 📖 Cite our work
To use our translated dataset and model weights in your research, remember to cite our work.
```bibtex
@misc{fauno,
author = {Andrea Bacciu, Giovanni Trappolini, Andrea Santilli, Fabrizio Silvestri},
title = {Fauno: The Italian Large Language Model that will leave you senza parole!},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/andreabac3/Fauno-Italian-LLM}},
}
```
## 🔑 License
This project is a derivative of Baize, and we adhere to the licensing constraints imposed by both Baize's creators and the authors of LLama.
## ⚠️ Hallucinations
It is important to remark that current generation models are prone to the problem of hallucinations. So we advise you not to take their answers seriously.
## 👏 Acknowledgement
- LLama - Meta AI: https://github.com/facebookresearch/llama
- Baize: https://github.com/project-baize/baize-chatbot
- Standford Alpaca: https://github.com/tatsu-lab/stanford_alpaca
- Camoscio: https://github.com/teelinsan/camoscio
#### Image Credits
- llama image: https://next14.com/en/nextnews-7-march-a-new-language-model-for-meta-bing-ai-on-windows-and-the-first-tokenized-real-estate-sales/
- Fauno logo: https://www.flaticon.com/free-icon/faun_7931635?term=faun&page=1&position=1&origin=tag&related_id=7931635 | {"language": ["it", "en"], "license": "gpl-3.0", "tags": ["large language model", "italian large language model", "baize", "llama ", "italian"], "datasets": ["andreabac3/MedQuaAD-Italian-Fauno-Baize", "andreabac3/StackOverflow-Italian-Fauno-Baize", "andreabac3/Quora-Italian-Fauno-Baize", "teelinsan/camoscio_cleaned"]} | null | buio/Fauno-Italian-LLM-7B | [
"large language model",
"italian large language model",
"baize",
"llama ",
"italian",
"it",
"en",
"dataset:andreabac3/MedQuaAD-Italian-Fauno-Baize",
"dataset:andreabac3/StackOverflow-Italian-Fauno-Baize",
"dataset:andreabac3/Quora-Italian-Fauno-Baize",
"dataset:teelinsan/camoscio_cleaned",
"license:gpl-3.0",
"region:us"
] | 2024-02-13T17:18:36+00:00 | [] | [
"it",
"en"
] | TAGS
#large language model #italian large language model #baize #llama #italian #it #en #dataset-andreabac3/MedQuaAD-Italian-Fauno-Baize #dataset-andreabac3/StackOverflow-Italian-Fauno-Baize #dataset-andreabac3/Quora-Italian-Fauno-Baize #dataset-teelinsan/camoscio_cleaned #license-gpl-3.0 #region-us
| # Fauno - Italian LLM
!image
Get ready to meet Fauno - the Italian language model crafted by the RSTLess Research Group from the Sapienza University of Rome.
The talented research team behind Fauno includes Andrea Bacciu, Dr. Giovanni Trappolini, Andrea Santilli, and Professor Fabrizio Silvestri.
Fauno represents a cutting-edge development in open-source Italian Large Language Modeling. It's trained on extensive Italian synthetic datasets, encompassing a wide range of fields such as medical data , technical content from Stack Overflow , Quora discussions , and Alpaca data translated into Italian.
Hence, our model is able to answer to your questions in Italian , fix your buggy code and understand a minimum of medical literature .
## The 🇮🇹 open-source version of chatGPT!
Discover the capabilities of Fauno and experience the evolution of Italian language models for yourself.
!demo
### Why Fauno?
We started with a model called Baize, named after a legendary creature from Chinese literature. Continuing along this thematic line, we developed our Italian model based on Baize and named it Fauno, inspired by an iconic figure from Roman mythology. This choice underlines the link between the two models, while maintaining a distinctive identity rooted in Italian culture.
# Did you know that you can run Fauno on Colab base?
Follow this link to access a Colab notebook with our 7B version! <a target="_blank" href="URL
<img src="URL alt="Open In Colab"/>
</a>
## Model's details
Fauno is a fine-tuned version of the LoRa weights of Baize, that is an improved version of LLama.
We translated and cleaned the data of Baize, and then we fine-tuned the 7b model using a single RTX A6000 (48GB of VRAM) with 19 hours for one epoch.
- 13B: URL
Fauno 30B and 65B are coming soon!
## Model initialization
## Inference
### Output
# Cite our work
To use our translated dataset and model weights in your research, remember to cite our work.
## License
This project is a derivative of Baize, and we adhere to the licensing constraints imposed by both Baize's creators and the authors of LLama.
## ️ Hallucinations
It is important to remark that current generation models are prone to the problem of hallucinations. So we advise you not to take their answers seriously.
## Acknowledgement
- LLama - Meta AI: URL
- Baize: URL
- Standford Alpaca: URL
- Camoscio: URL
#### Image Credits
- llama image: URL
- Fauno logo: URL | [
"# Fauno - Italian LLM \n\n!image\n\nGet ready to meet Fauno - the Italian language model crafted by the RSTLess Research Group from the Sapienza University of Rome.\n\nThe talented research team behind Fauno includes Andrea Bacciu, Dr. Giovanni Trappolini, Andrea Santilli, and Professor Fabrizio Silvestri.\n\nFauno represents a cutting-edge development in open-source Italian Large Language Modeling. It's trained on extensive Italian synthetic datasets, encompassing a wide range of fields such as medical data , technical content from Stack Overflow , Quora discussions , and Alpaca data translated into Italian.\n\nHence, our model is able to answer to your questions in Italian , fix your buggy code and understand a minimum of medical literature .",
"## The 🇮🇹 open-source version of chatGPT!\nDiscover the capabilities of Fauno and experience the evolution of Italian language models for yourself.\n!demo",
"### Why Fauno?\nWe started with a model called Baize, named after a legendary creature from Chinese literature. Continuing along this thematic line, we developed our Italian model based on Baize and named it Fauno, inspired by an iconic figure from Roman mythology. This choice underlines the link between the two models, while maintaining a distinctive identity rooted in Italian culture.",
"# Did you know that you can run Fauno on Colab base?\nFollow this link to access a Colab notebook with our 7B version! <a target=\"_blank\" href=\"URL\n <img src=\"URL alt=\"Open In Colab\"/>\n</a>",
"## Model's details\nFauno is a fine-tuned version of the LoRa weights of Baize, that is an improved version of LLama.\n\nWe translated and cleaned the data of Baize, and then we fine-tuned the 7b model using a single RTX A6000 (48GB of VRAM) with 19 hours for one epoch.\n\n- 13B: URL\n\nFauno 30B and 65B are coming soon!",
"## Model initialization",
"## Inference",
"### Output",
"# Cite our work\n\nTo use our translated dataset and model weights in your research, remember to cite our work.",
"## License\nThis project is a derivative of Baize, and we adhere to the licensing constraints imposed by both Baize's creators and the authors of LLama.",
"## ️ Hallucinations\nIt is important to remark that current generation models are prone to the problem of hallucinations. So we advise you not to take their answers seriously.",
"## Acknowledgement\n- LLama - Meta AI: URL\n- Baize: URL\n- Standford Alpaca: URL\n- Camoscio: URL",
"#### Image Credits \n- llama image: URL\n- Fauno logo: URL"
] | [
"TAGS\n#large language model #italian large language model #baize #llama #italian #it #en #dataset-andreabac3/MedQuaAD-Italian-Fauno-Baize #dataset-andreabac3/StackOverflow-Italian-Fauno-Baize #dataset-andreabac3/Quora-Italian-Fauno-Baize #dataset-teelinsan/camoscio_cleaned #license-gpl-3.0 #region-us \n",
"# Fauno - Italian LLM \n\n!image\n\nGet ready to meet Fauno - the Italian language model crafted by the RSTLess Research Group from the Sapienza University of Rome.\n\nThe talented research team behind Fauno includes Andrea Bacciu, Dr. Giovanni Trappolini, Andrea Santilli, and Professor Fabrizio Silvestri.\n\nFauno represents a cutting-edge development in open-source Italian Large Language Modeling. It's trained on extensive Italian synthetic datasets, encompassing a wide range of fields such as medical data , technical content from Stack Overflow , Quora discussions , and Alpaca data translated into Italian.\n\nHence, our model is able to answer to your questions in Italian , fix your buggy code and understand a minimum of medical literature .",
"## The 🇮🇹 open-source version of chatGPT!\nDiscover the capabilities of Fauno and experience the evolution of Italian language models for yourself.\n!demo",
"### Why Fauno?\nWe started with a model called Baize, named after a legendary creature from Chinese literature. Continuing along this thematic line, we developed our Italian model based on Baize and named it Fauno, inspired by an iconic figure from Roman mythology. This choice underlines the link between the two models, while maintaining a distinctive identity rooted in Italian culture.",
"# Did you know that you can run Fauno on Colab base?\nFollow this link to access a Colab notebook with our 7B version! <a target=\"_blank\" href=\"URL\n <img src=\"URL alt=\"Open In Colab\"/>\n</a>",
"## Model's details\nFauno is a fine-tuned version of the LoRa weights of Baize, that is an improved version of LLama.\n\nWe translated and cleaned the data of Baize, and then we fine-tuned the 7b model using a single RTX A6000 (48GB of VRAM) with 19 hours for one epoch.\n\n- 13B: URL\n\nFauno 30B and 65B are coming soon!",
"## Model initialization",
"## Inference",
"### Output",
"# Cite our work\n\nTo use our translated dataset and model weights in your research, remember to cite our work.",
"## License\nThis project is a derivative of Baize, and we adhere to the licensing constraints imposed by both Baize's creators and the authors of LLama.",
"## ️ Hallucinations\nIt is important to remark that current generation models are prone to the problem of hallucinations. So we advise you not to take their answers seriously.",
"## Acknowledgement\n- LLama - Meta AI: URL\n- Baize: URL\n- Standford Alpaca: URL\n- Camoscio: URL",
"#### Image Credits \n- llama image: URL\n- Fauno logo: URL"
] | [
114,
179,
36,
87,
61,
97,
4,
4,
4,
27,
43,
39,
31,
16
] | [
"passage: TAGS\n#large language model #italian large language model #baize #llama #italian #it #en #dataset-andreabac3/MedQuaAD-Italian-Fauno-Baize #dataset-andreabac3/StackOverflow-Italian-Fauno-Baize #dataset-andreabac3/Quora-Italian-Fauno-Baize #dataset-teelinsan/camoscio_cleaned #license-gpl-3.0 #region-us \n# Fauno - Italian LLM \n\n!image\n\nGet ready to meet Fauno - the Italian language model crafted by the RSTLess Research Group from the Sapienza University of Rome.\n\nThe talented research team behind Fauno includes Andrea Bacciu, Dr. Giovanni Trappolini, Andrea Santilli, and Professor Fabrizio Silvestri.\n\nFauno represents a cutting-edge development in open-source Italian Large Language Modeling. It's trained on extensive Italian synthetic datasets, encompassing a wide range of fields such as medical data , technical content from Stack Overflow , Quora discussions , and Alpaca data translated into Italian.\n\nHence, our model is able to answer to your questions in Italian , fix your buggy code and understand a minimum of medical literature .## The 🇮🇹 open-source version of chatGPT!\nDiscover the capabilities of Fauno and experience the evolution of Italian language models for yourself.\n!demo### Why Fauno?\nWe started with a model called Baize, named after a legendary creature from Chinese literature. Continuing along this thematic line, we developed our Italian model based on Baize and named it Fauno, inspired by an iconic figure from Roman mythology. This choice underlines the link between the two models, while maintaining a distinctive identity rooted in Italian culture.# Did you know that you can run Fauno on Colab base?\nFollow this link to access a Colab notebook with our 7B version! <a target=\"_blank\" href=\"URL\n <img src=\"URL alt=\"Open In Colab\"/>\n</a>"
] | [
-0.0638391375541687,
0.18111570179462433,
-0.004718541633337736,
0.048150014132261276,
0.10832158476114273,
0.03237711265683174,
0.05095159634947777,
0.1592179387807846,
0.09692336618900299,
0.1554441750049591,
-0.0374629832804203,
0.0002073342038784176,
0.08629058301448822,
0.10401851683855057,
0.04696858301758766,
-0.1898236870765686,
0.034534405916929245,
-0.0797213539481163,
-0.031611368060112,
0.024257179349660873,
0.09158073365688324,
-0.05968572199344635,
0.07980071008205414,
-0.039648912847042084,
0.005335430148988962,
0.020468302071094513,
-0.013577629812061787,
-0.009509296156466007,
0.07756611704826355,
0.06962676346302032,
0.023583315312862396,
-0.023265551775693893,
0.04796924069523811,
-0.22109870612621307,
0.017376458272337914,
0.05697434023022652,
-0.005099588539451361,
0.017020929604768753,
0.0719960555434227,
-0.0788734033703804,
0.1814769059419632,
-0.12881150841712952,
0.024363551288843155,
0.06759192049503326,
-0.11013703793287277,
-0.1403355747461319,
-0.1120615005493164,
0.07048412412405014,
0.037415970116853714,
0.10517079383134842,
-0.020012201741337776,
0.060959283262491226,
-0.028775189071893692,
0.019066307693719864,
0.14224214851856232,
-0.15132391452789307,
-0.061907507479190826,
-0.028151461854577065,
0.06518550217151642,
0.09402919560670853,
-0.08043857663869858,
0.05179464817047119,
-0.007180182728916407,
0.012512401677668095,
-0.03152647987008095,
-0.02896115370094776,
0.08822551369667053,
-0.013907364569604397,
-0.07284422218799591,
0.011136306449770927,
0.1154944896697998,
-0.07775305956602097,
-0.064881831407547,
-0.11890119314193726,
0.009382090531289577,
0.09047657251358032,
-0.03197469562292099,
-0.0666646882891655,
0.05124403536319733,
0.014266829006373882,
0.17144612967967987,
-0.12483125180006027,
-0.061410386115312576,
-0.0231094378978014,
-0.07814723253250122,
0.08992616832256317,
0.049493104219436646,
0.005111209582537413,
0.06560663133859634,
-0.011352291330695152,
-0.03438542038202286,
-0.02898455783724785,
-0.035309597849845886,
-0.03534132242202759,
-0.08460671454668045,
-0.045516882091760635,
-0.031531669199466705,
0.009024502709507942,
0.1134154349565506,
0.21785609424114227,
-0.12711550295352936,
-0.040534742176532745,
0.01789671555161476,
-0.020961737260222435,
0.056106600910425186,
0.028939807787537575,
-0.19925744831562042,
-0.13445156812667847,
0.013858663849532604,
-0.03799218684434891,
-0.019400298595428467,
0.011218921281397343,
-0.030448181554675102,
0.00012130202230764553,
-0.11481422185897827,
0.1055057942867279,
0.08231218159198761,
-0.03951719030737877,
-0.05931472405791283,
-0.04825570806860924,
0.08577850461006165,
-0.10629568994045258,
0.027037324383854866,
0.018387220799922943,
-0.03274388983845711,
0.0573422908782959,
-0.03550852835178375,
0.031173231080174446,
-0.10062072426080704,
0.036727819591760635,
-0.04517688229680061,
-0.019900165498256683,
-0.04615572839975357,
-0.045806750655174255,
0.07714193314313889,
-0.13493390381336212,
-0.03897585719823837,
-0.06378860771656036,
-0.00714706489816308,
-0.06701935827732086,
0.021415667608380318,
-0.11390537768602371,
0.04289179667830467,
-0.0333683155477047,
-0.009779213927686214,
-0.0070752594619989395,
0.0713929608464241,
-0.027331799268722534,
-0.039129458367824554,
0.004807658959180117,
-0.07979295402765274,
0.0664311870932579,
-0.1155272051692009,
0.005881096702069044,
-0.06773872673511505,
0.03321933001279831,
-0.13378086686134338,
0.10797006636857986,
-0.08117394894361496,
-0.023383447900414467,
-0.17058885097503662,
0.018583359196782112,
-0.026649264618754387,
0.012755402363836765,
0.06979572027921677,
0.10074485093355179,
-0.12982894480228424,
-0.047641705721616745,
0.16937075555324554,
-0.05827982723712921,
-0.1354110687971115,
0.1787404865026474,
0.003433613106608391,
0.07893890142440796,
0.08156668394804001,
0.13761568069458008,
0.020182766020298004,
-0.10218469798564911,
-0.10925941914319992,
-0.1088654175400734,
-0.06575389206409454,
0.07499399036169052,
0.11349762231111526,
-0.06786889582872391,
0.15689045190811157,
0.004273901227861643,
-0.11071204394102097,
-0.015073967166244984,
-0.0206132885068655,
-0.061032991856336594,
-0.004208196420222521,
-0.10268665105104446,
-0.09206362068653107,
-0.005345775280147791,
-0.0035443285014480352,
-0.04050932824611664,
-0.05757719278335571,
-0.04563741013407707,
0.07483483105897903,
-0.009549630805850029,
0.029084723442792892,
-0.11403241753578186,
0.11335290968418121,
0.04034670814871788,
0.02295272797346115,
-0.09304208308458328,
-0.08905290067195892,
0.04189905524253845,
-0.015240715816617012,
0.07908391207456589,
-0.12456025928258896,
-0.011208564974367619,
0.04699338227510452,
-0.06729242205619812,
0.011350213550031185,
0.03172041475772858,
-0.027793122455477715,
-0.030053086578845978,
-0.18387332558631897,
0.047463200986385345,
-0.036749646067619324,
0.11401905864477158,
-0.06657076627016068,
0.011523619294166565,
0.021870417520403862,
0.11879677325487137,
0.02961919456720352,
-0.014107904396951199,
-0.020618291571736336,
0.018478641286492348,
0.0025740794371813536,
-0.027914581820368767,
0.025024274364113808,
-0.08583993464708328,
-0.060017090290784836,
0.055107131600379944,
-0.0493815578520298,
-0.1175876185297966,
0.04575759172439575,
-0.04552323371171951,
-0.05509689450263977,
-0.06096189096570015,
-0.013832040131092072,
-0.020686885342001915,
-0.04865982010960579,
-0.11163318902254105,
0.11027663201093674,
0.03063715249300003,
0.03161575645208359,
-0.08620614558458328,
0.00013808203220833093,
-0.02407308667898178,
-0.02870112843811512,
-0.0569346584379673,
0.08761447668075562,
0.09419719874858856,
-0.19223244488239288,
0.06725558638572693,
0.06638091057538986,
0.04123414680361748,
0.18399466574192047,
0.02285907045006752,
-0.12634417414665222,
-0.04459437355399132,
0.029580529779195786,
0.056837718933820724,
-0.02846413291990757,
-0.08686797320842743,
0.04867483302950859,
0.038699373602867126,
-0.007484138943254948,
0.06524459272623062,
0.005632510408759117,
0.005913304165005684,
-0.019608967006206512,
-0.012117940932512283,
0.024674473330378532,
0.01967538334429264,
-0.023274511098861694,
0.1517391949892044,
0.05836893618106842,
0.034244418144226074,
-0.0300952959805727,
-0.021589292213320732,
-0.07031407952308655,
0.07785971462726593,
-0.10611932724714279,
-0.19795078039169312,
-0.07149654626846313,
-0.024460673332214355,
-0.04320492967963219,
0.0345676988363266,
0.00003336819281685166,
-0.057900819927453995,
-0.06339780986309052,
-0.06403428316116333,
0.0364144891500473,
0.08623602986335754,
-0.0975475013256073,
-0.11185020953416824,
0.10671142488718033,
-0.0004067143308930099,
-0.04765325412154198,
-0.017217520624399185,
-0.01164965983480215,
-0.1271824985742569,
-0.018854619935154915,
-0.07337068766355515,
0.1329440474510193,
0.07711326330900192,
0.045215073972940445,
-0.044037334620952606,
0.014923496171832085,
0.17396202683448792,
-0.16306862235069275,
0.10953548550605774,
0.13080249726772308,
0.01835157722234726,
0.024691516533493996,
0.17174553871154785,
0.06403402984142303,
-0.07370927929878235,
0.026488937437534332,
0.08705487102270126,
0.002533555496484041,
-0.2792859673500061,
-0.10940960794687271,
-0.08357847481966019,
-0.04043252393603325,
-0.06607571989297867,
0.04075473174452782,
-0.017875196412205696,
0.01898384653031826,
-0.0820009782910347,
-0.0309707410633564,
0.027951965108513832,
0.04289957880973816,
0.06992635130882263,
0.015672266483306885,
0.07730510085821152,
-0.039156876504421234,
-0.02240663394331932,
0.13656489551067352,
0.08884360641241074,
0.18598300218582153,
0.013750482350587845,
0.27305305004119873,
0.06328105926513672,
0.033606402575969696,
-0.04255208745598793,
-0.021600868552923203,
0.009494079276919365,
0.012339700944721699,
-0.016390502452850342,
-0.04632437601685524,
0.0285546462982893,
0.0801534578204155,
0.03827662020921707,
-0.10988973826169968,
-0.01280646026134491,
0.06352304667234421,
0.1515674889087677,
0.23457390069961548,
-0.007743930444121361,
-0.04563719779253006,
-0.00012542221520561725,
0.04975230246782303,
0.004024646244943142,
-0.07358202338218689,
-0.032444778829813004,
0.11845695972442627,
-0.1198653057217598,
0.012554674409329891,
0.0513869933784008,
0.09575359523296356,
-0.04053475335240364,
-0.004322593100368977,
-0.006087835878133774,
0.06349537521600723,
-0.034370165318250656,
0.08003488928079605,
-0.1276705116033554,
0.10436628013849258,
0.04094960168004036,
0.09244277328252792,
-0.0669868066906929,
0.020343931391835213,
0.053246259689331055,
0.0787796676158905,
0.17927025258541107,
0.02555597573518753,
-0.04816523194313049,
-0.097072072327137,
-0.11385881155729294,
-0.011864193715155125,
0.15027736127376556,
-0.14074377715587616,
0.07563707232475281,
-0.02848566696047783,
-0.03619268536567688,
-0.10543196648359299,
0.014873621985316277,
-0.08217459172010422,
-0.1981474608182907,
0.0902162715792656,
-0.014921939000487328,
-0.07249598950147629,
-0.029548196122050285,
-0.006489905528724194,
0.009351512417197227,
0.15799742937088013,
-0.10117000341415405,
-0.06837485730648041,
-0.1534387320280075,
0.03923257067799568,
0.12642468512058258,
-0.07085510343313217,
0.05328158289194107,
-0.008333718404173851,
0.04940328001976013,
-0.04681111127138138,
0.0005563183804042637,
0.09194199740886688,
-0.07566142082214355,
-0.15370333194732666,
-0.045923974364995956,
0.1335264891386032,
0.08693745732307434,
0.04482744634151459,
0.051046375185251236,
0.062408749014139175,
0.0032639107666909695,
-0.08102356642484665,
0.05239129066467285,
0.09157148003578186,
0.034236662089824677,
0.15110474824905396,
-0.1494113653898239,
-0.15000216662883759,
-0.09465601295232773,
-0.08893188834190369,
0.10954976081848145,
0.16273096203804016,
-0.03968075290322304,
0.09212347865104675,
0.1129084974527359,
-0.12953077256679535,
-0.2591121196746826,
0.023595787584781647,
0.03638477995991707,
-0.06964440643787384,
-0.00023492536274716258,
-0.2394544929265976,
0.1033429428935051,
0.09416336566209793,
0.013416272588074207,
0.0211563128978014,
-0.1490359753370285,
-0.07690524309873581,
-0.06465692818164825,
-0.015300062485039234,
-0.0954221859574318,
-0.12445530295372009,
-0.05139104649424553,
-0.06709619611501694,
-0.02587568573653698,
0.07267773151397705,
-0.07499395310878754,
0.07295411825180054,
-0.013580319471657276,
-0.09319941699504852,
0.056482356041669846,
-0.012733536772429943,
0.12242152541875839,
-0.00721073430031538,
0.019649384543299675,
-0.05307741463184357,
-0.014327389188110828,
0.08871018141508102,
0.05409796163439751,
0.09273764491081238,
-0.016362372785806656,
-0.059554632753133774,
-0.07046091556549072,
-0.068220354616642,
-0.04895121976733208,
0.04457102715969086,
-0.06630364060401917,
-0.032107770442962646,
-0.08584938943386078,
0.16777962446212769,
0.05295535922050476,
0.04329691827297211,
-0.08843224495649338,
-0.13659845292568207,
-0.03642536327242851,
0.08687091618776321,
0.21421535313129425,
0.013787511736154556,
0.01941636949777603,
0.035785283893346786,
-0.02651652693748474,
0.0018680877983570099,
-0.03918427228927612,
0.07184270769357681,
0.1333727091550827,
-0.042831532657146454,
0.08429738879203796,
0.00666251452639699,
-0.13764265179634094,
0.005126122385263443,
0.10894026607275009,
-0.05073896422982216,
-0.2408328652381897,
-0.03121659718453884,
0.009379200637340546,
-0.08357150107622147,
-0.011445269919931889,
0.12584546208381653,
0.015586222521960735,
-0.05496090650558472,
-0.02727479115128517,
0.0886337161064148,
-0.01581309549510479,
0.11111465096473694,
0.00457226624712348,
-0.045231714844703674,
-0.06265494972467422,
0.0817440077662468,
0.10501722246408463,
-0.07896528393030167,
0.03687617927789688,
0.18014326691627502,
-0.04334037005901337,
-0.10137107968330383,
0.027960950508713722,
0.08986446261405945,
-0.11315362900495529,
-0.07763233780860901,
0.01845649629831314,
-0.07441660016775131,
0.03363552317023277,
0.05147963762283325,
-0.024228347465395927,
-0.02375236339867115,
0.025151798501610756,
-0.03238922357559204,
-0.04921979457139969,
0.11415823549032211,
0.023895947262644768,
0.0014501797268167138,
0.09828267991542816,
0.03553004562854767,
-0.022955046966671944,
-0.05526047572493553,
-0.00693294545635581,
0.014205305837094784,
-0.10531217604875565,
-0.02601941116154194,
-0.1629258543252945,
0.001073920400813222,
-0.01656133495271206,
-0.050506241619586945,
-0.028713896870613098,
-0.008047875948250294,
-0.02271202579140663,
-0.006387726403772831,
-0.058297812938690186,
-0.09014809876680374,
-0.0036686828825622797,
0.09688825905323029,
-0.15216487646102905,
-0.00808068085461855,
0.08369032293558121,
-0.04734695330262184,
0.14690954983234406,
0.005601132288575172,
0.014688382856547832,
-0.03864736109972,
-0.16081887483596802,
0.00215328810736537,
-0.0938098207116127,
0.08852449804544449,
0.03094789944589138,
-0.16220201551914215,
0.005037731025367975,
0.016607176512479782,
-0.08467406034469604,
0.04570655897259712,
0.06168747320771217,
-0.023292215541005135,
0.09895572066307068,
0.0028625167906284332,
-0.07309561222791672,
-0.038942039012908936,
0.02072538249194622,
0.08973030000925064,
0.03082810714840889,
0.04278619587421417,
-0.040569547563791275,
0.04158007353544235,
-0.08258765935897827,
0.009392866864800453,
0.007376207038760185,
0.00013072277943138033,
-0.057291384786367416,
-0.015641354024410248,
0.07075925916433334,
0.027397317811846733,
0.11575186997652054,
-0.024681396782398224,
-0.0035263870377093554,
0.03532734513282776,
0.0631442666053772,
0.06299314647912979,
0.052065279334783554,
-0.013190232217311859,
0.04240528494119644,
-0.03032040409743786,
-0.058499835431575775,
-0.030895454809069633,
-0.0426664762198925,
0.13502749800682068,
0.12923593819141388,
0.16786056756973267,
0.20461395382881165,
-0.017010286450386047,
0.058178313076496124,
-0.06462062895298004,
-0.028337916359305382,
0.008518654853105545,
-0.015593552961945534,
-0.02833475172519684,
-0.06223784759640694,
0.024449549615383148,
0.14085933566093445,
-0.22095684707164764,
0.1038341075181961,
-0.07078243046998978,
-0.059959061443805695,
-0.05410817265510559,
-0.10634549707174301,
-0.027290625497698784,
0.026212157681584358,
-0.015415164642035961,
-0.1488579660654068,
0.0716705322265625,
-0.066544309258461,
0.04134165123105049,
-0.0658005028963089,
0.12847498059272766,
-0.14873981475830078,
-0.03259563446044922,
0.08747265487909317,
0.034718044102191925,
0.0856233462691307,
0.06961363554000854,
0.00807796698063612,
-0.06728312373161316,
0.004333174787461758,
0.036462415009737015,
0.09130232036113739,
0.01076433528214693,
-0.013795370236039162,
-0.08053872734308243,
-0.06631564348936081,
0.019588828086853027,
-0.06922132521867752,
-0.05747044458985329,
0.20289526879787445,
0.07003209739923477,
-0.017273852601647377,
0.019691724330186844,
0.21485167741775513,
0.023192353546619415,
0.010914832353591919,
-0.18433494865894318,
-0.038416992872953415,
0.009661741554737091,
0.015382492914795876,
-0.04730944707989693,
-0.11091358214616776,
0.00785793550312519,
0.17422305047512054,
0.15067483484745026,
-0.11148925125598907,
-0.0092484001070261,
0.015007992275059223,
0.028827909380197525,
0.062366556376218796,
0.07036351412534714,
0.04055463522672653,
0.21996547281742096,
-0.08653175085783005,
0.06353436410427094,
-0.0479188933968544,
-0.004420468583703041,
-0.14324164390563965,
0.11529994010925293,
0.03464885428547859,
0.018127571791410446,
-0.0353735126554966,
0.10264869034290314,
-0.07737500965595245,
-0.1440255492925644,
0.06398741155862808,
-0.11931788921356201,
-0.10113584250211716,
-0.06036582589149475,
-0.07823890447616577,
0.018035098910331726,
0.04962510988116264,
0.05850037932395935,
0.010355313308537006,
0.14495107531547546,
0.0359710231423378,
-0.07307052612304688,
-0.09312687814235687,
0.09101372957229614,
-0.056261103600263596,
0.2140626460313797,
0.013031458482146263,
0.0247968602925539,
0.10547557473182678,
0.004022573120892048,
-0.09502147883176804,
0.07369101047515869,
0.003182425629347563,
0.0021844266448169947,
0.06277146190404892,
0.1233728751540184,
-0.004154569935053587,
0.015088492073118687,
0.11826030910015106,
0.015710780397057533,
0.07562807202339172,
0.01441841758787632,
-0.0227044727653265,
-0.08620460331439972,
0.16399826109409332,
-0.18264734745025635,
0.12850907444953918,
0.1732640564441681,
-0.028024163097143173,
0.04781109839677811,
-0.047052428126335144,
0.0465649850666523,
0.0304863303899765,
0.1503463089466095,
-0.031194796785712242,
-0.19478479027748108,
0.0813688188791275,
0.01268567144870758,
0.09015343338251114,
-0.10959317535161972,
-0.07443367689847946,
-0.05038196220993996,
0.0413346067070961,
-0.04649616405367851,
0.08068365603685379,
0.10868795216083527,
-0.02978052943944931,
-0.04280323535203934,
-0.1526561975479126,
0.017210690304636955,
0.08654731512069702,
-0.019747532904148102,
0.017651094123721123
] |
null | null | stable-baselines3 |
# **PPO** Agent playing **LunarLander-v2**
This is a trained model of a **PPO** agent playing **LunarLander-v2**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "298.67 +/- 23.99", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | CocosNucifera/ppo-LunarLander-v2.1 | [
"stable-baselines3",
"LunarLander-v2",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-13T17:18:53+00:00 | [] | [] | TAGS
#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
39,
41,
17
] | [
"passage: TAGS\n#stable-baselines3 #LunarLander-v2 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# PPO Agent playing LunarLander-v2\nThis is a trained model of a PPO agent playing LunarLander-v2\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.03942384943366051,
0.04900386184453964,
-0.005304091144353151,
0.026427261531352997,
0.107408307492733,
-0.026511888951063156,
0.11188238859176636,
0.0814051404595375,
0.10722193866968155,
0.04762078449130058,
0.08338645845651627,
0.06030960753560066,
0.05080918222665787,
0.2571701407432556,
0.04754156619310379,
-0.22987541556358337,
0.036159250885248184,
-0.04869936779141426,
0.12395193427801132,
0.07178173214197159,
-0.0038484656251966953,
-0.06485428661108017,
0.020415637642145157,
-0.013290755450725555,
0.05367108806967735,
0.04282612353563309,
-0.01716216839849949,
-0.08207534998655319,
0.07169748842716217,
-0.06345846503973007,
0.06986866891384125,
0.07677983492612839,
0.13218913972377777,
-0.17832116782665253,
0.029566360637545586,
0.02571309357881546,
-0.07189024239778519,
0.01342033501714468,
0.008019951172173023,
0.05120139941573143,
0.17303818464279175,
0.019879888743162155,
0.07844575494527817,
-0.0025605305563658476,
-0.15412317216396332,
-0.018950799480080605,
0.0436202734708786,
0.12546207010746002,
0.08808347582817078,
0.04605821147561073,
0.01970590092241764,
0.17503218352794647,
-0.054352790117263794,
-0.028833400458097458,
0.21759237349033356,
-0.2881564497947693,
-0.031460098922252655,
0.321048766374588,
0.06997483223676682,
0.09725230932235718,
-0.07540661096572876,
-0.03619609400629997,
0.007783263456076384,
-0.013137873262166977,
-0.028666524216532707,
-0.07447073608636856,
0.17313385009765625,
0.05152064561843872,
-0.05057951435446739,
-0.09541505575180054,
0.16948209702968597,
0.006921638268977404,
0.0018855923553928733,
-0.019282981753349304,
0.009060598909854889,
0.07402525842189789,
-0.016097044572234154,
-0.07255112379789352,
0.057438433170318604,
0.05330665782094002,
0.019649166613817215,
-0.1435653269290924,
-0.10762494057416916,
-0.022740179672837257,
-0.008012006990611553,
0.17786912620067596,
-0.009255532175302505,
0.042902372777462006,
0.003065188182517886,
0.10384012013673782,
-0.12480384111404419,
-0.03354184702038765,
-0.0454259067773819,
-0.07565800100564957,
-0.0223417766392231,
-0.02058211714029312,
-0.03580251708626747,
0.07184842973947525,
0.11971849203109741,
0.027368178591132164,
0.09350208193063736,
0.047715865075588226,
-0.03206788748502731,
0.06343851238489151,
0.05555703118443489,
0.14222665131092072,
0.05807621404528618,
0.012854371219873428,
0.13179877400398254,
0.055213116109371185,
0.033023182302713394,
-0.0613492950797081,
-0.18252409994602203,
0.07489913702011108,
-0.07031869143247604,
0.007941240444779396,
0.12051256000995636,
-0.04480670019984245,
-0.1183447614312172,
-0.037500523030757904,
-0.017392054200172424,
-0.06224250793457031,
-0.025395862758159637,
0.0547584593296051,
-0.02883218228816986,
-0.03973718360066414,
0.0011496668448671699,
0.09384800493717194,
0.00953749567270279,
-0.1752052903175354,
0.03303423151373863,
-0.025042934343218803,
-0.10782608389854431,
0.009975161403417587,
0.0022444494534283876,
0.03394931182265282,
0.04408763721585274,
-0.11822668462991714,
-0.30899152159690857,
-0.07652641832828522,
0.05490870401263237,
-0.06516939401626587,
-0.18425025045871735,
-0.13193942606449127,
0.02454492449760437,
-0.09037084132432938,
-0.044885024428367615,
-0.12759265303611755,
-0.028549788519740105,
0.01743689924478531,
0.011519349180161953,
0.10758619755506516,
-0.0106219332665205,
-0.012188062071800232,
-0.1571401208639145,
0.008273907005786896,
-0.20951123535633087,
0.0890483483672142,
-0.019150104373693466,
0.037884220480918884,
-0.032381169497966766,
-0.07404014468193054,
0.030707746744155884,
0.052499737590551376,
-0.01474119070917368,
0.13510210812091827,
-0.15592676401138306,
-0.03691192343831062,
-0.007996266707777977,
-0.13611900806427002,
-0.04786273464560509,
-0.10358831286430359,
-0.04357128217816353,
0.13354332745075226,
0.018664736300706863,
0.15356586873531342,
-0.08709818124771118,
-0.0722038671374321,
0.20489206910133362,
-0.010411538183689117,
-0.12820468842983246,
-0.076752208173275,
0.10165707021951675,
0.021510310471057892,
-0.056606587022542953,
-0.02523270808160305,
-0.1839766949415207,
-0.0152357779443264,
-0.04550420492887497,
-0.047039128839969635,
0.01796751655638218,
-0.010888241231441498,
0.13837894797325134,
0.08494598418474197,
0.05018039792776108,
-0.06086122244596481,
-0.006730288732796907,
0.10779471695423126,
0.08823856711387634,
0.008680110797286034,
0.023406028747558594,
-0.05774238705635071,
0.09552932530641556,
-0.04003755748271942,
-0.0142367510125041,
-0.08283266425132751,
-0.036246106028556824,
-0.026256313547492027,
0.17507147789001465,
0.09440762549638748,
0.2257927656173706,
0.09567736834287643,
0.039160262793302536,
0.031270865350961685,
-0.13181598484516144,
-0.1425403207540512,
-0.0017254541162401438,
0.09020978957414627,
-0.14270411431789398,
-0.04119925573468208,
-0.08974775671958923,
-0.17768175899982452,
-0.12202505767345428,
0.0006432619411498308,
-0.17960017919540405,
0.06390921026468277,
0.05408334732055664,
-0.035177867859601974,
0.03272094577550888,
0.13032332062721252,
-0.011533179320394993,
-0.03967514634132385,
0.0831870287656784,
0.0379033200442791,
-0.041234664618968964,
-0.021742934361100197,
0.11885567009449005,
0.15673065185546875,
0.13124459981918335,
-0.03511447086930275,
0.004914294462651014,
0.07076404243707657,
-0.02309088408946991,
0.06539414077997208,
0.0558244064450264,
0.20973342657089233,
0.188301220536232,
0.038996949791908264,
0.008822928182780743,
-0.07048165798187256,
0.0855446457862854,
-0.0742373839020729,
-0.14302679896354675,
-0.05579735338687897,
0.08729292452335358,
0.016605578362941742,
0.023469142615795135,
0.08711627870798111,
0.024545932188630104,
0.09132762253284454,
0.15968108177185059,
0.01990218088030815,
-0.09659269452095032,
-0.050218869000673294,
0.01175848301500082,
0.027713103219866753,
0.04794301092624664,
-0.04514073207974434,
-0.00937939714640379,
0.017020760104060173,
-0.10303554683923721,
0.031789086759090424,
-0.1413339376449585,
-0.1358717679977417,
0.044326696544885635,
0.003906996920704842,
0.010907664895057678,
0.02786896750330925,
-0.0038291432429105043,
0.019039705395698547,
0.04351753741502762,
-0.06975466758012772,
0.047416772693395615,
-0.024745507165789604,
-0.020031947642564774,
0.03340689837932587,
-0.057257164269685745,
-0.205775648355484,
-0.17696654796600342,
0.00013708483311347663,
-0.09910997003316879,
0.10194740444421768,
0.018308809027075768,
-0.12373185902833939,
0.047737859189510345,
-0.05822649225592613,
0.027574289590120316,
-0.01875593699514866,
-0.049130141735076904,
0.10507171601057053,
0.1525275856256485,
-0.016146350651979446,
0.018018173053860664,
-0.04865182936191559,
-0.10157987475395203,
-0.19632206857204437,
0.0691583976149559,
0.04680244252085686,
0.014610917307436466,
0.10669491440057755,
0.018072687089443207,
0.02367905154824257,
-0.007674071006476879,
-0.016521066427230835,
-0.011659215204417706,
-0.08781040459871292,
0.31909599900245667,
0.04510033503174782,
-0.025173069909214973,
0.02041010931134224,
-0.0043001663871109486,
-0.028083480894565582,
0.03263787180185318,
-0.0985708013176918,
-0.07548979669809341,
-0.08774089068174362,
-0.04367410019040108,
-0.09784720093011856,
0.053299110382795334,
0.05916472524404526,
0.003188040340319276,
-0.07727594673633575,
0.04221395403146744,
0.11369874328374863,
-0.0923808291554451,
-0.07137343287467957,
0.07477962225675583,
0.0972946360707283,
-0.07331304252147675,
0.00012658814375754446,
0.00874367356300354,
0.023951783776283264,
0.037102166563272476,
0.06778035312891006,
-0.03966575115919113,
0.08589404821395874,
-0.19917890429496765,
0.0372927263379097,
0.106058269739151,
0.023754918947815895,
0.0638108178973198,
0.07643651217222214,
-0.1058402881026268,
-0.008500572293996811,
-0.032518330961465836,
-0.21341575682163239,
0.1668180525302887,
0.1355515867471695,
0.06788124144077301,
-0.025637222453951836,
-0.00461410591378808,
-0.0649740919470787,
0.05773647129535675,
0.02723747305572033,
-0.14758841693401337,
0.004883295856416225,
0.06064270809292793,
0.026899009943008423,
0.01614922471344471,
0.07971042394638062,
0.014697225764393806,
-0.1801026314496994,
-0.014406266622245312,
0.10730406641960144,
0.002390873385593295,
0.0053148469887673855,
-0.03175045922398567,
-0.1755964607000351,
0.0751047357916832,
0.004285442177206278,
0.07233936339616776,
-0.1676585078239441,
0.14297930896282196,
-0.10089799761772156,
0.07726949453353882,
-0.004285062663257122,
-0.021311495453119278,
0.02507244050502777,
-0.0541163794696331,
0.15163759887218475,
0.01058570109307766,
-0.021810131147503853,
-0.1200498715043068,
-0.1717042326927185,
-0.019227758049964905,
-0.11788936704397202,
-0.11679866164922714,
0.050424277782440186,
0.062185097485780716,
0.04923136904835701,
-0.061147067695856094,
0.1518532931804657,
-0.047422297298908234,
0.060713399201631546,
-0.06893875449895859,
-0.06755045056343079,
0.03764858841896057,
-0.12588608264923096,
-0.08176055550575256,
0.05573027580976486,
0.19166934490203857,
0.15833087265491486,
-0.02816431224346161,
-0.03472423925995827,
-0.047419581562280655,
-0.006212298292666674,
-0.007802055217325687,
0.0275666993111372,
0.023223137483000755,
0.07315318286418915,
-0.07681374251842499,
-0.11649256944656372,
0.033787861466407776,
-0.06713802367448807,
-0.055589709430933,
-0.015439179725944996,
0.1513158082962036,
0.04671623185276985,
0.07720734924077988,
-0.018946662545204163,
0.03887668624520302,
-0.001724981120787561,
-0.056474871933460236,
0.16197094321250916,
0.03885216265916824,
-0.05193585529923439,
0.06837689876556396,
0.053174007683992386,
0.043745119124650955,
0.03011113777756691,
-0.026783017441630363,
0.206032395362854,
0.1980147808790207,
0.014206883497536182,
0.2175983190536499,
0.03177616000175476,
-0.03772832080721855,
-0.1300560086965561,
-0.065880686044693,
-0.006372632458806038,
0.03559038043022156,
0.08070417493581772,
-0.18207235634326935,
-0.015011128038167953,
-0.05689644813537598,
-0.034518610686063766,
-0.15059494972229004,
-0.28553900122642517,
-0.05957856774330139,
0.20075850188732147,
0.14706264436244965,
0.27519428730010986,
-0.10432573407888412,
0.035197313874959946,
0.02663275972008705,
-0.04912831634283066,
-0.006501141935586929,
0.00018665487004909664,
0.10268618166446686,
-0.15421873331069946,
0.1176437959074974,
0.08486983180046082,
-0.019002694636583328,
0.01058861706405878,
-0.1619086116552353,
0.00936629343777895,
-0.12191236019134521,
0.05354422330856323,
0.1400289237499237,
-0.048128653317689896,
-0.054873593151569366,
0.14033560454845428,
-0.024562934413552284,
-0.22685599327087402,
-0.04648222774267197,
-0.043600670993328094,
-0.010640020482242107,
0.026607351377606392,
-0.1013401448726654,
0.04101909324526787,
0.1330099105834961,
0.009380043484270573,
0.1147187277674675,
0.11749245226383209,
-0.052566803991794586,
0.10792597383260727,
0.2257719188928604,
-0.018785694614052773,
0.04689010605216026,
-0.12743118405342102,
-0.0012336712097749114,
-0.028270328417420387,
0.013657891191542149,
-0.09504974633455276,
-0.09938385337591171,
0.02366873063147068,
0.02872389927506447,
0.009118586778640747,
0.0921793207526207,
-0.029922157526016235,
0.0759170651435852,
0.06817561388015747,
-0.13014446198940277,
-0.16288450360298157,
0.015828335657715797,
-0.007344507612287998,
0.08354310691356659,
0.00027861111448146403,
0.08878035843372345,
-0.11932205408811569,
-0.018093237653374672,
-0.03153328225016594,
-0.03319635987281799,
-0.130486860871315,
-0.07138993591070175,
0.06156524643301964,
0.028095467016100883,
-0.06602972000837326,
0.1398407518863678,
0.026440169662237167,
0.15942534804344177,
0.049197953194379807,
0.012499804608523846,
0.07227300107479095,
-0.05345509201288223,
0.1283530443906784,
0.13818155229091644,
-0.00868943240493536,
-0.05460423603653908,
-0.1013643890619278,
-0.10236792266368866,
0.08925779908895493,
-0.05773641914129257,
0.07476430386304855,
-0.14885357022285461,
-0.06675903499126434,
0.015772046521306038,
0.016141414642333984,
-0.09562095999717712,
0.02571965754032135,
-0.01625603251159191,
-0.18119946122169495,
0.056570518761873245,
-0.048285093158483505,
0.0440407395362854,
-0.06347788125276566,
-0.1110161691904068,
-0.17226378619670868,
0.06091433763504028,
0.08593481779098511,
-0.053876690566539764,
-0.12229149043560028,
0.011023230850696564,
-0.00012518465518951416,
-0.06341652572154999,
-0.05023367330431938,
0.09722746908664703,
-0.11020902544260025,
0.031452205032110214,
-0.012567701749503613,
0.08853451162576675,
-0.03510405123233795,
-0.011538895778357983,
0.044220831245183945,
-0.08039166033267975,
-0.009481523185968399,
0.03534642979502678,
-0.026372017338871956,
-0.04127239063382149,
-0.2689029574394226,
0.0036654395516961813,
0.0341104120016098,
0.02497158572077751,
0.07856601476669312,
0.011906822212040424,
0.021174922585487366,
0.03993808850646019,
-0.15396519005298615,
-0.013395369984209538,
0.14574195444583893,
-0.07689505815505981,
-0.022186370566487312,
0.05703273415565491,
-0.09054436534643173,
0.013882770203053951,
-0.030287226662039757,
0.1345842480659485,
0.023923413828015327,
0.06404478847980499,
-0.0851147472858429,
0.10106813907623291,
-0.1451139897108078,
-0.04998219385743141,
-0.01244612317532301,
0.09761348366737366,
0.07019034773111343,
-0.10272270441055298,
0.014697125181555748,
0.04210108891129494,
0.19416837394237518,
0.016384804621338844,
-0.0356343574821949,
-0.03396720811724663,
0.004015897400677204,
0.22076453268527985,
0.03044266067445278,
0.10457023978233337,
0.07281364500522614,
-0.026583973318338394,
0.12624378502368927,
0.09929762035608292,
0.11280370503664017,
-0.055645186454057693,
0.13904185593128204,
0.04667386785149574,
0.038641396909952164,
0.0614289753139019,
0.06836545467376709,
0.09098632633686066,
-0.0008288522367365658,
0.1138714924454689,
0.013811973854899406,
-0.02422109805047512,
-0.021335409954190254,
0.17759373784065247,
0.10501719266176224,
-0.14769648015499115,
0.029047364369034767,
-0.01258957851678133,
0.039933037012815475,
-0.014194529503583908,
-0.15634691715240479,
-0.07240267097949982,
-0.3315149247646332,
0.1226184144616127,
-0.07119352370500565,
0.019930170848965645,
0.007913772016763687,
-0.037425633519887924,
-0.03296699747443199,
-0.04477746784687042,
0.13151589035987854,
-0.013641550205647945,
-0.006079165264964104,
-0.04815853759646416,
-0.015360191464424133,
-0.11607866734266281,
-0.11200575530529022,
-0.013207737356424332,
-0.13671602308750153,
-0.010119039565324783,
0.05595948174595833,
0.003977729007601738,
0.01821410097181797,
-0.03142618387937546,
0.0024383175186812878,
0.06541839241981506,
-0.05751744285225868,
0.056182678788900375,
0.12097269296646118,
0.08766137808561325,
-0.1058853268623352,
0.031048951670527458,
0.2011747509241104,
0.04359564557671547,
-0.12483977526426315,
0.01449228823184967,
0.1819491684436798,
0.004885740112513304,
0.017068125307559967,
-0.006097703706473112,
-0.0540788508951664,
-0.07554277032613754,
0.1251034289598465,
0.08296554535627365,
-0.09985227137804031,
0.015833314508199692,
-0.0726347416639328,
-0.01594804972410202,
-0.06374675035476685,
0.10130585730075836,
0.09538925439119339,
0.04440245032310486,
-0.10621760785579681,
-0.08487539738416672,
-0.10891728103160858,
0.040588874369859695,
-0.08629853278398514,
-0.07311757653951645,
0.09629398584365845,
-0.07057105004787445,
-0.07029950618743896,
0.025521177798509598,
-0.17978744208812714,
-0.009467960335314274,
0.1711762249469757,
-0.24654000997543335,
-0.0916430801153183,
-0.10857923328876495,
0.14477859437465668,
0.016497576609253883,
0.1013975441455841,
-0.006207061931490898,
-0.007889035157859325,
-0.20577777922153473,
0.024890204891562462,
-0.05293011665344238,
-0.02073732763528824,
0.07814782857894897,
-0.09476397186517715,
0.22629831731319427,
-0.08276885002851486,
0.020940175279974937,
0.012659613974392414,
0.0870661810040474,
-0.030675338581204414,
0.09283176809549332,
-0.03660329803824425,
-0.12576518952846527,
-0.03620953485369682,
0.03001813031733036,
0.013904244638979435,
0.10071761906147003,
0.09772487729787827,
-0.03414725139737129,
0.03389119729399681,
0.09747414290904999,
0.04172342270612717,
-0.023843804374337196,
0.0360250361263752,
-0.17077107727527618,
0.02182629331946373,
-0.018498148769140244,
-0.06935930997133255,
0.03687669709324837,
-0.06603235751390457,
0.1639697551727295,
0.04022442549467087,
0.0670473501086235,
-0.036152735352516174,
0.0073931049555540085,
-0.014454689808189869,
-0.013775371946394444,
-0.026180334389209747,
-0.17259705066680908,
-0.10422050207853317,
-0.1347656100988388,
-0.012701659463346004,
-0.034971047192811966,
0.04591470584273338,
0.023234914988279343,
-0.0003200018545612693,
-0.014577031135559082,
-0.12090865522623062,
0.04360328987240791,
0.11146783083677292,
-0.04631396010518074,
-0.026193076744675636
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mDeBERTa_2
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0459
- Accuracy: 0.9913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-base", "model-index": [{"name": "mDeBERTa_2", "results": []}]} | text-classification | filippo-olivo/mDeBERTa_2 | [
"transformers",
"safetensors",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:20:30+00:00 | [] | [] | TAGS
#transformers #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# mDeBERTa_2
This model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0459
- Accuracy: 0.9913
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2.0
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| [
"# mDeBERTa_2\n\nThis model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0459\n- Accuracy: 0.9913",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7e-05\n- train_batch_size: 64\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# mDeBERTa_2\n\nThis model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0459\n- Accuracy: 0.9913",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7e-05\n- train_batch_size: 64\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
68,
61,
6,
12,
8,
3,
90,
4,
38
] | [
"passage: TAGS\n#transformers #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# mDeBERTa_2\n\nThis model is a fine-tuned version of microsoft/deberta-v3-base on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 0.0459\n- Accuracy: 0.9913## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 7e-05\n- train_batch_size: 64\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 2.0### Training results### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.2+cu121\n- Datasets 2.16.1\n- Tokenizers 0.15.1"
] | [
-0.11380521208047867,
0.19297854602336884,
-0.003031893167644739,
0.08465156704187393,
0.12429944425821304,
0.018816780298948288,
0.08145549148321152,
0.1260182112455368,
-0.061711739748716354,
0.08845088630914688,
0.10220451653003693,
0.045927803963422775,
0.06845035403966904,
0.16089855134487152,
-0.03636188060045242,
-0.2085796743631363,
0.03999273478984833,
-0.01399920042604208,
0.03509288281202316,
0.09532549232244492,
0.11626377701759338,
-0.09140685945749283,
0.0673418864607811,
0.000557751685846597,
-0.09953667968511581,
-0.0026925376150757074,
-0.02884691208600998,
-0.04512246698141098,
0.08192897588014603,
0.027090664952993393,
0.08575449138879776,
0.014335195533931255,
0.11169832944869995,
-0.21640436351299286,
-0.011316521093249321,
0.053003471344709396,
0.022776121273636818,
0.06852926313877106,
0.04532502219080925,
0.03277589753270149,
0.06209857761859894,
-0.12610608339309692,
0.10463063418865204,
0.011499877087771893,
-0.08278701454401016,
-0.15931367874145508,
-0.10137582570314407,
0.06670509278774261,
0.0991286039352417,
0.10315107554197311,
0.0033404785208404064,
0.1539098173379898,
-0.03245479241013527,
0.06355005502700806,
0.1327153444290161,
-0.2401139885187149,
-0.031646959483623505,
0.05265223979949951,
0.06235310062766075,
0.0622824989259243,
-0.08346950262784958,
-0.01392283383756876,
0.0407257117331028,
0.029520157724618912,
0.08217708766460419,
0.009817570447921753,
0.014321597293019295,
-0.03158140927553177,
-0.11416434496641159,
-0.08763134479522705,
0.17420077323913574,
0.05454597994685173,
-0.06637412309646606,
-0.1274615079164505,
-0.04757881164550781,
-0.09680890291929245,
-0.007582809776067734,
-0.0462394654750824,
0.02071894146502018,
-0.0402974858880043,
-0.01629968360066414,
-0.05020194500684738,
-0.08264868706464767,
-0.047379691153764725,
0.02303609624505043,
0.06802617758512497,
0.028519660234451294,
0.016852984204888344,
-0.002537233056500554,
0.0943726971745491,
-0.05458257719874382,
-0.13783980906009674,
-0.03667544201016426,
-0.019246332347393036,
-0.0467744842171669,
-0.04362926259636879,
-0.053438786417245865,
-0.02521783858537674,
-0.013280196115374565,
0.14159195125102997,
-0.027170348912477493,
0.0597013458609581,
0.02504398301243782,
-0.007649378851056099,
-0.015214286744594574,
0.1669885367155075,
-0.03096865676343441,
-0.07896316051483154,
0.03298383951187134,
0.12948349118232727,
0.060533735901117325,
-0.03521424159407616,
-0.11612757295370102,
-0.028440365567803383,
0.1358359456062317,
0.06772462278604507,
-0.008690225891768932,
0.02031354047358036,
-0.06955813616514206,
-0.027240833267569542,
0.10097646713256836,
-0.13218501210212708,
0.03989073261618614,
-0.02045287750661373,
-0.0762668326497078,
-0.09947596490383148,
0.051595527678728104,
0.005196123383939266,
-0.045974258333444595,
0.06147323176264763,
-0.06553200632333755,
-0.03404949977993965,
-0.08422555029392242,
-0.07137603312730789,
0.027108678594231606,
-0.06296674907207489,
0.01730305328965187,
-0.09129012376070023,
-0.21758383512496948,
-0.03979448974132538,
0.03277245908975601,
-0.06241002306342125,
-0.05710376054048538,
-0.036154016852378845,
-0.059819962829351425,
0.02161075733602047,
-0.029439939185976982,
0.07295291125774384,
-0.043749161064624786,
0.07291830331087112,
0.041774932295084,
0.018845103681087494,
-0.0142449252307415,
0.04506693035364151,
-0.07702849805355072,
0.04809467867016792,
-0.0815863087773323,
0.08800669759511948,
-0.08806613832712173,
0.018578266724944115,
-0.10158853232860565,
-0.08747152984142303,
0.030072564259171486,
-0.03439895063638687,
0.09321679919958115,
0.11067643016576767,
-0.15879298746585846,
0.009644330479204655,
0.10242895781993866,
-0.09079793840646744,
-0.10105602443218231,
0.08958949148654938,
-0.02874923311173916,
0.032972004264593124,
0.057950813323259354,
0.1375848352909088,
0.12614580988883972,
-0.13583014905452728,
-0.014536120928823948,
0.013682521879673004,
0.07626932114362717,
0.004793794825673103,
0.07473385334014893,
-0.009039657190442085,
0.0659242570400238,
0.01821012608706951,
-0.05922256037592888,
-0.021057676523923874,
-0.05676669627428055,
-0.09227613359689713,
-0.038727350533008575,
-0.0832298994064331,
0.041233424097299576,
0.03414303436875343,
0.008450867608189583,
-0.0654769167304039,
-0.12788274884223938,
0.08405584841966629,
0.11573756486177444,
-0.03907880559563637,
-0.001759410253725946,
-0.0988604947924614,
0.07433085143566132,
-0.05637412145733833,
-0.02940034307539463,
-0.19584758579730988,
-0.11221744120121002,
0.055871155112981796,
-0.051280807703733444,
0.007086208090186119,
-0.01291696447879076,
0.04467134550213814,
0.08646617829799652,
-0.0432947613298893,
-0.030982883647084236,
-0.10346206277608871,
0.025055423378944397,
-0.11171852797269821,
-0.12743739783763885,
-0.06896346062421799,
-0.034103892743587494,
0.16148142516613007,
-0.21599864959716797,
0.00956871546804905,
0.023592283949255943,
0.13600988686084747,
0.01984245516359806,
-0.06830312311649323,
0.007195447571575642,
0.03869498148560524,
-0.013813317753374577,
-0.09560579061508179,
0.037185605615377426,
0.009755617938935757,
-0.10094529390335083,
-0.06171366199851036,
-0.16724513471126556,
0.07419556379318237,
0.08634036779403687,
0.10123288631439209,
-0.06666739284992218,
0.006618617568165064,
-0.037581201642751694,
-0.035659097135066986,
-0.05389205366373062,
-0.040068984031677246,
0.16168785095214844,
0.015243460424244404,
0.11253706365823746,
-0.0728614404797554,
-0.05108293518424034,
0.011170603334903717,
0.00611018156632781,
-0.048176541924476624,
0.05233071371912956,
-0.004613538738340139,
-0.1613326221704483,
0.09008855372667313,
0.09285122156143188,
-0.02891286090016365,
0.08970198780298233,
-0.037408582866191864,
-0.08540330827236176,
-0.035044316202402115,
-0.002040453255176544,
0.012959794141352177,
0.13506518304347992,
-0.07704026252031326,
0.021860847249627113,
0.04516712948679924,
0.019729966297745705,
0.023101694881916046,
-0.1590142399072647,
0.005004590377211571,
0.052781250327825546,
-0.03999623283743858,
-0.029269587248563766,
-0.03779716044664383,
0.0005271218833513558,
0.0636013001203537,
0.044110074639320374,
-0.02835930697619915,
0.03348719701170921,
-0.02918166108429432,
-0.09312750399112701,
0.1552906334400177,
-0.1023254543542862,
-0.20740480720996857,
-0.14613395929336548,
0.032171450555324554,
-0.046657536178827286,
0.0034840425942093134,
0.021225854754447937,
-0.024796659126877785,
-0.07644063979387283,
-0.1134302020072937,
-0.04983357712626457,
-0.038245126605033875,
-0.02847469225525856,
0.05565352365374565,
0.013416321948170662,
0.09780575335025787,
-0.12242144346237183,
-0.002906699199229479,
0.005127009004354477,
-0.03080197423696518,
-0.012286408804357052,
0.024825841188430786,
0.11461542546749115,
0.07981329411268234,
-0.02497970685362816,
0.01132290717214346,
-0.03341824933886528,
0.2553890645503998,
-0.07422924041748047,
-0.017120247706770897,
0.16480495035648346,
-0.02548947185277939,
0.06643838435411453,
0.13624195754528046,
0.005716775543987751,
-0.10756335407495499,
0.021320462226867676,
0.01326453685760498,
-0.01850057579576969,
-0.20605096220970154,
-0.04799695312976837,
-0.021659811958670616,
-0.07030533999204636,
0.0961029976606369,
0.03922790288925171,
0.00501680513843894,
0.04255961254239082,
-0.028844645246863365,
0.04760216176509857,
0.00444425642490387,
0.09253502637147903,
0.11720862984657288,
0.034211963415145874,
0.09367477893829346,
-0.026221221312880516,
0.017244689166545868,
0.06313353031873703,
0.017921600490808487,
0.2123297154903412,
-0.026240209117531776,
0.13191825151443481,
0.01447049155831337,
0.1582670360803604,
-0.020503444597125053,
0.04640582948923111,
0.0044532702304422855,
0.03074556402862072,
-0.00623928802087903,
-0.06944215297698975,
-0.09374560415744781,
0.04011157527565956,
-0.0013694469816982746,
0.033154960721731186,
-0.09052934497594833,
0.014387337490916252,
-0.0030859303660690784,
0.1743285059928894,
0.07429056614637375,
-0.3397940397262573,
-0.10945778340101242,
0.031155120581388474,
-0.011832396499812603,
-0.08377347141504288,
-0.02360304817557335,
0.0891617015004158,
-0.12872609496116638,
0.07626419514417648,
-0.03544524684548378,
0.09401239454746246,
-0.06997371464967728,
0.0018762517720460892,
0.020653976127505302,
0.06529516726732254,
0.016706256195902824,
0.10280074924230576,
-0.20783428847789764,
0.18286021053791046,
0.02050570398569107,
0.11274111270904541,
-0.07072262465953827,
0.040582820773124695,
-0.00045838113874197006,
0.07991273701190948,
0.10609450936317444,
-0.005181907210499048,
-0.01458961796015501,
-0.1640196144580841,
-0.11143065989017487,
0.01036242488771677,
0.08180801570415497,
-0.026312239468097687,
0.08583296090364456,
-0.032396916300058365,
0.006159178912639618,
0.04083529859781265,
-0.008248142898082733,
-0.14569880068302155,
-0.14859117567539215,
0.04311502352356911,
-0.004485062789171934,
0.011061811819672585,
-0.08610314130783081,
-0.09369585663080215,
0.012384330853819847,
0.18249934911727905,
-0.01278113666921854,
-0.0701506957411766,
-0.13975462317466736,
0.07231941819190979,
0.1200452521443367,
-0.062228523194789886,
0.03239312767982483,
0.004118932411074638,
0.15296782553195953,
0.017301460728049278,
-0.061132535338401794,
0.06035337224602699,
-0.06271739304065704,
-0.17447054386138916,
-0.0602443628013134,
0.1255491077899933,
0.016697829589247704,
0.052863478660583496,
0.019244752824306488,
0.02736354060471058,
0.0032396437600255013,
-0.07717030495405197,
0.009149379096925259,
0.0914432480931282,
0.08171597868204117,
0.030351903289556503,
-0.018658021464943886,
-0.015014628879725933,
-0.04600445553660393,
-0.015879563987255096,
0.10856278985738754,
0.21887339651584625,
-0.08057843148708344,
0.06983793526887894,
0.06568584591150284,
-0.06829263269901276,
-0.19456857442855835,
-0.004746566526591778,
0.10917280614376068,
0.030980175361037254,
0.053059790283441544,
-0.11814409494400024,
0.03295627981424332,
0.08525732904672623,
-0.04521587863564491,
0.04950397089123726,
-0.2688107192516327,
-0.14217440783977509,
0.06906997412443161,
0.12474425882101059,
-0.004615841433405876,
-0.12255797535181046,
-0.0741870328783989,
-0.06466151773929596,
-0.15805113315582275,
0.09776891767978668,
-0.006979880854487419,
0.09063919633626938,
0.004728009458631277,
0.0685102790594101,
0.029492394998669624,
-0.044960521161556244,
0.18079312145709991,
-0.0033588127698749304,
0.0530925877392292,
-0.0778803601861,
0.039380379021167755,
0.09746845066547394,
-0.08748604357242584,
0.08714921772480011,
-0.01939404383301735,
0.0784185379743576,
-0.1593295931816101,
-0.0382794514298439,
-0.037765972316265106,
0.048662759363651276,
-0.066984623670578,
-0.05245786905288696,
-0.03042636811733246,
0.05555533245205879,
0.05738939344882965,
-0.04212615266442299,
0.07797367870807648,
0.017955955117940903,
0.04342101514339447,
0.17022569477558136,
0.10079225897789001,
0.0017547733150422573,
-0.08407411724328995,
-0.00019243259157519788,
-0.03455239161849022,
0.05486534163355827,
-0.10309317708015442,
0.020399577915668488,
0.1156468540430069,
0.01580977812409401,
0.1246098130941391,
0.0060449279844760895,
-0.08793088048696518,
0.006918962113559246,
0.03857593238353729,
-0.09194037318229675,
-0.15387584269046783,
-0.017461292445659637,
0.022716719657182693,
-0.1416434347629547,
-0.004724074155092239,
0.11396680772304535,
-0.06125887855887413,
-0.015863917768001556,
-0.02249043807387352,
0.03260527923703194,
0.0023603516165167093,
0.17344269156455994,
0.042479321360588074,
0.07517270743846893,
-0.06766258180141449,
0.13091959059238434,
0.10607185959815979,
-0.09293285757303238,
0.05548011139035225,
0.02072916179895401,
-0.10556525737047195,
-0.02824357897043228,
0.023487798869609833,
0.12223021686077118,
-0.032464198768138885,
-0.06842685490846634,
-0.06459947675466537,
-0.07055586576461792,
0.04095463454723358,
0.06853609532117844,
0.055033378303050995,
0.009969662874937057,
-0.010530678555369377,
-0.0011004835832864046,
-0.11215861886739731,
0.12006652355194092,
0.03681458160281181,
0.07014546543359756,
-0.1584540754556656,
0.03637212514877319,
0.010806264355778694,
0.024988381192088127,
-0.020454775542020798,
0.02265598252415657,
-0.06277269124984741,
-0.017977284267544746,
-0.1450030654668808,
0.03758203238248825,
-0.034119103103876114,
0.006888808216899633,
-0.024292796850204468,
-0.06490568071603775,
-0.02270723693072796,
0.059560444205999374,
-0.04381334409117699,
-0.08315255492925644,
-0.007249400485306978,
0.036207228899002075,
-0.12805083394050598,
-0.0373837910592556,
0.01942952163517475,
-0.09745191782712936,
0.0924810916185379,
0.035679034888744354,
0.030507583171129227,
0.013779103755950928,
-0.03872469440102577,
0.02027839422225952,
0.018354268744587898,
0.04537828639149666,
0.0560685433447361,
-0.10552168637514114,
-0.011070099659264088,
0.0003755892103072256,
-0.013590027578175068,
0.014658886007964611,
0.1161583736538887,
-0.13152875006198883,
-0.05540338158607483,
-0.014390534721314907,
-0.03798329457640648,
-0.05128644034266472,
0.05561554431915283,
0.09978833049535751,
0.01639433018863201,
0.17139606177806854,
-0.06373569369316101,
0.03746665269136429,
-0.1781482994556427,
-0.030398644506931305,
-0.008260861039161682,
-0.019644780084490776,
-0.08579178154468536,
-0.029612069949507713,
0.08142665028572083,
-0.046135399490594864,
0.1222754418849945,
-0.022010916844010353,
0.1284954845905304,
0.035814471542835236,
-0.008540011011064053,
0.03540946543216705,
0.0033963285386562347,
0.15269219875335693,
0.05653289705514908,
-0.007919007912278175,
0.07746690511703491,
-0.0283647570759058,
0.04428893327713013,
0.011713658459484577,
0.12412303686141968,
0.13772106170654297,
0.02774973027408123,
0.07641603797674179,
0.061746746301651,
-0.07010473310947418,
-0.1819801926612854,
0.022851487621665,
-0.003988905344158411,
0.10189401358366013,
-0.03695952519774437,
0.10482438653707504,
0.09249331057071686,
-0.17234531044960022,
0.05049556866288185,
-0.08009742945432663,
-0.10357077419757843,
-0.07825449109077454,
-0.10013847053050995,
-0.08585599064826965,
-0.07709375768899918,
0.010370326228439808,
-0.11328397691249847,
0.009489891119301319,
0.08990450203418732,
-0.020594298839569092,
-0.027085095643997192,
0.13821826875209808,
-0.045372579246759415,
0.002693971386179328,
0.0374845527112484,
0.013790697790682316,
-0.0015324843116104603,
-0.015333760529756546,
-0.04993943125009537,
0.04943831264972687,
0.03987298533320427,
0.08756938576698303,
-0.015441806986927986,
0.007892204448580742,
0.016933351755142212,
0.02032489702105522,
-0.08113951236009598,
0.020104922354221344,
0.02733597904443741,
0.030713345855474472,
0.07878884673118591,
0.03625069558620453,
0.01802852936089039,
-0.030231518670916557,
0.2458048164844513,
-0.059412773698568344,
-0.08424634486436844,
-0.1039750948548317,
0.19792810082435608,
0.040639400482177734,
0.003932694438844919,
0.07311070710420609,
-0.13326925039291382,
0.015873923897743225,
0.11627427488565445,
0.1123562604188919,
-0.06660500913858414,
-0.026948440819978714,
-0.0006689754663966596,
-0.010355479083955288,
-0.042248450219631195,
0.09807319194078445,
0.09179191291332245,
0.0667085126042366,
-0.0528421476483345,
0.007637804839760065,
-0.005427236668765545,
-0.024598127231001854,
-0.07037705183029175,
0.07507788389921188,
-0.005386998876929283,
0.016686897724866867,
-0.04744866490364075,
0.0692194476723671,
0.019406018778681755,
-0.1923947036266327,
0.04818565398454666,
-0.16982488334178925,
-0.18487289547920227,
-0.0028500487096607685,
0.10203925520181656,
-0.018183059990406036,
0.051749225705862045,
0.0055757733061909676,
0.023160597309470177,
0.1028718650341034,
-0.015766173601150513,
-0.04946674033999443,
-0.05368940532207489,
0.06490039825439453,
-0.030168071389198303,
0.23759377002716064,
0.007368320599198341,
0.08898847550153732,
0.11129602789878845,
0.0314667709171772,
-0.15244299173355103,
0.08024876564741135,
0.09254083037376404,
-0.008131664246320724,
0.06414792686700821,
0.15109218657016754,
-0.03441165015101433,
0.10532373189926147,
0.05174023285508156,
-0.12642179429531097,
-0.025296567007899284,
-0.0022092286963015795,
-0.020639849826693535,
-0.05490211769938469,
-0.006411810405552387,
-0.06967642158269882,
0.16526642441749573,
0.14617209136486053,
-0.05983913317322731,
-0.007623610086739063,
-0.05818258970975876,
0.037490762770175934,
0.034429408609867096,
0.0919567421078682,
-0.007116005755960941,
-0.18689371645450592,
0.020344333723187447,
0.03626834601163864,
0.04071163758635521,
-0.24097657203674316,
-0.08140207827091217,
0.03610401600599289,
-0.045651521533727646,
-0.053341686725616455,
0.12023284286260605,
0.03180617466568947,
0.004331707488745451,
-0.05067874491214752,
-0.08514583110809326,
-0.057438530027866364,
0.1299402415752411,
-0.1470050811767578,
-0.06975767016410828
] |
null | null | transformers |
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
[Lewd-Assistant-v1](https://huggingface.co/datasets/Himitsui/Lewd-Assistant-v1) ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
***
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
***
GGUF: https://huggingface.co/Sao10K/Solstice-11B-v1-GGUF | {"language": ["en"], "license": "cc-by-nc-4.0", "datasets": ["Himitsui/Lewd-Assistant-v1"]} | text-generation | LoneStriker/Solstice-11B-v1-6.0bpw-h6-exl2 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:Himitsui/Lewd-Assistant-v1",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:21:30+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
Lewd-Assistant-v1 ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
*
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
*
GGUF: URL | [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
77
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.049034226685762405,
0.10144619643688202,
-0.005310742650181055,
0.037241458892822266,
0.1303713023662567,
0.017335545271635056,
0.14252999424934387,
0.11379635334014893,
-0.005623956210911274,
-0.03997872397303581,
0.15055686235427856,
0.22561697661876678,
-0.005716316867619753,
0.025737494230270386,
-0.07812640070915222,
-0.19685706496238708,
0.031945742666721344,
0.07199884951114655,
0.0009695991757325828,
0.10655628144741058,
0.10498841851949692,
-0.06860098987817764,
0.09109021723270416,
-0.02456873282790184,
-0.1569415032863617,
0.02397669479250908,
0.030383840203285217,
-0.11827446520328522,
0.10542871803045273,
0.056915976107120514,
0.09415589272975922,
0.07842440903186798,
-0.0075564272701740265,
-0.15251457691192627,
0.02114257775247097,
-0.005708994809538126,
-0.07609643787145615,
0.06579328328371048,
0.05390128493309021,
-0.027117885649204254,
0.10850529372692108,
0.0403880812227726,
-0.041287485510110855,
0.0467577800154686,
-0.10149915516376495,
-0.0192161425948143,
-0.06091657280921936,
0.0460011251270771,
0.05683813989162445,
0.09331124275922775,
0.024533160030841827,
0.13188046216964722,
-0.09107843041419983,
0.08752235770225525,
0.09963053464889526,
-0.31331998109817505,
0.01319095864892006,
0.09934073686599731,
0.03383893519639969,
0.04641084745526314,
-0.021290304139256477,
0.06774309277534485,
0.04784923046827316,
0.0007684126612730324,
0.03598456457257271,
-0.0797121524810791,
-0.09438449889421463,
0.06742703169584274,
-0.06590547412633896,
-0.03863084688782692,
0.2922324538230896,
-0.030988743528723717,
0.04172538220882416,
-0.008086903020739555,
-0.050714027136564255,
0.011418753303587437,
-0.015883255749940872,
0.03745931759476662,
-0.008732186630368233,
0.05612645298242569,
0.03042249009013176,
-0.0401790477335453,
-0.13913358747959137,
-0.020970935001969337,
-0.18500429391860962,
0.07730595767498016,
0.012230283580720425,
0.049645330756902695,
-0.12579062581062317,
0.06767009198665619,
0.034521471709012985,
-0.0844985693693161,
0.0035924408584833145,
-0.053609706461429596,
0.07973714172840118,
-0.0033421244006603956,
-0.03879298269748688,
-0.022027965635061264,
0.10066821426153183,
0.07918766885995865,
0.017121922224760056,
-0.020639244467020035,
-0.08546588569879532,
0.10821904987096786,
-0.013696074485778809,
0.030209684744477272,
-0.03432465344667435,
0.005157887935638428,
0.08075081557035446,
-0.07926378399133682,
0.04890313372015953,
-0.0285712368786335,
-0.1669217199087143,
-0.047651249915361404,
-0.021985750645399094,
0.10965735465288162,
0.028758613392710686,
0.0803452581167221,
-0.03757987916469574,
-0.013860568404197693,
0.0998191386461258,
-0.0681782215833664,
-0.005897911731153727,
-0.01723933219909668,
-0.00974948424845934,
0.09400562942028046,
0.02334989234805107,
0.02616862952709198,
-0.08904144912958145,
0.06954825669527054,
-0.07460135221481323,
-0.006143215112388134,
-0.03521576523780823,
-0.05373920500278473,
0.07148505002260208,
-0.0974171832203865,
0.030807875096797943,
-0.1752423644065857,
-0.20109885931015015,
0.024895215407013893,
0.0106661356985569,
-0.015678955242037773,
-0.07431206107139587,
-0.038309354335069656,
-0.03380206599831581,
0.018048031255602837,
-0.08405132591724396,
-0.0024438153486698866,
-0.08034411817789078,
0.10252384841442108,
-0.05322210118174553,
0.04925856739282608,
-0.15059894323349,
0.0595194548368454,
-0.08959881961345673,
-0.012827512808144093,
-0.007095616310834885,
0.050098419189453125,
-0.03298885375261307,
0.105813167989254,
-0.05119280889630318,
-0.025412462651729584,
-0.024753475561738014,
0.03582635521888733,
-0.016930731013417244,
0.18637792766094208,
-0.13419866561889648,
-0.07243777066469193,
0.15280477702617645,
-0.08325513452291489,
-0.18884451687335968,
0.09167393296957016,
0.00922262854874134,
0.04589606076478958,
0.08483385294675827,
0.14735817909240723,
0.0350952111184597,
-0.08198394626379013,
0.018709788098931313,
0.09923137724399567,
-0.06979144364595413,
-0.20308828353881836,
0.021961500868201256,
0.007903855293989182,
-0.09841631352901459,
0.04337438941001892,
0.0199807807803154,
0.06771830469369888,
-0.043807487934827805,
-0.06553755700588226,
-0.04720250144600868,
-0.05599060654640198,
-0.018855394795536995,
0.0029671976808458567,
0.08480874449014664,
-0.051144134253263474,
0.002517574466764927,
-0.005882262717932463,
0.031557876616716385,
-0.023341625928878784,
0.056014902889728546,
-0.06204771623015404,
0.11400096863508224,
-0.03765048086643219,
0.03347593918442726,
-0.13520418107509613,
-0.03351351618766785,
-0.01180564146488905,
0.14856234192848206,
0.025070972740650177,
0.04837543144822121,
0.01079084724187851,
-0.026632050052285194,
-0.025501301512122154,
0.00958278588950634,
0.15494011342525482,
-0.0007252903888002038,
-0.0532318577170372,
-0.10751572251319885,
0.06776221841573715,
-0.02253667823970318,
0.016523046419024467,
-0.09919705986976624,
0.006435787305235863,
0.04849201440811157,
0.09319677948951721,
-0.028797855600714684,
0.08913536369800568,
-0.00775644788518548,
0.04732397571206093,
-0.07237828522920609,
0.03538600727915764,
0.1164293885231018,
0.016884498298168182,
-0.09675242006778717,
0.21493247151374817,
-0.09469964355230331,
0.22045156359672546,
0.20328935980796814,
-0.2403641641139984,
0.05252329632639885,
-0.07172700762748718,
-0.01727456972002983,
-0.0074929846450686455,
0.025716116651892662,
-0.009235285222530365,
0.03171088919043541,
-0.008625861257314682,
0.1834697276353836,
-0.06712543964385986,
-0.0054125408641994,
0.002795885084196925,
-0.042803213000297546,
-0.03943811357021332,
0.08297725766897202,
0.19316521286964417,
-0.12646368145942688,
0.16178403794765472,
0.23159843683242798,
-0.013848419301211834,
0.1402653455734253,
-0.03274041414260864,
-0.019341804087162018,
0.03710115700960159,
-0.02327699586749077,
-0.012436605989933014,
-0.010511710308492184,
-0.10541673004627228,
-0.002799295587465167,
0.08416956663131714,
-0.00018182213534601033,
0.06753597408533096,
-0.1491035521030426,
-0.07189694792032242,
-0.0310774315148592,
-0.03873962536454201,
-0.03537937253713608,
0.08782068639993668,
0.01753067784011364,
0.128334641456604,
-0.051640938967466354,
-0.06278031319379807,
0.11246023327112198,
0.005560848396271467,
-0.0898054838180542,
0.1569569706916809,
-0.13892027735710144,
-0.2924811542034149,
-0.16305863857269287,
-0.16571520268917084,
-0.07089906185865402,
0.023396149277687073,
0.09480155259370804,
-0.05249262973666191,
-0.04799347370862961,
-0.030985508114099503,
-0.011247217655181885,
-0.05897943302989006,
-0.0034085328225046396,
-0.0424722284078598,
0.06421343982219696,
-0.06029471755027771,
-0.11193588376045227,
-0.043454427272081375,
-0.0044265370815992355,
-0.0640472024679184,
0.12870556116104126,
-0.09717836230993271,
0.09882897138595581,
0.1328934282064438,
0.025340624153614044,
0.026841068640351295,
-0.04431796446442604,
0.13088175654411316,
-0.04853203520178795,
-0.009431427344679832,
0.22270165383815765,
0.0011693616397678852,
0.05880896374583244,
0.13138096034526825,
0.038107480853796005,
-0.07699986547231674,
0.0045023816637694836,
-0.04538979381322861,
-0.0798133835196495,
-0.23326468467712402,
-0.1373303234577179,
-0.11261934041976929,
0.05847621709108353,
0.05341200903058052,
0.06106415018439293,
0.11219381541013718,
0.08764012902975082,
-0.014922751113772392,
0.058201052248477936,
-0.021582402288913727,
0.07762761414051056,
0.2839027941226959,
-0.01894594356417656,
0.13017886877059937,
-0.08824797719717026,
-0.05806112289428711,
0.09288623183965683,
0.10236862301826477,
0.12053664028644562,
0.059395331889390945,
0.08671223372220993,
0.06011790409684181,
0.13369910418987274,
0.13008637726306915,
0.09064308553934097,
0.04012376442551613,
-0.004751825239509344,
-0.01217054482549429,
-0.044730979949235916,
-0.035446617752313614,
0.035599954426288605,
0.013642698526382446,
-0.13429448008537292,
-0.02092130482196808,
-0.07859308272600174,
0.05072641372680664,
0.119310662150383,
0.025424810126423836,
-0.23313206434249878,
0.025882529094815254,
0.05987260863184929,
-0.0031277218367904425,
-0.07122143357992172,
0.08518851548433304,
-0.016570409759879112,
-0.08306598663330078,
0.07057943195104599,
-0.027958616614341736,
0.12143699079751968,
-0.07391038537025452,
0.0519358366727829,
-0.03370404988527298,
-0.05230972543358803,
0.03313904255628586,
0.1089467853307724,
-0.3237506151199341,
0.22024185955524445,
0.018825465813279152,
-0.026497717946767807,
-0.09279364347457886,
-0.025149978697299957,
0.012764468789100647,
0.1749781221151352,
0.12539535760879517,
-0.007683464791625738,
-0.015535303391516209,
-0.05810444429516792,
-0.05734163895249367,
0.035665884613990784,
0.06896401941776276,
0.0010584074771031737,
-0.0003624292730819434,
-0.024091387167572975,
-0.005279526114463806,
-0.0014077178202569485,
-0.00490220682695508,
-0.043236907571554184,
-0.17163509130477905,
0.05557248741388321,
0.14406868815422058,
0.05307428911328316,
-0.004156381823122501,
-0.039885297417640686,
-0.1416422724723816,
0.17220140993595123,
-0.13633225858211517,
-0.07610277086496353,
-0.10404983907938004,
-0.062380265444517136,
0.05498787760734558,
-0.05518300458788872,
0.03755813464522362,
-0.06245018541812897,
-0.002284383401274681,
-0.06032416224479675,
-0.17134849727153778,
0.06986992806196213,
-0.0996970683336258,
-0.015461762435734272,
-0.03423244133591652,
0.15149866044521332,
-0.08292442560195923,
0.017603974789381027,
0.02323228307068348,
0.01411656104028225,
-0.07490243017673492,
-0.09193401783704758,
-0.005053247790783644,
0.03293938934803009,
0.09035728871822357,
0.01723586395382881,
-0.14129149913787842,
-0.0095018669962883,
-0.014963537454605103,
-0.08424284309148788,
0.26092803478240967,
0.19374249875545502,
-0.05883967876434326,
0.1770647019147873,
0.15347951650619507,
-0.11490184813737869,
-0.32271862030029297,
-0.1000501811504364,
-0.11443756520748138,
-0.028265872970223427,
-0.04509029909968376,
-0.18660955131053925,
0.077033631503582,
0.049923256039619446,
-0.031645506620407104,
0.10615070909261703,
-0.23199057579040527,
-0.09402638673782349,
0.12149857729673386,
0.018926985561847687,
0.2996464669704437,
-0.12258071452379227,
-0.08332320302724838,
-0.08195407688617706,
-0.13797886669635773,
0.19211558997631073,
0.00286630867049098,
0.10877324640750885,
-0.04681301862001419,
0.09396523237228394,
0.007644746918231249,
-0.03690613806247711,
0.10031165927648544,
0.006828084588050842,
0.025079969316720963,
-0.10434320569038391,
-0.0027483508456498384,
0.08884637802839279,
0.002070714021101594,
0.041003402322530746,
-0.11694075912237167,
0.008402612991631031,
-0.1172478049993515,
-0.027270840480923653,
-0.05345173180103302,
0.07041863352060318,
0.009682005271315575,
-0.05904176086187363,
-0.022814305499196053,
-0.019129959866404533,
0.023440003395080566,
-0.015210927464067936,
0.18577711284160614,
-0.03642501309514046,
0.07289411127567291,
0.120790034532547,
0.137875497341156,
-0.13844045996665955,
0.029775775969028473,
-0.07663135230541229,
-0.07252693921327591,
0.06818535923957825,
-0.13475310802459717,
0.03976571559906006,
0.133937805891037,
-0.029848946258425713,
0.0664096474647522,
0.0765647441148758,
0.025761689990758896,
-0.00638764351606369,
0.14227253198623657,
-0.19646349549293518,
0.019226932898163795,
-0.04374184459447861,
0.006416141055524349,
0.06395085155963898,
0.04797811433672905,
0.16513222455978394,
-0.025768468156456947,
-0.009783856570720673,
0.015844149515032768,
0.014720029197633266,
-0.04439609870314598,
0.0675467774271965,
0.04722321033477783,
0.0031884554773569107,
-0.1300448477268219,
0.10301768779754639,
0.025875011458992958,
-0.11881901323795319,
-0.002760943491011858,
0.102492555975914,
-0.13203735649585724,
-0.12005016207695007,
-0.05686751753091812,
0.06437907367944717,
-0.2058214694261551,
-0.08213391900062561,
-0.05728176608681679,
-0.11623122543096542,
0.08587322384119034,
0.1539333164691925,
0.05562883988022804,
0.06769925355911255,
-0.03056035190820694,
-0.08275887370109558,
-0.0737461969256401,
0.020974867045879364,
-0.03823217377066612,
0.02078600414097309,
-0.10290080308914185,
0.015325134620070457,
-0.022673455998301506,
0.1308482140302658,
-0.05975550785660744,
-0.0260691586881876,
-0.10978298634290695,
0.042345207184553146,
-0.14944908022880554,
-0.012575010769069195,
-0.08017249405384064,
-0.0310711357742548,
-0.00464948546141386,
-0.015980064868927002,
-0.06127501279115677,
-0.016248362138867378,
-0.10641258955001831,
0.02068985439836979,
-0.020699268206954002,
0.07433059066534042,
-0.0841195210814476,
-0.04886775091290474,
0.05056420713663101,
-0.015597312711179256,
0.10742154717445374,
0.06851629167795181,
-0.09662238508462906,
0.08528278768062592,
-0.1458529531955719,
-0.05586700141429901,
0.09775988012552261,
0.0555204413831234,
0.04613138735294342,
0.02461850643157959,
0.01933644339442253,
0.12628474831581116,
-0.014499308541417122,
0.048842575401067734,
0.019805999472737312,
-0.10847801715135574,
-0.006426680367439985,
-0.05144473537802696,
-0.09860483556985855,
-0.06442166119813919,
-0.016366492956876755,
0.08798839896917343,
0.04380229115486145,
0.15357235074043274,
-0.04235014319419861,
0.04793012514710426,
-0.042971670627593994,
0.020120149478316307,
-0.008167668245732784,
-0.16375763714313507,
-0.08338074386119843,
-0.08619426190853119,
0.01709349825978279,
-0.0072896163910627365,
0.256022572517395,
0.031082479283213615,
-0.055167291313409805,
0.04080076143145561,
0.06237408146262169,
-0.0060380566865205765,
-0.007072872016578913,
0.25718989968299866,
0.08115017414093018,
-0.0018656767206266522,
-0.0709218680858612,
0.055914513766765594,
0.016445070505142212,
0.0564819797873497,
0.07317715883255005,
0.05913015827536583,
0.027723869308829308,
0.07779153436422348,
0.060071516782045364,
-0.007243873085826635,
-0.04913724586367607,
-0.06347004324197769,
-0.027562761679291725,
0.08634694665670395,
-0.0175641942769289,
0.09104092419147491,
0.12690387666225433,
-0.052363429218530655,
0.006516739260405302,
-0.03274639695882797,
-0.05228272080421448,
-0.15372596681118011,
-0.19265799224376678,
-0.08410533517599106,
-0.11393267661333084,
0.03020910546183586,
-0.09558413177728653,
0.040890172123909,
0.06267426162958145,
0.05259932950139046,
-0.050175171345472336,
0.003746095346286893,
-0.010680551640689373,
-0.06471575796604156,
0.07236453890800476,
-0.028445163741707802,
0.02719707041978836,
-0.07552506774663925,
-0.014066273346543312,
-0.063225157558918,
-0.0467803031206131,
-0.036711398512125015,
0.059050049632787704,
0.020925790071487427,
0.0454951673746109,
-0.133080393075943,
-0.07453975081443787,
-0.04458501189947128,
0.054712191224098206,
0.02359694242477417,
0.16524924337863922,
0.014143720269203186,
-0.011845545843243599,
0.05693808197975159,
0.172040656208992,
-0.038605257868766785,
-0.10545060783624649,
-0.043073464184999466,
0.16965802013874054,
0.023394731804728508,
0.04107775166630745,
0.006772690452635288,
0.015023903921246529,
-0.027153026312589645,
0.3453980088233948,
0.288048654794693,
-0.10212592035531998,
0.018246658146381378,
-0.021862352266907692,
0.03034358285367489,
0.06844350695610046,
0.12959334254264832,
0.10881296545267105,
0.20990362763404846,
-0.07219986617565155,
-0.06748899072408676,
-0.07748356461524963,
0.021169332787394524,
-0.10375670343637466,
0.08185678720474243,
0.005325254052877426,
-0.09320597350597382,
-0.03272281587123871,
0.09537962079048157,
-0.17274652421474457,
0.08563049882650375,
-0.004398995079100132,
-0.12151198089122772,
-0.03424680978059769,
-0.002985055325552821,
0.07231775671243668,
-0.0008496428490616381,
0.024526016786694527,
-0.06182459369301796,
-0.041415877640247345,
0.05475268512964249,
-0.0044367010705173016,
-0.2126384824514389,
0.02068512886762619,
0.06696335226297379,
-0.0013985815457999706,
0.03933676332235336,
-0.007371969521045685,
0.11203435063362122,
0.06820465624332428,
0.06483098119497299,
-0.0719994381070137,
0.08872124552726746,
0.014060961082577705,
-0.06090587005019188,
0.03618868812918663,
-0.022428318858146667,
-0.0032652681693434715,
-0.004855544771999121,
0.04206673428416252,
-0.037646062672138214,
0.06020224466919899,
-0.0012370774056762457,
-0.056301265954971313,
-0.029712067916989326,
0.020235275849699974,
-0.07321474701166153,
0.09561844915151596,
0.05176868662238121,
-0.010201070457696915,
-0.031797103583812714,
-0.07183147221803665,
-0.00331803853623569,
-0.003993404563516378,
-0.15203137695789337,
-0.03916352614760399,
-0.0990368202328682,
-0.07603249698877335,
0.10195887833833694,
0.017836207523941994,
-0.16887257993221283,
-0.005666637793183327,
-0.08880164474248886,
0.007904051803052425,
-0.16425450146198273,
0.06891398131847382,
0.11502542346715927,
-0.0008546813041903079,
-0.020225094631314278,
-0.05280805379152298,
0.042419176548719406,
0.03357136249542236,
-0.09693200886249542,
-0.09446734189987183
] |
null | null | stable-baselines3 |
# **A2C** Agent playing **PandaReachDense-v3**
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaReachDense-v3", "type": "PandaReachDense-v3"}, "metrics": [{"type": "mean_reward", "value": "-0.19 +/- 0.13", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | GccX11/a2c-PandaReachDense-v3 | [
"stable-baselines3",
"PandaReachDense-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-13T17:22:07+00:00 | [] | [] | TAGS
#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# A2C Agent playing PandaReachDense-v3
This is a trained model of a A2C agent playing PandaReachDense-v3
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
41,
45,
17
] | [
"passage: TAGS\n#stable-baselines3 #PandaReachDense-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# A2C Agent playing PandaReachDense-v3\nThis is a trained model of a A2C agent playing PandaReachDense-v3\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.028780510649085045,
0.06549051403999329,
-0.004174588713794947,
0.028733979910612106,
0.12748076021671295,
-0.010029550641775131,
0.16130082309246063,
0.07903143763542175,
0.052706290036439896,
-0.055043965578079224,
0.09157051891088486,
-0.079488605260849,
0.04699381813406944,
0.3393711447715759,
0.029525093734264374,
-0.186785027384758,
0.08573613315820694,
0.015584449283778667,
0.018966808915138245,
0.09867662936449051,
0.03466832637786865,
-0.08736564218997955,
0.04568251967430115,
0.03800429776310921,
-0.07686931639909744,
-0.04319252818822861,
-0.03975098207592964,
-0.06744661927223206,
0.10361767560243607,
-0.044310007244348526,
0.1670169234275818,
-0.03489987552165985,
0.10219604521989822,
-0.12577489018440247,
0.031373992562294006,
-0.04813149571418762,
-0.05141052231192589,
0.002818689215928316,
-0.011371237225830555,
0.05937984213232994,
0.04167760908603668,
0.05197896435856819,
0.07366002351045609,
0.04871916025876999,
-0.08704962581396103,
-0.11396265029907227,
-0.006845315918326378,
0.07931416481733322,
0.17974808812141418,
0.04054044932126999,
-0.02474738284945488,
0.09696658700704575,
-0.11350683122873306,
0.01657135598361492,
-0.019304286688566208,
-0.4018571078777313,
0.006876560393720865,
0.15550047159194946,
0.04677277058362961,
0.010903568007051945,
-0.0061170910485088825,
-0.004642391111701727,
0.02805398777127266,
-0.037410516291856766,
0.08670840412378311,
-0.09000635892152786,
0.06153826415538788,
-0.019131680950522423,
-0.04113767296075821,
-0.01751464419066906,
0.2419518232345581,
0.01633240468800068,
-0.08024721592664719,
-0.07922019064426422,
0.009968155063688755,
-0.028026137501001358,
-0.0877801775932312,
-0.06134319305419922,
0.07644549012184143,
0.057131536304950714,
0.10696670413017273,
-0.030399860814213753,
-0.058683689683675766,
-0.04541248828172684,
0.08352918922901154,
-0.03953780233860016,
-0.017566127702593803,
-0.01754307933151722,
-0.06739802658557892,
-0.003707833355292678,
0.015629740431904793,
-0.06615205854177475,
-0.015486059710383415,
-0.044966671615839005,
-0.1556774228811264,
-0.009128551930189133,
-0.0599384643137455,
0.03310214728116989,
0.10073909163475037,
0.13065455853939056,
0.06838785856962204,
0.09685135632753372,
-0.08001106232404709,
0.0389438234269619,
0.06625691801309586,
0.09461154788732529,
-0.044509198516607285,
-0.011874453164637089,
0.14630302786827087,
0.10327376425266266,
0.09657767415046692,
-0.09182082861661911,
-0.12403369694948196,
0.04173071309924126,
0.10965418070554733,
0.03382069617509842,
0.0046537998132407665,
0.04452834278345108,
-0.14144757390022278,
0.023916395381093025,
0.0006972529226914048,
-0.045244041830301285,
-0.03088594414293766,
0.06111180782318115,
-0.04433412477374077,
0.02348744124174118,
-0.012718633748590946,
0.10830001533031464,
0.10152670741081238,
-0.023899899795651436,
-0.052799396216869354,
-0.04201658070087433,
-0.0440504252910614,
-0.05507666990160942,
0.04012975096702576,
0.01289378758519888,
0.04624854028224945,
-0.1184653639793396,
-0.13997629284858704,
0.051258668303489685,
0.019622454419732094,
-0.026321161538362503,
-0.13472233712673187,
-0.09338399767875671,
-0.03747362270951271,
-0.011210841126739979,
0.0030350966844707727,
-0.19588395953178406,
-0.02434816211462021,
-0.03428230062127113,
0.13725687563419342,
0.10810749977827072,
-0.06433141976594925,
-0.06369391083717346,
-0.12834231555461884,
0.06795675307512283,
-0.23485252261161804,
0.038750845938920975,
-0.09932064265012741,
0.12411006540060043,
0.007471752353012562,
0.023616313934326172,
0.1410844624042511,
0.02330038882791996,
0.004575210623443127,
0.1702503114938736,
-0.18833371996879578,
-0.046672217547893524,
0.17527204751968384,
-0.0857074186205864,
-0.17703735828399658,
0.05021136254072189,
-0.02124672941863537,
-0.013779462315142155,
0.06350992619991302,
0.09937554597854614,
-0.01727774553000927,
-0.17061583697795868,
0.02558896690607071,
-0.0014508399181067944,
-0.05959303304553032,
0.021542999893426895,
0.12072649598121643,
0.08040176331996918,
-0.027203790843486786,
-0.0016989230643957853,
-0.15452547371387482,
0.09701786935329437,
-0.023543400689959526,
-0.08447092026472092,
0.022736359387636185,
-0.10411997884511948,
0.10016260296106339,
-0.015677137300372124,
0.10591494292020798,
-0.02265925332903862,
-0.018805475905537605,
-0.032891299575567245,
0.10408006608486176,
-0.0068649593740701675,
0.039593957364559174,
-0.17728297412395477,
0.1326225996017456,
0.02176543138921261,
0.046730607748031616,
-0.10109715908765793,
-0.10202061384916306,
0.06674831360578537,
0.15375585854053497,
0.05606463924050331,
0.03833417221903801,
0.07328703999519348,
0.03443831577897072,
-0.0030986627098172903,
-0.1205538883805275,
-0.12789975106716156,
0.019881807267665863,
0.06068658083677292,
-0.08039596676826477,
-0.05172275751829147,
-0.10460081696510315,
0.21138279139995575,
-0.10705634206533432,
0.012047823518514633,
-0.09333895146846771,
0.010153836570680141,
0.08388294279575348,
0.01348812971264124,
0.08132237941026688,
0.02585482969880104,
-0.04426883906126022,
0.009419471956789494,
0.0882885605096817,
0.044275086373090744,
-0.1379590630531311,
0.03784618154168129,
0.024114131927490234,
0.23272188007831573,
0.15174852311611176,
-0.016499420627951622,
-0.055556558072566986,
0.006534850224852562,
0.03740030899643898,
0.03533044084906578,
0.034956689924001694,
0.06951800733804703,
0.1090264692902565,
0.07713755965232849,
0.1276414394378662,
-0.05066131055355072,
0.17763042449951172,
-0.006530070677399635,
-0.14888496696949005,
0.02993084490299225,
-0.07033783197402954,
0.0941668227314949,
-0.06030277907848358,
0.048379335552453995,
0.05410725995898247,
0.0304675605148077,
0.08504439890384674,
-0.00693494314327836,
0.022639812901616096,
-0.04341154545545578,
0.04943868890404701,
0.06790532171726227,
0.06545940041542053,
0.06452376395463943,
-0.007423467002809048,
0.015456308610737324,
-0.05288444459438324,
-0.0518295019865036,
-0.10519610345363617,
-0.12370408326387405,
0.037892695516347885,
-0.015912096947431564,
-0.04463989660143852,
-0.01629551686346531,
-0.07266248762607574,
0.050321705639362335,
0.05250744894146919,
-0.07199236750602722,
0.028561361134052277,
-0.007090074475854635,
-0.09633425623178482,
0.1130511462688446,
-0.14269201457500458,
-0.31355980038642883,
-0.02000165916979313,
-0.13154496252536774,
-0.02077566273510456,
0.15819574892520905,
-0.057956792414188385,
-0.1681092083454132,
0.03305667266249657,
-0.02401961199939251,
-0.09238096326589584,
0.04225420579314232,
-0.018061356619000435,
0.10221174359321594,
0.0857708528637886,
0.043082691729068756,
0.00862243864685297,
-0.01184127852320671,
-0.03903079405426979,
-0.08788500726222992,
0.07608162611722946,
-0.06721128523349762,
0.1173204705119133,
0.13519366085529327,
0.04123268276453018,
-0.015909500420093536,
-0.02043113484978676,
0.06215733662247658,
0.012027861550450325,
-0.036599598824977875,
0.13453175127506256,
-0.03608042374253273,
-0.00864011887460947,
0.04470202699303627,
0.008029532618820667,
-0.10533943772315979,
0.09432658553123474,
-0.05022074654698372,
-0.06974482536315918,
-0.017500806599855423,
-0.08790571242570877,
-0.09950723499059677,
0.18995612859725952,
0.0490412712097168,
0.007856572046875954,
-0.05151839926838875,
0.036120012402534485,
0.07772433012723923,
0.044773608446121216,
0.007161281071603298,
0.03985898196697235,
-0.005716364365071058,
-0.013170693069696426,
0.05278664082288742,
-0.023887991905212402,
0.009960537776350975,
-0.007844919338822365,
0.13077811896800995,
-0.015673788264393806,
0.10317149013280869,
0.0030158995650708675,
0.008619097992777824,
0.08018261194229126,
0.12394148856401443,
0.08064290136098862,
0.019240466877818108,
-0.11554506421089172,
-0.04732639715075493,
-0.030522609129548073,
-0.18181301653385162,
0.11669926345348358,
0.10738886147737503,
0.05268440023064613,
-0.05564067140221596,
0.22832486033439636,
0.0012100599706172943,
0.10802210867404938,
0.03496129810810089,
-0.17664514482021332,
0.024751557037234306,
0.03574612736701965,
0.050895314663648605,
0.007034227252006531,
0.062039270997047424,
-0.09453237801790237,
-0.1839483082294464,
0.03968557342886925,
0.018860090523958206,
0.05523261800408363,
-0.018427258357405663,
0.018512532114982605,
-0.12044285237789154,
-0.05746040865778923,
0.02161633037030697,
0.02076297253370285,
-0.3029120862483978,
0.06816349923610687,
-0.04133946821093559,
0.07392577081918716,
0.009542034938931465,
0.01343793235719204,
0.06604447960853577,
0.01652485318481922,
0.1375029981136322,
-0.017935138195753098,
0.1707022786140442,
-0.1572514772415161,
-0.16084668040275574,
0.025680551305413246,
-0.059293005615472794,
0.07245437800884247,
0.082563117146492,
0.017692390829324722,
0.0069250138476490974,
-0.00047057756455615163,
0.20794180035591125,
-0.13032017648220062,
-0.0346711240708828,
-0.035274047404527664,
0.019543148577213287,
0.022580156102776527,
-0.03844551369547844,
-0.021310672163963318,
0.06112392246723175,
0.1489492505788803,
0.07546767592430115,
-0.02780069410800934,
-0.04611911624670029,
-0.03938353434205055,
-0.09507237374782562,
-0.044778671115636826,
0.10472412407398224,
-0.07841785997152328,
0.10144548118114471,
-0.07513871043920517,
-0.04432075098156929,
0.11707907915115356,
-0.09250949323177338,
-0.053160861134529114,
-0.07627046853303909,
0.05462219938635826,
0.008296831510961056,
0.13374868035316467,
0.03642493113875389,
0.02114485390484333,
0.10089845955371857,
-0.05001259222626686,
0.08662480860948563,
0.03777577355504036,
-0.03541218861937523,
0.03517242521047592,
-0.05375073477625847,
-0.04829130321741104,
-0.010828596539795399,
0.03814345970749855,
0.24244728684425354,
0.302570104598999,
-0.012830551713705063,
0.1897524893283844,
0.09193363785743713,
0.029696941375732422,
-0.16292639076709747,
-0.1200476586818695,
0.05548451840877533,
0.059938978403806686,
0.06154406815767288,
-0.2788083851337433,
0.057189684361219406,
-0.053967077285051346,
-0.08999616652727127,
-0.06829255819320679,
-0.08560561388731003,
-0.07613074034452438,
0.088682159781456,
0.08794322609901428,
0.09100460261106491,
-0.12551987171173096,
0.015924450010061264,
-0.012671655975282192,
-0.1664767563343048,
0.12128932029008865,
-0.039350032806396484,
0.07007917016744614,
-0.025050386786460876,
-0.06438229978084564,
0.025165842846035957,
-0.02775278501212597,
0.04424511641263962,
-0.1206880658864975,
0.0005293674184940755,
-0.04527926817536354,
-0.03749620169401169,
0.1088484600186348,
0.020565982908010483,
-0.0028168195858597755,
-0.09558401256799698,
-0.011945599690079689,
-0.3103867173194885,
0.01988539844751358,
0.02114551141858101,
-0.039148375391960144,
-0.0012507046340033412,
-0.08678091317415237,
-0.042053963989019394,
0.10508828610181808,
0.03930897265672684,
0.08641290664672852,
0.15335260331630707,
-0.005581455305218697,
-0.021082017570734024,
0.17506572604179382,
0.05701295658946037,
-0.014002309180796146,
0.10069113969802856,
-0.06732672452926636,
-0.06576105207204819,
0.04418903961777687,
-0.1016126498579979,
-0.005435575265437365,
0.005642053205519915,
-0.007821558974683285,
0.07107745110988617,
0.09962856024503708,
-0.03340476378798485,
0.18194207549095154,
0.09798844903707504,
-0.15048468112945557,
0.0030947427731007338,
0.052597809582948685,
-0.032650984823703766,
0.04424609988927841,
-0.04443032294511795,
0.05541829764842987,
-0.07521786540746689,
-0.03790169581770897,
0.02031708136200905,
-0.01010141521692276,
-0.07618512213230133,
0.00011962707503698766,
0.03176301345229149,
0.029956085607409477,
-0.08340912312269211,
0.14036758244037628,
0.016359949484467506,
0.0652431845664978,
0.11902019381523132,
0.019259776920080185,
-0.10460162162780762,
-0.014167122542858124,
-0.02339506521821022,
0.2028627097606659,
-0.007937151938676834,
-0.018536100164055824,
-0.11391238868236542,
-0.12847240269184113,
0.018047582358121872,
-0.10348039865493774,
0.10282431542873383,
-0.052032727748155594,
-0.06570395082235336,
-0.03704213351011276,
-0.05561172217130661,
0.031932998448610306,
0.017090078443288803,
-0.015642894431948662,
-0.16111870110034943,
-0.04170334339141846,
0.06846143305301666,
0.039452772587537766,
-0.06145704537630081,
-0.06289087235927582,
-0.16302458941936493,
0.03506235405802727,
-0.1278870701789856,
0.0010145133128389716,
-0.047339316457509995,
-0.05002537742257118,
-0.05195476487278938,
0.01521157007664442,
-0.0177876316010952,
0.008817745372653008,
-0.05148332938551903,
0.03292781487107277,
0.011250603944063187,
0.0014076961670070887,
-0.06952075660228729,
-0.04419080913066864,
0.032172493636608124,
-0.04430563375353813,
0.0661356970667839,
0.04131564497947693,
-0.005653871223330498,
0.021474739536643028,
-0.07005896419286728,
-0.10248169302940369,
0.10313672572374344,
-0.014939527027308941,
0.050572704523801804,
-0.0603681318461895,
-0.012018447741866112,
0.007195405196398497,
-0.07569561898708344,
-0.007751014549285173,
0.24328774213790894,
-0.010914106853306293,
-0.05394120141863823,
-0.07426224648952484,
-0.036970075219869614,
-0.09100507944822311,
-0.0004900419735349715,
0.1948854625225067,
0.05477539822459221,
0.14600017666816711,
-0.0532439760863781,
0.08785777539014816,
-0.06481330841779709,
-0.01534446980804205,
-0.08259234577417374,
0.030320849269628525,
-0.157977893948555,
-0.08130980283021927,
-0.028043894097208977,
-0.03728124126791954,
0.13441862165927887,
-0.19242097437381744,
0.0032852457370609045,
-0.010904400609433651,
-0.04910553991794586,
0.11381126195192337,
0.0557032972574234,
0.24474471807479858,
0.1050342544913292,
-0.035265225917100906,
0.10503548383712769,
0.12215624749660492,
0.0929517149925232,
-0.03347417712211609,
0.058777112513780594,
-0.05078745633363724,
-0.0868106484413147,
0.09736774861812592,
0.012061800807714462,
0.036776214838027954,
-0.08157306164503098,
0.022900743409991264,
-0.10047483444213867,
0.002025678288191557,
0.02005080319941044,
0.2473200410604477,
0.1967000812292099,
-0.09632564336061478,
-0.012216159142553806,
-0.05708231031894684,
-0.032561756670475006,
-0.04091155156493187,
-0.002459051087498665,
-0.07821618020534515,
-0.21873407065868378,
0.051539067178964615,
-0.0930585265159607,
-0.07632365822792053,
-0.06189138814806938,
-0.04064059257507324,
-0.02870149537920952,
0.046939339488744736,
0.03212931379675865,
0.04136762022972107,
0.05070297420024872,
-0.0371626541018486,
-0.09345480799674988,
0.06879863888025284,
-0.11172787100076675,
-0.042014576494693756,
-0.03408866748213768,
0.014045859687030315,
0.032319605350494385,
-0.07429610192775726,
0.07487598061561584,
-0.012149554677307606,
-0.07710553705692291,
0.036456044763326645,
-0.03482281416654587,
0.02153356932103634,
0.07482071220874786,
0.04184282198548317,
-0.09644174575805664,
0.015602846629917622,
0.18867559731006622,
0.020273970440030098,
0.008802177384495735,
-0.14742465317249298,
0.2000039666891098,
-0.02619965374469757,
0.07266447693109512,
-0.03337041288614273,
-0.015141828916966915,
-0.10115411877632141,
0.19129611551761627,
0.11998134851455688,
-0.24376079440116882,
0.024953339248895645,
-0.12912821769714355,
0.022151969373226166,
-0.13376696407794952,
0.20840151607990265,
0.05465596541762352,
0.10847201198339462,
-0.06020665541291237,
-0.02479162998497486,
-0.1493310034275055,
-0.09408020973205566,
-0.08478302508592606,
-0.0414455346763134,
0.10249399393796921,
0.0031611735466867685,
-0.05072701349854469,
-0.00887248944491148,
-0.1566619724035263,
0.10201162099838257,
-0.048264030367136,
-0.11855816096067429,
-0.0679796114563942,
-0.059141192585229874,
-0.06102965027093887,
0.11088541150093079,
0.11637356877326965,
-0.01684124954044819,
0.024554423987865448,
-0.07280154526233673,
-0.012559473514556885,
0.011003518477082253,
0.005383014678955078,
0.0626269057393074,
-0.04783647879958153,
0.1594477891921997,
-0.021524829789996147,
0.0008918871753849089,
0.04285505786538124,
0.05263057351112366,
-0.07584847509860992,
0.06380704790353775,
0.02512199431657791,
0.028178859502077103,
-0.006920731160789728,
0.059795111417770386,
-0.0196672473102808,
0.08964395523071289,
0.08038042485713959,
-0.007235884666442871,
0.09868589043617249,
-0.03191833570599556,
0.006547331809997559,
-0.057698819786310196,
0.06932510435581207,
-0.12982366979122162,
0.05436630919575691,
0.043436627835035324,
-0.10945180803537369,
0.03841061517596245,
0.02560393325984478,
0.11603125184774399,
0.058632634580135345,
-0.040632184594869614,
-0.10494323819875717,
-0.13799439370632172,
0.023235952481627464,
0.058803655207157135,
-0.06312531977891922,
-0.13800419867038727,
-0.052970461547374725,
-0.2062724232673645,
0.04198472201824188,
-0.07393307238817215,
0.06842854619026184,
0.045238204300403595,
0.01849091611802578,
-0.05578908324241638,
-0.06200101599097252,
0.01771395653486252,
0.13669656217098236,
-0.06059794872999191,
-0.13932769000530243
] |
null | null | null |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-Cartpole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "414.00 +/- 45.58", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | juan9/Reinforce-Cartpole-v1 | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | 2024-02-13T17:22:46+00:00 | [] | [] | TAGS
#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
39,
54
] | [
"passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
0.007526164408773184,
-0.12498430907726288,
-0.0013541718944907188,
0.09601131081581116,
0.11848696321249008,
-0.04186001420021057,
0.11405468732118607,
0.05624859035015106,
0.09539441019296646,
0.04239490255713463,
0.13636724650859833,
0.06906966865062714,
-0.004102868959307671,
0.12412862479686737,
0.09840741008520126,
-0.26058563590049744,
0.07420794665813446,
-0.04403980076313019,
-0.009944677352905273,
0.10139261186122894,
0.07836852967739105,
-0.08325441926717758,
0.051592715084552765,
0.00009572553972247988,
-0.044259943068027496,
0.0321260429918766,
0.013628939166665077,
-0.053157225251197815,
0.1606452465057373,
-0.07313758134841919,
0.10494591295719147,
-0.03843724727630615,
0.14574295282363892,
-0.1126825287938118,
0.04758213832974434,
0.05111503228545189,
-0.04548581689596176,
0.03848232328891754,
-0.12538743019104004,
-0.06033875793218613,
0.026815801858901978,
-0.015865681692957878,
0.12249194830656052,
0.03647647053003311,
-0.1777559220790863,
-0.13461355865001678,
-0.0165896974503994,
0.12325166910886765,
0.1627800315618515,
0.00512364786118269,
0.014270431362092495,
0.16791965067386627,
-0.1761058121919632,
0.025937072932720184,
0.11400806158781052,
-0.37275227904319763,
-0.00034436015994288027,
0.2240462601184845,
0.06164427846670151,
0.1252165287733078,
-0.12646614015102386,
0.010440526530146599,
0.07403992861509323,
0.04368630796670914,
0.049784936010837555,
-0.015430688858032227,
-0.12260042130947113,
0.08455035835504532,
-0.1383819431066513,
-0.058066487312316895,
0.1495426446199417,
-0.019741326570510864,
-0.009476418606936932,
-0.016515808179974556,
-0.009238536469638348,
-0.050979889929294586,
-0.03430935740470886,
-0.11778499186038971,
0.10755524039268494,
0.04975730925798416,
0.0038771627005189657,
-0.04602450504899025,
-0.05612579360604286,
-0.09815777093172073,
-0.03123871050775051,
0.0372777059674263,
-0.013706400990486145,
0.01091629359871149,
0.027692900970578194,
0.09935613721609116,
-0.13446329534053802,
0.01825822703540325,
-0.028096558526158333,
-0.028040969744324684,
-0.1316804438829422,
-0.11984307318925858,
-0.026084421202540398,
0.004223645199090242,
0.03029833547770977,
0.20433813333511353,
0.020139509811997414,
0.059011414647102356,
-0.0022708347532898188,
0.09776382148265839,
0.029780851677060127,
0.13517548143863678,
-0.04466623440384865,
0.19488364458084106,
0.07711011171340942,
0.05364556983113289,
0.03204274922609329,
-0.05344729498028755,
-0.19369827210903168,
0.04861246794462204,
0.06659778952598572,
0.08274952322244644,
-0.1178959533572197,
0.0059632807970047,
-0.10316018015146255,
0.0028950648847967386,
-0.10474003106355667,
-0.0642905905842781,
-0.02892979420721531,
0.031841445714235306,
-0.10535725951194763,
0.028785312548279762,
0.025052599608898163,
0.04140377417206764,
0.0676041767001152,
-0.12253966927528381,
-0.07404746115207672,
-0.021733485162258148,
-0.12817098200321198,
-0.09923440217971802,
0.08802318572998047,
-0.026199497282505035,
-0.005110981408506632,
-0.1253623217344284,
-0.2661486268043518,
-0.05670225992798805,
0.06396034359931946,
-0.03231031447649002,
-0.08589376509189606,
-0.1633463054895401,
0.026403428986668587,
-0.07700273394584656,
0.05221332609653473,
0.04776721075177193,
-0.03665859252214432,
0.02023705095052719,
-0.07958202809095383,
0.12739010155200958,
0.049698662012815475,
0.00541001046076417,
-0.09916839748620987,
0.07882837951183319,
-0.3034103214740753,
-0.02581131085753441,
-0.15228183567523956,
0.0772043839097023,
-0.07893010973930359,
0.01308529730886221,
0.05044940114021301,
0.043790437281131744,
-0.016942394897341728,
0.16269747912883759,
-0.17043575644493103,
-0.05301272124052048,
0.026445282623171806,
-0.09261117875576019,
-0.09916394203901291,
0.07275339215993881,
-0.06339669227600098,
0.21263530850410461,
0.08751397579908371,
0.17006252706050873,
-0.011036526411771774,
-0.16256992518901825,
0.1207515075802803,
0.07522942125797272,
-0.1639646589756012,
0.004287737421691418,
0.061784300953149796,
-0.0016935690073296428,
0.02746843732893467,
-0.01872866041958332,
-0.07289361208677292,
0.06302516162395477,
-0.07825060933828354,
0.022581040859222412,
0.06258945167064667,
-0.09531243145465851,
0.23986859619617462,
-0.005434412509202957,
0.0862451046705246,
-0.025957979261875153,
-0.09802921861410141,
0.00908072479069233,
0.07164718210697174,
-0.0014321404742076993,
0.01703714393079281,
-0.14553219079971313,
0.23044352233409882,
-0.07965081930160522,
0.011176814325153828,
-0.11607582122087479,
-0.1256982982158661,
0.011873425915837288,
0.13336114585399628,
0.059921663254499435,
0.16569606959819794,
0.09518871456384659,
-0.032197169959545135,
0.017584815621376038,
-0.0023385772947221994,
-0.09040450304746628,
0.01580043137073517,
-0.0021571461111307144,
-0.12167251110076904,
-0.07353103160858154,
-0.08134473115205765,
0.12585052847862244,
-0.20988115668296814,
0.015492538921535015,
0.04099845886230469,
0.008103687316179276,
0.04467369243502617,
0.023746047168970108,
-0.013269703835248947,
-0.00007021807687124237,
0.03244573250412941,
-0.10098352283239365,
0.12937165796756744,
0.013381263241171837,
0.014676140621304512,
-0.006365173030644655,
-0.05572463944554329,
0.03720450773835182,
0.040439579635858536,
-0.11237845569849014,
-0.11330515146255493,
-0.009658765979111195,
-0.0015364213613793254,
0.02637762948870659,
-0.022321155294775963,
0.052120618522167206,
0.27587956190109253,
0.05387469753623009,
0.10401033610105515,
-0.05769326910376549,
0.015315087512135506,
-0.015322818420827389,
-0.07135670632123947,
0.06358719617128372,
0.025013601407408714,
0.08050397783517838,
-0.03531401976943016,
0.03759452700614929,
0.1675453782081604,
-0.015888912603259087,
0.11127935349941254,
-0.06545067578554153,
-0.03844274953007698,
-0.043109722435474396,
0.05627678707242012,
0.015021559782326221,
0.04564907029271126,
0.0000015355876712419558,
-0.08444724231958389,
-0.03503387048840523,
-0.03988509997725487,
-0.010637006722390652,
-0.12273643165826797,
-0.00499896751716733,
0.01265440508723259,
-0.021940499544143677,
0.04488934203982353,
0.07375624030828476,
-0.04849626496434212,
0.025821007788181305,
0.06070821359753609,
-0.10193055868148804,
0.08957115560770035,
0.015067169442772865,
-0.06946801394224167,
0.13769419491291046,
-0.07484805583953857,
-0.045293889939785004,
-0.1025395318865776,
-0.1568877100944519,
0.09384927153587341,
0.06704871356487274,
-0.05427970737218857,
-0.1503879576921463,
-0.0016851738328114152,
-0.008973666466772556,
0.09206123650074005,
-0.006399387493729591,
-0.12621140480041504,
0.01989075168967247,
0.08295059949159622,
-0.05633419007062912,
-0.09804849326610565,
-0.0075809285044670105,
-0.05280788615345955,
-0.17707788944244385,
-0.03888550028204918,
-0.06398582458496094,
-0.06734282523393631,
0.23586803674697876,
0.02017230913043022,
0.08274748176336288,
-0.044721852988004684,
0.04250151664018631,
-0.012231717817485332,
0.0006326579605229199,
0.10689259320497513,
-0.09043551236391068,
-0.017900818958878517,
-0.001320177922025323,
-0.024820495396852493,
-0.07327181100845337,
0.029733488336205482,
-0.04272191599011421,
-0.08249637484550476,
-0.1415451467037201,
-0.04993678629398346,
-0.011005163192749023,
0.10754310339689255,
0.07337497919797897,
0.0048001972027122974,
-0.11733713001012802,
0.062058478593826294,
0.13692134618759155,
0.031207585707306862,
0.004062763415277004,
0.028157465159893036,
0.14977529644966125,
-0.10706274956464767,
-0.022463621571660042,
-0.038119975477457047,
-0.054863203316926956,
0.004114252515137196,
0.016883620992302895,
0.08840765058994293,
0.1410384476184845,
0.11468084901571274,
0.047563645988702774,
0.0464191697537899,
0.06561273336410522,
0.1694946140050888,
0.059157438576221466,
-0.10448314249515533,
-0.044678982347249985,
-0.0040070898830890656,
-0.10903503000736237,
0.057307638227939606,
0.16030821204185486,
0.06326017528772354,
-0.14463356137275696,
0.021787412464618683,
-0.038982175290584564,
0.13649246096611023,
0.020638149231672287,
-0.2677258849143982,
-0.008139112964272499,
0.023630544543266296,
-0.0010347915813326836,
-0.012379839085042477,
0.10821118950843811,
-0.040134772658348083,
-0.233198344707489,
-0.12299054861068726,
0.010077533312141895,
0.031144635751843452,
-0.1509784311056137,
0.015542911365628242,
-0.14036494493484497,
0.08027976751327515,
-0.007007129956036806,
0.07418135553598404,
-0.025149788707494736,
0.15060245990753174,
-0.028731435537338257,
0.01628703810274601,
-0.07902143895626068,
-0.047717493027448654,
0.09898673743009567,
-0.0046631391160190105,
0.1931537538766861,
0.005480166990309954,
-0.023713182657957077,
-0.12098433077335358,
-0.05229806900024414,
-0.04967813938856125,
0.010598190128803253,
-0.05373382940888405,
0.0765683576464653,
-0.02441473677754402,
-0.0039579677395522594,
-0.010900177992880344,
0.08942947536706924,
-0.05291692912578583,
0.03636563941836357,
-0.11246588081121445,
-0.05034820735454559,
0.14550213515758514,
-0.09163831174373627,
-0.10174685716629028,
-0.16205860674381256,
0.14137998223304749,
0.15070600807666779,
0.058216437697410583,
-0.04001476243138313,
0.03867831453680992,
-0.019183965399861336,
-0.024241572245955467,
0.07880574464797974,
0.009653856977820396,
0.1324782371520996,
-0.08983246237039566,
0.014327390119433403,
0.14589735865592957,
-0.05275948345661163,
0.016191845759749413,
-0.02304735779762268,
0.12202176451683044,
0.04650457948446274,
0.06189403310418129,
0.018547222018241882,
0.06655703485012054,
0.06466961652040482,
-0.02262885868549347,
0.08456692099571228,
0.030712679028511047,
-0.18644161522388458,
0.058530256152153015,
-0.09805119782686234,
0.22581584751605988,
0.05066308751702309,
0.06047345697879791,
0.2993181645870209,
0.21986234188079834,
-0.05372472479939461,
0.1669820249080658,
0.044286344200372696,
-0.05891284719109535,
-0.21245966851711273,
-0.03684934973716736,
-0.030655447393655777,
0.09436552971601486,
0.15607263147830963,
-0.0981721356511116,
-0.04201313853263855,
-0.00972361396998167,
-0.032264553010463715,
0.020120708271861076,
-0.24663487076759338,
-0.01734781451523304,
0.14379777014255524,
0.10629188269376755,
0.2451348900794983,
-0.006132842972874641,
0.023609744384884834,
0.049030207097530365,
0.018605992197990417,
-0.02483358606696129,
-0.21013511717319489,
0.09079083055257797,
0.006071676965802908,
0.04935038834810257,
0.022885039448738098,
-0.006052911281585693,
0.04500092566013336,
-0.073696069419384,
0.08904470503330231,
-0.08561883866786957,
-0.08341272175312042,
0.2185351401567459,
-0.03945168852806091,
-0.00661163916811347,
0.12917985022068024,
-0.011526807211339474,
-0.1097102016210556,
-0.015364703722298145,
0.027403371408581734,
0.030678823590278625,
-0.030246863141655922,
-0.03609466925263405,
0.024012766778469086,
0.10202405601739883,
-0.04282205551862717,
0.04565315693616867,
0.10240072011947632,
-0.020902957767248154,
0.15945613384246826,
0.13205459713935852,
0.10420060157775879,
0.002927543595433235,
-0.06464727967977524,
0.014349685050547123,
-0.055471502244472504,
0.02962767891585827,
-0.17038846015930176,
-0.0070191239938139915,
0.055695805698633194,
0.04772466421127319,
0.0945243164896965,
0.11333164572715759,
-0.127106174826622,
0.0300484336912632,
0.028996523469686508,
-0.06286120414733887,
-0.06029998138546944,
-0.002275418024510145,
-0.016458535566926003,
-0.008173024281859398,
-0.09947093576192856,
0.07884971052408218,
-0.10555081814527512,
-0.03306307643651962,
0.05025126785039902,
-0.0607193186879158,
-0.12852220237255096,
-0.010904680006206036,
0.1252979338169098,
0.061709314584732056,
-0.05078592896461487,
0.14939077198505402,
0.06109785661101341,
-0.08055379986763,
0.037185851484537125,
0.027442200109362602,
-0.08008874952793121,
-0.10198270529508591,
-0.0004569833690766245,
0.31761088967323303,
0.06076094135642052,
-0.0329466350376606,
-0.11946453154087067,
-0.15002015233039856,
0.04840146750211716,
0.1035679280757904,
0.12359631806612015,
0.011757869273424149,
-0.05322748050093651,
0.02236519381403923,
-0.05275069922208786,
0.03814244270324707,
0.06910209357738495,
-0.03928454965353012,
-0.13761694729328156,
0.0077122850343585014,
0.026647454127669334,
0.10174071043729782,
-0.06771174818277359,
-0.09184598177671432,
-0.18085066974163055,
0.09208621084690094,
-0.03432070091366768,
-0.10890032351016998,
0.027215104550123215,
-0.017406610772013664,
0.014248576015233994,
0.07639352232217789,
-0.047281619161367416,
0.01244808267802,
-0.1517520695924759,
0.07082249224185944,
0.05706808716058731,
0.08926787972450256,
0.000014311663107946515,
-0.054843269288539886,
0.07618319988250732,
-0.05763502046465874,
0.06680037826299667,
-0.053477559238672256,
0.005539732985198498,
0.10781200975179672,
-0.23264040052890778,
-0.021164139732718468,
0.009476077742874622,
-0.04681631922721863,
0.08765807747840881,
-0.19047698378562927,
0.024190550670027733,
-0.08897756040096283,
-0.024605726823210716,
0.01802127994596958,
-0.1086471825838089,
-0.04306677728891373,
0.08475461602210999,
0.037119291722774506,
-0.031288959085941315,
-0.04612116143107414,
-0.019314980134367943,
-0.0914498046040535,
0.053634315729141235,
0.07442525774240494,
-0.0687926784157753,
0.08314394950866699,
-0.05507456883788109,
0.00841207429766655,
-0.052043743431568146,
0.06760627031326294,
-0.012366239912807941,
-0.12672528624534607,
-0.02123171091079712,
-0.044928714632987976,
0.11662110686302185,
-0.023402327671647072,
0.022080281749367714,
0.014599837362766266,
0.0323631577193737,
-0.012065601535141468,
0.05028461292386055,
0.1019197478890419,
0.05136820673942566,
0.014879679307341576,
0.02292765863239765,
0.055746350437402725,
0.0757644772529602,
-0.1134679913520813,
0.06457309424877167,
-0.02098844014108181,
-0.08620109409093857,
0.1013324111700058,
0.06909440457820892,
0.037490107119083405,
0.15593400597572327,
0.22674402594566345,
0.10539932548999786,
-0.03564648702740669,
-0.03126971051096916,
0.12967991828918457,
0.17799612879753113,
-0.07682197540998459,
0.015780627727508545,
-0.0020607721526175737,
-0.017265556380152702,
-0.09849067777395248,
-0.13722245395183563,
-0.060460351407527924,
-0.2453264594078064,
0.1078341007232666,
-0.03288164362311363,
-0.04169659689068794,
0.128489688038826,
0.027952738106250763,
0.03724630922079086,
0.08183616399765015,
-0.12909026443958282,
-0.013460557907819748,
0.07749562710523605,
-0.08914026618003845,
-0.033571500331163406,
-0.17521262168884277,
-0.06771576404571533,
-0.08741120994091034,
-0.15989220142364502,
-0.06844990700483322,
0.029948782175779343,
0.035394806414842606,
0.010386589914560318,
-0.039711855351924896,
-0.01962728053331375,
0.011063394136726856,
-0.0025537724141031504,
-0.04985455423593521,
-0.01753084547817707,
0.021317757666110992,
-0.11333847790956497,
-0.024336790665984154,
0.16320326924324036,
-0.03297848999500275,
-0.18396754562854767,
-0.0405106395483017,
0.2157316505908966,
0.025046708062291145,
0.0590171180665493,
-0.073721744120121,
-0.016323629766702652,
0.021523483097553253,
0.20813441276550293,
0.10171995311975479,
-0.10821312665939331,
0.015457749366760254,
-0.03655189648270607,
0.0013793212128803134,
-0.061893612146377563,
0.10775819420814514,
0.06519263982772827,
-0.07549984753131866,
-0.17567221820354462,
-0.04389495030045509,
-0.08628730475902557,
0.03370477631688118,
-0.14383791387081146,
-0.03786516562104225,
0.1168690100312233,
0.004516853019595146,
-0.053927481174468994,
0.07883694022893906,
-0.17713546752929688,
0.03441957011818886,
-0.04880853369832039,
-0.13215437531471252,
-0.09491758048534393,
-0.10123858600854874,
0.0027463934384286404,
0.08913854509592056,
0.15567956864833832,
-0.06151591241359711,
-0.07471925020217896,
-0.009579092264175415,
-0.028091613203287125,
-0.052700337022542953,
-0.07900123298168182,
0.059512585401535034,
0.0007560851518064737,
0.16147300601005554,
-0.07439453154802322,
0.09558981657028198,
0.09099138528108597,
-0.021246420219540596,
-0.00915549136698246,
0.032866667956113815,
-0.003863809397444129,
-0.07436864078044891,
-0.04970616102218628,
0.02312966249883175,
0.027639856562018394,
0.10846075415611267,
-0.030836544930934906,
-0.1934703141450882,
0.11230092495679855,
0.09140218049287796,
-0.04296138137578964,
-0.046487610787153244,
0.05351927503943443,
-0.07097935676574707,
0.1252279132604599,
0.03444884717464447,
-0.02163051813840866,
0.013762647286057472,
-0.06370721012353897,
0.08370721340179443,
0.11594565212726593,
-0.048265840858221054,
-0.08278503268957138,
-0.06164652109146118,
0.012770666740834713,
0.02961382456123829,
-0.13650155067443848,
-0.21160630881786346,
-0.10802312940359116,
-0.1383298933506012,
0.004740108735859394,
-0.04703504592180252,
0.08498300611972809,
0.12991970777511597,
0.09780163317918777,
-0.011416295543313026,
-0.004867587238550186,
0.018085451796650887,
0.13192623853683472,
-0.11232008039951324,
-0.08192373812198639
] |
null | null | null | # Suponiendo que tienes un modelo entrenado llamado "bert_story_generator"
contexto_inicial = "En un reino lejano, había un valiente caballero que..."
longitud_deseada = 200
# Generar historia
historia_generada = bert_story_generator.generate(contexto_inicial, max_length=longitud_deseada)
print(historia_generada)
| {} | null | leinbasura/probemos | [
"region:us"
] | 2024-02-13T17:24:08+00:00 | [] | [] | TAGS
#region-us
| # Suponiendo que tienes un modelo entrenado llamado "bert_story_generator"
contexto_inicial = "En un reino lejano, había un valiente caballero que..."
longitud_deseada = 200
# Generar historia
historia_generada = bert_story_generator.generate(contexto_inicial, max_length=longitud_deseada)
print(historia_generada)
| [
"# Suponiendo que tienes un modelo entrenado llamado \"bert_story_generator\"\n\ncontexto_inicial = \"En un reino lejano, había un valiente caballero que...\"\nlongitud_deseada = 200",
"# Generar historia\nhistoria_generada = bert_story_generator.generate(contexto_inicial, max_length=longitud_deseada)\n\nprint(historia_generada)"
] | [
"TAGS\n#region-us \n",
"# Suponiendo que tienes un modelo entrenado llamado \"bert_story_generator\"\n\ncontexto_inicial = \"En un reino lejano, había un valiente caballero que...\"\nlongitud_deseada = 200",
"# Generar historia\nhistoria_generada = bert_story_generator.generate(contexto_inicial, max_length=longitud_deseada)\n\nprint(historia_generada)"
] | [
6,
49,
46
] | [
"passage: TAGS\n#region-us \n# Suponiendo que tienes un modelo entrenado llamado \"bert_story_generator\"\n\ncontexto_inicial = \"En un reino lejano, había un valiente caballero que...\"\nlongitud_deseada = 200# Generar historia\nhistoria_generada = bert_story_generator.generate(contexto_inicial, max_length=longitud_deseada)\n\nprint(historia_generada)"
] | [
0.03225335478782654,
0.16025876998901367,
-0.008396008983254433,
0.03294923156499863,
0.07013299316167831,
0.008235237561166286,
0.14417819678783417,
0.03168593719601631,
0.012083503417670727,
0.038406822830438614,
0.306819885969162,
-0.02678985893726349,
-0.006000272464007139,
-0.08093596249818802,
0.03268522024154663,
-0.23590463399887085,
-0.0060437642969191074,
0.07994791865348816,
-0.017516549676656723,
0.09982941299676895,
0.04054830223321915,
-0.07832641899585724,
0.07768614590167999,
-0.04133880138397217,
-0.06319525837898254,
0.07525882869958878,
-0.03204992786049843,
0.02249191515147686,
0.13993340730667114,
-0.08808421343564987,
0.10123700648546219,
-0.025748692452907562,
0.02880554273724556,
-0.18106584250926971,
0.03456656634807587,
0.009990439750254154,
0.015030093491077423,
0.017891714349389076,
0.06348109245300293,
-0.019328830763697624,
-0.03187674283981323,
0.13689686357975006,
-0.03808839991688728,
0.0064767515286803246,
-0.1851125806570053,
-0.004492989741265774,
0.04376751184463501,
-0.05618450418114662,
-0.00953119620680809,
0.08815071731805801,
0.008920292370021343,
-0.03120282106101513,
-0.12761515378952026,
-0.022822899743914604,
0.05883459746837616,
-0.17966370284557343,
-0.04517955705523491,
0.13424044847488403,
0.034024614840745926,
0.09571387618780136,
-0.14475347101688385,
0.08942985534667969,
0.07346045970916748,
0.09441681951284409,
-0.034435708075761795,
-0.09115315973758698,
0.05566320940852165,
0.13187605142593384,
-0.08186090737581253,
-0.06179965287446976,
0.30152571201324463,
0.022270841524004936,
-0.003300254698842764,
0.12570159137248993,
-0.030450573191046715,
-0.012170081026852131,
0.026908066123723984,
0.008774456568062305,
-0.01993347331881523,
0.10003434121608734,
0.07299082726240158,
-0.04334506019949913,
-0.0996614545583725,
-0.10026822984218597,
-0.134603351354599,
0.03756824508309364,
-0.04218387231230736,
0.06762824952602386,
-0.2121359258890152,
0.03398444131016731,
-0.12852907180786133,
-0.08726811408996582,
0.021439718082547188,
-0.027332358062267303,
0.03509093075990677,
-0.02445894666016102,
0.020953454077243805,
0.06120339408516884,
0.09390309453010559,
-0.04384908080101013,
-0.08276113122701645,
0.021116934716701508,
-0.07950203865766525,
0.10391366481781006,
0.07522822171449661,
0.021865086629986763,
-0.015898821875452995,
-0.07556059956550598,
-0.04236765205860138,
-0.03193029388785362,
-0.07903268188238144,
-0.014759298413991928,
-0.14883384108543396,
-0.0005673610721714795,
-0.05610007047653198,
0.04055207222700119,
-0.015434544533491135,
0.02538672462105751,
-0.021046165376901627,
0.024240195751190186,
-0.20580613613128662,
-0.002913333475589752,
-0.056430112570524216,
0.012066161260008812,
-0.07976995408535004,
-0.003180286381393671,
-0.09374092519283295,
-0.013872722163796425,
-0.02851662039756775,
0.024673203006386757,
-0.12024713307619095,
-0.07932340353727341,
-0.06228551268577576,
-0.09779338538646698,
0.048754919320344925,
-0.02807532250881195,
0.055281996726989746,
-0.08906622976064682,
-0.1632080078125,
0.008574414066970348,
0.07458050549030304,
-0.0402417816221714,
0.013807262293994427,
-0.10321202874183655,
-0.02298995479941368,
-0.008139674551784992,
0.029951322823762894,
-0.08002541959285736,
-0.05783497169613838,
0.07693174481391907,
-0.07688219845294952,
0.056383319199085236,
-0.11051655560731888,
0.06725198030471802,
-0.12990666925907135,
0.11911569535732269,
-0.039484575390815735,
0.04354674369096756,
0.0285929087549448,
0.07890652120113373,
-0.07668043673038483,
0.09778100252151489,
-0.10518588870763779,
0.06553308665752411,
0.0035843190271407366,
0.16018202900886536,
-0.22553947567939758,
-0.04876919835805893,
0.0868624895811081,
0.02110438607633114,
-0.1301770955324173,
0.06350547820329666,
-0.03228868544101715,
0.18826772272586823,
0.06957436352968216,
0.2542291581630707,
0.015845023095607758,
-0.015073766931891441,
0.15486693382263184,
0.0627409815788269,
-0.0511869378387928,
0.042346540838479996,
0.047598984092473984,
-0.11373060941696167,
-0.11749957501888275,
-0.017123373225331306,
-0.0252196304500103,
0.040213391184806824,
-0.0554128997027874,
0.005299554206430912,
0.037338852882385254,
-0.028761057183146477,
0.11945801973342896,
-0.0027460092678666115,
0.10202687233686447,
-0.019235078245401382,
0.036561693996191025,
0.022581154480576515,
-0.008326948620378971,
-0.06094232201576233,
0.011536895297467709,
0.04205125570297241,
0.043148331344127655,
0.0006471944507211447,
0.08616024255752563,
-0.07565194368362427,
0.0536479614675045,
0.001495025004260242,
0.12256341427564621,
0.03050914779305458,
0.2364506721496582,
0.07147011905908585,
0.08587557822465897,
-0.0005460372776724398,
-0.015291762538254261,
0.013495382852852345,
-0.0016261895652860403,
-0.10090856999158859,
-0.06481999158859253,
0.052304934710264206,
-0.07041681557893753,
-0.08818717300891876,
-0.12803727388381958,
0.021777495741844177,
0.03450192138552666,
-0.058442190289497375,
-0.0006770013133063912,
-0.027736708521842957,
-0.01936648227274418,
-0.004514268133789301,
-0.059285108000040054,
-0.03367682546377182,
0.02592284418642521,
-0.03974660113453865,
-0.09093204140663147,
0.09882283210754395,
-0.16432562470436096,
-0.037604231387376785,
0.09339381009340286,
-0.27220770716667175,
0.0016156883211806417,
-0.10529423505067825,
-0.03262163698673248,
0.0204705148935318,
-0.04713929444551468,
-0.12303970754146576,
0.087654709815979,
0.06883613765239716,
0.05933045595884323,
-0.06352004408836365,
0.02632610686123371,
-0.06382542848587036,
-0.06312763690948486,
-0.019048888236284256,
0.12946400046348572,
0.030566027387976646,
-0.10779343545436859,
0.11671801656484604,
0.2986065745353699,
-0.033017709851264954,
0.12254685163497925,
0.05488630756735802,
-0.07398822158575058,
-0.022229483351111412,
0.006524830590933561,
-0.034342214465141296,
0.10422583669424057,
-0.24166181683540344,
0.039276108145713806,
0.019828682765364647,
0.0056097921915352345,
-0.0022230851463973522,
-0.057270318269729614,
-0.055971644818782806,
-0.003992087673395872,
-0.03429127484560013,
-0.06353892385959625,
0.014894303865730762,
-0.05381724610924721,
0.05291582643985748,
0.07742337882518768,
-0.09443601220846176,
0.09724956750869751,
0.024600079283118248,
-0.03936265408992767,
0.144973486661911,
-0.07864566147327423,
-0.08896651864051819,
-0.07423608750104904,
-0.13969585299491882,
-0.040178216993808746,
0.11205753684043884,
0.030170006677508354,
-0.1497180163860321,
0.005299308802932501,
0.029937488958239555,
0.1949079930782318,
-0.197977215051651,
-0.0281688142567873,
-0.02238825149834156,
0.04646793380379677,
-0.1069740504026413,
0.008117038756608963,
-0.03624579682946205,
-0.04610084742307663,
-0.0556894987821579,
0.057232584804296494,
-0.15740559995174408,
0.01765209436416626,
0.18527469038963318,
0.015910059213638306,
0.07801362127065659,
0.005073810927569866,
0.22263258695602417,
-0.04216735064983368,
-0.0018129354575648904,
0.06127508729696274,
-0.03265143185853958,
0.0726565346121788,
0.21172001957893372,
0.09233368188142776,
-0.06742309033870697,
0.013242404907941818,
0.08032368123531342,
-0.05398593097925186,
-0.0896730050444603,
-0.030744338408112526,
-0.06946871429681778,
0.14993171393871307,
0.10964666306972504,
0.04658999666571617,
0.023873360827565193,
0.07373373955488205,
0.01807224191725254,
0.020274626091122627,
-0.012453075498342514,
0.02098129130899906,
0.010815663263201714,
-0.10293686389923096,
-0.044261377304792404,
0.06144137308001518,
-0.07775940001010895,
0.0010669647017493844,
0.0907907783985138,
0.08754733204841614,
0.18871431052684784,
0.1012040451169014,
0.07658340781927109,
0.0959932953119278,
0.04335540160536766,
0.09940831363201141,
0.059702541679143906,
-0.039089079946279526,
-0.04685302451252937,
-0.030985981225967407,
-0.02087194100022316,
0.030527081340551376,
0.05875469371676445,
-0.03350426256656647,
-0.04098076745867729,
-0.07207007706165314,
0.025591973215341568,
0.10503639280796051,
0.09112825244665146,
-0.08250807225704193,
0.018197642639279366,
0.09103920310735703,
0.013402448035776615,
-0.11436960101127625,
0.13668549060821533,
0.12836436927318573,
-0.04694484546780586,
-0.04794497415423393,
0.012188713997602463,
0.13009338080883026,
0.03812607377767563,
0.15466541051864624,
-0.14644742012023926,
-0.07071974873542786,
-0.05954030528664589,
0.06093211472034454,
-0.23538240790367126,
0.343017578125,
0.02567451260983944,
-0.05721388757228851,
-0.07007301598787308,
-0.07866182923316956,
-0.00972149707376957,
0.11660026013851166,
0.16602160036563873,
0.00967076700180769,
0.048592645674943924,
-0.12150201946496964,
-0.0049616205506026745,
-0.029915926977992058,
0.06677307933568954,
-0.17202386260032654,
0.03714938461780548,
0.02661530114710331,
0.06373656541109085,
-0.046366672962903976,
-0.007945045828819275,
-0.06612057238817215,
-0.05636579915881157,
-0.04881543293595314,
0.05539720132946968,
0.12920837104320526,
0.015256527811288834,
0.05261458829045296,
0.09583026170730591,
0.009537541307508945,
0.027130072936415672,
-0.01569329760968685,
-0.007353561464697123,
0.027581579983234406,
0.02598539926111698,
-0.045472584664821625,
-0.08220838010311127,
-0.1042540967464447,
0.12806902825832367,
-0.10643225908279419,
-0.024459199979901314,
0.02133158966898918,
-0.040825966745615005,
0.08648516237735748,
-0.03910159692168236,
0.05200096219778061,
0.09134223312139511,
0.07535120844841003,
0.04826585575938225,
-0.042762577533721924,
-0.08355767279863358,
-0.080458864569664,
0.10033039003610611,
-0.24002036452293396,
-0.11459971964359283,
0.008054337464272976,
-0.050289615988731384,
0.11619031429290771,
-0.08091174811124802,
-0.0060853720642626286,
0.2271958887577057,
0.06803153455257416,
-0.0032028136774897575,
0.07785950601100922,
0.27338430285453796,
-0.08062485605478287,
-0.3313775956630707,
0.01599394530057907,
-0.05135611444711685,
-0.05620572343468666,
0.02897438406944275,
-0.152190700173378,
0.07709084451198578,
0.0028925759252160788,
0.03594259172677994,
0.09729443490505219,
-0.2350861132144928,
-0.03012661635875702,
0.18784911930561066,
-0.05050719156861305,
0.25421684980392456,
-0.10062776505947113,
-0.052160486578941345,
-0.10822483897209167,
0.026486016809940338,
0.10624208301305771,
-0.10570301115512848,
0.08183442801237106,
-0.05696682631969452,
0.13472354412078857,
0.050461724400520325,
-0.003437779610976577,
0.1288159191608429,
0.018265822902321815,
0.014112632721662521,
-0.04603506997227669,
-0.14972379803657532,
0.19564513862133026,
-0.011157326400279999,
-0.05730082094669342,
0.039183102548122406,
-0.09552853554487228,
-0.1593596339225769,
0.011969329789280891,
-0.08921340107917786,
-0.021541936323046684,
-0.009618188254535198,
-0.09183938056230545,
0.0356898233294487,
0.02833777852356434,
-0.027278810739517212,
0.059791892766952515,
0.10716429352760315,
-0.08266869187355042,
0.06935199350118637,
0.013430710881948471,
0.059224169701337814,
-0.05998300760984421,
-0.0650557354092598,
0.09552578628063202,
-0.03218138962984085,
0.10362061858177185,
-0.14935678243637085,
0.0001556280767545104,
0.08445052802562714,
-0.018275829032063484,
0.06701642274856567,
0.09369666129350662,
-0.03041408397257328,
0.040695901960134506,
0.0032821546774357557,
-0.16395168006420135,
-0.1372533142566681,
-0.051854778081178665,
0.04656315594911575,
-0.004536065272986889,
-0.08601773530244827,
0.08618761599063873,
0.04715816676616669,
0.047355152666568756,
0.03754076734185219,
-0.029325256124138832,
-0.10359209775924683,
0.03992649167776108,
-0.024274369701743126,
0.034333012998104095,
-0.05977249890565872,
0.14250235259532928,
0.006393626797944307,
-0.022830462083220482,
0.0297415629029274,
0.057495079934597015,
-0.004578195512294769,
-0.05620790645480156,
-0.025248782709240913,
0.15966269373893738,
-0.11314979940652847,
-0.03238798677921295,
0.06471491605043411,
-0.13549815118312836,
0.012430166825652122,
0.07765232026576996,
0.030562175437808037,
0.041839055716991425,
-0.0977313369512558,
-0.013965653255581856,
0.004868263844400644,
-0.036315444856882095,
-0.016383741050958633,
-0.06744059920310974,
-0.011476482264697552,
0.06966882199048996,
-0.05951817333698273,
0.10896051675081253,
-0.04705066606402397,
-0.10966342687606812,
-0.138358011841774,
0.13406024873256683,
-0.1948854774236679,
-0.012096758000552654,
-0.0451345294713974,
-0.062056418508291245,
0.009633449837565422,
0.012801837176084518,
-0.03502912074327469,
-0.08898238092660904,
-0.13538771867752075,
0.06290706247091293,
0.05633652210235596,
0.016109753400087357,
0.04475809633731842,
-0.033281389623880386,
0.12434828281402588,
-0.03899548947811127,
0.03343451768159866,
0.09212177246809006,
-0.031122837215662003,
0.05192776024341583,
-0.31338733434677124,
-0.04025689512491226,
0.03015439584851265,
0.00454729562625289,
0.03485659137368202,
0.12491843104362488,
-0.09998437762260437,
-0.049451518803834915,
-0.04626205191016197,
0.023256631568074226,
-0.04527761787176132,
-0.056962911039590836,
0.0036139939911663532,
0.052312035113573074,
-0.08663715422153473,
-0.030492249876260757,
-0.03457042947411537,
0.09260944277048111,
0.018303249031305313,
0.02317039854824543,
0.006154988426715136,
0.09765904396772385,
-0.022905336692929268,
0.05550657957792282,
0.04186396673321724,
-0.042542532086372375,
-0.0683785155415535,
-0.0789412185549736,
0.047709763050079346,
-0.015867896378040314,
0.07496192306280136,
-0.05039430409669876,
0.04999807849526405,
0.002075658179819584,
0.10621548444032669,
0.030018175020813942,
0.0018983768532052636,
0.16183345019817352,
0.08468595147132874,
-0.05602666363120079,
-0.09269704669713974,
0.0653369128704071,
0.0215293001383543,
0.11025407910346985,
0.12778808176517487,
-0.024248287081718445,
0.06703183054924011,
0.045669615268707275,
-0.014903763309121132,
0.06730271875858307,
0.07150180637836456,
-0.021630937233567238,
0.1725330650806427,
-0.027298232540488243,
-0.004865263123065233,
0.12785589694976807,
0.0851241871714592,
-0.008464908227324486,
0.02526204288005829,
-0.0030038743279874325,
-0.06548474729061127,
-0.08678992837667465,
-0.11071465909481049,
0.01680607534945011,
-0.024847960099577904,
0.013025672174990177,
-0.09922754019498825,
0.1191532239317894,
0.045640576630830765,
0.003934879787266254,
-0.0028856422286480665,
0.11910582333803177,
0.03808531165122986,
-0.10039285570383072,
0.024184856563806534,
-0.04914730787277222,
0.07518888264894485,
-0.02749503403902054,
-0.018809258937835693,
-0.019457092508673668,
-0.0269789882004261,
-0.0366375558078289,
0.0436391681432724,
0.009968411177396774,
-0.04061473160982132,
-0.16911642253398895,
-0.06017335131764412,
-0.0380258709192276,
0.009181884117424488,
-0.07949285954236984,
0.09994374960660934,
0.03409199044108391,
-0.07829341292381287,
0.009968488477170467,
0.08104625344276428,
0.014229734428226948,
-0.02410707250237465,
0.01998424157500267,
0.06671373546123505,
0.015272555872797966,
0.09941224753856659,
-0.0821695476770401,
0.01950702629983425,
-0.0013663896825164557,
0.33987531065940857,
0.16495761275291443,
-0.11587268114089966,
-0.05941762402653694,
-0.018144790083169937,
0.029286744073033333,
0.05041113495826721,
0.04923563450574875,
0.0015272166347131133,
0.08552509546279907,
-0.17605441808700562,
0.0015707671409472823,
-0.01990346424281597,
-0.024045653641223907,
-0.16890279948711395,
0.053686823695898056,
0.14990104734897614,
-0.03532573580741882,
-0.12223032861948013,
0.10929988324642181,
-0.20324312150478363,
0.002019990934059024,
-0.08642354607582092,
-0.07043776661157608,
0.03831356018781662,
-0.08221133053302765,
0.08185147494077682,
0.015048799104988575,
0.0923982635140419,
-0.06880160421133041,
-0.021416759118437767,
-0.08489799499511719,
-0.03223491460084915,
-0.15554577112197876,
-0.15813152492046356,
0.12731347978115082,
-0.0365622416138649,
0.1740214228630066,
-0.04241596907377243,
-0.09407491981983185,
0.07030101865530014,
-0.02850993163883686,
0.00642716558650136,
0.05867889150977135,
0.037650227546691895,
0.028187504038214684,
-0.07450181990861893,
0.021213799715042114,
-0.009477531537413597,
-0.03271318972110748,
0.01003742404282093,
-0.0724439024925232,
0.03504578396677971,
0.13167636096477509,
-0.055298641324043274,
0.008837809786200523,
0.01779436133801937,
0.010202945210039616,
0.059218067675828934,
0.0642416924238205,
-0.00101727363653481,
-0.037055131047964096,
-0.03248187527060509,
-0.030507288873195648,
-0.005974427331238985,
-0.05416426435112953,
-0.08472555875778198,
-0.03393898531794548,
-0.03218764811754227,
0.11283157020807266,
-0.08306188136339188,
-0.20016221702098846,
-0.01444265153259039,
0.014030338265001774,
0.11108200252056122,
0.03522781655192375,
0.009462380781769753,
0.08344542980194092,
0.09313522279262543,
-0.00432184711098671,
-0.13908535242080688,
0.003848041407763958,
0.0862070694565773,
-0.03711007162928581,
-0.1096062958240509
] |
null | null | transformers |
# Danish-Swedish Merged Model
This is a merge of the following models, all based on `mistralai/Mistral-7B-v0.1`:
1. `danish-foundation-models/munin-7b-alpha`, continued pretraining on Danish data;
2. `timpal0l/Mistral-7B-v0.1-flashback-v2`, continued pretraining on Swedish data.
## Model Details
- **Merged by:** [Dan Saattrup Nielsen](https://www.saattrupdan.com/)
- **Model type:** Decoder model, based on `mistralai/Mistral-7B-v0.1`
- **Language(s):** Danish and Swedish
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Merge configuration:**
```python
dict(
models=[
dict(
model="danish-foundation-models/munin-7b-alpha",
parameters=dict(
weight=1.0,
density=0.3,
),
),
dict(
model="timpal0l/Mistral-7B-v0.1-flashback-v2",
parameters=dict(
weight=1.0,
density=0.3,
),
),
],
merge_method="dare_ties",
random_seed=4242
base_model="mistralai/Mistral-7B-v0.1",
parameters=dict(
int8_mask=True,
normalize=True,
),
dtype="bfloat16",
)
``` | {"language": ["da", "sv"], "license": "cc-by-4.0", "library_name": "transformers", "tags": ["merge", "mergekit"], "base_model": ["danish-foundation-models/munin-7b-alpha", "timpal0l/Mistral-7B-v0.1-flashback-v2"]} | text-generation | merge-crew/da-sv-dare-ties-density-0.3 | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"da",
"sv",
"base_model:danish-foundation-models/munin-7b-alpha",
"base_model:timpal0l/Mistral-7B-v0.1-flashback-v2",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:25:25+00:00 | [] | [
"da",
"sv"
] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Danish-Swedish Merged Model
This is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':
1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;
2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.
## Model Details
- Merged by: Dan Saattrup Nielsen
- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'
- Language(s): Danish and Swedish
- License: CC-BY-4.0
- Merge configuration:
| [
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
112,
92,
57
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
-0.07790645211935043,
-0.03015519306063652,
-0.001845451071858406,
0.01761663891375065,
0.005533731542527676,
0.017309537157416344,
0.18024572730064392,
0.014157861471176147,
0.11699634045362473,
0.049290940165519714,
0.09461456537246704,
-0.025814635679125786,
0.07459410279989243,
0.15416653454303741,
-0.023723548278212547,
-0.2509255111217499,
0.16021594405174255,
-0.06184382736682892,
-0.0011111752828583121,
0.06811320781707764,
0.16061803698539734,
-0.05339423194527626,
0.060751914978027344,
-0.025017917156219482,
-0.010531418025493622,
-0.04100566729903221,
-0.013157473877072334,
-0.01645241677761078,
0.09814372658729553,
0.07561057060956955,
0.12545564770698547,
0.10607897490262985,
0.09971975535154343,
-0.09932507574558258,
0.017701633274555206,
-0.05002636834979057,
-0.012917673215270042,
0.06271383166313171,
0.022881586104631424,
0.00972265750169754,
0.12558315694332123,
0.004797929432243109,
0.02946697175502777,
0.01172764040529728,
-0.024050505831837654,
-0.14779840409755707,
-0.09297361969947815,
0.0884193703532219,
0.12674783170223236,
0.02148253843188286,
-0.056929804384708405,
0.02347111701965332,
-0.07782470434904099,
0.052233461290597916,
0.01635611802339554,
-0.20452626049518585,
-0.029955873265862465,
0.2827467918395996,
0.09390783309936523,
0.021380765363574028,
-0.004600406624376774,
0.07961131632328033,
0.030591290444135666,
0.05097811296582222,
0.016523117199540138,
-0.04365215450525284,
0.1394139677286148,
-0.05343722924590111,
-0.138288676738739,
0.04785174876451492,
0.24915790557861328,
0.006434302311390638,
-0.03581035137176514,
-0.1517181545495987,
-0.014848783612251282,
0.06103600934147835,
-0.04403603449463844,
-0.033446673303842545,
-0.00813213549554348,
-0.014270576648414135,
0.11287036538124084,
-0.05263213440775871,
-0.09540428966283798,
-0.035252559930086136,
-0.08226437121629715,
0.04639798030257225,
0.0012334260391071439,
0.019760075956583023,
0.030299492180347443,
0.04052567481994629,
-0.2250727117061615,
-0.13539139926433563,
-0.07080507278442383,
-0.13484181463718414,
-0.07491977512836456,
-0.07721184939146042,
-0.09408523142337799,
-0.1961917132139206,
0.08598749339580536,
0.15959973633289337,
-0.1339980661869049,
0.033623985946178436,
0.03499354422092438,
0.04502776637673378,
0.050829555839300156,
0.05912023037672043,
-0.1169213280081749,
-0.06325632333755493,
-0.005035800859332085,
0.011565557681024075,
0.05594192445278168,
-0.0146050238981843,
-0.1415129452943802,
-0.04646974056959152,
0.07210437208414078,
-0.03200290724635124,
-0.025780152529478073,
0.09820174425840378,
-0.04346888139843941,
-0.036695629358291626,
0.12508425116539001,
-0.08411811292171478,
-0.038201283663511276,
0.019165784120559692,
-0.02553435228765011,
0.02469651773571968,
0.03735232353210449,
0.08094065636396408,
-0.01679702289402485,
0.12463073432445526,
-0.01627068966627121,
-0.02836420387029648,
-0.012457841075956821,
-0.17668162286281586,
0.06874177604913712,
-0.0422675758600235,
-0.03485698625445366,
-0.08175491541624069,
-0.16885918378829956,
-0.024253210052847862,
0.08906910568475723,
-0.06898833066225052,
0.004269849509000778,
-0.04987344518303871,
-0.04991753026843071,
0.0392429381608963,
-0.04194767773151398,
0.0010451647685840726,
-0.024424729868769646,
-0.029048871248960495,
-0.13120698928833008,
0.05863428860902786,
-0.13190720975399017,
0.012754985131323338,
-0.15204405784606934,
0.03729171305894852,
-0.3218300938606262,
0.09366514533758163,
-0.14123386144638062,
0.018095970153808594,
-0.15655501186847687,
-0.04304054006934166,
0.042186833918094635,
0.04188097268342972,
0.020041609182953835,
0.1468127965927124,
-0.21928861737251282,
-0.015325666405260563,
0.08153565973043442,
-0.18640124797821045,
-0.07752858102321625,
0.09157474339008331,
0.009631101042032242,
0.021671805530786514,
0.09708596020936966,
0.1678217202425003,
0.10420577228069305,
-0.0477188415825367,
0.007227534428238869,
0.015816273167729378,
0.03098001331090927,
0.034281570464372635,
0.08995219320058823,
-0.061474382877349854,
-0.09744572639465332,
0.04602845385670662,
-0.14474420249462128,
-0.02051553875207901,
-0.020364994183182716,
-0.045381125062704086,
-0.02002980187535286,
-0.028931058943271637,
0.10917680710554123,
0.019057774916291237,
0.011198156513273716,
-0.058678027242422104,
-0.06079668924212456,
0.1512085646390915,
0.052909865975379944,
-0.06890697032213211,
0.0011929306201636791,
-0.04360351711511612,
0.15894658863544464,
-0.09105619788169861,
0.027368832379579544,
-0.10843247920274734,
-0.2061401903629303,
-0.02178545854985714,
-0.04498995095491409,
-0.017810771241784096,
0.13020773231983185,
0.09354060888290405,
0.08364523947238922,
-0.07487242668867111,
0.023084232583642006,
0.04003618285059929,
0.023967042565345764,
0.022315487265586853,
-0.22083508968353271,
-0.04057543724775314,
-0.08819638192653656,
0.15791065990924835,
-0.12362311035394669,
-0.019306158646941185,
0.027991700917482376,
0.1785343438386917,
-0.021734127774834633,
0.014100376516580582,
0.033973317593336105,
0.023144902661442757,
-0.023902487009763718,
0.007200213149189949,
0.060537129640579224,
-0.06724534928798676,
-0.16839800775051117,
0.19399064779281616,
-0.08351777493953705,
-0.05803235247731209,
0.0986170619726181,
0.060517001897096634,
-0.05501345917582512,
-0.07016870379447937,
0.005494724493473768,
-0.00336460885591805,
0.014051906764507294,
-0.07767163962125778,
0.02727637253701687,
0.043538421392440796,
0.08637576550245285,
-0.07714254409074783,
-0.01984459161758423,
0.026117395609617233,
-0.04571007564663887,
-0.08532947301864624,
0.15370550751686096,
-0.030041104182600975,
-0.2126939594745636,
0.08588036894798279,
0.10357401520013809,
0.004937663208693266,
0.15892095863819122,
-0.044131647795438766,
-0.020489247515797615,
-0.02474173717200756,
0.01483137160539627,
-0.027603954076766968,
0.11371316760778427,
0.04838012158870697,
0.03393398970365524,
0.0565028116106987,
0.030634425580501556,
0.005224061198532581,
-0.03415625914931297,
0.0007804827182553709,
-0.0005763129447586834,
-0.07688332349061966,
-0.022993700578808784,
0.11663074046373367,
-0.012423141859471798,
0.04763064533472061,
0.006913137622177601,
-0.10942798852920532,
0.030520640313625336,
-0.02305247262120247,
-0.11156577616930008,
0.19326670467853546,
-0.14229537546634674,
-0.1626935452222824,
-0.1715647429227829,
-0.014565713703632355,
-0.15144121646881104,
0.04017765074968338,
0.029991697520017624,
-0.029643531888723373,
-0.12352485954761505,
-0.154256671667099,
0.13969756662845612,
0.05257447808980942,
-0.039597973227500916,
-0.06658301502466202,
-0.06861234456300735,
0.015273235738277435,
-0.09608869254589081,
-0.004772777669131756,
-0.03693890571594238,
0.05918627232313156,
0.027588438242673874,
-0.032047294080257416,
0.02602231130003929,
0.12100129574537277,
0.01099711935967207,
-0.022437460720539093,
-0.005009934306144714,
0.2827775180339813,
-0.006333152763545513,
0.13683107495307922,
0.10430105775594711,
-0.0714607685804367,
0.019691525027155876,
0.30313563346862793,
0.049881141632795334,
-0.019728565588593483,
-0.01599447801709175,
0.006293904967606068,
-0.05709044635295868,
-0.17038887739181519,
-0.14377093315124512,
-0.030107727274298668,
-0.02747768722474575,
0.031249454244971275,
0.02323758788406849,
0.07741788029670715,
0.09933672100305557,
-0.05783819779753685,
-0.06773658096790314,
0.15389065444469452,
0.07587559521198273,
0.1819363534450531,
0.010931090451776981,
0.13907504081726074,
-0.03223525732755661,
0.041536640375852585,
0.05202906206250191,
-0.04060248285531998,
0.1249179095029831,
0.0006364253349602222,
0.0466010645031929,
0.08231286704540253,
0.020827915519475937,
0.06121780350804329,
0.05880802869796753,
-0.027373377233743668,
-0.03801354020833969,
0.007529884576797485,
-0.11445717513561249,
0.008438142947852612,
0.05189485847949982,
-0.02996695041656494,
0.02611970342695713,
-0.05229169875383377,
-0.01613765023648739,
0.02872016839683056,
0.13507109880447388,
0.1376635730266571,
-0.21791858971118927,
-0.14808011054992676,
0.09848155826330185,
0.04242284968495369,
-0.027359800413250923,
-0.03314428776502609,
0.1079636812210083,
-0.04385751113295555,
0.1308964192867279,
-0.06752904504537582,
0.08699766546487808,
0.05261766165494919,
-0.00839739479124546,
0.017166757956147194,
0.15610235929489136,
-0.01823996566236019,
0.03997412323951721,
-0.1572490781545639,
0.2206059843301773,
0.02330763265490532,
0.05083117634057999,
-0.02731296978890896,
0.05548835173249245,
-0.03634350374341011,
0.2931061387062073,
0.14591319859027863,
0.04480881616473198,
-0.20216615498065948,
-0.03303123265504837,
-0.05310072749853134,
0.002297710394486785,
-0.011837710626423359,
-0.0912259891629219,
0.05505895987153053,
-0.026867184787988663,
-0.019597359001636505,
-0.01445654034614563,
0.006882836576551199,
-0.19464567303657532,
-0.024847207590937614,
0.08003702014684677,
0.028117317706346512,
0.023757468909025192,
-0.042370591312646866,
-0.0780787542462349,
-0.24140657484531403,
0.13903242349624634,
-0.14701692759990692,
-0.14990006387233734,
-0.12257049977779388,
-0.014571533538401127,
0.16712133586406708,
-0.04927896708250046,
0.0017193779349327087,
-0.04505350440740585,
0.11273565143346786,
-0.08050554990768433,
-0.11114968359470367,
0.0606694258749485,
-0.10540656745433807,
-0.12754999101161957,
0.026054352521896362,
0.13365209102630615,
0.031114904209971428,
0.011548097245395184,
0.06189339980483055,
0.0839027613401413,
0.004083338659256697,
-0.10294199734926224,
-0.032712068408727646,
0.16165977716445923,
0.07882702350616455,
0.019927464425563812,
-0.05372723564505577,
-0.1367807388305664,
0.04402880743145943,
0.043714579194784164,
0.054820965975522995,
0.21810968220233917,
-0.07597452402114868,
0.15984539687633514,
0.24819068610668182,
-0.04421228542923927,
-0.27244284749031067,
0.008268083445727825,
0.026019161567091942,
0.04910096526145935,
0.028192713856697083,
-0.06604106724262238,
0.07096776366233826,
0.06056975573301315,
-0.019779199734330177,
-0.0437302440404892,
-0.2815413773059845,
-0.15509745478630066,
0.0798153355717659,
0.04970274120569229,
0.13793402910232544,
-0.019226856529712677,
-0.09838006645441055,
-0.07043582946062088,
-0.22069935500621796,
0.025669462978839874,
-0.060360364615917206,
0.04356686398386955,
0.050906505435705185,
0.10239969193935394,
0.04695972800254822,
-0.05324345827102661,
0.20339259505271912,
-0.006453427951782942,
0.0014867380959913135,
-0.14374053478240967,
0.0974493995308876,
0.1210208535194397,
-0.05566909536719322,
0.1826964169740677,
-0.11554885655641556,
0.01881491020321846,
0.004040393978357315,
-0.0695972591638565,
-0.05706189200282097,
0.1300232857465744,
-0.06494156271219254,
-0.09464558213949203,
-0.029273951426148415,
0.12781299650669098,
0.04889867454767227,
-0.044869549572467804,
0.16700761020183563,
-0.137804314494133,
0.060993093997240067,
0.0686861053109169,
0.18163862824440002,
-0.008038914762437344,
0.050217024981975555,
0.07365497946739197,
-0.06783270835876465,
0.09087264537811279,
-0.09697553515434265,
0.026648743078112602,
0.12607236206531525,
-0.0818360224366188,
0.10778290778398514,
-0.002373751485720277,
-0.0716380700469017,
-0.05003531277179718,
0.07754302024841309,
-0.12806205451488495,
-0.20083147287368774,
-0.005338768009096384,
-0.07004976272583008,
-0.008155906572937965,
0.07091569155454636,
0.19188733398914337,
-0.10710691660642624,
0.05187798663973808,
0.04366334155201912,
0.038712747395038605,
-0.050928205251693726,
0.09676147252321243,
-0.031504202634096146,
0.08796443790197372,
-0.12471625208854675,
0.08662746846675873,
0.009572353214025497,
-0.009284530766308308,
0.023202894255518913,
0.011841743253171444,
-0.15221507847309113,
-0.10465230792760849,
-0.07098477333784103,
0.1309494972229004,
-0.10965951532125473,
-0.06321429461240768,
-0.04528801515698433,
-0.21013621985912323,
-0.004382205195724964,
0.1510908156633377,
0.05101395770907402,
0.006888202857226133,
0.039325423538684845,
-0.0834689661860466,
-0.046084217727184296,
0.10527510195970535,
-0.008401305414736271,
0.054947901517152786,
-0.0947478711605072,
0.031088072806596756,
-0.07272321730852127,
-0.0006152761052362621,
-0.06085532158613205,
0.046569570899009705,
-0.09244837611913681,
-0.04433303698897362,
-0.24476198852062225,
-0.02948712930083275,
-0.10162737220525742,
0.005925409961491823,
-0.023792089894413948,
-0.05791904404759407,
-0.009580965153872967,
0.02944793552160263,
-0.052064113318920135,
0.028331203386187553,
-0.054165177047252655,
0.03355591744184494,
-0.10573776066303253,
-0.042767178267240524,
-0.02531902864575386,
-0.006444650702178478,
0.06245148554444313,
-0.024661120027303696,
-0.02460709773004055,
0.06862392276525497,
-0.15297682583332062,
0.05816784128546715,
-0.00839685183018446,
-0.008775755763053894,
0.03712017461657524,
-0.09403734654188156,
-0.07964511960744858,
0.033168405294418335,
-0.05862830579280853,
0.04005905240774155,
-0.0031817953567951918,
-0.04679165035486221,
-0.029700614511966705,
0.003948427736759186,
-0.011108252219855785,
-0.04573764652013779,
0.06480401754379272,
0.09253077208995819,
0.08296994864940643,
0.18830294907093048,
-0.08147912472486496,
0.03735468536615372,
-0.048419978469610214,
-0.012443006038665771,
0.042660780251026154,
-0.06875362247228622,
-0.11256622523069382,
-0.043064411729574203,
0.005144929513335228,
-0.07369814068078995,
0.12754903733730316,
0.0005650114035233855,
0.018743859604001045,
0.05773729458451271,
0.046778008341789246,
0.04026972874999046,
0.09245322644710541,
0.25515222549438477,
0.0022486119996756315,
0.0125136012211442,
-0.07156746834516525,
0.03337785601615906,
-0.03308577463030815,
-0.04718247801065445,
0.12194256484508514,
0.09950623661279678,
0.015347703360021114,
0.06162753701210022,
0.09824590384960175,
0.04838903248310089,
-0.004267261829227209,
0.12456070631742477,
-0.004413316026329994,
0.07239881157875061,
0.0010569532169029117,
0.10575029999017715,
0.1044192910194397,
-0.1553594321012497,
0.030284132808446884,
-0.024085834622383118,
-0.0652424544095993,
-0.11762596666812897,
-0.2856464385986328,
-0.12367710471153259,
-0.06410928815603256,
-0.003306539496406913,
-0.13027767837047577,
-0.020353415980935097,
0.0115639828145504,
0.08691554516553879,
0.00982686411589384,
0.06335189938545227,
-0.13382595777511597,
-0.024149540811777115,
0.02545652911067009,
0.003029368817806244,
0.011984245851635933,
0.05927858129143715,
-0.08694147318601608,
0.06390450149774551,
0.05681420862674713,
-0.059431787580251694,
0.0013354551047086716,
0.05571134015917778,
-0.004035496152937412,
-0.0043036071583628654,
-0.09019695967435837,
0.0021341608371585608,
0.059925101697444916,
0.05156881734728813,
0.0033946665935218334,
0.07916411757469177,
-0.051909059286117554,
-0.03081372193992138,
0.14307154715061188,
0.016999226063489914,
-0.14354360103607178,
-0.16757306456565857,
0.08821708709001541,
-0.06582304835319519,
0.12855549156665802,
0.023659445345401764,
-0.09416818618774414,
0.0288002360612154,
0.0785275250673294,
0.2311314344406128,
0.007645815145224333,
-0.008183205500245094,
-0.037462323904037476,
-0.017463168129324913,
-0.024872059002518654,
0.07746220380067825,
-0.08915327489376068,
0.06722945719957352,
-0.013366678729653358,
0.07300999015569687,
-0.054135847836732864,
-0.02850334346294403,
-0.05727377161383629,
0.02816675789654255,
-0.010790894739329815,
-0.08331076800823212,
-0.06713932007551193,
0.14337554574012756,
-0.1009376272559166,
-0.03019692189991474,
0.03914759308099747,
-0.027046825736761093,
-0.1234302818775177,
-0.09156519919633865,
0.12957824766635895,
0.043439749628305435,
-0.008643456734716892,
-0.05476727336645126,
0.0059874881990253925,
0.13312172889709473,
-0.02826594188809395,
0.010006598196923733,
-0.1186540275812149,
0.03718119114637375,
0.11465353518724442,
0.11228333413600922,
0.03625792637467384,
0.06391020119190216,
0.09114611893892288,
-0.007190036587417126,
-0.09663175791501999,
0.037423327565193176,
0.0823514312505722,
-0.08090413361787796,
0.054681114852428436,
0.11813192069530487,
-0.04146386682987213,
0.16020523011684418,
0.04642803221940994,
-0.2182735800743103,
0.0008434554911218584,
0.010836999863386154,
-0.12002365291118622,
-0.0016474324511364102,
0.11802824586629868,
-0.08067665994167328,
0.1294572800397873,
0.1813667267560959,
-0.005836338736116886,
-0.058279141783714294,
-0.06785866618156433,
0.11393947899341583,
0.018305964767932892,
0.03552389144897461,
0.014713247306644917,
-0.16367223858833313,
0.002938327845185995,
0.06204676628112793,
0.026597334071993828,
-0.16142277419567108,
-0.059767596423625946,
-0.09896206110715866,
0.04838142544031143,
-0.030174996703863144,
0.10162434726953506,
0.13815189898014069,
0.012267130427062511,
-0.030895104631781578,
-0.03007916733622551,
0.028047600761055946,
0.09362351894378662,
-0.06066036969423294,
-0.08272837847471237
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# artificially-natural-roberta-Jan-2024
This model is a fine-tuned version of [roberta-base-openai-detector](https://huggingface.co/roberta-base-openai-detector) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2306
- F1: 0.96
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----:|
| No log | 1.0 | 250 | 0.1632 | 0.968 |
| 0.1042 | 2.0 | 500 | 0.1701 | 0.972 |
| 0.1042 | 3.0 | 750 | 0.2306 | 0.96 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "roberta-base-openai-detector", "model-index": [{"name": "artificially-natural-roberta-Jan-2024", "results": []}]} | text-classification | ConnyGenz/artificially-natural-roberta-Jan-2024 | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:roberta-base-openai-detector",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:27:54+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us
| artificially-natural-roberta-Jan-2024
=====================================
This model is a fine-tuned version of roberta-base-openai-detector on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2306
* F1: 0.96
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
70,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.08598234504461288,
0.07803147286176682,
-0.002400754950940609,
0.10620073974132538,
0.14740616083145142,
0.018326736986637115,
0.16279545426368713,
0.10955119132995605,
-0.06279820203781128,
0.05069824680685997,
0.13211871683597565,
0.1443849503993988,
0.01338428445160389,
0.14203040301799774,
-0.07651424407958984,
-0.2192613035440445,
0.00879889726638794,
0.027819734066724777,
-0.055134642869234085,
0.12021399289369583,
0.1001187190413475,
-0.123350128531456,
0.09114062786102295,
-0.012638530693948269,
-0.186912402510643,
0.013357711024582386,
0.018626926466822624,
-0.05768737196922302,
0.13439705967903137,
0.026380859315395355,
0.13518713414669037,
0.020753735676407814,
0.07403390109539032,
-0.19345037639141083,
0.015572515316307545,
0.05102178454399109,
-0.009552187286317348,
0.08060194551944733,
0.028425078839063644,
-0.010676758363842964,
0.07854726165533066,
-0.09063592553138733,
0.06858281791210175,
0.017230600118637085,
-0.1289021074771881,
-0.19548122584819794,
-0.07510597258806229,
0.01712101697921753,
0.08482708781957626,
0.0735655128955841,
-0.013526776805520058,
0.13261188566684723,
-0.05480111762881279,
0.09684929251670837,
0.20902220904827118,
-0.302561491727829,
-0.06906910240650177,
0.05737723037600517,
0.03227183222770691,
0.08702465146780014,
-0.1016024500131607,
-0.012323606759309769,
0.07214683294296265,
0.027651309967041016,
0.12208167463541031,
-0.024795660749077797,
-0.05570773035287857,
0.003278418444097042,
-0.1391175389289856,
-0.019842173904180527,
0.15246285498142242,
0.042568907141685486,
-0.045000310987234116,
-0.05913921445608139,
-0.06294171512126923,
-0.13700421154499054,
-0.037107646465301514,
-0.013790479861199856,
0.040613699704408646,
-0.02344690077006817,
-0.07882298529148102,
-0.019754396751523018,
-0.10261639207601547,
-0.08260495960712433,
-0.0752444863319397,
0.17006675899028778,
0.03278462961316109,
0.0022913231514394283,
-0.01631297916173935,
0.09280753880739212,
-0.040363337844610214,
-0.12922094762325287,
0.011345643550157547,
0.024986717849969864,
-0.00088982202578336,
-0.06184111163020134,
-0.05646370351314545,
-0.10348553955554962,
0.036852989345788956,
0.1590266227722168,
-0.059766825288534164,
0.04790814593434334,
0.0001226893946295604,
0.04639964923262596,
-0.08540859073400497,
0.1655271351337433,
-0.03800426796078682,
-0.025657501071691513,
0.012234211899340153,
0.06408628076314926,
0.04133596271276474,
-0.014007508754730225,
-0.11779934167861938,
0.011829382739961147,
0.11888705939054489,
0.013005890883505344,
-0.05762298032641411,
0.08277324587106705,
-0.04284088313579559,
-0.0028251628391444683,
0.003317135851830244,
-0.09798411279916763,
0.019732171669602394,
-0.0015062742168083787,
-0.05468267947435379,
-0.07636938989162445,
0.017328396439552307,
0.02156064286828041,
0.01818697154521942,
0.10180041939020157,
-0.09248743951320648,
0.009256858378648758,
-0.0801297128200531,
-0.12663045525550842,
0.009668488055467606,
-0.115139439702034,
0.026754699647426605,
-0.11186148971319199,
-0.17338648438453674,
-0.01849973388016224,
0.05000099167227745,
-0.027992602437734604,
-0.01913360506296158,
-0.06205226108431816,
-0.07152891904115677,
0.010223791003227234,
-0.009017166681587696,
0.07443919032812119,
-0.06375674158334732,
0.09936278313398361,
0.045215506106615067,
0.07444930076599121,
-0.06006378307938576,
0.02823306806385517,
-0.09968321025371552,
0.03220110759139061,
-0.17339986562728882,
0.04405207186937332,
-0.06698562949895859,
0.08002977818250656,
-0.08472628891468048,
-0.0680406391620636,
-0.017307627946138382,
0.011164581403136253,
0.07376578450202942,
0.09339500218629837,
-0.15862584114074707,
-0.0676465630531311,
0.18857140839099884,
-0.08875835686922073,
-0.1380111128091812,
0.13144126534461975,
-0.07030917704105377,
0.06484182924032211,
0.06382764875888824,
0.20452754199504852,
0.0615701824426651,
-0.08545957505702972,
0.012114661745727062,
-0.006361145526170731,
0.04025746136903763,
-0.029693949967622757,
0.06680414080619812,
0.00378424976952374,
-0.0015754549531266093,
0.01377013698220253,
-0.028080491349101067,
0.04223863035440445,
-0.08576368540525436,
-0.08694972842931747,
-0.0371655598282814,
-0.10675830394029617,
0.050780076533555984,
0.04770524799823761,
0.07460815459489822,
-0.12290899455547333,
-0.07227981835603714,
0.05563419312238693,
0.06545153260231018,
-0.07015436142683029,
0.01474195159971714,
-0.08517564088106155,
0.08764220774173737,
-0.07122614234685898,
-0.021889228373765945,
-0.158431276679039,
-0.03634530305862427,
0.008887587115168571,
0.02765069343149662,
0.028291253373026848,
0.00042489561019465327,
0.07721317559480667,
0.06566820293664932,
-0.05554727092385292,
-0.012124898843467236,
-0.0025125762913376093,
0.01152301300317049,
-0.12029702961444855,
-0.20223119854927063,
-0.0031999850180000067,
-0.0379323810338974,
0.14217114448547363,
-0.22834987938404083,
0.054263271391391754,
0.008805845864117146,
0.08422992378473282,
0.04350031539797783,
-0.008750038221478462,
-0.033925894647836685,
0.06943994015455246,
-0.0449395589530468,
-0.05619204416871071,
0.05364115163683891,
0.008117875084280968,
-0.10233817994594574,
-0.04563536122441292,
-0.14448611438274384,
0.18880635499954224,
0.1285521239042282,
-0.10055975615978241,
-0.09649436175823212,
-0.007065583020448685,
-0.045629438012838364,
-0.020838988944888115,
-0.046271901577711105,
0.004941394552588463,
0.13548457622528076,
-0.020790493115782738,
0.1467016041278839,
-0.083720862865448,
-0.03406965360045433,
0.02491455338895321,
-0.0548953153192997,
0.007938140071928501,
0.11207854002714157,
0.08939123898744583,
-0.1268877387046814,
0.14801457524299622,
0.15103080868721008,
-0.0975322276353836,
0.1494169533252716,
-0.03361458331346512,
-0.047357093542814255,
-0.023699626326560974,
0.012479240074753761,
0.009210365824401379,
0.09974939376115799,
-0.1326659619808197,
-0.004343760199844837,
0.0058061545714735985,
0.010200666263699532,
0.019289689138531685,
-0.21095716953277588,
-0.035516127943992615,
0.04465983062982559,
-0.03670552000403404,
0.009861364029347897,
-0.008121083490550518,
-0.000013178097105992492,
0.10467076301574707,
0.013207962736487389,
-0.08166929334402084,
0.04224327206611633,
-0.005043015815317631,
-0.08756093680858612,
0.21507684886455536,
-0.07206554710865021,
-0.1181826964020729,
-0.1270287185907364,
-0.07690317928791046,
-0.03578627482056618,
0.03337801992893219,
0.059244561940431595,
-0.08032135665416718,
-0.02732301503419876,
-0.10778909176588058,
-0.004232399631291628,
0.030082188546657562,
0.03361208736896515,
0.029576458036899567,
0.0106638353317976,
0.06925881654024124,
-0.09990692883729935,
-0.012385147623717785,
-0.04931037873029709,
-0.06700393557548523,
0.04036463052034378,
0.0099761001765728,
0.11900556832551956,
0.14272581040859222,
-0.03916933387517929,
-0.0002472636697348207,
-0.037751778960227966,
0.23292100429534912,
-0.06848685443401337,
-0.029091447591781616,
0.11005639284849167,
-0.03756677731871605,
0.043251633644104004,
0.1465839147567749,
0.06202727183699608,
-0.10022232681512833,
0.016788586974143982,
0.03186643868684769,
-0.04347444325685501,
-0.2224043756723404,
-0.03152032941579819,
-0.0421556681394577,
0.02035694383084774,
0.09216640144586563,
0.029999665915966034,
0.042607631534338,
0.07612612843513489,
0.0362372063100338,
0.0871141254901886,
-0.011944095604121685,
0.07427166402339935,
0.11190053075551987,
0.04132016375660896,
0.12961845099925995,
-0.0514824204146862,
-0.0669386014342308,
0.035676997154951096,
-0.001029366860166192,
0.20168687403202057,
0.022850416600704193,
0.12685316801071167,
0.06542237102985382,
0.1340382993221283,
-0.00012112758122384548,
0.0553627610206604,
-0.019132092595100403,
-0.04595733806490898,
-0.010505224578082561,
-0.0446663498878479,
-0.03755447268486023,
0.03646975755691528,
-0.08537504076957703,
0.04716385900974274,
-0.09690483659505844,
0.013848143629729748,
0.06572440266609192,
0.2094799429178238,
0.04887907952070236,
-0.3262490928173065,
-0.08937761932611465,
0.023603854700922966,
-0.0284876748919487,
-0.022849658504128456,
0.030005380511283875,
0.12222177535295486,
-0.056586310267448425,
0.0339033380150795,
-0.06454674899578094,
0.08232510834932327,
-0.05253854766488075,
0.04252007603645325,
0.036412741988897324,
0.08232217282056808,
-0.023615770041942596,
0.06151094287633896,
-0.2701805830001831,
0.2792496085166931,
0.014489414170384407,
0.07121695578098297,
-0.05633346736431122,
-0.011240468360483646,
0.030847180634737015,
0.0690256878733635,
0.07603637874126434,
-0.02533475123345852,
-0.07425785809755325,
-0.19592246413230896,
-0.044477637857198715,
0.027854550629854202,
0.1069527193903923,
-0.03405647724866867,
0.1037549301981926,
-0.029566405341029167,
0.016639666631817818,
0.07210641354322433,
-0.009051245637238026,
-0.06771547347307205,
-0.09379135072231293,
-0.017160197719931602,
0.04309529438614845,
-0.04335556924343109,
-0.07236256450414658,
-0.09220076352357864,
-0.1258494108915329,
0.1597096174955368,
-0.06713008135557175,
-0.02826039306819439,
-0.10071737319231033,
0.07214785367250443,
0.048246730118989944,
-0.07628971338272095,
0.04474211484193802,
0.004592008888721466,
0.08438591659069061,
0.012602899223566055,
-0.05064486712217331,
0.12315097451210022,
-0.06416881829500198,
-0.16029682755470276,
-0.07333233952522278,
0.09635725617408752,
0.022984161972999573,
0.04951159656047821,
0.006463444791734219,
0.012339242734014988,
-0.01237834244966507,
-0.07223068177700043,
0.0368526391685009,
-0.012651338241994381,
0.04266616329550743,
0.03136191517114639,
-0.052332475781440735,
-0.025346577167510986,
-0.06230819970369339,
-0.0348486490547657,
0.17843838036060333,
0.27346694469451904,
-0.0830475464463234,
0.003359056543558836,
0.04659612476825714,
-0.06545503437519073,
-0.20537978410720825,
0.05605577304959297,
0.03119717724621296,
0.007056598551571369,
0.04199599847197533,
-0.14657171070575714,
0.10241888463497162,
0.09273925423622131,
-0.0284061711281538,
0.11271705478429794,
-0.278895765542984,
-0.13417452573776245,
0.12813018262386322,
0.15515555441379547,
0.13662327826023102,
-0.15251003205776215,
-0.040071967989206314,
-0.032311320304870605,
-0.1209372952580452,
0.09324832260608673,
-0.12069200724363327,
0.119715116918087,
-0.008512016385793686,
0.06502705067396164,
0.008646795526146889,
-0.055637508630752563,
0.12472981959581375,
-0.012926849536597729,
0.11960741132497787,
-0.07437185198068619,
-0.0436735562980175,
0.03890648111701012,
-0.05019538104534149,
0.014324167743325233,
-0.09916534274816513,
0.03725264593958855,
-0.05421404913067818,
-0.03508206456899643,
-0.04459022730588913,
0.03464563935995102,
-0.02544577606022358,
-0.07004979997873306,
-0.05257551372051239,
0.03097728081047535,
0.03416312858462334,
-0.007881034165620804,
0.15712925791740417,
-0.004231628961861134,
0.17434771358966827,
0.11987893283367157,
0.09012250602245331,
-0.053712811321020126,
0.015009132213890553,
0.002805069088935852,
-0.03535080701112747,
0.05907624959945679,
-0.16472293436527252,
0.039007704704999924,
0.11844299733638763,
0.019346315413713455,
0.15130403637886047,
0.07870744913816452,
-0.031285420060157776,
0.029749060049653053,
0.07719922810792923,
-0.15947671234607697,
-0.10170065611600876,
0.003036520443856716,
-0.046891797333955765,
-0.11518625169992447,
0.06914198398590088,
0.12332212924957275,
-0.06665316224098206,
0.005657513160258532,
-0.01306135207414627,
0.008203743025660515,
-0.04229043051600456,
0.1718790978193283,
0.07652836292982101,
0.043153613805770874,
-0.0750870332121849,
0.06648331135511398,
0.04318767413496971,
-0.04731783643364906,
0.026059487834572792,
0.04024915769696236,
-0.0774664506316185,
-0.039575882256031036,
0.03794422745704651,
0.19607193768024445,
-0.037110429257154465,
-0.04514288157224655,
-0.14736980199813843,
-0.1136564165353775,
0.05284493789076805,
0.2121383249759674,
0.10049962997436523,
0.015836548060178757,
-0.02496165782213211,
0.017794804647564888,
-0.11617128551006317,
0.10621485859155655,
0.02594497986137867,
0.08090840280056,
-0.14318323135375977,
0.1289217621088028,
-0.012898998335003853,
0.013802330009639263,
-0.03078482858836651,
0.03477392718195915,
-0.12357212603092194,
0.00021566702343989164,
-0.11894826591014862,
-0.005435592494904995,
-0.02656704932451248,
0.006397729739546776,
0.010226335376501083,
-0.05723293125629425,
-0.0725572481751442,
0.0068007828667759895,
-0.09736216813325882,
-0.01148664578795433,
0.03659166023135185,
0.05366136506199837,
-0.12014883756637573,
-0.03975600376725197,
0.02981981635093689,
-0.06162859499454498,
0.06690551340579987,
0.021527612581849098,
0.01545057911425829,
0.04370284080505371,
-0.19956205785274506,
0.029645215719938278,
0.06413629651069641,
-0.001881414675153792,
0.044745009392499924,
-0.08429106324911118,
-0.011187924072146416,
-0.00936554092913866,
0.05085395649075508,
0.030934495851397514,
0.08606487512588501,
-0.12209354341030121,
0.027904918417334557,
-0.028515487909317017,
-0.06731794029474258,
-0.05311451479792595,
0.028499621897935867,
0.0880356878042221,
0.00012021709699183702,
0.183302640914917,
-0.09490379691123962,
0.02201639860868454,
-0.20198611915111542,
0.005353103391826153,
0.005356014706194401,
-0.11150671541690826,
-0.10964645445346832,
-0.05748390406370163,
0.05019601806998253,
-0.06590944528579712,
0.16835007071495056,
0.02246376872062683,
0.0007970232400111854,
0.04027850925922394,
-0.029941042885184288,
0.039993930608034134,
0.026178548112511635,
0.22214896976947784,
0.03347216546535492,
-0.050915177911520004,
0.01658691093325615,
0.03386915102601051,
0.10949621349573135,
0.07142157852649689,
0.16069412231445312,
0.1658269613981247,
-0.04615725949406624,
0.09642170369625092,
0.04803970828652382,
-0.032934386283159256,
-0.12183236330747604,
0.058435048907995224,
-0.031239937990903854,
0.07583696395158768,
-0.012246682308614254,
0.18395094573497772,
0.12369363009929657,
-0.15304861962795258,
0.011767547577619553,
-0.04292306676506996,
-0.07846846431493759,
-0.11997304111719131,
-0.05433504655957222,
-0.1043369397521019,
-0.1326204091310501,
0.013392883352935314,
-0.1132807806134224,
-0.0024012390058487654,
0.09631438553333282,
0.009866626001894474,
-0.011965193785727024,
0.18283550441265106,
-0.0005709400284104049,
0.04210389778017998,
0.0622933954000473,
-0.0019547457341104746,
-0.03581691160798073,
-0.08868420869112015,
-0.0904180034995079,
0.005667654797434807,
-0.017587991431355476,
0.02763921208679676,
-0.049493223428726196,
-0.032154906541109085,
0.03440692275762558,
-0.018208984285593033,
-0.10695332288742065,
0.008949448354542255,
0.02937461994588375,
0.04368042200803757,
0.03336280584335327,
0.009156981483101845,
0.003956150729209185,
0.0011511568445712328,
0.22180363535881042,
-0.06311341375112534,
-0.06401114910840988,
-0.10284954309463501,
0.20049402117729187,
0.03457121178507805,
0.015684066340327263,
0.003872995963320136,
-0.09463369101285934,
0.036217059940099716,
0.22352032363414764,
0.19616751372814178,
-0.08379968255758286,
0.010560322552919388,
-0.0026219538412988186,
-0.004234889522194862,
-0.02125975675880909,
0.08191045373678207,
0.08993422240018845,
0.02701610140502453,
-0.075632743537426,
-0.05036616697907448,
-0.038784340023994446,
-0.004687246400862932,
-0.029337983578443527,
0.04028616100549698,
0.0473562590777874,
0.014901028014719486,
-0.05942796170711517,
0.06462232768535614,
-0.059604037553071976,
-0.11136781424283981,
0.06850988417863846,
-0.2022095024585724,
-0.14821287989616394,
-0.007281417492777109,
0.1026185005903244,
-0.01393092516809702,
0.051431406289339066,
-0.031000323593616486,
-0.0017331158742308617,
0.02804570086300373,
-0.02107776328921318,
-0.0643547847867012,
-0.0615830160677433,
0.05444178357720375,
-0.07757019996643066,
0.22625291347503662,
-0.04654485359787941,
0.05891161412000656,
0.13401633501052856,
0.04472380504012108,
-0.06042084842920303,
0.08538204431533813,
0.04747927188873291,
-0.05286911875009537,
0.025578003376722336,
0.08383019268512726,
-0.04174680635333061,
0.10874873399734497,
0.07738778740167618,
-0.13151691854000092,
0.023757489398121834,
-0.0556393601000309,
-0.08462856709957123,
-0.06480579078197479,
-0.032608553767204285,
-0.06438959389925003,
0.13594014942646027,
0.19126369059085846,
-0.03410705178976059,
0.006635221187025309,
-0.04447554051876068,
0.01767623983323574,
0.07228347659111023,
0.025422366335988045,
-0.05389494076371193,
-0.24313026666641235,
0.020036090165376663,
0.08677168190479279,
-0.012536550872027874,
-0.29855409264564514,
-0.08300448954105377,
-0.012470531277358532,
-0.044906649738550186,
-0.08574916422367096,
0.08327624201774597,
0.12767855823040009,
0.05604263022542,
-0.05924856662750244,
-0.1103058010339737,
-0.06253737956285477,
0.15204373002052307,
-0.13023081421852112,
-0.10057348757982254
] |
null | null | transformers |
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
[Lewd-Assistant-v1](https://huggingface.co/datasets/Himitsui/Lewd-Assistant-v1) ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
***
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
***
GGUF: https://huggingface.co/Sao10K/Solstice-11B-v1-GGUF | {"language": ["en"], "license": "cc-by-nc-4.0", "datasets": ["Himitsui/Lewd-Assistant-v1"]} | text-generation | LoneStriker/Solstice-11B-v1-8.0bpw-h8-exl2 | [
"transformers",
"pytorch",
"llama",
"text-generation",
"en",
"dataset:Himitsui/Lewd-Assistant-v1",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:28:51+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
===== Solstice-11B-v1 =====
A model trained with the sole goal of NSFW.
That is it.
Results are to be as expected.
Finetuned off several instruct datasets that are NSFW. Example subset Below, other instruct datasets modified are private for now. Outputs were manually verified by me and two good friends.
Lewd-Assistant-v1 ---> Used a combination of Claude 2.0, GPT-4-Turbo and WinterGoddess-1.4x to reformat instead of a small 10B model [Fimbulvetr-v1] like the example dataset shown, which resulted in less errors and better answers. Private for now.
Ruled Out names:
<br>Solarslut
<br>Solascivious
<br>Sultry
<br>Sundress
<br>Scorch
*
Prompt Format: Alpaca
There are several issues with the model, but this is an experimental one so :shrug:
<br>----> May speak as {{user}} sometimes. I know what causes it. I kinda like it though that way.
<br>----> May ramble on or give small outputs. Sampler settings.
<br>----> May be a little inconsistent at times. Yeah its inevitable due to the nature of the data.
<br>----> Steers towards NSFW --> As Expected.
*
GGUF: URL | [] | [
"TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
77
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #en #dataset-Himitsui/Lewd-Assistant-v1 #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.049034226685762405,
0.10144619643688202,
-0.005310742650181055,
0.037241458892822266,
0.1303713023662567,
0.017335545271635056,
0.14252999424934387,
0.11379635334014893,
-0.005623956210911274,
-0.03997872397303581,
0.15055686235427856,
0.22561697661876678,
-0.005716316867619753,
0.025737494230270386,
-0.07812640070915222,
-0.19685706496238708,
0.031945742666721344,
0.07199884951114655,
0.0009695991757325828,
0.10655628144741058,
0.10498841851949692,
-0.06860098987817764,
0.09109021723270416,
-0.02456873282790184,
-0.1569415032863617,
0.02397669479250908,
0.030383840203285217,
-0.11827446520328522,
0.10542871803045273,
0.056915976107120514,
0.09415589272975922,
0.07842440903186798,
-0.0075564272701740265,
-0.15251457691192627,
0.02114257775247097,
-0.005708994809538126,
-0.07609643787145615,
0.06579328328371048,
0.05390128493309021,
-0.027117885649204254,
0.10850529372692108,
0.0403880812227726,
-0.041287485510110855,
0.0467577800154686,
-0.10149915516376495,
-0.0192161425948143,
-0.06091657280921936,
0.0460011251270771,
0.05683813989162445,
0.09331124275922775,
0.024533160030841827,
0.13188046216964722,
-0.09107843041419983,
0.08752235770225525,
0.09963053464889526,
-0.31331998109817505,
0.01319095864892006,
0.09934073686599731,
0.03383893519639969,
0.04641084745526314,
-0.021290304139256477,
0.06774309277534485,
0.04784923046827316,
0.0007684126612730324,
0.03598456457257271,
-0.0797121524810791,
-0.09438449889421463,
0.06742703169584274,
-0.06590547412633896,
-0.03863084688782692,
0.2922324538230896,
-0.030988743528723717,
0.04172538220882416,
-0.008086903020739555,
-0.050714027136564255,
0.011418753303587437,
-0.015883255749940872,
0.03745931759476662,
-0.008732186630368233,
0.05612645298242569,
0.03042249009013176,
-0.0401790477335453,
-0.13913358747959137,
-0.020970935001969337,
-0.18500429391860962,
0.07730595767498016,
0.012230283580720425,
0.049645330756902695,
-0.12579062581062317,
0.06767009198665619,
0.034521471709012985,
-0.0844985693693161,
0.0035924408584833145,
-0.053609706461429596,
0.07973714172840118,
-0.0033421244006603956,
-0.03879298269748688,
-0.022027965635061264,
0.10066821426153183,
0.07918766885995865,
0.017121922224760056,
-0.020639244467020035,
-0.08546588569879532,
0.10821904987096786,
-0.013696074485778809,
0.030209684744477272,
-0.03432465344667435,
0.005157887935638428,
0.08075081557035446,
-0.07926378399133682,
0.04890313372015953,
-0.0285712368786335,
-0.1669217199087143,
-0.047651249915361404,
-0.021985750645399094,
0.10965735465288162,
0.028758613392710686,
0.0803452581167221,
-0.03757987916469574,
-0.013860568404197693,
0.0998191386461258,
-0.0681782215833664,
-0.005897911731153727,
-0.01723933219909668,
-0.00974948424845934,
0.09400562942028046,
0.02334989234805107,
0.02616862952709198,
-0.08904144912958145,
0.06954825669527054,
-0.07460135221481323,
-0.006143215112388134,
-0.03521576523780823,
-0.05373920500278473,
0.07148505002260208,
-0.0974171832203865,
0.030807875096797943,
-0.1752423644065857,
-0.20109885931015015,
0.024895215407013893,
0.0106661356985569,
-0.015678955242037773,
-0.07431206107139587,
-0.038309354335069656,
-0.03380206599831581,
0.018048031255602837,
-0.08405132591724396,
-0.0024438153486698866,
-0.08034411817789078,
0.10252384841442108,
-0.05322210118174553,
0.04925856739282608,
-0.15059894323349,
0.0595194548368454,
-0.08959881961345673,
-0.012827512808144093,
-0.007095616310834885,
0.050098419189453125,
-0.03298885375261307,
0.105813167989254,
-0.05119280889630318,
-0.025412462651729584,
-0.024753475561738014,
0.03582635521888733,
-0.016930731013417244,
0.18637792766094208,
-0.13419866561889648,
-0.07243777066469193,
0.15280477702617645,
-0.08325513452291489,
-0.18884451687335968,
0.09167393296957016,
0.00922262854874134,
0.04589606076478958,
0.08483385294675827,
0.14735817909240723,
0.0350952111184597,
-0.08198394626379013,
0.018709788098931313,
0.09923137724399567,
-0.06979144364595413,
-0.20308828353881836,
0.021961500868201256,
0.007903855293989182,
-0.09841631352901459,
0.04337438941001892,
0.0199807807803154,
0.06771830469369888,
-0.043807487934827805,
-0.06553755700588226,
-0.04720250144600868,
-0.05599060654640198,
-0.018855394795536995,
0.0029671976808458567,
0.08480874449014664,
-0.051144134253263474,
0.002517574466764927,
-0.005882262717932463,
0.031557876616716385,
-0.023341625928878784,
0.056014902889728546,
-0.06204771623015404,
0.11400096863508224,
-0.03765048086643219,
0.03347593918442726,
-0.13520418107509613,
-0.03351351618766785,
-0.01180564146488905,
0.14856234192848206,
0.025070972740650177,
0.04837543144822121,
0.01079084724187851,
-0.026632050052285194,
-0.025501301512122154,
0.00958278588950634,
0.15494011342525482,
-0.0007252903888002038,
-0.0532318577170372,
-0.10751572251319885,
0.06776221841573715,
-0.02253667823970318,
0.016523046419024467,
-0.09919705986976624,
0.006435787305235863,
0.04849201440811157,
0.09319677948951721,
-0.028797855600714684,
0.08913536369800568,
-0.00775644788518548,
0.04732397571206093,
-0.07237828522920609,
0.03538600727915764,
0.1164293885231018,
0.016884498298168182,
-0.09675242006778717,
0.21493247151374817,
-0.09469964355230331,
0.22045156359672546,
0.20328935980796814,
-0.2403641641139984,
0.05252329632639885,
-0.07172700762748718,
-0.01727456972002983,
-0.0074929846450686455,
0.025716116651892662,
-0.009235285222530365,
0.03171088919043541,
-0.008625861257314682,
0.1834697276353836,
-0.06712543964385986,
-0.0054125408641994,
0.002795885084196925,
-0.042803213000297546,
-0.03943811357021332,
0.08297725766897202,
0.19316521286964417,
-0.12646368145942688,
0.16178403794765472,
0.23159843683242798,
-0.013848419301211834,
0.1402653455734253,
-0.03274041414260864,
-0.019341804087162018,
0.03710115700960159,
-0.02327699586749077,
-0.012436605989933014,
-0.010511710308492184,
-0.10541673004627228,
-0.002799295587465167,
0.08416956663131714,
-0.00018182213534601033,
0.06753597408533096,
-0.1491035521030426,
-0.07189694792032242,
-0.0310774315148592,
-0.03873962536454201,
-0.03537937253713608,
0.08782068639993668,
0.01753067784011364,
0.128334641456604,
-0.051640938967466354,
-0.06278031319379807,
0.11246023327112198,
0.005560848396271467,
-0.0898054838180542,
0.1569569706916809,
-0.13892027735710144,
-0.2924811542034149,
-0.16305863857269287,
-0.16571520268917084,
-0.07089906185865402,
0.023396149277687073,
0.09480155259370804,
-0.05249262973666191,
-0.04799347370862961,
-0.030985508114099503,
-0.011247217655181885,
-0.05897943302989006,
-0.0034085328225046396,
-0.0424722284078598,
0.06421343982219696,
-0.06029471755027771,
-0.11193588376045227,
-0.043454427272081375,
-0.0044265370815992355,
-0.0640472024679184,
0.12870556116104126,
-0.09717836230993271,
0.09882897138595581,
0.1328934282064438,
0.025340624153614044,
0.026841068640351295,
-0.04431796446442604,
0.13088175654411316,
-0.04853203520178795,
-0.009431427344679832,
0.22270165383815765,
0.0011693616397678852,
0.05880896374583244,
0.13138096034526825,
0.038107480853796005,
-0.07699986547231674,
0.0045023816637694836,
-0.04538979381322861,
-0.0798133835196495,
-0.23326468467712402,
-0.1373303234577179,
-0.11261934041976929,
0.05847621709108353,
0.05341200903058052,
0.06106415018439293,
0.11219381541013718,
0.08764012902975082,
-0.014922751113772392,
0.058201052248477936,
-0.021582402288913727,
0.07762761414051056,
0.2839027941226959,
-0.01894594356417656,
0.13017886877059937,
-0.08824797719717026,
-0.05806112289428711,
0.09288623183965683,
0.10236862301826477,
0.12053664028644562,
0.059395331889390945,
0.08671223372220993,
0.06011790409684181,
0.13369910418987274,
0.13008637726306915,
0.09064308553934097,
0.04012376442551613,
-0.004751825239509344,
-0.01217054482549429,
-0.044730979949235916,
-0.035446617752313614,
0.035599954426288605,
0.013642698526382446,
-0.13429448008537292,
-0.02092130482196808,
-0.07859308272600174,
0.05072641372680664,
0.119310662150383,
0.025424810126423836,
-0.23313206434249878,
0.025882529094815254,
0.05987260863184929,
-0.0031277218367904425,
-0.07122143357992172,
0.08518851548433304,
-0.016570409759879112,
-0.08306598663330078,
0.07057943195104599,
-0.027958616614341736,
0.12143699079751968,
-0.07391038537025452,
0.0519358366727829,
-0.03370404988527298,
-0.05230972543358803,
0.03313904255628586,
0.1089467853307724,
-0.3237506151199341,
0.22024185955524445,
0.018825465813279152,
-0.026497717946767807,
-0.09279364347457886,
-0.025149978697299957,
0.012764468789100647,
0.1749781221151352,
0.12539535760879517,
-0.007683464791625738,
-0.015535303391516209,
-0.05810444429516792,
-0.05734163895249367,
0.035665884613990784,
0.06896401941776276,
0.0010584074771031737,
-0.0003624292730819434,
-0.024091387167572975,
-0.005279526114463806,
-0.0014077178202569485,
-0.00490220682695508,
-0.043236907571554184,
-0.17163509130477905,
0.05557248741388321,
0.14406868815422058,
0.05307428911328316,
-0.004156381823122501,
-0.039885297417640686,
-0.1416422724723816,
0.17220140993595123,
-0.13633225858211517,
-0.07610277086496353,
-0.10404983907938004,
-0.062380265444517136,
0.05498787760734558,
-0.05518300458788872,
0.03755813464522362,
-0.06245018541812897,
-0.002284383401274681,
-0.06032416224479675,
-0.17134849727153778,
0.06986992806196213,
-0.0996970683336258,
-0.015461762435734272,
-0.03423244133591652,
0.15149866044521332,
-0.08292442560195923,
0.017603974789381027,
0.02323228307068348,
0.01411656104028225,
-0.07490243017673492,
-0.09193401783704758,
-0.005053247790783644,
0.03293938934803009,
0.09035728871822357,
0.01723586395382881,
-0.14129149913787842,
-0.0095018669962883,
-0.014963537454605103,
-0.08424284309148788,
0.26092803478240967,
0.19374249875545502,
-0.05883967876434326,
0.1770647019147873,
0.15347951650619507,
-0.11490184813737869,
-0.32271862030029297,
-0.1000501811504364,
-0.11443756520748138,
-0.028265872970223427,
-0.04509029909968376,
-0.18660955131053925,
0.077033631503582,
0.049923256039619446,
-0.031645506620407104,
0.10615070909261703,
-0.23199057579040527,
-0.09402638673782349,
0.12149857729673386,
0.018926985561847687,
0.2996464669704437,
-0.12258071452379227,
-0.08332320302724838,
-0.08195407688617706,
-0.13797886669635773,
0.19211558997631073,
0.00286630867049098,
0.10877324640750885,
-0.04681301862001419,
0.09396523237228394,
0.007644746918231249,
-0.03690613806247711,
0.10031165927648544,
0.006828084588050842,
0.025079969316720963,
-0.10434320569038391,
-0.0027483508456498384,
0.08884637802839279,
0.002070714021101594,
0.041003402322530746,
-0.11694075912237167,
0.008402612991631031,
-0.1172478049993515,
-0.027270840480923653,
-0.05345173180103302,
0.07041863352060318,
0.009682005271315575,
-0.05904176086187363,
-0.022814305499196053,
-0.019129959866404533,
0.023440003395080566,
-0.015210927464067936,
0.18577711284160614,
-0.03642501309514046,
0.07289411127567291,
0.120790034532547,
0.137875497341156,
-0.13844045996665955,
0.029775775969028473,
-0.07663135230541229,
-0.07252693921327591,
0.06818535923957825,
-0.13475310802459717,
0.03976571559906006,
0.133937805891037,
-0.029848946258425713,
0.0664096474647522,
0.0765647441148758,
0.025761689990758896,
-0.00638764351606369,
0.14227253198623657,
-0.19646349549293518,
0.019226932898163795,
-0.04374184459447861,
0.006416141055524349,
0.06395085155963898,
0.04797811433672905,
0.16513222455978394,
-0.025768468156456947,
-0.009783856570720673,
0.015844149515032768,
0.014720029197633266,
-0.04439609870314598,
0.0675467774271965,
0.04722321033477783,
0.0031884554773569107,
-0.1300448477268219,
0.10301768779754639,
0.025875011458992958,
-0.11881901323795319,
-0.002760943491011858,
0.102492555975914,
-0.13203735649585724,
-0.12005016207695007,
-0.05686751753091812,
0.06437907367944717,
-0.2058214694261551,
-0.08213391900062561,
-0.05728176608681679,
-0.11623122543096542,
0.08587322384119034,
0.1539333164691925,
0.05562883988022804,
0.06769925355911255,
-0.03056035190820694,
-0.08275887370109558,
-0.0737461969256401,
0.020974867045879364,
-0.03823217377066612,
0.02078600414097309,
-0.10290080308914185,
0.015325134620070457,
-0.022673455998301506,
0.1308482140302658,
-0.05975550785660744,
-0.0260691586881876,
-0.10978298634290695,
0.042345207184553146,
-0.14944908022880554,
-0.012575010769069195,
-0.08017249405384064,
-0.0310711357742548,
-0.00464948546141386,
-0.015980064868927002,
-0.06127501279115677,
-0.016248362138867378,
-0.10641258955001831,
0.02068985439836979,
-0.020699268206954002,
0.07433059066534042,
-0.0841195210814476,
-0.04886775091290474,
0.05056420713663101,
-0.015597312711179256,
0.10742154717445374,
0.06851629167795181,
-0.09662238508462906,
0.08528278768062592,
-0.1458529531955719,
-0.05586700141429901,
0.09775988012552261,
0.0555204413831234,
0.04613138735294342,
0.02461850643157959,
0.01933644339442253,
0.12628474831581116,
-0.014499308541417122,
0.048842575401067734,
0.019805999472737312,
-0.10847801715135574,
-0.006426680367439985,
-0.05144473537802696,
-0.09860483556985855,
-0.06442166119813919,
-0.016366492956876755,
0.08798839896917343,
0.04380229115486145,
0.15357235074043274,
-0.04235014319419861,
0.04793012514710426,
-0.042971670627593994,
0.020120149478316307,
-0.008167668245732784,
-0.16375763714313507,
-0.08338074386119843,
-0.08619426190853119,
0.01709349825978279,
-0.0072896163910627365,
0.256022572517395,
0.031082479283213615,
-0.055167291313409805,
0.04080076143145561,
0.06237408146262169,
-0.0060380566865205765,
-0.007072872016578913,
0.25718989968299866,
0.08115017414093018,
-0.0018656767206266522,
-0.0709218680858612,
0.055914513766765594,
0.016445070505142212,
0.0564819797873497,
0.07317715883255005,
0.05913015827536583,
0.027723869308829308,
0.07779153436422348,
0.060071516782045364,
-0.007243873085826635,
-0.04913724586367607,
-0.06347004324197769,
-0.027562761679291725,
0.08634694665670395,
-0.0175641942769289,
0.09104092419147491,
0.12690387666225433,
-0.052363429218530655,
0.006516739260405302,
-0.03274639695882797,
-0.05228272080421448,
-0.15372596681118011,
-0.19265799224376678,
-0.08410533517599106,
-0.11393267661333084,
0.03020910546183586,
-0.09558413177728653,
0.040890172123909,
0.06267426162958145,
0.05259932950139046,
-0.050175171345472336,
0.003746095346286893,
-0.010680551640689373,
-0.06471575796604156,
0.07236453890800476,
-0.028445163741707802,
0.02719707041978836,
-0.07552506774663925,
-0.014066273346543312,
-0.063225157558918,
-0.0467803031206131,
-0.036711398512125015,
0.059050049632787704,
0.020925790071487427,
0.0454951673746109,
-0.133080393075943,
-0.07453975081443787,
-0.04458501189947128,
0.054712191224098206,
0.02359694242477417,
0.16524924337863922,
0.014143720269203186,
-0.011845545843243599,
0.05693808197975159,
0.172040656208992,
-0.038605257868766785,
-0.10545060783624649,
-0.043073464184999466,
0.16965802013874054,
0.023394731804728508,
0.04107775166630745,
0.006772690452635288,
0.015023903921246529,
-0.027153026312589645,
0.3453980088233948,
0.288048654794693,
-0.10212592035531998,
0.018246658146381378,
-0.021862352266907692,
0.03034358285367489,
0.06844350695610046,
0.12959334254264832,
0.10881296545267105,
0.20990362763404846,
-0.07219986617565155,
-0.06748899072408676,
-0.07748356461524963,
0.021169332787394524,
-0.10375670343637466,
0.08185678720474243,
0.005325254052877426,
-0.09320597350597382,
-0.03272281587123871,
0.09537962079048157,
-0.17274652421474457,
0.08563049882650375,
-0.004398995079100132,
-0.12151198089122772,
-0.03424680978059769,
-0.002985055325552821,
0.07231775671243668,
-0.0008496428490616381,
0.024526016786694527,
-0.06182459369301796,
-0.041415877640247345,
0.05475268512964249,
-0.0044367010705173016,
-0.2126384824514389,
0.02068512886762619,
0.06696335226297379,
-0.0013985815457999706,
0.03933676332235336,
-0.007371969521045685,
0.11203435063362122,
0.06820465624332428,
0.06483098119497299,
-0.0719994381070137,
0.08872124552726746,
0.014060961082577705,
-0.06090587005019188,
0.03618868812918663,
-0.022428318858146667,
-0.0032652681693434715,
-0.004855544771999121,
0.04206673428416252,
-0.037646062672138214,
0.06020224466919899,
-0.0012370774056762457,
-0.056301265954971313,
-0.029712067916989326,
0.020235275849699974,
-0.07321474701166153,
0.09561844915151596,
0.05176868662238121,
-0.010201070457696915,
-0.031797103583812714,
-0.07183147221803665,
-0.00331803853623569,
-0.003993404563516378,
-0.15203137695789337,
-0.03916352614760399,
-0.0990368202328682,
-0.07603249698877335,
0.10195887833833694,
0.017836207523941994,
-0.16887257993221283,
-0.005666637793183327,
-0.08880164474248886,
0.007904051803052425,
-0.16425450146198273,
0.06891398131847382,
0.11502542346715927,
-0.0008546813041903079,
-0.020225094631314278,
-0.05280805379152298,
0.042419176548719406,
0.03357136249542236,
-0.09693200886249542,
-0.09446734189987183
] |
null | null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.3.0`
```yaml
base_model: ThingsSolver/pretrain-100k
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: /home/ec2-user/data/tranlsate_230k_merged_sent_both_dir.json
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./qlora-out-pretrain
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 128
lora_alpha: 256
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
- lm_head
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 10
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# qlora-out-pretrain
This model is a fine-tuned version of [ThingsSolver/pretrain-100k](https://huggingface.co/ThingsSolver/pretrain-100k) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3844
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7387 | 0.0 | 1 | 0.7168 |
| 0.4675 | 0.25 | 155 | 0.4433 |
| 0.4301 | 0.5 | 310 | 0.4112 |
| 0.4058 | 0.75 | 465 | 0.3844 |
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.16.1
- Tokenizers 0.15.0 | {"library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "ThingsSolver/pretrain-100k", "model-index": [{"name": "qlora-out-pretrain", "results": []}]} | null | ThingsSolver/translate-long-text-adapter | [
"peft",
"tensorboard",
"mistral",
"generated_from_trainer",
"base_model:ThingsSolver/pretrain-100k",
"4-bit",
"region:us"
] | 2024-02-13T17:31:33+00:00 | [] | [] | TAGS
#peft #tensorboard #mistral #generated_from_trainer #base_model-ThingsSolver/pretrain-100k #4-bit #region-us
| <img src="URL alt="Built with Axolotl" width="200" height="32"/>
See axolotl config
axolotl version: '0.3.0'
qlora-out-pretrain
==================
This model is a fine-tuned version of ThingsSolver/pretrain-100k on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3844
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
The following 'bitsandbytes' quantization config was used during training:
* quant\_method: QuantizationMethod.BITS\_AND\_BYTES
* load\_in\_8bit: False
* load\_in\_4bit: True
* llm\_int8\_threshold: 6.0
* llm\_int8\_skip\_modules: None
* llm\_int8\_enable\_fp32\_cpu\_offload: False
* llm\_int8\_has\_fp16\_weight: False
* bnb\_4bit\_quant\_type: nf4
* bnb\_4bit\_use\_double\_quant: True
* bnb\_4bit\_compute\_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 2
* eval\_batch\_size: 2
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 4
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 32
* total\_eval\_batch\_size: 8
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_steps: 10
* num\_epochs: 1
### Training results
### Framework versions
* PEFT 0.7.0
* Transformers 4.37.0.dev0
* Pytorch 2.0.1+cu117
* Datasets 2.16.1
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.0\n* Transformers 4.37.0.dev0\n* Pytorch 2.0.1+cu117\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
"TAGS\n#peft #tensorboard #mistral #generated_from_trainer #base_model-ThingsSolver/pretrain-100k #4-bit #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.0\n* Transformers 4.37.0.dev0\n* Pytorch 2.0.1+cu117\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
40,
178,
4,
42
] | [
"passage: TAGS\n#peft #tensorboard #mistral #generated_from_trainer #base_model-ThingsSolver/pretrain-100k #4-bit #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 32\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* PEFT 0.7.0\n* Transformers 4.37.0.dev0\n* Pytorch 2.0.1+cu117\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
-0.12448718398809433,
0.08387008309364319,
-0.0026499941013753414,
0.07785674184560776,
0.1237550601363182,
0.02834373153746128,
0.11326751112937927,
0.141725555062294,
-0.08227479457855225,
0.13202457129955292,
0.11061310768127441,
0.06471700966358185,
0.0643092468380928,
0.14000996947288513,
-0.002486315555870533,
-0.3017190098762512,
-0.0012312172912061214,
-0.014282536692917347,
-0.14990215003490448,
0.10324318706989288,
0.08009310811758041,
-0.1142750233411789,
0.07799501717090607,
0.004097129683941603,
-0.13798494637012482,
-0.008615322411060333,
-0.0531032457947731,
-0.012137515470385551,
0.09185484796762466,
0.03564445674419403,
0.09790720045566559,
-0.0015029311180114746,
0.09975644946098328,
-0.25400510430336,
0.006955503951758146,
0.07007284462451935,
0.016276201233267784,
0.07833429425954819,
0.08639374375343323,
0.0037405204493552446,
0.15750180184841156,
-0.10385461151599884,
0.057395752519369125,
0.039370063692331314,
-0.1307443082332611,
-0.24743786454200745,
-0.10512664914131165,
0.0743165835738182,
0.10784481465816498,
0.07349411398172379,
-0.030308514833450317,
0.09902116656303406,
-0.05898168683052063,
0.07465732097625732,
0.27075162529945374,
-0.2461748868227005,
-0.11327408254146576,
0.05616132915019989,
0.03685980662703514,
0.08122965693473816,
-0.12397750467061996,
-0.017778994515538216,
0.05858404189348221,
0.03498516604304314,
0.05802168697118759,
0.015925705432891846,
0.06422406435012817,
0.014944191090762615,
-0.14135292172431946,
-0.050065457820892334,
0.12493952363729477,
0.08303584158420563,
-0.022355908527970314,
-0.06563574820756912,
-0.0295424647629261,
-0.23749969899654388,
-0.043782781809568405,
-0.01203969493508339,
0.038431860506534576,
-0.05112266167998314,
-0.08075227588415146,
0.015480132773518562,
-0.08349683880805969,
-0.09433095157146454,
0.036810752004384995,
0.13165846467018127,
0.05648896098136902,
-0.011714893393218517,
0.004635325167328119,
0.13520193099975586,
-0.002343317959457636,
-0.1537075936794281,
-0.03108791820704937,
0.03243634104728699,
-0.07421766221523285,
-0.047923970967531204,
-0.03783063590526581,
0.052177030593156815,
0.01769537478685379,
0.1788136214017868,
-0.10079056024551392,
0.08193647116422653,
0.0615202896296978,
0.027750512585043907,
-0.08911553770303726,
0.1259496659040451,
-0.07703143358230591,
-0.03607860580086708,
-0.06572122126817703,
0.10180959850549698,
-0.011457037180662155,
-0.009027545340359211,
-0.06479004770517349,
0.04645702242851257,
0.09207349270582199,
0.022987041622400284,
-0.033783283084630966,
0.0014347928809002042,
-0.05223362520337105,
-0.02189624309539795,
0.0640425905585289,
-0.07284746319055557,
0.05274837464094162,
0.03140072152018547,
-0.09643863141536713,
-0.014338350854814053,
0.005619016941636801,
0.020026421174407005,
0.019519241526722908,
0.13006648421287537,
-0.11711980402469635,
0.007784837391227484,
-0.08304167538881302,
-0.08623906224966049,
0.037093207240104675,
-0.0599345862865448,
0.00798502191901207,
-0.06035038083791733,
-0.10178977251052856,
-0.06770101189613342,
0.047968458384275436,
-0.07845038920640945,
-0.064082570374012,
-0.05915758013725281,
-0.09371872246265411,
0.031072555109858513,
0.006931213662028313,
0.15780594944953918,
-0.06016109511256218,
0.0951242446899414,
0.02200450748205185,
0.045489221811294556,
0.022429952397942543,
0.04219144210219383,
-0.0411054827272892,
0.06052762269973755,
-0.17906367778778076,
0.044207099825143814,
-0.09613429754972458,
0.06955559551715851,
-0.1285184621810913,
-0.12130236625671387,
-0.04819094017148018,
-0.014190631918609142,
0.09354688972234726,
0.11286677420139313,
-0.14641885459423065,
-0.09101825207471848,
0.1791459321975708,
-0.07822887599468231,
-0.12029386311769485,
0.11074628680944443,
-0.013181422837078571,
-0.008942684158682823,
0.02384786680340767,
0.12915439903736115,
0.11260690540075302,
-0.1095259040594101,
-0.02197246067225933,
-0.03824670612812042,
0.1518053114414215,
0.02700156345963478,
0.09674709290266037,
-0.049004778265953064,
0.04489458352327347,
0.003364228643476963,
-0.06147482246160507,
0.02376098744571209,
-0.12070685625076294,
-0.09084827452898026,
-0.02484559267759323,
-0.08962545543909073,
-0.0035166332963854074,
0.0710059329867363,
0.06943844258785248,
-0.08421533554792404,
-0.11412288248538971,
0.04664304107427597,
0.11607809364795685,
-0.05927957594394684,
0.02592746913433075,
-0.04012332111597061,
0.0920320600271225,
-0.031094852834939957,
-0.02123110182583332,
-0.1657981425523758,
-0.08145926892757416,
0.03548618406057358,
-0.046562012284994125,
0.005906046833842993,
0.0012940842425450683,
0.08936718106269836,
0.09464457631111145,
-0.0618160218000412,
-0.032548047602176666,
-0.09114350378513336,
-0.022679055109620094,
-0.1091722771525383,
-0.2396526336669922,
-0.07144737243652344,
-0.018836170434951782,
0.18580223619937897,
-0.24259278178215027,
0.021851511672139168,
0.044928472489118576,
0.1417410671710968,
0.032053422182798386,
-0.07436329871416092,
-0.038074519485235214,
0.07409750670194626,
-0.019830161705613136,
-0.07283695787191391,
0.03383689001202583,
-0.020303498953580856,
-0.09610050916671753,
-0.07686351239681244,
-0.1279257833957672,
0.0929713249206543,
0.09927384555339813,
0.016148386523127556,
-0.11441196501255035,
-0.06645336002111435,
-0.09314022958278656,
-0.05771826207637787,
-0.02075682394206524,
0.0003435895196162164,
0.13473553955554962,
0.013807638548314571,
0.1078202873468399,
-0.07392019033432007,
-0.0667637437582016,
0.04376464709639549,
0.004052051808685064,
-0.01329762488603592,
0.15050052106380463,
0.11080906540155411,
-0.04017273336648941,
0.1324792057275772,
0.07877429574728012,
-0.06524601578712463,
0.1384180784225464,
-0.06251490861177444,
-0.10887901484966278,
-0.03745671734213829,
0.05019021034240723,
0.033799946308135986,
0.13355763256549835,
-0.11202770471572876,
0.0037124063819646835,
0.0054266867227852345,
0.02415977604687214,
0.036299578845500946,
-0.20268680155277252,
-0.027376219630241394,
0.030860528349876404,
-0.05151347815990448,
0.010418900288641453,
-0.011467265896499157,
-0.024242717772722244,
0.0893462598323822,
0.02775409072637558,
-0.025437617674469948,
-0.03048274666070938,
-0.005374617874622345,
-0.08128847181797028,
0.2084105759859085,
-0.09369700402021408,
-0.05476269870996475,
-0.1441819667816162,
0.037419091910123825,
-0.047400716692209244,
-0.0036014136858284473,
0.04192560911178589,
-0.10091962665319443,
-0.01112292055040598,
-0.06961344182491302,
0.024752115830779076,
-0.022971268743276596,
0.028424974530935287,
0.021409140899777412,
-0.003123963251709938,
0.06683001667261124,
-0.10391591489315033,
0.019215397536754608,
-0.02464522235095501,
-0.06288081407546997,
0.019998520612716675,
0.02097446843981743,
0.11430887877941132,
0.1477641612291336,
0.0560070276260376,
0.025038378313183784,
-0.018035326153039932,
0.22992953658103943,
-0.11009792983531952,
-0.02082592248916626,
0.06305984407663345,
0.014024442061781883,
0.060152534395456314,
0.10000230371952057,
0.0730576142668724,
-0.09656748920679092,
0.018559427931904793,
0.08908969163894653,
-0.027395101264119148,
-0.19817820191383362,
-0.025210794061422348,
-0.049490783363580704,
-0.009863507933914661,
0.12118455767631531,
0.04765045642852783,
0.021128185093402863,
0.05368279665708542,
-0.0221488606184721,
0.03168464079499245,
-0.02805938944220543,
0.06824420392513275,
0.00372467958368361,
0.042533013969659805,
0.09699201583862305,
-0.029296787455677986,
-0.030257590115070343,
0.04635286331176758,
-0.0010525971883907914,
0.2514023184776306,
0.006307752337306738,
0.1366262435913086,
0.07162849605083466,
0.15881897509098053,
-0.0337686650454998,
0.058218926191329956,
0.009847372770309448,
-0.04531460627913475,
0.019060537219047546,
-0.06582251936197281,
0.004900278057903051,
0.06985282897949219,
0.037679627537727356,
0.05881788581609726,
-0.13349038362503052,
0.007928021252155304,
0.04298536852002144,
0.3168216645717621,
0.06732380390167236,
-0.2922051250934601,
-0.10065402835607529,
0.020721618086099625,
-0.03014816902577877,
-0.021722495555877686,
0.004094427917152643,
0.1435040980577469,
-0.08807922899723053,
0.06064944341778755,
-0.065486840903759,
0.08803737163543701,
-0.01978469453752041,
-0.00974409468472004,
0.10581788420677185,
0.09183776378631592,
-0.013884570449590683,
0.048614125698804855,
-0.20765043795108795,
0.29160961508750916,
-0.0019217317458242178,
0.06428812444210052,
-0.035782281309366226,
0.02411661297082901,
0.02533108927309513,
0.027460187673568726,
0.07081294059753418,
-0.0028603654354810715,
-0.085845448076725,
-0.21720324456691742,
-0.08702585101127625,
0.024389611557126045,
0.14444579184055328,
-0.12926040589809418,
0.12719440460205078,
-0.006619791965931654,
-0.0001066401819116436,
0.046832360327243805,
-0.023756561800837517,
-0.08767444640398026,
-0.08321460336446762,
0.023600971326231956,
-0.0535908043384552,
-0.002894435077905655,
-0.09171491861343384,
-0.11422884464263916,
-0.10917641222476959,
0.1236375942826271,
-0.10237812995910645,
-0.020310627296566963,
-0.1257925182580948,
0.1008685752749443,
0.1530897170305252,
-0.0853123888373375,
0.03244532644748688,
0.012258049100637436,
0.09354975074529648,
0.02364068105816841,
-0.0013597822980955243,
0.09674590826034546,
-0.058457568287849426,
-0.23718047142028809,
-0.03915438428521156,
0.13935770094394684,
0.0720582976937294,
0.05980217456817627,
-0.04698481410741806,
0.03168509155511856,
-0.005085592158138752,
-0.11226554960012436,
0.057750653475522995,
0.01755654066801071,
0.0420658141374588,
0.03296827897429466,
-0.031187212094664574,
0.09248533099889755,
-0.0524340383708477,
-0.03792685642838478,
0.08062762767076492,
0.3377566933631897,
-0.08694002777338028,
-0.01024245098233223,
0.019376927986741066,
-0.05861891806125641,
-0.13374532759189606,
0.03826272115111351,
0.12859304249286652,
0.01361763384193182,
0.015801960602402687,
-0.2079375982284546,
0.08783866465091705,
0.12488583475351334,
-0.018760621547698975,
0.16357839107513428,
-0.32873040437698364,
-0.13886785507202148,
0.06808391958475113,
0.10599080473184586,
-0.03551771864295006,
-0.19818519055843353,
-0.07019317895174026,
0.02358442358672619,
-0.13390818238258362,
0.06552892178297043,
-0.05984371900558472,
0.10912887006998062,
-0.02034785784780979,
0.048079296946525574,
0.016475921496748924,
-0.04725640267133713,
0.1918659806251526,
0.01603092812001705,
0.08370604366064072,
-0.022418124601244926,
0.0024741783272475004,
0.015519421547651291,
-0.06495098769664764,
0.0013827182119712234,
-0.06192151457071304,
0.013627702370285988,
-0.12489934265613556,
-0.01043623685836792,
-0.09229674190282822,
0.029468173161149025,
-0.0688309594988823,
-0.037618860602378845,
-0.05332953855395317,
0.0568949319422245,
0.028216363862156868,
0.0024388604797422886,
0.16328765451908112,
-0.009316397830843925,
0.21366634964942932,
0.09424879401922226,
0.03176935017108917,
0.0019640703685581684,
-0.08031754940748215,
-0.00024644541554152966,
-0.0018643549410626292,
0.05453178286552429,
-0.15960827469825745,
0.0014404762769117951,
0.1630409210920334,
0.05026007443666458,
0.134486123919487,
0.05668823793530464,
-0.08629269897937775,
0.011875665746629238,
0.08391040563583374,
-0.10909084230661392,
-0.14284396171569824,
-0.018284335732460022,
-0.0430571585893631,
-0.1545003354549408,
0.020298991352319717,
0.10070923715829849,
-0.04810106009244919,
-0.0070718517526984215,
-0.003615232650190592,
0.03118857741355896,
-0.06335008889436722,
0.2369682490825653,
0.04499119520187378,
0.07942080497741699,
-0.08723058551549911,
0.06805551797151566,
0.03836354613304138,
-0.10707616806030273,
0.011270558461546898,
0.09671390801668167,
-0.04836685210466385,
-0.01306837610900402,
0.040457259863615036,
0.11160248517990112,
-0.0168211217969656,
-0.023267079144716263,
-0.1307322084903717,
-0.11357904970645905,
0.08553629368543625,
0.09899724274873734,
0.06090884283185005,
0.026458190754055977,
-0.0016479557380080223,
0.06261038780212402,
-0.1012665405869484,
0.09448830038309097,
0.06682933121919632,
0.08423778414726257,
-0.13853292167186737,
0.1471758782863617,
-0.007951468229293823,
0.011651485227048397,
0.006624979432672262,
0.021900778636336327,
-0.13555994629859924,
-0.004729813430458307,
-0.10774067044258118,
-0.04155764728784561,
-0.054912418127059937,
-0.004348735325038433,
0.013013454154133797,
-0.06297138333320618,
-0.06409575790166855,
0.014748575165867805,
-0.12209171056747437,
-0.06039386987686157,
-0.006246037315577269,
0.07419838756322861,
-0.11469759792089462,
-0.0014738434692844748,
0.04661829024553299,
-0.09815520793199539,
0.08053816854953766,
0.034574877470731735,
0.06090278923511505,
0.04301057010889053,
-0.08923708647489548,
0.06928976625204086,
0.03359765559434891,
-0.022761987522244453,
0.04380790516734123,
-0.1268194168806076,
-0.014646414667367935,
-0.07012078166007996,
0.059371914714574814,
0.01548708789050579,
0.03300748020410538,
-0.13368742167949677,
-0.018237395212054253,
-0.04168837517499924,
-0.07722240686416626,
-0.04309174418449402,
0.037039194256067276,
0.0696006715297699,
0.02126343362033367,
0.11828186362981796,
-0.06408477574586868,
0.04516454041004181,
-0.24269963800907135,
-0.011030019260942936,
0.0050314366817474365,
-0.04815297946333885,
-0.031656067818403244,
-0.033361777663230896,
0.08350478112697601,
-0.05671905353665352,
0.07490068674087524,
-0.050159890204668045,
0.060267284512519836,
0.033251967281103134,
-0.06904573738574982,
0.03172757104039192,
0.04391544684767723,
0.17408215999603271,
0.05236191302537918,
-0.021712077781558037,
0.03863963112235069,
0.031449224799871445,
0.06799726188182831,
0.08063606917858124,
0.2105691134929657,
0.12180338054895401,
-0.04397890344262123,
0.08497540652751923,
0.06269274652004242,
-0.14014342427253723,
-0.1283898949623108,
0.10246244072914124,
-0.04299653321504593,
0.09132621437311172,
-0.03552797809243202,
0.1340148001909256,
0.10595276206731796,
-0.22039736807346344,
0.027264930307865143,
-0.04244633764028549,
-0.08768359571695328,
-0.10993833839893341,
-0.028379322960972786,
-0.070075623691082,
-0.1836191564798355,
0.018828166648745537,
-0.12170723080635071,
0.02812766283750534,
0.08599761873483658,
0.03525442257523537,
0.02927277237176895,
0.17399270832538605,
0.02680254727602005,
0.03146010637283325,
0.06408583372831345,
0.036481376737356186,
-0.01198645494878292,
-0.06597363203763962,
-0.10200080275535583,
0.024530678987503052,
-0.05452607572078705,
0.04653099179267883,
-0.07534706592559814,
-0.08048863708972931,
0.07043667882680893,
0.03025054931640625,
-0.0876888781785965,
0.018727591261267662,
-0.0011869907611981034,
0.042547859251499176,
0.06852264702320099,
0.006946029607206583,
0.013709699735045433,
-0.03829392418265343,
0.20173516869544983,
-0.08946052193641663,
-0.01663566380739212,
-0.1421426683664322,
0.26003211736679077,
0.01600523851811886,
-0.008601476438343525,
0.02877069264650345,
-0.09332875907421112,
-0.004473757930099964,
0.14798487722873688,
0.13989584147930145,
-0.02949659898877144,
-0.016974348574876785,
0.04087939113378525,
-0.009051467292010784,
-0.031931325793266296,
0.06924823671579361,
0.10327211022377014,
0.06493377685546875,
-0.07861938327550888,
-0.03421999514102936,
-0.031554706394672394,
-0.04477581009268761,
-0.019007794559001923,
0.047327920794487,
0.05205448344349861,
0.01301075890660286,
-0.047076184302568436,
0.09419289976358414,
-0.07405469566583633,
-0.10900163650512695,
0.12803083658218384,
-0.20157241821289062,
-0.18231496214866638,
-0.027230987325310707,
0.04177287220954895,
0.0005201732856221497,
0.07935924828052521,
-0.011095869354903698,
-0.05092335864901543,
0.12771032750606537,
-0.009542864747345448,
-0.06785022467374802,
-0.15537674725055695,
0.08146660774946213,
-0.09295832365751266,
0.209074467420578,
-0.05930652469396591,
0.016122713685035706,
0.12990283966064453,
0.03997356444597244,
-0.08072529733181,
0.005863170139491558,
0.08949773758649826,
-0.11983997374773026,
-0.008961762301623821,
0.15527410805225372,
-0.04420941695570946,
0.0924769788980484,
0.05039820820093155,
-0.11347796022891998,
-0.0010044551454484463,
-0.05687173455953598,
-0.02051261067390442,
-0.067063108086586,
-0.006040898617357016,
-0.06473302841186523,
0.14273080229759216,
0.23969729244709015,
-0.048078957945108414,
-0.009242827072739601,
-0.04149594157934189,
0.04581180214881897,
0.04660310968756676,
0.12832653522491455,
-0.04278859496116638,
-0.28319016098976135,
0.04562310129404068,
0.007328495848923922,
-0.008600299246609211,
-0.23484037816524506,
-0.09408585727214813,
0.06428664177656174,
-0.053281597793102264,
-0.04321577027440071,
0.11213843524456024,
0.06415016949176788,
0.051122426986694336,
-0.056660983711481094,
-0.14712747931480408,
-0.06904809921979904,
0.1725744754076004,
-0.15057097375392914,
-0.08079878985881805
] |
null | null | transformers |
# Danish-Swedish Merged Model
This is a merge of the following models, all based on `mistralai/Mistral-7B-v0.1`:
1. `danish-foundation-models/munin-7b-alpha`, continued pretraining on Danish data;
2. `timpal0l/Mistral-7B-v0.1-flashback-v2`, continued pretraining on Swedish data.
## Model Details
- **Merged by:** [Dan Saattrup Nielsen](https://www.saattrupdan.com/)
- **Model type:** Decoder model, based on `mistralai/Mistral-7B-v0.1`
- **Language(s):** Danish and Swedish
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Merge configuration:**
```python
dict(
models=[
dict(
model="danish-foundation-models/munin-7b-alpha",
parameters=dict(
weight=1.0,
),
),
dict(
model="timpal0l/Mistral-7B-v0.1-flashback-v2",
parameters=dict(
weight=1.0,
),
),
],
merge_method="ties",
base_model="mistralai/Mistral-7B-v0.1",
parameters=dict(
int8_mask=True,
normalize=True,
),
dtype="bfloat16",
)
``` | {"language": ["da", "sv"], "license": "cc-by-4.0", "library_name": "transformers", "tags": ["merge", "mergekit"], "base_model": ["danish-foundation-models/munin-7b-alpha", "timpal0l/Mistral-7B-v0.1-flashback-v2"]} | text-generation | merge-crew/da-sv-ties | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"da",
"sv",
"base_model:danish-foundation-models/munin-7b-alpha",
"base_model:timpal0l/Mistral-7B-v0.1-flashback-v2",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:33:19+00:00 | [] | [
"da",
"sv"
] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Danish-Swedish Merged Model
This is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':
1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;
2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.
## Model Details
- Merged by: Dan Saattrup Nielsen
- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'
- Language(s): Danish and Swedish
- License: CC-BY-4.0
- Merge configuration:
| [
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
112,
92,
57
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
-0.07790645211935043,
-0.03015519306063652,
-0.001845451071858406,
0.01761663891375065,
0.005533731542527676,
0.017309537157416344,
0.18024572730064392,
0.014157861471176147,
0.11699634045362473,
0.049290940165519714,
0.09461456537246704,
-0.025814635679125786,
0.07459410279989243,
0.15416653454303741,
-0.023723548278212547,
-0.2509255111217499,
0.16021594405174255,
-0.06184382736682892,
-0.0011111752828583121,
0.06811320781707764,
0.16061803698539734,
-0.05339423194527626,
0.060751914978027344,
-0.025017917156219482,
-0.010531418025493622,
-0.04100566729903221,
-0.013157473877072334,
-0.01645241677761078,
0.09814372658729553,
0.07561057060956955,
0.12545564770698547,
0.10607897490262985,
0.09971975535154343,
-0.09932507574558258,
0.017701633274555206,
-0.05002636834979057,
-0.012917673215270042,
0.06271383166313171,
0.022881586104631424,
0.00972265750169754,
0.12558315694332123,
0.004797929432243109,
0.02946697175502777,
0.01172764040529728,
-0.024050505831837654,
-0.14779840409755707,
-0.09297361969947815,
0.0884193703532219,
0.12674783170223236,
0.02148253843188286,
-0.056929804384708405,
0.02347111701965332,
-0.07782470434904099,
0.052233461290597916,
0.01635611802339554,
-0.20452626049518585,
-0.029955873265862465,
0.2827467918395996,
0.09390783309936523,
0.021380765363574028,
-0.004600406624376774,
0.07961131632328033,
0.030591290444135666,
0.05097811296582222,
0.016523117199540138,
-0.04365215450525284,
0.1394139677286148,
-0.05343722924590111,
-0.138288676738739,
0.04785174876451492,
0.24915790557861328,
0.006434302311390638,
-0.03581035137176514,
-0.1517181545495987,
-0.014848783612251282,
0.06103600934147835,
-0.04403603449463844,
-0.033446673303842545,
-0.00813213549554348,
-0.014270576648414135,
0.11287036538124084,
-0.05263213440775871,
-0.09540428966283798,
-0.035252559930086136,
-0.08226437121629715,
0.04639798030257225,
0.0012334260391071439,
0.019760075956583023,
0.030299492180347443,
0.04052567481994629,
-0.2250727117061615,
-0.13539139926433563,
-0.07080507278442383,
-0.13484181463718414,
-0.07491977512836456,
-0.07721184939146042,
-0.09408523142337799,
-0.1961917132139206,
0.08598749339580536,
0.15959973633289337,
-0.1339980661869049,
0.033623985946178436,
0.03499354422092438,
0.04502776637673378,
0.050829555839300156,
0.05912023037672043,
-0.1169213280081749,
-0.06325632333755493,
-0.005035800859332085,
0.011565557681024075,
0.05594192445278168,
-0.0146050238981843,
-0.1415129452943802,
-0.04646974056959152,
0.07210437208414078,
-0.03200290724635124,
-0.025780152529478073,
0.09820174425840378,
-0.04346888139843941,
-0.036695629358291626,
0.12508425116539001,
-0.08411811292171478,
-0.038201283663511276,
0.019165784120559692,
-0.02553435228765011,
0.02469651773571968,
0.03735232353210449,
0.08094065636396408,
-0.01679702289402485,
0.12463073432445526,
-0.01627068966627121,
-0.02836420387029648,
-0.012457841075956821,
-0.17668162286281586,
0.06874177604913712,
-0.0422675758600235,
-0.03485698625445366,
-0.08175491541624069,
-0.16885918378829956,
-0.024253210052847862,
0.08906910568475723,
-0.06898833066225052,
0.004269849509000778,
-0.04987344518303871,
-0.04991753026843071,
0.0392429381608963,
-0.04194767773151398,
0.0010451647685840726,
-0.024424729868769646,
-0.029048871248960495,
-0.13120698928833008,
0.05863428860902786,
-0.13190720975399017,
0.012754985131323338,
-0.15204405784606934,
0.03729171305894852,
-0.3218300938606262,
0.09366514533758163,
-0.14123386144638062,
0.018095970153808594,
-0.15655501186847687,
-0.04304054006934166,
0.042186833918094635,
0.04188097268342972,
0.020041609182953835,
0.1468127965927124,
-0.21928861737251282,
-0.015325666405260563,
0.08153565973043442,
-0.18640124797821045,
-0.07752858102321625,
0.09157474339008331,
0.009631101042032242,
0.021671805530786514,
0.09708596020936966,
0.1678217202425003,
0.10420577228069305,
-0.0477188415825367,
0.007227534428238869,
0.015816273167729378,
0.03098001331090927,
0.034281570464372635,
0.08995219320058823,
-0.061474382877349854,
-0.09744572639465332,
0.04602845385670662,
-0.14474420249462128,
-0.02051553875207901,
-0.020364994183182716,
-0.045381125062704086,
-0.02002980187535286,
-0.028931058943271637,
0.10917680710554123,
0.019057774916291237,
0.011198156513273716,
-0.058678027242422104,
-0.06079668924212456,
0.1512085646390915,
0.052909865975379944,
-0.06890697032213211,
0.0011929306201636791,
-0.04360351711511612,
0.15894658863544464,
-0.09105619788169861,
0.027368832379579544,
-0.10843247920274734,
-0.2061401903629303,
-0.02178545854985714,
-0.04498995095491409,
-0.017810771241784096,
0.13020773231983185,
0.09354060888290405,
0.08364523947238922,
-0.07487242668867111,
0.023084232583642006,
0.04003618285059929,
0.023967042565345764,
0.022315487265586853,
-0.22083508968353271,
-0.04057543724775314,
-0.08819638192653656,
0.15791065990924835,
-0.12362311035394669,
-0.019306158646941185,
0.027991700917482376,
0.1785343438386917,
-0.021734127774834633,
0.014100376516580582,
0.033973317593336105,
0.023144902661442757,
-0.023902487009763718,
0.007200213149189949,
0.060537129640579224,
-0.06724534928798676,
-0.16839800775051117,
0.19399064779281616,
-0.08351777493953705,
-0.05803235247731209,
0.0986170619726181,
0.060517001897096634,
-0.05501345917582512,
-0.07016870379447937,
0.005494724493473768,
-0.00336460885591805,
0.014051906764507294,
-0.07767163962125778,
0.02727637253701687,
0.043538421392440796,
0.08637576550245285,
-0.07714254409074783,
-0.01984459161758423,
0.026117395609617233,
-0.04571007564663887,
-0.08532947301864624,
0.15370550751686096,
-0.030041104182600975,
-0.2126939594745636,
0.08588036894798279,
0.10357401520013809,
0.004937663208693266,
0.15892095863819122,
-0.044131647795438766,
-0.020489247515797615,
-0.02474173717200756,
0.01483137160539627,
-0.027603954076766968,
0.11371316760778427,
0.04838012158870697,
0.03393398970365524,
0.0565028116106987,
0.030634425580501556,
0.005224061198532581,
-0.03415625914931297,
0.0007804827182553709,
-0.0005763129447586834,
-0.07688332349061966,
-0.022993700578808784,
0.11663074046373367,
-0.012423141859471798,
0.04763064533472061,
0.006913137622177601,
-0.10942798852920532,
0.030520640313625336,
-0.02305247262120247,
-0.11156577616930008,
0.19326670467853546,
-0.14229537546634674,
-0.1626935452222824,
-0.1715647429227829,
-0.014565713703632355,
-0.15144121646881104,
0.04017765074968338,
0.029991697520017624,
-0.029643531888723373,
-0.12352485954761505,
-0.154256671667099,
0.13969756662845612,
0.05257447808980942,
-0.039597973227500916,
-0.06658301502466202,
-0.06861234456300735,
0.015273235738277435,
-0.09608869254589081,
-0.004772777669131756,
-0.03693890571594238,
0.05918627232313156,
0.027588438242673874,
-0.032047294080257416,
0.02602231130003929,
0.12100129574537277,
0.01099711935967207,
-0.022437460720539093,
-0.005009934306144714,
0.2827775180339813,
-0.006333152763545513,
0.13683107495307922,
0.10430105775594711,
-0.0714607685804367,
0.019691525027155876,
0.30313563346862793,
0.049881141632795334,
-0.019728565588593483,
-0.01599447801709175,
0.006293904967606068,
-0.05709044635295868,
-0.17038887739181519,
-0.14377093315124512,
-0.030107727274298668,
-0.02747768722474575,
0.031249454244971275,
0.02323758788406849,
0.07741788029670715,
0.09933672100305557,
-0.05783819779753685,
-0.06773658096790314,
0.15389065444469452,
0.07587559521198273,
0.1819363534450531,
0.010931090451776981,
0.13907504081726074,
-0.03223525732755661,
0.041536640375852585,
0.05202906206250191,
-0.04060248285531998,
0.1249179095029831,
0.0006364253349602222,
0.0466010645031929,
0.08231286704540253,
0.020827915519475937,
0.06121780350804329,
0.05880802869796753,
-0.027373377233743668,
-0.03801354020833969,
0.007529884576797485,
-0.11445717513561249,
0.008438142947852612,
0.05189485847949982,
-0.02996695041656494,
0.02611970342695713,
-0.05229169875383377,
-0.01613765023648739,
0.02872016839683056,
0.13507109880447388,
0.1376635730266571,
-0.21791858971118927,
-0.14808011054992676,
0.09848155826330185,
0.04242284968495369,
-0.027359800413250923,
-0.03314428776502609,
0.1079636812210083,
-0.04385751113295555,
0.1308964192867279,
-0.06752904504537582,
0.08699766546487808,
0.05261766165494919,
-0.00839739479124546,
0.017166757956147194,
0.15610235929489136,
-0.01823996566236019,
0.03997412323951721,
-0.1572490781545639,
0.2206059843301773,
0.02330763265490532,
0.05083117634057999,
-0.02731296978890896,
0.05548835173249245,
-0.03634350374341011,
0.2931061387062073,
0.14591319859027863,
0.04480881616473198,
-0.20216615498065948,
-0.03303123265504837,
-0.05310072749853134,
0.002297710394486785,
-0.011837710626423359,
-0.0912259891629219,
0.05505895987153053,
-0.026867184787988663,
-0.019597359001636505,
-0.01445654034614563,
0.006882836576551199,
-0.19464567303657532,
-0.024847207590937614,
0.08003702014684677,
0.028117317706346512,
0.023757468909025192,
-0.042370591312646866,
-0.0780787542462349,
-0.24140657484531403,
0.13903242349624634,
-0.14701692759990692,
-0.14990006387233734,
-0.12257049977779388,
-0.014571533538401127,
0.16712133586406708,
-0.04927896708250046,
0.0017193779349327087,
-0.04505350440740585,
0.11273565143346786,
-0.08050554990768433,
-0.11114968359470367,
0.0606694258749485,
-0.10540656745433807,
-0.12754999101161957,
0.026054352521896362,
0.13365209102630615,
0.031114904209971428,
0.011548097245395184,
0.06189339980483055,
0.0839027613401413,
0.004083338659256697,
-0.10294199734926224,
-0.032712068408727646,
0.16165977716445923,
0.07882702350616455,
0.019927464425563812,
-0.05372723564505577,
-0.1367807388305664,
0.04402880743145943,
0.043714579194784164,
0.054820965975522995,
0.21810968220233917,
-0.07597452402114868,
0.15984539687633514,
0.24819068610668182,
-0.04421228542923927,
-0.27244284749031067,
0.008268083445727825,
0.026019161567091942,
0.04910096526145935,
0.028192713856697083,
-0.06604106724262238,
0.07096776366233826,
0.06056975573301315,
-0.019779199734330177,
-0.0437302440404892,
-0.2815413773059845,
-0.15509745478630066,
0.0798153355717659,
0.04970274120569229,
0.13793402910232544,
-0.019226856529712677,
-0.09838006645441055,
-0.07043582946062088,
-0.22069935500621796,
0.025669462978839874,
-0.060360364615917206,
0.04356686398386955,
0.050906505435705185,
0.10239969193935394,
0.04695972800254822,
-0.05324345827102661,
0.20339259505271912,
-0.006453427951782942,
0.0014867380959913135,
-0.14374053478240967,
0.0974493995308876,
0.1210208535194397,
-0.05566909536719322,
0.1826964169740677,
-0.11554885655641556,
0.01881491020321846,
0.004040393978357315,
-0.0695972591638565,
-0.05706189200282097,
0.1300232857465744,
-0.06494156271219254,
-0.09464558213949203,
-0.029273951426148415,
0.12781299650669098,
0.04889867454767227,
-0.044869549572467804,
0.16700761020183563,
-0.137804314494133,
0.060993093997240067,
0.0686861053109169,
0.18163862824440002,
-0.008038914762437344,
0.050217024981975555,
0.07365497946739197,
-0.06783270835876465,
0.09087264537811279,
-0.09697553515434265,
0.026648743078112602,
0.12607236206531525,
-0.0818360224366188,
0.10778290778398514,
-0.002373751485720277,
-0.0716380700469017,
-0.05003531277179718,
0.07754302024841309,
-0.12806205451488495,
-0.20083147287368774,
-0.005338768009096384,
-0.07004976272583008,
-0.008155906572937965,
0.07091569155454636,
0.19188733398914337,
-0.10710691660642624,
0.05187798663973808,
0.04366334155201912,
0.038712747395038605,
-0.050928205251693726,
0.09676147252321243,
-0.031504202634096146,
0.08796443790197372,
-0.12471625208854675,
0.08662746846675873,
0.009572353214025497,
-0.009284530766308308,
0.023202894255518913,
0.011841743253171444,
-0.15221507847309113,
-0.10465230792760849,
-0.07098477333784103,
0.1309494972229004,
-0.10965951532125473,
-0.06321429461240768,
-0.04528801515698433,
-0.21013621985912323,
-0.004382205195724964,
0.1510908156633377,
0.05101395770907402,
0.006888202857226133,
0.039325423538684845,
-0.0834689661860466,
-0.046084217727184296,
0.10527510195970535,
-0.008401305414736271,
0.054947901517152786,
-0.0947478711605072,
0.031088072806596756,
-0.07272321730852127,
-0.0006152761052362621,
-0.06085532158613205,
0.046569570899009705,
-0.09244837611913681,
-0.04433303698897362,
-0.24476198852062225,
-0.02948712930083275,
-0.10162737220525742,
0.005925409961491823,
-0.023792089894413948,
-0.05791904404759407,
-0.009580965153872967,
0.02944793552160263,
-0.052064113318920135,
0.028331203386187553,
-0.054165177047252655,
0.03355591744184494,
-0.10573776066303253,
-0.042767178267240524,
-0.02531902864575386,
-0.006444650702178478,
0.06245148554444313,
-0.024661120027303696,
-0.02460709773004055,
0.06862392276525497,
-0.15297682583332062,
0.05816784128546715,
-0.00839685183018446,
-0.008775755763053894,
0.03712017461657524,
-0.09403734654188156,
-0.07964511960744858,
0.033168405294418335,
-0.05862830579280853,
0.04005905240774155,
-0.0031817953567951918,
-0.04679165035486221,
-0.029700614511966705,
0.003948427736759186,
-0.011108252219855785,
-0.04573764652013779,
0.06480401754379272,
0.09253077208995819,
0.08296994864940643,
0.18830294907093048,
-0.08147912472486496,
0.03735468536615372,
-0.048419978469610214,
-0.012443006038665771,
0.042660780251026154,
-0.06875362247228622,
-0.11256622523069382,
-0.043064411729574203,
0.005144929513335228,
-0.07369814068078995,
0.12754903733730316,
0.0005650114035233855,
0.018743859604001045,
0.05773729458451271,
0.046778008341789246,
0.04026972874999046,
0.09245322644710541,
0.25515222549438477,
0.0022486119996756315,
0.0125136012211442,
-0.07156746834516525,
0.03337785601615906,
-0.03308577463030815,
-0.04718247801065445,
0.12194256484508514,
0.09950623661279678,
0.015347703360021114,
0.06162753701210022,
0.09824590384960175,
0.04838903248310089,
-0.004267261829227209,
0.12456070631742477,
-0.004413316026329994,
0.07239881157875061,
0.0010569532169029117,
0.10575029999017715,
0.1044192910194397,
-0.1553594321012497,
0.030284132808446884,
-0.024085834622383118,
-0.0652424544095993,
-0.11762596666812897,
-0.2856464385986328,
-0.12367710471153259,
-0.06410928815603256,
-0.003306539496406913,
-0.13027767837047577,
-0.020353415980935097,
0.0115639828145504,
0.08691554516553879,
0.00982686411589384,
0.06335189938545227,
-0.13382595777511597,
-0.024149540811777115,
0.02545652911067009,
0.003029368817806244,
0.011984245851635933,
0.05927858129143715,
-0.08694147318601608,
0.06390450149774551,
0.05681420862674713,
-0.059431787580251694,
0.0013354551047086716,
0.05571134015917778,
-0.004035496152937412,
-0.0043036071583628654,
-0.09019695967435837,
0.0021341608371585608,
0.059925101697444916,
0.05156881734728813,
0.0033946665935218334,
0.07916411757469177,
-0.051909059286117554,
-0.03081372193992138,
0.14307154715061188,
0.016999226063489914,
-0.14354360103607178,
-0.16757306456565857,
0.08821708709001541,
-0.06582304835319519,
0.12855549156665802,
0.023659445345401764,
-0.09416818618774414,
0.0288002360612154,
0.0785275250673294,
0.2311314344406128,
0.007645815145224333,
-0.008183205500245094,
-0.037462323904037476,
-0.017463168129324913,
-0.024872059002518654,
0.07746220380067825,
-0.08915327489376068,
0.06722945719957352,
-0.013366678729653358,
0.07300999015569687,
-0.054135847836732864,
-0.02850334346294403,
-0.05727377161383629,
0.02816675789654255,
-0.010790894739329815,
-0.08331076800823212,
-0.06713932007551193,
0.14337554574012756,
-0.1009376272559166,
-0.03019692189991474,
0.03914759308099747,
-0.027046825736761093,
-0.1234302818775177,
-0.09156519919633865,
0.12957824766635895,
0.043439749628305435,
-0.008643456734716892,
-0.05476727336645126,
0.0059874881990253925,
0.13312172889709473,
-0.02826594188809395,
0.010006598196923733,
-0.1186540275812149,
0.03718119114637375,
0.11465353518724442,
0.11228333413600922,
0.03625792637467384,
0.06391020119190216,
0.09114611893892288,
-0.007190036587417126,
-0.09663175791501999,
0.037423327565193176,
0.0823514312505722,
-0.08090413361787796,
0.054681114852428436,
0.11813192069530487,
-0.04146386682987213,
0.16020523011684418,
0.04642803221940994,
-0.2182735800743103,
0.0008434554911218584,
0.010836999863386154,
-0.12002365291118622,
-0.0016474324511364102,
0.11802824586629868,
-0.08067665994167328,
0.1294572800397873,
0.1813667267560959,
-0.005836338736116886,
-0.058279141783714294,
-0.06785866618156433,
0.11393947899341583,
0.018305964767932892,
0.03552389144897461,
0.014713247306644917,
-0.16367223858833313,
0.002938327845185995,
0.06204676628112793,
0.026597334071993828,
-0.16142277419567108,
-0.059767596423625946,
-0.09896206110715866,
0.04838142544031143,
-0.030174996703863144,
0.10162434726953506,
0.13815189898014069,
0.012267130427062511,
-0.030895104631781578,
-0.03007916733622551,
0.028047600761055946,
0.09362351894378662,
-0.06066036969423294,
-0.08272837847471237
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | image-classification | not-lain/testpushfrommodel | [
"transformers",
"safetensors",
"MobileNetV1",
"image-classification",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] | 2024-02-13T17:33:31+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #MobileNetV1 #image-classification #custom_code #arxiv-1910.09700 #autotrain_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #MobileNetV1 #image-classification #custom_code #arxiv-1910.09700 #autotrain_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
46,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #MobileNetV1 #image-classification #custom_code #arxiv-1910.09700 #autotrain_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.062496721744537354,
0.1657005399465561,
-0.0038604456931352615,
0.01631988026201725,
0.12175841629505157,
0.0034818523563444614,
0.07872582972049713,
0.10618814080953598,
-0.0438285656273365,
0.12399927526712418,
0.03640766069293022,
0.09827768057584763,
0.11196409910917282,
0.17865750193595886,
0.006805501878261566,
-0.2074335664510727,
0.05683343484997749,
-0.11472591012716293,
0.0071833631955087185,
0.12384346127510071,
0.1418607234954834,
-0.10063708573579788,
0.0808439552783966,
-0.033654503524303436,
-0.02929115667939186,
-0.023376692086458206,
-0.06244708597660065,
-0.05706231668591499,
0.06631805747747421,
0.0595206581056118,
0.06593432277441025,
0.02473996952176094,
0.07770123332738876,
-0.29701998829841614,
0.019055861979722977,
0.08063146471977234,
0.003525317180901766,
0.059572115540504456,
0.08508794009685516,
-0.06410377472639084,
0.13590732216835022,
-0.05361562594771385,
0.15024934709072113,
0.07782331109046936,
-0.09498671442270279,
-0.17936035990715027,
-0.08581041544675827,
0.07552077621221542,
0.15453769266605377,
0.05985549837350845,
-0.032553814351558685,
0.15063627064228058,
-0.08587592095136642,
0.020536601543426514,
0.07094886898994446,
-0.07803255319595337,
-0.05604812502861023,
0.054543688893318176,
0.08096484839916229,
0.08745964616537094,
-0.12506215274333954,
-0.006358180660754442,
0.04688054695725441,
0.01800355315208435,
0.1020229309797287,
0.02561958320438862,
0.10664967447519302,
0.027896594256162643,
-0.1408228874206543,
-0.06407280266284943,
0.1212661862373352,
0.028237339109182358,
-0.05108887329697609,
-0.23170241713523865,
-0.010181622579693794,
-0.03314652666449547,
-0.01951114647090435,
-0.04417655989527702,
0.038117971271276474,
-0.030175818130373955,
0.07472380995750427,
0.009908006526529789,
-0.06866417825222015,
-0.04621785506606102,
0.08135826140642166,
0.05616855248808861,
0.02536400966346264,
-0.027899794280529022,
0.014630028046667576,
0.11860278248786926,
0.10021711140871048,
-0.1222694143652916,
-0.05993559584021568,
-0.061929140239953995,
-0.0855184867978096,
-0.04883185029029846,
0.04453334957361221,
0.06497412174940109,
0.04850180074572563,
0.17924927175045013,
0.003614503424614668,
0.05434207618236542,
0.021071474999189377,
0.014799512922763824,
0.06413112580776215,
0.06791631132364273,
-0.04754723235964775,
-0.14119337499141693,
-0.04486435279250145,
0.1178649514913559,
0.012324267998337746,
-0.030010255053639412,
-0.03587890416383743,
0.06670892238616943,
0.05313559249043465,
0.12474184483289719,
0.07437095791101456,
0.019387001171708107,
-0.06526721268892288,
-0.04004073143005371,
0.19748950004577637,
-0.14885778725147247,
0.02015569992363453,
0.013225271366536617,
-0.0563930943608284,
-0.03979320451617241,
0.014684963971376419,
0.011975274421274662,
-0.028574263677001,
0.09007377922534943,
-0.0682947188615799,
-0.039764173328876495,
-0.11052829772233963,
-0.054957687854766846,
0.03343233838677406,
-0.005829744040966034,
-0.03793254494667053,
-0.04615391045808792,
-0.11097627878189087,
-0.07075623422861099,
0.06334716081619263,
-0.06390636414289474,
-0.0690314769744873,
-0.03624177724123001,
-0.06440594792366028,
0.009560455568134785,
0.006662945728749037,
0.12506525218486786,
-0.029016103595495224,
0.04673270136117935,
-0.04322347044944763,
0.06775784492492676,
0.14131653308868408,
0.03127741441130638,
-0.0745374858379364,
0.06550712883472443,
-0.21067331731319427,
0.1036301925778389,
-0.09886616468429565,
0.030098773539066315,
-0.15818805992603302,
-0.029936790466308594,
0.024921976029872894,
0.031318921595811844,
-0.016000689938664436,
0.13799333572387695,
-0.18222731351852417,
-0.0432000458240509,
0.16216343641281128,
-0.13526058197021484,
-0.09217596799135208,
0.0596221387386322,
-0.05281156301498413,
0.1265007108449936,
0.04929402098059654,
-0.02339966408908367,
0.06708882749080658,
-0.14081014692783356,
-0.030393296852707863,
-0.05586044862866402,
-0.01380967441946268,
0.14797450602054596,
0.060098256915807724,
-0.051093872636556625,
0.021354148164391518,
0.020634815096855164,
-0.021946627646684647,
-0.037686266005039215,
-0.03810936212539673,
-0.09679535776376724,
0.00823457632213831,
-0.07578111439943314,
0.013826441951096058,
-0.011571865528821945,
-0.08764258772134781,
-0.036780521273612976,
-0.15513138473033905,
-0.009598306380212307,
0.10112754255533218,
0.010451977141201496,
-0.03354411572217941,
-0.09562873840332031,
0.008603548631072044,
0.011449861340224743,
-0.017332622781395912,
-0.15039020776748657,
-0.0603504441678524,
0.0342576801776886,
-0.18383048474788666,
0.029045462608337402,
-0.053140562027692795,
0.03177735209465027,
0.05037833750247955,
-0.05025443434715271,
-0.020974891260266304,
0.012146678753197193,
0.018852408975362778,
-0.017218459397554398,
-0.24576878547668457,
-0.015872471034526825,
-0.048877567052841187,
0.1755797117948532,
-0.24598900973796844,
0.04285947233438492,
0.0773513987660408,
0.1280892789363861,
0.013478338718414307,
-0.0488319993019104,
0.037658024579286575,
-0.04782949015498161,
-0.048746101558208466,
-0.06845030188560486,
-0.004089146386831999,
-0.029610706493258476,
-0.02914579212665558,
0.040280114859342575,
-0.19546116888523102,
-0.030920134857296944,
0.10969823598861694,
0.06391793489456177,
-0.1684141308069229,
-0.06528417766094208,
-0.0312035009264946,
-0.06243371218442917,
-0.09082017838954926,
-0.041146378964185715,
0.09759148210287094,
0.03998269513249397,
0.05923519283533096,
-0.07176637649536133,
-0.05368022993206978,
0.01602703332901001,
-0.0075390334241092205,
-0.03798718377947807,
0.08459317684173584,
0.0979285016655922,
-0.12350232154130936,
0.09883254766464233,
0.07066120952367783,
0.06223331391811371,
0.1108793318271637,
0.010133522562682629,
-0.08919066935777664,
-0.02081347443163395,
0.024965645745396614,
0.016219524666666985,
0.13961997628211975,
-0.0751536563038826,
0.031984541565179825,
0.038698118180036545,
-0.033347804099321365,
0.021528929471969604,
-0.10244084149599075,
0.02335468679666519,
0.03203526884317398,
-0.007702189031988382,
0.023534884676337242,
-0.05065937340259552,
0.013363552279770374,
0.10195698589086533,
0.027025753632187843,
0.02145596407353878,
0.018135687336325645,
-0.04067167267203331,
-0.12466014176607132,
0.17668020725250244,
-0.09816606342792511,
-0.26436716318130493,
-0.12897202372550964,
0.006947728805243969,
0.033992692828178406,
-0.018836405128240585,
0.01333895605057478,
-0.06332612782716751,
-0.10340959578752518,
-0.10756940394639969,
0.017163321375846863,
0.0508032850921154,
-0.09344637393951416,
-0.06646784394979477,
0.059208545833826065,
0.03778704255819321,
-0.12589307129383087,
0.025416385382413864,
0.04570641741156578,
-0.07743491977453232,
0.004540982190519571,
0.050441861152648926,
0.08744039386510849,
0.1876860111951828,
0.010658632963895798,
-0.014210417866706848,
0.01203941646963358,
0.21345749497413635,
-0.1484980285167694,
0.09553413093090057,
0.13833217322826385,
-0.039149727672338486,
0.08656337857246399,
0.2073100507259369,
0.029689708724617958,
-0.08827590197324753,
0.041006311774253845,
0.03495677933096886,
-0.04004765301942825,
-0.23868083953857422,
-0.08386323601007462,
0.003739148611202836,
-0.07381230592727661,
0.09676193445920944,
0.09220820665359497,
0.12320637702941895,
0.04929447919130325,
-0.1032903790473938,
-0.07199499011039734,
0.04390222951769829,
0.12095777690410614,
-0.020294824615120888,
0.005898893345147371,
0.09069858491420746,
-0.034002885222435,
0.016351033002138138,
0.09494837373495102,
0.013801847584545612,
0.186251699924469,
0.03806383162736893,
0.12678669393062592,
0.08426505327224731,
0.07171830534934998,
0.02234451100230217,
0.008409300819039345,
0.02777351811528206,
0.027999689802527428,
-0.021338222548365593,
-0.0917428657412529,
-0.009498986415565014,
0.13509893417358398,
0.040219906717538834,
0.029932867735624313,
0.012232123874127865,
-0.01870851404964924,
0.06901510059833527,
0.15535856783390045,
0.01057711523026228,
-0.23219409584999084,
-0.04926523566246033,
0.06958464533090591,
-0.06909706443548203,
-0.11255121231079102,
-0.0028613077010959387,
0.04096130654215813,
-0.17895767092704773,
0.05528334155678749,
-0.025438187643885612,
0.10069261491298676,
-0.10740102827548981,
-0.023450596258044243,
0.054073844105005264,
0.06551430374383926,
-0.0326630137860775,
0.08412828296422958,
-0.20399022102355957,
0.1461060494184494,
0.006142308935523033,
0.06177511066198349,
-0.10254407674074173,
0.08279771357774734,
0.021940406411886215,
0.016646897420287132,
0.15898627042770386,
-0.004687492270022631,
-0.08103779703378677,
-0.07581960409879684,
-0.07218615710735321,
-0.01648642309010029,
0.10315282642841339,
-0.09701734036207199,
0.08655368536710739,
-0.006427291315048933,
-0.034680839627981186,
-0.0057818349450826645,
-0.1301535964012146,
-0.14248549938201904,
-0.18113870918750763,
0.05620685592293739,
-0.11381366103887558,
0.03136908635497093,
-0.11788011342287064,
-0.06229257956147194,
-0.03359857201576233,
0.197723850607872,
-0.1932714283466339,
-0.07880242168903351,
-0.14372730255126953,
-0.07717949897050858,
0.11416321992874146,
-0.04104173555970192,
0.07646987587213516,
0.0009055780828930438,
0.20956456661224365,
-0.0025292665231972933,
-0.002378176897764206,
0.08732478320598602,
-0.0972142219543457,
-0.2064070701599121,
-0.09198468923568726,
0.13601253926753998,
0.12056136876344681,
0.04229295253753662,
-0.0007821157923899591,
0.022465011104941368,
-0.004829865414649248,
-0.11008583009243011,
0.02177184633910656,
0.1393057256937027,
0.08119703084230423,
0.05031478404998779,
-0.015288257971405983,
-0.15429013967514038,
-0.10283143818378448,
-0.05098537355661392,
0.017020253464579582,
0.1829984337091446,
-0.07005498558282852,
0.15663667023181915,
0.15183736383914948,
-0.06791210919618607,
-0.209466353058815,
0.03614724054932594,
0.04176211729645729,
-0.015732696279883385,
0.04202842712402344,
-0.20669682323932648,
0.0741683840751648,
0.013054740615189075,
-0.061192452907562256,
0.12870977818965912,
-0.17818036675453186,
-0.14533264935016632,
0.0779506042599678,
0.07041902095079422,
-0.2195221334695816,
-0.12950214743614197,
-0.09821528196334839,
-0.05505881831049919,
-0.10271060466766357,
0.0884818360209465,
-0.0018257122719660401,
0.0038209096528589725,
0.03877533599734306,
0.02209053747355938,
0.016580460593104362,
-0.055411189794540405,
0.19796057045459747,
0.0012488546781241894,
0.04897031560540199,
-0.08014095574617386,
-0.09477833658456802,
0.047381866723299026,
-0.060693252831697464,
0.07017212361097336,
-0.019446562975645065,
0.009850461967289448,
-0.11754148453474045,
-0.05806771293282509,
-0.056358642876148224,
0.0405234768986702,
-0.08681529015302658,
-0.09314651042222977,
-0.06688614189624786,
0.10388150811195374,
0.09486149251461029,
-0.03271222487092018,
-0.05695384368300438,
-0.09325297176837921,
0.0663762018084526,
0.24328367412090302,
0.18572430312633514,
0.07337045669555664,
-0.06931805610656738,
-0.007491635624319315,
-0.019267389550805092,
0.055800486356019974,
-0.20049315690994263,
0.043425094336271286,
0.04079961031675339,
0.03417878597974777,
0.12665854394435883,
-0.02751348353922367,
-0.15956641733646393,
-0.04253310710191727,
0.0646631047129631,
-0.06389510631561279,
-0.1613921821117401,
-0.005987107288092375,
0.10255736857652664,
-0.15253323316574097,
-0.05456756055355072,
0.024843864142894745,
-0.03456428647041321,
-0.022587772458791733,
0.0026475819759070873,
0.08527114242315292,
0.02835250273346901,
0.11319801211357117,
0.07125794142484665,
0.10934107005596161,
-0.10303305089473724,
0.08915314823389053,
0.09179473668336868,
-0.1094418466091156,
0.02848624251782894,
0.0698741152882576,
-0.0645706057548523,
-0.034301359206438065,
0.027040641754865646,
0.08983951807022095,
0.026814527809619904,
-0.07640674710273743,
-0.0025739630218595266,
-0.10785989463329315,
0.06419273465871811,
0.138838529586792,
0.035695310682058334,
0.006128501147031784,
0.04154881089925766,
0.026486704126000404,
-0.10220345109701157,
0.11339626461267471,
0.036089133471250534,
0.03925977647304535,
-0.06068907305598259,
0.005055414512753487,
0.04797874018549919,
-0.01012458372861147,
-0.019984718412160873,
-0.04147116094827652,
-0.05282870680093765,
-0.009580806829035282,
-0.14964154362678528,
0.028982296586036682,
-0.07050366699695587,
0.009380901232361794,
0.020589856430888176,
-0.03025558590888977,
-0.006300326902419329,
0.010673453100025654,
-0.08023057132959366,
-0.03472490608692169,
-0.0030182767659425735,
0.107037253677845,
-0.15688355267047882,
0.010895395651459694,
0.08869918435811996,
-0.12629133462905884,
0.07838504016399384,
-0.015105963684618473,
-0.007146072573959827,
0.016892144456505775,
-0.13521671295166016,
0.05121492221951485,
-0.005346302408725023,
0.010639173910021782,
0.01909445971250534,
-0.20004042983055115,
0.005853180307894945,
-0.044498834758996964,
-0.05509747564792633,
-0.005782437510788441,
-0.04098716005682945,
-0.11485737562179565,
0.10771436989307404,
0.013995815068483353,
-0.08652757853269577,
-0.019283277913928032,
0.06084232032299042,
0.10158225148916245,
-0.06178644672036171,
0.14664369821548462,
-0.024471545591950417,
0.04912605136632919,
-0.1781044453382492,
-0.017863241955637932,
-0.0174391008913517,
0.010116725228726864,
-0.03799469769001007,
-0.000024673954612808302,
0.05544278398156166,
-0.016232294961810112,
0.2243853062391281,
-0.016458090394735336,
0.021515287458896637,
0.061439961194992065,
0.009174536913633347,
-0.0169904176145792,
0.08532293140888214,
0.03909255936741829,
0.023731913417577744,
0.024092143401503563,
0.019290700554847717,
-0.054185401648283005,
-0.018746955320239067,
-0.13272972404956818,
0.0817134827375412,
0.16041184961795807,
0.07762297987937927,
-0.0062138657085597515,
0.05861532315611839,
-0.12517274916172028,
-0.08466040343046188,
0.1079290360212326,
-0.04265846684575081,
0.005172706674784422,
-0.05521947517991066,
0.1265624612569809,
0.16494648158550262,
-0.1750713288784027,
0.06299154460430145,
-0.06349121034145355,
-0.05540453642606735,
-0.10468102991580963,
-0.16789408028125763,
-0.06381145864725113,
-0.04553833231329918,
-0.004405812360346317,
-0.05994061753153801,
0.07269728928804398,
0.10896077752113342,
0.012149257585406303,
0.004889234900474548,
0.09144783765077591,
-0.04491304233670235,
-0.0028887561056762934,
0.041993074119091034,
0.047686852514743805,
0.018887167796492577,
-0.069878488779068,
0.012188350781798363,
0.003915554378181696,
0.04399393871426582,
0.056778568774461746,
0.03692775219678879,
-0.015287409536540508,
0.01470892783254385,
-0.01636951044201851,
-0.09760870039463043,
0.03645777329802513,
-0.03225347027182579,
-0.05592560023069382,
0.14490889012813568,
0.018563484773039818,
0.0033695886377245188,
-0.01856834441423416,
0.22696006298065186,
-0.06970443576574326,
-0.08413437753915787,
-0.13648341596126556,
0.14654909074306488,
-0.04241912066936493,
0.056040603667497635,
0.045437172055244446,
-0.10003361850976944,
0.02552834339439869,
0.1426820456981659,
0.15073949098587036,
-0.022759078070521355,
0.00423165550455451,
0.012068940326571465,
0.0044677346013486385,
-0.029896607622504234,
0.04867812618613243,
0.0388617143034935,
0.12372902035713196,
-0.0669747143983841,
0.08522169291973114,
-0.009444661438465118,
-0.08476455509662628,
-0.020907746627926826,
0.12445272505283356,
0.0025684593711048365,
0.021227968856692314,
-0.08034346997737885,
0.12113007158041,
-0.05843473598361015,
-0.24674838781356812,
0.06398976594209671,
-0.06334912031888962,
-0.1528526097536087,
-0.012451251968741417,
0.03746788203716278,
0.0022315012756735086,
0.021598679944872856,
0.06253750622272491,
-0.06498201191425323,
0.14891645312309265,
0.037174250930547714,
-0.08495580404996872,
-0.0788792073726654,
0.07596731185913086,
-0.09475301206111908,
0.30659759044647217,
0.0023967530578374863,
0.055247437208890915,
0.09643629938364029,
-0.04512179270386696,
-0.13647648692131042,
0.04361560568213463,
0.09622113406658173,
-0.06080583110451698,
0.06419888138771057,
0.19686660170555115,
-0.007351355627179146,
0.1233501061797142,
0.07343187928199768,
-0.07102907449007034,
0.05481851473450661,
-0.07441278547048569,
-0.08364719152450562,
-0.08943602442741394,
0.08515341579914093,
-0.05494454503059387,
0.15254968404769897,
0.12899437546730042,
-0.04167146608233452,
0.006968241650611162,
-0.030538108199834824,
0.04775043949484825,
-0.0032719934824854136,
0.12097202986478806,
0.029815029352903366,
-0.1964578628540039,
0.032757144421339035,
-0.028388019651174545,
0.10073449462652206,
-0.23792655766010284,
-0.0806376039981842,
0.040775641798973083,
-0.01465174276381731,
-0.05512138456106186,
0.12630760669708252,
0.05838490650057793,
0.04718075320124626,
-0.05514354258775711,
-0.04952409863471985,
-0.004740151576697826,
0.16491715610027313,
-0.11219369620084763,
-0.003289300948381424
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2 | {"library_name": "peft", "base_model": "bigscience/bloom-3b"} | null | sajjadamjad/quiz_llm | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:bigscience/bloom-3b",
"region:us"
] | 2024-02-13T17:35:59+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-bigscience/bloom-3b #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.8.2 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-bigscience/bloom-3b #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
35,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
11
] | [
"passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-bigscience/bloom-3b #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2"
] | [
-0.09975722432136536,
0.1893470585346222,
-0.0036378027871251106,
0.03377080708742142,
0.08956268429756165,
0.01606217958033085,
0.04934121295809746,
0.12286069244146347,
-0.03180153667926788,
0.10665926337242126,
0.07045666873455048,
0.10034925490617752,
0.0986793041229248,
0.21037167310714722,
0.010604910552501678,
-0.20116940140724182,
0.02554682455956936,
-0.09600938856601715,
-0.014991069212555885,
0.1206747442483902,
0.1542518436908722,
-0.09912464022636414,
0.0753534585237503,
-0.018081873655319214,
-0.014627320691943169,
-0.03511117398738861,
-0.0738551914691925,
-0.033506445586681366,
0.04699651524424553,
0.04367610812187195,
0.055165186524391174,
-0.0007730853394605219,
0.0822964757680893,
-0.2646140158176422,
0.0199875608086586,
0.03787897527217865,
-0.0047507029958069324,
0.08792980760335922,
0.09946314990520477,
-0.037762485444545746,
0.11771578341722488,
-0.04130297526717186,
0.14244452118873596,
0.07968951761722565,
-0.09225821495056152,
-0.21491482853889465,
-0.0703209936618805,
0.08734104037284851,
0.1642523854970932,
0.07540570944547653,
-0.0409468412399292,
0.1252894401550293,
-0.10191884636878967,
0.01654636673629284,
0.05280008167028427,
-0.07238156348466873,
-0.06962985545396805,
0.05547565594315529,
0.11157765239477158,
0.06257667392492294,
-0.13659654557704926,
-0.03524216637015343,
0.017521031200885773,
0.038271091878414154,
0.08032975345849991,
0.0212861355394125,
0.14492926001548767,
0.032858919352293015,
-0.14962902665138245,
-0.036321334540843964,
0.13016711175441742,
0.030908193439245224,
-0.03823449835181236,
-0.2261674702167511,
0.009463529102504253,
-0.08858253806829453,
-0.028639553114771843,
-0.05611279234290123,
0.04277198389172554,
-0.0017891575116664171,
0.09335581958293915,
-0.029236914590001106,
-0.0928860753774643,
-0.006158793345093727,
0.09257356077432632,
0.049603354185819626,
0.02171463705599308,
-0.020311374217271805,
0.004161885008215904,
0.11514034122228622,
0.05869006738066673,
-0.12496386468410492,
-0.06233423575758934,
-0.0693092867732048,
-0.04235416650772095,
-0.04913373664021492,
0.03177841007709503,
0.05083855614066124,
0.06261835247278214,
0.2525183856487274,
-0.028780506923794746,
0.049934059381484985,
0.06158886104822159,
0.01922941766679287,
0.04768817499279976,
0.0908169373869896,
-0.059672996401786804,
-0.14890699088573456,
-0.010012786835432053,
0.09345709532499313,
-0.006876375060528517,
-0.017138052731752396,
-0.046624407172203064,
0.036221787333488464,
0.044156838208436966,
0.10888443887233734,
0.0919705480337143,
-0.01565215177834034,
-0.0773858055472374,
-0.049856461584568024,
0.21394090354442596,
-0.14641202986240387,
0.040052153170108795,
0.02451586164534092,
-0.017240051180124283,
-0.04536481201648712,
0.002308693714439869,
0.018550293520092964,
-0.015214066952466965,
0.0972033143043518,
-0.06477192044258118,
-0.03805689886212349,
-0.11374577134847641,
-0.016620837152004242,
0.038670241832733154,
0.01875949651002884,
-0.02165951579809189,
-0.030211161822080612,
-0.05726774036884308,
-0.09100127965211868,
0.10074631124734879,
-0.0685826987028122,
-0.06518290191888809,
-0.024242497980594635,
-0.09513060003519058,
0.01873389631509781,
0.02969704009592533,
0.11462023109197617,
-0.02456081658601761,
0.039704736322164536,
-0.019116638228297234,
0.06410972028970718,
0.07861677557229996,
0.032008204609155655,
-0.07036947458982468,
0.06277956813573837,
-0.19494210183620453,
0.08653482794761658,
-0.07808511704206467,
0.029986953362822533,
-0.1642191857099533,
-0.01953001879155636,
0.00724397087469697,
0.017147352918982506,
0.03540012985467911,
0.14984478056430817,
-0.19746874272823334,
-0.02853182516992092,
0.15303878486156464,
-0.09353726357221603,
-0.12432079762220383,
0.04768049344420433,
-0.05718144401907921,
0.1592889130115509,
0.018705099821090698,
-0.011164537630975246,
0.08360128104686737,
-0.14598457515239716,
-0.02864304929971695,
-0.03029758855700493,
-0.005292677786201239,
0.10320105403661728,
0.08967240899801254,
-0.07198780030012131,
0.027997728437185287,
0.014321189373731613,
-0.04353460669517517,
-0.028955575078725815,
-0.052595168352127075,
-0.11167800426483154,
0.0015150081599131227,
-0.08271915465593338,
0.024840297177433968,
-0.018803343176841736,
-0.07312550395727158,
-0.01649562269449234,
-0.15794962644577026,
-0.02461201697587967,
0.08167023211717606,
0.021112259477376938,
-0.015340887941420078,
-0.08818652480840683,
0.03270765393972397,
-0.029429657384753227,
-0.02562224306166172,
-0.15098778903484344,
-0.02566339634358883,
0.02210245095193386,
-0.1389470100402832,
0.01246930006891489,
-0.11754001677036285,
0.06532931327819824,
0.011274385266005993,
-0.06795505434274673,
-0.03228362277150154,
-0.014710618183016777,
0.0070625836960971355,
-0.05275893583893776,
-0.23767872154712677,
-0.021246425807476044,
-0.056716758757829666,
0.14908574521541595,
-0.2188778519630432,
0.037142857909202576,
0.042639121413230896,
0.11916908621788025,
0.004382405895739794,
-0.05946265906095505,
0.02613980695605278,
-0.07412714511156082,
-0.02361799031496048,
-0.06931019574403763,
-0.0068540796637535095,
-0.006426749285310507,
-0.04797806590795517,
0.014037731103599072,
-0.1123562753200531,
-0.04244823753833771,
0.09795384854078293,
0.07213319838047028,
-0.1659919023513794,
-0.02522103674709797,
-0.04826221615076065,
-0.06394803524017334,
-0.0856405720114708,
-0.06031101942062378,
0.09818363189697266,
0.049710601568222046,
0.032421864569187164,
-0.0732237845659256,
-0.06961683183908463,
0.006064711604267359,
-0.022524194791913033,
-0.02401241473853588,
0.11832126975059509,
0.06971362978219986,
-0.1206585168838501,
0.09845659136772156,
0.07528426498174667,
0.027226094156503677,
0.07760791480541229,
-0.024279430508613586,
-0.10515666007995605,
-0.03277328610420227,
0.040167830884456635,
0.012574390508234501,
0.1585487723350525,
-0.0718303918838501,
0.05668378621339798,
0.04635933041572571,
-0.03491443395614624,
0.048647649586200714,
-0.09140434861183167,
0.010275826789438725,
0.00594200287014246,
-0.011842416599392891,
0.024223310872912407,
-0.023575711995363235,
0.010504592210054398,
0.08822529762983322,
0.057430658489465714,
0.03472631424665451,
0.035188037902116776,
-0.02726294845342636,
-0.12781551480293274,
0.18317241966724396,
-0.0980101004242897,
-0.23131372034549713,
-0.155201256275177,
0.05162796378135681,
0.057933349162340164,
-0.017597876489162445,
0.025013238191604614,
-0.053373027592897415,
-0.10238201916217804,
-0.07824961096048355,
0.0032054490875452757,
0.03306940197944641,
-0.058518365025520325,
-0.07132046669721603,
0.05410126596689224,
0.03884412348270416,
-0.11645375192165375,
0.036966800689697266,
0.05729293078184128,
-0.010749425739049911,
0.006462321616709232,
0.058341022580862045,
0.0769619345664978,
0.17465059459209442,
-0.009634934365749359,
-0.009058217518031597,
0.053868018090724945,
0.2827358543872833,
-0.15757958590984344,
0.11535574495792389,
0.12487572431564331,
-0.06081799790263176,
0.07559762895107269,
0.19061574339866638,
0.03549840673804283,
-0.0989280641078949,
0.03910971060395241,
0.025636713951826096,
-0.02745332196354866,
-0.2751244902610779,
-0.04868477210402489,
-0.01140675414353609,
-0.09589074552059174,
0.07442373037338257,
0.09076731652021408,
0.08179663121700287,
0.04038264974951744,
-0.06491625308990479,
-0.09625113010406494,
0.03185315057635307,
0.09958431124687195,
-0.028621232137084007,
0.004949393216520548,
0.0845138356089592,
-0.02744724042713642,
0.008226574398577213,
0.09415486454963684,
-0.010531400330364704,
0.1604742705821991,
0.05617470666766167,
0.11773977428674698,
0.07711881399154663,
0.08479076623916626,
-0.0016485498053953052,
0.025294769555330276,
0.016279572620987892,
0.017687035724520683,
0.013126881793141365,
-0.08280302584171295,
0.03816579282283783,
0.1121472716331482,
0.04097863286733627,
0.03123302571475506,
0.01522710733115673,
-0.042750827968120575,
0.0501626580953598,
0.1826663315296173,
0.011048371903598309,
-0.1937234252691269,
-0.08176153153181076,
0.06406830996274948,
-0.07898042351007462,
-0.13738738000392914,
-0.019705820828676224,
0.028679000213742256,
-0.1673949956893921,
0.008052579127252102,
-0.04078042134642601,
0.09715253859758377,
-0.061438869684934616,
-0.03795260936021805,
0.08920086175203323,
0.07131072133779526,
-0.027115363627672195,
0.06199248880147934,
-0.20471739768981934,
0.11680953949689865,
0.020494312047958374,
0.06664200127124786,
-0.0932881161570549,
0.09758492559194565,
-0.0010622412664815784,
-0.014568718150258064,
0.16814740002155304,
0.0033798536751419306,
-0.07787255942821503,
-0.05395779013633728,
-0.09767833352088928,
-0.012810480780899525,
0.10179094225168228,
-0.12889918684959412,
0.06576649844646454,
-0.015660583972930908,
-0.03250566124916077,
0.005942856427282095,
-0.0711740106344223,
-0.12040203809738159,
-0.1729748249053955,
0.05535253882408142,
-0.10745986551046371,
0.03623555600643158,
-0.09312895685434341,
-0.06493029743432999,
0.005988468416035175,
0.1816624104976654,
-0.18587782979011536,
-0.09241292625665665,
-0.14343905448913574,
-0.09036695212125778,
0.1693897694349289,
-0.039945751428604126,
0.09023533761501312,
0.004654248710721731,
0.17036733031272888,
0.013007830828428268,
-0.001251792535185814,
0.10266374796628952,
-0.0921061635017395,
-0.20264814794063568,
-0.05711900815367699,
0.170995831489563,
0.13730528950691223,
0.046564362943172455,
-0.010836083441972733,
0.02817978523671627,
-0.05975474417209625,
-0.11247469484806061,
0.027004418894648552,
0.13228382170200348,
0.07796267420053482,
-0.009910098277032375,
-0.03963500261306763,
-0.09661024063825607,
-0.0610857829451561,
-0.058929990977048874,
0.017426129430532455,
0.19666948914527893,
-0.07486938685178757,
0.17224501073360443,
0.11764737963676453,
-0.0544845387339592,
-0.20620942115783691,
0.053339678794145584,
0.05797739326953888,
0.015108970925211906,
0.03403879329562187,
-0.19606147706508636,
0.0988064557313919,
0.009693064726889133,
-0.07434016466140747,
0.15721504390239716,
-0.16550388932228088,
-0.14543704688549042,
0.09085861593484879,
0.031258851289749146,
-0.22248686850070953,
-0.14204736053943634,
-0.0962815210223198,
-0.02642999403178692,
-0.1015612781047821,
0.0755636990070343,
0.011053462512791157,
0.014060859568417072,
0.026317108422517776,
0.020976373925805092,
0.027855530381202698,
-0.05372444540262222,
0.20438621938228607,
-0.026720819994807243,
0.008135526441037655,
-0.04723326116800308,
-0.09648061543703079,
0.03731009364128113,
-0.048261236399412155,
0.10010926425457001,
0.00132300378754735,
0.02478194236755371,
-0.13765224814414978,
-0.04189179092645645,
-0.0641426220536232,
0.03166606277227402,
-0.09901221096515656,
-0.09189143031835556,
-0.051526155322790146,
0.09958703070878983,
0.0983964279294014,
-0.032119471579790115,
0.009831064380705357,
-0.08359651267528534,
0.06998662650585175,
0.19518674910068512,
0.18952326476573944,
0.06973535567522049,
-0.06460649520158768,
0.02517933025956154,
-0.03528497368097305,
0.03818199411034584,
-0.2242344617843628,
0.04508070647716522,
0.05750501528382301,
0.02269863523542881,
0.0858859121799469,
-0.007428336422890425,
-0.1496102660894394,
-0.07465948909521103,
0.0798991322517395,
-0.04438355192542076,
-0.16907872259616852,
-0.02404472976922989,
0.054965659976005554,
-0.21798112988471985,
-0.04687943309545517,
0.015718305483460426,
-0.01840486004948616,
-0.04578475281596184,
0.02102261781692505,
0.0858994573354721,
-0.019547034054994583,
0.1108282133936882,
0.09664713591337204,
0.09561387449502945,
-0.09917635470628738,
0.07368329167366028,
0.07448484748601913,
-0.046363599598407745,
0.02335950918495655,
0.11153175681829453,
-0.04270366579294205,
-0.03507141396403313,
0.09748817980289459,
0.07705319672822952,
0.02587110735476017,
-0.04290695860981941,
0.012588207609951496,
-0.06199553236365318,
0.06379231810569763,
0.11365632712841034,
0.030371256172657013,
-0.00734240235760808,
0.05562450364232063,
0.0342625267803669,
-0.10192793607711792,
0.11105329543352127,
0.05220925435423851,
0.02622404880821705,
-0.0381653755903244,
-0.02980240248143673,
-0.018469011411070824,
-0.009976601228117943,
-0.01961338333785534,
-0.0014100528787821531,
-0.09227113425731659,
-0.011602005921304226,
-0.10153832286596298,
0.031485896557569504,
-0.07173488289117813,
0.01048267725855112,
0.023646535351872444,
-0.04774729907512665,
0.009758591651916504,
0.00464885588735342,
-0.0776129961013794,
-0.05043148621916771,
-0.01859482191503048,
0.08593504130840302,
-0.12590427696704865,
0.031011343002319336,
0.07912012934684753,
-0.10972778499126434,
0.07716438174247742,
0.0008825258701108396,
0.011078757233917713,
0.006712749600410461,
-0.16461843252182007,
0.05249214172363281,
-0.01905198208987713,
-0.011518056504428387,
0.01272913534194231,
-0.21872104704380035,
-0.014998218975961208,
-0.04613448679447174,
-0.050736501812934875,
0.011610143817961216,
-0.033190932124853134,
-0.12563230097293854,
0.10091212391853333,
-0.010568798519670963,
-0.06953324377536774,
-0.018838394433259964,
0.030913589522242546,
0.08951631188392639,
-0.022439107298851013,
0.1290925294160843,
-0.02153109200298786,
0.07500520348548889,
-0.17019806802272797,
-0.0026300798635929823,
-0.020199008285999298,
0.03451049327850342,
-0.029923763126134872,
-0.018896542489528656,
0.057657066732645035,
-0.015780624002218246,
0.1843862235546112,
-0.031184332445263863,
0.06503761559724808,
0.05767204985022545,
0.013061377219855785,
0.015329992398619652,
0.08940810710191727,
0.06578909605741501,
-0.0037376252003014088,
-0.006552417762577534,
0.0407535620033741,
-0.009051628410816193,
-0.03856135159730911,
-0.15013954043388367,
0.07544232159852982,
0.16951948404312134,
0.04490186646580696,
0.0165391955524683,
0.02919512242078781,
-0.11594906449317932,
-0.06822231411933899,
0.12260214239358902,
-0.0047270748764276505,
-0.04092750325798988,
-0.07362427562475204,
0.18552640080451965,
0.12788769602775574,
-0.20165511965751648,
0.07690855115652084,
-0.062116991728544235,
-0.054208334535360336,
-0.12813161313533783,
-0.14451885223388672,
-0.06660336256027222,
-0.03386666998267174,
-0.02451177127659321,
-0.06747842580080032,
0.04866989701986313,
0.05827957019209862,
0.008104433305561543,
-0.018369058147072792,
0.09989504516124725,
0.01260843500494957,
-0.021809840574860573,
0.0482124388217926,
0.06341245025396347,
0.028432775288820267,
-0.0963190421462059,
0.008414185605943203,
-0.002993077039718628,
0.019331194460392,
0.06435688585042953,
0.019559256732463837,
-0.05534745380282402,
0.005792077165096998,
-0.019682414829730988,
-0.1194445937871933,
0.04103434458374977,
-0.02048632688820362,
-0.03595961630344391,
0.13712374866008759,
0.026314856484532356,
0.008617603220045567,
-0.021309740841388702,
0.24031347036361694,
-0.07093461602926254,
-0.07598961889743805,
-0.14398452639579773,
0.06201057881116867,
-0.07021069526672363,
0.032868802547454834,
0.0316629633307457,
-0.11284003406763077,
0.017592448741197586,
0.15055249631404877,
0.13176535069942474,
-0.015685388818383217,
0.01186107937246561,
0.05260205268859863,
0.002323627471923828,
-0.032105494290590286,
0.019202426075935364,
0.056421153247356415,
0.14102327823638916,
-0.07660733908414841,
0.07320397347211838,
-0.009290932677686214,
-0.07478061318397522,
-0.024547984823584557,
0.11028088629245758,
-0.0019461424089968204,
0.002267061732709408,
-0.0683116614818573,
0.13425426185131073,
-0.09255504608154297,
-0.23336157202720642,
0.05031728371977806,
-0.0727153867483139,
-0.1565227508544922,
-0.05105594918131828,
0.016761399805545807,
-0.016656961292028427,
0.017976684495806694,
0.08014219254255295,
-0.04792019724845886,
0.16093593835830688,
0.04630555585026741,
-0.05380043759942055,
-0.07456637173891068,
0.06712479144334793,
-0.12380830198526382,
0.27879318594932556,
0.024334311485290527,
0.05216830596327782,
0.10606543719768524,
-0.018513860180974007,
-0.14877784252166748,
0.00756117282435298,
0.10665912181138992,
-0.06999801844358444,
0.06708445399999619,
0.177728533744812,
0.0010692300274968147,
0.12283014506101608,
0.05960458144545555,
-0.059786297380924225,
0.033235616981983185,
-0.0815848633646965,
-0.05117927864193916,
-0.1116955503821373,
0.07964935153722763,
-0.08103553205728531,
0.15869086980819702,
0.1284148395061493,
-0.07295882701873779,
-0.006487618200480938,
-0.02283477783203125,
0.08460917323827744,
0.013708834536373615,
0.10979172587394714,
0.006446777377277613,
-0.19367627799510956,
0.03685363754630089,
0.010964524932205677,
0.10468564182519913,
-0.20935799181461334,
-0.06921717524528503,
0.0484384149312973,
-0.014200243167579174,
-0.08089397847652435,
0.11299072206020355,
0.04689827188849449,
0.031133469194173813,
-0.03836746886372566,
-0.03776996210217476,
0.0004732717643491924,
0.14430396258831024,
-0.11418819427490234,
-0.007164023816585541
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | Lollitor/FineTunedMarked | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:37:04+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | kaushalpowar/llama2_finetuned2_easymonk_refined_data3_merged | [
"transformers",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | 2024-02-13T17:41:08+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
59,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.049007222056388855,
0.16460949182510376,
-0.005271392408758402,
0.021910345181822777,
0.09685911983251572,
0.01403510570526123,
0.07018975168466568,
0.11002060770988464,
-0.02425350993871689,
0.11399492621421814,
0.03344893455505371,
0.09780009090900421,
0.11368958652019501,
0.1498505026102066,
-0.002398149576038122,
-0.23227156698703766,
0.04924226179718971,
-0.1249755248427391,
-0.03746527433395386,
0.1159956082701683,
0.15001481771469116,
-0.10170940309762955,
0.07611104100942612,
-0.029819702729582787,
-0.008722295984625816,
-0.032589927315711975,
-0.056551046669483185,
-0.04997202008962631,
0.051094699651002884,
0.07382578402757645,
0.06793182343244553,
0.004094683099538088,
0.09450557827949524,
-0.2669448256492615,
0.0197003111243248,
0.0730973482131958,
-0.002068581758067012,
0.07547242939472198,
0.054895199835300446,
-0.07525460422039032,
0.09282654523849487,
-0.0507965162396431,
0.1469351053237915,
0.08020289987325668,
-0.09152709692716599,
-0.19188682734966278,
-0.0887833908200264,
0.10164182633161545,
0.18469172716140747,
0.045696184039115906,
-0.022488808259367943,
0.09940612316131592,
-0.08621317893266678,
0.011039474047720432,
0.05154034495353699,
-0.06937182694673538,
-0.05223534256219864,
0.06355299055576324,
0.08018788695335388,
0.07678371667861938,
-0.12301702797412872,
-0.02094447799026966,
0.008637533523142338,
0.00831096712499857,
0.08201737701892853,
0.023290244862437248,
0.1510206013917923,
0.03883988782763481,
-0.12744688987731934,
-0.050009194761514664,
0.10665731877088547,
0.041741468012332916,
-0.04784774035215378,
-0.25138479471206665,
-0.030326439067721367,
-0.027732934802770615,
-0.029999805614352226,
-0.03873695060610771,
0.04263332113623619,
-0.0072723389603197575,
0.0826614573597908,
-0.008116158656775951,
-0.07679495960474014,
-0.03798604756593704,
0.06191713735461235,
0.060809630900621414,
0.026244111359119415,
-0.011753023602068424,
0.010934822261333466,
0.1174238994717598,
0.10631082952022552,
-0.12367359548807144,
-0.051516905426979065,
-0.06431761384010315,
-0.07867198437452316,
-0.04216236248612404,
0.03455616533756256,
0.041060756891965866,
0.049376390874385834,
0.2486443817615509,
0.017620395869016647,
0.05382118001580238,
0.03803925961256027,
0.010167144238948822,
0.06406087428331375,
0.11435336619615555,
-0.061582546681165695,
-0.09715550392866135,
-0.025186026468873024,
0.08966731280088425,
0.01176387071609497,
-0.04024789482355118,
-0.05783011019229889,
0.06293477863073349,
0.016524890437722206,
0.1202789843082428,
0.09223750233650208,
0.003793274285271764,
-0.07138240337371826,
-0.06413803994655609,
0.1937950700521469,
-0.1626761257648468,
0.04747059941291809,
0.034180231392383575,
-0.038511235266923904,
-0.0016249394975602627,
0.008853171020746231,
0.024325255304574966,
-0.021725021302700043,
0.08937039971351624,
-0.05618007108569145,
-0.041590798646211624,
-0.10983981937170029,
-0.035744234919548035,
0.03192625194787979,
0.009910091757774353,
-0.03217151761054993,
-0.031847331672906876,
-0.08444786816835403,
-0.06831640005111694,
0.09424425661563873,
-0.07356466352939606,
-0.053753651678562164,
-0.016938211396336555,
-0.07437273859977722,
0.024786023423075676,
0.01960081420838833,
0.07747352123260498,
-0.02004585787653923,
0.042900070548057556,
-0.05549933388829231,
0.06014169380068779,
0.10937028378248215,
0.033117540180683136,
-0.05445994809269905,
0.0621645413339138,
-0.2418462336063385,
0.0997670441865921,
-0.06829129904508591,
0.05325306951999664,
-0.15072302520275116,
-0.02465333603322506,
0.04913770779967308,
0.008168290369212627,
-0.010590006597340107,
0.13754788041114807,
-0.21924975514411926,
-0.027699807658791542,
0.1631394773721695,
-0.09464818984270096,
-0.07676627486944199,
0.05986984074115753,
-0.052457790821790695,
0.10692904144525528,
0.04047565534710884,
-0.026259733363986015,
0.06162377819418907,
-0.13397987186908722,
0.0005626814090646803,
-0.045883387327194214,
-0.01928110048174858,
0.15731419622898102,
0.07587230950593948,
-0.06994020938873291,
0.07348526269197464,
0.023750323802232742,
-0.023168303072452545,
-0.046913031488657,
-0.017583578824996948,
-0.1088033989071846,
0.010729904286563396,
-0.061985816806554794,
0.01937699131667614,
-0.025795195251703262,
-0.09332547336816788,
-0.028493179008364677,
-0.17521639168262482,
-0.020266273990273476,
0.08516935259103775,
-0.009352635592222214,
-0.01925206556916237,
-0.11787936836481094,
0.015734510496258736,
0.03501737862825394,
0.002549536293372512,
-0.1319509893655777,
-0.05043373629450798,
0.02751830592751503,
-0.16075198352336884,
0.033688947558403015,
-0.05403051897883415,
0.0491553395986557,
0.03133281692862511,
-0.031412381678819656,
-0.028679344803094864,
0.022094380110502243,
0.004997676704078913,
-0.014611656777560711,
-0.24550160765647888,
-0.026604164391756058,
-0.02145342156291008,
0.16796952486038208,
-0.21640902757644653,
0.0374150350689888,
0.07194960117340088,
0.15254895389080048,
0.008589224889874458,
-0.038006994873285294,
0.002335198922082782,
-0.075041763484478,
-0.03255171701312065,
-0.06050482019782066,
-0.009038056246936321,
-0.03572068363428116,
-0.05482286959886551,
0.04863523691892624,
-0.16824471950531006,
-0.029467429965734482,
0.1015508770942688,
0.06473538279533386,
-0.13604550063610077,
-0.019663551822304726,
-0.03585261106491089,
-0.042308371514081955,
-0.05517838895320892,
-0.05935737490653992,
0.10260266810655594,
0.05827045813202858,
0.04566904529929161,
-0.06485172361135483,
-0.0747392401099205,
0.0017082487465813756,
-0.019673427566885948,
-0.022536588832736015,
0.09213293343782425,
0.07581926137208939,
-0.12331884354352951,
0.09213830530643463,
0.10402927547693253,
0.08686267584562302,
0.0966128259897232,
-0.023164015263319016,
-0.08361977338790894,
-0.049845483154058456,
0.02228725142776966,
0.017598064616322517,
0.13447505235671997,
-0.007804518099874258,
0.05406574159860611,
0.04160919412970543,
-0.013909573666751385,
0.009752067737281322,
-0.09242741018533707,
0.032518286257982254,
0.03427431732416153,
-0.01857241988182068,
0.041615914553403854,
-0.039849672466516495,
0.019975949078798294,
0.09018522500991821,
0.046917494386434555,
0.04021155461668968,
0.014107138849794865,
-0.04660527780652046,
-0.11187547445297241,
0.16612006723880768,
-0.12780359387397766,
-0.23512837290763855,
-0.1463187336921692,
0.0034277087543159723,
0.03630480915307999,
-0.009390040300786495,
0.0017278295708820224,
-0.06397698074579239,
-0.11876852810382843,
-0.09194197505712509,
0.010153552517294884,
0.04896695911884308,
-0.0851091742515564,
-0.0603698305785656,
0.05686335638165474,
0.04057794436812401,
-0.14546048641204834,
0.019262617453932762,
0.04933769255876541,
-0.09224124997854233,
-0.009894786402583122,
0.08289197087287903,
0.06857553124427795,
0.18091025948524475,
0.013082148507237434,
-0.02271466888487339,
0.03428078070282936,
0.21755947172641754,
-0.13586747646331787,
0.11420658230781555,
0.1426045000553131,
-0.09194567799568176,
0.08309654146432877,
0.19839057326316833,
0.04078111797571182,
-0.10157861560583115,
0.032499175518751144,
0.018653791397809982,
-0.030491048470139503,
-0.24355553090572357,
-0.07171683013439178,
0.00034942623460665345,
-0.057900771498680115,
0.07530075311660767,
0.09018687158823013,
0.09155713021755219,
0.01583298109471798,
-0.0946493074297905,
-0.07830986380577087,
0.05305508151650429,
0.10324970632791519,
0.020061472430825233,
-0.013236436992883682,
0.09051742404699326,
-0.03375976160168648,
0.017617853358387947,
0.09066354483366013,
0.0011531224008649588,
0.17065346240997314,
0.05820678174495697,
0.18275249004364014,
0.07604338973760605,
0.07338658720254898,
0.01378361415117979,
0.01180104911327362,
0.019032908603549004,
0.02708563208580017,
-0.004741039127111435,
-0.08538748323917389,
-0.01599922962486744,
0.12008915096521378,
0.07424698024988174,
0.015674617141485214,
0.014355434104800224,
-0.04089333862066269,
0.08203015476465225,
0.17435193061828613,
-0.001506963511928916,
-0.1824604868888855,
-0.06271602213382721,
0.08220411837100983,
-0.09449198096990585,
-0.10147359222173691,
-0.02445729449391365,
0.03089604340493679,
-0.17088350653648376,
0.023070847615599632,
-0.016430631279945374,
0.11182350665330887,
-0.13931094110012054,
-0.019696295261383057,
0.0640200525522232,
0.07118809968233109,
-0.00031885437783785164,
0.05944213643670082,
-0.16128569841384888,
0.10404066741466522,
0.013166810385882854,
0.06712377816438675,
-0.09715772420167923,
0.10046469420194626,
-0.006883090827614069,
-0.013416164554655552,
0.13275203108787537,
0.008256223052740097,
-0.07161599397659302,
-0.07921489328145981,
-0.09379399567842484,
-0.009093280881643295,
0.12668752670288086,
-0.14835532009601593,
0.08585991710424423,
-0.035368360579013824,
-0.04256736859679222,
0.0022144275717437267,
-0.10755012929439545,
-0.12217973172664642,
-0.1874755620956421,
0.05520224943757057,
-0.1321607530117035,
0.039849888533353806,
-0.10649667680263519,
-0.03462952747941017,
-0.029491933062672615,
0.1882491409778595,
-0.22971367835998535,
-0.06835493445396423,
-0.15157760679721832,
-0.09785088151693344,
0.14553189277648926,
-0.04969761520624161,
0.08694402873516083,
-0.005991519894450903,
0.18016821146011353,
0.022223925217986107,
-0.021585633978247643,
0.09859558939933777,
-0.09382225573062897,
-0.1963716447353363,
-0.08180448412895203,
0.15751656889915466,
0.13459575176239014,
0.03521031513810158,
-0.0027760460507124662,
0.037876322865486145,
-0.01856307126581669,
-0.12259240448474884,
0.021658578887581825,
0.17797763645648956,
0.0652514174580574,
0.02310643345117569,
-0.026529761031270027,
-0.11104881763458252,
-0.06772379577159882,
-0.033685971051454544,
0.03064778819680214,
0.18449479341506958,
-0.0722544714808464,
0.18419069051742554,
0.143813356757164,
-0.05867353826761246,
-0.1976030021905899,
0.008879725821316242,
0.03365374729037285,
0.007196295075118542,
0.03445420414209366,
-0.20255140960216522,
0.0841677114367485,
0.00034181843511760235,
-0.05190233513712883,
0.13343381881713867,
-0.17106693983078003,
-0.15042030811309814,
0.07339101284742355,
0.03619921952486038,
-0.19460853934288025,
-0.11963265389204025,
-0.08913769572973251,
-0.05391303077340126,
-0.18051348626613617,
0.10290905088186264,
0.03496568650007248,
0.008035079576075077,
0.03376363217830658,
0.028494013473391533,
0.01669638603925705,
-0.03928735852241516,
0.1920013129711151,
-0.026591487228870392,
0.029855716973543167,
-0.08456290513277054,
-0.06990274786949158,
0.04655740037560463,
-0.05482156574726105,
0.0760476216673851,
-0.027013001963496208,
0.011612839996814728,
-0.10561433434486389,
-0.042526841163635254,
-0.029051896184682846,
0.013453613966703415,
-0.0963861495256424,
-0.08940120041370392,
-0.0490599125623703,
0.09310506284236908,
0.09519506990909576,
-0.035876575857400894,
-0.03684677556157112,
-0.07069114595651627,
0.039579302072525024,
0.18676936626434326,
0.17657315731048584,
0.04523694887757301,
-0.0789421945810318,
-0.005537794437259436,
-0.011924253776669502,
0.04352729767560959,
-0.21637341380119324,
0.06442029029130936,
0.05013522133231163,
0.017847778275609016,
0.11767403781414032,
-0.02045002020895481,
-0.1556767225265503,
-0.07006701827049255,
0.06328949332237244,
-0.06132598593831062,
-0.1951322853565216,
0.005576360039412975,
0.054395273327827454,
-0.16848263144493103,
-0.048018258064985275,
0.04364382475614548,
-0.004054433200508356,
-0.0402018167078495,
0.01867259293794632,
0.08977478742599487,
0.003425614908337593,
0.0704059898853302,
0.05869606137275696,
0.08224445581436157,
-0.10246741771697998,
0.07471306622028351,
0.08622124791145325,
-0.07954994589090347,
0.026619622483849525,
0.09149482846260071,
-0.05819176882505417,
-0.02969011478126049,
0.02704544924199581,
0.0793747529387474,
0.011502381414175034,
-0.042540501803159714,
0.011518802493810654,
-0.10228829830884933,
0.06203006953001022,
0.08760257810354233,
0.03265642002224922,
0.015443529933691025,
0.03219176456332207,
0.045628782361745834,
-0.07176384329795837,
0.1219232901930809,
0.028246978297829628,
0.015991143882274628,
-0.04067446291446686,
-0.04898078367114067,
0.024271609261631966,
-0.0303955040872097,
-0.006366716232150793,
-0.03475780412554741,
-0.0729878842830658,
-0.0171539094299078,
-0.16714228689670563,
-0.016664555296301842,
-0.04662061110138893,
0.009329318068921566,
0.03086909092962742,
-0.03788549080491066,
0.008464637212455273,
0.007407912518829107,
-0.07459274679422379,
-0.06477426737546921,
-0.022905457764863968,
0.09289900958538055,
-0.16393527388572693,
0.02335011027753353,
0.08690579235553741,
-0.12064014375209808,
0.09392421692609787,
0.01837589405477047,
-0.0037578048650175333,
0.028480252251029015,
-0.14924435317516327,
0.038928523659706116,
-0.03113253228366375,
0.014821149408817291,
0.04454975947737694,
-0.2236335128545761,
0.0009650349384173751,
-0.033828526735305786,
-0.06339430809020996,
-0.009390673600137234,
-0.036760155111551285,
-0.11370383948087692,
0.10629112273454666,
0.007970798760652542,
-0.08916810154914856,
-0.031690530478954315,
0.032128699123859406,
0.08206479996442795,
-0.0239556971937418,
0.15763959288597107,
-0.0023972811177372932,
0.0736590027809143,
-0.1675432026386261,
-0.019303109496831894,
-0.011248460970818996,
0.020926566794514656,
-0.018098697066307068,
-0.01251189224421978,
0.04078914225101471,
-0.02225574664771557,
0.18437865376472473,
-0.023570427671074867,
0.023348741233348846,
0.06592654436826706,
0.027775658294558525,
-0.025002485141158104,
0.10530006885528564,
0.05339968949556351,
0.021854043006896973,
0.02036798559129238,
0.00273964018560946,
-0.04241073876619339,
-0.023610878735780716,
-0.1998770385980606,
0.06446972489356995,
0.14037446677684784,
0.09086652100086212,
-0.017234215512871742,
0.08257289230823517,
-0.1004219725728035,
-0.11521948128938675,
0.11568495631217957,
-0.05446505919098854,
-0.004037478007376194,
-0.0672159418463707,
0.12938179075717926,
0.1446845531463623,
-0.19097456336021423,
0.06995914876461029,
-0.06848131865262985,
-0.049033988267183304,
-0.11654651165008545,
-0.1963350623846054,
-0.05714293569326401,
-0.05161691829562187,
-0.01663723587989807,
-0.046969223767519,
0.07560921460390091,
0.05719533935189247,
0.007424132898449898,
-0.0017566849710419774,
0.06332923471927643,
-0.026077456772327423,
0.00009585227962816134,
0.026813751086592674,
0.06610306352376938,
0.013093758374452591,
-0.02985633723437786,
0.017491595819592476,
-0.012147722765803337,
0.042048826813697815,
0.06357792019844055,
0.04670548066496849,
-0.030032360926270485,
0.016853880137205124,
-0.03863191977143288,
-0.10680584609508514,
0.041318636387586594,
-0.028504958376288414,
-0.08043242245912552,
0.1491626501083374,
0.02454165369272232,
0.008750278502702713,
-0.0205967016518116,
0.2416755110025406,
-0.0737907737493515,
-0.09567341208457947,
-0.1479424238204956,
0.10524045675992966,
-0.04420987144112587,
0.06244929879903793,
0.045180387794971466,
-0.10425344854593277,
0.016717668622732162,
0.12817999720573425,
0.16302813589572906,
-0.044200748205184937,
0.020526019856333733,
0.027614353224635124,
0.004152800887823105,
-0.03678637370467186,
0.0514480359852314,
0.06988705694675446,
0.1595088243484497,
-0.048713311553001404,
0.09546878933906555,
-0.0016016386216506362,
-0.09618084132671356,
-0.03802286460995674,
0.11709540337324142,
-0.018092934042215347,
0.017691975459456444,
-0.055210161954164505,
0.11857418715953827,
-0.06138255074620247,
-0.2316483110189438,
0.06108921393752098,
-0.06591550260782242,
-0.13765475153923035,
-0.02143050730228424,
0.08041442185640335,
-0.013238796964287758,
0.02708347514271736,
0.07207029312849045,
-0.07533451914787292,
0.20003929734230042,
0.037636954337358475,
-0.05420409142971039,
-0.05360380560159683,
0.08255447447299957,
-0.10376271605491638,
0.27565470337867737,
0.016520937904715538,
0.04948882386088371,
0.10317612439393997,
-0.012690499424934387,
-0.13475549221038818,
0.02108365297317505,
0.09600389003753662,
-0.0946137085556984,
0.04216265305876732,
0.19903649389743805,
0.0003853837260976434,
0.1207512691617012,
0.0790785402059555,
-0.07618726044893265,
0.049590613692998886,
-0.0941753089427948,
-0.07070460170507431,
-0.09001081436872482,
0.09455035626888275,
-0.07685617357492447,
0.14261877536773682,
0.1292559802532196,
-0.053739987313747406,
0.010677514597773552,
-0.028576120734214783,
0.04638256877660751,
0.0034859003499150276,
0.1005801111459732,
0.010024284943938255,
-0.18460705876350403,
0.02157641015946865,
0.01203901320695877,
0.1056026741862297,
-0.16518552601337433,
-0.09804878383874893,
0.042120642960071564,
0.0014211505185812712,
-0.060778699815273285,
0.12909291684627533,
0.06027422100305557,
0.04478219151496887,
-0.04292554408311844,
-0.020403601229190826,
-0.009860116057097912,
0.13677826523780823,
-0.10241927951574326,
0.0014122816501185298
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# sentiment-polish-gpt2-large
This model is a fine-tuned version of [sdadas/polish-gpt2-large](https://huggingface.co/sdadas/polish-gpt2-large) on the [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.
It achieves the following results on the evaluation set:
- epoch: 10.0
- eval_accuracy: 0.9634
- eval_loss: 0.3139
- eval_runtime: 132.9089
- eval_samples_per_second: 197.428
- eval_steps_per_second: 98.714
- step: 65610
## Model description
Trained from [polish-gpt2-large](https://huggingface.co/sdadas/polish-gpt2-large)
## Intended uses & limitations
Sentiment analysis - neutral/negative/positive/ambiguous
## Training and evaluation data
Merged all rows from [polemo2-official](https://huggingface.co/datasets/clarin-pl/polemo2-official) dataset.
Discarded rows with length > 512.
Train/test split: 80%/20%
Datacollator:
```py
data_collator = DataCollatorWithPadding(
tokenizer=tokenizer,
padding="longest",
max_length=MAX_INPUT_LENGTH,
pad_to_multiple_of=8
)
```
## Training procedure
GPU: 2x RTX 4060Ti 16GB
Training time: 29:16:50
Using accelerate + DeepSpeed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Evaluation
Evaluated on [allegro/klej-polemo2-out](https://huggingface.co/datasets/allegro/klej-polemo2-out) test dataset.
```py
from datasets import load_dataset
from evaluate import evaluator
data = load_dataset("allegro/klej-polemo2-out", split="test").shuffle(seed=42)
task_evaluator = evaluator("text-classification")
# fix labels
l = {
"__label__meta_zero": 0,
"__label__meta_minus_m": 1,
"__label__meta_plus_m": 2,
"__label__meta_amb": 3
}
def fix_labels(examples):
examples["target"] = l[examples["target"]]
return examples
data = data.map(fix_labels)
eval_resutls = task_evaluator.compute(
model_or_pipeline="nie3e/sentiment-polish-gpt2-large",
data=data,
label_mapping={"NEUTRAL": 0, "NEGATIVE": 1, "POSITIVE": 2, "AMBIGUOUS": 3},
input_column="sentence",
label_column="target"
)
print(eval_resutls)
```
```json
{
"accuracy": 0.9858299595141701,
"total_time_in_seconds": 12.71777104900002,
"samples_per_second": 38.8432845737416,
"latency_in_seconds": 0.02574447580769235
}
```
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1 | {"language": ["pl"], "license": "mit", "tags": ["generated_from_trainer"], "datasets": ["clarin-pl/polemo2-official"], "metrics": ["accuracy"], "model-index": [{"name": "sentiment-polish-gpt2-large", "results": [{"task": {"type": "text-classification"}, "dataset": {"name": "klej-polemo2-out", "type": "allegro/klej-polemo2-out"}, "metrics": [{"type": "accuracy", "value": "98.58%"}]}]}]} | text-classification | nie3e/sentiment-polish-gpt2-large | [
"transformers",
"safetensors",
"gpt2",
"text-classification",
"generated_from_trainer",
"pl",
"dataset:clarin-pl/polemo2-official",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:43:02+00:00 | [] | [
"pl"
] | TAGS
#transformers #safetensors #gpt2 #text-classification #generated_from_trainer #pl #dataset-clarin-pl/polemo2-official #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# sentiment-polish-gpt2-large
This model is a fine-tuned version of sdadas/polish-gpt2-large on the polemo2-official dataset.
It achieves the following results on the evaluation set:
- epoch: 10.0
- eval_accuracy: 0.9634
- eval_loss: 0.3139
- eval_runtime: 132.9089
- eval_samples_per_second: 197.428
- eval_steps_per_second: 98.714
- step: 65610
## Model description
Trained from polish-gpt2-large
## Intended uses & limitations
Sentiment analysis - neutral/negative/positive/ambiguous
## Training and evaluation data
Merged all rows from polemo2-official dataset.
Discarded rows with length > 512.
Train/test split: 80%/20%
Datacollator:
## Training procedure
GPU: 2x RTX 4060Ti 16GB
Training time: 29:16:50
Using accelerate + DeepSpeed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Evaluation
Evaluated on allegro/klej-polemo2-out test dataset.
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1 | [
"# sentiment-polish-gpt2-large\n\nThis model is a fine-tuned version of sdadas/polish-gpt2-large on the polemo2-official dataset.\nIt achieves the following results on the evaluation set:\n- epoch: 10.0\n- eval_accuracy: 0.9634\n- eval_loss: 0.3139\n- eval_runtime: 132.9089\n- eval_samples_per_second: 197.428\n- eval_steps_per_second: 98.714\n- step: 65610",
"## Model description\n\nTrained from polish-gpt2-large",
"## Intended uses & limitations\n\nSentiment analysis - neutral/negative/positive/ambiguous",
"## Training and evaluation data\n\nMerged all rows from polemo2-official dataset.\n\nDiscarded rows with length > 512.\n\nTrain/test split: 80%/20%\n\nDatacollator:",
"## Training procedure\n\nGPU: 2x RTX 4060Ti 16GB\n\nTraining time: 29:16:50\n\nUsing accelerate + DeepSpeed",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10",
"### Evaluation\n\nEvaluated on allegro/klej-polemo2-out test dataset.",
"### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-classification #generated_from_trainer #pl #dataset-clarin-pl/polemo2-official #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# sentiment-polish-gpt2-large\n\nThis model is a fine-tuned version of sdadas/polish-gpt2-large on the polemo2-official dataset.\nIt achieves the following results on the evaluation set:\n- epoch: 10.0\n- eval_accuracy: 0.9634\n- eval_loss: 0.3139\n- eval_runtime: 132.9089\n- eval_samples_per_second: 197.428\n- eval_steps_per_second: 98.714\n- step: 65610",
"## Model description\n\nTrained from polish-gpt2-large",
"## Intended uses & limitations\n\nSentiment analysis - neutral/negative/positive/ambiguous",
"## Training and evaluation data\n\nMerged all rows from polemo2-official dataset.\n\nDiscarded rows with length > 512.\n\nTrain/test split: 80%/20%\n\nDatacollator:",
"## Training procedure\n\nGPU: 2x RTX 4060Ti 16GB\n\nTraining time: 29:16:50\n\nUsing accelerate + DeepSpeed",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10",
"### Evaluation\n\nEvaluated on allegro/klej-polemo2-out test dataset.",
"### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
79,
125,
14,
24,
42,
27,
113,
20,
33
] | [
"passage: TAGS\n#transformers #safetensors #gpt2 #text-classification #generated_from_trainer #pl #dataset-clarin-pl/polemo2-official #license-mit #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# sentiment-polish-gpt2-large\n\nThis model is a fine-tuned version of sdadas/polish-gpt2-large on the polemo2-official dataset.\nIt achieves the following results on the evaluation set:\n- epoch: 10.0\n- eval_accuracy: 0.9634\n- eval_loss: 0.3139\n- eval_runtime: 132.9089\n- eval_samples_per_second: 197.428\n- eval_steps_per_second: 98.714\n- step: 65610## Model description\n\nTrained from polish-gpt2-large## Intended uses & limitations\n\nSentiment analysis - neutral/negative/positive/ambiguous## Training and evaluation data\n\nMerged all rows from polemo2-official dataset.\n\nDiscarded rows with length > 512.\n\nTrain/test split: 80%/20%\n\nDatacollator:## Training procedure\n\nGPU: 2x RTX 4060Ti 16GB\n\nTraining time: 29:16:50\n\nUsing accelerate + DeepSpeed### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10### Evaluation\n\nEvaluated on allegro/klej-polemo2-out test dataset.### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
-0.1122555062174797,
0.1856328248977661,
-0.005123975221067667,
0.07567966729402542,
0.06179649010300636,
0.06014399603009224,
0.08960507065057755,
0.18292921781539917,
-0.05363181233406067,
0.12901456654071808,
0.04216467961668968,
0.027836689725518227,
0.09650523215532303,
0.14108233153820038,
0.002854937454685569,
-0.19897401332855225,
0.0474323034286499,
-0.05837802216410637,
-0.05446316674351692,
0.11337727308273315,
0.10014341026544571,
-0.08598954975605011,
0.06136294826865196,
0.024500558152794838,
-0.10633351653814316,
-0.04138690233230591,
-0.00588415889069438,
-0.057308267802000046,
0.0598914735019207,
0.014994343742728233,
0.05492287129163742,
0.017278892919421196,
0.08969183266162872,
-0.20300622284412384,
-0.0020127587486058474,
0.09501292556524277,
0.010204190388321877,
0.09861824661493301,
0.1489735096693039,
-0.035276371985673904,
0.11135567724704742,
-0.08527110517024994,
0.11830876767635345,
0.04124896228313446,
-0.11563897132873535,
-0.16158057749271393,
-0.14791923761367798,
0.060337040573358536,
0.12086042016744614,
0.0781603753566742,
-0.03697338327765465,
0.08268139511346817,
-0.1128501445055008,
0.04068891331553459,
0.14357870817184448,
-0.23647454380989075,
-0.06477245688438416,
0.04280410706996918,
0.021052874624729156,
-0.011503107845783234,
-0.11797983199357986,
-0.031553901731967926,
0.005699207074940205,
0.010367350652813911,
0.07303673028945923,
0.00975379254668951,
0.054792385548353195,
0.02250361628830433,
-0.1036638617515564,
-0.05726383626461029,
0.0909574031829834,
0.029278308153152466,
-0.03766165301203728,
-0.15855015814304352,
-0.021718531847000122,
-0.16687165200710297,
-0.01034658681601286,
-0.0006843173177912831,
0.021144092082977295,
-0.03623468056321144,
-0.02698522061109543,
0.03682216256856918,
-0.052274465560913086,
-0.08292879909276962,
-0.01960723288357258,
0.07076891511678696,
0.06759045273065567,
0.01068949792534113,
0.057028982788324356,
0.13315922021865845,
0.020705292001366615,
-0.1236182227730751,
-0.0625491663813591,
-0.02627016231417656,
-0.18119195103645325,
-0.02906816266477108,
-0.028736239299178123,
-0.010342157445847988,
0.0030898754484951496,
0.2309446781873703,
-0.031515009701251984,
0.08488792926073074,
0.04100456088781357,
-0.027279801666736603,
-0.027289971709251404,
0.14139828085899353,
-0.04724062606692314,
-0.07880668342113495,
-0.02820838801562786,
0.10335930436849594,
-0.020349616184830666,
0.004570491146296263,
-0.0031280226539820433,
-0.006123537663370371,
0.06505599617958069,
0.04994954541325569,
0.0209090206772089,
0.03455675020813942,
-0.1118280291557312,
-0.03095162659883499,
0.06320672482252121,
-0.1500496119260788,
0.07251401990652084,
0.04225953295826912,
-0.07521168887615204,
-0.03433079272508621,
0.018520032986998558,
-0.039670124650001526,
-0.061291906982660294,
0.0836176723241806,
-0.06660687178373337,
-0.013882872648537159,
-0.09641845524311066,
-0.05838895961642265,
0.03468795865774155,
-0.0361475795507431,
-0.0800214558839798,
-0.04905267804861069,
-0.16602249443531036,
-0.07781336456537247,
0.04563697427511215,
-0.10184499621391296,
-0.01951637491583824,
-0.03375969082117081,
-0.04208642244338989,
0.05165960267186165,
0.005186690483242273,
0.0952950119972229,
-0.0430259145796299,
0.0581245981156826,
-0.011062688194215298,
0.04784683510661125,
0.1554958075284958,
0.04480164870619774,
-0.0533672571182251,
0.06211447715759277,
-0.1129392459988594,
0.1114625558257103,
-0.11060567945241928,
-0.026608942076563835,
-0.11663096398115158,
-0.07866302877664566,
-0.030364537611603737,
-0.014008928090333939,
0.06722253561019897,
0.1370508223772049,
-0.20672737061977386,
-0.02400735765695572,
0.18852275609970093,
-0.08282752335071564,
-0.05723114311695099,
0.09625516831874847,
-0.03883332014083862,
-0.04831778630614281,
0.037000950425863266,
0.11996579170227051,
0.09484127163887024,
-0.10073399543762207,
-0.04177723452448845,
-0.07078590244054794,
0.02470506727695465,
0.11593683063983917,
0.0956873670220375,
-0.048916131258010864,
0.09122593700885773,
0.025240158662199974,
-0.05262161046266556,
-0.016887273639440536,
-0.0439738966524601,
-0.0597747303545475,
-0.028302814811468124,
-0.04437866434454918,
0.06545233726501465,
0.010367156006395817,
-0.00108147703576833,
-0.08047609031200409,
-0.1713472157716751,
0.016015464439988136,
0.14755254983901978,
-0.03719068318605423,
0.0053048632107675076,
-0.13163097202777863,
0.05326441302895546,
0.012519248761236668,
-0.0020146407186985016,
-0.1638583540916443,
-0.10431943088769913,
0.03618244826793671,
-0.0978894978761673,
0.00826526153832674,
-0.015036262571811676,
0.05978904664516449,
0.01671137660741806,
-0.049921877682209015,
-0.053404681384563446,
-0.08236447721719742,
-0.013167191296815872,
-0.0466403029859066,
-0.159348264336586,
-0.032687731087207794,
-0.011472005397081375,
0.1808830052614212,
-0.17520250380039215,
0.017102520912885666,
0.08500859886407852,
0.17674626410007477,
0.031169215217232704,
-0.09608034044504166,
0.0035990902688354254,
-0.001402267487719655,
-0.013815430924296379,
-0.10035350918769836,
-0.0038819103501737118,
-0.011008864268660545,
-0.013010699301958084,
0.01875109039247036,
-0.12422945350408554,
0.0012585639487951994,
0.09116111695766449,
0.11245019733905792,
-0.1316099911928177,
-0.007161728572100401,
-0.050767578184604645,
-0.037658777087926865,
-0.08597888052463531,
-0.035984329879283905,
0.10368869453668594,
0.06184026971459389,
0.09661196917295456,
-0.05519264563918114,
-0.08008720725774765,
-0.01797531172633171,
0.026827054098248482,
0.00007012486457824707,
0.11551149934530258,
0.04492058604955673,
-0.053500473499298096,
0.0854678601026535,
0.04293488338589668,
-0.0007847896195016801,
0.06996674090623856,
-0.05657786875963211,
-0.12114555388689041,
-0.06703799217939377,
0.020565040409564972,
0.04499061778187752,
0.11748802661895752,
-0.028731314465403557,
0.02126777544617653,
0.06344479322433472,
0.035629674792289734,
0.015976887196302414,
-0.14860910177230835,
0.01938851736485958,
0.030755558982491493,
-0.04080739617347717,
0.013772712089121342,
-0.01866196282207966,
0.03171809762716293,
0.0874679684638977,
0.016747307032346725,
0.011654408648610115,
-0.007964477874338627,
-0.035181812942028046,
-0.08508894592523575,
0.16312739253044128,
-0.11417615413665771,
-0.17854422330856323,
-0.12365451455116272,
0.03741779178380966,
-0.03171467408537865,
-0.012965992093086243,
-0.012485731393098831,
-0.07376937568187714,
-0.09325364977121353,
-0.08450346440076828,
-0.016742900013923645,
0.012406019493937492,
-0.020789695903658867,
0.016392581164836884,
0.026099536567926407,
0.0589156299829483,
-0.10610335320234299,
0.016425233334302902,
0.018333887681365013,
-0.0648953840136528,
0.05674386024475098,
0.04763181880116463,
0.06013711169362068,
0.13390429317951202,
0.026737425476312637,
0.024820148944854736,
-0.019842689856886864,
0.15926308929920197,
-0.11796612292528152,
0.03788907080888748,
0.09106563776731491,
0.014099492691457272,
0.05813178792595863,
0.08773820847272873,
0.0063507575541734695,
-0.08701897412538528,
0.011203968897461891,
0.06333881616592407,
-0.002914952114224434,
-0.2615341544151306,
-0.03854174539446831,
-0.04557183012366295,
0.013038095086812973,
0.1275237500667572,
0.04248899966478348,
-0.02635234408080578,
0.04743136093020439,
-0.023947561159729958,
0.0024950355291366577,
0.044999223202466965,
0.0826156735420227,
0.0897267758846283,
0.038208622485399246,
0.10388105362653732,
-0.046351779252290726,
0.03270084410905838,
0.09240224957466125,
0.0062639061361551285,
0.2352738082408905,
-0.04429221898317337,
0.1900881677865982,
0.03367704153060913,
0.15696069598197937,
0.005552902352064848,
0.022435881197452545,
0.03209325298666954,
0.010065915994346142,
0.03155644237995148,
-0.04313135892152786,
-0.04310912638902664,
0.059793952852487564,
0.03319179639220238,
-0.013337995857000351,
-0.020273296162486076,
-0.0005448539741337299,
0.07522282004356384,
0.1877148598432541,
0.06780323386192322,
-0.264726847410202,
-0.061075448989868164,
0.004004934802651405,
-0.058855414390563965,
-0.0773448571562767,
-0.014003260992467403,
0.05223247781395912,
-0.15368470549583435,
0.08203238993883133,
-0.07928989082574844,
0.07660898566246033,
-0.07000863552093506,
-0.05282384529709816,
0.08780944347381592,
0.10143765062093735,
-0.009059996344149113,
0.06650692969560623,
-0.1835547238588333,
0.14637823402881622,
-0.009239277802407742,
0.06193133816123009,
-0.04316921532154083,
0.06325426697731018,
0.03671169653534889,
-0.03276120871305466,
0.10637631267309189,
-0.00598598038777709,
-0.09964922070503235,
-0.10100497305393219,
-0.11372340470552444,
-0.012296752072870731,
0.11111700534820557,
-0.06692846119403839,
0.10441841185092926,
-0.039190661162137985,
-0.018264206126332283,
-0.008451166562736034,
-0.07008747011423111,
-0.07193373143672943,
-0.13667725026607513,
0.0745314285159111,
-0.08695705235004425,
0.029040630906820297,
-0.09951617568731308,
-0.07870127260684967,
-0.13188381493091583,
0.20598983764648438,
-0.07387403398752213,
-0.053806498646736145,
-0.14874786138534546,
0.028924357146024704,
0.16674098372459412,
-0.058510467410087585,
0.07233310490846634,
0.022228050976991653,
0.14844077825546265,
0.032785531133413315,
-0.034899305552244186,
0.056694258004426956,
-0.04807404428720474,
-0.21658733487129211,
-0.056318845599889755,
0.15151040256023407,
0.040893424302339554,
0.05159204080700874,
-0.0029145118314772844,
0.06330536305904388,
-0.02340947650372982,
-0.08650733530521393,
0.053771235048770905,
0.06823241710662842,
0.0542503260076046,
0.04176845774054527,
-0.01442035287618637,
-0.050635792315006256,
-0.048402730375528336,
-0.03790590167045593,
0.04242487996816635,
0.22260335087776184,
-0.07669280469417572,
0.10455270111560822,
-0.03154660388827324,
-0.054256439208984375,
-0.15128298103809357,
0.05395105853676796,
0.09099870175123215,
0.028477419167757034,
0.05743110552430153,
-0.15948951244354248,
0.05377691611647606,
0.13082179427146912,
-0.025741087272763252,
0.07433202117681503,
-0.26279377937316895,
-0.13387419283390045,
0.02637632004916668,
0.06391456723213196,
-0.15470722317695618,
-0.12313630431890488,
-0.06620249897241592,
-0.01693764328956604,
-0.19717465341091156,
0.08265957981348038,
-0.01006492879241705,
0.08888687938451767,
-0.030779046937823296,
0.021096011623740196,
0.034297116100788116,
-0.04639391228556633,
0.17564281821250916,
0.016577357426285744,
0.0589049868285656,
-0.042886994779109955,
0.03750814497470856,
0.09795674681663513,
-0.06269355118274689,
0.047492727637290955,
-0.03226963430643082,
0.05044294148683548,
-0.175124853849411,
-0.03184355050325394,
-0.06167646870017052,
-0.020246747881174088,
-0.059030596166849136,
-0.022225381806492805,
-0.06314876675605774,
0.0963454321026802,
0.06598957628011703,
-0.026834215968847275,
-0.02181052416563034,
0.005242735147476196,
0.009767558425664902,
0.10986149311065674,
0.055099014192819595,
0.07824455946683884,
-0.15597540140151978,
-0.016883263364434242,
0.0034311292693018913,
0.0032782801426947117,
-0.13575448095798492,
0.038788728415966034,
0.11989637464284897,
0.0334281362593174,
0.1310717612504959,
0.013139142654836178,
-0.10681051015853882,
0.0006229829741641879,
0.06890346854925156,
-0.06124446541070938,
-0.11662246286869049,
0.03827565908432007,
-0.024489423260092735,
-0.11405269056558609,
-0.02902023121714592,
0.0874357745051384,
0.00877220556139946,
-0.037509676069021225,
0.027014559134840965,
0.058782730251550674,
0.0045939222909510136,
0.19003728032112122,
-0.005791906267404556,
0.069312684237957,
-0.08859316259622574,
0.12531732022762299,
0.0678609162569046,
-0.10106701403856277,
0.011751247569918633,
0.10912474244832993,
-0.0961960107088089,
-0.027364183217287064,
-0.014361345209181309,
0.08457539975643158,
0.0026173191145062447,
-0.007261756341904402,
-0.07706275582313538,
-0.11175484210252762,
0.0840172991156578,
0.007545957341790199,
0.03730722889304161,
0.03938300535082817,
0.013873772695660591,
0.014806045219302177,
-0.0757765993475914,
0.10840899497270584,
0.12554168701171875,
0.06376054883003235,
-0.06522229313850403,
0.12378974258899689,
-0.001542659243568778,
-0.035722628235816956,
0.004316327162086964,
0.015630047768354416,
-0.08668018132448196,
-0.015348829329013824,
-0.11792544275522232,
0.006023599300533533,
-0.06281936913728714,
-0.009327271021902561,
0.0016180418897420168,
-0.007448857184499502,
-0.0198984295129776,
0.0300966277718544,
-0.08914953470230103,
-0.08365055918693542,
-0.03722923994064331,
0.055219728499650955,
-0.12997925281524658,
0.01850665733218193,
0.06763511151075363,
-0.12463011592626572,
0.10936236381530762,
0.04551633819937706,
0.03901227191090584,
-0.007664193864911795,
-0.06363320350646973,
0.007593679707497358,
-0.021031668409705162,
0.011479310691356659,
0.02097427472472191,
-0.19760802388191223,
0.03889364004135132,
-0.040779419243335724,
-0.04669438302516937,
0.028617151081562042,
-0.01948181726038456,
-0.12708666920661926,
0.0339544415473938,
-0.05702436715364456,
-0.046073850244283676,
-0.05965086445212364,
0.060980603098869324,
0.06627756357192993,
0.02539519965648651,
0.15409383177757263,
-0.03781673312187195,
0.05068648234009743,
-0.21826323866844177,
-0.025371816009283066,
0.007489962503314018,
-0.007112293504178524,
-0.03084566630423069,
-0.0010081484215334058,
0.09172175079584122,
-0.023296337574720383,
0.12283581495285034,
-0.013900840654969215,
-0.05687115341424942,
0.0468682162463665,
-0.0033248451072722673,
-0.03973384574055672,
0.04544127359986305,
0.10351883620023727,
0.021983886137604713,
-0.011238794773817062,
0.035388629883527756,
-0.04272643104195595,
0.010526672936975956,
-0.022730765864253044,
0.12292954325675964,
0.18564999103546143,
0.037024352699518204,
0.035670436918735504,
0.018828125670552254,
-0.12450176477432251,
-0.1272544264793396,
0.17408277094364166,
-0.13092158734798431,
0.07099130749702454,
-0.049726735800504684,
0.15197914838790894,
0.06716205179691315,
-0.2112446427345276,
0.08421226590871811,
-0.06355709582567215,
-0.08052034676074982,
-0.05523831397294998,
-0.13172602653503418,
-0.08629622310400009,
-0.13063421845436096,
0.03304431959986687,
-0.08457069098949432,
0.07420431077480316,
0.11770067363977432,
0.03901637718081474,
0.01116880215704441,
0.11168612539768219,
-0.08522970229387283,
-0.032816801220178604,
0.07045809179544449,
0.043384552001953125,
-0.020179593935608864,
0.035867348313331604,
-0.04127130284905434,
0.010574143379926682,
-0.0008074876968748868,
0.11860273778438568,
-0.01718658022582531,
0.015569064766168594,
0.016622742637991905,
0.015252276323735714,
-0.04778260365128517,
0.03267940506339073,
-0.018213976174592972,
-0.0034702608827501535,
0.10399894416332245,
0.05574028193950653,
0.037175919860601425,
-0.030468467622995377,
0.2318938672542572,
-0.04442209377884865,
-0.05304376035928726,
-0.17619433999061584,
0.08465559035539627,
0.019414300099015236,
-0.011215576902031898,
0.06700532883405685,
-0.11417531967163086,
0.0360223762691021,
0.11587179452180862,
0.10227073729038239,
-0.03254378214478493,
-0.03516010940074921,
0.017954520881175995,
-0.01729385182261467,
-0.008508573286235332,
0.057088062167167664,
0.042223766446113586,
0.06622106581926346,
-0.03542269021272659,
-0.0007047284743748605,
0.013927978463470936,
-0.06463813036680222,
-0.020118432119488716,
0.07534286379814148,
-0.021162306889891624,
0.02172805182635784,
-0.0659485012292862,
0.047804467380046844,
0.025808488950133324,
-0.18354704976081848,
0.10845320671796799,
-0.12735235691070557,
-0.18766991794109344,
0.0033205412328243256,
0.040229685604572296,
-0.03779180720448494,
0.058373305946588516,
0.029451094567775726,
-0.0272575244307518,
0.14584232866764069,
-0.003683044807985425,
-0.04292001202702522,
-0.0983271598815918,
0.08840290457010269,
-0.046996865421533585,
0.21673904359340668,
-0.0038202989380806684,
0.062072549015283585,
0.11834528297185898,
0.007289514876902103,
-0.15499144792556763,
0.04517914727330208,
0.06279586255550385,
-0.08195382356643677,
0.05162717029452324,
0.1599302738904953,
-0.005222867708653212,
0.08067812770605087,
0.07337188720703125,
-0.016455529257655144,
0.017641834914684296,
-0.02359137311577797,
-0.006988037843257189,
-0.11438970267772675,
0.03980788588523865,
-0.06191262975335121,
0.15478478372097015,
0.21741189062595367,
-0.03824145346879959,
0.013848251663148403,
-0.047136228531599045,
0.03905266523361206,
0.008897755295038223,
0.1237756535410881,
-0.007647119462490082,
-0.1822342574596405,
0.051674529910087585,
0.03978060558438301,
0.04544921964406967,
-0.19560536742210388,
-0.11619024723768234,
0.016275981441140175,
-0.06089993193745613,
-0.04515088349580765,
0.15543220937252045,
0.0470329150557518,
0.04580245912075043,
-0.03513692319393158,
-0.08296096324920654,
0.00004502599040279165,
0.12607048451900482,
-0.1023116186261177,
-0.03157622739672661
] |
null | null | transformers |
# Mixtral MOE 5x7B
MoE of the following models :
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
* [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp)
* [ignos/Mistral-T5-7B-v1](https://huggingface.co/ignos/Mistral-T5-7B-v1)
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
``` | {"license": "cc-by-nc-4.0"} | text-generation | LoneStriker/Mixtral_7Bx5_MoE_30B-3.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:45:21+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Mixtral MOE 5x7B
MoE of the following models :
* Toten5/Marcoroni-neural-chat-7B-v1
* NurtureAI/neural-chat-7b-v3-16k
* mncai/mistral-7b-dpo-v6
* cookinai/CatMacaroni-Slerp
* ignos/Mistral-T5-7B-v1
gpu code example
CPU example
| [
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
58,
98
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
-0.13265983760356903,
0.032811205834150314,
0.0016681700944900513,
0.06005237251520157,
0.09170277416706085,
0.05486174672842026,
0.1754031479358673,
0.08827437460422516,
0.048426054418087006,
0.04822719842195511,
0.10930546373128891,
0.15147005021572113,
0.050271473824977875,
0.07607264816761017,
-0.041551947593688965,
-0.12304753065109253,
0.13822826743125916,
0.0285372044891119,
0.018767034634947777,
0.07113507390022278,
0.09234799444675446,
-0.045219406485557556,
0.10612381994724274,
-0.027028348296880722,
-0.1984025537967682,
-0.04531659558415413,
0.0059092091396451,
-0.04503824561834335,
0.10345133394002914,
0.09167052805423737,
0.02468385361135006,
0.05491048842668533,
0.05525398999452591,
-0.047444041818380356,
0.02953178808093071,
0.04105483368039131,
-0.015743371099233627,
0.08048006147146225,
0.10315034538507462,
0.046506043523550034,
0.07312776893377304,
0.0571342408657074,
-0.021097008138895035,
0.035699307918548584,
0.018450820818543434,
-0.0437827967107296,
-0.008665810339152813,
0.04507621377706528,
0.05793994665145874,
0.0792449563741684,
0.015002762898802757,
0.1917630136013031,
-0.0028631084132939577,
0.09410560131072998,
0.13915416598320007,
-0.2718551754951477,
-0.05056018382310867,
0.13085082173347473,
0.0916370153427124,
0.06428710371255875,
0.018235111609101295,
0.02555820718407631,
0.039636820554733276,
0.0031501944176852703,
-0.06455228477716446,
-0.021980848163366318,
0.012090848758816719,
-0.03641531616449356,
-0.10100672394037247,
0.03175126016139984,
0.12783773243427277,
-0.01871788129210472,
-0.012944400310516357,
-0.06200869008898735,
-0.10857585817575455,
0.012746433727443218,
-0.05880852788686752,
-0.047148652374744415,
-0.07286347448825836,
0.04218289256095886,
0.1049298644065857,
0.07159604132175446,
-0.03756077215075493,
-0.1395968794822693,
-0.03131239861249924,
0.16100303828716278,
0.031219836324453354,
0.010522501543164253,
-0.021792003884911537,
0.059254713356494904,
0.028613245114684105,
-0.06863578408956528,
-0.0012622170615941286,
-0.04667212441563606,
-0.03568123281002045,
-0.005251494236290455,
-0.09649239480495453,
-0.054846517741680145,
0.056380558758974075,
0.04986369609832764,
0.04993335157632828,
0.06519204378128052,
0.04177093133330345,
0.012200085446238518,
-0.0973709300160408,
-0.04077140614390373,
-0.09576639533042908,
-0.08472820371389389,
0.010962272994220257,
0.08735537528991699,
0.05046290159225464,
-0.022282809019088745,
-0.1383192241191864,
-0.07204660028219223,
0.07936861366033554,
0.007562451064586639,
-0.026277069002389908,
0.11840388923883438,
-0.04044025391340256,
-0.03969082981348038,
0.16800281405448914,
-0.06999586522579193,
0.0265493206679821,
0.07418541610240936,
-0.0032649009954184294,
0.03415559232234955,
-0.009450617246329784,
-0.019333822652697563,
-0.0457611009478569,
-0.08098877966403961,
-0.1161646619439125,
-0.042938411235809326,
-0.09060145914554596,
-0.09032420068979263,
0.043551646173000336,
0.035354144871234894,
-0.032337091863155365,
-0.16533109545707703,
-0.12757019698619843,
0.04656510055065155,
0.0637110024690628,
-0.07433835417032242,
0.07604158669710159,
-0.006164343096315861,
-0.02737729251384735,
0.03098740056157112,
0.022463470697402954,
0.03237934038043022,
-0.021810641512274742,
0.043203018605709076,
0.06473270058631897,
0.04523825645446777,
-0.06388343870639801,
0.015224343165755272,
-0.061199165880680084,
0.031894490122795105,
-0.10606493800878525,
0.0010015327716246247,
-0.058403920382261276,
0.07756669819355011,
-0.05844087153673172,
-0.004984809551388025,
-0.04675336927175522,
0.02938850224018097,
0.047615207731723785,
0.14076733589172363,
-0.14450693130493164,
-0.021755050867795944,
0.07503322511911392,
-0.1571515053510666,
-0.1603517234325409,
0.14260075986385345,
0.036776404827833176,
0.02125180885195732,
0.04470129683613777,
0.04594897851347923,
0.18468056619167328,
-0.08220665156841278,
-0.017173947766423225,
-0.012627649120986462,
0.021156422793865204,
-0.12655363976955414,
0.038768935948610306,
0.08653443306684494,
-0.15033215284347534,
0.05520832538604736,
-0.003970526624470949,
0.002437459770590067,
-0.01783961057662964,
-0.028730953112244606,
-0.09970277547836304,
-0.06624005734920502,
0.008432036265730858,
0.03948491811752319,
0.028305526822805405,
-0.03595494106411934,
-0.0635642409324646,
-0.06782369315624237,
0.10156653821468353,
-0.12593761086463928,
-0.013382266275584698,
-0.13813196122646332,
0.14065006375312805,
-0.08364655822515488,
0.0673578754067421,
-0.14024285972118378,
-0.02271796390414238,
0.07403683662414551,
-0.023558873683214188,
-0.025787224993109703,
-0.011082068085670471,
0.06336887180805206,
0.0963461846113205,
0.013275811448693275,
0.021604692563414574,
0.132207453250885,
0.04225382208824158,
-0.07198466360569,
-0.1677282154560089,
-0.021196195855736732,
-0.057417042553424835,
0.21136021614074707,
-0.184984028339386,
0.0377490259706974,
0.11884945631027222,
0.1211910992860794,
-0.03961078077554703,
0.009264692664146423,
-0.04526267573237419,
0.03171325847506523,
-0.07233580201864243,
0.0065973252058029175,
0.07916668802499771,
-0.019518792629241943,
-0.05798916146159172,
0.04363157972693443,
-0.22891731560230255,
0.0936889499425888,
0.12157922983169556,
0.00980803556740284,
-0.02253561280667782,
-0.08021403104066849,
0.027509551495313644,
-0.04887164384126663,
0.10130594670772552,
-0.07462489604949951,
-0.008430419489741325,
-0.057202160358428955,
0.09269620478153229,
-0.07001881301403046,
0.021399881690740585,
0.06034783273935318,
0.06093079596757889,
-0.06224990636110306,
0.07526913285255432,
0.16095975041389465,
-0.20012691617012024,
0.08113615214824677,
0.13425502181053162,
-0.05255484580993652,
0.12088142335414886,
0.026094749569892883,
-0.022781871259212494,
-0.0248920489102602,
0.028399452567100525,
0.04348624497652054,
0.0740995854139328,
-0.07856515794992447,
0.007849497720599174,
0.02396395616233349,
-0.008421944454312325,
0.07247395068407059,
-0.13180844485759735,
0.05588517338037491,
-0.04657885432243347,
-0.04360083490610123,
0.09979331493377686,
0.011265315115451813,
-0.03415970876812935,
0.08838693797588348,
-0.06092541292309761,
-0.19272583723068237,
0.07253647595643997,
-0.003231384325772524,
-0.10127317905426025,
0.19590944051742554,
-0.15054811537265778,
-0.19092904031276703,
-0.18068858981132507,
0.018074538558721542,
-0.06307666748762131,
0.04179096966981888,
0.008487730287015438,
0.006950183305889368,
-0.10110025107860565,
-0.1408982127904892,
-0.0427841953933239,
0.12416139990091324,
0.036380525678396225,
0.018678680062294006,
0.0070695579051971436,
-0.04079899936914444,
-0.10504253953695297,
0.03484721854329109,
0.030889421701431274,
-0.03469151258468628,
0.0488390251994133,
-0.1173926442861557,
0.07332655042409897,
0.18479254841804504,
0.050573576241731644,
-0.0322006419301033,
0.003276488510891795,
0.12326061725616455,
-0.05471964552998543,
0.0741860419511795,
0.13291893899440765,
-0.0161118246614933,
-0.008379444479942322,
0.14995242655277252,
-0.012121028266847134,
-0.057627011090517044,
0.017620820552110672,
-0.13084551692008972,
-0.020789843052625656,
-0.1216527447104454,
-0.10185782611370087,
-0.07342687249183655,
0.08307919651269913,
0.0439215712249279,
0.05500464886426926,
0.020890576764941216,
0.10528330504894257,
-0.04999060928821564,
0.0345996618270874,
0.0849592462182045,
0.07080426067113876,
0.1301840841770172,
0.04075927287340164,
0.09936575591564178,
-0.08191724866628647,
0.004462718032300472,
0.062184859067201614,
0.1117163673043251,
0.11818689107894897,
0.02639620378613472,
0.24685391783714294,
-0.032948147505521774,
0.12329105287790298,
0.07999180257320404,
0.12284711748361588,
-0.00864341203123331,
-0.015271876938641071,
-0.05061836168169975,
-0.07266664505004883,
-0.05459153652191162,
0.05548090860247612,
-0.09573563933372498,
-0.04853421077132225,
-0.012697607278823853,
0.07652278989553452,
0.05389084294438362,
0.09408004581928253,
-0.004751680418848991,
-0.355776846408844,
-0.07670719176530838,
0.018231993541121483,
0.018403463065624237,
-0.04217454791069031,
0.04330975562334061,
0.14705228805541992,
0.020864952355623245,
0.009508076123893261,
-0.07763224840164185,
0.041883185505867004,
0.061387091875076294,
-0.006203468423336744,
0.0434420183300972,
0.10810504108667374,
0.03738350421190262,
0.07996612042188644,
-0.18143028020858765,
0.11141780763864517,
0.030224084854125977,
0.03419574350118637,
-0.1144140362739563,
0.037086475640535355,
0.01625993475317955,
0.19613178074359894,
-0.004564615432173014,
-0.045296136289834976,
-0.1893482208251953,
-0.0689142644405365,
-0.08727896213531494,
0.03307659178972244,
0.062273334711790085,
0.05006754398345947,
0.03653446212410927,
-0.06905809044837952,
-0.038043905049562454,
0.031212691217660904,
0.018740897998213768,
-0.1005827933549881,
-0.1521243155002594,
0.1141105517745018,
0.13593526184558868,
0.03474428132176399,
-0.08954653888940811,
-0.07697480171918869,
-0.08154512941837311,
0.15605998039245605,
-0.16867241263389587,
0.04038715362548828,
-0.06921832263469696,
-0.08829392492771149,
0.07447763532400131,
-0.05886637046933174,
0.033048115670681,
-0.05293397977948189,
0.09819139540195465,
-0.010522345080971718,
-0.16308218240737915,
0.13241323828697205,
-0.12312711775302887,
-0.14370237290859222,
-0.05992847681045532,
0.06809408962726593,
-0.06873819231987,
0.0022854453418403864,
0.06494661420583725,
-0.003753822762519121,
-0.0391383059322834,
-0.0660630539059639,
-0.10953924804925919,
0.1077568382024765,
0.020387794822454453,
0.018395371735095978,
-0.11601611226797104,
-0.22736132144927979,
0.01998201198875904,
-0.03141530975699425,
0.05466332286596298,
0.15044312179088593,
-0.03014368936419487,
-0.006456559058278799,
0.23687884211540222,
-0.055429477244615555,
-0.22862359881401062,
-0.018901793286204338,
-0.042703378945589066,
-0.02188730798661709,
-0.051531583070755005,
-0.06719859689474106,
0.10814088582992554,
0.1138487309217453,
-0.03043392300605774,
0.10296455770730972,
-0.2704268991947174,
-0.10182666778564453,
0.085641048848629,
0.14373528957366943,
0.16225220263004303,
-0.16549363732337952,
-0.01028093695640564,
-0.08030227571725845,
-0.20055076479911804,
0.20391269028186798,
-0.07938387244939804,
0.09214778244495392,
-0.010821088217198849,
-0.019544538110494614,
-0.028718506917357445,
-0.068844273686409,
0.1017010435461998,
-0.00977392215281725,
0.03257446363568306,
-0.0581856369972229,
0.05149603635072708,
0.08367886394262314,
0.005444946698844433,
0.044167716056108475,
-0.15532472729682922,
0.03681670501828194,
-0.002691866597160697,
-0.05362054705619812,
-0.012732550501823425,
-0.0026201787404716015,
-0.006864391267299652,
-0.0015344780404120684,
-0.02427084371447563,
0.06051024794578552,
-0.04315687716007233,
-0.039240580052137375,
0.036032360047101974,
-0.021986784413456917,
0.07572407275438309,
0.18682101368904114,
0.13099586963653564,
-0.1729888617992401,
0.10569115728139877,
-0.0014597418485209346,
-0.02547169290482998,
0.10732989013195038,
0.030407506972551346,
0.026273900642991066,
0.11428198963403702,
-0.06834873557090759,
0.08438757807016373,
0.07266460359096527,
0.006285837385803461,
-0.026078861206769943,
0.10444124788045883,
-0.15946952998638153,
-0.09831534326076508,
-0.010685903020203114,
0.11417429149150848,
-0.008124001324176788,
0.09837585687637329,
0.1708424687385559,
-0.018011750653386116,
0.0062541416846215725,
0.024372871965169907,
0.01395859383046627,
0.001576199196279049,
0.13970249891281128,
-0.033791929483413696,
0.06328099220991135,
-0.07360316067934036,
0.015294077806174755,
0.013761095702648163,
-0.12430055439472198,
-0.021107856184244156,
0.13191480934619904,
-0.16038714349269867,
-0.11507382243871689,
-0.01596260815858841,
0.09649673849344254,
-0.025922004133462906,
-0.1084810271859169,
-0.12643732130527496,
-0.1255151331424713,
0.016684943810105324,
0.08722863346338272,
0.0702880248427391,
0.047615308314561844,
-0.0021655927412211895,
-0.028156030923128128,
-0.1034560576081276,
0.09210143983364105,
-0.049840815365314484,
0.09839409589767456,
-0.12467662245035172,
0.05477287247776985,
-0.03807368874549866,
-0.06821146607398987,
-0.04842457175254822,
0.036598365753889084,
-0.1255132555961609,
-0.029645606875419617,
-0.13487930595874786,
0.046103499829769135,
-0.11327613890171051,
0.004807859659194946,
0.006071087438613176,
0.022464342415332794,
-0.014938781037926674,
0.017471235245466232,
-0.04343966394662857,
0.021671941503882408,
-0.019466500729322433,
0.046391528099775314,
-0.07856854796409607,
0.009350280277431011,
0.00014505963190458715,
-0.06051967293024063,
0.06773857027292252,
0.04083047807216644,
-0.057474058121442795,
0.03246474266052246,
-0.1741316020488739,
-0.004279972054064274,
0.046109482645988464,
0.07096154242753983,
0.018934648483991623,
-0.07202838361263275,
0.03143496811389923,
0.12119660526514053,
0.050228673964738846,
0.012352420948445797,
0.1968432068824768,
-0.049027252942323685,
-0.0008978642290458083,
-0.121609166264534,
-0.050753772258758545,
-0.05384121090173721,
-0.011370809748768806,
0.07051318138837814,
-0.015221349895000458,
0.14751338958740234,
-0.07086507976055145,
-0.03176601976156235,
-0.08708439022302628,
0.011213849298655987,
0.032696571201086044,
-0.13200896978378296,
-0.07990989834070206,
-0.03358033671975136,
0.047560565173625946,
0.007654953747987747,
0.07226736098527908,
-0.058019887655973434,
-0.10394604504108429,
0.013476954773068428,
-0.03505850210785866,
0.04594137892127037,
0.034802939742803574,
0.16488976776599884,
0.10157549381256104,
0.06970089673995972,
-0.032272033393383026,
0.047491468489170074,
0.07565147429704666,
0.12210555374622345,
0.08361344039440155,
0.0760960653424263,
-0.027566850185394287,
0.1667456328868866,
0.07843437790870667,
-0.07557085901498795,
-0.04427323862910271,
0.0855315774679184,
-0.1697453111410141,
0.09349703788757324,
-0.05657625198364258,
0.14889127016067505,
0.16008391976356506,
-0.04360553249716759,
-0.06964000314474106,
-0.10133937746286392,
-0.10060598701238632,
-0.0737171396613121,
-0.144444078207016,
-0.11598177254199982,
-0.15823926031589508,
-0.02021319605410099,
-0.06507106870412827,
-0.09253256767988205,
0.04086383432149887,
0.037152670323848724,
-0.010272729210555553,
0.18889251351356506,
-0.01605699583888054,
0.03838229924440384,
-0.0321146585047245,
0.0017693012487143278,
-0.008410545065999031,
0.036619048565626144,
-0.1548120677471161,
-0.011051954701542854,
-0.03576201573014259,
0.03767706826329231,
0.021387584507465363,
0.023337924852967262,
0.05549028515815735,
-0.0033308430574834347,
-0.04863503575325012,
-0.01920263096690178,
-0.0011281870538368821,
-0.01649872586131096,
0.12027281522750854,
-0.006309852935373783,
-0.05069490149617195,
0.03028200939297676,
0.02589396759867668,
-0.020493607968091965,
-0.11464788764715195,
-0.10810388624668121,
0.11736121028661728,
-0.07860458642244339,
0.044269416481256485,
0.013559659011662006,
-0.0101328669115901,
-0.023432109504938126,
0.18963681161403656,
0.2287255823612213,
-0.09979473054409027,
-0.014849985018372536,
0.015992846339941025,
-0.013664601370692253,
-0.040227457880973816,
0.1684797704219818,
0.09711184352636337,
0.2037757933139801,
0.025360161438584328,
-0.021103184670209885,
-0.001195923425257206,
-0.005482147913426161,
-0.11532525718212128,
-0.039835765957832336,
-0.04180289804935455,
-0.03520563989877701,
0.009702207520604134,
0.042784806340932846,
0.006989783141762018,
-0.03218588978052139,
-0.010033383965492249,
-0.06130514293909073,
-0.07618565857410431,
-0.06477157026529312,
0.1305445283651352,
-0.09517543017864227,
0.03688139468431473,
-0.06840561330318451,
0.0195605605840683,
0.013379605486989021,
-0.021147551015019417,
-0.1106223315000534,
-0.04146788269281387,
0.02109948731958866,
-0.1297861486673355,
0.14164212346076965,
-0.036643948405981064,
0.11645273864269257,
0.12261927127838135,
0.010852943174540997,
-0.14264562726020813,
0.07332352548837662,
0.031738582998514175,
-0.11479264497756958,
0.0776853933930397,
-0.0013804935151711106,
-0.05474866181612015,
0.16480295360088348,
0.015371039509773254,
-0.07446736097335815,
0.02516375482082367,
-0.03275401145219803,
0.002308108378201723,
-0.04203716292977333,
0.009467897936701775,
-0.061638735234737396,
0.14279285073280334,
0.09066151082515717,
-0.015788983553647995,
-0.03130638599395752,
-0.010479123331606388,
0.0966024249792099,
-0.03391670063138008,
-0.022660452872514725,
-0.015216921456158161,
-0.30464059114456177,
-0.030301308259367943,
-0.012125648558139801,
0.040927741676568985,
-0.1680280864238739,
-0.08409134298563004,
-0.13633382320404053,
-0.02465103566646576,
-0.1408102959394455,
0.032521095126867294,
0.1642039567232132,
-0.003878029529005289,
-0.05764879658818245,
-0.17590895295143127,
-0.08574333786964417,
0.0627649575471878,
-0.11513547599315643,
-0.18672840297222137
] |
null | null | transformers |
<img src="https://huggingface.co/Mabeck/Heidrun-Mistral-7B-chat/resolve/main/heidrun.jpeg" alt="Heidrun Logo" width="400">
# Model description
Heidrun-Mistral-7B-chat is a chat-model based on [Heidrun-Mistral-7B-base](https://huggingface.co/Mabeck/Heidrun-Mistral-7B-base), finetuned on [danish-OpenHermes](https://huggingface.co/datasets/Mabeck/danish-OpenHermes) and [skoleGPT](https://huggingface.co/datasets/kobprof/skolegpt-instruct) for a instruction/chat format.
It is a new SOTA Danish open-source LLM and shows very strong performance in logic and reasoning tasks.
Heidrun-7B ranks 1st among Danish open-sourced LLMs based on the [ScandEval](https://scandeval.com/mainland-scandinavian-nlg/) benchmark and shares 1st place on all Scandinavian languages.
# Benchmarks
The following benchmarks have been tested using [ScandEval](https://github.com/ScandEval/ScandEval). Rankings don't include merged models and GPT4 and GPT3.5 ranks 1 and 2:
- **MMLU-da**: 35.66%+-0.85%/51.68+-0.63%, ranks 3rd
- **DANSK**: 50.80% ± 2.33% / 34.04% ± 1.76%, ranks 3rd=
- **Hellaswag-da**: 29.18% ± 0.99%/ 46.64% ± 0.76%, ranks 4th
# Datasets
This model is trained on Danish instruction datasets [danish-OpenHermes](Mabeck/danish-OpenHermes) and [skoleGPT](https://huggingface.co/datasets/kobprof/skolegpt-instruct), which have not been safeguarded or alligned.
Most of the data has been machine-translated and may contain incorrect responses.
# Samples
This model uses the ChatML format. Using other formats may degrade the model's performance.
Samples from the model using ChatML format:
```
"<s> <im_start>system
Du er en AI-hjælper. Du får en opgave fra en bruger hvor du kort og præcist skal forklare svaret.
<im_end>
<im_start>user
Hvilke 3 populære retter findes der i dansk madlavning?
<im_end>
<im_start>assistant
1. Smørrebrød: Smørrebrød er en populær dansk ret, der består af brød med forskellige toppings som røget laks, rejer, ost eller andre ingredienser.
2. Frikadeller: Frikadeller er en traditionel dansk ret lavet af kødboller af kalvekød, svinekød eller lam, krydret med krydderurter og kogt i smør eller olie.
3. Rød kål: Rød kål er en populær side ret i dansk madlavning.
<im_end></s>"
```
```
"<s> <im_start>system
Du er en AI-hjælper. Du får en opgave fra en bruger hvor du kort og præcist skal forklare svaret.
<im_end>
<im_start>user
Hvilke 3 områder skal fokuseres på for at effektivt tackle klimaforandringer?
<im_end>
<im_start>assistant
1. Energiproduktion: Fokus på vedvarende energikilder som sol, vind og vandkraft for at reducere afhængigheden af fossile brændstoffer og minimere drivhusgasemissioner.
2. Transport: Fremme bæredygtige transportformer som offentlig transport, cykling og elektriske køretøjer for at reducere luftforurening og afhængigheden af fossile brændstoffer.
3. Skovbevarelse og affaldshåndtering: Fremme skovbevarelse og bæredygtig skovdrift for at fange kuldioxid og reducere drivhusgasemissioner, samt fremme genbrug og reducere affaldsproduktion for at mindske mængden af drivhusgasemissioner fra affald.
<im_end></s>"
```
# Uploaded model
- **Developed by:** Mabeck
- **Finetuned from model :** Mabeck/Heidrun-Mistral-7B-base
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) | {"language": ["en", "da"], "license": "mit", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "datasets": ["Mabeck/danish-OpenHermes", "kobprof/skolegpt-instruct"], "base_model": "Mabeck/Heidrun-Mistral-7B-base"} | text-generation | Mabeck/Heidrun-Mistral-7B-chat | [
"transformers",
"pytorch",
"safetensors",
"mistral",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"en",
"da",
"dataset:Mabeck/danish-OpenHermes",
"dataset:kobprof/skolegpt-instruct",
"base_model:Mabeck/Heidrun-Mistral-7B-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:46:47+00:00 | [] | [
"en",
"da"
] | TAGS
#transformers #pytorch #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #en #da #dataset-Mabeck/danish-OpenHermes #dataset-kobprof/skolegpt-instruct #base_model-Mabeck/Heidrun-Mistral-7B-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
<img src="URL alt="Heidrun Logo" width="400">
# Model description
Heidrun-Mistral-7B-chat is a chat-model based on Heidrun-Mistral-7B-base, finetuned on danish-OpenHermes and skoleGPT for a instruction/chat format.
It is a new SOTA Danish open-source LLM and shows very strong performance in logic and reasoning tasks.
Heidrun-7B ranks 1st among Danish open-sourced LLMs based on the ScandEval benchmark and shares 1st place on all Scandinavian languages.
# Benchmarks
The following benchmarks have been tested using ScandEval. Rankings don't include merged models and GPT4 and GPT3.5 ranks 1 and 2:
- MMLU-da: 35.66%+-0.85%/51.68+-0.63%, ranks 3rd
- DANSK: 50.80% ± 2.33% / 34.04% ± 1.76%, ranks 3rd=
- Hellaswag-da: 29.18% ± 0.99%/ 46.64% ± 0.76%, ranks 4th
# Datasets
This model is trained on Danish instruction datasets danish-OpenHermes and skoleGPT, which have not been safeguarded or alligned.
Most of the data has been machine-translated and may contain incorrect responses.
# Samples
This model uses the ChatML format. Using other formats may degrade the model's performance.
Samples from the model using ChatML format:
# Uploaded model
- Developed by: Mabeck
- Finetuned from model : Mabeck/Heidrun-Mistral-7B-base
This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.
<img src="URL width="200"/> | [
"# Model description\nHeidrun-Mistral-7B-chat is a chat-model based on Heidrun-Mistral-7B-base, finetuned on danish-OpenHermes and skoleGPT for a instruction/chat format.\n\nIt is a new SOTA Danish open-source LLM and shows very strong performance in logic and reasoning tasks.\n\nHeidrun-7B ranks 1st among Danish open-sourced LLMs based on the ScandEval benchmark and shares 1st place on all Scandinavian languages.",
"# Benchmarks\n\nThe following benchmarks have been tested using ScandEval. Rankings don't include merged models and GPT4 and GPT3.5 ranks 1 and 2:\n\n- MMLU-da: 35.66%+-0.85%/51.68+-0.63%, ranks 3rd\n- DANSK: 50.80% ± 2.33% / 34.04% ± 1.76%, ranks 3rd=\n- Hellaswag-da: 29.18% ± 0.99%/ 46.64% ± 0.76%, ranks 4th",
"# Datasets\nThis model is trained on Danish instruction datasets danish-OpenHermes and skoleGPT, which have not been safeguarded or alligned.\n\nMost of the data has been machine-translated and may contain incorrect responses.",
"# Samples\n\nThis model uses the ChatML format. Using other formats may degrade the model's performance.\n\nSamples from the model using ChatML format:",
"# Uploaded model\n\n- Developed by: Mabeck\n- Finetuned from model : Mabeck/Heidrun-Mistral-7B-base\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
"TAGS\n#transformers #pytorch #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #en #da #dataset-Mabeck/danish-OpenHermes #dataset-kobprof/skolegpt-instruct #base_model-Mabeck/Heidrun-Mistral-7B-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model description\nHeidrun-Mistral-7B-chat is a chat-model based on Heidrun-Mistral-7B-base, finetuned on danish-OpenHermes and skoleGPT for a instruction/chat format.\n\nIt is a new SOTA Danish open-source LLM and shows very strong performance in logic and reasoning tasks.\n\nHeidrun-7B ranks 1st among Danish open-sourced LLMs based on the ScandEval benchmark and shares 1st place on all Scandinavian languages.",
"# Benchmarks\n\nThe following benchmarks have been tested using ScandEval. Rankings don't include merged models and GPT4 and GPT3.5 ranks 1 and 2:\n\n- MMLU-da: 35.66%+-0.85%/51.68+-0.63%, ranks 3rd\n- DANSK: 50.80% ± 2.33% / 34.04% ± 1.76%, ranks 3rd=\n- Hellaswag-da: 29.18% ± 0.99%/ 46.64% ± 0.76%, ranks 4th",
"# Datasets\nThis model is trained on Danish instruction datasets danish-OpenHermes and skoleGPT, which have not been safeguarded or alligned.\n\nMost of the data has been machine-translated and may contain incorrect responses.",
"# Samples\n\nThis model uses the ChatML format. Using other formats may degrade the model's performance.\n\nSamples from the model using ChatML format:",
"# Uploaded model\n\n- Developed by: Mabeck\n- Finetuned from model : Mabeck/Heidrun-Mistral-7B-base\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>"
] | [
113,
117,
120,
57,
36,
71
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #en #da #dataset-Mabeck/danish-OpenHermes #dataset-kobprof/skolegpt-instruct #base_model-Mabeck/Heidrun-Mistral-7B-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# Model description\nHeidrun-Mistral-7B-chat is a chat-model based on Heidrun-Mistral-7B-base, finetuned on danish-OpenHermes and skoleGPT for a instruction/chat format.\n\nIt is a new SOTA Danish open-source LLM and shows very strong performance in logic and reasoning tasks.\n\nHeidrun-7B ranks 1st among Danish open-sourced LLMs based on the ScandEval benchmark and shares 1st place on all Scandinavian languages.# Benchmarks\n\nThe following benchmarks have been tested using ScandEval. Rankings don't include merged models and GPT4 and GPT3.5 ranks 1 and 2:\n\n- MMLU-da: 35.66%+-0.85%/51.68+-0.63%, ranks 3rd\n- DANSK: 50.80% ± 2.33% / 34.04% ± 1.76%, ranks 3rd=\n- Hellaswag-da: 29.18% ± 0.99%/ 46.64% ± 0.76%, ranks 4th# Datasets\nThis model is trained on Danish instruction datasets danish-OpenHermes and skoleGPT, which have not been safeguarded or alligned.\n\nMost of the data has been machine-translated and may contain incorrect responses.# Samples\n\nThis model uses the ChatML format. Using other formats may degrade the model's performance.\n\nSamples from the model using ChatML format:"
] | [
-0.10024034231901169,
0.015270556323230267,
-0.0017275360878556967,
0.06836787611246109,
0.023782646283507347,
0.014329066500067711,
0.09629728645086288,
0.07331594824790955,
0.09516872465610504,
0.10040125250816345,
-0.0063565275631845,
-0.027608737349510193,
0.1157551035284996,
0.06382875144481659,
0.04679827019572258,
-0.2222217470407486,
0.14440183341503143,
-0.09178324788808823,
-0.017250055447220802,
0.038889095187187195,
0.085299052298069,
-0.009858954697847366,
0.04194772243499756,
-0.04041384533047676,
0.013007310219109058,
0.01078248955309391,
-0.018132323399186134,
0.012131636962294579,
0.09508618712425232,
0.02789832279086113,
0.034178756177425385,
0.028140511363744736,
0.013055946677923203,
-0.08471449464559555,
0.023056453093886375,
0.028175661340355873,
-0.026406683027744293,
0.050483979284763336,
0.05192611739039421,
0.009963590651750565,
0.12956388294696808,
-0.06311937421560287,
0.018024547025561333,
-0.00695843854919076,
-0.039574846625328064,
-0.13590572774410248,
-0.12421784549951553,
0.0011217482388019562,
0.07119104266166687,
0.04236116260290146,
-0.046538159251213074,
0.12474111467599869,
-0.12599293887615204,
0.07709503173828125,
0.13163475692272186,
-0.2137744426727295,
-0.012344217859208584,
0.2613550126552582,
0.025034399703145027,
0.09068380296230316,
-0.08339475095272064,
0.034504737704992294,
0.0156402587890625,
0.0753762349486351,
-0.0326635017991066,
-0.018025387078523636,
-0.010410659946501255,
-0.055257398635149,
-0.101371169090271,
0.04515925422310829,
0.11272168159484863,
0.02111658826470375,
-0.04442978277802467,
-0.1598990112543106,
-0.022418199107050896,
0.029301993548870087,
0.038083434104919434,
-0.03490207716822624,
0.005919065326452255,
-0.007177294231951237,
0.11681273579597473,
0.02187374420464039,
-0.07288007438182831,
-0.01007861364632845,
-0.03421006724238396,
0.16749319434165955,
-0.009805286303162575,
0.04799208417534828,
0.07803048938512802,
0.0416068360209465,
-0.17271095514297485,
-0.1000591516494751,
-0.1441267877817154,
-0.11011755466461182,
-0.09160668402910233,
-0.03565513715147972,
-0.035767730325460434,
-0.18112953007221222,
0.03324902802705765,
0.14202472567558289,
-0.12339412420988083,
0.08511358499526978,
0.010796090587973595,
0.02416159026324749,
0.03454716131091118,
0.133115753531456,
-0.0326976403594017,
-0.04181663319468498,
0.014131002128124237,
0.001275157555937767,
0.13101685047149658,
-0.01451967004686594,
-0.05212361365556717,
-0.06465629488229752,
0.06878635287284851,
0.022562945261597633,
-0.022599851712584496,
0.06397474557161331,
-0.05615491420030594,
-0.03628094494342804,
0.23130105435848236,
-0.12793199717998505,
0.013080785050988197,
0.033631112426519394,
-0.05350087210536003,
0.03226245939731598,
0.05807245895266533,
-0.013180366717278957,
-0.11016862094402313,
0.16887594759464264,
0.02677742764353752,
0.0009264564723707736,
-0.04328223690390587,
-0.12566226720809937,
0.08850505948066711,
-0.05376288294792175,
-0.048930779099464417,
-0.07285431772470474,
-0.08122178167104721,
-0.042060259729623795,
0.05649956315755844,
-0.06375198066234589,
0.010037039406597614,
-0.062203723937273026,
-0.059169359505176544,
0.05501987040042877,
-0.015402141027152538,
0.006179423537105322,
-0.04051487520337105,
-0.010758268646895885,
-0.11729798465967178,
0.05422218516469002,
-0.06609844416379929,
0.013788570649921894,
-0.12978790700435638,
-0.0023266677744686604,
-0.34674426913261414,
0.08289352804422379,
-0.17019006609916687,
-0.052032820880413055,
-0.08688147366046906,
-0.07256245613098145,
-0.0749364048242569,
0.023249270394444466,
0.054089903831481934,
0.17178215086460114,
-0.18701587617397308,
-0.01924941875040531,
0.12439116835594177,
-0.19690579175949097,
-0.05349576100707054,
0.10946641862392426,
0.027966566383838654,
-0.04635496437549591,
0.10256747901439667,
0.22341874241828918,
0.13648244738578796,
-0.10486707836389542,
-0.1216832846403122,
0.06454785168170929,
-0.007203905377537012,
0.030689477920532227,
0.07268399745225906,
-0.06671763956546783,
0.08310701698064804,
0.07345926016569138,
-0.05137256160378456,
0.0032500133384019136,
0.07433334738016129,
-0.010270660743117332,
-0.01462313998490572,
0.03915131464600563,
0.05489382520318031,
0.07156744599342346,
-0.0029158019460737705,
-0.06724482774734497,
-0.07812654972076416,
0.04553095996379852,
0.07422798126935959,
-0.05415232479572296,
0.0448836013674736,
0.029513318091630936,
0.12375586479902267,
-0.07833809405565262,
0.02227340079843998,
-0.14548514783382416,
-0.13609085977077484,
0.01513038482517004,
-0.053491417318582535,
-0.03404005244374275,
0.06220674887299538,
0.1256149262189865,
0.028323881328105927,
-0.09909597039222717,
0.0009029206703417003,
0.013151559047400951,
-0.010405371896922588,
-0.01559547707438469,
-0.19417119026184082,
-0.002959925914183259,
-0.0824282094836235,
0.05781799554824829,
-0.09171120822429657,
-0.062007006257772446,
0.09638454020023346,
0.21297279000282288,
-0.005966104567050934,
-0.0687270313501358,
0.019426638260483742,
0.0003508328809402883,
-0.02885511890053749,
-0.042351748794317245,
0.0002482401323504746,
-0.021385181695222855,
-0.09117888659238815,
0.10450386255979538,
-0.09019168466329575,
-0.07673107087612152,
0.0930364727973938,
0.08031786233186722,
-0.0834035649895668,
0.011359035968780518,
-0.006452908273786306,
-0.00026843335945159197,
-0.07942215353250504,
-0.0709460973739624,
0.01758974976837635,
0.05907976254820824,
0.06600131094455719,
-0.07567548751831055,
-0.02618318796157837,
0.0012677263002842665,
0.041469309478998184,
-0.07562178373336792,
0.16835132241249084,
-0.011444768868386745,
-0.10564598441123962,
0.11374102532863617,
0.012505687773227692,
0.012435592710971832,
0.17456327378749847,
-0.05938085913658142,
-0.0413271002471447,
0.014937498606741428,
0.05062009394168854,
-0.015445255674421787,
0.15185905992984772,
0.05230727419257164,
0.06037561595439911,
0.0253630168735981,
0.10596390813589096,
0.007934590801596642,
-0.03269551694393158,
0.015949534252285957,
-0.0534944050014019,
-0.0764014720916748,
-0.00857377890497446,
0.0814855620265007,
0.005782681051641703,
0.0749744176864624,
0.013708613812923431,
-0.014142523519694805,
-0.004343117121607065,
-0.05630643293261528,
-0.13652320206165314,
0.2026352882385254,
-0.15251009166240692,
-0.133320614695549,
-0.11565934121608734,
0.1452265977859497,
-0.17374876141548157,
-0.02175026386976242,
0.0282443817704916,
-0.06825052946805954,
-0.12282600998878479,
-0.12483718991279602,
0.09318917989730835,
0.03177905082702637,
-0.05749376490712166,
-0.04673205688595772,
-0.08007687330245972,
-0.01462857611477375,
-0.14686131477355957,
0.006821619812399149,
-0.006042301654815674,
0.055978745222091675,
0.032478198409080505,
-0.02042277343571186,
-0.020174918696284294,
0.04703833907842636,
0.06930194795131683,
-0.018843157216906548,
-0.012789645232260227,
0.22520728409290314,
-0.07193679362535477,
0.10478036105632782,
-0.04556558281183243,
-0.012562911957502365,
0.05329052358865738,
0.16156192123889923,
0.026985611766576767,
-0.014544676057994366,
-0.060373157262802124,
0.04644153639674187,
-0.05735801160335541,
-0.1872866153717041,
-0.1101609319448471,
-0.043446604162454605,
0.004367989022284746,
0.023125527426600456,
0.06717143952846527,
-0.06307581067085266,
0.04551666975021362,
-0.10049759596586227,
-0.06629399955272675,
0.10071160644292831,
0.051337435841560364,
0.006586368661373854,
0.006241057999432087,
0.044309381395578384,
-0.07498552650213242,
0.03926263749599457,
0.1201840490102768,
-0.01575998216867447,
0.12676361203193665,
-0.0964394211769104,
0.08480124175548553,
-0.007588895037770271,
0.09621205180883408,
-0.026500629261136055,
0.10329975187778473,
-0.04363540932536125,
-0.019509321078658104,
0.03037223219871521,
-0.11867709457874298,
-0.013926110230386257,
0.06521952897310257,
-0.0069186510518193245,
0.016783248633146286,
-0.0024710858706384897,
-0.05977132171392441,
0.10586180537939072,
0.18787968158721924,
0.07463831454515457,
-0.09262242168188095,
-0.11165059357881546,
0.055175166577100754,
0.005821578670293093,
-0.03274171054363251,
-0.01369115337729454,
0.10967997461557388,
-0.08859667927026749,
0.19145728647708893,
-0.07116483151912689,
0.041511766612529755,
0.06756426393985748,
-0.053236156702041626,
-0.03635856509208679,
0.07753436267375946,
-0.022780641913414,
0.0628373771905899,
-0.15619578957557678,
0.1266191452741623,
0.011221745051443577,
0.06844581663608551,
-0.0828610360622406,
0.015566379763185978,
0.038043685257434845,
0.12564942240715027,
0.12253453582525253,
0.09951922297477722,
-0.2438230961561203,
-0.04602731019258499,
-0.04612813889980316,
-0.004796573892235756,
0.025004711002111435,
-0.007719321642071009,
0.031795110553503036,
0.011484099552035332,
-0.007995647378265858,
-0.03396571800112724,
-0.05175941810011864,
-0.07636758685112,
-0.04173281416296959,
0.06109210476279259,
-0.028393350541591644,
-0.040010739117860794,
0.011484295129776001,
-0.08986884355545044,
-0.2367253601551056,
0.18161921203136444,
-0.11621253937482834,
-0.13211756944656372,
-0.10445134341716766,
-0.04968470335006714,
0.11293689161539078,
-0.0836859717965126,
-0.052788231521844864,
-0.03512701764702797,
0.07773948460817337,
-0.05441074073314667,
-0.17495782673358917,
0.030030958354473114,
-0.06203875318169594,
-0.10588133335113525,
0.04246893897652626,
0.16531644761562347,
0.023757508024573326,
-0.027268391102552414,
0.022699298337101936,
0.07629674673080444,
0.031099388375878334,
-0.15221303701400757,
0.03676522895693779,
0.1952526867389679,
0.029710741713643074,
0.11740481108427048,
-0.03549626097083092,
-0.014421111904084682,
0.03551877290010452,
-0.013721182942390442,
0.008129335939884186,
0.2517395317554474,
-0.09810622036457062,
0.12981510162353516,
0.10798867046833038,
-0.07123737782239914,
-0.23373833298683167,
0.04330664500594139,
0.03962431848049164,
0.044959910213947296,
0.07234221696853638,
-0.04208541661500931,
0.09452946484088898,
0.049413543194532394,
-0.00889906007796526,
0.031104495748877525,
-0.18221138417720795,
-0.15055137872695923,
0.023959463462233543,
0.050204724073410034,
0.16880002617835999,
-0.046856846660375595,
-0.05914183706045151,
-0.030517548322677612,
-0.10789655894041061,
0.053197167813777924,
-0.0719512477517128,
0.055743515491485596,
-0.01522646751254797,
0.017651695758104324,
0.0633365735411644,
-0.06418970972299576,
0.18537595868110657,
0.003355498192831874,
0.0019257068634033203,
-0.11368703842163086,
0.10865672677755356,
0.02138805203139782,
-0.06148609146475792,
0.1748737394809723,
-0.0735078752040863,
0.02523081749677658,
-0.07320412248373032,
-0.00012682494707405567,
-0.09806402027606964,
0.08224301040172577,
-0.060627665370702744,
-0.008779142051935196,
-0.10272875428199768,
0.12580159306526184,
0.09977702796459198,
-0.04143078997731209,
0.1324196457862854,
-0.01233911793678999,
0.04181477427482605,
0.0949171930551529,
0.09103921055793762,
0.048566848039627075,
-0.0305621474981308,
0.06810867786407471,
-0.039768874645233154,
0.07796958833932877,
-0.027338948100805283,
0.057849884033203125,
0.14440582692623138,
-0.029077857732772827,
0.08749264478683472,
-0.03609238192439079,
-0.1783187836408615,
-0.0491250641644001,
0.0881117656826973,
-0.13173459470272064,
-0.20518094301223755,
-0.02120826207101345,
-0.171963632106781,
-0.00013035042502451688,
0.03371601924300194,
0.1542394906282425,
-0.05692026764154434,
0.017040954902768135,
0.039263032376766205,
0.07839423418045044,
-0.03281397372484207,
0.10140011459589005,
-0.035355180501937866,
0.03193007782101631,
-0.0836118683218956,
0.15324236452579498,
-0.02550969272851944,
-0.09990163147449493,
0.04542992636561394,
0.10861880332231522,
-0.1339411586523056,
-0.05946559086441994,
0.01715380884706974,
0.11979717761278152,
-0.042776595801115036,
-0.05777975544333458,
-0.05260097607970238,
-0.13163581490516663,
-0.032898593693971634,
0.08418040722608566,
0.05473459139466286,
0.004409105516970158,
0.07062561064958572,
0.00778447650372982,
-0.009305132552981377,
0.055494099855422974,
-0.01044966746121645,
0.04524160176515579,
-0.07139050960540771,
0.018631406128406525,
-0.048736754804849625,
-0.0011800111969932914,
-0.02800089307129383,
0.015500573441386223,
-0.1293344646692276,
-0.051312319934368134,
-0.10739454627037048,
0.025219233706593513,
-0.07023318856954575,
0.03145448490977287,
-0.02381281927227974,
-0.04199415072798729,
0.04110944643616676,
0.015267615206539631,
-0.06184401363134384,
0.00662285415455699,
-0.05893436074256897,
-0.013685685582458973,
-0.14425839483737946,
-0.06681033968925476,
-0.013165500946342945,
-0.0355648547410965,
0.054183345288038254,
0.04637965187430382,
-0.0009012326481752098,
0.1135261133313179,
-0.11528492718935013,
0.05365130305290222,
0.040822774171829224,
0.008926155976951122,
0.007324211299419403,
-0.11029252409934998,
-0.05752579867839813,
0.04818497598171234,
0.0238270815461874,
0.057185616344213486,
0.03965543955564499,
-0.06909438967704773,
-0.003847769694402814,
-0.055713627487421036,
-0.04980151727795601,
-0.07062293589115143,
0.12815538048744202,
0.05501043424010277,
0.0823340192437172,
0.17013195157051086,
-0.09248611330986023,
0.025789281353354454,
-0.10431678593158722,
-0.032514531165361404,
0.060274604707956314,
-0.07325433939695358,
-0.01546727865934372,
0.05887526273727417,
0.029786059632897377,
-0.0518047995865345,
0.082647405564785,
-0.0019606766290962696,
-0.008658569306135178,
0.051033373922109604,
-0.03507004678249359,
-0.06814922392368317,
0.05879772827029228,
0.03136060759425163,
-0.07134471833705902,
0.010859290137887001,
-0.08054274320602417,
0.007355968467891216,
-0.023355752229690552,
0.011062584817409515,
0.18694019317626953,
0.15026666224002838,
0.0436355285346508,
0.07497557252645493,
0.01332362275570631,
-0.04746762290596962,
-0.0114922309294343,
-0.025126632302999496,
-0.04393433779478073,
0.07251770794391632,
0.016724010929465294,
0.02648385986685753,
0.05586402118206024,
-0.16084139049053192,
0.09897183626890182,
-0.08756217360496521,
-0.0659026950597763,
-0.1169189065694809,
-0.20484866201877594,
-0.08169489353895187,
-0.08372540026903152,
0.028303809463977814,
-0.14254549145698547,
0.03211839497089386,
0.09553629904985428,
0.09888952225446701,
-0.016943996772170067,
0.0868963897228241,
-0.15771152079105377,
-0.033661577850580215,
0.04372209310531616,
0.01466394867748022,
-0.024028727784752846,
0.14412936568260193,
0.008724474348127842,
0.03991001099348068,
0.041615042835474014,
0.016501422971487045,
0.024808945134282112,
0.020892350003123283,
-0.009060259908437729,
-0.0512675940990448,
-0.04960256442427635,
0.022549938410520554,
0.03062302991747856,
0.027382776141166687,
0.1557345986366272,
0.09201987087726593,
-0.026219571009278297,
-0.035997722297906876,
0.18635162711143494,
-0.019146153703331947,
-0.06154466047883034,
-0.15665876865386963,
0.06923362612724304,
-0.06438157707452774,
0.03345709666609764,
0.03743115812540054,
-0.1392640322446823,
-0.004153682850301266,
0.06472460180521011,
0.16021013259887695,
0.059651538729667664,
0.018044132739305496,
-0.08367528766393661,
-0.007829449139535427,
0.07024167478084564,
0.062433384358882904,
-0.03892429172992706,
0.12422910332679749,
-0.026301821693778038,
0.116728775203228,
-0.008456187322735786,
0.021752167493104935,
-0.04543614387512207,
0.0937088131904602,
-0.030775927007198334,
-0.06467938423156738,
-0.13424579799175262,
0.08370203524827957,
-0.02214912138879299,
-0.1480529010295868,
0.0007313128444366157,
-0.11551474779844284,
-0.14741188287734985,
-0.08783991634845734,
0.005028440151363611,
0.0242326557636261,
-0.003472348442301154,
0.02794993296265602,
0.011122705414891243,
0.12743836641311646,
-0.011936039663851261,
-0.03217938542366028,
-0.1472150832414627,
0.028210701420903206,
0.006602815352380276,
0.10720432549715042,
0.07150398194789886,
0.12320567667484283,
0.08674666285514832,
0.026466460898518562,
-0.05928618833422661,
-0.02816285565495491,
0.04692016914486885,
-0.09123729169368744,
0.02367432229220867,
0.1405787318944931,
-0.02202773094177246,
0.051850780844688416,
0.015688301995396614,
-0.09203263372182846,
-0.007660054136067629,
0.10684699565172195,
-0.046954672783613205,
-0.067589171230793,
0.16889940202236176,
-0.09574559330940247,
0.15855729579925537,
0.20115511119365692,
0.02513998933136463,
-0.012246712110936642,
-0.08277728408575058,
0.038668904453516006,
-0.07223529368638992,
0.006766011472791433,
0.019108107313513756,
-0.13764400780200958,
0.021270500496029854,
0.06445613503456116,
0.028125913813710213,
-0.15726205706596375,
-0.06699225306510925,
-0.03497806563973427,
-0.019717713817954063,
-0.02140078879892826,
0.12097524851560593,
0.005129431374371052,
0.014396364800632,
-0.03526557236909866,
-0.0702093094587326,
0.044976215809583664,
0.07022254168987274,
-0.026667438447475433,
-0.07231428474187851
] |
null | null | diffusers | # G
<Gallery />
## Model description
BBC
## Trigger words
You should use `Apple_Vision_Pro` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Mikelue/Digdtidti/tree/main) them in the Files & versions tab.
| {"tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora"], "widget": [{"text": "(firefighter suit:1.5), ultra high res, 20 years old, (male:1.4), (bodybuilder:0.7) , (Apple_Vision_Pro), <lora:Apple_Vision_Pro:0.8>,4k ,hd ,((outside a wasteland house fire)), (best quality, masterpiece:1.2), photorealistic, ((( View from oblique))), fire", "parameters": {"negative_prompt": "cartoon, lowres, bad anatomy, ((bad hands)), , text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name, young, loli, elf, 3d, illustration ,((bad-hands-5)),"}, "output": {"url": "images/1000007476.png"}}], "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "Apple_Vision_Pro"} | text-to-image | Mikelue/Digdtidti | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:runwayml/stable-diffusion-v1-5",
"region:us"
] | 2024-02-13T17:48:34+00:00 | [] | [] | TAGS
#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-runwayml/stable-diffusion-v1-5 #region-us
| # G
<Gallery />
## Model description
BBC
## Trigger words
You should use 'Apple_Vision_Pro' to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
| [
"# G\n\n<Gallery />",
"## Model description \n\nBBC",
"## Trigger words\n\nYou should use 'Apple_Vision_Pro' to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab."
] | [
"TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-runwayml/stable-diffusion-v1-5 #region-us \n",
"# G\n\n<Gallery />",
"## Model description \n\nBBC",
"## Trigger words\n\nYou should use 'Apple_Vision_Pro' to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab."
] | [
54,
7,
4,
20,
28
] | [
"passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-runwayml/stable-diffusion-v1-5 #region-us \n# G\n\n<Gallery />## Model description \n\nBBC## Trigger words\n\nYou should use 'Apple_Vision_Pro' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab."
] | [
-0.12990383803844452,
-0.07454056292772293,
0.00221943948417902,
0.023629803210496902,
0.11595600098371506,
0.04601241275668144,
0.13166342675685883,
0.010341139510273933,
0.11227121204137802,
0.05541490018367767,
0.11089857667684555,
0.06311368197202682,
0.02245393395423889,
0.23248276114463806,
-0.05380646884441376,
-0.1984270066022873,
0.06815354526042938,
-0.03302872180938721,
-0.04106241837143898,
0.05318329110741615,
0.06400753557682037,
-0.05073565989732742,
0.13917523622512817,
-0.09121785312891006,
-0.025349264964461327,
0.024913350120186806,
0.02821263112127781,
-0.010845405049622059,
0.043013837188482285,
0.047750599682331085,
-0.03348444029688835,
0.12140008807182312,
0.08319640904664993,
-0.1496230959892273,
0.043729521334171295,
0.0502769872546196,
-0.005845828913152218,
0.01602155901491642,
0.005829834844917059,
0.00210125045850873,
0.10560677945613861,
-0.0750514417886734,
-0.009297776967287064,
0.02056014910340309,
-0.05338653549551964,
-0.06907599419355392,
0.05774383246898651,
-0.052167631685733795,
0.0967545360326767,
0.002822579350322485,
-0.007998296059668064,
0.019457271322607994,
0.03736499696969986,
0.0744456797838211,
0.17717109620571136,
-0.1604660153388977,
-0.010671443305909634,
0.2556755244731903,
0.04866795614361763,
0.24702468514442444,
-0.05683707445859909,
0.12021361291408539,
0.09717725217342377,
-0.039649464190006256,
-0.019461343064904213,
-0.020646117627620697,
0.07531660050153732,
-0.07121609151363373,
-0.08555122464895248,
-0.030678102746605873,
0.3510605990886688,
0.046551428735256195,
-0.04875241965055466,
-0.09902700781822205,
-0.12194879353046417,
0.07800379395484924,
-0.06403178721666336,
0.01570938341319561,
0.009374517016112804,
0.039752423763275146,
-0.03692029044032097,
-0.10020239651203156,
-0.06442460417747498,
-0.08978651463985443,
-0.04897719994187355,
0.12643970549106598,
0.005213581025600433,
0.08602623641490936,
0.023123638704419136,
0.14152435958385468,
-0.1445566862821579,
-0.11745728552341461,
0.015480933710932732,
-0.10987377911806107,
0.061694979667663574,
0.05291447415947914,
-0.007866067811846733,
-0.027634041383862495,
0.04503043368458748,
-0.03259490802884102,
0.018210899084806442,
-0.02956518344581127,
-0.010394871234893799,
0.11036236584186554,
0.04623262584209442,
-0.0020377864129841328,
-0.11870560795068741,
-0.11104181408882141,
0.03647410124540329,
0.07896733283996582,
0.05798281729221344,
-0.036305706948041916,
-0.13205333054065704,
-0.0010187218431383371,
-0.06411155313253403,
-0.012847288511693478,
-0.0018475110409781337,
0.03531132638454437,
-0.12056178599596024,
-0.061803460121154785,
0.21790938079357147,
0.0010515253525227308,
-0.07952811568975449,
-0.04738106206059456,
-0.004961824975907803,
0.1281946450471878,
0.10766000300645828,
0.021083254367113113,
0.089253269135952,
-0.024279506877064705,
-0.06902012228965759,
-0.06345389038324356,
-0.03775031119585037,
-0.03764794021844864,
-0.05729198828339577,
-0.08655670285224915,
0.038429297506809235,
-0.09271357953548431,
-0.34945377707481384,
0.02211012691259384,
0.054752666503190994,
0.010854629799723625,
0.02379905991256237,
-0.0424584224820137,
-0.02873196266591549,
-0.0108369505032897,
0.000994557631202042,
0.02227117493748665,
-0.05574781820178032,
0.10027401149272919,
0.006767377257347107,
0.15228666365146637,
-0.18500083684921265,
0.021430442109704018,
-0.13880476355552673,
0.05419471114873886,
-0.21830043196678162,
0.09669086337089539,
-0.06449674069881439,
0.03702230006456375,
-0.03127705678343773,
-0.03919772058725357,
-0.05582663044333458,
0.032215237617492676,
-0.03768165409564972,
0.12758566439151764,
-0.25304436683654785,
-0.04466770961880684,
-0.00002329374365217518,
-0.19167126715183258,
-0.07941337674856186,
0.08647462725639343,
0.0073854257352650166,
0.093531034886837,
0.1027853786945343,
0.10851594805717468,
0.10120044648647308,
-0.19486643373966217,
0.039334315806627274,
0.03614293783903122,
-0.10308817774057388,
-0.032978203147649765,
0.0926850289106369,
0.06952603161334991,
-0.07794724404811859,
0.06579546630382538,
-0.2036723792552948,
0.10330566018819809,
-0.07296113669872284,
-0.008729277178645134,
-0.030712176114320755,
-0.13306380808353424,
0.09451930969953537,
0.05516970530152321,
-0.006383807864040136,
-0.02985885925590992,
-0.023607859387993813,
-0.03934503346681595,
0.08249247819185257,
-0.08212457597255707,
-0.04402260109782219,
-0.0039066351018846035,
0.17498692870140076,
-0.22130084037780762,
-0.0034438208676874638,
-0.044888630509376526,
-0.0655110627412796,
0.02080220729112625,
0.20547881722450256,
0.0025558474007993937,
0.11000274866819382,
0.08171171694993973,
0.09541181474924088,
-0.09788207709789276,
-0.04637946933507919,
0.06154080852866173,
-0.05067828670144081,
-0.0014606249751523137,
-0.1344405859708786,
-0.009171007201075554,
-0.044495582580566406,
0.03488133102655411,
-0.17462271451950073,
0.028655461966991425,
0.0014608848141506314,
0.05680426210165024,
0.11121179163455963,
-0.05396723374724388,
0.015090088360011578,
-0.060124386101961136,
-0.06634766608476639,
-0.023371415212750435,
0.04418503865599632,
-0.06950368732213974,
0.002225050935521722,
0.08378638327121735,
-0.11690550297498703,
0.15364739298820496,
0.1300632208585739,
-0.006772438529878855,
0.04089510440826416,
-0.060054484754800797,
0.01287017296999693,
0.01726367324590683,
-0.0856705829501152,
-0.06830896437168121,
-0.011728758923709393,
-0.049152933061122894,
0.03842012211680412,
-0.08515587449073792,
0.05397990718483925,
0.05787186697125435,
-0.007465439382940531,
-0.06590345501899719,
0.05780918151140213,
0.12167933583259583,
-0.03766826540231705,
0.05462680384516716,
0.14508791267871857,
0.008236583322286606,
0.217119500041008,
-0.0021617489401251078,
-0.11316947638988495,
0.08006025850772858,
0.017168045043945312,
-0.029646584764122963,
0.20549944043159485,
-0.04830600321292877,
0.001468453323468566,
0.052133794873952866,
-0.05191405490040779,
-0.0011961396085098386,
-0.08290378749370575,
-0.04769871383905411,
0.021090205758810043,
-0.07208453118801117,
0.040282007306814194,
0.029855875298380852,
-0.06947920471429825,
0.05095149576663971,
-0.08430945873260498,
-0.042873844504356384,
0.017042644321918488,
-0.033470384776592255,
-0.037662722170352936,
0.08268333971500397,
-0.004333332180976868,
-0.11886665225028992,
-0.1330227553844452,
0.014041324146091938,
-0.05803779512643814,
0.04137624055147171,
0.016892913728952408,
-0.021277476102113724,
-0.07415343075990677,
-0.08018626272678375,
0.09783975780010223,
0.07367511838674545,
-0.01513907965272665,
-0.012738336808979511,
-0.013049619272351265,
-0.048198092728853226,
-0.0760686844587326,
-0.0033888693433254957,
-0.05778168886899948,
-0.0023756991140544415,
0.031047649681568146,
-0.09724278002977371,
0.11527403444051743,
0.06712483614683151,
-0.01941375993192196,
0.024148833006620407,
-0.019022488966584206,
0.21656182408332825,
-0.06163950636982918,
0.046843331307172775,
0.1926853358745575,
0.06721887737512589,
0.004374051932245493,
0.18072251975536346,
-0.0037150124553591013,
-0.11938150972127914,
0.05811157077550888,
-0.0756780132651329,
-0.08766219019889832,
-0.028379863128066063,
-0.13698284327983856,
-0.05924598127603531,
0.07695604115724564,
0.0059785121120512486,
0.03816455602645874,
0.0003634876338765025,
0.15671493113040924,
-0.042877230793237686,
0.0060392278246581554,
0.056291695684194565,
0.031022481620311737,
-0.004195595160126686,
-0.04628133401274681,
0.07786786556243896,
-0.033207979053258896,
0.005289016291499138,
0.13158364593982697,
0.015024544671177864,
0.1417216807603836,
-0.05464949458837509,
-0.005181604530662298,
0.01422178279608488,
0.05499337241053581,
0.17336183786392212,
0.13205701112747192,
-0.0407385416328907,
-0.03988804295659065,
-0.04709726199507713,
-0.09643059223890305,
-0.012525679543614388,
0.05562203750014305,
0.04114914312958717,
0.00804674718528986,
0.023505108430981636,
0.07276199758052826,
-0.021643932908773422,
-0.031113455072045326,
0.1144648939371109,
-0.3537660837173462,
0.046457674354314804,
0.0903291255235672,
0.09312305599451065,
-0.11453147977590561,
0.06634363532066345,
0.16395410895347595,
-0.04474043473601341,
0.019592979922890663,
0.013748946599662304,
0.05938974767923355,
-0.08759657293558121,
-0.037585917860269547,
-0.018854422494769096,
0.0685078427195549,
-0.03330396115779877,
0.019328955560922623,
-0.1210024431347847,
0.0610491968691349,
-0.029219359159469604,
0.002309593139216304,
-0.006590400822460651,
-0.056267064064741135,
0.055817682296037674,
0.1467183232307434,
0.15242810547351837,
0.00653743464499712,
0.1409233659505844,
-0.08690150082111359,
-0.13579706847667694,
0.013643854297697544,
0.04147190973162651,
-0.09347222000360489,
-0.024249326437711716,
-0.001095808343961835,
-0.01908298395574093,
0.003682552371174097,
-0.012706299312412739,
-0.17297053337097168,
-0.08625023812055588,
-0.03658825159072876,
0.1029653325676918,
0.1368560940027237,
-0.06027332320809364,
-0.08074500411748886,
-0.10686228424310684,
0.0702948197722435,
-0.0038277904968708754,
-0.12233218550682068,
-0.09187951683998108,
-0.020811164751648903,
0.08830508589744568,
0.01946590654551983,
0.05367685854434967,
-0.002632382558658719,
0.06219864264130592,
-0.04939550533890724,
-0.10970304161310196,
0.08138833940029144,
-0.06902753561735153,
-0.11525283008813858,
-0.07174123078584671,
0.08724947273731232,
-0.00732852378860116,
-0.0032459297217428684,
-0.019296621903777122,
0.031121475622057915,
0.006397521123290062,
-0.061368223279714584,
0.025846438482403755,
0.08309351652860641,
-0.05891786143183708,
0.16647405922412872,
0.030837858095765114,
-0.15118096768856049,
0.030826687812805176,
0.03056144341826439,
0.013870705850422382,
0.2540093660354614,
-0.03718406707048416,
0.008175705559551716,
0.13861672580242157,
0.052372775971889496,
-0.2325156033039093,
0.0065103149972856045,
-0.016737401485443115,
0.016234157606959343,
0.01761690154671669,
-0.007666283752769232,
0.1686476320028305,
0.08672886341810226,
-0.0569533072412014,
0.2614138126373291,
-0.26546818017959595,
-0.13828681409358978,
0.061752308160066605,
0.18245434761047363,
0.28075847029685974,
-0.1581166833639145,
-0.026658445596694946,
-0.0673895850777626,
-0.16411374509334564,
0.0249323807656765,
-0.013235154561698437,
0.05644608289003372,
-0.02159324660897255,
-0.028094448149204254,
-0.029205013066530228,
-0.033323418349027634,
0.14616940915584564,
-0.05827708914875984,
0.07657061517238617,
-0.017040090635418892,
0.026370322331786156,
0.17335742712020874,
-0.0038954203482717276,
0.06710304319858551,
-0.09860610961914062,
0.07097750157117844,
-0.04110584408044815,
-0.04704120010137558,
-0.007760292384773493,
0.016653351485729218,
0.008769188076257706,
-0.08671251684427261,
-0.019895579665899277,
-0.0070717306807637215,
-0.07381745427846909,
0.04204658791422844,
0.005541304592043161,
-0.07135524600744247,
-0.0410127229988575,
0.09796927869319916,
0.02125798910856247,
-0.0021284569520503283,
-0.05544944852590561,
-0.06104804947972298,
-0.04465516656637192,
0.10881355404853821,
-0.15552367269992828,
-0.048185210675001144,
0.08280759304761887,
0.022008316591382027,
0.0870957225561142,
0.0621972419321537,
0.02425645850598812,
0.1018177792429924,
0.11040288954973221,
-0.12294934689998627,
-0.11144468933343887,
-0.07316187769174576,
-0.04382014647126198,
0.01611775904893875,
0.044708188623189926,
0.07988283038139343,
-0.07244089245796204,
0.04986431077122688,
-0.024205435067415237,
0.017201898619532585,
-0.036903634667396545,
0.11863197386264801,
0.0799766480922699,
0.004457222297787666,
-0.13792474567890167,
0.09585805237293243,
-0.023173745721578598,
-0.03287449851632118,
-0.09836148470640182,
0.00459628039970994,
-0.12986469268798828,
-0.03185712546110153,
-0.018302777782082558,
0.12215128540992737,
-0.05328807607293129,
-0.008834776468575,
-0.007326104678213596,
-0.08216021209955215,
-0.014858847483992577,
0.0808478444814682,
0.08373138308525085,
0.0019802819006145,
-0.022416245192289352,
-0.008764504455029964,
-0.016088733449578285,
0.1076158732175827,
0.02769671566784382,
0.1286529153585434,
-0.2208733707666397,
-0.23596349358558655,
-0.014236358925700188,
-0.010944143868982792,
-0.1251315027475357,
-0.056649137288331985,
-0.037060413509607315,
0.006034687627106905,
-0.05177464336156845,
0.07066472619771957,
-0.05103691667318344,
-0.013687544502317905,
-0.0229128897190094,
-0.10208524763584137,
-0.006402674131095409,
0.01653631031513214,
-0.02293667010962963,
0.008391316048800945,
0.04638972505927086,
0.01357245072722435,
-0.058727461844682693,
-0.026580773293972015,
0.054858945310115814,
-0.04758604243397713,
0.07041693478822708,
-0.022939343005418777,
-0.04055853933095932,
-0.03115004301071167,
-0.21304112672805786,
-0.031552113592624664,
0.10981839150190353,
0.006767802406102419,
-0.020437266677618027,
0.12734472751617432,
0.031810205429792404,
0.020759226754307747,
0.03561319783329964,
-0.020777948200702667,
0.01732620596885681,
-0.06345411390066147,
0.15181927382946014,
-0.04842972755432129,
0.009575905278325081,
-0.019415991380810738,
-0.035671886056661606,
0.07498206943273544,
0.06808539479970932,
0.10840708762407303,
-0.0758083313703537,
-0.041356418281793594,
-0.07790197432041168,
0.03240538015961647,
0.04535181075334549,
-0.12004350125789642,
-0.07229125499725342,
-0.0015434753149747849,
0.007332117296755314,
-0.0323222391307354,
0.2075687050819397,
0.012045061215758324,
-0.07997005432844162,
-0.028265058994293213,
0.134688600897789,
0.1860329508781433,
0.006672621704638004,
0.29025062918663025,
0.08621528744697571,
0.0732831284403801,
-0.09611041843891144,
0.13671141862869263,
0.1257021725177765,
-0.05299254506826401,
-0.05908829718828201,
0.07540599256753922,
-0.10987833142280579,
0.06238396838307381,
0.009975271299481392,
0.05157342925667763,
-0.048449404537677765,
0.006462566554546356,
-0.04348401352763176,
0.007223593071103096,
-0.019890982657670975,
0.04789743945002556,
0.20991334319114685,
-0.10825394093990326,
-0.03717883676290512,
0.1490778625011444,
-0.03541290760040283,
-0.07868807762861252,
-0.20386795699596405,
-0.04782453551888466,
-0.2741967439651489,
0.05806165933609009,
-0.07681630551815033,
-0.02750420942902565,
0.20433193445205688,
0.02356908842921257,
0.018858710303902626,
0.15565720200538635,
-0.049243248999118805,
-0.048541732132434845,
0.08395032584667206,
-0.05883518606424332,
-0.02555035427212715,
-0.014562617987394333,
-0.060731176286935806,
0.11290087550878525,
-0.062047362327575684,
0.0040199728682637215,
0.028512561693787575,
-0.06246013566851616,
0.04776730388402939,
-0.01154482550919056,
-0.08360216021537781,
-0.059368155896663666,
0.033330339938402176,
-0.1172764003276825,
0.12935692071914673,
0.026613259688019753,
0.004628445021808147,
0.003407909767702222,
0.17447419464588165,
-0.04861782118678093,
-0.08659298717975616,
-0.04885077103972435,
0.04902396351099014,
-0.08874916285276413,
0.10577122867107391,
-0.02080424688756466,
-0.14328719675540924,
0.010621859692037106,
0.2127314954996109,
0.2081308662891388,
-0.08612363785505295,
-0.0025575007311999798,
-0.01674797758460045,
-0.003704451723024249,
-0.02737230807542801,
0.02920418418943882,
0.013234834186732769,
0.2274789661169052,
-0.08843923360109329,
-0.053236253559589386,
-0.011827437207102776,
-0.044026292860507965,
-0.04775197431445122,
-0.1624591201543808,
0.011335940100252628,
-0.07843665778636932,
-0.09863152354955673,
0.09288029372692108,
-0.11965847760438919,
0.06218067184090614,
0.0027602368500083685,
-0.04631036892533302,
0.028600187972187996,
-0.1296190470457077,
0.06522707641124725,
0.07097215205430984,
-0.05671488121151924,
-0.10443401336669922,
0.0056035686284303665,
-0.12858261168003082,
-0.01886141300201416,
-0.16475725173950195,
-0.027482260018587112,
-0.02792374975979328,
-0.10139410197734833,
0.08587556332349777,
-0.06756982207298279,
0.02639695815742016,
-0.013199495151638985,
-0.017627106979489326,
-0.038826845586299896,
0.07718577980995178,
-0.05242196097970009,
-0.06338997930288315,
-0.04757166653871536,
0.1420602649450302,
-0.011893347837030888,
0.1429099142551422,
0.008295450359582901,
-0.09241585433483124,
0.016306454315781593,
0.14185909926891327,
-0.02487444505095482,
-0.06924962997436523,
0.015265666879713535,
-0.0747636929154396,
0.08081219345331192,
-0.022716620936989784,
0.03210559859871864,
0.0023973966017365456,
-0.04728776961565018,
0.0668397769331932,
0.04527684673666954,
-0.007444171700626612,
0.0691053494811058,
-0.10403107851743698,
-0.09400684386491776,
0.050176750868558884,
-0.018184630200266838,
-0.22759085893630981,
0.005268492270261049,
-0.2021186649799347,
0.010230646468698978,
-0.016094189137220383,
0.03384431451559067,
0.2792843282222748,
0.025539906695485115,
-0.01279008574783802,
-0.18073397874832153,
0.06403850764036179,
0.08970906585454941,
-0.14375309646129608,
-0.08558107167482376
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | SateeshAmbesange/opt-6.1b-lora | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:49:03+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |
# Danish-Swedish Merged Model
This is a merge of the following models, all based on `mistralai/Mistral-7B-v0.1`:
1. `danish-foundation-models/munin-7b-alpha`, continued pretraining on Danish data;
2. `timpal0l/Mistral-7B-v0.1-flashback-v2`, continued pretraining on Swedish data.
## Model Details
- **Merged by:** [Dan Saattrup Nielsen](https://www.saattrupdan.com/)
- **Model type:** Decoder model, based on `mistralai/Mistral-7B-v0.1`
- **Language(s):** Danish and Swedish
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Merge configuration:**
```python
dict(
models=[
dict(
model="danish-foundation-models/munin-7b-alpha",
parameters=dict(
weight=1.0,
),
),
dict(
model="timpal0l/Mistral-7B-v0.1-flashback-v2",
parameters=dict(
weight=1.0,
),
),
],
merge_method="slerp",
base_model="danish-foundation-models/munin-7b-alpha",
parameters=dict(
int8_mask=True,
normalize=True,
t=0.5,
),
dtype="bfloat16",
)
``` | {"language": ["da", "sv"], "license": "cc-by-4.0", "library_name": "transformers", "tags": ["merge", "mergekit"], "base_model": ["danish-foundation-models/munin-7b-alpha", "timpal0l/Mistral-7B-v0.1-flashback-v2"]} | text-generation | merge-crew/da-sv-slerp | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"da",
"sv",
"base_model:danish-foundation-models/munin-7b-alpha",
"base_model:timpal0l/Mistral-7B-v0.1-flashback-v2",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:50:14+00:00 | [] | [
"da",
"sv"
] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Danish-Swedish Merged Model
This is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':
1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;
2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.
## Model Details
- Merged by: Dan Saattrup Nielsen
- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'
- Language(s): Danish and Swedish
- License: CC-BY-4.0
- Merge configuration:
| [
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
112,
92,
57
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
-0.07790645211935043,
-0.03015519306063652,
-0.001845451071858406,
0.01761663891375065,
0.005533731542527676,
0.017309537157416344,
0.18024572730064392,
0.014157861471176147,
0.11699634045362473,
0.049290940165519714,
0.09461456537246704,
-0.025814635679125786,
0.07459410279989243,
0.15416653454303741,
-0.023723548278212547,
-0.2509255111217499,
0.16021594405174255,
-0.06184382736682892,
-0.0011111752828583121,
0.06811320781707764,
0.16061803698539734,
-0.05339423194527626,
0.060751914978027344,
-0.025017917156219482,
-0.010531418025493622,
-0.04100566729903221,
-0.013157473877072334,
-0.01645241677761078,
0.09814372658729553,
0.07561057060956955,
0.12545564770698547,
0.10607897490262985,
0.09971975535154343,
-0.09932507574558258,
0.017701633274555206,
-0.05002636834979057,
-0.012917673215270042,
0.06271383166313171,
0.022881586104631424,
0.00972265750169754,
0.12558315694332123,
0.004797929432243109,
0.02946697175502777,
0.01172764040529728,
-0.024050505831837654,
-0.14779840409755707,
-0.09297361969947815,
0.0884193703532219,
0.12674783170223236,
0.02148253843188286,
-0.056929804384708405,
0.02347111701965332,
-0.07782470434904099,
0.052233461290597916,
0.01635611802339554,
-0.20452626049518585,
-0.029955873265862465,
0.2827467918395996,
0.09390783309936523,
0.021380765363574028,
-0.004600406624376774,
0.07961131632328033,
0.030591290444135666,
0.05097811296582222,
0.016523117199540138,
-0.04365215450525284,
0.1394139677286148,
-0.05343722924590111,
-0.138288676738739,
0.04785174876451492,
0.24915790557861328,
0.006434302311390638,
-0.03581035137176514,
-0.1517181545495987,
-0.014848783612251282,
0.06103600934147835,
-0.04403603449463844,
-0.033446673303842545,
-0.00813213549554348,
-0.014270576648414135,
0.11287036538124084,
-0.05263213440775871,
-0.09540428966283798,
-0.035252559930086136,
-0.08226437121629715,
0.04639798030257225,
0.0012334260391071439,
0.019760075956583023,
0.030299492180347443,
0.04052567481994629,
-0.2250727117061615,
-0.13539139926433563,
-0.07080507278442383,
-0.13484181463718414,
-0.07491977512836456,
-0.07721184939146042,
-0.09408523142337799,
-0.1961917132139206,
0.08598749339580536,
0.15959973633289337,
-0.1339980661869049,
0.033623985946178436,
0.03499354422092438,
0.04502776637673378,
0.050829555839300156,
0.05912023037672043,
-0.1169213280081749,
-0.06325632333755493,
-0.005035800859332085,
0.011565557681024075,
0.05594192445278168,
-0.0146050238981843,
-0.1415129452943802,
-0.04646974056959152,
0.07210437208414078,
-0.03200290724635124,
-0.025780152529478073,
0.09820174425840378,
-0.04346888139843941,
-0.036695629358291626,
0.12508425116539001,
-0.08411811292171478,
-0.038201283663511276,
0.019165784120559692,
-0.02553435228765011,
0.02469651773571968,
0.03735232353210449,
0.08094065636396408,
-0.01679702289402485,
0.12463073432445526,
-0.01627068966627121,
-0.02836420387029648,
-0.012457841075956821,
-0.17668162286281586,
0.06874177604913712,
-0.0422675758600235,
-0.03485698625445366,
-0.08175491541624069,
-0.16885918378829956,
-0.024253210052847862,
0.08906910568475723,
-0.06898833066225052,
0.004269849509000778,
-0.04987344518303871,
-0.04991753026843071,
0.0392429381608963,
-0.04194767773151398,
0.0010451647685840726,
-0.024424729868769646,
-0.029048871248960495,
-0.13120698928833008,
0.05863428860902786,
-0.13190720975399017,
0.012754985131323338,
-0.15204405784606934,
0.03729171305894852,
-0.3218300938606262,
0.09366514533758163,
-0.14123386144638062,
0.018095970153808594,
-0.15655501186847687,
-0.04304054006934166,
0.042186833918094635,
0.04188097268342972,
0.020041609182953835,
0.1468127965927124,
-0.21928861737251282,
-0.015325666405260563,
0.08153565973043442,
-0.18640124797821045,
-0.07752858102321625,
0.09157474339008331,
0.009631101042032242,
0.021671805530786514,
0.09708596020936966,
0.1678217202425003,
0.10420577228069305,
-0.0477188415825367,
0.007227534428238869,
0.015816273167729378,
0.03098001331090927,
0.034281570464372635,
0.08995219320058823,
-0.061474382877349854,
-0.09744572639465332,
0.04602845385670662,
-0.14474420249462128,
-0.02051553875207901,
-0.020364994183182716,
-0.045381125062704086,
-0.02002980187535286,
-0.028931058943271637,
0.10917680710554123,
0.019057774916291237,
0.011198156513273716,
-0.058678027242422104,
-0.06079668924212456,
0.1512085646390915,
0.052909865975379944,
-0.06890697032213211,
0.0011929306201636791,
-0.04360351711511612,
0.15894658863544464,
-0.09105619788169861,
0.027368832379579544,
-0.10843247920274734,
-0.2061401903629303,
-0.02178545854985714,
-0.04498995095491409,
-0.017810771241784096,
0.13020773231983185,
0.09354060888290405,
0.08364523947238922,
-0.07487242668867111,
0.023084232583642006,
0.04003618285059929,
0.023967042565345764,
0.022315487265586853,
-0.22083508968353271,
-0.04057543724775314,
-0.08819638192653656,
0.15791065990924835,
-0.12362311035394669,
-0.019306158646941185,
0.027991700917482376,
0.1785343438386917,
-0.021734127774834633,
0.014100376516580582,
0.033973317593336105,
0.023144902661442757,
-0.023902487009763718,
0.007200213149189949,
0.060537129640579224,
-0.06724534928798676,
-0.16839800775051117,
0.19399064779281616,
-0.08351777493953705,
-0.05803235247731209,
0.0986170619726181,
0.060517001897096634,
-0.05501345917582512,
-0.07016870379447937,
0.005494724493473768,
-0.00336460885591805,
0.014051906764507294,
-0.07767163962125778,
0.02727637253701687,
0.043538421392440796,
0.08637576550245285,
-0.07714254409074783,
-0.01984459161758423,
0.026117395609617233,
-0.04571007564663887,
-0.08532947301864624,
0.15370550751686096,
-0.030041104182600975,
-0.2126939594745636,
0.08588036894798279,
0.10357401520013809,
0.004937663208693266,
0.15892095863819122,
-0.044131647795438766,
-0.020489247515797615,
-0.02474173717200756,
0.01483137160539627,
-0.027603954076766968,
0.11371316760778427,
0.04838012158870697,
0.03393398970365524,
0.0565028116106987,
0.030634425580501556,
0.005224061198532581,
-0.03415625914931297,
0.0007804827182553709,
-0.0005763129447586834,
-0.07688332349061966,
-0.022993700578808784,
0.11663074046373367,
-0.012423141859471798,
0.04763064533472061,
0.006913137622177601,
-0.10942798852920532,
0.030520640313625336,
-0.02305247262120247,
-0.11156577616930008,
0.19326670467853546,
-0.14229537546634674,
-0.1626935452222824,
-0.1715647429227829,
-0.014565713703632355,
-0.15144121646881104,
0.04017765074968338,
0.029991697520017624,
-0.029643531888723373,
-0.12352485954761505,
-0.154256671667099,
0.13969756662845612,
0.05257447808980942,
-0.039597973227500916,
-0.06658301502466202,
-0.06861234456300735,
0.015273235738277435,
-0.09608869254589081,
-0.004772777669131756,
-0.03693890571594238,
0.05918627232313156,
0.027588438242673874,
-0.032047294080257416,
0.02602231130003929,
0.12100129574537277,
0.01099711935967207,
-0.022437460720539093,
-0.005009934306144714,
0.2827775180339813,
-0.006333152763545513,
0.13683107495307922,
0.10430105775594711,
-0.0714607685804367,
0.019691525027155876,
0.30313563346862793,
0.049881141632795334,
-0.019728565588593483,
-0.01599447801709175,
0.006293904967606068,
-0.05709044635295868,
-0.17038887739181519,
-0.14377093315124512,
-0.030107727274298668,
-0.02747768722474575,
0.031249454244971275,
0.02323758788406849,
0.07741788029670715,
0.09933672100305557,
-0.05783819779753685,
-0.06773658096790314,
0.15389065444469452,
0.07587559521198273,
0.1819363534450531,
0.010931090451776981,
0.13907504081726074,
-0.03223525732755661,
0.041536640375852585,
0.05202906206250191,
-0.04060248285531998,
0.1249179095029831,
0.0006364253349602222,
0.0466010645031929,
0.08231286704540253,
0.020827915519475937,
0.06121780350804329,
0.05880802869796753,
-0.027373377233743668,
-0.03801354020833969,
0.007529884576797485,
-0.11445717513561249,
0.008438142947852612,
0.05189485847949982,
-0.02996695041656494,
0.02611970342695713,
-0.05229169875383377,
-0.01613765023648739,
0.02872016839683056,
0.13507109880447388,
0.1376635730266571,
-0.21791858971118927,
-0.14808011054992676,
0.09848155826330185,
0.04242284968495369,
-0.027359800413250923,
-0.03314428776502609,
0.1079636812210083,
-0.04385751113295555,
0.1308964192867279,
-0.06752904504537582,
0.08699766546487808,
0.05261766165494919,
-0.00839739479124546,
0.017166757956147194,
0.15610235929489136,
-0.01823996566236019,
0.03997412323951721,
-0.1572490781545639,
0.2206059843301773,
0.02330763265490532,
0.05083117634057999,
-0.02731296978890896,
0.05548835173249245,
-0.03634350374341011,
0.2931061387062073,
0.14591319859027863,
0.04480881616473198,
-0.20216615498065948,
-0.03303123265504837,
-0.05310072749853134,
0.002297710394486785,
-0.011837710626423359,
-0.0912259891629219,
0.05505895987153053,
-0.026867184787988663,
-0.019597359001636505,
-0.01445654034614563,
0.006882836576551199,
-0.19464567303657532,
-0.024847207590937614,
0.08003702014684677,
0.028117317706346512,
0.023757468909025192,
-0.042370591312646866,
-0.0780787542462349,
-0.24140657484531403,
0.13903242349624634,
-0.14701692759990692,
-0.14990006387233734,
-0.12257049977779388,
-0.014571533538401127,
0.16712133586406708,
-0.04927896708250046,
0.0017193779349327087,
-0.04505350440740585,
0.11273565143346786,
-0.08050554990768433,
-0.11114968359470367,
0.0606694258749485,
-0.10540656745433807,
-0.12754999101161957,
0.026054352521896362,
0.13365209102630615,
0.031114904209971428,
0.011548097245395184,
0.06189339980483055,
0.0839027613401413,
0.004083338659256697,
-0.10294199734926224,
-0.032712068408727646,
0.16165977716445923,
0.07882702350616455,
0.019927464425563812,
-0.05372723564505577,
-0.1367807388305664,
0.04402880743145943,
0.043714579194784164,
0.054820965975522995,
0.21810968220233917,
-0.07597452402114868,
0.15984539687633514,
0.24819068610668182,
-0.04421228542923927,
-0.27244284749031067,
0.008268083445727825,
0.026019161567091942,
0.04910096526145935,
0.028192713856697083,
-0.06604106724262238,
0.07096776366233826,
0.06056975573301315,
-0.019779199734330177,
-0.0437302440404892,
-0.2815413773059845,
-0.15509745478630066,
0.0798153355717659,
0.04970274120569229,
0.13793402910232544,
-0.019226856529712677,
-0.09838006645441055,
-0.07043582946062088,
-0.22069935500621796,
0.025669462978839874,
-0.060360364615917206,
0.04356686398386955,
0.050906505435705185,
0.10239969193935394,
0.04695972800254822,
-0.05324345827102661,
0.20339259505271912,
-0.006453427951782942,
0.0014867380959913135,
-0.14374053478240967,
0.0974493995308876,
0.1210208535194397,
-0.05566909536719322,
0.1826964169740677,
-0.11554885655641556,
0.01881491020321846,
0.004040393978357315,
-0.0695972591638565,
-0.05706189200282097,
0.1300232857465744,
-0.06494156271219254,
-0.09464558213949203,
-0.029273951426148415,
0.12781299650669098,
0.04889867454767227,
-0.044869549572467804,
0.16700761020183563,
-0.137804314494133,
0.060993093997240067,
0.0686861053109169,
0.18163862824440002,
-0.008038914762437344,
0.050217024981975555,
0.07365497946739197,
-0.06783270835876465,
0.09087264537811279,
-0.09697553515434265,
0.026648743078112602,
0.12607236206531525,
-0.0818360224366188,
0.10778290778398514,
-0.002373751485720277,
-0.0716380700469017,
-0.05003531277179718,
0.07754302024841309,
-0.12806205451488495,
-0.20083147287368774,
-0.005338768009096384,
-0.07004976272583008,
-0.008155906572937965,
0.07091569155454636,
0.19188733398914337,
-0.10710691660642624,
0.05187798663973808,
0.04366334155201912,
0.038712747395038605,
-0.050928205251693726,
0.09676147252321243,
-0.031504202634096146,
0.08796443790197372,
-0.12471625208854675,
0.08662746846675873,
0.009572353214025497,
-0.009284530766308308,
0.023202894255518913,
0.011841743253171444,
-0.15221507847309113,
-0.10465230792760849,
-0.07098477333784103,
0.1309494972229004,
-0.10965951532125473,
-0.06321429461240768,
-0.04528801515698433,
-0.21013621985912323,
-0.004382205195724964,
0.1510908156633377,
0.05101395770907402,
0.006888202857226133,
0.039325423538684845,
-0.0834689661860466,
-0.046084217727184296,
0.10527510195970535,
-0.008401305414736271,
0.054947901517152786,
-0.0947478711605072,
0.031088072806596756,
-0.07272321730852127,
-0.0006152761052362621,
-0.06085532158613205,
0.046569570899009705,
-0.09244837611913681,
-0.04433303698897362,
-0.24476198852062225,
-0.02948712930083275,
-0.10162737220525742,
0.005925409961491823,
-0.023792089894413948,
-0.05791904404759407,
-0.009580965153872967,
0.02944793552160263,
-0.052064113318920135,
0.028331203386187553,
-0.054165177047252655,
0.03355591744184494,
-0.10573776066303253,
-0.042767178267240524,
-0.02531902864575386,
-0.006444650702178478,
0.06245148554444313,
-0.024661120027303696,
-0.02460709773004055,
0.06862392276525497,
-0.15297682583332062,
0.05816784128546715,
-0.00839685183018446,
-0.008775755763053894,
0.03712017461657524,
-0.09403734654188156,
-0.07964511960744858,
0.033168405294418335,
-0.05862830579280853,
0.04005905240774155,
-0.0031817953567951918,
-0.04679165035486221,
-0.029700614511966705,
0.003948427736759186,
-0.011108252219855785,
-0.04573764652013779,
0.06480401754379272,
0.09253077208995819,
0.08296994864940643,
0.18830294907093048,
-0.08147912472486496,
0.03735468536615372,
-0.048419978469610214,
-0.012443006038665771,
0.042660780251026154,
-0.06875362247228622,
-0.11256622523069382,
-0.043064411729574203,
0.005144929513335228,
-0.07369814068078995,
0.12754903733730316,
0.0005650114035233855,
0.018743859604001045,
0.05773729458451271,
0.046778008341789246,
0.04026972874999046,
0.09245322644710541,
0.25515222549438477,
0.0022486119996756315,
0.0125136012211442,
-0.07156746834516525,
0.03337785601615906,
-0.03308577463030815,
-0.04718247801065445,
0.12194256484508514,
0.09950623661279678,
0.015347703360021114,
0.06162753701210022,
0.09824590384960175,
0.04838903248310089,
-0.004267261829227209,
0.12456070631742477,
-0.004413316026329994,
0.07239881157875061,
0.0010569532169029117,
0.10575029999017715,
0.1044192910194397,
-0.1553594321012497,
0.030284132808446884,
-0.024085834622383118,
-0.0652424544095993,
-0.11762596666812897,
-0.2856464385986328,
-0.12367710471153259,
-0.06410928815603256,
-0.003306539496406913,
-0.13027767837047577,
-0.020353415980935097,
0.0115639828145504,
0.08691554516553879,
0.00982686411589384,
0.06335189938545227,
-0.13382595777511597,
-0.024149540811777115,
0.02545652911067009,
0.003029368817806244,
0.011984245851635933,
0.05927858129143715,
-0.08694147318601608,
0.06390450149774551,
0.05681420862674713,
-0.059431787580251694,
0.0013354551047086716,
0.05571134015917778,
-0.004035496152937412,
-0.0043036071583628654,
-0.09019695967435837,
0.0021341608371585608,
0.059925101697444916,
0.05156881734728813,
0.0033946665935218334,
0.07916411757469177,
-0.051909059286117554,
-0.03081372193992138,
0.14307154715061188,
0.016999226063489914,
-0.14354360103607178,
-0.16757306456565857,
0.08821708709001541,
-0.06582304835319519,
0.12855549156665802,
0.023659445345401764,
-0.09416818618774414,
0.0288002360612154,
0.0785275250673294,
0.2311314344406128,
0.007645815145224333,
-0.008183205500245094,
-0.037462323904037476,
-0.017463168129324913,
-0.024872059002518654,
0.07746220380067825,
-0.08915327489376068,
0.06722945719957352,
-0.013366678729653358,
0.07300999015569687,
-0.054135847836732864,
-0.02850334346294403,
-0.05727377161383629,
0.02816675789654255,
-0.010790894739329815,
-0.08331076800823212,
-0.06713932007551193,
0.14337554574012756,
-0.1009376272559166,
-0.03019692189991474,
0.03914759308099747,
-0.027046825736761093,
-0.1234302818775177,
-0.09156519919633865,
0.12957824766635895,
0.043439749628305435,
-0.008643456734716892,
-0.05476727336645126,
0.0059874881990253925,
0.13312172889709473,
-0.02826594188809395,
0.010006598196923733,
-0.1186540275812149,
0.03718119114637375,
0.11465353518724442,
0.11228333413600922,
0.03625792637467384,
0.06391020119190216,
0.09114611893892288,
-0.007190036587417126,
-0.09663175791501999,
0.037423327565193176,
0.0823514312505722,
-0.08090413361787796,
0.054681114852428436,
0.11813192069530487,
-0.04146386682987213,
0.16020523011684418,
0.04642803221940994,
-0.2182735800743103,
0.0008434554911218584,
0.010836999863386154,
-0.12002365291118622,
-0.0016474324511364102,
0.11802824586629868,
-0.08067665994167328,
0.1294572800397873,
0.1813667267560959,
-0.005836338736116886,
-0.058279141783714294,
-0.06785866618156433,
0.11393947899341583,
0.018305964767932892,
0.03552389144897461,
0.014713247306644917,
-0.16367223858833313,
0.002938327845185995,
0.06204676628112793,
0.026597334071993828,
-0.16142277419567108,
-0.059767596423625946,
-0.09896206110715866,
0.04838142544031143,
-0.030174996703863144,
0.10162434726953506,
0.13815189898014069,
0.012267130427062511,
-0.030895104631781578,
-0.03007916733622551,
0.028047600761055946,
0.09362351894378662,
-0.06066036969423294,
-0.08272837847471237
] |
null | null | transformers |
# Mixtral MOE 5x7B
MoE of the following models :
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
* [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp)
* [ignos/Mistral-T5-7B-v1](https://huggingface.co/ignos/Mistral-T5-7B-v1)
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
``` | {"license": "cc-by-nc-4.0"} | text-generation | LoneStriker/Mixtral_7Bx5_MoE_30B-4.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:50:32+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Mixtral MOE 5x7B
MoE of the following models :
* Toten5/Marcoroni-neural-chat-7B-v1
* NurtureAI/neural-chat-7b-v3-16k
* mncai/mistral-7b-dpo-v6
* cookinai/CatMacaroni-Slerp
* ignos/Mistral-T5-7B-v1
gpu code example
CPU example
| [
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
58,
98
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
-0.13265983760356903,
0.032811205834150314,
0.0016681700944900513,
0.06005237251520157,
0.09170277416706085,
0.05486174672842026,
0.1754031479358673,
0.08827437460422516,
0.048426054418087006,
0.04822719842195511,
0.10930546373128891,
0.15147005021572113,
0.050271473824977875,
0.07607264816761017,
-0.041551947593688965,
-0.12304753065109253,
0.13822826743125916,
0.0285372044891119,
0.018767034634947777,
0.07113507390022278,
0.09234799444675446,
-0.045219406485557556,
0.10612381994724274,
-0.027028348296880722,
-0.1984025537967682,
-0.04531659558415413,
0.0059092091396451,
-0.04503824561834335,
0.10345133394002914,
0.09167052805423737,
0.02468385361135006,
0.05491048842668533,
0.05525398999452591,
-0.047444041818380356,
0.02953178808093071,
0.04105483368039131,
-0.015743371099233627,
0.08048006147146225,
0.10315034538507462,
0.046506043523550034,
0.07312776893377304,
0.0571342408657074,
-0.021097008138895035,
0.035699307918548584,
0.018450820818543434,
-0.0437827967107296,
-0.008665810339152813,
0.04507621377706528,
0.05793994665145874,
0.0792449563741684,
0.015002762898802757,
0.1917630136013031,
-0.0028631084132939577,
0.09410560131072998,
0.13915416598320007,
-0.2718551754951477,
-0.05056018382310867,
0.13085082173347473,
0.0916370153427124,
0.06428710371255875,
0.018235111609101295,
0.02555820718407631,
0.039636820554733276,
0.0031501944176852703,
-0.06455228477716446,
-0.021980848163366318,
0.012090848758816719,
-0.03641531616449356,
-0.10100672394037247,
0.03175126016139984,
0.12783773243427277,
-0.01871788129210472,
-0.012944400310516357,
-0.06200869008898735,
-0.10857585817575455,
0.012746433727443218,
-0.05880852788686752,
-0.047148652374744415,
-0.07286347448825836,
0.04218289256095886,
0.1049298644065857,
0.07159604132175446,
-0.03756077215075493,
-0.1395968794822693,
-0.03131239861249924,
0.16100303828716278,
0.031219836324453354,
0.010522501543164253,
-0.021792003884911537,
0.059254713356494904,
0.028613245114684105,
-0.06863578408956528,
-0.0012622170615941286,
-0.04667212441563606,
-0.03568123281002045,
-0.005251494236290455,
-0.09649239480495453,
-0.054846517741680145,
0.056380558758974075,
0.04986369609832764,
0.04993335157632828,
0.06519204378128052,
0.04177093133330345,
0.012200085446238518,
-0.0973709300160408,
-0.04077140614390373,
-0.09576639533042908,
-0.08472820371389389,
0.010962272994220257,
0.08735537528991699,
0.05046290159225464,
-0.022282809019088745,
-0.1383192241191864,
-0.07204660028219223,
0.07936861366033554,
0.007562451064586639,
-0.026277069002389908,
0.11840388923883438,
-0.04044025391340256,
-0.03969082981348038,
0.16800281405448914,
-0.06999586522579193,
0.0265493206679821,
0.07418541610240936,
-0.0032649009954184294,
0.03415559232234955,
-0.009450617246329784,
-0.019333822652697563,
-0.0457611009478569,
-0.08098877966403961,
-0.1161646619439125,
-0.042938411235809326,
-0.09060145914554596,
-0.09032420068979263,
0.043551646173000336,
0.035354144871234894,
-0.032337091863155365,
-0.16533109545707703,
-0.12757019698619843,
0.04656510055065155,
0.0637110024690628,
-0.07433835417032242,
0.07604158669710159,
-0.006164343096315861,
-0.02737729251384735,
0.03098740056157112,
0.022463470697402954,
0.03237934038043022,
-0.021810641512274742,
0.043203018605709076,
0.06473270058631897,
0.04523825645446777,
-0.06388343870639801,
0.015224343165755272,
-0.061199165880680084,
0.031894490122795105,
-0.10606493800878525,
0.0010015327716246247,
-0.058403920382261276,
0.07756669819355011,
-0.05844087153673172,
-0.004984809551388025,
-0.04675336927175522,
0.02938850224018097,
0.047615207731723785,
0.14076733589172363,
-0.14450693130493164,
-0.021755050867795944,
0.07503322511911392,
-0.1571515053510666,
-0.1603517234325409,
0.14260075986385345,
0.036776404827833176,
0.02125180885195732,
0.04470129683613777,
0.04594897851347923,
0.18468056619167328,
-0.08220665156841278,
-0.017173947766423225,
-0.012627649120986462,
0.021156422793865204,
-0.12655363976955414,
0.038768935948610306,
0.08653443306684494,
-0.15033215284347534,
0.05520832538604736,
-0.003970526624470949,
0.002437459770590067,
-0.01783961057662964,
-0.028730953112244606,
-0.09970277547836304,
-0.06624005734920502,
0.008432036265730858,
0.03948491811752319,
0.028305526822805405,
-0.03595494106411934,
-0.0635642409324646,
-0.06782369315624237,
0.10156653821468353,
-0.12593761086463928,
-0.013382266275584698,
-0.13813196122646332,
0.14065006375312805,
-0.08364655822515488,
0.0673578754067421,
-0.14024285972118378,
-0.02271796390414238,
0.07403683662414551,
-0.023558873683214188,
-0.025787224993109703,
-0.011082068085670471,
0.06336887180805206,
0.0963461846113205,
0.013275811448693275,
0.021604692563414574,
0.132207453250885,
0.04225382208824158,
-0.07198466360569,
-0.1677282154560089,
-0.021196195855736732,
-0.057417042553424835,
0.21136021614074707,
-0.184984028339386,
0.0377490259706974,
0.11884945631027222,
0.1211910992860794,
-0.03961078077554703,
0.009264692664146423,
-0.04526267573237419,
0.03171325847506523,
-0.07233580201864243,
0.0065973252058029175,
0.07916668802499771,
-0.019518792629241943,
-0.05798916146159172,
0.04363157972693443,
-0.22891731560230255,
0.0936889499425888,
0.12157922983169556,
0.00980803556740284,
-0.02253561280667782,
-0.08021403104066849,
0.027509551495313644,
-0.04887164384126663,
0.10130594670772552,
-0.07462489604949951,
-0.008430419489741325,
-0.057202160358428955,
0.09269620478153229,
-0.07001881301403046,
0.021399881690740585,
0.06034783273935318,
0.06093079596757889,
-0.06224990636110306,
0.07526913285255432,
0.16095975041389465,
-0.20012691617012024,
0.08113615214824677,
0.13425502181053162,
-0.05255484580993652,
0.12088142335414886,
0.026094749569892883,
-0.022781871259212494,
-0.0248920489102602,
0.028399452567100525,
0.04348624497652054,
0.0740995854139328,
-0.07856515794992447,
0.007849497720599174,
0.02396395616233349,
-0.008421944454312325,
0.07247395068407059,
-0.13180844485759735,
0.05588517338037491,
-0.04657885432243347,
-0.04360083490610123,
0.09979331493377686,
0.011265315115451813,
-0.03415970876812935,
0.08838693797588348,
-0.06092541292309761,
-0.19272583723068237,
0.07253647595643997,
-0.003231384325772524,
-0.10127317905426025,
0.19590944051742554,
-0.15054811537265778,
-0.19092904031276703,
-0.18068858981132507,
0.018074538558721542,
-0.06307666748762131,
0.04179096966981888,
0.008487730287015438,
0.006950183305889368,
-0.10110025107860565,
-0.1408982127904892,
-0.0427841953933239,
0.12416139990091324,
0.036380525678396225,
0.018678680062294006,
0.0070695579051971436,
-0.04079899936914444,
-0.10504253953695297,
0.03484721854329109,
0.030889421701431274,
-0.03469151258468628,
0.0488390251994133,
-0.1173926442861557,
0.07332655042409897,
0.18479254841804504,
0.050573576241731644,
-0.0322006419301033,
0.003276488510891795,
0.12326061725616455,
-0.05471964552998543,
0.0741860419511795,
0.13291893899440765,
-0.0161118246614933,
-0.008379444479942322,
0.14995242655277252,
-0.012121028266847134,
-0.057627011090517044,
0.017620820552110672,
-0.13084551692008972,
-0.020789843052625656,
-0.1216527447104454,
-0.10185782611370087,
-0.07342687249183655,
0.08307919651269913,
0.0439215712249279,
0.05500464886426926,
0.020890576764941216,
0.10528330504894257,
-0.04999060928821564,
0.0345996618270874,
0.0849592462182045,
0.07080426067113876,
0.1301840841770172,
0.04075927287340164,
0.09936575591564178,
-0.08191724866628647,
0.004462718032300472,
0.062184859067201614,
0.1117163673043251,
0.11818689107894897,
0.02639620378613472,
0.24685391783714294,
-0.032948147505521774,
0.12329105287790298,
0.07999180257320404,
0.12284711748361588,
-0.00864341203123331,
-0.015271876938641071,
-0.05061836168169975,
-0.07266664505004883,
-0.05459153652191162,
0.05548090860247612,
-0.09573563933372498,
-0.04853421077132225,
-0.012697607278823853,
0.07652278989553452,
0.05389084294438362,
0.09408004581928253,
-0.004751680418848991,
-0.355776846408844,
-0.07670719176530838,
0.018231993541121483,
0.018403463065624237,
-0.04217454791069031,
0.04330975562334061,
0.14705228805541992,
0.020864952355623245,
0.009508076123893261,
-0.07763224840164185,
0.041883185505867004,
0.061387091875076294,
-0.006203468423336744,
0.0434420183300972,
0.10810504108667374,
0.03738350421190262,
0.07996612042188644,
-0.18143028020858765,
0.11141780763864517,
0.030224084854125977,
0.03419574350118637,
-0.1144140362739563,
0.037086475640535355,
0.01625993475317955,
0.19613178074359894,
-0.004564615432173014,
-0.045296136289834976,
-0.1893482208251953,
-0.0689142644405365,
-0.08727896213531494,
0.03307659178972244,
0.062273334711790085,
0.05006754398345947,
0.03653446212410927,
-0.06905809044837952,
-0.038043905049562454,
0.031212691217660904,
0.018740897998213768,
-0.1005827933549881,
-0.1521243155002594,
0.1141105517745018,
0.13593526184558868,
0.03474428132176399,
-0.08954653888940811,
-0.07697480171918869,
-0.08154512941837311,
0.15605998039245605,
-0.16867241263389587,
0.04038715362548828,
-0.06921832263469696,
-0.08829392492771149,
0.07447763532400131,
-0.05886637046933174,
0.033048115670681,
-0.05293397977948189,
0.09819139540195465,
-0.010522345080971718,
-0.16308218240737915,
0.13241323828697205,
-0.12312711775302887,
-0.14370237290859222,
-0.05992847681045532,
0.06809408962726593,
-0.06873819231987,
0.0022854453418403864,
0.06494661420583725,
-0.003753822762519121,
-0.0391383059322834,
-0.0660630539059639,
-0.10953924804925919,
0.1077568382024765,
0.020387794822454453,
0.018395371735095978,
-0.11601611226797104,
-0.22736132144927979,
0.01998201198875904,
-0.03141530975699425,
0.05466332286596298,
0.15044312179088593,
-0.03014368936419487,
-0.006456559058278799,
0.23687884211540222,
-0.055429477244615555,
-0.22862359881401062,
-0.018901793286204338,
-0.042703378945589066,
-0.02188730798661709,
-0.051531583070755005,
-0.06719859689474106,
0.10814088582992554,
0.1138487309217453,
-0.03043392300605774,
0.10296455770730972,
-0.2704268991947174,
-0.10182666778564453,
0.085641048848629,
0.14373528957366943,
0.16225220263004303,
-0.16549363732337952,
-0.01028093695640564,
-0.08030227571725845,
-0.20055076479911804,
0.20391269028186798,
-0.07938387244939804,
0.09214778244495392,
-0.010821088217198849,
-0.019544538110494614,
-0.028718506917357445,
-0.068844273686409,
0.1017010435461998,
-0.00977392215281725,
0.03257446363568306,
-0.0581856369972229,
0.05149603635072708,
0.08367886394262314,
0.005444946698844433,
0.044167716056108475,
-0.15532472729682922,
0.03681670501828194,
-0.002691866597160697,
-0.05362054705619812,
-0.012732550501823425,
-0.0026201787404716015,
-0.006864391267299652,
-0.0015344780404120684,
-0.02427084371447563,
0.06051024794578552,
-0.04315687716007233,
-0.039240580052137375,
0.036032360047101974,
-0.021986784413456917,
0.07572407275438309,
0.18682101368904114,
0.13099586963653564,
-0.1729888617992401,
0.10569115728139877,
-0.0014597418485209346,
-0.02547169290482998,
0.10732989013195038,
0.030407506972551346,
0.026273900642991066,
0.11428198963403702,
-0.06834873557090759,
0.08438757807016373,
0.07266460359096527,
0.006285837385803461,
-0.026078861206769943,
0.10444124788045883,
-0.15946952998638153,
-0.09831534326076508,
-0.010685903020203114,
0.11417429149150848,
-0.008124001324176788,
0.09837585687637329,
0.1708424687385559,
-0.018011750653386116,
0.0062541416846215725,
0.024372871965169907,
0.01395859383046627,
0.001576199196279049,
0.13970249891281128,
-0.033791929483413696,
0.06328099220991135,
-0.07360316067934036,
0.015294077806174755,
0.013761095702648163,
-0.12430055439472198,
-0.021107856184244156,
0.13191480934619904,
-0.16038714349269867,
-0.11507382243871689,
-0.01596260815858841,
0.09649673849344254,
-0.025922004133462906,
-0.1084810271859169,
-0.12643732130527496,
-0.1255151331424713,
0.016684943810105324,
0.08722863346338272,
0.0702880248427391,
0.047615308314561844,
-0.0021655927412211895,
-0.028156030923128128,
-0.1034560576081276,
0.09210143983364105,
-0.049840815365314484,
0.09839409589767456,
-0.12467662245035172,
0.05477287247776985,
-0.03807368874549866,
-0.06821146607398987,
-0.04842457175254822,
0.036598365753889084,
-0.1255132555961609,
-0.029645606875419617,
-0.13487930595874786,
0.046103499829769135,
-0.11327613890171051,
0.004807859659194946,
0.006071087438613176,
0.022464342415332794,
-0.014938781037926674,
0.017471235245466232,
-0.04343966394662857,
0.021671941503882408,
-0.019466500729322433,
0.046391528099775314,
-0.07856854796409607,
0.009350280277431011,
0.00014505963190458715,
-0.06051967293024063,
0.06773857027292252,
0.04083047807216644,
-0.057474058121442795,
0.03246474266052246,
-0.1741316020488739,
-0.004279972054064274,
0.046109482645988464,
0.07096154242753983,
0.018934648483991623,
-0.07202838361263275,
0.03143496811389923,
0.12119660526514053,
0.050228673964738846,
0.012352420948445797,
0.1968432068824768,
-0.049027252942323685,
-0.0008978642290458083,
-0.121609166264534,
-0.050753772258758545,
-0.05384121090173721,
-0.011370809748768806,
0.07051318138837814,
-0.015221349895000458,
0.14751338958740234,
-0.07086507976055145,
-0.03176601976156235,
-0.08708439022302628,
0.011213849298655987,
0.032696571201086044,
-0.13200896978378296,
-0.07990989834070206,
-0.03358033671975136,
0.047560565173625946,
0.007654953747987747,
0.07226736098527908,
-0.058019887655973434,
-0.10394604504108429,
0.013476954773068428,
-0.03505850210785866,
0.04594137892127037,
0.034802939742803574,
0.16488976776599884,
0.10157549381256104,
0.06970089673995972,
-0.032272033393383026,
0.047491468489170074,
0.07565147429704666,
0.12210555374622345,
0.08361344039440155,
0.0760960653424263,
-0.027566850185394287,
0.1667456328868866,
0.07843437790870667,
-0.07557085901498795,
-0.04427323862910271,
0.0855315774679184,
-0.1697453111410141,
0.09349703788757324,
-0.05657625198364258,
0.14889127016067505,
0.16008391976356506,
-0.04360553249716759,
-0.06964000314474106,
-0.10133937746286392,
-0.10060598701238632,
-0.0737171396613121,
-0.144444078207016,
-0.11598177254199982,
-0.15823926031589508,
-0.02021319605410099,
-0.06507106870412827,
-0.09253256767988205,
0.04086383432149887,
0.037152670323848724,
-0.010272729210555553,
0.18889251351356506,
-0.01605699583888054,
0.03838229924440384,
-0.0321146585047245,
0.0017693012487143278,
-0.008410545065999031,
0.036619048565626144,
-0.1548120677471161,
-0.011051954701542854,
-0.03576201573014259,
0.03767706826329231,
0.021387584507465363,
0.023337924852967262,
0.05549028515815735,
-0.0033308430574834347,
-0.04863503575325012,
-0.01920263096690178,
-0.0011281870538368821,
-0.01649872586131096,
0.12027281522750854,
-0.006309852935373783,
-0.05069490149617195,
0.03028200939297676,
0.02589396759867668,
-0.020493607968091965,
-0.11464788764715195,
-0.10810388624668121,
0.11736121028661728,
-0.07860458642244339,
0.044269416481256485,
0.013559659011662006,
-0.0101328669115901,
-0.023432109504938126,
0.18963681161403656,
0.2287255823612213,
-0.09979473054409027,
-0.014849985018372536,
0.015992846339941025,
-0.013664601370692253,
-0.040227457880973816,
0.1684797704219818,
0.09711184352636337,
0.2037757933139801,
0.025360161438584328,
-0.021103184670209885,
-0.001195923425257206,
-0.005482147913426161,
-0.11532525718212128,
-0.039835765957832336,
-0.04180289804935455,
-0.03520563989877701,
0.009702207520604134,
0.042784806340932846,
0.006989783141762018,
-0.03218588978052139,
-0.010033383965492249,
-0.06130514293909073,
-0.07618565857410431,
-0.06477157026529312,
0.1305445283651352,
-0.09517543017864227,
0.03688139468431473,
-0.06840561330318451,
0.0195605605840683,
0.013379605486989021,
-0.021147551015019417,
-0.1106223315000534,
-0.04146788269281387,
0.02109948731958866,
-0.1297861486673355,
0.14164212346076965,
-0.036643948405981064,
0.11645273864269257,
0.12261927127838135,
0.010852943174540997,
-0.14264562726020813,
0.07332352548837662,
0.031738582998514175,
-0.11479264497756958,
0.0776853933930397,
-0.0013804935151711106,
-0.05474866181612015,
0.16480295360088348,
0.015371039509773254,
-0.07446736097335815,
0.02516375482082367,
-0.03275401145219803,
0.002308108378201723,
-0.04203716292977333,
0.009467897936701775,
-0.061638735234737396,
0.14279285073280334,
0.09066151082515717,
-0.015788983553647995,
-0.03130638599395752,
-0.010479123331606388,
0.0966024249792099,
-0.03391670063138008,
-0.022660452872514725,
-0.015216921456158161,
-0.30464059114456177,
-0.030301308259367943,
-0.012125648558139801,
0.040927741676568985,
-0.1680280864238739,
-0.08409134298563004,
-0.13633382320404053,
-0.02465103566646576,
-0.1408102959394455,
0.032521095126867294,
0.1642039567232132,
-0.003878029529005289,
-0.05764879658818245,
-0.17590895295143127,
-0.08574333786964417,
0.0627649575471878,
-0.11513547599315643,
-0.18672840297222137
] |
null | null | diffusers | ### My-Pet-Dog-xzg Dreambooth model trained by Jakama following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 125018034
Sample pictures of this concept:
.jpg)
| {"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]} | text-to-image | Jakama/my-pet-dog-xzg | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-13T17:54:14+00:00 | [] | [] | TAGS
#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### My-Pet-Dog-xzg Dreambooth model trained by Jakama following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 125018034
Sample pictures of this concept:
!0.jpg)
| [
"### My-Pet-Dog-xzg Dreambooth model trained by Jakama following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 125018034\n\nSample pictures of this concept:\n\n !0.jpg)"
] | [
"TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### My-Pet-Dog-xzg Dreambooth model trained by Jakama following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 125018034\n\nSample pictures of this concept:\n\n !0.jpg)"
] | [
73,
59
] | [
"passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-Pet-Dog-xzg Dreambooth model trained by Jakama following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 125018034\n\nSample pictures of this concept:\n\n !0.jpg)"
] | [
-0.11096816509962082,
0.11546282470226288,
-0.001507172710262239,
-0.0034430688247084618,
0.08488769829273224,
-0.021577807143330574,
0.18619178235530853,
0.018582399934530258,
-0.005447923671454191,
0.028849706053733826,
0.1148030236363411,
0.09047646820545197,
0.02388632297515869,
0.17888732254505157,
-0.03275257721543312,
-0.1250818371772766,
0.03708834946155548,
0.08562979102134705,
0.0130687914788723,
0.05738722160458565,
0.06704051792621613,
-0.07803045958280563,
0.11444417387247086,
-0.011233828961849213,
-0.16656720638275146,
-0.009396526962518692,
-0.03230459988117218,
-0.047891099005937576,
0.055864665657281876,
0.032510001212358475,
0.045014068484306335,
0.1031794622540474,
0.010405825451016426,
-0.03153899312019348,
0.043718691915273666,
0.010601063258945942,
-0.062252338975667953,
0.05469983443617821,
0.04870473966002464,
0.055528294295072556,
0.09889677911996841,
0.02720661461353302,
-0.08728143572807312,
0.032823316752910614,
-0.07144565880298615,
-0.04104718565940857,
0.02165292762219906,
0.13683687150478363,
0.15166202187538147,
0.09316203743219376,
-0.003054439788684249,
0.08985108882188797,
0.06827123463153839,
0.10920202732086182,
0.1707814484834671,
-0.2626384198665619,
-0.09721220284700394,
0.20742715895175934,
0.0640680342912674,
0.044617682695388794,
-0.04999054595828056,
0.10582033544778824,
0.10339224338531494,
-0.03404850512742996,
0.026240233331918716,
-0.06572660058736801,
0.06654560565948486,
-0.07446854561567307,
-0.11412598192691803,
0.018298733979463577,
0.2315688133239746,
0.04594818875193596,
-0.04809338599443436,
-0.06821466982364655,
-0.08103006333112717,
-0.0023008540738373995,
-0.06537061184644699,
-0.005859334487468004,
-0.05792207270860672,
0.01280259434133768,
-0.011347760446369648,
-0.04165883734822273,
-0.13378171622753143,
-0.06623093038797379,
-0.025887353345751762,
0.18028947710990906,
0.02189950831234455,
0.06265145540237427,
-0.1358281373977661,
0.09967240691184998,
-0.009718839079141617,
-0.1174977570772171,
0.019141705706715584,
-0.08798359334468842,
0.04201184958219528,
0.06536820530891418,
0.04880253225564957,
-0.11561501771211624,
0.09644751995801926,
-0.019185468554496765,
0.0348132960498333,
-0.02665848098695278,
0.03366991505026817,
0.08846450597047806,
0.026875516399741173,
-0.05068273842334747,
-0.08439149707555771,
-0.07975006103515625,
0.022011354565620422,
-0.05086866766214371,
0.004059933125972748,
-0.023049945011734962,
-0.08747661858797073,
-0.011350197717547417,
-0.038704052567481995,
0.03723739832639694,
0.03789390251040459,
0.07473412901163101,
0.001688209013082087,
-0.038945820182561874,
0.19138242304325104,
0.05759802088141441,
-0.019376177340745926,
-0.03464694693684578,
0.01908915489912033,
0.06586075574159622,
0.04017149284482002,
-0.003848818363621831,
-0.0112549914047122,
0.03033769130706787,
-0.07089944183826447,
-0.03652435913681984,
-0.02941160276532173,
-0.038141585886478424,
-0.006649544928222895,
-0.1627318114042282,
0.06294098496437073,
-0.19432298839092255,
-0.08716291189193726,
0.04499825835227966,
0.051945723593235016,
-0.012262950651347637,
-0.057970140129327774,
-0.03107578679919243,
-0.09298843890428543,
0.00913318619132042,
-0.014712321572005749,
0.002119088312610984,
-0.02743646875023842,
0.04328400641679764,
0.010547533631324768,
0.08145291358232498,
-0.20380517840385437,
0.002009597374126315,
-0.04129903391003609,
0.023580674082040787,
-0.0008819004870019853,
-0.010539797134697437,
-0.038180261850357056,
0.07872086763381958,
-0.009000468999147415,
-0.0010396132711321115,
-0.0008431876776739955,
-0.0019912738353013992,
0.014753306284546852,
0.149406298995018,
-0.08455178141593933,
0.004180874675512314,
0.1702641397714615,
-0.1351395845413208,
-0.17081789672374725,
0.08996351808309555,
0.04753100126981735,
0.1176210418343544,
0.06489123404026031,
0.11067309230566025,
0.10397408902645111,
-0.2522037625312805,
-0.020717155188322067,
0.008985811844468117,
-0.12433476746082306,
-0.18132595717906952,
0.0029845614917576313,
0.13107994198799133,
-0.09076430648565292,
0.021020373329520226,
-0.10356686264276505,
0.11148963123559952,
-0.08422727137804031,
-0.02475683204829693,
-0.03211124613881111,
-0.10995146632194519,
-0.017380651086568832,
0.007001754827797413,
0.041144005954265594,
-0.011748929508030415,
0.025081763043999672,
-0.1437123715877533,
0.04265221208333969,
-0.025492407381534576,
-0.02392548695206642,
-0.09808562695980072,
0.06554803997278214,
-0.09847965091466904,
0.017677895724773407,
0.004521610215306282,
-0.021281441673636436,
0.03784038498997688,
0.11421212553977966,
-0.013125648722052574,
0.16453175246715546,
0.05973154678940773,
0.060433562844991684,
-0.009762369096279144,
-0.09347039461135864,
0.09693726152181625,
0.014533914625644684,
-0.055044371634721756,
-0.14614532887935638,
0.10748117417097092,
-0.05923828110098839,
-0.02177332155406475,
-0.13941457867622375,
0.04626384377479553,
0.0051163057796657085,
0.09533585608005524,
0.04296598583459854,
0.008793480694293976,
0.043735191226005554,
-0.017566977068781853,
-0.0550796277821064,
0.008167723193764687,
0.06327726691961288,
0.04838298633694649,
-0.07658567279577255,
0.18647323548793793,
-0.11065836995840073,
0.17325550317764282,
0.09670428931713104,
-0.0175347737967968,
-0.00602254644036293,
0.014574025757610798,
-0.06549592316150665,
-0.006178340408951044,
-0.002996133640408516,
0.0022805845364928246,
-0.014209019020199776,
-0.05379573255777359,
0.11285363882780075,
-0.058463796973228455,
-0.0039205402135849,
0.08077963441610336,
-0.05471954867243767,
-0.021980073302984238,
0.08324048668146133,
0.05358915403485298,
-0.1445096731185913,
0.13114893436431885,
0.10400920361280441,
-0.0035430192947387695,
0.19588510692119598,
0.015783512964844704,
-0.009610452689230442,
-0.054682549089193344,
0.0833398625254631,
0.031366437673568726,
0.2287531942129135,
-0.09257978200912476,
0.02624773234128952,
0.025293448939919472,
-0.008601496927440166,
0.05081629008054733,
-0.11147134006023407,
-0.07490569353103638,
-0.02143159694969654,
-0.03548792004585266,
0.11510913074016571,
0.10762285441160202,
-0.12545572221279144,
0.0932714119553566,
-0.08445198088884354,
-0.08203188329935074,
0.03344257175922394,
-0.0001322134048677981,
-0.05571945384144783,
0.0751175582408905,
-0.0391874723136425,
-0.2317972481250763,
-0.1250019669532776,
-0.08052607625722885,
-0.07677560299634933,
-0.016167353838682175,
0.07213907688856125,
-0.052021123468875885,
-0.026753393933176994,
-0.06232127174735069,
-0.061766743659973145,
-0.07007104158401489,
0.05443873256444931,
0.034037962555885315,
0.01863228902220726,
-0.014867535792291164,
-0.042805831879377365,
0.014993544667959213,
-0.047627005726099014,
0.015134209766983986,
0.1320745199918747,
0.011752230115234852,
0.18099717795848846,
0.0716489776968956,
0.003153793513774872,
-0.013938776217401028,
0.004926086403429508,
0.2216867357492447,
-0.05295820161700249,
0.09928639978170395,
0.1400337815284729,
0.052921053022146225,
0.05998101085424423,
0.16014991700649261,
0.03132233768701553,
-0.07672101259231567,
0.035457246005535126,
-0.05639417842030525,
-0.10450974851846695,
-0.11901085823774338,
-0.05939631536602974,
-0.06886064261198044,
0.15077410638332367,
0.014835260808467865,
0.08291956782341003,
0.1227087527513504,
0.16619227826595306,
-0.006631378084421158,
-0.0121145686134696,
-0.03949141129851341,
0.10111016780138016,
-0.058140888810157776,
-0.030220968648791313,
0.027479348704218864,
-0.08099070936441422,
-0.05192289873957634,
0.09018035978078842,
0.06307898461818695,
0.1329849511384964,
0.029114579781889915,
0.014878912828862667,
0.09507805854082108,
0.1523602306842804,
0.1433437466621399,
0.10608766227960587,
-0.04268649220466614,
-0.07340440154075623,
-0.0031305020675063133,
-0.07604992389678955,
0.09801530838012695,
0.05430135130882263,
-0.07783989608287811,
-0.0415862500667572,
0.05623975396156311,
0.015149179846048355,
-0.02242850512266159,
0.09242961555719376,
0.08430700749158859,
-0.21198870241641998,
0.021839484572410583,
-0.005889625754207373,
0.05461730435490608,
-0.07809620350599289,
-0.0003232966992072761,
0.22685427963733673,
-0.01726367324590683,
0.07814754545688629,
-0.047850240021944046,
0.08197053521871567,
0.0453915148973465,
-0.0037237498909235,
-0.08080752193927765,
0.007554729003459215,
-0.013414380140602589,
0.03694119304418564,
-0.24430453777313232,
0.15577693283557892,
-0.009456771425902843,
0.06992249190807343,
-0.01618894562125206,
-0.038717836141586304,
-0.04270042106509209,
0.16763362288475037,
0.16352535784244537,
0.014910640195012093,
-0.013208139687776566,
-0.026505121961236,
-0.11292561143636703,
0.033618535846471786,
0.01712673343718052,
0.008015069179236889,
0.0380285419523716,
0.07501634210348129,
-0.03050978109240532,
-0.015745859593153,
0.038761358708143234,
-0.19081884622573853,
-0.10973865538835526,
-0.0016002260381355882,
0.23276937007904053,
0.07740248739719391,
-0.020483270287513733,
0.040718816220760345,
-0.0697164535522461,
0.08348415791988373,
-0.1997205764055252,
-0.08283039182424545,
-0.0782155990600586,
-0.0894700437784195,
-0.03593718260526657,
-0.049196138978004456,
0.0053396825678646564,
-0.07406193763017654,
0.06188652664422989,
-0.05614995211362839,
-0.1239776760339737,
0.009267189539968967,
-0.17190717160701752,
-0.09386537969112396,
-0.09428883343935013,
0.04517856985330582,
0.05161674693226814,
-0.02169627696275711,
0.0046033235266804695,
-0.07012741267681122,
-0.05370059981942177,
-0.09936974197626114,
0.03817135840654373,
0.0876745656132698,
-0.045106321573257446,
-0.06107928603887558,
-0.06559247523546219,
-0.10215836763381958,
-0.06346292793750763,
-0.07342216372489929,
0.06763389706611633,
0.25304991006851196,
-0.06522217392921448,
0.06110643595457077,
0.19260051846504211,
-0.05093244090676308,
-0.2237529158592224,
-0.12553390860557556,
-0.04479478672146797,
-0.01889277622103691,
-0.03325223922729492,
-0.0981047973036766,
0.1195068508386612,
0.02323058433830738,
-0.05255274102091789,
0.2012166976928711,
-0.26278895139694214,
-0.059002216905355453,
0.020515214651823044,
0.15901508927345276,
0.3525942862033844,
-0.17232729494571686,
-0.02642010897397995,
0.0049313707277178764,
-0.14861606061458588,
0.18189936876296997,
-0.023889850825071335,
0.06926377862691879,
-0.06325238943099976,
0.0027089640498161316,
-0.020486559718847275,
-0.04119354113936424,
0.1022520512342453,
-0.043121885508298874,
0.05119955912232399,
-0.07266947627067566,
0.053982146084308624,
0.14805741608142853,
-0.022998834028840065,
0.04494835436344147,
-0.13629209995269775,
0.03046340122818947,
-0.1060507595539093,
-0.01373328361660242,
-0.0425870344042778,
0.018913591280579567,
-0.04168892651796341,
-0.12142745405435562,
-0.06822233647108078,
-0.010611197911202908,
0.0024636334273964167,
0.023231491446495056,
-0.0038990541361272335,
-0.0039016802329570055,
0.013858472928404808,
0.153352752327919,
-0.0024248857516795397,
-0.0548987090587616,
-0.034855011850595474,
-0.08694183081388474,
-0.050938304513692856,
0.1369190514087677,
-0.04596550017595291,
-0.018448010087013245,
0.09264018386602402,
-0.0015930483350530267,
0.039558179676532745,
0.02135249599814415,
-0.05361076444387436,
0.0433802492916584,
0.11281219869852066,
-0.17413531243801117,
-0.14445456862449646,
-0.04026003181934357,
0.16807401180267334,
0.09560264647006989,
0.13833947479724884,
0.12805412709712982,
-0.09655279666185379,
0.031738776713609695,
-0.04196571186184883,
0.008190799504518509,
-0.024334505200386047,
0.06122736260294914,
-0.02203049696981907,
0.04472903534770012,
-0.0690474733710289,
0.009648778475821018,
-0.03085295855998993,
-0.03566978499293327,
-0.03434453532099724,
0.02694810926914215,
-0.10115550458431244,
-0.08237156271934509,
0.0631420686841011,
0.1631777286529541,
-0.12726333737373352,
-0.10084569454193115,
-0.03955356776714325,
-0.07002172619104385,
0.03147510811686516,
0.05152282118797302,
0.003558211727067828,
0.005642678588628769,
0.0667540654540062,
-0.01036720909178257,
-0.08481722325086594,
0.026585595682263374,
-0.01310894638299942,
0.11881111562252045,
-0.24600528180599213,
-0.07071440666913986,
0.0020990699995309114,
0.04690277948975563,
-0.08131995797157288,
-0.006951030809432268,
-0.0905994400382042,
0.00982618797570467,
-0.0009294857736676931,
0.08825258910655975,
-0.11461684107780457,
-0.07183519750833511,
-0.028024310246109962,
-0.01683245226740837,
-0.039816077798604965,
0.02290203422307968,
-0.03531548008322716,
0.0593813955783844,
0.035955287516117096,
-0.005622533615678549,
0.004130799323320389,
-0.01909472420811653,
-0.03604492172598839,
-0.03588934242725372,
0.07410246878862381,
-0.010197280906140804,
-0.09718151390552521,
-0.03167138993740082,
-0.23457643389701843,
0.029627537354826927,
0.10401790589094162,
-0.001784018473699689,
-0.0034534172154963017,
0.08962360769510269,
0.0033499118871986866,
0.03478744998574257,
0.02611653320491314,
-0.024128254503011703,
0.013049975968897343,
-0.10611943155527115,
-0.018769586458802223,
-0.05193374305963516,
0.027191350236535072,
-0.08006097376346588,
-0.01537972129881382,
0.09998159855604172,
0.05167132243514061,
0.1274830847978592,
-0.10160854458808899,
0.045540906488895416,
-0.01911330409348011,
0.023034581914544106,
0.07682060450315475,
-0.08730632066726685,
0.050648268312215805,
-0.057503364980220795,
-0.026366574689745903,
0.0069545055739581585,
0.09440506994724274,
-0.03764193877577782,
-0.25788024067878723,
-0.028349850326776505,
-0.1363925337791443,
-0.018706755712628365,
-0.02372787892818451,
0.2976164221763611,
0.012714507058262825,
0.010959837585687637,
-0.13757014274597168,
0.08373838663101196,
0.07218095660209656,
0.09485523402690887,
0.007786822505295277,
0.07090838998556137,
-0.005289771594107151,
0.06882389634847641,
0.03970829397439957,
0.000347374560078606,
-0.06739255040884018,
0.01690497435629368,
-0.18053117394447327,
0.12842413783073425,
-0.025716086849570274,
0.0784185528755188,
0.20152993500232697,
-0.009932620450854301,
-0.029130980372428894,
0.10106569528579712,
-0.006729050073772669,
-0.0323641374707222,
-0.2167043685913086,
-0.06112290173768997,
-0.14418064057826996,
0.016908876597881317,
-0.03796368092298508,
-0.030010437592864037,
-0.03751750290393829,
0.05802541226148605,
-0.06530582159757614,
0.06507851928472519,
0.13093869388103485,
-0.03385746851563454,
0.10035532712936401,
-0.0037110873963683844,
-0.05455353111028671,
0.03154890611767769,
0.02914711833000183,
0.008771470747888088,
0.004457777366042137,
-0.006157027091830969,
0.061311736702919006,
-0.009205888025462627,
0.07215269654989243,
0.031254880130290985,
-0.05040981248021126,
-0.028112249448895454,
-0.005460204090923071,
0.027913350611925125,
0.1221671923995018,
0.03434213623404503,
-0.023786870762705803,
0.015966778621077538,
0.10130315274000168,
0.00925302505493164,
-0.04130114987492561,
-0.06183551251888275,
0.03531619906425476,
-0.120413638651371,
0.053660087287425995,
-0.03307002782821655,
-0.012627389281988144,
-0.04662558436393738,
0.2732458710670471,
0.138187974691391,
-0.03560462221503258,
0.017796898260712624,
-0.09015356749296188,
0.01383992936462164,
-0.05856325104832649,
0.10018906742334366,
0.03297009691596031,
0.2891034483909607,
-0.037275370210409164,
-0.01337176188826561,
-0.11020996421575546,
-0.02678363397717476,
-0.0905565395951271,
-0.08712444454431534,
0.016204634681344032,
-0.06998460739850998,
-0.08882887661457062,
0.0718594491481781,
-0.1895737648010254,
-0.03352845460176468,
0.09306842088699341,
0.014425001107156277,
-0.00023866305127739906,
-0.03710633143782616,
0.11783496290445328,
0.02850695326924324,
0.030908482149243355,
-0.10277479141950607,
0.06631004065275192,
0.017300358042120934,
-0.028128962963819504,
-0.0661473199725151,
0.07838093489408493,
-0.011034958064556122,
-0.14960968494415283,
0.13884983956813812,
-0.010159130208194256,
0.009856946766376495,
0.06827346235513687,
-0.07008663564920425,
-0.14308370649814606,
0.1123654693365097,
-0.04918508231639862,
-0.09022968262434006,
-0.00943032931536436,
0.10664520412683487,
0.010793310590088367,
-0.016504589468240738,
0.006758283358067274,
-0.06817702203989029,
-0.043245747685432434,
0.07629754394292831,
0.035960402339696884,
-0.10026663541793823,
0.09529244899749756,
-0.042461540549993515,
0.10134526342153549,
-0.029626253992319107,
-0.04339815676212311,
-0.02805507555603981,
-0.03146236017346382,
0.04730029031634331,
-0.0033701080828905106,
-0.0523223914206028,
0.061314407736063004,
-0.13896878063678741,
-0.03955363482236862,
0.049085598438978195,
0.0645340085029602,
-0.17160196602344513,
0.0234715286642313,
-0.17008838057518005,
-0.006253667175769806,
-0.06039268150925636,
0.00703054666519165,
0.22854095697402954,
0.0028023945633322,
-0.0033152378164231777,
-0.11533459275960922,
-0.03815779834985733,
0.04515542462468147,
0.00807216763496399,
-0.12441854178905487
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 2020-Q2-50p-filtered
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2019-90m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.5608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1400
- training_steps: 2400000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-------:|:---------------:|
| No log | 0.03 | 8000 | 2.6645 |
| 2.8656 | 0.07 | 16000 | 2.6465 |
| 2.8656 | 0.1 | 24000 | 2.6186 |
| 2.7946 | 0.13 | 32000 | 2.6235 |
| 2.7946 | 0.17 | 40000 | 2.6151 |
| 2.7911 | 0.2 | 48000 | 2.6128 |
| 2.7911 | 0.24 | 56000 | 2.6010 |
| 2.7898 | 0.27 | 64000 | 2.6144 |
| 2.7898 | 0.3 | 72000 | 2.5976 |
| 2.7791 | 0.34 | 80000 | 2.6006 |
| 2.7791 | 0.37 | 88000 | 2.5889 |
| 2.7776 | 0.4 | 96000 | 2.5888 |
| 2.7776 | 0.44 | 104000 | 2.5842 |
| 2.7702 | 0.47 | 112000 | 2.5760 |
| 2.7702 | 0.51 | 120000 | 2.5720 |
| 2.7661 | 0.54 | 128000 | 2.5710 |
| 2.7661 | 0.57 | 136000 | 2.5673 |
| 2.7609 | 0.61 | 144000 | 2.5693 |
| 2.7609 | 0.64 | 152000 | 2.5623 |
| 2.7557 | 0.67 | 160000 | 2.5559 |
| 2.7557 | 0.71 | 168000 | 2.5650 |
| 2.7584 | 0.74 | 176000 | 2.5584 |
| 2.7584 | 0.77 | 184000 | 2.5591 |
| 2.7619 | 0.81 | 192000 | 2.5597 |
| 2.7619 | 0.84 | 200000 | 2.5650 |
| 2.7678 | 0.88 | 208000 | 2.5728 |
| 2.7678 | 0.91 | 216000 | 2.5712 |
| 2.7735 | 0.94 | 224000 | 2.5729 |
| 2.7735 | 0.98 | 232000 | 2.5755 |
| 2.777 | 1.01 | 240000 | 2.5715 |
| 2.777 | 1.04 | 248000 | 2.5747 |
| 2.7692 | 1.08 | 256000 | 2.5782 |
| 2.7692 | 1.11 | 264000 | 2.5841 |
| 2.7826 | 1.15 | 272000 | 2.5731 |
| 2.7826 | 1.18 | 280000 | 2.5836 |
| 2.7845 | 1.21 | 288000 | 2.5841 |
| 2.7845 | 1.25 | 296000 | 2.5811 |
| 2.7909 | 1.28 | 304000 | 2.5928 |
| 2.7909 | 1.31 | 312000 | 2.5977 |
| 2.7993 | 1.35 | 320000 | 2.6025 |
| 2.7993 | 1.38 | 328000 | 2.6072 |
| 2.8107 | 1.41 | 336000 | 2.6110 |
| 2.8107 | 1.45 | 344000 | 2.6020 |
| 2.8102 | 1.48 | 352000 | 2.6065 |
| 2.8102 | 1.52 | 360000 | 2.6207 |
| 2.8247 | 1.55 | 368000 | 2.6192 |
| 2.8247 | 1.58 | 376000 | 2.6224 |
| 2.8271 | 1.62 | 384000 | 2.6205 |
| 2.8271 | 1.65 | 392000 | 2.6292 |
| 2.8415 | 1.68 | 400000 | 2.6348 |
| 2.8415 | 1.72 | 408000 | 2.6518 |
| 2.842 | 1.75 | 416000 | 2.6465 |
| 2.842 | 1.79 | 424000 | 2.6434 |
| 2.8431 | 1.82 | 432000 | 2.6414 |
| 2.8431 | 1.85 | 440000 | 2.6532 |
| 2.8599 | 1.89 | 448000 | 2.6645 |
| 2.8599 | 1.92 | 456000 | 2.6651 |
| 2.8567 | 1.95 | 464000 | 2.6694 |
| 2.8567 | 1.99 | 472000 | 2.6610 |
| 2.8682 | 2.02 | 480000 | 2.6877 |
| 2.8682 | 2.05 | 488000 | 2.6724 |
| 2.8693 | 2.09 | 496000 | 2.6839 |
| 2.8693 | 2.12 | 504000 | 2.6923 |
| 2.8881 | 2.16 | 512000 | 2.6964 |
| 2.8881 | 2.19 | 520000 | 2.6982 |
| 2.8874 | 2.22 | 528000 | 2.6961 |
| 2.8874 | 2.26 | 536000 | 2.6884 |
| 2.8899 | 2.29 | 544000 | 2.7055 |
| 2.8899 | 2.32 | 552000 | 2.6988 |
| 2.8966 | 2.36 | 560000 | 2.7103 |
| 2.8966 | 2.39 | 568000 | 2.7100 |
| 2.9 | 2.43 | 576000 | 2.7169 |
| 2.9 | 2.46 | 584000 | 2.7180 |
| 2.9237 | 2.49 | 592000 | 2.7270 |
| 2.9237 | 2.53 | 600000 | 2.7265 |
| 2.9236 | 2.56 | 608000 | 2.7323 |
| 2.9236 | 2.59 | 616000 | 2.7350 |
| 2.9276 | 2.63 | 624000 | 2.7333 |
| 2.9276 | 2.66 | 632000 | 2.7345 |
| 2.9252 | 2.69 | 640000 | 2.7497 |
| 2.9252 | 2.73 | 648000 | 2.7428 |
| 2.9364 | 2.76 | 656000 | 2.7392 |
| 2.9364 | 2.8 | 664000 | 2.7505 |
| 2.9366 | 2.83 | 672000 | 2.7393 |
| 2.9366 | 2.86 | 680000 | 2.7372 |
| 2.9437 | 2.9 | 688000 | 2.7451 |
| 2.9437 | 2.93 | 696000 | 2.7488 |
| 2.9483 | 2.96 | 704000 | 2.7586 |
| 2.9483 | 3.0 | 712000 | 2.7613 |
| 2.9588 | 3.03 | 720000 | 2.7619 |
| 2.9588 | 3.07 | 728000 | 2.7680 |
| 2.9422 | 3.1 | 736000 | 2.7546 |
| 2.9422 | 3.13 | 744000 | 2.7629 |
| 2.965 | 3.17 | 752000 | 2.7595 |
| 2.965 | 3.2 | 760000 | 2.7763 |
| 2.959 | 3.23 | 768000 | 2.7739 |
| 2.959 | 3.27 | 776000 | 2.7839 |
| 2.9604 | 3.3 | 784000 | 2.7681 |
| 2.9604 | 3.33 | 792000 | 2.7816 |
| 2.9638 | 3.37 | 800000 | 2.7812 |
| 2.9638 | 3.4 | 808000 | 2.7846 |
| 2.9704 | 3.44 | 816000 | 2.7766 |
| 2.9704 | 3.47 | 824000 | 2.7869 |
| 2.9684 | 3.5 | 832000 | 2.7741 |
| 2.9684 | 3.54 | 840000 | 2.7735 |
| 2.9723 | 3.57 | 848000 | 2.7701 |
| 2.9723 | 3.6 | 856000 | 2.7780 |
| 2.9734 | 3.64 | 864000 | 2.7833 |
| 2.9734 | 3.67 | 872000 | 2.7910 |
| 2.9806 | 3.71 | 880000 | 2.7941 |
| 2.9806 | 3.74 | 888000 | 2.7997 |
| 2.9808 | 3.77 | 896000 | 2.8027 |
| 2.9808 | 3.81 | 904000 | 2.7972 |
| 3.0008 | 3.84 | 912000 | 2.8026 |
| 3.0008 | 3.87 | 920000 | 2.7975 |
| 2.9934 | 3.91 | 928000 | 2.7971 |
| 2.9934 | 3.94 | 936000 | 2.8030 |
| 2.9927 | 3.97 | 944000 | 2.8082 |
| 2.9927 | 4.01 | 952000 | 2.8208 |
| 3.0013 | 4.04 | 960000 | 2.8129 |
| 3.0013 | 4.08 | 968000 | 2.8236 |
| 2.9996 | 4.11 | 976000 | 2.8226 |
| 2.9996 | 4.14 | 984000 | 2.8273 |
| 3.0125 | 4.18 | 992000 | 2.8161 |
| 3.0125 | 4.21 | 1000000 | 2.8249 |
| 3.0086 | 4.24 | 1008000 | 2.8320 |
| 3.0086 | 4.28 | 1016000 | 2.8313 |
| 3.0077 | 4.31 | 1024000 | 2.8321 |
| 3.0077 | 4.35 | 1032000 | 2.8332 |
| 3.0186 | 4.38 | 1040000 | 2.8288 |
| 3.0186 | 4.41 | 1048000 | 2.8392 |
| 3.0311 | 4.45 | 1056000 | 2.8243 |
| 3.0311 | 4.48 | 1064000 | 2.8524 |
| 3.0199 | 4.51 | 1072000 | 2.8347 |
| 3.0199 | 4.55 | 1080000 | 2.8438 |
| 3.0198 | 4.58 | 1088000 | 2.8415 |
| 3.0198 | 4.61 | 1096000 | 2.8460 |
| 3.0279 | 4.65 | 1104000 | 2.8551 |
| 3.0279 | 4.68 | 1112000 | 2.8528 |
| 3.0319 | 4.72 | 1120000 | 2.8601 |
| 3.0319 | 4.75 | 1128000 | 2.8544 |
| 3.0371 | 4.78 | 1136000 | 2.8553 |
| 3.0371 | 4.82 | 1144000 | 2.8597 |
| 3.038 | 4.85 | 1152000 | 2.8653 |
| 3.038 | 4.88 | 1160000 | 2.8560 |
| 3.0318 | 4.92 | 1168000 | 2.8602 |
| 3.0318 | 4.95 | 1176000 | 2.8484 |
| 3.0449 | 4.99 | 1184000 | 2.8612 |
| 3.0449 | 5.02 | 1192000 | 2.8598 |
| 3.0384 | 5.05 | 1200000 | 2.8581 |
| 3.0384 | 5.09 | 1208000 | 2.8481 |
| 3.0243 | 5.12 | 1216000 | 2.8458 |
| 3.0243 | 5.15 | 1224000 | 2.8494 |
| 3.0345 | 5.19 | 1232000 | 2.8544 |
| 3.0345 | 5.22 | 1240000 | 2.8488 |
| 3.0251 | 5.25 | 1248000 | 2.8453 |
| 3.0251 | 5.29 | 1256000 | 2.8464 |
| 3.0234 | 5.32 | 1264000 | 2.8486 |
| 3.0234 | 5.36 | 1272000 | 2.8436 |
| 3.0205 | 5.39 | 1280000 | 2.8476 |
| 3.0205 | 5.42 | 1288000 | 2.8327 |
| 3.0228 | 5.46 | 1296000 | 2.8452 |
| 3.0228 | 5.49 | 1304000 | 2.8372 |
| 3.0063 | 5.52 | 1312000 | 2.8306 |
| 3.0063 | 5.56 | 1320000 | 2.8411 |
| 3.0068 | 5.59 | 1328000 | 2.8273 |
| 3.0068 | 5.63 | 1336000 | 2.8343 |
| 3.0109 | 5.66 | 1344000 | 2.8328 |
| 3.0109 | 5.69 | 1352000 | 2.8431 |
| 3.0068 | 5.73 | 1360000 | 2.8332 |
| 3.0068 | 5.76 | 1368000 | 2.8275 |
| 3.002 | 5.79 | 1376000 | 2.8314 |
| 3.002 | 5.83 | 1384000 | 2.8324 |
| 3.0037 | 5.86 | 1392000 | 2.8394 |
| 3.0037 | 5.89 | 1400000 | 2.8338 |
| 3.0086 | 5.93 | 1408000 | 2.8448 |
| 3.0086 | 5.96 | 1416000 | 2.8326 |
| 2.9977 | 6.0 | 1424000 | 2.8311 |
| 2.9977 | 6.03 | 1432000 | 2.8410 |
| 2.9984 | 6.06 | 1440000 | 2.8359 |
| 2.9984 | 6.1 | 1448000 | 2.8393 |
| 3.0095 | 6.13 | 1456000 | 2.8388 |
| 3.0095 | 6.16 | 1464000 | 2.8448 |
| 3.0051 | 6.2 | 1472000 | 2.8472 |
| 3.0051 | 6.23 | 1480000 | 2.8421 |
| 3.0142 | 6.27 | 1488000 | 2.8424 |
| 3.0142 | 6.3 | 1496000 | 2.8477 |
| 3.0149 | 6.33 | 1504000 | 2.8428 |
| 3.0149 | 6.37 | 1512000 | 2.8529 |
| 3.0147 | 6.4 | 1520000 | 2.8541 |
| 3.0147 | 6.43 | 1528000 | 2.8519 |
| 3.0205 | 6.47 | 1536000 | 2.8527 |
| 3.0205 | 6.5 | 1544000 | 2.8471 |
| 3.029 | 6.53 | 1552000 | 2.8583 |
| 3.029 | 6.57 | 1560000 | 2.8497 |
| 3.024 | 6.6 | 1568000 | 2.8653 |
| 3.024 | 6.64 | 1576000 | 2.8553 |
| 3.0371 | 6.67 | 1584000 | 2.8653 |
| 3.0371 | 6.7 | 1592000 | 2.8604 |
| 3.0319 | 6.74 | 1600000 | 2.8624 |
| 3.0319 | 6.77 | 1608000 | 2.8657 |
| 3.0369 | 6.8 | 1616000 | 2.8616 |
| 3.0369 | 6.84 | 1624000 | 2.8667 |
| 3.0357 | 6.87 | 1632000 | 2.8660 |
| 3.0357 | 6.91 | 1640000 | 2.8682 |
| 3.0342 | 6.94 | 1648000 | 2.8676 |
| 3.0342 | 6.97 | 1656000 | 2.8815 |
| 3.0375 | 7.01 | 1664000 | 2.8667 |
| 3.0375 | 7.04 | 1672000 | 2.8735 |
| 3.0419 | 7.07 | 1680000 | 2.8788 |
| 3.0419 | 7.11 | 1688000 | 2.8767 |
| 3.0403 | 7.14 | 1696000 | 2.8812 |
| 3.0403 | 7.17 | 1704000 | 2.8795 |
| 3.0482 | 7.21 | 1712000 | 2.8805 |
| 3.0482 | 7.24 | 1720000 | 2.8794 |
| 3.0533 | 7.28 | 1728000 | 2.8788 |
| 3.0533 | 7.31 | 1736000 | 2.8844 |
| 3.0453 | 7.34 | 1744000 | 2.8709 |
| 3.0453 | 7.38 | 1752000 | 2.8835 |
| 3.0562 | 7.41 | 1760000 | 2.8891 |
| 3.0562 | 7.44 | 1768000 | 2.8903 |
| 3.0617 | 7.48 | 1776000 | 2.8849 |
| 3.0617 | 7.51 | 1784000 | 2.8766 |
| 3.0539 | 7.55 | 1792000 | 2.8872 |
| 3.0539 | 7.58 | 1800000 | 2.8981 |
| 3.0561 | 7.61 | 1808000 | 2.8862 |
| 3.0561 | 7.65 | 1816000 | 2.8940 |
| 3.0529 | 7.68 | 1824000 | 2.8874 |
| 3.0529 | 7.71 | 1832000 | 2.8839 |
| 3.0484 | 7.75 | 1840000 | 2.8838 |
| 3.0484 | 7.78 | 1848000 | 2.8856 |
| 3.0562 | 7.81 | 1856000 | 2.8984 |
| 3.0562 | 7.85 | 1864000 | 2.8844 |
| 3.0578 | 7.88 | 1872000 | 2.8874 |
| 3.0578 | 7.92 | 1880000 | 2.8887 |
| 3.0553 | 7.95 | 1888000 | 2.8798 |
| 3.0553 | 7.98 | 1896000 | 2.8789 |
| 3.0623 | 8.02 | 1904000 | 2.8968 |
| 3.0623 | 8.05 | 1912000 | 2.8834 |
| 3.0652 | 8.08 | 1920000 | 2.8902 |
| 3.0652 | 8.12 | 1928000 | 2.8822 |
| 3.0487 | 8.15 | 1936000 | 2.8844 |
| 3.0487 | 8.19 | 1944000 | 2.8909 |
| 3.0546 | 8.22 | 1952000 | 2.8915 |
| 3.0546 | 8.25 | 1960000 | 2.8870 |
| 3.0524 | 8.29 | 1968000 | 2.8828 |
| 3.0524 | 8.32 | 1976000 | 2.8781 |
| 3.0491 | 8.35 | 1984000 | 2.8948 |
| 3.0491 | 8.39 | 1992000 | 2.8904 |
| 3.0534 | 8.42 | 2000000 | 2.8839 |
| 3.0534 | 8.45 | 2008000 | 2.8918 |
| 3.0547 | 8.49 | 2016000 | 2.8739 |
| 3.0547 | 8.52 | 2024000 | 2.8684 |
| 3.0544 | 8.56 | 2032000 | 2.8740 |
| 3.0544 | 8.59 | 2040000 | 2.8784 |
| 3.0448 | 8.62 | 2048000 | 2.8758 |
| 3.0448 | 8.66 | 2056000 | 2.8801 |
| 3.0499 | 8.69 | 2064000 | 2.8793 |
| 3.0499 | 8.72 | 2072000 | 2.8707 |
| 3.0368 | 8.76 | 2080000 | 2.8722 |
| 3.0368 | 8.79 | 2088000 | 2.8752 |
| 3.0548 | 8.83 | 2096000 | 2.8880 |
| 3.0548 | 8.86 | 2104000 | 2.8781 |
| 3.0457 | 8.89 | 2112000 | 2.8825 |
| 3.0457 | 8.93 | 2120000 | 2.8827 |
| 3.0377 | 8.96 | 2128000 | 2.8810 |
| 3.0377 | 8.99 | 2136000 | 2.8727 |
| 3.0341 | 9.03 | 2144000 | 2.8750 |
| 3.0341 | 9.06 | 2152000 | 2.8638 |
| 3.0275 | 9.09 | 2160000 | 2.8690 |
| 3.0275 | 9.13 | 2168000 | 2.8660 |
| 3.0413 | 9.16 | 2176000 | 2.8578 |
| 3.0413 | 9.2 | 2184000 | 2.8692 |
| 3.0272 | 9.23 | 2192000 | 2.8702 |
| 3.0272 | 9.26 | 2200000 | 2.8707 |
| 3.034 | 9.3 | 2208000 | 2.8666 |
| 3.034 | 9.33 | 2216000 | 2.8734 |
| 3.0346 | 9.36 | 2224000 | 2.8685 |
| 3.0346 | 9.4 | 2232000 | 2.8675 |
| 3.0234 | 9.43 | 2240000 | 2.8662 |
| 3.0234 | 9.47 | 2248000 | 2.8670 |
| 3.0256 | 9.5 | 2256000 | 2.8764 |
| 3.0256 | 9.53 | 2264000 | 2.8664 |
| 3.0232 | 9.57 | 2272000 | 2.8625 |
| 3.0232 | 9.6 | 2280000 | 2.8647 |
| 3.0309 | 9.63 | 2288000 | 2.8561 |
| 3.0309 | 9.67 | 2296000 | 2.8657 |
| 3.0254 | 9.7 | 2304000 | 2.8667 |
| 3.0254 | 9.73 | 2312000 | 2.8618 |
| 3.0198 | 9.77 | 2320000 | 2.8650 |
| 3.0198 | 9.8 | 2328000 | 2.8630 |
| 3.0109 | 9.84 | 2336000 | 2.8533 |
| 3.0109 | 9.87 | 2344000 | 2.8656 |
| 3.0316 | 9.9 | 2352000 | 2.8607 |
| 3.0316 | 9.94 | 2360000 | 2.8572 |
| 3.0225 | 9.97 | 2368000 | 2.8617 |
| 3.0225 | 10.0 | 2376000 | 2.8604 |
| 3.0132 | 10.04 | 2384000 | 2.8577 |
| 3.0132 | 10.07 | 2392000 | 2.8535 |
| 3.0202 | 10.11 | 2400000 | 2.8566 |
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.0
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "cardiffnlp/twitter-roberta-base-2019-90m", "model-index": [{"name": "2020-Q2-50p-filtered", "results": []}]} | fill-mask | DouglasPontes/2020-Q2-50p-filtered-random | [
"transformers",
"pytorch",
"roberta",
"fill-mask",
"generated_from_trainer",
"base_model:cardiffnlp/twitter-roberta-base-2019-90m",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:54:16+00:00 | [] | [] | TAGS
#transformers #pytorch #roberta #fill-mask #generated_from_trainer #base_model-cardiffnlp/twitter-roberta-base-2019-90m #license-mit #autotrain_compatible #endpoints_compatible #region-us
| 2020-Q2-50p-filtered
====================
This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-2019-90m on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 2.5608
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1400
* training\_steps: 2400000
### Training results
### Framework versions
* Transformers 4.35.0.dev0
* Pytorch 2.0.1+cu117
* Datasets 2.14.5
* Tokenizers 0.14.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1400\n* training\\_steps: 2400000",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.0.dev0\n* Pytorch 2.0.1+cu117\n* Datasets 2.14.5\n* Tokenizers 0.14.0"
] | [
"TAGS\n#transformers #pytorch #roberta #fill-mask #generated_from_trainer #base_model-cardiffnlp/twitter-roberta-base-2019-90m #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1400\n* training\\_steps: 2400000",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.0.dev0\n* Pytorch 2.0.1+cu117\n* Datasets 2.14.5\n* Tokenizers 0.14.0"
] | [
68,
116,
4,
36
] | [
"passage: TAGS\n#transformers #pytorch #roberta #fill-mask #generated_from_trainer #base_model-cardiffnlp/twitter-roberta-base-2019-90m #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1400\n* training\\_steps: 2400000### Training results### Framework versions\n\n\n* Transformers 4.35.0.dev0\n* Pytorch 2.0.1+cu117\n* Datasets 2.14.5\n* Tokenizers 0.14.0"
] | [
-0.1117413267493248,
0.08874230831861496,
-0.0039034767542034388,
0.106563501060009,
0.10889201611280441,
0.004331562202423811,
0.13339129090309143,
0.1513747274875641,
-0.11910080164670944,
0.0663551390171051,
0.16229009628295898,
0.14150308072566986,
0.022086288779973984,
0.2082054615020752,
-0.03419069945812225,
-0.28311777114868164,
0.01821109466254711,
0.02344297431409359,
-0.07294027507305145,
0.13138853013515472,
0.09765790402889252,
-0.12812696397304535,
0.09741361439228058,
0.024420224130153656,
-0.18669851124286652,
-0.00030095380498096347,
0.007690057158470154,
-0.07584836333990097,
0.12133310735225677,
0.012319259345531464,
0.1005316972732544,
0.0477786660194397,
0.08055882155895233,
-0.14263372123241425,
0.014711042866110802,
0.048841919749975204,
-0.008174056187272072,
0.09757784008979797,
0.006741990335285664,
-0.024239512160420418,
0.11141932010650635,
-0.08911634236574173,
0.08182192593812943,
0.02762126550078392,
-0.14999918639659882,
-0.2567284107208252,
-0.11727443337440491,
0.06023813411593437,
0.07481466978788376,
0.0721040740609169,
0.000855995633173734,
0.1749781221151352,
-0.0482267402112484,
0.1016324907541275,
0.2769401967525482,
-0.32955271005630493,
-0.06836870312690735,
0.01103599276393652,
0.057850588113069534,
0.03677509352564812,
-0.09160957485437393,
-0.003661222755908966,
0.03909766301512718,
0.04586451128125191,
0.1506378948688507,
-0.010846715420484543,
0.0012843846343457699,
-0.009646755643188953,
-0.1256721019744873,
-0.05598984658718109,
0.11462970077991486,
0.025904903188347816,
-0.06008245423436165,
-0.05083957687020302,
-0.05861208587884903,
-0.19011549651622772,
-0.05707550048828125,
-0.015779873356223106,
0.047830451279878616,
-0.04968157038092613,
-0.11940541118383408,
-0.009679426439106464,
-0.06804446130990982,
-0.06340477615594864,
-0.056435320526361465,
0.19644735753536224,
0.04468509554862976,
0.020053178071975708,
-0.037313465029001236,
0.08522561937570572,
-0.07175852358341217,
-0.16339366137981415,
-0.022213459014892578,
0.013100825250148773,
0.01079811342060566,
-0.044057514518499374,
-0.04137136787176132,
-0.06528405845165253,
0.006278786342591047,
0.2009570300579071,
-0.09676744788885117,
0.055327560752630234,
0.029684750363230705,
0.03073776699602604,
-0.07651286572217941,
0.1600959748029709,
-0.04860556870698929,
-0.008764397352933884,
0.020646799355745316,
0.0638318881392479,
0.04285628721117973,
-0.024366313591599464,
-0.10768032819032669,
0.017458125948905945,
0.06194302812218666,
0.022588495165109634,
-0.03625950217247009,
0.07878002524375916,
-0.04696168377995491,
-0.0060384925454854965,
0.09216058999300003,
-0.09905635565519333,
0.0316757932305336,
-0.021113207563757896,
-0.08490442484617233,
-0.06256897747516632,
0.027789747342467308,
-0.0014440127415582538,
0.004370030015707016,
0.1211203932762146,
-0.09929455071687698,
0.005789054092019796,
-0.0773041620850563,
-0.13366088271141052,
0.015620437450706959,
-0.121538907289505,
0.0008794901659712195,
-0.09461162239313126,
-0.16887515783309937,
-0.00962448213249445,
0.0548691488802433,
-0.05034944415092468,
-0.046631328761577606,
-0.03750620409846306,
-0.10037586092948914,
0.03634321317076683,
-0.008588342927396297,
0.07231222838163376,
-0.06616265326738358,
0.10191351920366287,
0.050952665507793427,
0.10842028260231018,
-0.0534125454723835,
0.039808571338653564,
-0.09705410152673721,
0.03762736916542053,
-0.2618667185306549,
0.03616619110107422,
-0.06205631047487259,
0.09081954509019852,
-0.09626653045415878,
-0.11998767405748367,
0.013930544257164001,
-0.012064076960086823,
0.10604694485664368,
0.10177332162857056,
-0.17080263793468475,
-0.08077318966388702,
0.19680887460708618,
-0.08813243359327316,
-0.11738312244415283,
0.11676210910081863,
-0.05766557529568672,
0.03843294084072113,
0.05150475725531578,
0.16422677040100098,
0.07205773890018463,
-0.1449132114648819,
0.0009260662482120097,
-0.06788385659456253,
0.010607774369418621,
-0.03619106113910675,
0.060129132121801376,
0.000977395917288959,
0.08103835582733154,
0.012336699292063713,
-0.007259612902998924,
0.014383937232196331,
-0.10085906088352203,
-0.08556144684553146,
-0.03583897650241852,
-0.07939111441373825,
0.07008925825357437,
0.03996121510863304,
0.06491661816835403,
-0.14812728762626648,
-0.12279659509658813,
0.03204023465514183,
0.07651594281196594,
-0.03964541479945183,
0.039096660912036896,
-0.11711818724870682,
0.11861284077167511,
-0.025712011381983757,
-0.018519386649131775,
-0.1666514128446579,
-0.017502468079328537,
0.024351462721824646,
0.00881265103816986,
0.03392265737056732,
-0.05718609690666199,
0.09104399383068085,
0.07331941276788712,
-0.04988797754049301,
-0.013399472460150719,
-0.05109119415283203,
-0.002693295944482088,
-0.10794997215270996,
-0.21524512767791748,
-0.05336064100265503,
-0.045330960303545,
0.071998730301857,
-0.14814744889736176,
0.04713744670152664,
0.03585422411561012,
0.12396269291639328,
0.03405040130019188,
-0.022450895980000496,
-0.027823016047477722,
0.0664457380771637,
-0.029503904283046722,
-0.06480962038040161,
0.052921194583177567,
0.012120566330850124,
-0.06724116951227188,
-0.001338159665465355,
-0.1271500289440155,
0.16127435863018036,
0.13972178101539612,
-0.02210605889558792,
-0.10408981144428253,
0.018743818625807762,
-0.06232413649559021,
-0.016977889463305473,
-0.01685178093612194,
0.040530819445848465,
0.15039034187793732,
0.002192710991948843,
0.1423763483762741,
-0.086240254342556,
-0.053809646517038345,
0.06111956015229225,
-0.03394963592290878,
0.003039054572582245,
0.08465585112571716,
0.057402726262807846,
-0.09800592809915543,
0.1326301097869873,
0.12552739679813385,
-0.05096864327788353,
0.1401822715997696,
-0.03456474468111992,
-0.05249764770269394,
-0.049984682351350784,
-0.021768763661384583,
0.02061602845788002,
0.12820172309875488,
-0.08680557459592819,
-0.028866566717624664,
0.01618463732302189,
0.003767024725675583,
-0.005569281987845898,
-0.18990743160247803,
-0.02465793490409851,
0.04634557291865349,
-0.0553106963634491,
-0.08350817859172821,
0.012353168800473213,
0.005662874784320593,
0.1037704348564148,
0.04113253578543663,
-0.06588193774223328,
0.027886129915714264,
0.020440705120563507,
-0.051137395203113556,
0.18712252378463745,
-0.09879779070615768,
-0.1276322305202484,
-0.1101994439959526,
-0.09085473418235779,
-0.03389362990856171,
0.010203092359006405,
0.07219438999891281,
-0.09260788559913635,
-0.03873135894536972,
-0.07141280919313431,
-0.023898040875792503,
0.009993266314268112,
0.04175110161304474,
0.03340267390012741,
-0.011046060360968113,
0.06237487122416496,
-0.10302996635437012,
-0.02563018910586834,
-0.04071381315588951,
-0.010915334336459637,
0.06056028604507446,
0.02617265284061432,
0.11249648034572601,
0.10256693512201309,
-0.05387873947620392,
0.03801770880818367,
-0.041333042085170746,
0.242757648229599,
-0.0846392959356308,
-0.011468477547168732,
0.12172108888626099,
0.012825018726289272,
0.08341288566589355,
0.133403480052948,
0.05755862593650818,
-0.10666954517364502,
-0.0033975800033658743,
0.012600742280483246,
-0.05192101001739502,
-0.1935071349143982,
-0.02738380618393421,
-0.03846512734889984,
-0.004290454555302858,
0.11466148495674133,
0.03610358014702797,
0.05196141079068184,
0.0539095439016819,
0.018434757366776466,
0.04302144795656204,
-0.027954258024692535,
0.10569027811288834,
0.10142480581998825,
0.05657199025154114,
0.13965608179569244,
-0.048878856003284454,
-0.03830927610397339,
0.0412181131541729,
-0.0191381573677063,
0.20953038334846497,
0.004459034651517868,
0.14124998450279236,
0.06083901226520538,
0.17561574280261993,
0.02035645954310894,
0.0627557635307312,
-0.0070989360101521015,
-0.034708719700574875,
-0.005572115071117878,
-0.04762064293026924,
-0.02869177795946598,
0.022900594398379326,
-0.029093870893120766,
0.033212147653102875,
-0.1250201314687729,
0.02969825640320778,
0.050208237022161484,
0.3039047122001648,
0.03311191499233246,
-0.3769068121910095,
-0.12293008714914322,
-0.019038110971450806,
-0.03725392371416092,
-0.023643337190151215,
0.004046333488076925,
0.08255204558372498,
-0.07530678063631058,
0.08235600590705872,
-0.05960310995578766,
0.08524085581302643,
0.003186221932992339,
0.035312116146087646,
0.07654360681772232,
0.10705909878015518,
-0.022817689925432205,
0.033891744911670685,
-0.27046510577201843,
0.31238919496536255,
0.019848791882395744,
0.08721297979354858,
-0.056872837245464325,
0.004155662376433611,
0.01687939465045929,
0.06780791282653809,
0.08665984869003296,
-0.013712833635509014,
-0.10931144654750824,
-0.17208676040172577,
-0.07520546764135361,
-0.0020661738235503435,
0.11086481809616089,
-0.011292101815342903,
0.12288665771484375,
-0.0067683435045182705,
-0.016156058758497238,
0.03998424485325813,
-0.034307561814785004,
-0.04877170920372009,
-0.06602857261896133,
0.013119230046868324,
0.010372795164585114,
-0.029532382264733315,
-0.07075705379247665,
-0.11230221390724182,
-0.06491132825613022,
0.17621950805187225,
0.009095420129597187,
-0.05339804291725159,
-0.13056860864162445,
0.047835007309913635,
0.08726146817207336,
-0.0872911810874939,
0.06460403650999069,
-0.0030641022603958845,
0.09150131046772003,
-0.013036303222179413,
-0.05463656038045883,
0.1345384120941162,
-0.05654291808605194,
-0.19431990385055542,
-0.0640178918838501,
0.12189310789108276,
0.03149386867880821,
0.059926148504018784,
-0.0021528310608118773,
0.057140834629535675,
-0.017108134925365448,
-0.07065381109714508,
0.0631641298532486,
-0.05392106994986534,
0.08353668451309204,
-0.03972691297531128,
-0.0007352986140176654,
0.040666453540325165,
-0.057130903005599976,
0.0017080873949453235,
0.13671687245368958,
0.3149908185005188,
-0.11828979849815369,
0.06991393864154816,
0.0430869422852993,
-0.037735048681497574,
-0.1813860833644867,
0.01800346188247204,
0.04946097359061241,
0.0151061387732625,
0.0034034363925457,
-0.1782393455505371,
0.027012724429368973,
0.0865912064909935,
-0.024232814088463783,
0.09175342321395874,
-0.2744315266609192,
-0.13879810273647308,
0.08591417968273163,
0.1120135709643364,
0.12528347969055176,
-0.14144383370876312,
-0.03565111756324768,
-0.02068658173084259,
-0.14988528192043304,
0.07936937361955643,
-0.07191362977027893,
0.11634642630815506,
-0.03621358796954155,
0.10806981474161148,
0.0060643781907856464,
-0.05867233872413635,
0.11094969511032104,
-0.00806647352874279,
0.09731622785329819,
-0.07449864596128464,
-0.01694382354617119,
0.10814018547534943,
-0.06200766935944557,
0.0368478037416935,
-0.07508916407823563,
0.03760499879717827,
-0.07622557133436203,
-0.004223057068884373,
-0.08462780714035034,
0.03739352524280548,
-0.038768619298934937,
-0.04222799837589264,
-0.05659918114542961,
0.03133222088217735,
0.04456811770796776,
-0.02952064387500286,
0.15265443921089172,
0.01622559130191803,
0.17400622367858887,
0.1301274448633194,
0.07808653265237808,
-0.08533968776464462,
-0.03415932133793831,
0.029390977695584297,
-0.03608766943216324,
0.06462384760379791,
-0.1749192178249359,
0.02451074682176113,
0.1258762776851654,
0.03978341072797775,
0.09969158470630646,
0.06319321691989899,
-0.06048017367720604,
0.0281637292355299,
0.07975372672080994,
-0.17112205922603607,
-0.06340470165014267,
0.028659040108323097,
-0.029665185138583183,
-0.09608491510152817,
0.06554143875837326,
0.10446970164775848,
-0.07275447249412537,
-0.02344868704676628,
-0.0013997504720464349,
0.013699928298592567,
-0.04104076325893402,
0.1897146999835968,
0.047099050134420395,
0.06416602432727814,
-0.1045031026005745,
0.058908961713314056,
0.04022471234202385,
-0.07475736737251282,
0.04415654391050339,
0.1007208526134491,
-0.09263177216053009,
-0.017412666231393814,
0.031266313046216965,
0.11747020483016968,
-0.04807029664516449,
-0.022897478193044662,
-0.16812291741371155,
-0.10838915407657623,
0.08951885253190994,
0.24071639776229858,
0.06899616122245789,
-0.0014399742940440774,
-0.018600644543766975,
0.02680172026157379,
-0.1262156367301941,
0.07835084199905396,
0.04897032305598259,
0.08108421415090561,
-0.11759713292121887,
0.1638072431087494,
-0.014451398514211178,
0.05142113193869591,
-0.023943310603499413,
0.02472737245261669,
-0.10647013038396835,
0.005223301704972982,
-0.10245786607265472,
-0.03262196108698845,
-0.0555083267390728,
-0.010418026708066463,
-0.02303626760840416,
-0.05656319856643677,
-0.07087786495685577,
0.017198188230395317,
-0.11818483471870422,
-0.028816381469368935,
0.033956460654735565,
0.013244636356830597,
-0.13191772997379303,
-0.0195391196757555,
0.030028879642486572,
-0.07150375097990036,
0.07834216952323914,
0.05819489806890488,
0.008355113677680492,
0.023080209270119667,
-0.04975421354174614,
-0.0069936225190758705,
0.04325314238667488,
-0.021597987040877342,
0.08679275959730148,
-0.10736683011054993,
-0.016082147136330605,
-0.017435630783438683,
0.03619764372706413,
0.030234767124056816,
0.0974184051156044,
-0.12459724396467209,
0.033439312130212784,
0.01857498660683632,
-0.06582396477460861,
-0.05739912763237953,
0.03935407102108002,
0.09989505261182785,
-0.004362816456705332,
0.17770302295684814,
-0.09515294432640076,
0.030677547678351402,
-0.1994885951280594,
-0.01124029140919447,
-0.002031707903370261,
-0.12415632605552673,
-0.08202014863491058,
-0.024538198485970497,
0.07443790137767792,
-0.06959915161132812,
0.13190476596355438,
0.007618745323270559,
-0.0004494887834880501,
0.05600610002875328,
-0.043828338384628296,
-0.03760330751538277,
0.016695069149136543,
0.1425464153289795,
0.022721385583281517,
-0.04961730167269707,
0.07310856133699417,
0.04451168701052666,
0.07179878652095795,
0.05818787217140198,
0.20534613728523254,
0.12936682999134064,
0.0908169150352478,
0.08767683804035187,
0.07107721269130707,
-0.03239249810576439,
-0.17321716248989105,
0.03911205753684044,
-0.038238078355789185,
0.107181616127491,
-0.014307343401014805,
0.14782045781612396,
0.14590759575366974,
-0.1575630009174347,
0.05528726428747177,
-0.03217913955450058,
-0.07486901432275772,
-0.12158773839473724,
-0.07283613085746765,
-0.08757343888282776,
-0.15639826655387878,
0.023949526250362396,
-0.10286477953195572,
0.0512726716697216,
0.053713805973529816,
0.011533666402101517,
0.00017512722115498036,
0.13907544314861298,
-0.004417307209223509,
0.036098334938287735,
0.05736088007688522,
0.0012964642373844981,
-0.034561797976493835,
-0.04022805765271187,
-0.07413578033447266,
0.0015823263674974442,
-0.019934915006160736,
0.03213433176279068,
-0.025339443236589432,
-0.04171781986951828,
0.04673125594854355,
-0.012323296628892422,
-0.11544901132583618,
0.013623413629829884,
0.04452849552035332,
0.06690023839473724,
0.02040594443678856,
0.006723613012582064,
0.013912325724959373,
-0.01604856364428997,
0.18534420430660248,
-0.06999237835407257,
-0.06164238229393959,
-0.12066122144460678,
0.24943381547927856,
0.04086986929178238,
-0.027049651369452477,
0.023542260751128197,
-0.06387392431497574,
-0.006850304547697306,
0.1921892911195755,
0.21555551886558533,
-0.024138957262039185,
0.009577939286828041,
-0.015937265008687973,
-0.013819134794175625,
-0.018091995269060135,
0.08887091279029846,
0.11141575127840042,
0.02221410907804966,
-0.06574234366416931,
-0.06059093028306961,
-0.0696069598197937,
-0.018128527328372,
-0.05594881996512413,
0.049555107951164246,
0.01365341991186142,
-0.00022764022287447006,
-0.04901089146733284,
0.048558931797742844,
-0.04220384731888771,
-0.10614383965730667,
0.07888597249984741,
-0.2218085527420044,
-0.15609246492385864,
0.006230748724192381,
0.04534733667969704,
0.024355338886380196,
0.08042437583208084,
0.0036751318257302046,
-0.017810478806495667,
0.09182090312242508,
-0.012884240597486496,
-0.07091109454631805,
-0.1060347631573677,
0.10765280574560165,
-0.14123688638210297,
0.2177862524986267,
-0.04728095978498459,
0.045245710760354996,
0.13627593219280243,
0.05279651656746864,
-0.09712785482406616,
0.04719799757003784,
0.0557752400636673,
-0.07128436118364334,
-0.00593152828514576,
0.12591348588466644,
-0.025919975712895393,
0.06965957581996918,
0.044808171689510345,
-0.12124637514352798,
0.009169367142021656,
-0.09016474336385727,
-0.043572865426540375,
-0.04633810371160507,
-0.0086361737921834,
-0.03791942447423935,
0.12346231937408447,
0.21659499406814575,
-0.038487523794174194,
0.0035430039279162884,
-0.06607182323932648,
0.015655556693673134,
0.08444192260503769,
-0.01731215789914131,
-0.08125695586204529,
-0.2588791847229004,
0.018273411318659782,
0.08908741921186447,
-0.014161119237542152,
-0.2601172626018524,
-0.09156902879476547,
0.003291176399216056,
-0.04625667631626129,
-0.07124006748199463,
0.09396881610155106,
0.08286152780056,
0.06035395339131355,
-0.05426037311553955,
-0.03439834713935852,
-0.06091264635324478,
0.16892367601394653,
-0.16637039184570312,
-0.07384958863258362
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swin-tiny-patch4-window7-224-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1283
- Accuracy: 0.9804
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9149 | 0.93 | 10 | 0.3354 | 0.9085 |
| 0.2319 | 1.95 | 21 | 0.1467 | 0.9739 |
| 0.1178 | 2.79 | 30 | 0.1283 | 0.9804 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/swin-tiny-patch4-window7-224", "model-index": [{"name": "swin-tiny-patch4-window7-224-finetuned-eurosat", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9803921568627451, "name": "Accuracy"}]}]}]} | image-classification | judith0/swin-tiny-patch4-window7-224-finetuned-eurosat | [
"transformers",
"tensorboard",
"safetensors",
"swin",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:microsoft/swin-tiny-patch4-window7-224",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T17:56:53+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| swin-tiny-patch4-window7-224-finetuned-eurosat
==============================================
This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1283
* Accuracy: 0.9804
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
88,
144,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.11814381927251816,
0.16974227130413055,
-0.0024041738361120224,
0.09094271063804626,
0.10985221713781357,
0.0290885791182518,
0.1083151325583458,
0.13814033567905426,
-0.06487974524497986,
0.11599121242761612,
0.1390402764081955,
0.08525919914245605,
0.07041364163160324,
0.1526983082294464,
-0.005170814227312803,
-0.2935265004634857,
0.019174985587596893,
-0.013661847449839115,
-0.14022138714790344,
0.10979162156581879,
0.06836584210395813,
-0.12490792572498322,
0.09145715832710266,
0.004796361085027456,
-0.14185209572315216,
-0.0283809807151556,
-0.04026361182332039,
-0.04668981581926346,
0.0991845577955246,
0.03604753315448761,
0.08233592659235,
0.03278672695159912,
0.11382260173559189,
-0.2325255274772644,
0.007223593071103096,
0.07368633151054382,
0.012348897755146027,
0.097044438123703,
0.11782651394605637,
0.01603061333298683,
0.14003753662109375,
-0.1101355031132698,
0.06628452241420746,
0.04101267829537392,
-0.08314333856105804,
-0.23515570163726807,
-0.0633636862039566,
0.09087392687797546,
0.12243793159723282,
0.053388562053442,
-0.008382533676922321,
0.08175840973854065,
-0.06721076369285583,
0.0835173949599266,
0.2256951481103897,
-0.2425825148820877,
-0.07360967248678207,
0.04244425892829895,
0.030645450577139854,
0.03735183924436569,
-0.13190115988254547,
-0.006916044745594263,
0.03826853260397911,
0.003491736017167568,
0.110845647752285,
0.026437044143676758,
0.06179971992969513,
0.008209969848394394,
-0.14087574183940887,
-0.04589506983757019,
0.09503953903913498,
0.10736657679080963,
-0.01896888203918934,
-0.12125907838344574,
-0.05416242405772209,
-0.19395123422145844,
-0.044213682413101196,
0.013285402208566666,
0.03964423015713692,
-0.05639657750725746,
-0.07871226221323013,
0.029233312234282494,
-0.07188297808170319,
-0.07834962010383606,
0.04504583403468132,
0.12659133970737457,
0.06049015372991562,
-0.0038255788385868073,
0.022316768765449524,
0.11810611188411713,
0.09587424993515015,
-0.1623549610376358,
-0.00013025880616623908,
0.005692706909030676,
-0.07188023626804352,
-0.00045989122008904815,
-0.007869052700698376,
0.025065358728170395,
0.04265092685818672,
0.1410210132598877,
-0.0278797447681427,
0.07982516288757324,
0.08451367914676666,
0.021750520914793015,
-0.07901613414287567,
0.14697258174419403,
-0.08092235773801804,
-0.08839282393455505,
-0.02805238589644432,
0.11953741312026978,
0.033754896372556686,
-0.009251189418137074,
-0.08654486387968063,
0.022095810621976852,
0.1068510040640831,
0.0294138602912426,
0.0001809249515645206,
0.04244375228881836,
-0.056515149772167206,
-0.03252197429537773,
0.08729792386293411,
-0.08487360924482346,
0.04390036687254906,
0.03453263267874718,
-0.06571322679519653,
-0.009811447001993656,
0.02757243998348713,
-0.01316024549305439,
0.007655832450836897,
0.10627584159374237,
-0.09734091907739639,
-0.028446435928344727,
-0.0794561356306076,
-0.0766923800110817,
0.030973544344305992,
-0.08995334804058075,
0.015501045621931553,
-0.0854950025677681,
-0.11280905455350876,
-0.03776043653488159,
0.06484521925449371,
-0.06280957162380219,
-0.07243771851062775,
-0.0499349869787693,
-0.10029495507478714,
0.06000451371073723,
0.006726447958499193,
0.12850196659564972,
-0.05262695997953415,
0.09412200003862381,
0.0033785351552069187,
0.07839832454919815,
0.0653875321149826,
0.03622746095061302,
-0.0628853514790535,
0.06760931760072708,
-0.16307799518108368,
0.052447665482759476,
-0.0868435651063919,
0.06751690804958344,
-0.12031739205121994,
-0.10383231937885284,
-0.0072519490495324135,
-0.013105343095958233,
0.06545215100049973,
0.14308594167232513,
-0.15319567918777466,
-0.0677008405327797,
0.1452580690383911,
-0.08856828510761261,
-0.11961453408002853,
0.10591034591197968,
-0.013156902976334095,
-0.06147458404302597,
0.010814077220857143,
0.16561850905418396,
0.0837145671248436,
-0.08586810529232025,
-0.03460950776934624,
0.005184770096093416,
0.09676559269428253,
-0.0018979909364134073,
0.10332813113927841,
-0.0016409051604568958,
0.012103203684091568,
0.017407357692718506,
-0.07667072862386703,
0.07690007239580154,
-0.08954860270023346,
-0.0791160985827446,
-0.03891243040561676,
-0.08461528271436691,
0.02783469669520855,
0.06219567731022835,
0.023570340126752853,
-0.07919179648160934,
-0.1360558718442917,
0.014948957599699497,
0.12087380886077881,
-0.09633955359458923,
-0.0051430221647024155,
-0.05533672869205475,
0.07189172506332397,
-0.05401228368282318,
-0.011540866456925869,
-0.12566207349300385,
-0.07577227801084518,
0.034023042768239975,
-0.08292169868946075,
-0.015524230897426605,
-0.010133828967809677,
0.07407522201538086,
0.08958033472299576,
-0.05680384486913681,
-0.08952223509550095,
-0.05600953474640846,
0.011382726952433586,
-0.07732853293418884,
-0.25836077332496643,
-0.08091972023248672,
-0.027535835281014442,
0.14534075558185577,
-0.2541644871234894,
0.01557494979351759,
0.01330169104039669,
0.14594462513923645,
0.044699281454086304,
-0.05811721459031105,
0.004255021456629038,
0.01269449107348919,
-0.045190975069999695,
-0.10037846118211746,
0.03342217952013016,
0.0029207661282271147,
-0.10939352214336395,
-0.022220315411686897,
-0.11890383064746857,
0.12036141008138657,
0.10404244810342789,
0.012223169207572937,
-0.09399953484535217,
-0.04255092889070511,
-0.07693366706371307,
-0.05530047416687012,
-0.02161267213523388,
0.016591504216194153,
0.0841369777917862,
0.011416265740990639,
0.10699775815010071,
-0.08085896074771881,
-0.056910764425992966,
0.040959835052490234,
-0.003291965462267399,
-0.029835281893610954,
0.1394563764333725,
0.10816405713558197,
-0.07631223648786545,
0.1331985741853714,
0.1300894320011139,
-0.05338776484131813,
0.1284008026123047,
-0.057948995381593704,
-0.09724430739879608,
-0.032695937901735306,
0.02290450409054756,
0.019709113985300064,
0.15432848036289215,
-0.09135203063488007,
0.010836143977940083,
0.0267883762717247,
0.01143849827349186,
0.012467939406633377,
-0.1735856980085373,
-0.016294434666633606,
0.04597438499331474,
-0.05018903687596321,
0.01915532723069191,
-0.031070111319422722,
-0.024204649031162262,
0.09208422154188156,
0.004452943801879883,
-0.04963609576225281,
-0.003616092959418893,
-0.0064128488302230835,
-0.0815078616142273,
0.20905239880084991,
-0.07679238170385361,
-0.1486392766237259,
-0.12653066217899323,
0.03752278536558151,
-0.04176465794444084,
-0.003710478777065873,
0.01742028445005417,
-0.10583438724279404,
-0.05313071981072426,
-0.08775204420089722,
0.002281359862536192,
-0.01391256507486105,
0.05101088806986809,
0.011038961820304394,
0.016122806817293167,
0.08123451471328735,
-0.08426395058631897,
0.021264566108584404,
-0.0072328997775912285,
-0.011039472185075283,
0.03135228529572487,
0.043558698147535324,
0.11963202059268951,
0.12998910248279572,
0.017144901677966118,
0.01741175726056099,
-0.008418645709753036,
0.19013714790344238,
-0.09293084591627121,
0.030607333406805992,
0.10156884789466858,
-0.0036924558226019144,
0.05106469616293907,
0.13337431848049164,
0.044789351522922516,
-0.07353724539279938,
0.01502898894250393,
0.03336777165532112,
-0.01754765771329403,
-0.1916642189025879,
-0.031212834641337395,
-0.02738334983587265,
0.007403833791613579,
0.13211484253406525,
0.046715930104255676,
-0.03234764561057091,
0.06891697645187378,
-0.01855451613664627,
0.008648678660392761,
-0.018426168709993362,
0.07196367532014847,
0.023614464327692986,
0.04854728654026985,
0.10705950111150742,
-0.037475548684597015,
-0.022853031754493713,
0.04060487449169159,
-0.0036257607862353325,
0.21243798732757568,
-0.03070206008851528,
0.14458920061588287,
0.02501821331679821,
0.16612130403518677,
0.004497187677770853,
0.06186617538332939,
0.015741165727376938,
-0.03267094865441322,
0.005039552692323923,
-0.054224759340286255,
-0.02512923814356327,
0.05310257151722908,
0.020421521738171577,
0.05925782397389412,
-0.10855633020401001,
0.06843021512031555,
0.04663076251745224,
0.2646801471710205,
0.07458826899528503,
-0.337384968996048,
-0.09108946472406387,
0.016696814447641373,
-0.033926431089639664,
-0.045089803636074066,
0.023309268057346344,
0.1557920128107071,
-0.0863635241985321,
0.07474987208843231,
-0.08618922531604767,
0.06719069927930832,
-0.07207432389259338,
-0.004397705662995577,
0.08856675028800964,
0.10852275043725967,
0.004454663023352623,
0.07511261850595474,
-0.19303777813911438,
0.25359296798706055,
-0.008125572465360165,
0.04419192671775818,
-0.05852315202355385,
0.032096654176712036,
0.02821217104792595,
0.022801801562309265,
0.11099018156528473,
-0.003251568414270878,
-0.10316800326108932,
-0.18537229299545288,
-0.1230417937040329,
0.020907914265990257,
0.11603648215532303,
-0.08088113367557526,
0.11343847215175629,
-0.03342123329639435,
-0.03836926072835922,
0.04832754284143448,
-0.06171368807554245,
-0.08035478740930557,
-0.12592631578445435,
0.001490446855314076,
-0.03695954382419586,
0.006862795911729336,
-0.09584172815084457,
-0.10425912588834763,
-0.09676127880811691,
0.15069763362407684,
-0.10980069637298584,
-0.04013359174132347,
-0.15587465465068817,
0.10134472697973251,
0.14352765679359436,
-0.08269766718149185,
0.061053335666656494,
-0.009496820159256458,
0.1274787038564682,
0.03818948566913605,
-0.04845527932047844,
0.11267880350351334,
-0.09749873727560043,
-0.2297697514295578,
-0.05685996636748314,
0.11305726319551468,
0.03922249376773834,
0.060179516673088074,
-0.02557588741183281,
0.022015102207660675,
-0.013687844388186932,
-0.09693805128335953,
0.059124402701854706,
0.041905783116817474,
0.03782941401004791,
0.018542412668466568,
-0.037460021674633026,
0.033536892384290695,
-0.028551384806632996,
-0.03362574428319931,
0.1066024899482727,
0.27940329909324646,
-0.11810432374477386,
0.02519785240292549,
0.02823423221707344,
-0.04728928580880165,
-0.18108561635017395,
0.015232863835990429,
0.10267124325037003,
0.02317599393427372,
0.03525529429316521,
-0.17369471490383148,
0.10635930299758911,
0.08690867573022842,
-0.024440867826342583,
0.10026562958955765,
-0.29079028964042664,
-0.12183647602796555,
0.09106917679309845,
0.1347229927778244,
-0.038945090025663376,
-0.1684025079011917,
-0.05431694909930229,
-0.00511401891708374,
-0.072895348072052,
0.08750082552433014,
0.004672424867749214,
0.09845691919326782,
-0.03043711744248867,
-0.01666164956986904,
0.02307896688580513,
-0.07275304198265076,
0.16176128387451172,
-0.014210289344191551,
0.08525370806455612,
-0.0333833321928978,
0.015795711427927017,
-0.003509228117763996,
-0.07838226854801178,
0.03518878296017647,
-0.11561945825815201,
0.055928416550159454,
-0.10291468352079391,
-0.015250983648002148,
-0.07834941148757935,
0.027928071096539497,
-0.051446255296468735,
-0.04241260141134262,
-0.039377689361572266,
0.049094222486019135,
0.07723723351955414,
-0.00213112635537982,
0.13990214467048645,
0.013768875040113926,
0.0986085906624794,
0.11509643495082855,
0.05700826644897461,
0.004476644564419985,
-0.10109058022499084,
-0.03757921978831291,
-0.009946949779987335,
0.047482043504714966,
-0.14943312108516693,
0.013514060527086258,
0.128985196352005,
0.03933114558458328,
0.11608093231916428,
0.051031243056058884,
-0.05359819531440735,
-0.01681920699775219,
0.08343344181776047,
-0.11029210686683655,
-0.13463732600212097,
-0.025674045085906982,
0.005780377890914679,
-0.1618179827928543,
0.017364002764225006,
0.07502767443656921,
-0.06694440543651581,
0.005636409856379032,
0.002026827074587345,
0.050532374531030655,
0.003987528383731842,
0.1897319108247757,
0.08309847861528397,
0.07974592596292496,
-0.08596871048212051,
0.10852169245481491,
0.030452407896518707,
-0.13908684253692627,
0.024974239990115166,
0.06798632442951202,
-0.08035000413656235,
-0.01103860791772604,
0.08824864029884338,
0.09506740421056747,
-0.022442612797021866,
-0.045056089758872986,
-0.12649185955524445,
-0.11960799992084503,
0.06885568797588348,
0.06384918838739395,
0.06683176010847092,
0.021204538643360138,
-0.004696732386946678,
0.03022751398384571,
-0.10899922251701355,
0.13941149413585663,
0.07542112469673157,
0.09966527670621872,
-0.19295372068881989,
0.08785434812307358,
0.010617103427648544,
0.009053558111190796,
-0.014962075278162956,
0.05114147439599037,
-0.12320645898580551,
-0.029761778190732002,
-0.07162809371948242,
0.010215815156698227,
-0.07028356194496155,
0.008555356413125992,
0.0020356702152639627,
-0.050120916217565536,
-0.039814695715904236,
0.006841639522463083,
-0.09335638582706451,
-0.061424605548381805,
-0.00021081007434986532,
0.06288092583417892,
-0.09972429275512695,
-0.01693391427397728,
0.03768226131796837,
-0.1211831197142601,
0.0921001210808754,
0.013501663692295551,
0.04440784454345703,
0.012428313493728638,
-0.08616834133863449,
0.029268329963088036,
0.04808124527335167,
-0.002327514812350273,
0.025619681924581528,
-0.1344020813703537,
-0.0051305838860571384,
-0.04869343712925911,
-0.008570925332605839,
-0.01992763765156269,
0.04774148389697075,
-0.13550299406051636,
0.0023679316509515047,
-0.059297285974025726,
-0.050955500453710556,
-0.060876987874507904,
0.05009543523192406,
0.06885447353124619,
-0.01633392833173275,
0.16886058449745178,
-0.0756402388215065,
0.04077191650867462,
-0.2372456192970276,
-0.002047890331596136,
-0.01381664164364338,
-0.06260444968938828,
-0.08646030724048615,
-0.008718048222362995,
0.07667545229196548,
-0.050951603800058365,
0.09488306939601898,
-0.03539583086967468,
0.019186440855264664,
0.027411993592977524,
-0.03385835513472557,
0.0476042740046978,
0.05091802775859833,
0.1962803453207016,
0.01697530783712864,
-0.014404941350221634,
0.06710343062877655,
0.014986390247941017,
0.08478996157646179,
0.05753900110721588,
0.15726430714130402,
0.15257050096988678,
-0.051064807921648026,
0.10648417472839355,
0.04818900674581528,
-0.12151108682155609,
-0.15885010361671448,
0.14604589343070984,
-0.06954765319824219,
0.13243257999420166,
-0.0222480408847332,
0.17375881969928741,
0.11650650948286057,
-0.20303471386432648,
0.004171724431216717,
-0.015348877757787704,
-0.08086812496185303,
-0.09373336285352707,
-0.09803139418363571,
-0.08997128158807755,
-0.17106042802333832,
0.015541634522378445,
-0.10408300906419754,
0.006140394136309624,
0.07428136467933655,
0.02497180551290512,
0.02279614843428135,
0.16014964878559113,
0.059403203427791595,
0.025474771857261658,
0.06132526323199272,
0.04957379773259163,
-0.041991181671619415,
-0.02835831604897976,
-0.08523817360401154,
0.01836712472140789,
-0.0206491407006979,
0.03897509723901749,
-0.06391263008117676,
-0.06484486907720566,
0.08676543086767197,
0.043112341314554214,
-0.10049767047166824,
0.022494444623589516,
-0.020989086478948593,
0.04152746498584747,
0.06305938214063644,
0.011343630030751228,
0.008935284800827503,
-0.04583534225821495,
0.2013339400291443,
-0.09310416132211685,
-0.008986612781882286,
-0.11420256644487381,
0.17169809341430664,
-0.016034496948122978,
-0.008557060733437538,
0.03378836065530777,
-0.0894700363278389,
-0.007434369996190071,
0.15312552452087402,
0.15811017155647278,
-0.04563260078430176,
-0.023002026602625847,
0.018880847841501236,
-0.0150023577734828,
-0.04154648259282112,
0.09045207500457764,
0.09287853538990021,
0.052420683205127716,
-0.07005810737609863,
-0.047604937106370926,
-0.04161848500370979,
-0.05694819986820221,
-0.030978752300143242,
0.05625839903950691,
0.03579931706190109,
-0.007233873941004276,
-0.044757917523384094,
0.07526443153619766,
-0.04324604570865631,
-0.1171799898147583,
0.08940480649471283,
-0.17892269790172577,
-0.17422471940517426,
-0.03253738209605217,
0.08726543933153152,
0.014410504139959812,
0.04669886454939842,
-0.0029888141434639692,
-0.021554477512836456,
0.09801476448774338,
-0.004000447224825621,
-0.08371381461620331,
-0.08363434672355652,
0.0448252335190773,
-0.047447141259908676,
0.23809893429279327,
-0.02878226712346077,
0.008024758659303188,
0.12692786753177643,
0.03594895079731941,
-0.1396019458770752,
0.01033905241638422,
0.07631164789199829,
-0.09845609217882156,
0.04676299914717674,
0.15140984952449799,
-0.02666958048939705,
0.1199394166469574,
0.04229231923818588,
-0.0964050441980362,
-0.009496591053903103,
-0.07712478935718536,
-0.056074369698762894,
-0.055537644773721695,
0.0032333717681467533,
-0.03849729895591736,
0.15741923451423645,
0.1995892971754074,
-0.06064745783805847,
-0.03576591610908508,
-0.045536961406469345,
0.03825078904628754,
0.048714566975831985,
0.09296419471502304,
0.0067589799873530865,
-0.23174762725830078,
0.02902384288609028,
-0.03105073794722557,
0.021877096965909004,
-0.19543565809726715,
-0.09242235869169235,
0.01791178621351719,
-0.0494527630507946,
-0.09898016601800919,
0.10537013411521912,
0.07611532509326935,
0.04911021143198013,
-0.059775955975055695,
-0.038034405559301376,
-0.05411726236343384,
0.15656906366348267,
-0.16569006443023682,
-0.07779229432344437
] |
null | null | diffusers |
# SDXL-Turbo
It is lora fine-tuned model based on stabilityai/sdxl-turbo
## Examples
<Gallery />
## Usage
You can use it via interface api:
```Python
import requests
import io
from PIL import Image
API_URL = "https://api-inference.huggingface.co/models/kviai/sdxl-turbo"
headers = {"Authorization": "Bearer YOUR_HF_API_TOKEN"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
image_bytes = query({
"inputs": "Astronaut riding a horse",
})
image = Image.open(io.BytesIO(image_bytes))
```
Or you can download model from Files and Versions tab | {"language": ["en", "ru", "fr"], "license": "other", "library_name": "diffusers", "tags": ["text2image", "sdxl", "sdlx-turbo", "turbo", "kviai", "stable diffusion xl"], "license_name": "sai-nc-community", "license_link": "https://huggingface.co/stabilityai/sdxl-turbo/blob/main/LICENSE.TXT", "pipeline_tag": "text-to-image", "widget": [{"text": "astronaut riding a horse", "output": {"url": "https://github.com/woctezuma/stable-diffusion-colab/wiki/img/astronaut_2xl.jpg"}}, {"text": "a cute cat", "output": {"url": "https://lh3.googleusercontent.com/proxy/mZL2Ls9NjwuvPaVlOKnHAl8wXlRzPwM0uH6Df5dWStLXVjMqK1ct2WP6kdJtUQyO-dfRHbMDp7K6CSBQWSZptABAJ2s3SHWGdjGYdzaZpjAB1cl4SBm8PQ"}}], "base_model": "stabilityai/sdxl-turbo", "instance_prompt": "<lora:lcm-lora-sdxl-turbo:1>"} | text-to-image | kviai/sdxl-turbo | [
"diffusers",
"text2image",
"sdxl",
"sdlx-turbo",
"turbo",
"kviai",
"stable diffusion xl",
"text-to-image",
"en",
"ru",
"fr",
"base_model:stabilityai/sdxl-turbo",
"license:other",
"region:us"
] | 2024-02-13T17:57:14+00:00 | [] | [
"en",
"ru",
"fr"
] | TAGS
#diffusers #text2image #sdxl #sdlx-turbo #turbo #kviai #stable diffusion xl #text-to-image #en #ru #fr #base_model-stabilityai/sdxl-turbo #license-other #region-us
|
# SDXL-Turbo
It is lora fine-tuned model based on stabilityai/sdxl-turbo
## Examples
<Gallery />
## Usage
You can use it via interface api:
Or you can download model from Files and Versions tab | [
"# SDXL-Turbo\n\nIt is lora fine-tuned model based on stabilityai/sdxl-turbo",
"## Examples\n\n<Gallery />",
"## Usage\n\nYou can use it via interface api:\n\nOr you can download model from Files and Versions tab"
] | [
"TAGS\n#diffusers #text2image #sdxl #sdlx-turbo #turbo #kviai #stable diffusion xl #text-to-image #en #ru #fr #base_model-stabilityai/sdxl-turbo #license-other #region-us \n",
"# SDXL-Turbo\n\nIt is lora fine-tuned model based on stabilityai/sdxl-turbo",
"## Examples\n\n<Gallery />",
"## Usage\n\nYou can use it via interface api:\n\nOr you can download model from Files and Versions tab"
] | [
70,
27,
8,
23
] | [
"passage: TAGS\n#diffusers #text2image #sdxl #sdlx-turbo #turbo #kviai #stable diffusion xl #text-to-image #en #ru #fr #base_model-stabilityai/sdxl-turbo #license-other #region-us \n# SDXL-Turbo\n\nIt is lora fine-tuned model based on stabilityai/sdxl-turbo## Examples\n\n<Gallery />## Usage\n\nYou can use it via interface api:\n\nOr you can download model from Files and Versions tab"
] | [
-0.09851590543985367,
-0.015283248387277126,
-0.003489050781354308,
0.016831671819090843,
0.056184448301792145,
-0.0043905675411224365,
0.20879752933979034,
0.018808236345648766,
0.13527391850948334,
0.03661216050386429,
0.08921640366315842,
0.05686622112989426,
0.03175918385386467,
0.18300628662109375,
-0.050140704959630966,
-0.17989206314086914,
0.017029574140906334,
-0.036971334367990494,
-0.08565272390842438,
0.05601564049720764,
0.06461232900619507,
-0.06581732630729675,
0.14921128749847412,
-0.00477278558537364,
-0.0616532638669014,
0.017677439376711845,
0.03872218355536461,
-0.04214810952544212,
0.04316743090748787,
0.11437374353408813,
0.041491251438856125,
0.14302363991737366,
0.1301499307155609,
-0.10485599935054779,
0.06971684098243713,
0.013216863386332989,
-0.038732245564460754,
0.036002472043037415,
0.029798761010169983,
0.010013135150074959,
0.29496893286705017,
0.07515139132738113,
-0.06737525016069412,
-0.031849026679992676,
-0.049705494195222855,
-0.03645594045519829,
-0.027267057448625565,
0.009135081432759762,
0.10167265683412552,
-0.007872378453612328,
0.04167667403817177,
-0.051406897604465485,
-0.08081058412790298,
0.0516434945166111,
0.13720767199993134,
-0.1815096139907837,
-0.04042501002550125,
0.149858295917511,
0.02663601003587246,
0.08182722330093384,
-0.02526204288005829,
0.12075228989124298,
0.028200512751936913,
-0.061653122305870056,
0.049310725182294846,
-0.06514563411474228,
-0.007946019060909748,
0.025974242016673088,
-0.046848878264427185,
0.046818654984235764,
0.30519211292266846,
0.011109663173556328,
-0.03727623075246811,
-0.07866238802671432,
-0.07073450833559036,
0.15740932524204254,
-0.08130958676338196,
-0.05770846828818321,
0.0017545819282531738,
0.04042232781648636,
0.0911092460155487,
-0.07088634371757507,
-0.09212010353803635,
-0.13894864916801453,
-0.05652236565947533,
0.18816377222537994,
0.011552047915756702,
0.11134343594312668,
-0.02448161505162716,
0.11060605198144913,
-0.14411726593971252,
-0.12247887998819351,
0.0024736549239605665,
-0.11133437603712082,
0.04091636836528778,
0.10967981070280075,
-0.011630510911345482,
-0.13669385015964508,
0.08544491231441498,
0.08977070450782776,
0.0227348729968071,
-0.019623208791017532,
0.06499006599187851,
0.06024809181690216,
0.047138433903455734,
-0.000044898642954649404,
-0.07496211677789688,
-0.08779039233922958,
0.0726342648267746,
0.03970379754900932,
0.10882558673620224,
-0.06608405709266663,
-0.11632539331912994,
0.03769788146018982,
-0.15645498037338257,
-0.0022567007690668106,
0.005686972755938768,
0.01115165650844574,
-0.0945633202791214,
-0.04025884345173836,
0.2491503208875656,
-0.03336213156580925,
-0.0147091718390584,
-0.011453081853687763,
-0.021770702674984932,
0.17715919017791748,
0.13109733164310455,
0.005639183800667524,
0.08486565202474594,
0.07311467826366425,
-0.05207320675253868,
-0.005764882080256939,
-0.04641382396221161,
-0.055804863572120667,
-0.039418503642082214,
-0.08596201241016388,
0.03576703742146492,
-0.1380358189344406,
-0.3175072968006134,
0.05469301715493202,
0.06073489040136337,
-0.07049337774515152,
0.01737273298203945,
0.004503345116972923,
-0.0035778600722551346,
0.045597467571496964,
-0.0007443683571182191,
-0.06078679487109184,
-0.06921868026256561,
0.01690603978931904,
0.04322180524468422,
0.12725375592708588,
-0.17312797904014587,
0.01378393080085516,
-0.04666300490498543,
0.04654979705810547,
-0.14035524427890778,
0.0650557205080986,
-0.17299135029315948,
-0.04807743430137634,
-0.003379934001713991,
0.02146921493113041,
-0.13870522379875183,
0.07191730290651321,
0.047798193991184235,
0.1860525757074356,
-0.22413349151611328,
-0.07759784162044525,
0.11054426431655884,
-0.2219695746898651,
-0.08430501818656921,
0.05743341147899628,
0.032402828335762024,
0.028335127979516983,
0.051248155534267426,
0.07958149164915085,
0.02766549400985241,
-0.28072255849838257,
0.04351987689733505,
0.1347782015800476,
-0.04893120750784874,
-0.032059166580438614,
0.06336887925863266,
0.08582039177417755,
0.03887906298041344,
0.09887595474720001,
-0.1655634343624115,
0.11220648884773254,
-0.035747725516557693,
-0.035844311118125916,
-0.06002204120159149,
-0.07110602408647537,
0.03289378806948662,
0.04129667580127716,
0.031609173864126205,
0.04848803952336311,
-0.04840555787086487,
0.010501296259462833,
0.14726288616657257,
-0.0256353747099638,
-0.015910565853118896,
-0.08224914968013763,
0.1902816891670227,
-0.10877399891614914,
0.029599575325846672,
-0.10368020832538605,
-0.03636137768626213,
0.006736698094755411,
0.2209894210100174,
0.034960027784109116,
0.14429201185703278,
0.09814409911632538,
0.06079237535595894,
-0.048711422830820084,
-0.01587015390396118,
0.018255585804581642,
-0.0015853034565225244,
-0.012645752169191837,
-0.1548728495836258,
-0.014413617551326752,
-0.07999950647354126,
0.09289871901273727,
-0.20947425067424774,
-0.004449591040611267,
0.05889885500073433,
0.07472600787878036,
0.07365797460079193,
-0.007342264521867037,
0.008380115032196045,
0.014275990426540375,
-0.08714324980974197,
-0.007049975451081991,
0.008124091662466526,
0.007899926975369453,
-0.026454826816916466,
0.15144872665405273,
-0.029053833335638046,
0.17114979028701782,
0.1388787180185318,
0.08180340379476547,
0.01292054820805788,
-0.037007853388786316,
0.021158521994948387,
0.01284213736653328,
-0.012259972281754017,
-0.025671808049082756,
-0.02864413522183895,
0.0021820981055498123,
0.07449126243591309,
-0.06858710944652557,
0.09027684479951859,
0.026399292051792145,
-0.06621420383453369,
-0.003598433453589678,
0.034412045031785965,
0.25170186161994934,
0.013402464799582958,
0.050742149353027344,
0.1439514458179474,
-0.055448926985263824,
0.1467684805393219,
-0.04056645929813385,
-0.10306872427463531,
-0.02287493646144867,
0.009927689097821712,
0.019894376397132874,
0.16829228401184082,
0.02431628294289112,
-0.023339416831731796,
0.04947393760085106,
-0.07160112261772156,
0.01620384491980076,
-0.10176070779561996,
-0.016133742406964302,
0.035904981195926666,
-0.08816879987716675,
0.08064033091068268,
0.12397629767656326,
-0.1205328181385994,
0.05573749169707298,
-0.11618304252624512,
-0.08387584239244461,
-0.05911540612578392,
0.0025560788344591856,
0.002743129152804613,
0.06799396872520447,
-0.0971183329820633,
-0.16305939853191376,
-0.1152845099568367,
0.03717775642871857,
-0.09786935150623322,
0.0332612544298172,
0.015364853665232658,
-0.01908695325255394,
-0.11561480909585953,
-0.0848345085978508,
-0.0223633274435997,
0.11337973177433014,
-0.060317907482385635,
-0.0350925549864769,
-0.014460576698184013,
-0.03890899941325188,
-0.0890698954463005,
-0.024003470316529274,
-0.02201838605105877,
0.04909355193376541,
0.07425209134817123,
0.02359229326248169,
0.1387813836336136,
0.049429021775722504,
0.07260631024837494,
0.004422543104737997,
0.09265550971031189,
0.12262991815805435,
-0.03649194911122322,
0.10850787907838821,
0.24770401418209076,
0.07339030504226685,
0.045537564903497696,
0.03975331410765648,
0.0359572134912014,
-0.04398548975586891,
-0.002919452963396907,
-0.0363868847489357,
-0.13147525489330292,
-0.07245214283466339,
-0.12392081320285797,
-0.07841072231531143,
0.009480906650424004,
-0.05688600614666939,
0.05452094227075577,
0.005705696530640125,
0.13753846287727356,
0.03378622233867645,
-0.05043186992406845,
0.007366011384874582,
0.00812636036425829,
0.02720060758292675,
-0.03467550128698349,
0.0993979275226593,
-0.07792607694864273,
-0.0047217863611876965,
0.17147669196128845,
0.02031327411532402,
0.12056323885917664,
-0.05272288993000984,
0.02223425917327404,
0.08450594544410706,
0.09221168607473373,
0.08973527699708939,
0.07942211627960205,
-0.013728227466344833,
-0.06456271559000015,
-0.06026001274585724,
-0.0807277113199234,
-0.048746783286333084,
0.10140864551067352,
-0.01305097434669733,
-0.0671146884560585,
0.0652020126581192,
0.1580091267824173,
0.0008220926392823458,
0.014626925811171532,
0.027743106707930565,
-0.2435232698917389,
0.02498861402273178,
0.04884946346282959,
0.09498929232358932,
-0.007433862891048193,
0.026831645518541336,
0.16657425463199615,
-0.03151146322488785,
0.06443262845277786,
0.009373449720442295,
0.06643640249967575,
0.01705082133412361,
-0.07183098793029785,
-0.053825631737709045,
0.14680002629756927,
0.022333884611725807,
0.0016470769187435508,
-0.06134277954697609,
0.10482207685709,
-0.000715372443664819,
0.011610763147473335,
0.012198049575090408,
0.0301501601934433,
0.09720366448163986,
0.1782238632440567,
0.09675756841897964,
0.009456250816583633,
-0.10465384274721146,
-0.022858384996652603,
-0.11277137696743011,
-0.001064353040419519,
0.016308212652802467,
-0.024860354140400887,
-0.004367203917354345,
-0.03271554037928581,
-0.035489827394485474,
0.010787662118673325,
0.051293130964040756,
-0.17998874187469482,
-0.1325402408838272,
0.012413425371050835,
0.07604565471410751,
-0.07014559954404831,
-0.06714709103107452,
-0.030683794990181923,
-0.06064267084002495,
0.09847787022590637,
0.11553715914487839,
-0.07603435963392258,
-0.11842437833547592,
-0.11517560482025146,
0.04971160367131233,
-0.058140870183706284,
0.028104420751333237,
-0.01132330670952797,
0.03733065724372864,
0.0016399560263380408,
-0.13918951153755188,
0.04593969136476517,
-0.12321873754262924,
-0.02183138206601143,
-0.04970035329461098,
0.033838823437690735,
-0.02700839191675186,
-0.05794219672679901,
0.024057287722826004,
0.007821823470294476,
0.00007604023994645104,
-0.118107371032238,
0.007012758869677782,
0.15192881226539612,
-0.12315694242715836,
0.05598028376698494,
0.007875687442719936,
-0.010907694697380066,
0.08037583529949188,
-0.03821021690964699,
0.00550722936168313,
0.13699105381965637,
-0.06611606478691101,
0.16170182824134827,
0.1738787293434143,
-0.028957027941942215,
-0.2944179177284241,
-0.18605032563209534,
-0.02756216935813427,
0.04185772314667702,
0.09557656198740005,
-0.09223626554012299,
0.13145671784877777,
0.08549362421035767,
-0.05439348891377449,
0.16709432005882263,
-0.26354357600212097,
-0.09446655213832855,
0.07161667197942734,
0.11424314230680466,
0.19154968857765198,
-0.1697552651166916,
-0.07446438819169998,
-0.06938177347183228,
-0.1671326756477356,
0.03144567087292671,
-0.06301326304674149,
0.02814759872853756,
-0.06717169284820557,
-0.07154159247875214,
-0.012337635271251202,
-0.027231575921177864,
0.1727876365184784,
-0.10429561138153076,
0.07720430940389633,
-0.0794655829668045,
0.06350263208150864,
0.18903577327728271,
-0.025600548833608627,
0.09050171077251434,
-0.2627994418144226,
0.08791277557611465,
-0.10485410690307617,
-0.02864956110715866,
0.015327624045312405,
0.05210692808032036,
0.008008626289665699,
-0.02247452735900879,
-0.010959639213979244,
-0.022875294089317322,
-0.055020373314619064,
0.01690848544239998,
-0.0021834862418472767,
-0.03908071666955948,
-0.06684945523738861,
0.2535490393638611,
-0.0054207234643399715,
-0.014321514405310154,
-0.08661137521266937,
-0.07684041559696198,
-0.007144773844629526,
0.09975351393222809,
-0.15696142613887787,
-0.024317624047398567,
0.05851636826992035,
0.05322173237800598,
0.06381634622812271,
-0.021732667461037636,
-0.013284276239573956,
0.11168744415044785,
0.11848940700292587,
-0.13195446133613586,
-0.1178024485707283,
-0.07329440116882324,
-0.045800577849149704,
0.10565018653869629,
0.06278693675994873,
0.1328999251127243,
-0.04020495340228081,
0.048573534935712814,
-0.01650075986981392,
0.052426595240831375,
-0.0590512678027153,
0.11356056481599808,
0.04181830585002899,
-0.03299859166145325,
-0.0854635089635849,
0.07034369558095932,
-0.07179752737283707,
0.06250012665987015,
-0.06054037809371948,
-0.00475687300786376,
-0.10124587267637253,
-0.06528226286172867,
-0.04947580769658089,
0.09273600578308105,
-0.036147139966487885,
-0.06456415355205536,
-0.07418961822986603,
-0.08546117693185806,
-0.03322456777095795,
-0.06316735595464706,
0.05602710694074631,
-0.016697650775313377,
-0.05217868089675903,
0.005777424667030573,
0.017824679613113403,
0.09911629557609558,
0.13182476162910461,
0.08271944522857666,
-0.24373535811901093,
-0.17841733992099762,
-0.021715804934501648,
-0.00862819328904152,
-0.08477042615413666,
-0.020015720278024673,
-0.06949517130851746,
-0.013936608098447323,
-0.20419582724571228,
0.07403460890054703,
-0.1142139583826065,
-0.021061670035123825,
-0.0012641482753679156,
-0.08798924833536148,
-0.03469720482826233,
0.03156336769461632,
-0.052054278552532196,
0.030067795887589455,
0.009206236340105534,
0.048279665410518646,
-0.055719874799251556,
-0.05565904453396797,
0.012584758922457695,
-0.045661091804504395,
0.012757469899952412,
0.11355371028184891,
-0.03498074784874916,
0.04205232113599777,
-0.21649543941020966,
0.003327012760564685,
0.10398726910352707,
0.1169317364692688,
0.020913343876600266,
0.04335026070475578,
0.04800611361861229,
0.030947111546993256,
0.004481219686567783,
-0.0824505016207695,
-0.0064847590401768684,
-0.07150351256132126,
0.05889131873846054,
-0.103509321808815,
-0.05955992266535759,
-0.033694226294755936,
0.060885701328516006,
0.23767982423305511,
0.1429663896560669,
0.12529584765434265,
-0.07768353074789047,
0.0035722360480576754,
-0.07330235093832016,
0.04674079641699791,
0.013802492059767246,
-0.04689665138721466,
-0.08035556226968765,
-0.09574028849601746,
-0.002458094386383891,
-0.013938039541244507,
0.16952437162399292,
0.04024703800678253,
-0.16366155445575714,
-0.06736288219690323,
-0.03531266376376152,
0.13358162343502045,
-0.0066629513166844845,
0.1989777833223343,
0.06870730966329575,
0.08154981583356857,
-0.1463117152452469,
0.043578457087278366,
0.06607071310281754,
-0.09473001956939697,
0.022662149742245674,
0.11103249341249466,
-0.0717117115855217,
0.0897817611694336,
0.08616197854280472,
-0.007134611718356609,
-0.04985154792666435,
-0.020864121615886688,
-0.217598557472229,
0.05131816864013672,
-0.05378449335694313,
0.08468177169561386,
0.13561223447322845,
-0.06356087327003479,
-0.0044702026061713696,
0.07676442712545395,
-0.031745895743370056,
-0.10825755447149277,
-0.23914268612861633,
-0.08195675909519196,
-0.24871331453323364,
0.04451708495616913,
-0.08302763849496841,
0.015204020775854588,
0.0366402193903923,
0.006259563844650984,
0.00010387977818027139,
0.07857587933540344,
-0.007326777093112469,
-0.061566296964883804,
0.04341324791312218,
-0.03232089802622795,
-0.14328093826770782,
0.012622605077922344,
-0.033010244369506836,
0.022121144458651543,
0.013703943230211735,
-0.04746129363775253,
0.02939510904252529,
-0.015800409018993378,
0.036530714482069016,
0.04044687747955322,
-0.025723772123456,
-0.03386949002742767,
0.0025834885891526937,
0.0123672503978014,
0.08739452064037323,
0.04847760871052742,
-0.00911618396639824,
0.01901782490313053,
0.12873029708862305,
-0.05703773722052574,
-0.06743156164884567,
-0.0958915650844574,
0.06250234693288803,
-0.09549915045499802,
0.11115069687366486,
0.00614602817222476,
-0.04215504229068756,
-0.025655655190348625,
0.18395642936229706,
0.18409979343414307,
-0.09982369095087051,
0.03232761472463608,
-0.04295117035508156,
-0.0033770897425711155,
-0.09613163769245148,
0.0760316252708435,
-0.01111327949911356,
0.25745105743408203,
0.018304375931620598,
-0.04552021995186806,
-0.09139569103717804,
-0.052445970475673676,
-0.06031138822436333,
-0.08290575444698334,
-0.03713789954781532,
-0.10053236782550812,
-0.07243503630161285,
0.048587262630462646,
-0.06803308427333832,
-0.10861100256443024,
0.05515067279338837,
-0.0030233371071517467,
-0.011943085119128227,
-0.11124558746814728,
0.024553870782256126,
0.0784948319196701,
-0.014876342378556728,
-0.12317720055580139,
0.016629211604595184,
0.08211643993854523,
0.029981503263115883,
-0.08409658074378967,
0.020942673087120056,
0.0192300695925951,
-0.1139688566327095,
0.05002822354435921,
-0.04904239624738693,
0.03268186375498772,
0.0244895089417696,
0.01840192824602127,
-0.04252029210329056,
0.10963259637355804,
-0.014616882428526878,
-0.1364954262971878,
-0.03700699657201767,
0.007005966268479824,
-0.04028690233826637,
0.061915747821331024,
0.03535033389925957,
-0.03691891208291054,
0.02552497573196888,
0.16107001900672913,
-0.08153440058231354,
-0.05708085000514984,
0.049147896468639374,
-0.11501444876194,
0.09553373605012894,
0.030613554641604424,
0.010763788595795631,
-0.0418027900159359,
-0.00638505769893527,
0.14587382972240448,
0.04597000032663345,
0.0011247147340327501,
0.052374571561813354,
-0.04009735956788063,
-0.06028398871421814,
0.021236971020698547,
0.04288939759135246,
-0.0692930743098259,
-0.032569125294685364,
-0.13982965052127838,
0.007737862411886454,
0.01052319910377264,
0.05682289972901344,
0.20646078884601593,
0.002760276198387146,
0.006082581356167793,
-0.15897156298160553,
0.007923628203570843,
0.04807501658797264,
-0.07292104512453079,
-0.028188088908791542
] |
null | null | transformers |
# Mixtral MOE 5x7B
MoE of the following models :
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
* [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp)
* [ignos/Mistral-T5-7B-v1](https://huggingface.co/ignos/Mistral-T5-7B-v1)
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
``` | {"license": "cc-by-nc-4.0"} | text-generation | LoneStriker/Mixtral_7Bx5_MoE_30B-4.65bpw-h6-exl2 | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:58:09+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Mixtral MOE 5x7B
MoE of the following models :
* Toten5/Marcoroni-neural-chat-7B-v1
* NurtureAI/neural-chat-7b-v3-16k
* mncai/mistral-7b-dpo-v6
* cookinai/CatMacaroni-Slerp
* ignos/Mistral-T5-7B-v1
gpu code example
CPU example
| [
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
58,
98
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
-0.13265983760356903,
0.032811205834150314,
0.0016681700944900513,
0.06005237251520157,
0.09170277416706085,
0.05486174672842026,
0.1754031479358673,
0.08827437460422516,
0.048426054418087006,
0.04822719842195511,
0.10930546373128891,
0.15147005021572113,
0.050271473824977875,
0.07607264816761017,
-0.041551947593688965,
-0.12304753065109253,
0.13822826743125916,
0.0285372044891119,
0.018767034634947777,
0.07113507390022278,
0.09234799444675446,
-0.045219406485557556,
0.10612381994724274,
-0.027028348296880722,
-0.1984025537967682,
-0.04531659558415413,
0.0059092091396451,
-0.04503824561834335,
0.10345133394002914,
0.09167052805423737,
0.02468385361135006,
0.05491048842668533,
0.05525398999452591,
-0.047444041818380356,
0.02953178808093071,
0.04105483368039131,
-0.015743371099233627,
0.08048006147146225,
0.10315034538507462,
0.046506043523550034,
0.07312776893377304,
0.0571342408657074,
-0.021097008138895035,
0.035699307918548584,
0.018450820818543434,
-0.0437827967107296,
-0.008665810339152813,
0.04507621377706528,
0.05793994665145874,
0.0792449563741684,
0.015002762898802757,
0.1917630136013031,
-0.0028631084132939577,
0.09410560131072998,
0.13915416598320007,
-0.2718551754951477,
-0.05056018382310867,
0.13085082173347473,
0.0916370153427124,
0.06428710371255875,
0.018235111609101295,
0.02555820718407631,
0.039636820554733276,
0.0031501944176852703,
-0.06455228477716446,
-0.021980848163366318,
0.012090848758816719,
-0.03641531616449356,
-0.10100672394037247,
0.03175126016139984,
0.12783773243427277,
-0.01871788129210472,
-0.012944400310516357,
-0.06200869008898735,
-0.10857585817575455,
0.012746433727443218,
-0.05880852788686752,
-0.047148652374744415,
-0.07286347448825836,
0.04218289256095886,
0.1049298644065857,
0.07159604132175446,
-0.03756077215075493,
-0.1395968794822693,
-0.03131239861249924,
0.16100303828716278,
0.031219836324453354,
0.010522501543164253,
-0.021792003884911537,
0.059254713356494904,
0.028613245114684105,
-0.06863578408956528,
-0.0012622170615941286,
-0.04667212441563606,
-0.03568123281002045,
-0.005251494236290455,
-0.09649239480495453,
-0.054846517741680145,
0.056380558758974075,
0.04986369609832764,
0.04993335157632828,
0.06519204378128052,
0.04177093133330345,
0.012200085446238518,
-0.0973709300160408,
-0.04077140614390373,
-0.09576639533042908,
-0.08472820371389389,
0.010962272994220257,
0.08735537528991699,
0.05046290159225464,
-0.022282809019088745,
-0.1383192241191864,
-0.07204660028219223,
0.07936861366033554,
0.007562451064586639,
-0.026277069002389908,
0.11840388923883438,
-0.04044025391340256,
-0.03969082981348038,
0.16800281405448914,
-0.06999586522579193,
0.0265493206679821,
0.07418541610240936,
-0.0032649009954184294,
0.03415559232234955,
-0.009450617246329784,
-0.019333822652697563,
-0.0457611009478569,
-0.08098877966403961,
-0.1161646619439125,
-0.042938411235809326,
-0.09060145914554596,
-0.09032420068979263,
0.043551646173000336,
0.035354144871234894,
-0.032337091863155365,
-0.16533109545707703,
-0.12757019698619843,
0.04656510055065155,
0.0637110024690628,
-0.07433835417032242,
0.07604158669710159,
-0.006164343096315861,
-0.02737729251384735,
0.03098740056157112,
0.022463470697402954,
0.03237934038043022,
-0.021810641512274742,
0.043203018605709076,
0.06473270058631897,
0.04523825645446777,
-0.06388343870639801,
0.015224343165755272,
-0.061199165880680084,
0.031894490122795105,
-0.10606493800878525,
0.0010015327716246247,
-0.058403920382261276,
0.07756669819355011,
-0.05844087153673172,
-0.004984809551388025,
-0.04675336927175522,
0.02938850224018097,
0.047615207731723785,
0.14076733589172363,
-0.14450693130493164,
-0.021755050867795944,
0.07503322511911392,
-0.1571515053510666,
-0.1603517234325409,
0.14260075986385345,
0.036776404827833176,
0.02125180885195732,
0.04470129683613777,
0.04594897851347923,
0.18468056619167328,
-0.08220665156841278,
-0.017173947766423225,
-0.012627649120986462,
0.021156422793865204,
-0.12655363976955414,
0.038768935948610306,
0.08653443306684494,
-0.15033215284347534,
0.05520832538604736,
-0.003970526624470949,
0.002437459770590067,
-0.01783961057662964,
-0.028730953112244606,
-0.09970277547836304,
-0.06624005734920502,
0.008432036265730858,
0.03948491811752319,
0.028305526822805405,
-0.03595494106411934,
-0.0635642409324646,
-0.06782369315624237,
0.10156653821468353,
-0.12593761086463928,
-0.013382266275584698,
-0.13813196122646332,
0.14065006375312805,
-0.08364655822515488,
0.0673578754067421,
-0.14024285972118378,
-0.02271796390414238,
0.07403683662414551,
-0.023558873683214188,
-0.025787224993109703,
-0.011082068085670471,
0.06336887180805206,
0.0963461846113205,
0.013275811448693275,
0.021604692563414574,
0.132207453250885,
0.04225382208824158,
-0.07198466360569,
-0.1677282154560089,
-0.021196195855736732,
-0.057417042553424835,
0.21136021614074707,
-0.184984028339386,
0.0377490259706974,
0.11884945631027222,
0.1211910992860794,
-0.03961078077554703,
0.009264692664146423,
-0.04526267573237419,
0.03171325847506523,
-0.07233580201864243,
0.0065973252058029175,
0.07916668802499771,
-0.019518792629241943,
-0.05798916146159172,
0.04363157972693443,
-0.22891731560230255,
0.0936889499425888,
0.12157922983169556,
0.00980803556740284,
-0.02253561280667782,
-0.08021403104066849,
0.027509551495313644,
-0.04887164384126663,
0.10130594670772552,
-0.07462489604949951,
-0.008430419489741325,
-0.057202160358428955,
0.09269620478153229,
-0.07001881301403046,
0.021399881690740585,
0.06034783273935318,
0.06093079596757889,
-0.06224990636110306,
0.07526913285255432,
0.16095975041389465,
-0.20012691617012024,
0.08113615214824677,
0.13425502181053162,
-0.05255484580993652,
0.12088142335414886,
0.026094749569892883,
-0.022781871259212494,
-0.0248920489102602,
0.028399452567100525,
0.04348624497652054,
0.0740995854139328,
-0.07856515794992447,
0.007849497720599174,
0.02396395616233349,
-0.008421944454312325,
0.07247395068407059,
-0.13180844485759735,
0.05588517338037491,
-0.04657885432243347,
-0.04360083490610123,
0.09979331493377686,
0.011265315115451813,
-0.03415970876812935,
0.08838693797588348,
-0.06092541292309761,
-0.19272583723068237,
0.07253647595643997,
-0.003231384325772524,
-0.10127317905426025,
0.19590944051742554,
-0.15054811537265778,
-0.19092904031276703,
-0.18068858981132507,
0.018074538558721542,
-0.06307666748762131,
0.04179096966981888,
0.008487730287015438,
0.006950183305889368,
-0.10110025107860565,
-0.1408982127904892,
-0.0427841953933239,
0.12416139990091324,
0.036380525678396225,
0.018678680062294006,
0.0070695579051971436,
-0.04079899936914444,
-0.10504253953695297,
0.03484721854329109,
0.030889421701431274,
-0.03469151258468628,
0.0488390251994133,
-0.1173926442861557,
0.07332655042409897,
0.18479254841804504,
0.050573576241731644,
-0.0322006419301033,
0.003276488510891795,
0.12326061725616455,
-0.05471964552998543,
0.0741860419511795,
0.13291893899440765,
-0.0161118246614933,
-0.008379444479942322,
0.14995242655277252,
-0.012121028266847134,
-0.057627011090517044,
0.017620820552110672,
-0.13084551692008972,
-0.020789843052625656,
-0.1216527447104454,
-0.10185782611370087,
-0.07342687249183655,
0.08307919651269913,
0.0439215712249279,
0.05500464886426926,
0.020890576764941216,
0.10528330504894257,
-0.04999060928821564,
0.0345996618270874,
0.0849592462182045,
0.07080426067113876,
0.1301840841770172,
0.04075927287340164,
0.09936575591564178,
-0.08191724866628647,
0.004462718032300472,
0.062184859067201614,
0.1117163673043251,
0.11818689107894897,
0.02639620378613472,
0.24685391783714294,
-0.032948147505521774,
0.12329105287790298,
0.07999180257320404,
0.12284711748361588,
-0.00864341203123331,
-0.015271876938641071,
-0.05061836168169975,
-0.07266664505004883,
-0.05459153652191162,
0.05548090860247612,
-0.09573563933372498,
-0.04853421077132225,
-0.012697607278823853,
0.07652278989553452,
0.05389084294438362,
0.09408004581928253,
-0.004751680418848991,
-0.355776846408844,
-0.07670719176530838,
0.018231993541121483,
0.018403463065624237,
-0.04217454791069031,
0.04330975562334061,
0.14705228805541992,
0.020864952355623245,
0.009508076123893261,
-0.07763224840164185,
0.041883185505867004,
0.061387091875076294,
-0.006203468423336744,
0.0434420183300972,
0.10810504108667374,
0.03738350421190262,
0.07996612042188644,
-0.18143028020858765,
0.11141780763864517,
0.030224084854125977,
0.03419574350118637,
-0.1144140362739563,
0.037086475640535355,
0.01625993475317955,
0.19613178074359894,
-0.004564615432173014,
-0.045296136289834976,
-0.1893482208251953,
-0.0689142644405365,
-0.08727896213531494,
0.03307659178972244,
0.062273334711790085,
0.05006754398345947,
0.03653446212410927,
-0.06905809044837952,
-0.038043905049562454,
0.031212691217660904,
0.018740897998213768,
-0.1005827933549881,
-0.1521243155002594,
0.1141105517745018,
0.13593526184558868,
0.03474428132176399,
-0.08954653888940811,
-0.07697480171918869,
-0.08154512941837311,
0.15605998039245605,
-0.16867241263389587,
0.04038715362548828,
-0.06921832263469696,
-0.08829392492771149,
0.07447763532400131,
-0.05886637046933174,
0.033048115670681,
-0.05293397977948189,
0.09819139540195465,
-0.010522345080971718,
-0.16308218240737915,
0.13241323828697205,
-0.12312711775302887,
-0.14370237290859222,
-0.05992847681045532,
0.06809408962726593,
-0.06873819231987,
0.0022854453418403864,
0.06494661420583725,
-0.003753822762519121,
-0.0391383059322834,
-0.0660630539059639,
-0.10953924804925919,
0.1077568382024765,
0.020387794822454453,
0.018395371735095978,
-0.11601611226797104,
-0.22736132144927979,
0.01998201198875904,
-0.03141530975699425,
0.05466332286596298,
0.15044312179088593,
-0.03014368936419487,
-0.006456559058278799,
0.23687884211540222,
-0.055429477244615555,
-0.22862359881401062,
-0.018901793286204338,
-0.042703378945589066,
-0.02188730798661709,
-0.051531583070755005,
-0.06719859689474106,
0.10814088582992554,
0.1138487309217453,
-0.03043392300605774,
0.10296455770730972,
-0.2704268991947174,
-0.10182666778564453,
0.085641048848629,
0.14373528957366943,
0.16225220263004303,
-0.16549363732337952,
-0.01028093695640564,
-0.08030227571725845,
-0.20055076479911804,
0.20391269028186798,
-0.07938387244939804,
0.09214778244495392,
-0.010821088217198849,
-0.019544538110494614,
-0.028718506917357445,
-0.068844273686409,
0.1017010435461998,
-0.00977392215281725,
0.03257446363568306,
-0.0581856369972229,
0.05149603635072708,
0.08367886394262314,
0.005444946698844433,
0.044167716056108475,
-0.15532472729682922,
0.03681670501828194,
-0.002691866597160697,
-0.05362054705619812,
-0.012732550501823425,
-0.0026201787404716015,
-0.006864391267299652,
-0.0015344780404120684,
-0.02427084371447563,
0.06051024794578552,
-0.04315687716007233,
-0.039240580052137375,
0.036032360047101974,
-0.021986784413456917,
0.07572407275438309,
0.18682101368904114,
0.13099586963653564,
-0.1729888617992401,
0.10569115728139877,
-0.0014597418485209346,
-0.02547169290482998,
0.10732989013195038,
0.030407506972551346,
0.026273900642991066,
0.11428198963403702,
-0.06834873557090759,
0.08438757807016373,
0.07266460359096527,
0.006285837385803461,
-0.026078861206769943,
0.10444124788045883,
-0.15946952998638153,
-0.09831534326076508,
-0.010685903020203114,
0.11417429149150848,
-0.008124001324176788,
0.09837585687637329,
0.1708424687385559,
-0.018011750653386116,
0.0062541416846215725,
0.024372871965169907,
0.01395859383046627,
0.001576199196279049,
0.13970249891281128,
-0.033791929483413696,
0.06328099220991135,
-0.07360316067934036,
0.015294077806174755,
0.013761095702648163,
-0.12430055439472198,
-0.021107856184244156,
0.13191480934619904,
-0.16038714349269867,
-0.11507382243871689,
-0.01596260815858841,
0.09649673849344254,
-0.025922004133462906,
-0.1084810271859169,
-0.12643732130527496,
-0.1255151331424713,
0.016684943810105324,
0.08722863346338272,
0.0702880248427391,
0.047615308314561844,
-0.0021655927412211895,
-0.028156030923128128,
-0.1034560576081276,
0.09210143983364105,
-0.049840815365314484,
0.09839409589767456,
-0.12467662245035172,
0.05477287247776985,
-0.03807368874549866,
-0.06821146607398987,
-0.04842457175254822,
0.036598365753889084,
-0.1255132555961609,
-0.029645606875419617,
-0.13487930595874786,
0.046103499829769135,
-0.11327613890171051,
0.004807859659194946,
0.006071087438613176,
0.022464342415332794,
-0.014938781037926674,
0.017471235245466232,
-0.04343966394662857,
0.021671941503882408,
-0.019466500729322433,
0.046391528099775314,
-0.07856854796409607,
0.009350280277431011,
0.00014505963190458715,
-0.06051967293024063,
0.06773857027292252,
0.04083047807216644,
-0.057474058121442795,
0.03246474266052246,
-0.1741316020488739,
-0.004279972054064274,
0.046109482645988464,
0.07096154242753983,
0.018934648483991623,
-0.07202838361263275,
0.03143496811389923,
0.12119660526514053,
0.050228673964738846,
0.012352420948445797,
0.1968432068824768,
-0.049027252942323685,
-0.0008978642290458083,
-0.121609166264534,
-0.050753772258758545,
-0.05384121090173721,
-0.011370809748768806,
0.07051318138837814,
-0.015221349895000458,
0.14751338958740234,
-0.07086507976055145,
-0.03176601976156235,
-0.08708439022302628,
0.011213849298655987,
0.032696571201086044,
-0.13200896978378296,
-0.07990989834070206,
-0.03358033671975136,
0.047560565173625946,
0.007654953747987747,
0.07226736098527908,
-0.058019887655973434,
-0.10394604504108429,
0.013476954773068428,
-0.03505850210785866,
0.04594137892127037,
0.034802939742803574,
0.16488976776599884,
0.10157549381256104,
0.06970089673995972,
-0.032272033393383026,
0.047491468489170074,
0.07565147429704666,
0.12210555374622345,
0.08361344039440155,
0.0760960653424263,
-0.027566850185394287,
0.1667456328868866,
0.07843437790870667,
-0.07557085901498795,
-0.04427323862910271,
0.0855315774679184,
-0.1697453111410141,
0.09349703788757324,
-0.05657625198364258,
0.14889127016067505,
0.16008391976356506,
-0.04360553249716759,
-0.06964000314474106,
-0.10133937746286392,
-0.10060598701238632,
-0.0737171396613121,
-0.144444078207016,
-0.11598177254199982,
-0.15823926031589508,
-0.02021319605410099,
-0.06507106870412827,
-0.09253256767988205,
0.04086383432149887,
0.037152670323848724,
-0.010272729210555553,
0.18889251351356506,
-0.01605699583888054,
0.03838229924440384,
-0.0321146585047245,
0.0017693012487143278,
-0.008410545065999031,
0.036619048565626144,
-0.1548120677471161,
-0.011051954701542854,
-0.03576201573014259,
0.03767706826329231,
0.021387584507465363,
0.023337924852967262,
0.05549028515815735,
-0.0033308430574834347,
-0.04863503575325012,
-0.01920263096690178,
-0.0011281870538368821,
-0.01649872586131096,
0.12027281522750854,
-0.006309852935373783,
-0.05069490149617195,
0.03028200939297676,
0.02589396759867668,
-0.020493607968091965,
-0.11464788764715195,
-0.10810388624668121,
0.11736121028661728,
-0.07860458642244339,
0.044269416481256485,
0.013559659011662006,
-0.0101328669115901,
-0.023432109504938126,
0.18963681161403656,
0.2287255823612213,
-0.09979473054409027,
-0.014849985018372536,
0.015992846339941025,
-0.013664601370692253,
-0.040227457880973816,
0.1684797704219818,
0.09711184352636337,
0.2037757933139801,
0.025360161438584328,
-0.021103184670209885,
-0.001195923425257206,
-0.005482147913426161,
-0.11532525718212128,
-0.039835765957832336,
-0.04180289804935455,
-0.03520563989877701,
0.009702207520604134,
0.042784806340932846,
0.006989783141762018,
-0.03218588978052139,
-0.010033383965492249,
-0.06130514293909073,
-0.07618565857410431,
-0.06477157026529312,
0.1305445283651352,
-0.09517543017864227,
0.03688139468431473,
-0.06840561330318451,
0.0195605605840683,
0.013379605486989021,
-0.021147551015019417,
-0.1106223315000534,
-0.04146788269281387,
0.02109948731958866,
-0.1297861486673355,
0.14164212346076965,
-0.036643948405981064,
0.11645273864269257,
0.12261927127838135,
0.010852943174540997,
-0.14264562726020813,
0.07332352548837662,
0.031738582998514175,
-0.11479264497756958,
0.0776853933930397,
-0.0013804935151711106,
-0.05474866181612015,
0.16480295360088348,
0.015371039509773254,
-0.07446736097335815,
0.02516375482082367,
-0.03275401145219803,
0.002308108378201723,
-0.04203716292977333,
0.009467897936701775,
-0.061638735234737396,
0.14279285073280334,
0.09066151082515717,
-0.015788983553647995,
-0.03130638599395752,
-0.010479123331606388,
0.0966024249792099,
-0.03391670063138008,
-0.022660452872514725,
-0.015216921456158161,
-0.30464059114456177,
-0.030301308259367943,
-0.012125648558139801,
0.040927741676568985,
-0.1680280864238739,
-0.08409134298563004,
-0.13633382320404053,
-0.02465103566646576,
-0.1408102959394455,
0.032521095126867294,
0.1642039567232132,
-0.003878029529005289,
-0.05764879658818245,
-0.17590895295143127,
-0.08574333786964417,
0.0627649575471878,
-0.11513547599315643,
-0.18672840297222137
] |
null | null | transformers | # Catuion: This model may output adult content.

## Cat
**C**atharthic enhancement via **A**ttenuated vector overlap through interpolative **T**raining regression
Basically I just did a SLERP merge of [Envoid/Fish-8x7B](https://huggingface.co/Envoid/Fish-8x7B) onto [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1)
as a base model with a weight of 0.5. The resulting model is very
## FAQ
Q: Why does the model have 48 shards?
A: Meow
Q: What format does this model use?
A: [INST]Meow[/INST]
Q: What actually changed in the model?
A: Sentiment analysis seems somewhat improved and the output seems more sensitive to sampler settings.
# This model contains all the same potential tokenizer issues as the predecessor see:
[Envoid/Fish-8x7B](https://huggingface.co/Envoid/Fish-8x7B) for information. | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences"]} | text-generation | Envoid/Cat-8x7B | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"not-for-all-audiences",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T17:58:21+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # Catuion: This model may output adult content.
 on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1389
- F1: 0.9815
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.1146 | 1.0 | 500 | 0.1384 | 0.9755 |
| 0.0123 | 2.0 | 1000 | 0.1029 | 0.985 |
| 0.0014 | 3.0 | 1500 | 0.1389 | 0.9815 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "roberta-base-openai-detector", "model-index": [{"name": "artificially-natural-roberta-redone", "results": []}]} | text-classification | ConnyGenz/artificially-natural-roberta-redone | [
"transformers",
"tensorboard",
"safetensors",
"roberta",
"text-classification",
"generated_from_trainer",
"base_model:roberta-base-openai-detector",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:01:39+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us
| artificially-natural-roberta-redone
===================================
This model is a fine-tuned version of roberta-base-openai-detector on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1389
* F1: 0.9815
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
70,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #roberta #text-classification #generated_from_trainer #base_model-roberta-base-openai-detector #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.08598234504461288,
0.07803147286176682,
-0.002400754950940609,
0.10620073974132538,
0.14740616083145142,
0.018326736986637115,
0.16279545426368713,
0.10955119132995605,
-0.06279820203781128,
0.05069824680685997,
0.13211871683597565,
0.1443849503993988,
0.01338428445160389,
0.14203040301799774,
-0.07651424407958984,
-0.2192613035440445,
0.00879889726638794,
0.027819734066724777,
-0.055134642869234085,
0.12021399289369583,
0.1001187190413475,
-0.123350128531456,
0.09114062786102295,
-0.012638530693948269,
-0.186912402510643,
0.013357711024582386,
0.018626926466822624,
-0.05768737196922302,
0.13439705967903137,
0.026380859315395355,
0.13518713414669037,
0.020753735676407814,
0.07403390109539032,
-0.19345037639141083,
0.015572515316307545,
0.05102178454399109,
-0.009552187286317348,
0.08060194551944733,
0.028425078839063644,
-0.010676758363842964,
0.07854726165533066,
-0.09063592553138733,
0.06858281791210175,
0.017230600118637085,
-0.1289021074771881,
-0.19548122584819794,
-0.07510597258806229,
0.01712101697921753,
0.08482708781957626,
0.0735655128955841,
-0.013526776805520058,
0.13261188566684723,
-0.05480111762881279,
0.09684929251670837,
0.20902220904827118,
-0.302561491727829,
-0.06906910240650177,
0.05737723037600517,
0.03227183222770691,
0.08702465146780014,
-0.1016024500131607,
-0.012323606759309769,
0.07214683294296265,
0.027651309967041016,
0.12208167463541031,
-0.024795660749077797,
-0.05570773035287857,
0.003278418444097042,
-0.1391175389289856,
-0.019842173904180527,
0.15246285498142242,
0.042568907141685486,
-0.045000310987234116,
-0.05913921445608139,
-0.06294171512126923,
-0.13700421154499054,
-0.037107646465301514,
-0.013790479861199856,
0.040613699704408646,
-0.02344690077006817,
-0.07882298529148102,
-0.019754396751523018,
-0.10261639207601547,
-0.08260495960712433,
-0.0752444863319397,
0.17006675899028778,
0.03278462961316109,
0.0022913231514394283,
-0.01631297916173935,
0.09280753880739212,
-0.040363337844610214,
-0.12922094762325287,
0.011345643550157547,
0.024986717849969864,
-0.00088982202578336,
-0.06184111163020134,
-0.05646370351314545,
-0.10348553955554962,
0.036852989345788956,
0.1590266227722168,
-0.059766825288534164,
0.04790814593434334,
0.0001226893946295604,
0.04639964923262596,
-0.08540859073400497,
0.1655271351337433,
-0.03800426796078682,
-0.025657501071691513,
0.012234211899340153,
0.06408628076314926,
0.04133596271276474,
-0.014007508754730225,
-0.11779934167861938,
0.011829382739961147,
0.11888705939054489,
0.013005890883505344,
-0.05762298032641411,
0.08277324587106705,
-0.04284088313579559,
-0.0028251628391444683,
0.003317135851830244,
-0.09798411279916763,
0.019732171669602394,
-0.0015062742168083787,
-0.05468267947435379,
-0.07636938989162445,
0.017328396439552307,
0.02156064286828041,
0.01818697154521942,
0.10180041939020157,
-0.09248743951320648,
0.009256858378648758,
-0.0801297128200531,
-0.12663045525550842,
0.009668488055467606,
-0.115139439702034,
0.026754699647426605,
-0.11186148971319199,
-0.17338648438453674,
-0.01849973388016224,
0.05000099167227745,
-0.027992602437734604,
-0.01913360506296158,
-0.06205226108431816,
-0.07152891904115677,
0.010223791003227234,
-0.009017166681587696,
0.07443919032812119,
-0.06375674158334732,
0.09936278313398361,
0.045215506106615067,
0.07444930076599121,
-0.06006378307938576,
0.02823306806385517,
-0.09968321025371552,
0.03220110759139061,
-0.17339986562728882,
0.04405207186937332,
-0.06698562949895859,
0.08002977818250656,
-0.08472628891468048,
-0.0680406391620636,
-0.017307627946138382,
0.011164581403136253,
0.07376578450202942,
0.09339500218629837,
-0.15862584114074707,
-0.0676465630531311,
0.18857140839099884,
-0.08875835686922073,
-0.1380111128091812,
0.13144126534461975,
-0.07030917704105377,
0.06484182924032211,
0.06382764875888824,
0.20452754199504852,
0.0615701824426651,
-0.08545957505702972,
0.012114661745727062,
-0.006361145526170731,
0.04025746136903763,
-0.029693949967622757,
0.06680414080619812,
0.00378424976952374,
-0.0015754549531266093,
0.01377013698220253,
-0.028080491349101067,
0.04223863035440445,
-0.08576368540525436,
-0.08694972842931747,
-0.0371655598282814,
-0.10675830394029617,
0.050780076533555984,
0.04770524799823761,
0.07460815459489822,
-0.12290899455547333,
-0.07227981835603714,
0.05563419312238693,
0.06545153260231018,
-0.07015436142683029,
0.01474195159971714,
-0.08517564088106155,
0.08764220774173737,
-0.07122614234685898,
-0.021889228373765945,
-0.158431276679039,
-0.03634530305862427,
0.008887587115168571,
0.02765069343149662,
0.028291253373026848,
0.00042489561019465327,
0.07721317559480667,
0.06566820293664932,
-0.05554727092385292,
-0.012124898843467236,
-0.0025125762913376093,
0.01152301300317049,
-0.12029702961444855,
-0.20223119854927063,
-0.0031999850180000067,
-0.0379323810338974,
0.14217114448547363,
-0.22834987938404083,
0.054263271391391754,
0.008805845864117146,
0.08422992378473282,
0.04350031539797783,
-0.008750038221478462,
-0.033925894647836685,
0.06943994015455246,
-0.0449395589530468,
-0.05619204416871071,
0.05364115163683891,
0.008117875084280968,
-0.10233817994594574,
-0.04563536122441292,
-0.14448611438274384,
0.18880635499954224,
0.1285521239042282,
-0.10055975615978241,
-0.09649436175823212,
-0.007065583020448685,
-0.045629438012838364,
-0.020838988944888115,
-0.046271901577711105,
0.004941394552588463,
0.13548457622528076,
-0.020790493115782738,
0.1467016041278839,
-0.083720862865448,
-0.03406965360045433,
0.02491455338895321,
-0.0548953153192997,
0.007938140071928501,
0.11207854002714157,
0.08939123898744583,
-0.1268877387046814,
0.14801457524299622,
0.15103080868721008,
-0.0975322276353836,
0.1494169533252716,
-0.03361458331346512,
-0.047357093542814255,
-0.023699626326560974,
0.012479240074753761,
0.009210365824401379,
0.09974939376115799,
-0.1326659619808197,
-0.004343760199844837,
0.0058061545714735985,
0.010200666263699532,
0.019289689138531685,
-0.21095716953277588,
-0.035516127943992615,
0.04465983062982559,
-0.03670552000403404,
0.009861364029347897,
-0.008121083490550518,
-0.000013178097105992492,
0.10467076301574707,
0.013207962736487389,
-0.08166929334402084,
0.04224327206611633,
-0.005043015815317631,
-0.08756093680858612,
0.21507684886455536,
-0.07206554710865021,
-0.1181826964020729,
-0.1270287185907364,
-0.07690317928791046,
-0.03578627482056618,
0.03337801992893219,
0.059244561940431595,
-0.08032135665416718,
-0.02732301503419876,
-0.10778909176588058,
-0.004232399631291628,
0.030082188546657562,
0.03361208736896515,
0.029576458036899567,
0.0106638353317976,
0.06925881654024124,
-0.09990692883729935,
-0.012385147623717785,
-0.04931037873029709,
-0.06700393557548523,
0.04036463052034378,
0.0099761001765728,
0.11900556832551956,
0.14272581040859222,
-0.03916933387517929,
-0.0002472636697348207,
-0.037751778960227966,
0.23292100429534912,
-0.06848685443401337,
-0.029091447591781616,
0.11005639284849167,
-0.03756677731871605,
0.043251633644104004,
0.1465839147567749,
0.06202727183699608,
-0.10022232681512833,
0.016788586974143982,
0.03186643868684769,
-0.04347444325685501,
-0.2224043756723404,
-0.03152032941579819,
-0.0421556681394577,
0.02035694383084774,
0.09216640144586563,
0.029999665915966034,
0.042607631534338,
0.07612612843513489,
0.0362372063100338,
0.0871141254901886,
-0.011944095604121685,
0.07427166402339935,
0.11190053075551987,
0.04132016375660896,
0.12961845099925995,
-0.0514824204146862,
-0.0669386014342308,
0.035676997154951096,
-0.001029366860166192,
0.20168687403202057,
0.022850416600704193,
0.12685316801071167,
0.06542237102985382,
0.1340382993221283,
-0.00012112758122384548,
0.0553627610206604,
-0.019132092595100403,
-0.04595733806490898,
-0.010505224578082561,
-0.0446663498878479,
-0.03755447268486023,
0.03646975755691528,
-0.08537504076957703,
0.04716385900974274,
-0.09690483659505844,
0.013848143629729748,
0.06572440266609192,
0.2094799429178238,
0.04887907952070236,
-0.3262490928173065,
-0.08937761932611465,
0.023603854700922966,
-0.0284876748919487,
-0.022849658504128456,
0.030005380511283875,
0.12222177535295486,
-0.056586310267448425,
0.0339033380150795,
-0.06454674899578094,
0.08232510834932327,
-0.05253854766488075,
0.04252007603645325,
0.036412741988897324,
0.08232217282056808,
-0.023615770041942596,
0.06151094287633896,
-0.2701805830001831,
0.2792496085166931,
0.014489414170384407,
0.07121695578098297,
-0.05633346736431122,
-0.011240468360483646,
0.030847180634737015,
0.0690256878733635,
0.07603637874126434,
-0.02533475123345852,
-0.07425785809755325,
-0.19592246413230896,
-0.044477637857198715,
0.027854550629854202,
0.1069527193903923,
-0.03405647724866867,
0.1037549301981926,
-0.029566405341029167,
0.016639666631817818,
0.07210641354322433,
-0.009051245637238026,
-0.06771547347307205,
-0.09379135072231293,
-0.017160197719931602,
0.04309529438614845,
-0.04335556924343109,
-0.07236256450414658,
-0.09220076352357864,
-0.1258494108915329,
0.1597096174955368,
-0.06713008135557175,
-0.02826039306819439,
-0.10071737319231033,
0.07214785367250443,
0.048246730118989944,
-0.07628971338272095,
0.04474211484193802,
0.004592008888721466,
0.08438591659069061,
0.012602899223566055,
-0.05064486712217331,
0.12315097451210022,
-0.06416881829500198,
-0.16029682755470276,
-0.07333233952522278,
0.09635725617408752,
0.022984161972999573,
0.04951159656047821,
0.006463444791734219,
0.012339242734014988,
-0.01237834244966507,
-0.07223068177700043,
0.0368526391685009,
-0.012651338241994381,
0.04266616329550743,
0.03136191517114639,
-0.052332475781440735,
-0.025346577167510986,
-0.06230819970369339,
-0.0348486490547657,
0.17843838036060333,
0.27346694469451904,
-0.0830475464463234,
0.003359056543558836,
0.04659612476825714,
-0.06545503437519073,
-0.20537978410720825,
0.05605577304959297,
0.03119717724621296,
0.007056598551571369,
0.04199599847197533,
-0.14657171070575714,
0.10241888463497162,
0.09273925423622131,
-0.0284061711281538,
0.11271705478429794,
-0.278895765542984,
-0.13417452573776245,
0.12813018262386322,
0.15515555441379547,
0.13662327826023102,
-0.15251003205776215,
-0.040071967989206314,
-0.032311320304870605,
-0.1209372952580452,
0.09324832260608673,
-0.12069200724363327,
0.119715116918087,
-0.008512016385793686,
0.06502705067396164,
0.008646795526146889,
-0.055637508630752563,
0.12472981959581375,
-0.012926849536597729,
0.11960741132497787,
-0.07437185198068619,
-0.0436735562980175,
0.03890648111701012,
-0.05019538104534149,
0.014324167743325233,
-0.09916534274816513,
0.03725264593958855,
-0.05421404913067818,
-0.03508206456899643,
-0.04459022730588913,
0.03464563935995102,
-0.02544577606022358,
-0.07004979997873306,
-0.05257551372051239,
0.03097728081047535,
0.03416312858462334,
-0.007881034165620804,
0.15712925791740417,
-0.004231628961861134,
0.17434771358966827,
0.11987893283367157,
0.09012250602245331,
-0.053712811321020126,
0.015009132213890553,
0.002805069088935852,
-0.03535080701112747,
0.05907624959945679,
-0.16472293436527252,
0.039007704704999924,
0.11844299733638763,
0.019346315413713455,
0.15130403637886047,
0.07870744913816452,
-0.031285420060157776,
0.029749060049653053,
0.07719922810792923,
-0.15947671234607697,
-0.10170065611600876,
0.003036520443856716,
-0.046891797333955765,
-0.11518625169992447,
0.06914198398590088,
0.12332212924957275,
-0.06665316224098206,
0.005657513160258532,
-0.01306135207414627,
0.008203743025660515,
-0.04229043051600456,
0.1718790978193283,
0.07652836292982101,
0.043153613805770874,
-0.0750870332121849,
0.06648331135511398,
0.04318767413496971,
-0.04731783643364906,
0.026059487834572792,
0.04024915769696236,
-0.0774664506316185,
-0.039575882256031036,
0.03794422745704651,
0.19607193768024445,
-0.037110429257154465,
-0.04514288157224655,
-0.14736980199813843,
-0.1136564165353775,
0.05284493789076805,
0.2121383249759674,
0.10049962997436523,
0.015836548060178757,
-0.02496165782213211,
0.017794804647564888,
-0.11617128551006317,
0.10621485859155655,
0.02594497986137867,
0.08090840280056,
-0.14318323135375977,
0.1289217621088028,
-0.012898998335003853,
0.013802330009639263,
-0.03078482858836651,
0.03477392718195915,
-0.12357212603092194,
0.00021566702343989164,
-0.11894826591014862,
-0.005435592494904995,
-0.02656704932451248,
0.006397729739546776,
0.010226335376501083,
-0.05723293125629425,
-0.0725572481751442,
0.0068007828667759895,
-0.09736216813325882,
-0.01148664578795433,
0.03659166023135185,
0.05366136506199837,
-0.12014883756637573,
-0.03975600376725197,
0.02981981635093689,
-0.06162859499454498,
0.06690551340579987,
0.021527612581849098,
0.01545057911425829,
0.04370284080505371,
-0.19956205785274506,
0.029645215719938278,
0.06413629651069641,
-0.001881414675153792,
0.044745009392499924,
-0.08429106324911118,
-0.011187924072146416,
-0.00936554092913866,
0.05085395649075508,
0.030934495851397514,
0.08606487512588501,
-0.12209354341030121,
0.027904918417334557,
-0.028515487909317017,
-0.06731794029474258,
-0.05311451479792595,
0.028499621897935867,
0.0880356878042221,
0.00012021709699183702,
0.183302640914917,
-0.09490379691123962,
0.02201639860868454,
-0.20198611915111542,
0.005353103391826153,
0.005356014706194401,
-0.11150671541690826,
-0.10964645445346832,
-0.05748390406370163,
0.05019601806998253,
-0.06590944528579712,
0.16835007071495056,
0.02246376872062683,
0.0007970232400111854,
0.04027850925922394,
-0.029941042885184288,
0.039993930608034134,
0.026178548112511635,
0.22214896976947784,
0.03347216546535492,
-0.050915177911520004,
0.01658691093325615,
0.03386915102601051,
0.10949621349573135,
0.07142157852649689,
0.16069412231445312,
0.1658269613981247,
-0.04615725949406624,
0.09642170369625092,
0.04803970828652382,
-0.032934386283159256,
-0.12183236330747604,
0.058435048907995224,
-0.031239937990903854,
0.07583696395158768,
-0.012246682308614254,
0.18395094573497772,
0.12369363009929657,
-0.15304861962795258,
0.011767547577619553,
-0.04292306676506996,
-0.07846846431493759,
-0.11997304111719131,
-0.05433504655957222,
-0.1043369397521019,
-0.1326204091310501,
0.013392883352935314,
-0.1132807806134224,
-0.0024012390058487654,
0.09631438553333282,
0.009866626001894474,
-0.011965193785727024,
0.18283550441265106,
-0.0005709400284104049,
0.04210389778017998,
0.0622933954000473,
-0.0019547457341104746,
-0.03581691160798073,
-0.08868420869112015,
-0.0904180034995079,
0.005667654797434807,
-0.017587991431355476,
0.02763921208679676,
-0.049493223428726196,
-0.032154906541109085,
0.03440692275762558,
-0.018208984285593033,
-0.10695332288742065,
0.008949448354542255,
0.02937461994588375,
0.04368042200803757,
0.03336280584335327,
0.009156981483101845,
0.003956150729209185,
0.0011511568445712328,
0.22180363535881042,
-0.06311341375112534,
-0.06401114910840988,
-0.10284954309463501,
0.20049402117729187,
0.03457121178507805,
0.015684066340327263,
0.003872995963320136,
-0.09463369101285934,
0.036217059940099716,
0.22352032363414764,
0.19616751372814178,
-0.08379968255758286,
0.010560322552919388,
-0.0026219538412988186,
-0.004234889522194862,
-0.02125975675880909,
0.08191045373678207,
0.08993422240018845,
0.02701610140502453,
-0.075632743537426,
-0.05036616697907448,
-0.038784340023994446,
-0.004687246400862932,
-0.029337983578443527,
0.04028616100549698,
0.0473562590777874,
0.014901028014719486,
-0.05942796170711517,
0.06462232768535614,
-0.059604037553071976,
-0.11136781424283981,
0.06850988417863846,
-0.2022095024585724,
-0.14821287989616394,
-0.007281417492777109,
0.1026185005903244,
-0.01393092516809702,
0.051431406289339066,
-0.031000323593616486,
-0.0017331158742308617,
0.02804570086300373,
-0.02107776328921318,
-0.0643547847867012,
-0.0615830160677433,
0.05444178357720375,
-0.07757019996643066,
0.22625291347503662,
-0.04654485359787941,
0.05891161412000656,
0.13401633501052856,
0.04472380504012108,
-0.06042084842920303,
0.08538204431533813,
0.04747927188873291,
-0.05286911875009537,
0.025578003376722336,
0.08383019268512726,
-0.04174680635333061,
0.10874873399734497,
0.07738778740167618,
-0.13151691854000092,
0.023757489398121834,
-0.0556393601000309,
-0.08462856709957123,
-0.06480579078197479,
-0.032608553767204285,
-0.06438959389925003,
0.13594014942646027,
0.19126369059085846,
-0.03410705178976059,
0.006635221187025309,
-0.04447554051876068,
0.01767623983323574,
0.07228347659111023,
0.025422366335988045,
-0.05389494076371193,
-0.24313026666641235,
0.020036090165376663,
0.08677168190479279,
-0.012536550872027874,
-0.29855409264564514,
-0.08300448954105377,
-0.012470531277358532,
-0.044906649738550186,
-0.08574916422367096,
0.08327624201774597,
0.12767855823040009,
0.05604263022542,
-0.05924856662750244,
-0.1103058010339737,
-0.06253737956285477,
0.15204373002052307,
-0.13023081421852112,
-0.10057348757982254
] |
null | null | diffusers |
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.



## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | {"license": "creativeml-openrail-m", "library_name": "diffusers", "tags": ["stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "diffusers", "textual_inversion"], "inference": true, "base_model": "runwayml/stable-diffusion-v1-5"} | text-to-image | Bhavay-2001/test-model-card-template-textual-inversion | [
"diffusers",
"stable-diffusion-xl",
"stable-diffusion-xl-diffusers",
"text-to-image",
"textual_inversion",
"base_model:runwayml/stable-diffusion-v1-5",
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T18:02:37+00:00 | [] | [] | TAGS
#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #textual_inversion #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #region-us
|
These are textual inversion adaption weights for runwayml/stable-diffusion-v1-5. You can find some example images in the following.
!images_0
!images_1
!images_2
## Intended uses & limitations
#### How to use
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model] | [
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]",
"## Training details\n\n[TODO: describe the data used to train the model]"
] | [
"TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #textual_inversion #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #region-us \n",
"## Intended uses & limitations",
"#### How to use",
"#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]",
"## Training details\n\n[TODO: describe the data used to train the model]"
] | [
75,
9,
5,
24,
16
] | [
"passage: TAGS\n#diffusers #stable-diffusion-xl #stable-diffusion-xl-diffusers #text-to-image #textual_inversion #base_model-runwayml/stable-diffusion-v1-5 #license-creativeml-openrail-m #region-us \n## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]"
] | [
-0.09177037328481674,
0.04576704651117325,
-0.00048573981621302664,
-0.030187200754880905,
0.09456676989793777,
-0.0350906141102314,
0.21248796582221985,
0.08728431910276413,
0.0015476510161533952,
-0.02018357440829277,
0.06528475880622864,
0.06117015704512596,
0.019690848886966705,
0.16392754018306732,
-0.15357859432697296,
-0.24149000644683838,
-0.0034618007484823465,
-0.0003504401247482747,
-0.08948007971048355,
0.07887086272239685,
0.13156774640083313,
-0.07680847495794296,
0.07250064611434937,
0.03072032332420349,
-0.1336885243654251,
0.01103155966848135,
0.009047023952007294,
-0.08616358786821365,
0.03841370344161987,
0.04967835918068886,
0.021945713087916374,
0.18256016075611115,
0.09008104354143143,
-0.18073423206806183,
0.04293476790189743,
0.015830833464860916,
-0.06377959996461868,
0.09024973958730698,
0.05955631658434868,
0.015595843084156513,
0.242488831281662,
0.017481988295912743,
0.0016021750634536147,
0.057817790657281876,
-0.11104186624288559,
-0.004675623960793018,
0.02253171242773533,
0.011277155950665474,
0.07751305401325226,
0.06829925626516342,
0.005740600172430277,
0.08286761492490768,
-0.11608387529850006,
0.04320073500275612,
0.23193907737731934,
-0.21886658668518066,
-0.02351435273885727,
0.22008530795574188,
0.11528684943914413,
0.035660337656736374,
-0.12489981949329376,
0.09720317274332047,
0.08452476561069489,
-0.04032299667596817,
0.048477787524461746,
-0.06637629121541977,
0.16889934241771698,
0.013814360834658146,
-0.10397063940763474,
-0.002464208286255598,
0.3494050204753876,
0.04219679906964302,
-0.061089955270290375,
-0.11830240488052368,
-0.03250645101070404,
0.03704738989472389,
-0.015342327766120434,
-0.055100295692682266,
0.015122628770768642,
0.03183785825967789,
-0.025439998134970665,
-0.11139065772294998,
-0.10844802856445312,
-0.019116228446364403,
-0.029864368960261345,
0.09433100372552872,
-0.027703767642378807,
0.0009146858938038349,
-0.07103019207715988,
0.1911090761423111,
-0.05569487065076828,
-0.1340414583683014,
0.03966866806149483,
-0.09551704674959183,
0.02934376709163189,
-0.01751593127846718,
0.008776182308793068,
-0.06757806986570358,
0.04651596024632454,
0.057364705950021744,
0.05357111245393753,
-0.05267028138041496,
-0.044933684170246124,
0.12347762286663055,
0.0639607161283493,
-0.0048148659989237785,
-0.14522553980350494,
-0.010973183438181877,
0.06550560891628265,
0.05034898594021797,
-0.03618244826793671,
-0.02918674610555172,
-0.12979182600975037,
-0.059472136199474335,
-0.004711253102868795,
0.1016470342874527,
0.0516999289393425,
0.03887490928173065,
-0.09168838709592819,
-0.0701289176940918,
0.0024025454185903072,
-0.042808666825294495,
-0.0212007537484169,
-0.03836236894130707,
-0.11413363367319107,
0.0012973390985280275,
0.08856574445962906,
0.07746810466051102,
-0.02280890941619873,
0.0771389901638031,
-0.09246084094047546,
0.0017692027613520622,
-0.09315283596515656,
-0.12371177226305008,
-0.02958918921649456,
-0.15040422976016998,
0.062189459800720215,
-0.04796625301241875,
-0.21462219953536987,
0.0009696819470264018,
0.06858440488576889,
-0.07180195301771164,
-0.04481855034828186,
-0.046274859458208084,
-0.08949919790029526,
-0.02640736848115921,
-0.013695510104298592,
0.06130000576376915,
-0.06153424084186554,
0.04538920521736145,
-0.06640905886888504,
0.022965045645833015,
-0.06206703931093216,
0.019503632560372353,
-0.05460265278816223,
0.04953606054186821,
-0.07975012063980103,
0.038347091525793076,
-0.05883817747235298,
0.07409139722585678,
-0.0606062225997448,
-0.10107386857271194,
-0.04135134071111679,
0.01506420224905014,
-0.00018685078248381615,
0.20170858502388,
-0.1468343585729599,
-0.011402176693081856,
0.04841560497879982,
-0.08411061763763428,
-0.08105486631393433,
0.052785251289606094,
-0.07665631175041199,
0.23000022768974304,
0.013644604943692684,
0.12292763590812683,
-0.0129727553576231,
-0.24368752539157867,
0.16438144445419312,
0.018018104135990143,
-0.07638277113437653,
-0.003530754242092371,
0.0577782541513443,
0.024749815464019775,
-0.01801358163356781,
-0.0003941801842302084,
-0.1051023006439209,
0.03493567928671837,
-0.12322322279214859,
-0.062409769743680954,
0.014311248436570168,
-0.030504636466503143,
0.024322250857949257,
0.018630104139447212,
0.05860433354973793,
-0.022174056619405746,
-0.04863530397415161,
-0.002848854288458824,
0.0484539270401001,
-0.005623779259622097,
-0.01899130456149578,
-0.11384429782629013,
0.09672090411186218,
-0.11792159080505371,
-0.0098939910531044,
-0.11406292021274567,
0.02479884959757328,
-0.011581729166209698,
0.20792116224765778,
0.02986149676144123,
0.2945937514305115,
0.048171840608119965,
-0.0005574448732659221,
-0.0350792333483696,
-0.03268696740269661,
-0.009551876224577427,
0.022544439882040024,
-0.03130018711090088,
-0.2381310760974884,
0.03200175240635872,
-0.0716279149055481,
0.009169529192149639,
-0.23544804751873016,
0.04270780831575394,
0.07359834015369415,
0.10057578235864639,
0.09684513509273529,
0.033194392919540405,
0.05469341576099396,
0.005755643360316753,
-0.06959746032953262,
-0.045246973633766174,
0.06578151136636734,
0.02896912954747677,
-0.10998764634132385,
0.13808515667915344,
-0.1355372816324234,
0.30838683247566223,
0.09788470715284348,
-0.11563567072153091,
-0.0604829378426075,
-0.130809023976326,
-0.06585118919610977,
0.007137959823012352,
-0.026367181912064552,
0.028589144349098206,
0.04190574958920479,
-0.05811161920428276,
0.11100572347640991,
-0.096470408141613,
-0.006724649108946323,
0.02108185738325119,
-0.09454412013292313,
-0.01495523564517498,
0.12031959742307663,
0.10094840824604034,
-0.15843653678894043,
0.07564344257116318,
0.09073040634393692,
0.02983756922185421,
0.170099675655365,
-0.005123049020767212,
-0.09254380315542221,
-0.05201790854334831,
0.07556271553039551,
0.019023403525352478,
0.15656428039073944,
-0.10856646299362183,
0.028227757662534714,
0.027474896982312202,
0.008623148314654827,
0.0795271024107933,
-0.15707892179489136,
-0.08710737526416779,
0.06350455433130264,
-0.03636348620057106,
0.01864774338901043,
0.06723399460315704,
-0.060634974390268326,
0.11151565611362457,
-0.06670548766851425,
-0.09428906440734863,
0.07662834227085114,
-0.0579415000975132,
-0.08613695204257965,
0.14772658050060272,
-0.04946907237172127,
-0.09877046942710876,
-0.1088414341211319,
-0.060694459825754166,
-0.0469534732401371,
0.014033112674951553,
0.02553570456802845,
0.013620372861623764,
-0.08253362774848938,
-0.06331290304660797,
0.0184676181524992,
-0.11466536670923233,
-0.05318964272737503,
-0.014011530205607414,
0.07501549273729324,
-0.012277287431061268,
-0.08822023123502731,
-0.021714791655540466,
-0.013780364766716957,
-0.05066320672631264,
0.054694510996341705,
-0.029163535684347153,
0.13072991371154785,
0.11673775315284729,
-0.02434537559747696,
0.03691503778100014,
-0.002240857807919383,
0.18548794090747833,
-0.054002586752176285,
0.01609499379992485,
0.1588011085987091,
0.009530197829008102,
0.037185464054346085,
0.16682656109333038,
0.04123464599251747,
-0.08057678490877151,
0.035760655999183655,
-0.03784283995628357,
-0.05330392345786095,
-0.21724817156791687,
-0.047484613955020905,
-0.1343122124671936,
-0.04015454649925232,
0.00014453860057983547,
0.05468231067061424,
0.15734361112117767,
0.10022483766078949,
0.023696091026067734,
-0.011726404540240765,
0.04261798784136772,
0.10306640714406967,
0.0772320032119751,
-0.00956166721880436,
0.04397718235850334,
-0.03102380782365799,
-0.037878382951021194,
0.09598691761493683,
0.009284581057727337,
0.3090262711048126,
-0.0217574629932642,
0.12047529965639114,
0.15286093950271606,
0.10121682286262512,
0.09792318195104599,
0.08915618807077408,
-0.016730576753616333,
-0.049707405269145966,
-0.04743790626525879,
-0.0618988573551178,
0.05393485724925995,
0.06355766952037811,
0.0033234048169106245,
-0.031553059816360474,
-0.06002330034971237,
-0.013742147013545036,
-0.018579475581645966,
0.053282178938388824,
0.009515217505395412,
-0.18742097914218903,
0.09695257246494293,
0.02051790989935398,
0.045315250754356384,
-0.03108505718410015,
0.02223053202033043,
0.18435990810394287,
-0.11333855241537094,
-0.014633762650191784,
-0.035618651658296585,
0.13294266164302826,
0.0271634291857481,
-0.008606993593275547,
-0.05661683902144432,
0.05922350287437439,
-0.08754514902830124,
0.10939738154411316,
-0.24917352199554443,
0.27172431349754333,
-0.005103039089590311,
0.05872602388262749,
-0.07418481260538101,
-0.026412202045321465,
0.04104967787861824,
0.13879916071891785,
0.1762966364622116,
-0.021476252004504204,
0.04176165536046028,
-0.024334659799933434,
-0.07313492894172668,
-0.027563517913222313,
0.03979130834341049,
-0.039732787758111954,
0.0368976891040802,
0.026567623019218445,
0.024961233139038086,
0.07684539258480072,
0.04741743952035904,
-0.22723297774791718,
-0.1262151449918747,
0.033592354506254196,
-0.030304530635476112,
-0.00981880072504282,
-0.10463038831949234,
-0.036131247878074646,
0.06396114081144333,
0.21403415501117706,
0.0053309290669858456,
-0.03433512896299362,
-0.13960452377796173,
-0.003075211774557829,
0.04144487902522087,
-0.0013455372536554933,
0.014548270031809807,
0.01923857443034649,
0.09098347276449203,
-0.04493425786495209,
-0.06462021917104721,
0.13276824355125427,
-0.09649679809808731,
-0.10838229954242706,
-0.06262372434139252,
0.09154254198074341,
0.006025081966072321,
0.0026736161671578884,
0.010438038036227226,
-0.05292273312807083,
-0.027029534801840782,
-0.12727276980876923,
0.016465092077851295,
0.012242304161190987,
0.045746225863695145,
0.0543440505862236,
-0.08048143982887268,
-0.04551476240158081,
-0.004205040633678436,
-0.03046930395066738,
0.09368029981851578,
0.30528154969215393,
-0.03970763087272644,
0.10554007440805435,
0.10398942977190018,
-0.13486389815807343,
-0.18125003576278687,
0.08379913866519928,
-0.07873476296663284,
0.06839911639690399,
0.0824536383152008,
-0.12564896047115326,
-0.0263997633010149,
-0.019657040014863014,
-0.01992528699338436,
0.18071627616882324,
-0.35824424028396606,
-0.10893811285495758,
0.1268584430217743,
0.1332300901412964,
0.2788366675376892,
-0.11124948412179947,
-0.027906831353902817,
-0.03378156200051308,
-0.15710262954235077,
0.059716418385505676,
-0.07918164134025574,
0.0764629989862442,
-0.025993166491389275,
0.017014456912875175,
0.03277894854545593,
-0.06001071631908417,
0.15877686440944672,
-0.08708905428647995,
0.12213411182165146,
-0.12606991827487946,
-0.02434198558330536,
0.1954505294561386,
-0.02625007927417755,
-0.008369295857846737,
-0.06383224576711655,
0.04221236705780029,
-0.12038051337003708,
-0.09444834291934967,
0.014220578595995903,
0.09702803939580917,
-0.046860840171575546,
-0.13147863745689392,
-0.07095656543970108,
0.06280791759490967,
0.039076704531908035,
-0.01304119173437357,
-0.06329319626092911,
-0.08937545865774155,
0.009639951400458813,
0.18837285041809082,
0.1878143548965454,
0.023456163704395294,
-0.04385176673531532,
-0.020208559930324554,
0.017717037349939346,
0.08593343198299408,
-0.07511641085147858,
-0.04008829593658447,
0.13102610409259796,
0.02441844344139099,
0.1890852302312851,
0.060876064002513885,
-0.025470318272709846,
0.07285594195127487,
0.0899912565946579,
-0.09789208322763443,
-0.08454982191324234,
-0.08380249887704849,
0.08079880475997925,
0.01239815354347229,
-0.01985328644514084,
0.05220577493309975,
-0.08338230848312378,
0.07148995995521545,
0.002113469410687685,
0.04111260175704956,
-0.05675223097205162,
0.07813068479299545,
0.05689669027924538,
0.027127575129270554,
-0.07250601053237915,
0.08787889033555984,
0.00471124704927206,
0.003378545166924596,
-0.033686332404613495,
-0.024719074368476868,
-0.0891740620136261,
-0.010504736565053463,
-0.0034313276410102844,
0.26432156562805176,
-0.09093008935451508,
-0.03156331926584244,
-0.10986105352640152,
-0.12937697768211365,
-0.007081396412104368,
0.029979029670357704,
0.017166832461953163,
-0.01615050807595253,
-0.05122026428580284,
-0.05706607177853584,
-0.07120734453201294,
0.04728482663631439,
0.12261229753494263,
0.004488196689635515,
-0.16792374849319458,
-0.007870273664593697,
-0.016077283769845963,
0.04259632155299187,
-0.08172903209924698,
-0.02339748665690422,
-0.08945061266422272,
0.03157840296626091,
-0.11163066327571869,
0.025951722636818886,
-0.09071869403123856,
-0.04865254834294319,
-0.029536966234445572,
-0.07173358649015427,
-0.08631636947393417,
0.016206197440624237,
-0.13332007825374603,
0.04728567227721214,
0.038289960473775864,
0.038291603326797485,
0.008318230509757996,
-0.049516186118125916,
0.031816765666007996,
-0.06710521131753922,
0.04941496625542641,
-0.000512401107698679,
-0.092960424721241,
-0.05828940123319626,
-0.25752362608909607,
-0.008213982917368412,
0.0699688047170639,
-0.024179132655262947,
0.024494173005223274,
-0.045294493436813354,
0.035433921962976456,
0.05458308756351471,
-0.022736726328730583,
-0.055247239768505096,
-0.09186317771673203,
-0.16273927688598633,
0.006724665407091379,
-0.02437879517674446,
-0.03882962092757225,
-0.040710948407649994,
0.05690235272049904,
0.12485116720199585,
0.0467834509909153,
0.1455123871564865,
-0.05426521599292755,
0.06101374700665474,
-0.0966382697224617,
-0.015256107784807682,
0.038617074489593506,
0.0037322738207876682,
0.06526453047990799,
-0.04004405438899994,
0.01720263436436653,
-0.0661441758275032,
0.28417015075683594,
0.039003752171993256,
-0.1938703954219818,
0.030013620853424072,
-0.07466018199920654,
0.1320347934961319,
0.026000794023275375,
0.2893674969673157,
0.023228179663419724,
0.06720156222581863,
-0.10013401508331299,
0.08262106776237488,
0.048501066863536835,
-0.06160541623830795,
0.12300818413496017,
0.11246312409639359,
-0.021000655367970467,
0.03177257627248764,
0.010038228705525398,
-0.06147758290171623,
-0.020500319078564644,
0.14890719950199127,
0.017913827672600746,
0.09890046715736389,
-0.05557980388402939,
0.011588833294808865,
0.2606380581855774,
-0.09475787729024887,
0.02339479699730873,
0.07902058213949203,
-0.0613001212477684,
-0.11828040331602097,
-0.2008891999721527,
-0.044619154185056686,
-0.1743917167186737,
0.04327348992228508,
-0.13134725391864777,
0.04387182369828224,
0.04487695172429085,
0.07353033870458603,
-0.04942221939563751,
0.028794651851058006,
-0.0434243269264698,
-0.09925466030836105,
0.08808447420597076,
-0.032906513661146164,
-0.020908890292048454,
-0.14067555963993073,
-0.03706873580813408,
0.029439015313982964,
-0.03082883544266224,
-0.032795071601867676,
0.02420165203511715,
-0.011840851977467537,
-0.009329644963145256,
-0.020836899057030678,
-0.02848193235695362,
-0.012564358301460743,
0.0023108571767807007,
0.06682148575782776,
0.210879385471344,
0.012381010688841343,
-0.04123435169458389,
-0.0016670827753841877,
0.2434663325548172,
-0.01964113675057888,
-0.09840330481529236,
-0.09561727941036224,
0.014480573125183582,
-0.0337635800242424,
0.015546414069831371,
-0.001951037091203034,
-0.07359232008457184,
0.08935099840164185,
0.17723199725151062,
0.2977716624736786,
-0.12588052451610565,
-0.012741194106638432,
-0.06149587407708168,
-0.008435439318418503,
0.00038322940235957503,
0.03506564721465111,
-0.026629900559782982,
0.20118683576583862,
-0.08574750274419785,
-0.0008601841982454062,
-0.0835038423538208,
-0.01890464313328266,
-0.042300935834646225,
-0.0055883340537548065,
0.12890231609344482,
-0.061399154365062714,
-0.08030557632446289,
0.13245025277137756,
-0.1190495491027832,
-0.14089901745319366,
0.03607892245054245,
-0.036468755453825,
-0.05291305482387543,
-0.07789942622184753,
0.01363858487457037,
0.002812235616147518,
0.04591049626469612,
-0.10780167579650879,
-0.0024485860485583544,
-0.022137189283967018,
0.02031267061829567,
-0.0847083255648613,
0.020977089181542397,
0.0937689021229744,
0.025032702833414078,
0.09986434131860733,
-0.03747384622693062,
0.026018204167485237,
0.0642944872379303,
-0.026232654228806496,
-0.09420653432607651,
0.056104157119989395,
0.02113429270684719,
-0.06954874098300934,
-0.010485501028597355,
0.05701848119497299,
0.003063491778448224,
0.014816033653914928,
0.021216023713350296,
-0.11286111176013947,
0.034152690321207047,
-0.053549788892269135,
-0.0347338430583477,
-0.10708988457918167,
0.040062278509140015,
-0.06292106956243515,
0.09114717692136765,
0.05214892700314522,
-0.0639253482222557,
0.00878416933119297,
-0.03677038848400116,
0.09986268728971481,
0.07344146817922592,
-0.06597625464200974,
0.04699910432100296,
-0.0642276480793953,
-0.026316728442907333,
0.16889669001102448,
0.01384653802961111,
-0.25442633032798767,
-0.041471123695373535,
-0.09522848576307297,
-0.017787698656320572,
-0.06420668214559555,
0.06441998481750488,
0.17332987487316132,
0.047360777854919434,
-0.020556794479489326,
-0.1050170511007309,
0.0034276635851711035,
0.04988064616918564,
-0.047586239874362946,
-0.00840047374367714
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-de
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1319
- F1: 0.8642
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.2581 | 1.0 | 525 | 0.1570 | 0.8289 |
| 0.1292 | 2.0 | 1050 | 0.1332 | 0.8522 |
| 0.082 | 3.0 | 1575 | 0.1319 | 0.8642 |
### Framework versions
- Transformers 4.16.2
- Pytorch 1.12.1
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1"], "model-index": [{"name": "xlm-roberta-base-finetuned-panx-de", "results": []}]} | token-classification | hravi/xlm-roberta-base-finetuned-panx-de | [
"transformers",
"pytorch",
"tensorboard",
"xlm-roberta",
"token-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:03:43+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
| xlm-roberta-base-finetuned-panx-de
==================================
This model is a fine-tuned version of xlm-roberta-base on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1319
* F1: 0.8642
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 24
* eval\_batch\_size: 24
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 1.12.1
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.12.1\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.12.1\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
57,
98,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #xlm-roberta #token-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 24\n* eval\\_batch\\_size: 24\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 1.12.1\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.10308189690113068,
0.07754550874233246,
-0.0020533856004476547,
0.11552447825670242,
0.18716607987880707,
0.025831518694758415,
0.11678297072649002,
0.11942314356565475,
-0.09415926784276962,
0.01006501354277134,
0.11848558485507965,
0.20420457422733307,
0.0011316650779917836,
0.10677709430456161,
-0.050106439739465714,
-0.2621690332889557,
-0.02658180333673954,
0.06449253857135773,
-0.0928691029548645,
0.1384192705154419,
0.0929843857884407,
-0.14980830252170563,
0.07824238389730453,
0.010768079198896885,
-0.2562561631202698,
0.018176740035414696,
0.03159075602889061,
-0.06180766224861145,
0.15335649251937866,
0.01593402400612831,
0.13769926130771637,
0.005279595963656902,
0.08701480180025101,
-0.16007785499095917,
0.010853832587599754,
0.04183732345700264,
0.008428898639976978,
0.09284327924251556,
0.06605210155248642,
0.0025554755702614784,
0.09595656394958496,
-0.07568147778511047,
0.04951485991477966,
0.018020885065197945,
-0.12304118275642395,
-0.2503986060619354,
-0.07799278199672699,
0.023004429414868355,
0.060842372477054596,
0.09877248853445053,
0.0028901523910462856,
0.16535930335521698,
-0.0981329083442688,
0.09370624274015427,
0.21979470551013947,
-0.2905660569667816,
-0.06823445111513138,
0.05244990438222885,
0.018401488661766052,
0.06949543207883835,
-0.12163940817117691,
-0.020209651440382004,
0.05536642670631409,
0.04560082033276558,
0.13802972435951233,
-0.03981790319085121,
-0.08790457248687744,
0.024740668013691902,
-0.1428900957107544,
-0.023104030638933182,
0.11500489711761475,
0.02573840692639351,
-0.028609298169612885,
-0.036662958562374115,
-0.04567841440439224,
-0.16168002784252167,
-0.03626386448740959,
-0.020200014114379883,
0.0451064333319664,
-0.04797319322824478,
-0.0865638479590416,
0.005620813928544521,
-0.1109219565987587,
-0.07407865673303604,
-0.06856340914964676,
0.18096032738685608,
0.043364670127630234,
0.01305536087602377,
-0.025161487981677055,
0.11622724682092667,
0.026511065661907196,
-0.11862252652645111,
0.030741821974515915,
0.03382478654384613,
-0.012644038535654545,
-0.05720490217208862,
-0.064662404358387,
-0.05166143178939819,
-0.0007823416963219643,
0.10212679207324982,
-0.06439772993326187,
0.0376163087785244,
0.04723462834954262,
0.04749913886189461,
-0.0980229377746582,
0.19721493124961853,
-0.043478719890117645,
0.00833399873226881,
-0.0014773175353184342,
0.038593098521232605,
-0.02316139079630375,
0.004252078477293253,
-0.11716295778751373,
-0.008500793017446995,
0.12059488147497177,
0.018356556072831154,
-0.07983645796775818,
0.0721619501709938,
-0.05278261378407478,
-0.03479855880141258,
0.002211575396358967,
-0.08883310854434967,
0.038540083914995193,
-0.010733351111412048,
-0.09249880164861679,
-0.024595940485596657,
0.0115055525675416,
0.009976371191442013,
-0.01087221596390009,
0.11923324316740036,
-0.09762632846832275,
0.04952503740787506,
-0.10507816076278687,
-0.11390409618616104,
0.00024587102234363556,
-0.08192342519760132,
0.035398103296756744,
-0.09566275030374527,
-0.139728844165802,
-0.02103295549750328,
0.052826400846242905,
-0.019323643296957016,
-0.050806012004613876,
-0.03392554819583893,
-0.06417473405599594,
-0.0005507695605047047,
-0.01485175359994173,
0.1488269418478012,
-0.048990603536367416,
0.11922968924045563,
0.04137655347585678,
0.06519555300474167,
-0.04163997992873192,
0.062457937747240067,
-0.10485513508319855,
0.0002578443381935358,
-0.1748933047056198,
0.03411967679858208,
-0.05358283966779709,
0.07088588923215866,
-0.08451975136995316,
-0.1214287206530571,
0.025621570646762848,
-0.0012250045547261834,
0.06393487751483917,
0.07372048497200012,
-0.15001292526721954,
-0.0862598642706871,
0.15208449959754944,
-0.061475999653339386,
-0.10024053603410721,
0.1053614392876625,
-0.06326176971197128,
0.05685989186167717,
0.06935494393110275,
0.15589483082294464,
0.08523472398519516,
-0.07695716619491577,
0.03711026534438133,
-0.003034189809113741,
0.024616576731204987,
-0.08782574534416199,
0.05835733935236931,
0.013952086679637432,
-0.008064059540629387,
0.03368964418768883,
-0.04703804478049278,
0.06662669777870178,
-0.10962764918804169,
-0.09361064434051514,
-0.028892436996102333,
-0.09795019030570984,
0.05959189310669899,
0.08862076699733734,
0.09969038516283035,
-0.09299483150243759,
-0.06268222630023956,
0.09917332231998444,
0.07174313813447952,
-0.0517585314810276,
0.018310045823454857,
-0.05955155938863754,
0.052676890045404434,
-0.05977382883429527,
-0.03462408855557442,
-0.1901855319738388,
-0.02335238829255104,
0.008498183451592922,
0.0026161503046751022,
0.02708931639790535,
0.04623204469680786,
0.07377646118402481,
0.06478043645620346,
-0.0530855618417263,
-0.028166528791189194,
-0.02779255621135235,
-0.009428570978343487,
-0.1437382698059082,
-0.18173664808273315,
-0.03577865660190582,
-0.017981726676225662,
0.10506259649991989,
-0.20193873345851898,
0.03135570511221886,
-0.029152872040867805,
0.0666559636592865,
0.01116474624723196,
-0.008630520664155483,
-0.04991303011775017,
0.09852717816829681,
-0.025380846112966537,
-0.041603367775678635,
0.08416008204221725,
-0.002336847595870495,
-0.08067234605550766,
-0.037362679839134216,
-0.09456857293844223,
0.21140097081661224,
0.13483062386512756,
-0.13095366954803467,
-0.09173474460840225,
-0.018061328679323196,
-0.0665336549282074,
-0.03358451649546623,
-0.03666234761476517,
0.05139224976301193,
0.16800126433372498,
-0.02342161163687706,
0.1524955928325653,
-0.06500986963510513,
-0.050295788794755936,
0.02496526576578617,
-0.04189012572169304,
0.027834240347146988,
0.11781760305166245,
0.1201663613319397,
-0.10387179255485535,
0.14659181237220764,
0.14136217534542084,
-0.08632346987724304,
0.147105872631073,
-0.03928476199507713,
-0.0667017251253128,
-0.024958396330475807,
-0.019487448036670685,
0.0014552449574694037,
0.09904318302869797,
-0.11566983908414841,
-0.007194432429969311,
0.020810583606362343,
0.01630837842822075,
0.02424488589167595,
-0.2392004132270813,
-0.05339999124407768,
0.02951638028025627,
-0.028908221051096916,
0.004561673384159803,
-0.005416184663772583,
0.014664975926280022,
0.10646045207977295,
0.0015616167802363634,
-0.08717333525419235,
0.043895188719034195,
0.011243472807109356,
-0.07779737561941147,
0.2177955061197281,
-0.07724861800670624,
-0.1443251222372055,
-0.12699852883815765,
-0.07403428852558136,
-0.03696296364068985,
0.005872196983546019,
0.04888856038451195,
-0.09425565600395203,
-0.0176335871219635,
-0.03006662428379059,
0.017076492309570312,
-0.01745295710861683,
0.040903881192207336,
-0.008477515541017056,
0.008965766988694668,
0.0706465020775795,
-0.10691133141517639,
-0.005713173188269138,
-0.06805883347988129,
-0.07794944196939468,
0.05818963795900345,
0.043035414069890976,
0.111654132604599,
0.1524456888437271,
-0.03719954937696457,
0.011027982458472252,
-0.030260415747761726,
0.22600139677524567,
-0.06899095326662064,
-0.04583480954170227,
0.1268981397151947,
0.00018027584883384407,
0.052103377878665924,
0.09257148951292038,
0.08343832194805145,
-0.08826194703578949,
0.0017672865651547909,
0.03356034681200981,
-0.04002879187464714,
-0.21963469684123993,
-0.04475349932909012,
-0.051462322473526,
-0.03426073491573334,
0.09852238744497299,
0.030136307701468468,
0.05765485391020775,
0.07336071878671646,
0.0505983792245388,
0.07061956077814102,
-0.06710973381996155,
0.0506303608417511,
0.0970279648900032,
0.04945262148976326,
0.12594899535179138,
-0.03829724341630936,
-0.0817042738199234,
0.01902635395526886,
-0.0011057400843128562,
0.2321172058582306,
0.014510761015117168,
0.10780306160449982,
0.06456384807825089,
0.1991300880908966,
0.011687864549458027,
0.08560720831155777,
0.0017085946165025234,
-0.05823555216193199,
-0.00014660932356491685,
-0.03309926763176918,
-0.025069231167435646,
0.017042070627212524,
-0.03770072013139725,
0.05246272310614586,
-0.11991148442029953,
-0.030597014352679253,
0.04404333233833313,
0.23924574255943298,
0.01424337550997734,
-0.32873111963272095,
-0.08520805090665817,
-0.017409097403287888,
-0.031562477350234985,
-0.01527402549982071,
0.006425648927688599,
0.09165948629379272,
-0.1054498478770256,
0.01099926047027111,
-0.08319739997386932,
0.08511281758546829,
-0.04274832457304001,
0.03751935437321663,
0.08749257028102875,
0.08956454694271088,
0.008488127030432224,
0.0808764174580574,
-0.3013256788253784,
0.28755882382392883,
0.006479311268776655,
0.06934709846973419,
-0.07235296070575714,
-0.007071737665683031,
0.028383752331137657,
0.05874333158135414,
0.06071365252137184,
-0.01373938750475645,
-0.02230924926698208,
-0.24017132818698883,
-0.03444474935531616,
0.021887006238102913,
0.09904923290014267,
-0.034859638661146164,
0.09352947771549225,
-0.024822603911161423,
0.008528036996722221,
0.07552036643028259,
-0.032874345779418945,
-0.043255195021629333,
-0.07934389263391495,
-0.013200139626860619,
0.009142627008259296,
-0.040465015918016434,
-0.06089678034186363,
-0.12244048714637756,
-0.13635146617889404,
0.15651953220367432,
-0.008084581233561039,
-0.031079621985554695,
-0.11754463613033295,
0.09422650933265686,
0.07343051582574844,
-0.08911032229661942,
0.04763499274849892,
0.010397888720035553,
0.05781402438879013,
0.032466351985931396,
-0.07158153504133224,
0.11055183410644531,
-0.05886273458600044,
-0.15137088298797607,
-0.05406435206532478,
0.10158714652061462,
0.04115786403417587,
0.059504929929971695,
-0.008702469989657402,
0.009321811608970165,
-0.031017838045954704,
-0.08958587050437927,
0.043920643627643585,
-0.041786160320043564,
0.06935784965753555,
0.011759930290281773,
-0.056088536977767944,
0.022869491949677467,
-0.06600289791822433,
-0.02728383056819439,
0.18402159214019775,
0.22614686191082,
-0.10581706464290619,
0.010873591527342796,
0.031332068145275116,
-0.0695403516292572,
-0.19765344262123108,
0.061309363692998886,
0.069307841360569,
0.007738570682704449,
0.053262859582901,
-0.17674559354782104,
0.12467309087514877,
0.10277583450078964,
-0.009070373140275478,
0.10880158841609955,
-0.3299504518508911,
-0.12335560470819473,
0.11364589631557465,
0.16689056158065796,
0.12257886677980423,
-0.13289090991020203,
-0.01594015583395958,
0.006846501957625151,
-0.10186474025249481,
0.10855063796043396,
-0.043117132037878036,
0.12961377203464508,
-0.045936860144138336,
0.08626224100589752,
0.008501776494085789,
-0.06463278830051422,
0.10699782520532608,
0.017963029444217682,
0.11551669985055923,
-0.05011223629117012,
-0.051110271364450455,
0.03947044163942337,
-0.024794194847345352,
0.0026336689479649067,
-0.04878503829240799,
0.02444569393992424,
-0.0901624858379364,
-0.020929941907525063,
-0.09681135416030884,
0.055451542139053345,
-0.02820110134780407,
-0.06973793357610703,
-0.03478371724486351,
0.03923902288079262,
0.025282278656959534,
-0.022527093067765236,
0.1196226179599762,
0.026110786944627762,
0.1675345003604889,
0.12157434225082397,
0.05956091731786728,
-0.051154837012290955,
-0.07980456948280334,
-0.02310270071029663,
-0.012462299317121506,
0.0713619813323021,
-0.10902688652276993,
0.01945282146334648,
0.1500082015991211,
0.028373319655656815,
0.1255771815776825,
0.08726096898317337,
-0.020823828876018524,
0.014278900809586048,
0.0682305097579956,
-0.15614789724349976,
-0.08322659134864807,
-0.012777652591466904,
-0.08940477669239044,
-0.08479026705026627,
0.060078900307416916,
0.07894016057252884,
-0.07555285841226578,
-0.017619138583540916,
-0.008964256383478642,
-0.014768436551094055,
-0.06504262238740921,
0.21837244927883148,
0.07131246477365494,
0.04953959584236145,
-0.1034124493598938,
0.05474578216671944,
0.05311546102166176,
-0.058325983583927155,
-0.014963652938604355,
0.06713389605283737,
-0.0794353112578392,
-0.041183605790138245,
0.09573094546794891,
0.16993145644664764,
-0.08839525282382965,
-0.03142157196998596,
-0.14332371950149536,
-0.11311846971511841,
0.06883702427148819,
0.1543866991996765,
0.11973489820957184,
0.0140184685587883,
-0.05597895011305809,
0.014330078847706318,
-0.13170047104358673,
0.07920542359352112,
0.030969705432653427,
0.07583648711442947,
-0.15407058596611023,
0.19721859693527222,
0.010690092109143734,
0.060073576867580414,
-0.02535310387611389,
0.018826346844434738,
-0.1078510656952858,
0.019178960472345352,
-0.0949007123708725,
-0.04976596310734749,
-0.017766352742910385,
0.0018929801881313324,
-0.006639535538852215,
-0.06500642746686935,
-0.0513315349817276,
0.018952704966068268,
-0.12966307997703552,
-0.016373803839087486,
0.048861563205718994,
0.0505005344748497,
-0.10118108242750168,
-0.04678169637918472,
0.015724683180451393,
-0.04196130856871605,
0.05297604948282242,
0.047699399292469025,
0.026491759344935417,
0.060840725898742676,
-0.13216234743595123,
0.0028252610936760902,
0.07744818180799484,
0.003725461894646287,
0.07505278289318085,
-0.07912978529930115,
-0.000343557185260579,
0.0003508070367388427,
0.06902386248111725,
0.019310472533106804,
0.05771241337060928,
-0.15320241451263428,
-0.008625022135674953,
-0.03894752636551857,
-0.08105313777923584,
-0.0742267593741417,
0.02580401860177517,
0.08238551020622253,
0.015598289668560028,
0.1867186278104782,
-0.08004698902368546,
0.04754365235567093,
-0.215989351272583,
-0.010977201163768768,
-0.017989760264754295,
-0.1136365681886673,
-0.11936473101377487,
-0.06294386833906174,
0.06328830122947693,
-0.04841037094593048,
0.13226142525672913,
0.048672642558813095,
0.035892438143491745,
0.022889120504260063,
-0.029397569596767426,
0.017462478950619698,
0.017260588705539703,
0.21094389259815216,
0.031343333423137665,
-0.030825257301330566,
0.07883865386247635,
0.07467743009328842,
0.08240742981433868,
0.10677020996809006,
0.18328934907913208,
0.1520262509584427,
-0.022178255021572113,
0.07333827018737793,
0.041946787387132645,
-0.04883747175335884,
-0.17825622856616974,
0.028388947248458862,
-0.04478813707828522,
0.0847664400935173,
-0.027063000947237015,
0.19926640391349792,
0.07285581529140472,
-0.16867178678512573,
0.051789019256830215,
-0.042349159717559814,
-0.08809787780046463,
-0.10274283587932587,
-0.04085443541407585,
-0.07953015714883804,
-0.13851642608642578,
0.009180846624076366,
-0.09919286519289017,
0.011743016541004181,
0.10829224437475204,
0.00318545033223927,
-0.029984211549162865,
0.167702317237854,
0.05099037289619446,
0.02430889569222927,
0.05078505352139473,
0.0023714883718639612,
-0.02636360004544258,
-0.11605438590049744,
-0.05153292044997215,
-0.025110332295298576,
-0.023646408692002296,
0.03059360198676586,
-0.07356971502304077,
-0.08083631843328476,
0.03100220486521721,
-0.02452058158814907,
-0.09802858531475067,
0.01638539507985115,
0.024745015427470207,
0.06722283363342285,
0.025709886103868484,
0.004286430776119232,
0.011945489794015884,
-0.027928395196795464,
0.21299117803573608,
-0.06958812475204468,
-0.062236592173576355,
-0.07700271904468536,
0.29967665672302246,
0.05034276843070984,
0.0004639666003640741,
0.03888508304953575,
-0.05257772281765938,
0.01612410508096218,
0.24734598398208618,
0.19321052730083466,
-0.07887651771306992,
0.0008798800408840179,
0.009397643618285656,
-0.016544120386242867,
-0.026521023362874985,
0.13237455487251282,
0.12573187053203583,
0.05603085830807686,
-0.10508376359939575,
-0.03734194487333298,
-0.0701419785618782,
-0.008170031942427158,
-0.03680945187807083,
0.054266251623630524,
0.054736312478780746,
0.011383814737200737,
-0.048351630568504333,
0.05258256196975708,
-0.05666925013065338,
-0.08468954265117645,
0.09608036279678345,
-0.18850374221801758,
-0.15798340737819672,
-0.015196121297776699,
0.09950394928455353,
-0.007638832554221153,
0.06685581803321838,
-0.036147430539131165,
0.008912542834877968,
0.04385499656200409,
-0.019270969554781914,
-0.09227249026298523,
-0.085851289331913,
0.1034422442317009,
-0.0962226614356041,
0.18718013167381287,
-0.05055380240082741,
0.07562392950057983,
0.11572664231061935,
0.06529795378446579,
-0.06804940849542618,
0.06166199594736099,
0.03680350258946419,
-0.09047440439462662,
0.03412572667002678,
0.09692992269992828,
-0.01630997844040394,
0.058523502200841904,
0.02563408389687538,
-0.13610120117664337,
0.030672160908579826,
-0.10063973069190979,
-0.044869184494018555,
-0.04220482334494591,
-0.04134717956185341,
-0.044820766896009445,
0.12679919600486755,
0.22269496321678162,
-0.019521471112966537,
0.007743990980088711,
-0.08106939494609833,
0.011478773318231106,
0.06918703764677048,
0.018705016002058983,
-0.08245216310024261,
-0.22972658276557922,
0.010290033183991909,
0.06273232400417328,
-0.03589366003870964,
-0.21531282365322113,
-0.09276669472455978,
0.0013287737965583801,
-0.08906877785921097,
-0.08705154061317444,
0.07640200108289719,
0.06837336719036102,
0.058392103761434555,
-0.04981669411063194,
-0.08738156408071518,
-0.08232036978006363,
0.1489964872598648,
-0.15703429281711578,
-0.08622263371944427
] |
null | null | transformers |
# Mixtral MOE 5x7B
MoE of the following models :
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
* [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp)
* [ignos/Mistral-T5-7B-v1](https://huggingface.co/ignos/Mistral-T5-7B-v1)
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
``` | {"license": "cc-by-nc-4.0"} | text-generation | LoneStriker/Mixtral_7Bx5_MoE_30B-5.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T18:06:00+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Mixtral MOE 5x7B
MoE of the following models :
* Toten5/Marcoroni-neural-chat-7B-v1
* NurtureAI/neural-chat-7b-v3-16k
* mncai/mistral-7b-dpo-v6
* cookinai/CatMacaroni-Slerp
* ignos/Mistral-T5-7B-v1
gpu code example
CPU example
| [
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
58,
98
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
-0.13265983760356903,
0.032811205834150314,
0.0016681700944900513,
0.06005237251520157,
0.09170277416706085,
0.05486174672842026,
0.1754031479358673,
0.08827437460422516,
0.048426054418087006,
0.04822719842195511,
0.10930546373128891,
0.15147005021572113,
0.050271473824977875,
0.07607264816761017,
-0.041551947593688965,
-0.12304753065109253,
0.13822826743125916,
0.0285372044891119,
0.018767034634947777,
0.07113507390022278,
0.09234799444675446,
-0.045219406485557556,
0.10612381994724274,
-0.027028348296880722,
-0.1984025537967682,
-0.04531659558415413,
0.0059092091396451,
-0.04503824561834335,
0.10345133394002914,
0.09167052805423737,
0.02468385361135006,
0.05491048842668533,
0.05525398999452591,
-0.047444041818380356,
0.02953178808093071,
0.04105483368039131,
-0.015743371099233627,
0.08048006147146225,
0.10315034538507462,
0.046506043523550034,
0.07312776893377304,
0.0571342408657074,
-0.021097008138895035,
0.035699307918548584,
0.018450820818543434,
-0.0437827967107296,
-0.008665810339152813,
0.04507621377706528,
0.05793994665145874,
0.0792449563741684,
0.015002762898802757,
0.1917630136013031,
-0.0028631084132939577,
0.09410560131072998,
0.13915416598320007,
-0.2718551754951477,
-0.05056018382310867,
0.13085082173347473,
0.0916370153427124,
0.06428710371255875,
0.018235111609101295,
0.02555820718407631,
0.039636820554733276,
0.0031501944176852703,
-0.06455228477716446,
-0.021980848163366318,
0.012090848758816719,
-0.03641531616449356,
-0.10100672394037247,
0.03175126016139984,
0.12783773243427277,
-0.01871788129210472,
-0.012944400310516357,
-0.06200869008898735,
-0.10857585817575455,
0.012746433727443218,
-0.05880852788686752,
-0.047148652374744415,
-0.07286347448825836,
0.04218289256095886,
0.1049298644065857,
0.07159604132175446,
-0.03756077215075493,
-0.1395968794822693,
-0.03131239861249924,
0.16100303828716278,
0.031219836324453354,
0.010522501543164253,
-0.021792003884911537,
0.059254713356494904,
0.028613245114684105,
-0.06863578408956528,
-0.0012622170615941286,
-0.04667212441563606,
-0.03568123281002045,
-0.005251494236290455,
-0.09649239480495453,
-0.054846517741680145,
0.056380558758974075,
0.04986369609832764,
0.04993335157632828,
0.06519204378128052,
0.04177093133330345,
0.012200085446238518,
-0.0973709300160408,
-0.04077140614390373,
-0.09576639533042908,
-0.08472820371389389,
0.010962272994220257,
0.08735537528991699,
0.05046290159225464,
-0.022282809019088745,
-0.1383192241191864,
-0.07204660028219223,
0.07936861366033554,
0.007562451064586639,
-0.026277069002389908,
0.11840388923883438,
-0.04044025391340256,
-0.03969082981348038,
0.16800281405448914,
-0.06999586522579193,
0.0265493206679821,
0.07418541610240936,
-0.0032649009954184294,
0.03415559232234955,
-0.009450617246329784,
-0.019333822652697563,
-0.0457611009478569,
-0.08098877966403961,
-0.1161646619439125,
-0.042938411235809326,
-0.09060145914554596,
-0.09032420068979263,
0.043551646173000336,
0.035354144871234894,
-0.032337091863155365,
-0.16533109545707703,
-0.12757019698619843,
0.04656510055065155,
0.0637110024690628,
-0.07433835417032242,
0.07604158669710159,
-0.006164343096315861,
-0.02737729251384735,
0.03098740056157112,
0.022463470697402954,
0.03237934038043022,
-0.021810641512274742,
0.043203018605709076,
0.06473270058631897,
0.04523825645446777,
-0.06388343870639801,
0.015224343165755272,
-0.061199165880680084,
0.031894490122795105,
-0.10606493800878525,
0.0010015327716246247,
-0.058403920382261276,
0.07756669819355011,
-0.05844087153673172,
-0.004984809551388025,
-0.04675336927175522,
0.02938850224018097,
0.047615207731723785,
0.14076733589172363,
-0.14450693130493164,
-0.021755050867795944,
0.07503322511911392,
-0.1571515053510666,
-0.1603517234325409,
0.14260075986385345,
0.036776404827833176,
0.02125180885195732,
0.04470129683613777,
0.04594897851347923,
0.18468056619167328,
-0.08220665156841278,
-0.017173947766423225,
-0.012627649120986462,
0.021156422793865204,
-0.12655363976955414,
0.038768935948610306,
0.08653443306684494,
-0.15033215284347534,
0.05520832538604736,
-0.003970526624470949,
0.002437459770590067,
-0.01783961057662964,
-0.028730953112244606,
-0.09970277547836304,
-0.06624005734920502,
0.008432036265730858,
0.03948491811752319,
0.028305526822805405,
-0.03595494106411934,
-0.0635642409324646,
-0.06782369315624237,
0.10156653821468353,
-0.12593761086463928,
-0.013382266275584698,
-0.13813196122646332,
0.14065006375312805,
-0.08364655822515488,
0.0673578754067421,
-0.14024285972118378,
-0.02271796390414238,
0.07403683662414551,
-0.023558873683214188,
-0.025787224993109703,
-0.011082068085670471,
0.06336887180805206,
0.0963461846113205,
0.013275811448693275,
0.021604692563414574,
0.132207453250885,
0.04225382208824158,
-0.07198466360569,
-0.1677282154560089,
-0.021196195855736732,
-0.057417042553424835,
0.21136021614074707,
-0.184984028339386,
0.0377490259706974,
0.11884945631027222,
0.1211910992860794,
-0.03961078077554703,
0.009264692664146423,
-0.04526267573237419,
0.03171325847506523,
-0.07233580201864243,
0.0065973252058029175,
0.07916668802499771,
-0.019518792629241943,
-0.05798916146159172,
0.04363157972693443,
-0.22891731560230255,
0.0936889499425888,
0.12157922983169556,
0.00980803556740284,
-0.02253561280667782,
-0.08021403104066849,
0.027509551495313644,
-0.04887164384126663,
0.10130594670772552,
-0.07462489604949951,
-0.008430419489741325,
-0.057202160358428955,
0.09269620478153229,
-0.07001881301403046,
0.021399881690740585,
0.06034783273935318,
0.06093079596757889,
-0.06224990636110306,
0.07526913285255432,
0.16095975041389465,
-0.20012691617012024,
0.08113615214824677,
0.13425502181053162,
-0.05255484580993652,
0.12088142335414886,
0.026094749569892883,
-0.022781871259212494,
-0.0248920489102602,
0.028399452567100525,
0.04348624497652054,
0.0740995854139328,
-0.07856515794992447,
0.007849497720599174,
0.02396395616233349,
-0.008421944454312325,
0.07247395068407059,
-0.13180844485759735,
0.05588517338037491,
-0.04657885432243347,
-0.04360083490610123,
0.09979331493377686,
0.011265315115451813,
-0.03415970876812935,
0.08838693797588348,
-0.06092541292309761,
-0.19272583723068237,
0.07253647595643997,
-0.003231384325772524,
-0.10127317905426025,
0.19590944051742554,
-0.15054811537265778,
-0.19092904031276703,
-0.18068858981132507,
0.018074538558721542,
-0.06307666748762131,
0.04179096966981888,
0.008487730287015438,
0.006950183305889368,
-0.10110025107860565,
-0.1408982127904892,
-0.0427841953933239,
0.12416139990091324,
0.036380525678396225,
0.018678680062294006,
0.0070695579051971436,
-0.04079899936914444,
-0.10504253953695297,
0.03484721854329109,
0.030889421701431274,
-0.03469151258468628,
0.0488390251994133,
-0.1173926442861557,
0.07332655042409897,
0.18479254841804504,
0.050573576241731644,
-0.0322006419301033,
0.003276488510891795,
0.12326061725616455,
-0.05471964552998543,
0.0741860419511795,
0.13291893899440765,
-0.0161118246614933,
-0.008379444479942322,
0.14995242655277252,
-0.012121028266847134,
-0.057627011090517044,
0.017620820552110672,
-0.13084551692008972,
-0.020789843052625656,
-0.1216527447104454,
-0.10185782611370087,
-0.07342687249183655,
0.08307919651269913,
0.0439215712249279,
0.05500464886426926,
0.020890576764941216,
0.10528330504894257,
-0.04999060928821564,
0.0345996618270874,
0.0849592462182045,
0.07080426067113876,
0.1301840841770172,
0.04075927287340164,
0.09936575591564178,
-0.08191724866628647,
0.004462718032300472,
0.062184859067201614,
0.1117163673043251,
0.11818689107894897,
0.02639620378613472,
0.24685391783714294,
-0.032948147505521774,
0.12329105287790298,
0.07999180257320404,
0.12284711748361588,
-0.00864341203123331,
-0.015271876938641071,
-0.05061836168169975,
-0.07266664505004883,
-0.05459153652191162,
0.05548090860247612,
-0.09573563933372498,
-0.04853421077132225,
-0.012697607278823853,
0.07652278989553452,
0.05389084294438362,
0.09408004581928253,
-0.004751680418848991,
-0.355776846408844,
-0.07670719176530838,
0.018231993541121483,
0.018403463065624237,
-0.04217454791069031,
0.04330975562334061,
0.14705228805541992,
0.020864952355623245,
0.009508076123893261,
-0.07763224840164185,
0.041883185505867004,
0.061387091875076294,
-0.006203468423336744,
0.0434420183300972,
0.10810504108667374,
0.03738350421190262,
0.07996612042188644,
-0.18143028020858765,
0.11141780763864517,
0.030224084854125977,
0.03419574350118637,
-0.1144140362739563,
0.037086475640535355,
0.01625993475317955,
0.19613178074359894,
-0.004564615432173014,
-0.045296136289834976,
-0.1893482208251953,
-0.0689142644405365,
-0.08727896213531494,
0.03307659178972244,
0.062273334711790085,
0.05006754398345947,
0.03653446212410927,
-0.06905809044837952,
-0.038043905049562454,
0.031212691217660904,
0.018740897998213768,
-0.1005827933549881,
-0.1521243155002594,
0.1141105517745018,
0.13593526184558868,
0.03474428132176399,
-0.08954653888940811,
-0.07697480171918869,
-0.08154512941837311,
0.15605998039245605,
-0.16867241263389587,
0.04038715362548828,
-0.06921832263469696,
-0.08829392492771149,
0.07447763532400131,
-0.05886637046933174,
0.033048115670681,
-0.05293397977948189,
0.09819139540195465,
-0.010522345080971718,
-0.16308218240737915,
0.13241323828697205,
-0.12312711775302887,
-0.14370237290859222,
-0.05992847681045532,
0.06809408962726593,
-0.06873819231987,
0.0022854453418403864,
0.06494661420583725,
-0.003753822762519121,
-0.0391383059322834,
-0.0660630539059639,
-0.10953924804925919,
0.1077568382024765,
0.020387794822454453,
0.018395371735095978,
-0.11601611226797104,
-0.22736132144927979,
0.01998201198875904,
-0.03141530975699425,
0.05466332286596298,
0.15044312179088593,
-0.03014368936419487,
-0.006456559058278799,
0.23687884211540222,
-0.055429477244615555,
-0.22862359881401062,
-0.018901793286204338,
-0.042703378945589066,
-0.02188730798661709,
-0.051531583070755005,
-0.06719859689474106,
0.10814088582992554,
0.1138487309217453,
-0.03043392300605774,
0.10296455770730972,
-0.2704268991947174,
-0.10182666778564453,
0.085641048848629,
0.14373528957366943,
0.16225220263004303,
-0.16549363732337952,
-0.01028093695640564,
-0.08030227571725845,
-0.20055076479911804,
0.20391269028186798,
-0.07938387244939804,
0.09214778244495392,
-0.010821088217198849,
-0.019544538110494614,
-0.028718506917357445,
-0.068844273686409,
0.1017010435461998,
-0.00977392215281725,
0.03257446363568306,
-0.0581856369972229,
0.05149603635072708,
0.08367886394262314,
0.005444946698844433,
0.044167716056108475,
-0.15532472729682922,
0.03681670501828194,
-0.002691866597160697,
-0.05362054705619812,
-0.012732550501823425,
-0.0026201787404716015,
-0.006864391267299652,
-0.0015344780404120684,
-0.02427084371447563,
0.06051024794578552,
-0.04315687716007233,
-0.039240580052137375,
0.036032360047101974,
-0.021986784413456917,
0.07572407275438309,
0.18682101368904114,
0.13099586963653564,
-0.1729888617992401,
0.10569115728139877,
-0.0014597418485209346,
-0.02547169290482998,
0.10732989013195038,
0.030407506972551346,
0.026273900642991066,
0.11428198963403702,
-0.06834873557090759,
0.08438757807016373,
0.07266460359096527,
0.006285837385803461,
-0.026078861206769943,
0.10444124788045883,
-0.15946952998638153,
-0.09831534326076508,
-0.010685903020203114,
0.11417429149150848,
-0.008124001324176788,
0.09837585687637329,
0.1708424687385559,
-0.018011750653386116,
0.0062541416846215725,
0.024372871965169907,
0.01395859383046627,
0.001576199196279049,
0.13970249891281128,
-0.033791929483413696,
0.06328099220991135,
-0.07360316067934036,
0.015294077806174755,
0.013761095702648163,
-0.12430055439472198,
-0.021107856184244156,
0.13191480934619904,
-0.16038714349269867,
-0.11507382243871689,
-0.01596260815858841,
0.09649673849344254,
-0.025922004133462906,
-0.1084810271859169,
-0.12643732130527496,
-0.1255151331424713,
0.016684943810105324,
0.08722863346338272,
0.0702880248427391,
0.047615308314561844,
-0.0021655927412211895,
-0.028156030923128128,
-0.1034560576081276,
0.09210143983364105,
-0.049840815365314484,
0.09839409589767456,
-0.12467662245035172,
0.05477287247776985,
-0.03807368874549866,
-0.06821146607398987,
-0.04842457175254822,
0.036598365753889084,
-0.1255132555961609,
-0.029645606875419617,
-0.13487930595874786,
0.046103499829769135,
-0.11327613890171051,
0.004807859659194946,
0.006071087438613176,
0.022464342415332794,
-0.014938781037926674,
0.017471235245466232,
-0.04343966394662857,
0.021671941503882408,
-0.019466500729322433,
0.046391528099775314,
-0.07856854796409607,
0.009350280277431011,
0.00014505963190458715,
-0.06051967293024063,
0.06773857027292252,
0.04083047807216644,
-0.057474058121442795,
0.03246474266052246,
-0.1741316020488739,
-0.004279972054064274,
0.046109482645988464,
0.07096154242753983,
0.018934648483991623,
-0.07202838361263275,
0.03143496811389923,
0.12119660526514053,
0.050228673964738846,
0.012352420948445797,
0.1968432068824768,
-0.049027252942323685,
-0.0008978642290458083,
-0.121609166264534,
-0.050753772258758545,
-0.05384121090173721,
-0.011370809748768806,
0.07051318138837814,
-0.015221349895000458,
0.14751338958740234,
-0.07086507976055145,
-0.03176601976156235,
-0.08708439022302628,
0.011213849298655987,
0.032696571201086044,
-0.13200896978378296,
-0.07990989834070206,
-0.03358033671975136,
0.047560565173625946,
0.007654953747987747,
0.07226736098527908,
-0.058019887655973434,
-0.10394604504108429,
0.013476954773068428,
-0.03505850210785866,
0.04594137892127037,
0.034802939742803574,
0.16488976776599884,
0.10157549381256104,
0.06970089673995972,
-0.032272033393383026,
0.047491468489170074,
0.07565147429704666,
0.12210555374622345,
0.08361344039440155,
0.0760960653424263,
-0.027566850185394287,
0.1667456328868866,
0.07843437790870667,
-0.07557085901498795,
-0.04427323862910271,
0.0855315774679184,
-0.1697453111410141,
0.09349703788757324,
-0.05657625198364258,
0.14889127016067505,
0.16008391976356506,
-0.04360553249716759,
-0.06964000314474106,
-0.10133937746286392,
-0.10060598701238632,
-0.0737171396613121,
-0.144444078207016,
-0.11598177254199982,
-0.15823926031589508,
-0.02021319605410099,
-0.06507106870412827,
-0.09253256767988205,
0.04086383432149887,
0.037152670323848724,
-0.010272729210555553,
0.18889251351356506,
-0.01605699583888054,
0.03838229924440384,
-0.0321146585047245,
0.0017693012487143278,
-0.008410545065999031,
0.036619048565626144,
-0.1548120677471161,
-0.011051954701542854,
-0.03576201573014259,
0.03767706826329231,
0.021387584507465363,
0.023337924852967262,
0.05549028515815735,
-0.0033308430574834347,
-0.04863503575325012,
-0.01920263096690178,
-0.0011281870538368821,
-0.01649872586131096,
0.12027281522750854,
-0.006309852935373783,
-0.05069490149617195,
0.03028200939297676,
0.02589396759867668,
-0.020493607968091965,
-0.11464788764715195,
-0.10810388624668121,
0.11736121028661728,
-0.07860458642244339,
0.044269416481256485,
0.013559659011662006,
-0.0101328669115901,
-0.023432109504938126,
0.18963681161403656,
0.2287255823612213,
-0.09979473054409027,
-0.014849985018372536,
0.015992846339941025,
-0.013664601370692253,
-0.040227457880973816,
0.1684797704219818,
0.09711184352636337,
0.2037757933139801,
0.025360161438584328,
-0.021103184670209885,
-0.001195923425257206,
-0.005482147913426161,
-0.11532525718212128,
-0.039835765957832336,
-0.04180289804935455,
-0.03520563989877701,
0.009702207520604134,
0.042784806340932846,
0.006989783141762018,
-0.03218588978052139,
-0.010033383965492249,
-0.06130514293909073,
-0.07618565857410431,
-0.06477157026529312,
0.1305445283651352,
-0.09517543017864227,
0.03688139468431473,
-0.06840561330318451,
0.0195605605840683,
0.013379605486989021,
-0.021147551015019417,
-0.1106223315000534,
-0.04146788269281387,
0.02109948731958866,
-0.1297861486673355,
0.14164212346076965,
-0.036643948405981064,
0.11645273864269257,
0.12261927127838135,
0.010852943174540997,
-0.14264562726020813,
0.07332352548837662,
0.031738582998514175,
-0.11479264497756958,
0.0776853933930397,
-0.0013804935151711106,
-0.05474866181612015,
0.16480295360088348,
0.015371039509773254,
-0.07446736097335815,
0.02516375482082367,
-0.03275401145219803,
0.002308108378201723,
-0.04203716292977333,
0.009467897936701775,
-0.061638735234737396,
0.14279285073280334,
0.09066151082515717,
-0.015788983553647995,
-0.03130638599395752,
-0.010479123331606388,
0.0966024249792099,
-0.03391670063138008,
-0.022660452872514725,
-0.015216921456158161,
-0.30464059114456177,
-0.030301308259367943,
-0.012125648558139801,
0.040927741676568985,
-0.1680280864238739,
-0.08409134298563004,
-0.13633382320404053,
-0.02465103566646576,
-0.1408102959394455,
0.032521095126867294,
0.1642039567232132,
-0.003878029529005289,
-0.05764879658818245,
-0.17590895295143127,
-0.08574333786964417,
0.0627649575471878,
-0.11513547599315643,
-0.18672840297222137
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.0 | 1.0 | 5963 | 0.0000 | 1.0 |
| 0.0 | 2.0 | 11926 | 0.0000 | 1.0 |
| 0.0 | 3.0 | 17889 | 0.0 | 1.0 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "bert-base-uncased", "model-index": [{"name": "bert-base-uncased", "results": []}]} | text-classification | ekaterinatao/house_md_bot_BERT_base | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:06:34+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| bert-base-uncased
=================
This model is a fine-tuned version of bert-base-uncased on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0
* Accuracy: 1.0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
68,
117,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #base_model-bert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.08709321916103363,
0.10591991245746613,
-0.0037409639917314053,
0.09902156889438629,
0.09827815741300583,
0.004392931703478098,
0.16415593028068542,
0.14155766367912292,
-0.08817064017057419,
0.07406667619943619,
0.13361278176307678,
0.13082964718341827,
0.02909819222986698,
0.16641904413700104,
-0.0759405717253685,
-0.23672981560230255,
0.041275445371866226,
0.017331337556242943,
-0.04032384976744652,
0.11022500693798065,
0.08108735084533691,
-0.13185302913188934,
0.10209693014621735,
0.007451675366610289,
-0.15340973436832428,
-0.015991557389497757,
0.007630822714418173,
-0.07029644399881363,
0.10401231795549393,
0.015707431361079216,
0.11357264220714569,
0.0590040348470211,
0.07935046404600143,
-0.20319101214408875,
0.007798315491527319,
0.05970802158117294,
-0.005854030605405569,
0.08926340192556381,
0.03554293513298035,
-0.0010577166685834527,
0.0812869668006897,
-0.0828322246670723,
0.08389020711183548,
0.024982865899801254,
-0.12919454276561737,
-0.21514937281608582,
-0.10922698676586151,
0.054305531084537506,
0.08085930347442627,
0.06220605596899986,
-0.005849759094417095,
0.16654136776924133,
-0.04293776676058769,
0.09983734786510468,
0.2619434595108032,
-0.32092738151550293,
-0.06493355333805084,
0.038465965539216995,
0.05148296803236008,
0.06740932166576385,
-0.10516934841871262,
-0.01198901329189539,
0.05151277035474777,
0.017701106145977974,
0.1426372230052948,
-0.022173577919602394,
-0.04406150057911873,
-0.01657298393547535,
-0.13312627375125885,
-0.043115049600601196,
0.13365955650806427,
0.03708344325423241,
-0.0495850034058094,
-0.07169173657894135,
-0.0656195655465126,
-0.19645723700523376,
-0.05226064845919609,
-0.03300274536013603,
0.057626452296972275,
-0.03807159140706062,
-0.06160150095820427,
-0.0023549385368824005,
-0.09285024553537369,
-0.06083732098340988,
-0.04023062065243721,
0.15314717590808868,
0.04650469496846199,
0.006025797687470913,
-0.027109796181321144,
0.08574933558702469,
-0.05550985410809517,
-0.16507886350154877,
-0.0187846552580595,
0.009264339692890644,
0.0075834160670638084,
-0.060008104890584946,
-0.02664497122168541,
-0.06922251731157303,
0.04035251587629318,
0.1883750855922699,
-0.10488519817590714,
0.07179193198680878,
-0.03250901773571968,
0.03592317923903465,
-0.0880737230181694,
0.17112784087657928,
-0.013627921231091022,
-0.0017034413758665323,
0.012657719664275646,
0.08224634826183319,
0.054517436772584915,
-0.02352334000170231,
-0.10943438112735748,
0.048827867954969406,
0.10393563657999039,
0.034888286143541336,
-0.05694141611456871,
0.07789529114961624,
-0.04911991208791733,
-0.003778390120714903,
0.07135102897882462,
-0.09387600421905518,
0.04596409574151039,
0.011827816255390644,
-0.04560626670718193,
-0.07349486649036407,
0.021301457658410072,
0.016420070081949234,
-0.0037554295267909765,
0.10394196212291718,
-0.08451779931783676,
0.01208516862243414,
-0.07033095508813858,
-0.12623558938503265,
0.03635251522064209,
-0.1246580258011818,
0.005363198462873697,
-0.10235857218503952,
-0.12956726551055908,
-0.009535376913845539,
0.04839669540524483,
-0.040274832397699356,
-0.0241748858243227,
-0.05453876033425331,
-0.10238242894411087,
0.04161149263381958,
-0.016415074467658997,
0.048484500497579575,
-0.07909279316663742,
0.07073111832141876,
0.02514571137726307,
0.07204359024763107,
-0.03515397757291794,
0.030568158254027367,
-0.09413294494152069,
0.040170542895793915,
-0.23683616518974304,
0.016996946185827255,
-0.08509919792413712,
0.07552840560674667,
-0.09170632809400558,
-0.08396636694669724,
0.02048640139400959,
-0.016460174694657326,
0.0694989487528801,
0.10006500035524368,
-0.15710274875164032,
-0.05778734013438225,
0.18888475000858307,
-0.11233370006084442,
-0.1375942975282669,
0.11704138666391373,
-0.049637239426374435,
0.02372984029352665,
0.04798750951886177,
0.19415190815925598,
0.06405030190944672,
-0.1308818757534027,
-0.020062772557139397,
-0.034085530787706375,
0.05351372808218002,
-0.003752125194296241,
0.0586911104619503,
-0.003600840689614415,
0.05674244835972786,
0.009257822297513485,
-0.01254515815526247,
0.006988539360463619,
-0.07834915816783905,
-0.08830554038286209,
-0.04955494776368141,
-0.07356486469507217,
0.036150846630334854,
0.04238035902380943,
0.05955309793353081,
-0.1278475672006607,
-0.10828418284654617,
0.027429327368736267,
0.06738992780447006,
-0.07050321251153946,
0.039873380213975906,
-0.09872449934482574,
0.09813933819532394,
-0.034275274723768234,
-0.012072750367224216,
-0.1601555496454239,
-0.051944274455308914,
0.052143801003694534,
-0.019192801788449287,
0.016068613156676292,
-0.02678455039858818,
0.07477180659770966,
0.08166785538196564,
-0.055869944393634796,
-0.022855734452605247,
-0.018836287781596184,
0.018678944557905197,
-0.11765136569738388,
-0.23325102031230927,
-0.017295872792601585,
-0.04932447522878647,
0.09310560673475266,
-0.18491850793361664,
0.05309717729687691,
0.07345719635486603,
0.11602507531642914,
0.05343250557780266,
-0.018257636576890945,
-0.02148413099348545,
0.06600017845630646,
-0.04624868184328079,
-0.0669250339269638,
0.04745183140039444,
0.01064569316804409,
-0.07759101688861847,
-0.01419229619204998,
-0.1736161708831787,
0.15707740187644958,
0.13478893041610718,
-0.01652277447283268,
-0.09035075455904007,
-0.018692269921302795,
-0.045277807861566544,
-0.02476898767054081,
-0.028952481225132942,
0.02939474582672119,
0.15108515322208405,
-0.0014225079212337732,
0.15066863596439362,
-0.097051702439785,
-0.05226016417145729,
0.0499349907040596,
-0.029983481392264366,
0.005005574319511652,
0.09520909935235977,
0.06459161639213562,
-0.12622562050819397,
0.14778752624988556,
0.16689977049827576,
-0.0646747425198555,
0.12701277434825897,
-0.06104403734207153,
-0.04564836248755455,
-0.03176175802946091,
0.007334081921726465,
0.02699754759669304,
0.11205048859119415,
-0.10580901801586151,
-0.004708125721663237,
0.01456517819315195,
0.017992151901125908,
-0.006950037088245153,
-0.19181545078754425,
0.002752155065536499,
0.03256988897919655,
-0.061417847871780396,
-0.010363454930484295,
-0.017073391005396843,
0.004502147436141968,
0.097331702709198,
0.0067322468385100365,
-0.08538632839918137,
0.026298364624381065,
0.002761740703135729,
-0.0668419674038887,
0.2007121741771698,
-0.09830553084611893,
-0.1366008073091507,
-0.1074477806687355,
-0.061058204621076584,
-0.05050089582800865,
0.014711938798427582,
0.08073729276657104,
-0.07373760640621185,
-0.05139235779643059,
-0.11894992738962173,
-0.034251514822244644,
0.04175984114408493,
0.042474422603845596,
0.028621001169085503,
-0.0008447202853858471,
0.06833246350288391,
-0.1099327802658081,
-0.03332994133234024,
-0.03957820311188698,
-0.030771758407354355,
0.04640273377299309,
0.028513291850686073,
0.1063905879855156,
0.1261337846517563,
-0.02941708080470562,
0.017678996548056602,
-0.041780997067689896,
0.19996115565299988,
-0.07617510110139847,
-0.009136070497334003,
0.09722325950860977,
-0.0288903396576643,
0.06419732421636581,
0.1533592939376831,
0.057053327560424805,
-0.09416715055704117,
-0.0022114256862550974,
0.0258456002920866,
-0.03633167967200279,
-0.2208465188741684,
-0.02471141330897808,
-0.032790131866931915,
0.025570813566446304,
0.11330198496580124,
0.04246668890118599,
0.061926208436489105,
0.05366251617670059,
0.012980172410607338,
0.04047071933746338,
0.01607290469110012,
0.10338637977838516,
0.10381852090358734,
0.05624961853027344,
0.13574570417404175,
-0.04788825288414955,
-0.03906995430588722,
0.038620173931121826,
0.0057278103195130825,
0.20100903511047363,
0.025303389877080917,
0.17188678681850433,
0.05914394184947014,
0.1450955867767334,
0.01910095475614071,
0.0587843582034111,
-0.0020923742558807135,
-0.032985590398311615,
-0.009375167079269886,
-0.05917937308549881,
-0.019840756431221962,
0.044409703463315964,
-0.07104047387838364,
0.035533357411623,
-0.11092299222946167,
0.03902842476963997,
0.0682889074087143,
0.29266124963760376,
0.03744710236787796,
-0.33792853355407715,
-0.0838472992181778,
0.014066201634705067,
-0.040519170463085175,
-0.01968735083937645,
0.026817185804247856,
0.1110209971666336,
-0.0571325421333313,
0.08242934942245483,
-0.07005242258310318,
0.08600171655416489,
-0.04049408808350563,
0.0404759980738163,
0.05815727263689041,
0.072847381234169,
-0.014154893346130848,
0.0406801775097847,
-0.2539554238319397,
0.28380200266838074,
0.02891797199845314,
0.07285604625940323,
-0.05463593825697899,
0.01910368911921978,
0.028117027133703232,
0.10214179009199142,
0.08956152945756912,
-0.03179322928190231,
-0.12079115957021713,
-0.17524293065071106,
-0.09950577467679977,
0.010846161283552647,
0.11168868839740753,
-0.021168118342757225,
0.10916528850793839,
-0.019300613552331924,
-0.009390140883624554,
0.0595821738243103,
-0.0447109080851078,
-0.07992107421159744,
-0.08812243491411209,
0.009328934364020824,
0.03875432536005974,
-0.021677475422620773,
-0.07829444855451584,
-0.09771188348531723,
-0.11030767858028412,
0.17296834290027618,
-0.05706137791275978,
-0.037739988416433334,
-0.11644881218671799,
0.030932174995541573,
0.06374780833721161,
-0.0772930160164833,
0.04322321340441704,
-0.012049983255565166,
0.11311011761426926,
0.0028095263987779617,
-0.05650581791996956,
0.1277412474155426,
-0.0689796730875969,
-0.2118576020002365,
-0.06489043682813644,
0.1153368353843689,
0.02475888840854168,
0.0512460432946682,
0.00949503481388092,
0.03705019876360893,
0.002790261758491397,
-0.08064968138933182,
0.028755834326148033,
0.009703059680759907,
0.0916004329919815,
-0.027335241436958313,
-0.04664729908108711,
0.00487210089340806,
-0.0608317069709301,
-0.009531372226774693,
0.1455332487821579,
0.3063261806964874,
-0.10550437867641449,
0.06357049196958542,
0.05792096257209778,
-0.06750744581222534,
-0.1916501522064209,
0.01729821041226387,
0.04295160248875618,
-0.015035128220915794,
0.004193577915430069,
-0.1486368179321289,
0.07798373699188232,
0.09813801199197769,
-0.029798146337270737,
0.07347581535577774,
-0.25817009806632996,
-0.1427532434463501,
0.12421476095914841,
0.11338195949792862,
0.07476556301116943,
-0.16421927511692047,
-0.04526602104306221,
-0.016649708151817322,
-0.11503300815820694,
0.11846070736646652,
-0.138486847281456,
0.10968046635389328,
-0.019046595320105553,
0.031740713864564896,
0.010312588885426521,
-0.059076208621263504,
0.12394770234823227,
-0.0004642510029952973,
0.11375094205141068,
-0.0688040480017662,
-0.015121908858418465,
0.08066112548112869,
-0.0828612893819809,
0.04264230281114578,
-0.1102001741528511,
0.02789056859910488,
-0.04991387575864792,
-0.018424034118652344,
-0.051984090358018875,
0.031167004257440567,
-0.039065152406692505,
-0.04640942066907883,
-0.060463421046733856,
0.015449472703039646,
0.058951862156391144,
-0.020446782931685448,
0.2146603763103485,
0.008315249346196651,
0.16989096999168396,
0.19049300253391266,
0.11382076889276505,
-0.10241102427244186,
-0.017932916060090065,
0.017049428075551987,
-0.04038717970252037,
0.0636482760310173,
-0.1503763645887375,
0.05055558681488037,
0.12560594081878662,
0.0029218520503491163,
0.1280989795923233,
0.06710540503263474,
-0.04037170484662056,
0.01025413442403078,
0.06573913991451263,
-0.1674375683069229,
-0.09366301447153091,
0.02250281535089016,
0.012386257760226727,
-0.11530712991952896,
0.07535389810800552,
0.13520780205726624,
-0.06661378592252731,
-0.0005310933920554817,
0.0042680357582867146,
0.02720552496612072,
-0.012584998272359371,
0.17496357858181,
0.03601285070180893,
0.06242689862847328,
-0.09616794437170029,
0.08496113866567612,
0.045991700142621994,
-0.09584994614124298,
0.042042382061481476,
0.07743390649557114,
-0.10384995490312576,
-0.04012199491262436,
0.05882915109395981,
0.17922483384609222,
-0.02866888977587223,
-0.05611854046583176,
-0.15316233038902283,
-0.12420860677957535,
0.07470999658107758,
0.2384296953678131,
0.08051593601703644,
0.017822150141000748,
-0.015088728629052639,
0.018369754776358604,
-0.10981745272874832,
0.10760624706745148,
0.011687858030200005,
0.08969753235578537,
-0.13866132497787476,
0.11105888336896896,
-0.0063464767299592495,
0.0059966519474983215,
-0.02160857804119587,
0.03811884671449661,
-0.12679415941238403,
-0.01378046814352274,
-0.11649155616760254,
0.020441221073269844,
-0.0440857820212841,
0.005504165310412645,
0.007151637226343155,
-0.048697877675294876,
-0.06478478014469147,
0.014904775656759739,
-0.10611855238676071,
-0.017947513610124588,
0.020426327362656593,
0.05503860488533974,
-0.13413478434085846,
-0.03022400103509426,
0.018155379220843315,
-0.08054456859827042,
0.08069954067468643,
0.02113991044461727,
0.00537616852670908,
0.032519929111003876,
-0.12707163393497467,
0.01934903860092163,
0.07050969451665878,
0.0008088304894044995,
0.052580855786800385,
-0.107742078602314,
-0.02197793312370777,
-0.005770930554717779,
0.017231110483407974,
0.03133295848965645,
0.10490729659795761,
-0.11928635090589523,
0.018372004851698875,
-0.0014449198497459292,
-0.07183080911636353,
-0.05498576909303665,
0.036207761615514755,
0.11228009313344955,
-0.023193391039967537,
0.1842479705810547,
-0.09331167489290237,
0.019555702805519104,
-0.18895311653614044,
0.005629663821309805,
0.016217490658164024,
-0.12717148661613464,
-0.0974099263548851,
-0.04359027370810509,
0.06162465736269951,
-0.07226558029651642,
0.13964954018592834,
0.002290209988132119,
0.01653764396905899,
0.04949100688099861,
-0.057969190180301666,
-0.009458501823246479,
0.04310170188546181,
0.1624990850687027,
0.03521672636270523,
-0.05273720994591713,
0.044697050005197525,
0.010402782820165157,
0.09854929894208908,
0.04956628009676933,
0.21202078461647034,
0.14085827767848969,
0.002259814878925681,
0.10290051251649857,
0.05763408541679382,
-0.0644511952996254,
-0.15141354501247406,
0.08399368822574615,
-0.057512640953063965,
0.12531277537345886,
-0.017434217035770416,
0.16568851470947266,
0.11543358117341995,
-0.1565302312374115,
0.02475779689848423,
-0.049912579357624054,
-0.07928451150655746,
-0.1253829300403595,
-0.05348280444741249,
-0.10709740966558456,
-0.1567104607820511,
0.00693913921713829,
-0.11771358549594879,
0.03339950740337372,
0.05741838365793228,
0.01876559667289257,
0.012398521415889263,
0.15572308003902435,
-0.008730986155569553,
0.0434282049536705,
0.05425955727696419,
0.011773624457418919,
-0.04388642683625221,
-0.07926609367132187,
-0.09442149102687836,
0.0015095528215169907,
-0.016763785853981972,
0.023679252713918686,
-0.021551642566919327,
0.003579637035727501,
0.043277204036712646,
-0.009692259132862091,
-0.10736329853534698,
0.02630462870001793,
0.018789444118738174,
0.049429722130298615,
0.03040223941206932,
0.005235010292381048,
0.004422660451382399,
0.006640681531280279,
0.17728757858276367,
-0.07121296226978302,
-0.055274806916713715,
-0.12107723206281662,
0.23059196770191193,
0.029711272567510605,
0.004675989504903555,
0.018251601606607437,
-0.06936972588300705,
-0.000766709737945348,
0.18102936446666718,
0.18973898887634277,
-0.023982170969247818,
0.01324361003935337,
-0.016190560534596443,
-0.010366188362240791,
-0.025805866345763206,
0.07920126616954803,
0.10234776884317398,
0.010544657707214355,
-0.06996070593595505,
-0.04491415619850159,
-0.021412217989563942,
-0.01759120263159275,
-0.05376027151942253,
0.05547192320227623,
0.020991181954741478,
0.007525521330535412,
-0.048383619636297226,
0.0431428924202919,
-0.03064447082579136,
-0.0814310684800148,
0.07257244735956192,
-0.2163267582654953,
-0.1450127214193344,
0.005046880804002285,
0.09514883905649185,
-0.02076917514204979,
0.04420410469174385,
-0.005098316818475723,
-0.03315092995762825,
0.07576709985733032,
-0.026019396260380745,
-0.06911659985780716,
-0.07756054401397705,
0.06928516179323196,
-0.13450887799263,
0.23799344897270203,
-0.03332339972257614,
0.04419654235243797,
0.13312651216983795,
0.02968187816441059,
-0.08512625843286514,
0.05901580676436424,
0.057379744946956635,
-0.08749964088201523,
0.004666860681027174,
0.09955179691314697,
-0.03920203819870949,
0.11496122181415558,
0.0579107441008091,
-0.12518087029457092,
0.0012698413338512182,
-0.07864595949649811,
-0.07351591438055038,
-0.03846557065844536,
-0.03576742857694626,
-0.04951313138008118,
0.13095469772815704,
0.1832200437784195,
-0.030611524358391762,
0.0015671167057007551,
-0.04031577706336975,
0.032140523195266724,
0.06695649772882462,
-0.0022236208897083998,
-0.040839724242687225,
-0.2593364119529724,
0.042659979313611984,
0.09402885288000107,
0.008089137263596058,
-0.24848715960979462,
-0.10135004669427872,
0.012573940679430962,
-0.02674984000623226,
-0.10759361833333969,
0.07383697479963303,
0.09439069777727127,
0.05201668292284012,
-0.06393949687480927,
-0.081771619617939,
-0.05848659947514534,
0.15563063323497772,
-0.13841256499290466,
-0.08067033439874649
] |
null | null | null |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "228.30 +/- 72.49", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | jgraveno/Reinforce1 | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | 2024-02-13T18:11:43+00:00 | [] | [] | TAGS
#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
39,
54
] | [
"passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
0.007526164408773184,
-0.12498430907726288,
-0.0013541718944907188,
0.09601131081581116,
0.11848696321249008,
-0.04186001420021057,
0.11405468732118607,
0.05624859035015106,
0.09539441019296646,
0.04239490255713463,
0.13636724650859833,
0.06906966865062714,
-0.004102868959307671,
0.12412862479686737,
0.09840741008520126,
-0.26058563590049744,
0.07420794665813446,
-0.04403980076313019,
-0.009944677352905273,
0.10139261186122894,
0.07836852967739105,
-0.08325441926717758,
0.051592715084552765,
0.00009572553972247988,
-0.044259943068027496,
0.0321260429918766,
0.013628939166665077,
-0.053157225251197815,
0.1606452465057373,
-0.07313758134841919,
0.10494591295719147,
-0.03843724727630615,
0.14574295282363892,
-0.1126825287938118,
0.04758213832974434,
0.05111503228545189,
-0.04548581689596176,
0.03848232328891754,
-0.12538743019104004,
-0.06033875793218613,
0.026815801858901978,
-0.015865681692957878,
0.12249194830656052,
0.03647647053003311,
-0.1777559220790863,
-0.13461355865001678,
-0.0165896974503994,
0.12325166910886765,
0.1627800315618515,
0.00512364786118269,
0.014270431362092495,
0.16791965067386627,
-0.1761058121919632,
0.025937072932720184,
0.11400806158781052,
-0.37275227904319763,
-0.00034436015994288027,
0.2240462601184845,
0.06164427846670151,
0.1252165287733078,
-0.12646614015102386,
0.010440526530146599,
0.07403992861509323,
0.04368630796670914,
0.049784936010837555,
-0.015430688858032227,
-0.12260042130947113,
0.08455035835504532,
-0.1383819431066513,
-0.058066487312316895,
0.1495426446199417,
-0.019741326570510864,
-0.009476418606936932,
-0.016515808179974556,
-0.009238536469638348,
-0.050979889929294586,
-0.03430935740470886,
-0.11778499186038971,
0.10755524039268494,
0.04975730925798416,
0.0038771627005189657,
-0.04602450504899025,
-0.05612579360604286,
-0.09815777093172073,
-0.03123871050775051,
0.0372777059674263,
-0.013706400990486145,
0.01091629359871149,
0.027692900970578194,
0.09935613721609116,
-0.13446329534053802,
0.01825822703540325,
-0.028096558526158333,
-0.028040969744324684,
-0.1316804438829422,
-0.11984307318925858,
-0.026084421202540398,
0.004223645199090242,
0.03029833547770977,
0.20433813333511353,
0.020139509811997414,
0.059011414647102356,
-0.0022708347532898188,
0.09776382148265839,
0.029780851677060127,
0.13517548143863678,
-0.04466623440384865,
0.19488364458084106,
0.07711011171340942,
0.05364556983113289,
0.03204274922609329,
-0.05344729498028755,
-0.19369827210903168,
0.04861246794462204,
0.06659778952598572,
0.08274952322244644,
-0.1178959533572197,
0.0059632807970047,
-0.10316018015146255,
0.0028950648847967386,
-0.10474003106355667,
-0.0642905905842781,
-0.02892979420721531,
0.031841445714235306,
-0.10535725951194763,
0.028785312548279762,
0.025052599608898163,
0.04140377417206764,
0.0676041767001152,
-0.12253966927528381,
-0.07404746115207672,
-0.021733485162258148,
-0.12817098200321198,
-0.09923440217971802,
0.08802318572998047,
-0.026199497282505035,
-0.005110981408506632,
-0.1253623217344284,
-0.2661486268043518,
-0.05670225992798805,
0.06396034359931946,
-0.03231031447649002,
-0.08589376509189606,
-0.1633463054895401,
0.026403428986668587,
-0.07700273394584656,
0.05221332609653473,
0.04776721075177193,
-0.03665859252214432,
0.02023705095052719,
-0.07958202809095383,
0.12739010155200958,
0.049698662012815475,
0.00541001046076417,
-0.09916839748620987,
0.07882837951183319,
-0.3034103214740753,
-0.02581131085753441,
-0.15228183567523956,
0.0772043839097023,
-0.07893010973930359,
0.01308529730886221,
0.05044940114021301,
0.043790437281131744,
-0.016942394897341728,
0.16269747912883759,
-0.17043575644493103,
-0.05301272124052048,
0.026445282623171806,
-0.09261117875576019,
-0.09916394203901291,
0.07275339215993881,
-0.06339669227600098,
0.21263530850410461,
0.08751397579908371,
0.17006252706050873,
-0.011036526411771774,
-0.16256992518901825,
0.1207515075802803,
0.07522942125797272,
-0.1639646589756012,
0.004287737421691418,
0.061784300953149796,
-0.0016935690073296428,
0.02746843732893467,
-0.01872866041958332,
-0.07289361208677292,
0.06302516162395477,
-0.07825060933828354,
0.022581040859222412,
0.06258945167064667,
-0.09531243145465851,
0.23986859619617462,
-0.005434412509202957,
0.0862451046705246,
-0.025957979261875153,
-0.09802921861410141,
0.00908072479069233,
0.07164718210697174,
-0.0014321404742076993,
0.01703714393079281,
-0.14553219079971313,
0.23044352233409882,
-0.07965081930160522,
0.011176814325153828,
-0.11607582122087479,
-0.1256982982158661,
0.011873425915837288,
0.13336114585399628,
0.059921663254499435,
0.16569606959819794,
0.09518871456384659,
-0.032197169959545135,
0.017584815621376038,
-0.0023385772947221994,
-0.09040450304746628,
0.01580043137073517,
-0.0021571461111307144,
-0.12167251110076904,
-0.07353103160858154,
-0.08134473115205765,
0.12585052847862244,
-0.20988115668296814,
0.015492538921535015,
0.04099845886230469,
0.008103687316179276,
0.04467369243502617,
0.023746047168970108,
-0.013269703835248947,
-0.00007021807687124237,
0.03244573250412941,
-0.10098352283239365,
0.12937165796756744,
0.013381263241171837,
0.014676140621304512,
-0.006365173030644655,
-0.05572463944554329,
0.03720450773835182,
0.040439579635858536,
-0.11237845569849014,
-0.11330515146255493,
-0.009658765979111195,
-0.0015364213613793254,
0.02637762948870659,
-0.022321155294775963,
0.052120618522167206,
0.27587956190109253,
0.05387469753623009,
0.10401033610105515,
-0.05769326910376549,
0.015315087512135506,
-0.015322818420827389,
-0.07135670632123947,
0.06358719617128372,
0.025013601407408714,
0.08050397783517838,
-0.03531401976943016,
0.03759452700614929,
0.1675453782081604,
-0.015888912603259087,
0.11127935349941254,
-0.06545067578554153,
-0.03844274953007698,
-0.043109722435474396,
0.05627678707242012,
0.015021559782326221,
0.04564907029271126,
0.0000015355876712419558,
-0.08444724231958389,
-0.03503387048840523,
-0.03988509997725487,
-0.010637006722390652,
-0.12273643165826797,
-0.00499896751716733,
0.01265440508723259,
-0.021940499544143677,
0.04488934203982353,
0.07375624030828476,
-0.04849626496434212,
0.025821007788181305,
0.06070821359753609,
-0.10193055868148804,
0.08957115560770035,
0.015067169442772865,
-0.06946801394224167,
0.13769419491291046,
-0.07484805583953857,
-0.045293889939785004,
-0.1025395318865776,
-0.1568877100944519,
0.09384927153587341,
0.06704871356487274,
-0.05427970737218857,
-0.1503879576921463,
-0.0016851738328114152,
-0.008973666466772556,
0.09206123650074005,
-0.006399387493729591,
-0.12621140480041504,
0.01989075168967247,
0.08295059949159622,
-0.05633419007062912,
-0.09804849326610565,
-0.0075809285044670105,
-0.05280788615345955,
-0.17707788944244385,
-0.03888550028204918,
-0.06398582458496094,
-0.06734282523393631,
0.23586803674697876,
0.02017230913043022,
0.08274748176336288,
-0.044721852988004684,
0.04250151664018631,
-0.012231717817485332,
0.0006326579605229199,
0.10689259320497513,
-0.09043551236391068,
-0.017900818958878517,
-0.001320177922025323,
-0.024820495396852493,
-0.07327181100845337,
0.029733488336205482,
-0.04272191599011421,
-0.08249637484550476,
-0.1415451467037201,
-0.04993678629398346,
-0.011005163192749023,
0.10754310339689255,
0.07337497919797897,
0.0048001972027122974,
-0.11733713001012802,
0.062058478593826294,
0.13692134618759155,
0.031207585707306862,
0.004062763415277004,
0.028157465159893036,
0.14977529644966125,
-0.10706274956464767,
-0.022463621571660042,
-0.038119975477457047,
-0.054863203316926956,
0.004114252515137196,
0.016883620992302895,
0.08840765058994293,
0.1410384476184845,
0.11468084901571274,
0.047563645988702774,
0.0464191697537899,
0.06561273336410522,
0.1694946140050888,
0.059157438576221466,
-0.10448314249515533,
-0.044678982347249985,
-0.0040070898830890656,
-0.10903503000736237,
0.057307638227939606,
0.16030821204185486,
0.06326017528772354,
-0.14463356137275696,
0.021787412464618683,
-0.038982175290584564,
0.13649246096611023,
0.020638149231672287,
-0.2677258849143982,
-0.008139112964272499,
0.023630544543266296,
-0.0010347915813326836,
-0.012379839085042477,
0.10821118950843811,
-0.040134772658348083,
-0.233198344707489,
-0.12299054861068726,
0.010077533312141895,
0.031144635751843452,
-0.1509784311056137,
0.015542911365628242,
-0.14036494493484497,
0.08027976751327515,
-0.007007129956036806,
0.07418135553598404,
-0.025149788707494736,
0.15060245990753174,
-0.028731435537338257,
0.01628703810274601,
-0.07902143895626068,
-0.047717493027448654,
0.09898673743009567,
-0.0046631391160190105,
0.1931537538766861,
0.005480166990309954,
-0.023713182657957077,
-0.12098433077335358,
-0.05229806900024414,
-0.04967813938856125,
0.010598190128803253,
-0.05373382940888405,
0.0765683576464653,
-0.02441473677754402,
-0.0039579677395522594,
-0.010900177992880344,
0.08942947536706924,
-0.05291692912578583,
0.03636563941836357,
-0.11246588081121445,
-0.05034820735454559,
0.14550213515758514,
-0.09163831174373627,
-0.10174685716629028,
-0.16205860674381256,
0.14137998223304749,
0.15070600807666779,
0.058216437697410583,
-0.04001476243138313,
0.03867831453680992,
-0.019183965399861336,
-0.024241572245955467,
0.07880574464797974,
0.009653856977820396,
0.1324782371520996,
-0.08983246237039566,
0.014327390119433403,
0.14589735865592957,
-0.05275948345661163,
0.016191845759749413,
-0.02304735779762268,
0.12202176451683044,
0.04650457948446274,
0.06189403310418129,
0.018547222018241882,
0.06655703485012054,
0.06466961652040482,
-0.02262885868549347,
0.08456692099571228,
0.030712679028511047,
-0.18644161522388458,
0.058530256152153015,
-0.09805119782686234,
0.22581584751605988,
0.05066308751702309,
0.06047345697879791,
0.2993181645870209,
0.21986234188079834,
-0.05372472479939461,
0.1669820249080658,
0.044286344200372696,
-0.05891284719109535,
-0.21245966851711273,
-0.03684934973716736,
-0.030655447393655777,
0.09436552971601486,
0.15607263147830963,
-0.0981721356511116,
-0.04201313853263855,
-0.00972361396998167,
-0.032264553010463715,
0.020120708271861076,
-0.24663487076759338,
-0.01734781451523304,
0.14379777014255524,
0.10629188269376755,
0.2451348900794983,
-0.006132842972874641,
0.023609744384884834,
0.049030207097530365,
0.018605992197990417,
-0.02483358606696129,
-0.21013511717319489,
0.09079083055257797,
0.006071676965802908,
0.04935038834810257,
0.022885039448738098,
-0.006052911281585693,
0.04500092566013336,
-0.073696069419384,
0.08904470503330231,
-0.08561883866786957,
-0.08341272175312042,
0.2185351401567459,
-0.03945168852806091,
-0.00661163916811347,
0.12917985022068024,
-0.011526807211339474,
-0.1097102016210556,
-0.015364703722298145,
0.027403371408581734,
0.030678823590278625,
-0.030246863141655922,
-0.03609466925263405,
0.024012766778469086,
0.10202405601739883,
-0.04282205551862717,
0.04565315693616867,
0.10240072011947632,
-0.020902957767248154,
0.15945613384246826,
0.13205459713935852,
0.10420060157775879,
0.002927543595433235,
-0.06464727967977524,
0.014349685050547123,
-0.055471502244472504,
0.02962767891585827,
-0.17038846015930176,
-0.0070191239938139915,
0.055695805698633194,
0.04772466421127319,
0.0945243164896965,
0.11333164572715759,
-0.127106174826622,
0.0300484336912632,
0.028996523469686508,
-0.06286120414733887,
-0.06029998138546944,
-0.002275418024510145,
-0.016458535566926003,
-0.008173024281859398,
-0.09947093576192856,
0.07884971052408218,
-0.10555081814527512,
-0.03306307643651962,
0.05025126785039902,
-0.0607193186879158,
-0.12852220237255096,
-0.010904680006206036,
0.1252979338169098,
0.061709314584732056,
-0.05078592896461487,
0.14939077198505402,
0.06109785661101341,
-0.08055379986763,
0.037185851484537125,
0.027442200109362602,
-0.08008874952793121,
-0.10198270529508591,
-0.0004569833690766245,
0.31761088967323303,
0.06076094135642052,
-0.0329466350376606,
-0.11946453154087067,
-0.15002015233039856,
0.04840146750211716,
0.1035679280757904,
0.12359631806612015,
0.011757869273424149,
-0.05322748050093651,
0.02236519381403923,
-0.05275069922208786,
0.03814244270324707,
0.06910209357738495,
-0.03928454965353012,
-0.13761694729328156,
0.0077122850343585014,
0.026647454127669334,
0.10174071043729782,
-0.06771174818277359,
-0.09184598177671432,
-0.18085066974163055,
0.09208621084690094,
-0.03432070091366768,
-0.10890032351016998,
0.027215104550123215,
-0.017406610772013664,
0.014248576015233994,
0.07639352232217789,
-0.047281619161367416,
0.01244808267802,
-0.1517520695924759,
0.07082249224185944,
0.05706808716058731,
0.08926787972450256,
0.000014311663107946515,
-0.054843269288539886,
0.07618319988250732,
-0.05763502046465874,
0.06680037826299667,
-0.053477559238672256,
0.005539732985198498,
0.10781200975179672,
-0.23264040052890778,
-0.021164139732718468,
0.009476077742874622,
-0.04681631922721863,
0.08765807747840881,
-0.19047698378562927,
0.024190550670027733,
-0.08897756040096283,
-0.024605726823210716,
0.01802127994596958,
-0.1086471825838089,
-0.04306677728891373,
0.08475461602210999,
0.037119291722774506,
-0.031288959085941315,
-0.04612116143107414,
-0.019314980134367943,
-0.0914498046040535,
0.053634315729141235,
0.07442525774240494,
-0.0687926784157753,
0.08314394950866699,
-0.05507456883788109,
0.00841207429766655,
-0.052043743431568146,
0.06760627031326294,
-0.012366239912807941,
-0.12672528624534607,
-0.02123171091079712,
-0.044928714632987976,
0.11662110686302185,
-0.023402327671647072,
0.022080281749367714,
0.014599837362766266,
0.0323631577193737,
-0.012065601535141468,
0.05028461292386055,
0.1019197478890419,
0.05136820673942566,
0.014879679307341576,
0.02292765863239765,
0.055746350437402725,
0.0757644772529602,
-0.1134679913520813,
0.06457309424877167,
-0.02098844014108181,
-0.08620109409093857,
0.1013324111700058,
0.06909440457820892,
0.037490107119083405,
0.15593400597572327,
0.22674402594566345,
0.10539932548999786,
-0.03564648702740669,
-0.03126971051096916,
0.12967991828918457,
0.17799612879753113,
-0.07682197540998459,
0.015780627727508545,
-0.0020607721526175737,
-0.017265556380152702,
-0.09849067777395248,
-0.13722245395183563,
-0.060460351407527924,
-0.2453264594078064,
0.1078341007232666,
-0.03288164362311363,
-0.04169659689068794,
0.128489688038826,
0.027952738106250763,
0.03724630922079086,
0.08183616399765015,
-0.12909026443958282,
-0.013460557907819748,
0.07749562710523605,
-0.08914026618003845,
-0.033571500331163406,
-0.17521262168884277,
-0.06771576404571533,
-0.08741120994091034,
-0.15989220142364502,
-0.06844990700483322,
0.029948782175779343,
0.035394806414842606,
0.010386589914560318,
-0.039711855351924896,
-0.01962728053331375,
0.011063394136726856,
-0.0025537724141031504,
-0.04985455423593521,
-0.01753084547817707,
0.021317757666110992,
-0.11333847790956497,
-0.024336790665984154,
0.16320326924324036,
-0.03297848999500275,
-0.18396754562854767,
-0.0405106395483017,
0.2157316505908966,
0.025046708062291145,
0.0590171180665493,
-0.073721744120121,
-0.016323629766702652,
0.021523483097553253,
0.20813441276550293,
0.10171995311975479,
-0.10821312665939331,
0.015457749366760254,
-0.03655189648270607,
0.0013793212128803134,
-0.061893612146377563,
0.10775819420814514,
0.06519263982772827,
-0.07549984753131866,
-0.17567221820354462,
-0.04389495030045509,
-0.08628730475902557,
0.03370477631688118,
-0.14383791387081146,
-0.03786516562104225,
0.1168690100312233,
0.004516853019595146,
-0.053927481174468994,
0.07883694022893906,
-0.17713546752929688,
0.03441957011818886,
-0.04880853369832039,
-0.13215437531471252,
-0.09491758048534393,
-0.10123858600854874,
0.0027463934384286404,
0.08913854509592056,
0.15567956864833832,
-0.06151591241359711,
-0.07471925020217896,
-0.009579092264175415,
-0.028091613203287125,
-0.052700337022542953,
-0.07900123298168182,
0.059512585401535034,
0.0007560851518064737,
0.16147300601005554,
-0.07439453154802322,
0.09558981657028198,
0.09099138528108597,
-0.021246420219540596,
-0.00915549136698246,
0.032866667956113815,
-0.003863809397444129,
-0.07436864078044891,
-0.04970616102218628,
0.02312966249883175,
0.027639856562018394,
0.10846075415611267,
-0.030836544930934906,
-0.1934703141450882,
0.11230092495679855,
0.09140218049287796,
-0.04296138137578964,
-0.046487610787153244,
0.05351927503943443,
-0.07097935676574707,
0.1252279132604599,
0.03444884717464447,
-0.02163051813840866,
0.013762647286057472,
-0.06370721012353897,
0.08370721340179443,
0.11594565212726593,
-0.048265840858221054,
-0.08278503268957138,
-0.06164652109146118,
0.012770666740834713,
0.02961382456123829,
-0.13650155067443848,
-0.21160630881786346,
-0.10802312940359116,
-0.1383298933506012,
0.004740108735859394,
-0.04703504592180252,
0.08498300611972809,
0.12991970777511597,
0.09780163317918777,
-0.011416295543313026,
-0.004867587238550186,
0.018085451796650887,
0.13192623853683472,
-0.11232008039951324,
-0.08192373812198639
] |
null | null | transformers |
## safetensors files requiring joining
**Note:** HF does not support files larger than 50GB. Instructions borrowed from TheBloke on joining files.
To join the files, do the following:
Linux and macOS:
```
cat gptq_model-4bit-32g.safetensors-part-* > gptq_model-4bit-32g.safetensors && rm gptq_model-4bit-32g.safetensors-part-*
```
Windows command line:
```
COPY /B gptq_model-4bit-32g.safetensors-part-a + gptq_model-4bit-32g.safetensors-part-b gptq_model-4bit-32g.safetensors
del gptq_model-4bit-32g.safetensors-part-a gptq_model-4bit-32g.safetensors-part-b
## MiquMaid v2 2x70 DPO
Check out our blogpost about this model series [Here!](https://ikaridevgit.github.io/index.html?blog=blogid-6&bo=true#Miqu-base) - Join our Discord server [Here!](https://discord.gg/Bb8pRUXy3Z)
<center>[<a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B">V2-70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-70B-DPO">V2-70B-DPO</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B">V2-2x70B</a> - <a href="https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO">V2-2x70B-DPO</a>]
</br>
<div style="width: 100%;">
<img src="https://cdn-uploads.huggingface.co/production/uploads/63ab1241ad514ca8d1430003/Wbzwoko-IZbOJfvPaImre.png" style="display: block; margin: auto;">
</div></center>
This model uses the Alpaca **prompting format**
Then, we have done a MoE, made of MiquMaid-v2-70B-DPO and Miqu-70B-DPO base, making the model using the finetune AND the base model for each token, working together.
The two model have been trained on DPO for uncensoring, more info on Miqu-70B-DPO [here](https://huggingface.co/Undi95/Miqu-70B-Alpaca-DPO-GGUF)
We have seen a significant improvement, so we decided to share that, even if the model is very big.
## Credits:
- Undi
- IkariDev
## Description
This repo contains FP16 files of MiquMaid-v2-2x70B-DPO.
Switch: [FP16](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO) - [GGUF](https://huggingface.co/NeverSleep/MiquMaid-v2-2x70B-DPO-GGUF)
## Training data used:
- [Aesir datasets](https://huggingface.co/MinervaAI)
- [NoRobots](https://huggingface.co/datasets/Doctor-Shotgun/no-robots-sharegpt)
- [limarp](https://huggingface.co/datasets/lemonilia/LimaRP)
- [toxic-dpo-v0.1-sharegpt](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-sharegpt)
- [ToxicQAFinal](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicQAFinal)
## DPO training data used:
- [ToxicDPOqa](https://huggingface.co/datasets/NobodyExistsOnTheInternet/ToxicDPOqa)
- [toxic-dpo-v0.1-NoWarning](https://huggingface.co/datasets/Undi95/toxic-dpo-v0.1-NoWarning)
### Custom format:
```
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
```
## Others
Undi: If you want to support us, you can [here](https://ko-fi.com/undiai).
IkariDev: Visit my [retro/neocities style website](https://ikaridevgit.github.io/) please kek | {"license": "cc-by-nc-4.0", "tags": ["not-for-all-audiences", "nsfw"]} | text-generation | LoneStriker/MiquMaid-v2-2x70B-DPO-GPTQ | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"not-for-all-audiences",
"nsfw",
"conversational",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T18:13:02+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
## safetensors files requiring joining
Note: HF does not support files larger than 50GB. Instructions borrowed from TheBloke on joining files.
To join the files, do the following:
Linux and macOS:
Windows command line:
### Instruction:
{system prompt}
### Input:
{input}
### Response:
{reply}
'''
## Others
Undi: If you want to support us, you can here.
IkariDev: Visit my retro/neocities style website please kek | [
"## safetensors files requiring joining\n\nNote: HF does not support files larger than 50GB. Instructions borrowed from TheBloke on joining files.\n\nTo join the files, do the following:\n\nLinux and macOS:\n\nWindows command line:",
"### Instruction:\n{system prompt}",
"### Input:\n{input}",
"### Response:\n{reply}\n'''",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"## safetensors files requiring joining\n\nNote: HF does not support files larger than 50GB. Instructions borrowed from TheBloke on joining files.\n\nTo join the files, do the following:\n\nLinux and macOS:\n\nWindows command line:",
"### Instruction:\n{system prompt}",
"### Input:\n{input}",
"### Response:\n{reply}\n'''",
"## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
75,
57,
9,
9,
10,
32
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #not-for-all-audiences #nsfw #conversational #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n## safetensors files requiring joining\n\nNote: HF does not support files larger than 50GB. Instructions borrowed from TheBloke on joining files.\n\nTo join the files, do the following:\n\nLinux and macOS:\n\nWindows command line:### Instruction:\n{system prompt}### Input:\n{input}### Response:\n{reply}\n'''## Others\n\nUndi: If you want to support us, you can here.\n\nIkariDev: Visit my retro/neocities style website please kek"
] | [
-0.07190927118062973,
-0.002681893529370427,
0.0005089711048640311,
0.012335789389908314,
0.0679999515414238,
0.006186744663864374,
0.05030464753508568,
0.0937294214963913,
0.08827279508113861,
0.047382790595293045,
0.06557900458574295,
0.09379476308822632,
0.017467670142650604,
0.17831937968730927,
-0.12944792211055756,
-0.037427544593811035,
0.09944198280572891,
-0.012213523499667645,
0.04419862478971481,
0.026064667850732803,
0.08738692849874496,
-0.03525763750076294,
0.029424160718917847,
-0.07335244864225388,
-0.141579732298851,
0.04419238120317459,
-0.01669207029044628,
-0.04129771515727043,
0.05383758619427681,
0.06256001442670822,
0.03968407213687897,
0.07913968712091446,
-0.039234697818756104,
-0.09950634092092514,
0.04774973914027214,
0.060583021491765976,
0.005257156677544117,
-0.004751572851091623,
0.04755115509033203,
0.0853901207447052,
0.08223932981491089,
-0.12048321217298508,
-0.09819584339857101,
0.041757505387067795,
-0.03110315464437008,
-0.04816857725381851,
-0.04835386201739311,
0.11351922899484634,
0.14180226624011993,
0.08022172003984451,
0.0057134670205414295,
0.18178673088550568,
0.0037383227609097958,
0.13889890909194946,
0.1301260143518448,
-0.07572291791439056,
-0.003947438672184944,
0.1522180289030075,
0.023912601172924042,
0.07405403256416321,
-0.019638027995824814,
0.010532320477068424,
0.08908788114786148,
-0.08643925189971924,
0.004695573356002569,
-0.04591260850429535,
-0.10617352277040482,
-0.08498438447713852,
-0.07699835300445557,
-0.03586425632238388,
0.3263469934463501,
0.07022999972105026,
-0.029084190726280212,
-0.03495606780052185,
-0.054647814482450485,
0.08574654161930084,
-0.0006409648340195417,
0.024762077257037163,
-0.04612826928496361,
-0.038846321403980255,
0.0692179724574089,
-0.039795685559511185,
-0.12010906636714935,
-0.05562114343047142,
-0.07138155400753021,
0.0763014629483223,
0.048411328345537186,
0.018290197476744652,
0.035758305341005325,
0.024382270872592926,
-0.13428813219070435,
-0.08948299288749695,
-0.0876254066824913,
-0.029801620170474052,
0.03225389122962952,
-0.02113845758140087,
-0.03558098152279854,
-0.03450867161154747,
0.13139088451862335,
0.014379159547388554,
-0.06478836387395859,
0.011074869893491268,
-0.04030126333236694,
0.06220017746090889,
-0.044554583728313446,
-0.09281899780035019,
-0.02796160615980625,
-0.04368693009018898,
0.14790001511573792,
-0.030766133219003677,
0.03722397983074188,
-0.0442810021340847,
-0.1424410045146942,
-0.10676945000886917,
0.006524312309920788,
0.059929680079221725,
0.009466998279094696,
0.1225997656583786,
0.02494421973824501,
-0.013521901331841946,
0.27631065249443054,
-0.05351664870977402,
0.020740307867527008,
0.04465056583285332,
-0.009082935750484467,
0.002215141197666526,
0.04385007917881012,
0.034625958651304245,
-0.08335473388433456,
0.0486428402364254,
0.024907398968935013,
-0.001643324620090425,
-0.07955440878868103,
-0.07638609409332275,
0.10304256528615952,
0.005673783365637064,
0.004931337665766478,
-0.18461407721042633,
-0.13471901416778564,
0.03704925999045372,
-0.018091369420289993,
0.011744778603315353,
-0.034192878752946854,
0.03761475533246994,
-0.028487253934144974,
-0.008533116430044174,
-0.047368574887514114,
0.0005552312359213829,
-0.08272426575422287,
0.05649622529745102,
-0.0019057601457461715,
0.09984443336725235,
-0.1895739585161209,
0.0006862485315650702,
-0.05138653516769409,
-0.014060799963772297,
-0.1582622081041336,
0.013118108734488487,
-0.10499437898397446,
0.050245605409145355,
-0.040339428931474686,
-0.017197784036397934,
-0.01738501526415348,
-0.025204025208950043,
-0.0033707593102008104,
0.12308551371097565,
-0.12297725677490234,
0.05569141358137131,
0.07496555894613266,
-0.1257602423429489,
-0.18051855266094208,
0.181971937417984,
0.05894835293292999,
-0.01793263852596283,
0.0016407317016273737,
0.1516938954591751,
0.10853937268257141,
-0.14660590887069702,
-0.03669724240899086,
0.05816422775387764,
-0.04308517277240753,
-0.13399526476860046,
0.020345332100987434,
0.0657622218132019,
-0.025532640516757965,
0.02322516031563282,
-0.0070296358317136765,
0.07344353199005127,
0.026777515187859535,
0.015610460191965103,
-0.061831094324588776,
-0.1008777916431427,
-0.0567752905189991,
-0.003829988418146968,
0.007871706038713455,
-0.09960281848907471,
0.040163177996873856,
-0.11838787794113159,
0.09740245342254639,
-0.03979014977812767,
0.016868220642209053,
-0.03424392640590668,
0.10303783416748047,
-0.0189762394875288,
0.05007212981581688,
-0.03366671875119209,
-0.0046861423179507256,
0.045887429267168045,
0.04027259722352028,
-0.005930292420089245,
0.06160253286361694,
0.007418124470859766,
0.039834991097450256,
-0.03447844088077545,
0.013939663767814636,
0.1526726931333542,
0.05988306924700737,
-0.040415436029434204,
-0.08537153154611588,
0.060467660427093506,
0.01620226353406906,
0.0893801674246788,
-0.16120171546936035,
0.07379131019115448,
0.14566411077976227,
0.12030243873596191,
-0.08033449947834015,
0.006683387793600559,
0.03897766396403313,
-0.005609946325421333,
-0.0704185888171196,
-0.004854796454310417,
0.056971997022628784,
0.041465677320957184,
-0.07486531138420105,
0.1454453468322754,
-0.19330190122127533,
0.03803069144487381,
0.11829584836959839,
0.002434441354125738,
-0.005427948664873838,
-0.029079405590891838,
0.011049174703657627,
-0.11198312044143677,
-0.006965246517211199,
-0.08484173566102982,
-0.011220447719097137,
-0.021940156817436218,
0.07979758083820343,
-0.06708459556102753,
-0.06407316029071808,
0.03282275050878525,
-0.0673297569155693,
-0.006019897758960724,
0.013925597071647644,
0.010312894359230995,
-0.24211250245571136,
0.10644108802080154,
0.12013228982686996,
-0.1609022468328476,
0.14785762131214142,
-0.015267863869667053,
-0.06304529309272766,
0.06199253723025322,
0.08780763298273087,
0.07245532423257828,
0.09550550580024719,
-0.10052146017551422,
0.05844811350107193,
0.06892921775579453,
-0.025496484711766243,
0.022831615060567856,
-0.08370504528284073,
0.016248730942606926,
-0.03539292514324188,
-0.06147979944944382,
0.040637366473674774,
0.09380999207496643,
0.018964216113090515,
0.06536588072776794,
-0.08252383023500443,
-0.010428816080093384,
0.03157852962613106,
-0.04299618676304817,
-0.08547092974185944,
0.1255563348531723,
-0.05116511881351471,
-0.2552010715007782,
-0.14949414134025574,
-0.09802398830652237,
-0.11604103446006775,
-0.021327335387468338,
0.11697237938642502,
0.048989444971084595,
-0.06356535851955414,
-0.12660089135169983,
-0.056049082428216934,
0.03256731852889061,
-0.03515970706939697,
0.04890530928969383,
0.0020645817276090384,
0.06481605023145676,
-0.08699262142181396,
0.008247477933764458,
0.10468725115060806,
-0.05872168019413948,
0.11653507500886917,
-0.03303617611527443,
0.17474642395973206,
0.05070478841662407,
-0.07890266925096512,
-0.023616395890712738,
-0.019769839942455292,
0.05036865919828415,
-0.05285971984267235,
0.08511324971914291,
0.1591508835554123,
-0.06423118710517883,
0.05574216693639755,
0.1208651140332222,
-0.014464709907770157,
-0.027468297630548477,
0.07022514939308167,
-0.06541862338781357,
-0.06262455880641937,
-0.07366281002759933,
-0.10735788196325302,
-0.10247804969549179,
0.12154039740562439,
0.01684930920600891,
0.012286212295293808,
0.20228208601474762,
0.08188585937023163,
-0.1191575825214386,
0.06789342314004898,
0.05221052095293999,
0.123575359582901,
0.16494235396385193,
0.025488946586847305,
0.059773318469524384,
-0.08806659281253815,
0.06827938556671143,
0.11694158613681793,
0.05075657367706299,
0.010186329483985901,
-0.09418333321809769,
0.11868631094694138,
-0.00020568998297676444,
0.17216603457927704,
0.07357882708311081,
0.1617373675107956,
-0.03969492018222809,
-0.0064094178378582,
0.0066115413792431355,
-0.08157230168581009,
0.013546016067266464,
0.013273497112095356,
-0.03708948940038681,
-0.07464027404785156,
-0.03809216991066933,
0.013631179928779602,
0.03242746740579605,
0.03152463212609291,
0.018792573362588882,
-0.17927563190460205,
-0.0610821507871151,
0.030658768489956856,
0.05133645236492157,
-0.0850144699215889,
-0.006079879589378834,
0.18823376297950745,
-0.05119531229138374,
0.06650062650442123,
0.012302964925765991,
0.08260327577590942,
-0.0014240044401958585,
0.03293853625655174,
-0.10873036831617355,
0.08764424175024033,
-0.01588800922036171,
0.11544622480869293,
-0.20502008497714996,
0.059780169278383255,
0.014247052371501923,
0.019040290266275406,
-0.12145758420228958,
-0.0371553935110569,
0.03401223570108414,
0.21971462666988373,
0.049763526767492294,
-0.005473487079143524,
-0.07712887972593307,
-0.10936995595693588,
-0.09970421344041824,
0.006029475014656782,
0.012095959857106209,
0.019228771328926086,
-0.014206359162926674,
-0.009052877314388752,
-0.00648694671690464,
0.0004681303398683667,
0.0974288061261177,
-0.08114954084157944,
-0.1674114167690277,
0.07515940070152283,
0.26014599204063416,
0.08487290143966675,
-0.06170625239610672,
0.015010617673397064,
-0.0830238088965416,
0.20385612547397614,
-0.14323338866233826,
-0.011638191528618336,
-0.06142822280526161,
-0.07382913678884506,
0.036082394421100616,
-0.047440867871046066,
0.016517547890543938,
-0.07427893579006195,
0.08705389499664307,
-0.07118122279644012,
-0.07424386590719223,
0.05317077413201332,
-0.15965431928634644,
-0.07642736285924911,
0.0050909374840557575,
0.0772680714726448,
-0.11062554270029068,
0.002299128333106637,
0.0509200394153595,
-0.02269580215215683,
0.007072559557855129,
-0.11494855582714081,
-0.10688227415084839,
0.03980525583028793,
0.15703079104423523,
0.0698658749461174,
-0.07038263976573944,
-0.10419974476099014,
-0.026363162323832512,
-0.12931181490421295,
0.11056976765394211,
0.3099384009838104,
-0.050086379051208496,
0.014845193363726139,
0.10585399717092514,
0.00540692824870348,
-0.28459692001342773,
-0.058177705854177475,
-0.04350397735834122,
-0.05802832543849945,
-0.055161748081445694,
0.07395681738853455,
0.05311903357505798,
0.11606870591640472,
-0.03278467431664467,
0.07368160784244537,
0.029052801430225372,
-0.13064076006412506,
0.07419450581073761,
0.0717686116695404,
0.24284733831882477,
-0.1265583336353302,
-0.0032369070686399937,
-0.09004957973957062,
-0.08362740278244019,
0.04877785965800285,
-0.12416331470012665,
0.07009544223546982,
0.021526005119085312,
0.025678005069494247,
0.010663554072380066,
-0.07787855714559555,
0.06938301771879196,
-0.06887364387512207,
0.03552722558379173,
-0.1345173418521881,
0.11920519173145294,
0.03974834457039833,
-0.09387259930372238,
0.1636074334383011,
-0.17980679869651794,
0.015066428110003471,
-0.0022638789378106594,
0.02290334179997444,
-0.014561636373400688,
0.10638567060232162,
-0.013265760615468025,
-0.03925946354866028,
-0.05631640553474426,
-0.03145410493016243,
0.013271717354655266,
-0.01772916503250599,
0.11766302585601807,
-0.012249588035047054,
0.0946681946516037,
0.2328549176454544,
0.12122120708227158,
-0.07523085176944733,
0.13163501024246216,
0.014402229338884354,
-0.054000373929739,
0.062493473291397095,
-0.04699042811989784,
0.0577692836523056,
0.04358154907822609,
-0.04910973832011223,
0.06631865352392197,
0.020028626546263695,
-0.05182258412241936,
-0.056900911033153534,
0.10528142005205154,
-0.2157767117023468,
-0.05525562912225723,
-0.015899894759058952,
0.10431139171123505,
0.012368948198854923,
0.05256937816739082,
0.08216026425361633,
-0.10591595619916916,
0.04025651887059212,
0.013435409404337406,
0.036973606795072556,
-0.006320982705801725,
0.05685558170080185,
0.024423539638519287,
0.07695112377405167,
-0.0649326741695404,
0.050858885049819946,
0.02628914639353752,
-0.1383810043334961,
0.0015979553572833538,
0.11862397193908691,
-0.13531823456287384,
-0.1200990304350853,
0.09467436373233795,
0.019706308841705322,
0.008804486133158207,
-0.1362379640340805,
0.024724885821342468,
-0.010827010497450829,
-0.02992517687380314,
0.1818617582321167,
0.042455583810806274,
-0.02538708783686161,
0.09282417595386505,
0.0023680233862251043,
-0.17130638659000397,
0.11311284452676773,
-0.07704930752515793,
0.1204443871974945,
-0.1750892549753189,
0.02823001891374588,
-0.04660754278302193,
0.004941144026815891,
-0.035878442227840424,
0.044536393135786057,
-0.08247830718755722,
-0.06119010969996452,
-0.04704254865646362,
0.03940641134977341,
-0.11902665346860886,
-0.022830072790384293,
0.027354039251804352,
-0.023085376247763634,
0.06677664071321487,
0.05382927507162094,
-0.001389141078107059,
-0.011310686357319355,
-0.03669510781764984,
0.07183524966239929,
-0.06366387754678726,
-0.06729402393102646,
0.025652945041656494,
-0.04941872879862785,
0.09178537130355835,
0.07279761135578156,
-0.08629337698221207,
0.0018545620841905475,
-0.2140582948923111,
0.049480587244033813,
0.10103244334459305,
0.07650603353977203,
0.019985461607575417,
0.03467192500829697,
-0.043989863246679306,
0.085200734436512,
0.06246669590473175,
0.01115430984646082,
0.056562792509794235,
-0.037426721304655075,
0.02892780862748623,
-0.0775761529803276,
-0.02584625594317913,
-0.030810073018074036,
-0.027002790942788124,
0.0771637037396431,
0.0772109404206276,
0.11897874623537064,
-0.07518473267555237,
0.026096006855368614,
0.012927974574267864,
0.007718167267739773,
0.06628116220235825,
-0.149574875831604,
-0.01875174604356289,
-0.053589265793561935,
0.049321770668029785,
-0.011029493995010853,
0.14969928562641144,
-0.09623690694570541,
0.024064840748906136,
0.027121521532535553,
-0.12170019000768661,
0.09717359393835068,
-0.03072749264538288,
0.20038487017154694,
-0.02858937904238701,
-0.009419434703886509,
-0.0956600233912468,
0.030537065118551254,
0.04878891631960869,
-0.05853398144245148,
0.05448037385940552,
0.07687266916036606,
-0.15436650812625885,
0.01196245662868023,
0.03764724358916283,
-0.049618449062108994,
-0.01681876741349697,
-0.14175759255886078,
-0.053850214928388596,
0.0754772201180458,
-0.08075155317783356,
0.09890054166316986,
0.14781273901462555,
-0.11034784466028214,
-0.047221917659044266,
-0.06688124686479568,
-0.05427204817533493,
-0.08278381824493408,
-0.1457173377275467,
-0.051437295973300934,
-0.17696881294250488,
-0.012930762022733688,
-0.0657130777835846,
0.041894882917404175,
-0.07140915095806122,
0.05569213628768921,
-0.029354184865951538,
0.233938530087471,
-0.014976631850004196,
0.007020529825240374,
0.04347536340355873,
-0.03167635202407837,
-0.06255359947681427,
0.019803309813141823,
-0.017338844016194344,
0.03509980067610741,
-0.08604124188423157,
0.05947214737534523,
0.05907132849097252,
0.055605508387088776,
0.05109522119164467,
-0.04849151149392128,
-0.09857922792434692,
-0.010089299641549587,
0.03293974697589874,
0.022298889234662056,
0.15575101971626282,
0.06571394950151443,
-0.009318867698311806,
0.02394406497478485,
0.09075068682432175,
-0.08548776805400848,
-0.163453608751297,
-0.020175475627183914,
0.028809133917093277,
-0.05456441268324852,
0.010503152385354042,
-0.02052217721939087,
-0.07188476622104645,
-0.011902831494808197,
0.19276189804077148,
0.05467613413929939,
0.0018399205291643739,
0.0651668831706047,
-0.08653512597084045,
0.024021318182349205,
-0.07145868986845016,
0.11045852303504944,
0.1336795836687088,
0.12310802936553955,
0.03798040747642517,
0.00555340526625514,
-0.012040927074849606,
-0.0034798996057361364,
-0.1883481740951538,
-0.008346674032509327,
-0.06648334115743637,
-0.08880553394556046,
0.007415061350911856,
0.042848311364650726,
-0.06313681602478027,
-0.1127927303314209,
-0.11902359873056412,
-0.014031263068318367,
0.02449803426861763,
0.0012438916601240635,
0.12042193114757538,
-0.07514866441488266,
-0.044011712074279785,
-0.04784610494971275,
0.05770852789282799,
-0.03265490382909775,
-0.0023356485180556774,
-0.09305427223443985,
0.06589915603399277,
-0.05139559507369995,
0.013039578683674335,
0.012813728302717209,
0.02311420999467373,
0.16984884440898895,
0.019795116037130356,
0.0012093838304281235,
-0.11003272980451584,
0.1334744095802307,
0.0007744051981717348,
-0.13122358918190002,
0.013950462453067303,
0.1340976059436798,
-0.05669984966516495,
0.04888804256916046,
0.03506332263350487,
-0.20643921196460724,
0.022189470008015633,
0.07033221423625946,
0.017946163192391396,
-0.03528020903468132,
0.042051851749420166,
-0.05171603336930275,
0.11847338080406189,
0.04792744666337967,
-0.01592200994491577,
-0.039963431656360626,
-0.05424348637461662,
-0.02109338529407978,
-0.026186255738139153,
-0.03416487202048302,
0.01084434986114502,
-0.14700017869472504,
-0.03543863818049431,
-0.020538415759801865,
0.07898136228322983,
-0.10103877633810043,
0.011906793341040611,
-0.12397385388612747,
-0.019746825098991394,
-0.1218830794095993,
0.05067979171872139,
0.14089253544807434,
-0.04159415140748024,
-0.03948024660348892,
-0.25204139947891235,
-0.01751607656478882,
0.08431029319763184,
-0.09895185381174088,
-0.1001562848687172
] |
null | null | transformers |
# Mixtral MOE 5x7B
MoE of the following models :
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
* [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp)
* [ignos/Mistral-T5-7B-v1](https://huggingface.co/ignos/Mistral-T5-7B-v1)
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
``` | {"license": "cc-by-nc-4.0"} | text-generation | LoneStriker/Mixtral_7Bx5_MoE_30B-6.0bpw-h6-exl2 | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T18:14:27+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Mixtral MOE 5x7B
MoE of the following models :
* Toten5/Marcoroni-neural-chat-7B-v1
* NurtureAI/neural-chat-7b-v3-16k
* mncai/mistral-7b-dpo-v6
* cookinai/CatMacaroni-Slerp
* ignos/Mistral-T5-7B-v1
gpu code example
CPU example
| [
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
58,
98
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
-0.13265983760356903,
0.032811205834150314,
0.0016681700944900513,
0.06005237251520157,
0.09170277416706085,
0.05486174672842026,
0.1754031479358673,
0.08827437460422516,
0.048426054418087006,
0.04822719842195511,
0.10930546373128891,
0.15147005021572113,
0.050271473824977875,
0.07607264816761017,
-0.041551947593688965,
-0.12304753065109253,
0.13822826743125916,
0.0285372044891119,
0.018767034634947777,
0.07113507390022278,
0.09234799444675446,
-0.045219406485557556,
0.10612381994724274,
-0.027028348296880722,
-0.1984025537967682,
-0.04531659558415413,
0.0059092091396451,
-0.04503824561834335,
0.10345133394002914,
0.09167052805423737,
0.02468385361135006,
0.05491048842668533,
0.05525398999452591,
-0.047444041818380356,
0.02953178808093071,
0.04105483368039131,
-0.015743371099233627,
0.08048006147146225,
0.10315034538507462,
0.046506043523550034,
0.07312776893377304,
0.0571342408657074,
-0.021097008138895035,
0.035699307918548584,
0.018450820818543434,
-0.0437827967107296,
-0.008665810339152813,
0.04507621377706528,
0.05793994665145874,
0.0792449563741684,
0.015002762898802757,
0.1917630136013031,
-0.0028631084132939577,
0.09410560131072998,
0.13915416598320007,
-0.2718551754951477,
-0.05056018382310867,
0.13085082173347473,
0.0916370153427124,
0.06428710371255875,
0.018235111609101295,
0.02555820718407631,
0.039636820554733276,
0.0031501944176852703,
-0.06455228477716446,
-0.021980848163366318,
0.012090848758816719,
-0.03641531616449356,
-0.10100672394037247,
0.03175126016139984,
0.12783773243427277,
-0.01871788129210472,
-0.012944400310516357,
-0.06200869008898735,
-0.10857585817575455,
0.012746433727443218,
-0.05880852788686752,
-0.047148652374744415,
-0.07286347448825836,
0.04218289256095886,
0.1049298644065857,
0.07159604132175446,
-0.03756077215075493,
-0.1395968794822693,
-0.03131239861249924,
0.16100303828716278,
0.031219836324453354,
0.010522501543164253,
-0.021792003884911537,
0.059254713356494904,
0.028613245114684105,
-0.06863578408956528,
-0.0012622170615941286,
-0.04667212441563606,
-0.03568123281002045,
-0.005251494236290455,
-0.09649239480495453,
-0.054846517741680145,
0.056380558758974075,
0.04986369609832764,
0.04993335157632828,
0.06519204378128052,
0.04177093133330345,
0.012200085446238518,
-0.0973709300160408,
-0.04077140614390373,
-0.09576639533042908,
-0.08472820371389389,
0.010962272994220257,
0.08735537528991699,
0.05046290159225464,
-0.022282809019088745,
-0.1383192241191864,
-0.07204660028219223,
0.07936861366033554,
0.007562451064586639,
-0.026277069002389908,
0.11840388923883438,
-0.04044025391340256,
-0.03969082981348038,
0.16800281405448914,
-0.06999586522579193,
0.0265493206679821,
0.07418541610240936,
-0.0032649009954184294,
0.03415559232234955,
-0.009450617246329784,
-0.019333822652697563,
-0.0457611009478569,
-0.08098877966403961,
-0.1161646619439125,
-0.042938411235809326,
-0.09060145914554596,
-0.09032420068979263,
0.043551646173000336,
0.035354144871234894,
-0.032337091863155365,
-0.16533109545707703,
-0.12757019698619843,
0.04656510055065155,
0.0637110024690628,
-0.07433835417032242,
0.07604158669710159,
-0.006164343096315861,
-0.02737729251384735,
0.03098740056157112,
0.022463470697402954,
0.03237934038043022,
-0.021810641512274742,
0.043203018605709076,
0.06473270058631897,
0.04523825645446777,
-0.06388343870639801,
0.015224343165755272,
-0.061199165880680084,
0.031894490122795105,
-0.10606493800878525,
0.0010015327716246247,
-0.058403920382261276,
0.07756669819355011,
-0.05844087153673172,
-0.004984809551388025,
-0.04675336927175522,
0.02938850224018097,
0.047615207731723785,
0.14076733589172363,
-0.14450693130493164,
-0.021755050867795944,
0.07503322511911392,
-0.1571515053510666,
-0.1603517234325409,
0.14260075986385345,
0.036776404827833176,
0.02125180885195732,
0.04470129683613777,
0.04594897851347923,
0.18468056619167328,
-0.08220665156841278,
-0.017173947766423225,
-0.012627649120986462,
0.021156422793865204,
-0.12655363976955414,
0.038768935948610306,
0.08653443306684494,
-0.15033215284347534,
0.05520832538604736,
-0.003970526624470949,
0.002437459770590067,
-0.01783961057662964,
-0.028730953112244606,
-0.09970277547836304,
-0.06624005734920502,
0.008432036265730858,
0.03948491811752319,
0.028305526822805405,
-0.03595494106411934,
-0.0635642409324646,
-0.06782369315624237,
0.10156653821468353,
-0.12593761086463928,
-0.013382266275584698,
-0.13813196122646332,
0.14065006375312805,
-0.08364655822515488,
0.0673578754067421,
-0.14024285972118378,
-0.02271796390414238,
0.07403683662414551,
-0.023558873683214188,
-0.025787224993109703,
-0.011082068085670471,
0.06336887180805206,
0.0963461846113205,
0.013275811448693275,
0.021604692563414574,
0.132207453250885,
0.04225382208824158,
-0.07198466360569,
-0.1677282154560089,
-0.021196195855736732,
-0.057417042553424835,
0.21136021614074707,
-0.184984028339386,
0.0377490259706974,
0.11884945631027222,
0.1211910992860794,
-0.03961078077554703,
0.009264692664146423,
-0.04526267573237419,
0.03171325847506523,
-0.07233580201864243,
0.0065973252058029175,
0.07916668802499771,
-0.019518792629241943,
-0.05798916146159172,
0.04363157972693443,
-0.22891731560230255,
0.0936889499425888,
0.12157922983169556,
0.00980803556740284,
-0.02253561280667782,
-0.08021403104066849,
0.027509551495313644,
-0.04887164384126663,
0.10130594670772552,
-0.07462489604949951,
-0.008430419489741325,
-0.057202160358428955,
0.09269620478153229,
-0.07001881301403046,
0.021399881690740585,
0.06034783273935318,
0.06093079596757889,
-0.06224990636110306,
0.07526913285255432,
0.16095975041389465,
-0.20012691617012024,
0.08113615214824677,
0.13425502181053162,
-0.05255484580993652,
0.12088142335414886,
0.026094749569892883,
-0.022781871259212494,
-0.0248920489102602,
0.028399452567100525,
0.04348624497652054,
0.0740995854139328,
-0.07856515794992447,
0.007849497720599174,
0.02396395616233349,
-0.008421944454312325,
0.07247395068407059,
-0.13180844485759735,
0.05588517338037491,
-0.04657885432243347,
-0.04360083490610123,
0.09979331493377686,
0.011265315115451813,
-0.03415970876812935,
0.08838693797588348,
-0.06092541292309761,
-0.19272583723068237,
0.07253647595643997,
-0.003231384325772524,
-0.10127317905426025,
0.19590944051742554,
-0.15054811537265778,
-0.19092904031276703,
-0.18068858981132507,
0.018074538558721542,
-0.06307666748762131,
0.04179096966981888,
0.008487730287015438,
0.006950183305889368,
-0.10110025107860565,
-0.1408982127904892,
-0.0427841953933239,
0.12416139990091324,
0.036380525678396225,
0.018678680062294006,
0.0070695579051971436,
-0.04079899936914444,
-0.10504253953695297,
0.03484721854329109,
0.030889421701431274,
-0.03469151258468628,
0.0488390251994133,
-0.1173926442861557,
0.07332655042409897,
0.18479254841804504,
0.050573576241731644,
-0.0322006419301033,
0.003276488510891795,
0.12326061725616455,
-0.05471964552998543,
0.0741860419511795,
0.13291893899440765,
-0.0161118246614933,
-0.008379444479942322,
0.14995242655277252,
-0.012121028266847134,
-0.057627011090517044,
0.017620820552110672,
-0.13084551692008972,
-0.020789843052625656,
-0.1216527447104454,
-0.10185782611370087,
-0.07342687249183655,
0.08307919651269913,
0.0439215712249279,
0.05500464886426926,
0.020890576764941216,
0.10528330504894257,
-0.04999060928821564,
0.0345996618270874,
0.0849592462182045,
0.07080426067113876,
0.1301840841770172,
0.04075927287340164,
0.09936575591564178,
-0.08191724866628647,
0.004462718032300472,
0.062184859067201614,
0.1117163673043251,
0.11818689107894897,
0.02639620378613472,
0.24685391783714294,
-0.032948147505521774,
0.12329105287790298,
0.07999180257320404,
0.12284711748361588,
-0.00864341203123331,
-0.015271876938641071,
-0.05061836168169975,
-0.07266664505004883,
-0.05459153652191162,
0.05548090860247612,
-0.09573563933372498,
-0.04853421077132225,
-0.012697607278823853,
0.07652278989553452,
0.05389084294438362,
0.09408004581928253,
-0.004751680418848991,
-0.355776846408844,
-0.07670719176530838,
0.018231993541121483,
0.018403463065624237,
-0.04217454791069031,
0.04330975562334061,
0.14705228805541992,
0.020864952355623245,
0.009508076123893261,
-0.07763224840164185,
0.041883185505867004,
0.061387091875076294,
-0.006203468423336744,
0.0434420183300972,
0.10810504108667374,
0.03738350421190262,
0.07996612042188644,
-0.18143028020858765,
0.11141780763864517,
0.030224084854125977,
0.03419574350118637,
-0.1144140362739563,
0.037086475640535355,
0.01625993475317955,
0.19613178074359894,
-0.004564615432173014,
-0.045296136289834976,
-0.1893482208251953,
-0.0689142644405365,
-0.08727896213531494,
0.03307659178972244,
0.062273334711790085,
0.05006754398345947,
0.03653446212410927,
-0.06905809044837952,
-0.038043905049562454,
0.031212691217660904,
0.018740897998213768,
-0.1005827933549881,
-0.1521243155002594,
0.1141105517745018,
0.13593526184558868,
0.03474428132176399,
-0.08954653888940811,
-0.07697480171918869,
-0.08154512941837311,
0.15605998039245605,
-0.16867241263389587,
0.04038715362548828,
-0.06921832263469696,
-0.08829392492771149,
0.07447763532400131,
-0.05886637046933174,
0.033048115670681,
-0.05293397977948189,
0.09819139540195465,
-0.010522345080971718,
-0.16308218240737915,
0.13241323828697205,
-0.12312711775302887,
-0.14370237290859222,
-0.05992847681045532,
0.06809408962726593,
-0.06873819231987,
0.0022854453418403864,
0.06494661420583725,
-0.003753822762519121,
-0.0391383059322834,
-0.0660630539059639,
-0.10953924804925919,
0.1077568382024765,
0.020387794822454453,
0.018395371735095978,
-0.11601611226797104,
-0.22736132144927979,
0.01998201198875904,
-0.03141530975699425,
0.05466332286596298,
0.15044312179088593,
-0.03014368936419487,
-0.006456559058278799,
0.23687884211540222,
-0.055429477244615555,
-0.22862359881401062,
-0.018901793286204338,
-0.042703378945589066,
-0.02188730798661709,
-0.051531583070755005,
-0.06719859689474106,
0.10814088582992554,
0.1138487309217453,
-0.03043392300605774,
0.10296455770730972,
-0.2704268991947174,
-0.10182666778564453,
0.085641048848629,
0.14373528957366943,
0.16225220263004303,
-0.16549363732337952,
-0.01028093695640564,
-0.08030227571725845,
-0.20055076479911804,
0.20391269028186798,
-0.07938387244939804,
0.09214778244495392,
-0.010821088217198849,
-0.019544538110494614,
-0.028718506917357445,
-0.068844273686409,
0.1017010435461998,
-0.00977392215281725,
0.03257446363568306,
-0.0581856369972229,
0.05149603635072708,
0.08367886394262314,
0.005444946698844433,
0.044167716056108475,
-0.15532472729682922,
0.03681670501828194,
-0.002691866597160697,
-0.05362054705619812,
-0.012732550501823425,
-0.0026201787404716015,
-0.006864391267299652,
-0.0015344780404120684,
-0.02427084371447563,
0.06051024794578552,
-0.04315687716007233,
-0.039240580052137375,
0.036032360047101974,
-0.021986784413456917,
0.07572407275438309,
0.18682101368904114,
0.13099586963653564,
-0.1729888617992401,
0.10569115728139877,
-0.0014597418485209346,
-0.02547169290482998,
0.10732989013195038,
0.030407506972551346,
0.026273900642991066,
0.11428198963403702,
-0.06834873557090759,
0.08438757807016373,
0.07266460359096527,
0.006285837385803461,
-0.026078861206769943,
0.10444124788045883,
-0.15946952998638153,
-0.09831534326076508,
-0.010685903020203114,
0.11417429149150848,
-0.008124001324176788,
0.09837585687637329,
0.1708424687385559,
-0.018011750653386116,
0.0062541416846215725,
0.024372871965169907,
0.01395859383046627,
0.001576199196279049,
0.13970249891281128,
-0.033791929483413696,
0.06328099220991135,
-0.07360316067934036,
0.015294077806174755,
0.013761095702648163,
-0.12430055439472198,
-0.021107856184244156,
0.13191480934619904,
-0.16038714349269867,
-0.11507382243871689,
-0.01596260815858841,
0.09649673849344254,
-0.025922004133462906,
-0.1084810271859169,
-0.12643732130527496,
-0.1255151331424713,
0.016684943810105324,
0.08722863346338272,
0.0702880248427391,
0.047615308314561844,
-0.0021655927412211895,
-0.028156030923128128,
-0.1034560576081276,
0.09210143983364105,
-0.049840815365314484,
0.09839409589767456,
-0.12467662245035172,
0.05477287247776985,
-0.03807368874549866,
-0.06821146607398987,
-0.04842457175254822,
0.036598365753889084,
-0.1255132555961609,
-0.029645606875419617,
-0.13487930595874786,
0.046103499829769135,
-0.11327613890171051,
0.004807859659194946,
0.006071087438613176,
0.022464342415332794,
-0.014938781037926674,
0.017471235245466232,
-0.04343966394662857,
0.021671941503882408,
-0.019466500729322433,
0.046391528099775314,
-0.07856854796409607,
0.009350280277431011,
0.00014505963190458715,
-0.06051967293024063,
0.06773857027292252,
0.04083047807216644,
-0.057474058121442795,
0.03246474266052246,
-0.1741316020488739,
-0.004279972054064274,
0.046109482645988464,
0.07096154242753983,
0.018934648483991623,
-0.07202838361263275,
0.03143496811389923,
0.12119660526514053,
0.050228673964738846,
0.012352420948445797,
0.1968432068824768,
-0.049027252942323685,
-0.0008978642290458083,
-0.121609166264534,
-0.050753772258758545,
-0.05384121090173721,
-0.011370809748768806,
0.07051318138837814,
-0.015221349895000458,
0.14751338958740234,
-0.07086507976055145,
-0.03176601976156235,
-0.08708439022302628,
0.011213849298655987,
0.032696571201086044,
-0.13200896978378296,
-0.07990989834070206,
-0.03358033671975136,
0.047560565173625946,
0.007654953747987747,
0.07226736098527908,
-0.058019887655973434,
-0.10394604504108429,
0.013476954773068428,
-0.03505850210785866,
0.04594137892127037,
0.034802939742803574,
0.16488976776599884,
0.10157549381256104,
0.06970089673995972,
-0.032272033393383026,
0.047491468489170074,
0.07565147429704666,
0.12210555374622345,
0.08361344039440155,
0.0760960653424263,
-0.027566850185394287,
0.1667456328868866,
0.07843437790870667,
-0.07557085901498795,
-0.04427323862910271,
0.0855315774679184,
-0.1697453111410141,
0.09349703788757324,
-0.05657625198364258,
0.14889127016067505,
0.16008391976356506,
-0.04360553249716759,
-0.06964000314474106,
-0.10133937746286392,
-0.10060598701238632,
-0.0737171396613121,
-0.144444078207016,
-0.11598177254199982,
-0.15823926031589508,
-0.02021319605410099,
-0.06507106870412827,
-0.09253256767988205,
0.04086383432149887,
0.037152670323848724,
-0.010272729210555553,
0.18889251351356506,
-0.01605699583888054,
0.03838229924440384,
-0.0321146585047245,
0.0017693012487143278,
-0.008410545065999031,
0.036619048565626144,
-0.1548120677471161,
-0.011051954701542854,
-0.03576201573014259,
0.03767706826329231,
0.021387584507465363,
0.023337924852967262,
0.05549028515815735,
-0.0033308430574834347,
-0.04863503575325012,
-0.01920263096690178,
-0.0011281870538368821,
-0.01649872586131096,
0.12027281522750854,
-0.006309852935373783,
-0.05069490149617195,
0.03028200939297676,
0.02589396759867668,
-0.020493607968091965,
-0.11464788764715195,
-0.10810388624668121,
0.11736121028661728,
-0.07860458642244339,
0.044269416481256485,
0.013559659011662006,
-0.0101328669115901,
-0.023432109504938126,
0.18963681161403656,
0.2287255823612213,
-0.09979473054409027,
-0.014849985018372536,
0.015992846339941025,
-0.013664601370692253,
-0.040227457880973816,
0.1684797704219818,
0.09711184352636337,
0.2037757933139801,
0.025360161438584328,
-0.021103184670209885,
-0.001195923425257206,
-0.005482147913426161,
-0.11532525718212128,
-0.039835765957832336,
-0.04180289804935455,
-0.03520563989877701,
0.009702207520604134,
0.042784806340932846,
0.006989783141762018,
-0.03218588978052139,
-0.010033383965492249,
-0.06130514293909073,
-0.07618565857410431,
-0.06477157026529312,
0.1305445283651352,
-0.09517543017864227,
0.03688139468431473,
-0.06840561330318451,
0.0195605605840683,
0.013379605486989021,
-0.021147551015019417,
-0.1106223315000534,
-0.04146788269281387,
0.02109948731958866,
-0.1297861486673355,
0.14164212346076965,
-0.036643948405981064,
0.11645273864269257,
0.12261927127838135,
0.010852943174540997,
-0.14264562726020813,
0.07332352548837662,
0.031738582998514175,
-0.11479264497756958,
0.0776853933930397,
-0.0013804935151711106,
-0.05474866181612015,
0.16480295360088348,
0.015371039509773254,
-0.07446736097335815,
0.02516375482082367,
-0.03275401145219803,
0.002308108378201723,
-0.04203716292977333,
0.009467897936701775,
-0.061638735234737396,
0.14279285073280334,
0.09066151082515717,
-0.015788983553647995,
-0.03130638599395752,
-0.010479123331606388,
0.0966024249792099,
-0.03391670063138008,
-0.022660452872514725,
-0.015216921456158161,
-0.30464059114456177,
-0.030301308259367943,
-0.012125648558139801,
0.040927741676568985,
-0.1680280864238739,
-0.08409134298563004,
-0.13633382320404053,
-0.02465103566646576,
-0.1408102959394455,
0.032521095126867294,
0.1642039567232132,
-0.003878029529005289,
-0.05764879658818245,
-0.17590895295143127,
-0.08574333786964417,
0.0627649575471878,
-0.11513547599315643,
-0.18672840297222137
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-53k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:21:25+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-60k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:23:43+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
# Mixtral MOE 5x7B
MoE of the following models :
* [Toten5/Marcoroni-neural-chat-7B-v1](https://huggingface.co/Toten5/Marcoroni-neural-chat-7B-v1)
* [NurtureAI/neural-chat-7b-v3-16k](https://huggingface.co/NurtureAI/neural-chat-7b-v3-16k)
* [mncai/mistral-7b-dpo-v6](https://huggingface.co/mncai/mistral-7b-dpo-v6)
* [cookinai/CatMacaroni-Slerp](https://huggingface.co/cookinai/CatMacaroni-Slerp)
* [ignos/Mistral-T5-7B-v1](https://huggingface.co/ignos/Mistral-T5-7B-v1)
gpu code example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
```
CPU example
```
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math
## v2 models
model_path = "cloudyu/Mixtral_7Bx5_MoE_30B"
tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
generation_output = model.generate(
input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
)
print(tokenizer.decode(generation_output[0]))
prompt = input("please input prompt:")
``` | {"license": "cc-by-nc-4.0"} | text-generation | LoneStriker/Mixtral_7Bx5_MoE_30B-8.0bpw-h8-exl2 | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T18:24:34+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Mixtral MOE 5x7B
MoE of the following models :
* Toten5/Marcoroni-neural-chat-7B-v1
* NurtureAI/neural-chat-7b-v3-16k
* mncai/mistral-7b-dpo-v6
* cookinai/CatMacaroni-Slerp
* ignos/Mistral-T5-7B-v1
gpu code example
CPU example
| [
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
58,
98
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Mixtral MOE 5x7B\n\nMoE of the following models :\n\n* Toten5/Marcoroni-neural-chat-7B-v1\n* NurtureAI/neural-chat-7b-v3-16k\n* mncai/mistral-7b-dpo-v6\n* cookinai/CatMacaroni-Slerp\n* ignos/Mistral-T5-7B-v1\n\n\ngpu code example\n\n\n\nCPU example"
] | [
-0.13265983760356903,
0.032811205834150314,
0.0016681700944900513,
0.06005237251520157,
0.09170277416706085,
0.05486174672842026,
0.1754031479358673,
0.08827437460422516,
0.048426054418087006,
0.04822719842195511,
0.10930546373128891,
0.15147005021572113,
0.050271473824977875,
0.07607264816761017,
-0.041551947593688965,
-0.12304753065109253,
0.13822826743125916,
0.0285372044891119,
0.018767034634947777,
0.07113507390022278,
0.09234799444675446,
-0.045219406485557556,
0.10612381994724274,
-0.027028348296880722,
-0.1984025537967682,
-0.04531659558415413,
0.0059092091396451,
-0.04503824561834335,
0.10345133394002914,
0.09167052805423737,
0.02468385361135006,
0.05491048842668533,
0.05525398999452591,
-0.047444041818380356,
0.02953178808093071,
0.04105483368039131,
-0.015743371099233627,
0.08048006147146225,
0.10315034538507462,
0.046506043523550034,
0.07312776893377304,
0.0571342408657074,
-0.021097008138895035,
0.035699307918548584,
0.018450820818543434,
-0.0437827967107296,
-0.008665810339152813,
0.04507621377706528,
0.05793994665145874,
0.0792449563741684,
0.015002762898802757,
0.1917630136013031,
-0.0028631084132939577,
0.09410560131072998,
0.13915416598320007,
-0.2718551754951477,
-0.05056018382310867,
0.13085082173347473,
0.0916370153427124,
0.06428710371255875,
0.018235111609101295,
0.02555820718407631,
0.039636820554733276,
0.0031501944176852703,
-0.06455228477716446,
-0.021980848163366318,
0.012090848758816719,
-0.03641531616449356,
-0.10100672394037247,
0.03175126016139984,
0.12783773243427277,
-0.01871788129210472,
-0.012944400310516357,
-0.06200869008898735,
-0.10857585817575455,
0.012746433727443218,
-0.05880852788686752,
-0.047148652374744415,
-0.07286347448825836,
0.04218289256095886,
0.1049298644065857,
0.07159604132175446,
-0.03756077215075493,
-0.1395968794822693,
-0.03131239861249924,
0.16100303828716278,
0.031219836324453354,
0.010522501543164253,
-0.021792003884911537,
0.059254713356494904,
0.028613245114684105,
-0.06863578408956528,
-0.0012622170615941286,
-0.04667212441563606,
-0.03568123281002045,
-0.005251494236290455,
-0.09649239480495453,
-0.054846517741680145,
0.056380558758974075,
0.04986369609832764,
0.04993335157632828,
0.06519204378128052,
0.04177093133330345,
0.012200085446238518,
-0.0973709300160408,
-0.04077140614390373,
-0.09576639533042908,
-0.08472820371389389,
0.010962272994220257,
0.08735537528991699,
0.05046290159225464,
-0.022282809019088745,
-0.1383192241191864,
-0.07204660028219223,
0.07936861366033554,
0.007562451064586639,
-0.026277069002389908,
0.11840388923883438,
-0.04044025391340256,
-0.03969082981348038,
0.16800281405448914,
-0.06999586522579193,
0.0265493206679821,
0.07418541610240936,
-0.0032649009954184294,
0.03415559232234955,
-0.009450617246329784,
-0.019333822652697563,
-0.0457611009478569,
-0.08098877966403961,
-0.1161646619439125,
-0.042938411235809326,
-0.09060145914554596,
-0.09032420068979263,
0.043551646173000336,
0.035354144871234894,
-0.032337091863155365,
-0.16533109545707703,
-0.12757019698619843,
0.04656510055065155,
0.0637110024690628,
-0.07433835417032242,
0.07604158669710159,
-0.006164343096315861,
-0.02737729251384735,
0.03098740056157112,
0.022463470697402954,
0.03237934038043022,
-0.021810641512274742,
0.043203018605709076,
0.06473270058631897,
0.04523825645446777,
-0.06388343870639801,
0.015224343165755272,
-0.061199165880680084,
0.031894490122795105,
-0.10606493800878525,
0.0010015327716246247,
-0.058403920382261276,
0.07756669819355011,
-0.05844087153673172,
-0.004984809551388025,
-0.04675336927175522,
0.02938850224018097,
0.047615207731723785,
0.14076733589172363,
-0.14450693130493164,
-0.021755050867795944,
0.07503322511911392,
-0.1571515053510666,
-0.1603517234325409,
0.14260075986385345,
0.036776404827833176,
0.02125180885195732,
0.04470129683613777,
0.04594897851347923,
0.18468056619167328,
-0.08220665156841278,
-0.017173947766423225,
-0.012627649120986462,
0.021156422793865204,
-0.12655363976955414,
0.038768935948610306,
0.08653443306684494,
-0.15033215284347534,
0.05520832538604736,
-0.003970526624470949,
0.002437459770590067,
-0.01783961057662964,
-0.028730953112244606,
-0.09970277547836304,
-0.06624005734920502,
0.008432036265730858,
0.03948491811752319,
0.028305526822805405,
-0.03595494106411934,
-0.0635642409324646,
-0.06782369315624237,
0.10156653821468353,
-0.12593761086463928,
-0.013382266275584698,
-0.13813196122646332,
0.14065006375312805,
-0.08364655822515488,
0.0673578754067421,
-0.14024285972118378,
-0.02271796390414238,
0.07403683662414551,
-0.023558873683214188,
-0.025787224993109703,
-0.011082068085670471,
0.06336887180805206,
0.0963461846113205,
0.013275811448693275,
0.021604692563414574,
0.132207453250885,
0.04225382208824158,
-0.07198466360569,
-0.1677282154560089,
-0.021196195855736732,
-0.057417042553424835,
0.21136021614074707,
-0.184984028339386,
0.0377490259706974,
0.11884945631027222,
0.1211910992860794,
-0.03961078077554703,
0.009264692664146423,
-0.04526267573237419,
0.03171325847506523,
-0.07233580201864243,
0.0065973252058029175,
0.07916668802499771,
-0.019518792629241943,
-0.05798916146159172,
0.04363157972693443,
-0.22891731560230255,
0.0936889499425888,
0.12157922983169556,
0.00980803556740284,
-0.02253561280667782,
-0.08021403104066849,
0.027509551495313644,
-0.04887164384126663,
0.10130594670772552,
-0.07462489604949951,
-0.008430419489741325,
-0.057202160358428955,
0.09269620478153229,
-0.07001881301403046,
0.021399881690740585,
0.06034783273935318,
0.06093079596757889,
-0.06224990636110306,
0.07526913285255432,
0.16095975041389465,
-0.20012691617012024,
0.08113615214824677,
0.13425502181053162,
-0.05255484580993652,
0.12088142335414886,
0.026094749569892883,
-0.022781871259212494,
-0.0248920489102602,
0.028399452567100525,
0.04348624497652054,
0.0740995854139328,
-0.07856515794992447,
0.007849497720599174,
0.02396395616233349,
-0.008421944454312325,
0.07247395068407059,
-0.13180844485759735,
0.05588517338037491,
-0.04657885432243347,
-0.04360083490610123,
0.09979331493377686,
0.011265315115451813,
-0.03415970876812935,
0.08838693797588348,
-0.06092541292309761,
-0.19272583723068237,
0.07253647595643997,
-0.003231384325772524,
-0.10127317905426025,
0.19590944051742554,
-0.15054811537265778,
-0.19092904031276703,
-0.18068858981132507,
0.018074538558721542,
-0.06307666748762131,
0.04179096966981888,
0.008487730287015438,
0.006950183305889368,
-0.10110025107860565,
-0.1408982127904892,
-0.0427841953933239,
0.12416139990091324,
0.036380525678396225,
0.018678680062294006,
0.0070695579051971436,
-0.04079899936914444,
-0.10504253953695297,
0.03484721854329109,
0.030889421701431274,
-0.03469151258468628,
0.0488390251994133,
-0.1173926442861557,
0.07332655042409897,
0.18479254841804504,
0.050573576241731644,
-0.0322006419301033,
0.003276488510891795,
0.12326061725616455,
-0.05471964552998543,
0.0741860419511795,
0.13291893899440765,
-0.0161118246614933,
-0.008379444479942322,
0.14995242655277252,
-0.012121028266847134,
-0.057627011090517044,
0.017620820552110672,
-0.13084551692008972,
-0.020789843052625656,
-0.1216527447104454,
-0.10185782611370087,
-0.07342687249183655,
0.08307919651269913,
0.0439215712249279,
0.05500464886426926,
0.020890576764941216,
0.10528330504894257,
-0.04999060928821564,
0.0345996618270874,
0.0849592462182045,
0.07080426067113876,
0.1301840841770172,
0.04075927287340164,
0.09936575591564178,
-0.08191724866628647,
0.004462718032300472,
0.062184859067201614,
0.1117163673043251,
0.11818689107894897,
0.02639620378613472,
0.24685391783714294,
-0.032948147505521774,
0.12329105287790298,
0.07999180257320404,
0.12284711748361588,
-0.00864341203123331,
-0.015271876938641071,
-0.05061836168169975,
-0.07266664505004883,
-0.05459153652191162,
0.05548090860247612,
-0.09573563933372498,
-0.04853421077132225,
-0.012697607278823853,
0.07652278989553452,
0.05389084294438362,
0.09408004581928253,
-0.004751680418848991,
-0.355776846408844,
-0.07670719176530838,
0.018231993541121483,
0.018403463065624237,
-0.04217454791069031,
0.04330975562334061,
0.14705228805541992,
0.020864952355623245,
0.009508076123893261,
-0.07763224840164185,
0.041883185505867004,
0.061387091875076294,
-0.006203468423336744,
0.0434420183300972,
0.10810504108667374,
0.03738350421190262,
0.07996612042188644,
-0.18143028020858765,
0.11141780763864517,
0.030224084854125977,
0.03419574350118637,
-0.1144140362739563,
0.037086475640535355,
0.01625993475317955,
0.19613178074359894,
-0.004564615432173014,
-0.045296136289834976,
-0.1893482208251953,
-0.0689142644405365,
-0.08727896213531494,
0.03307659178972244,
0.062273334711790085,
0.05006754398345947,
0.03653446212410927,
-0.06905809044837952,
-0.038043905049562454,
0.031212691217660904,
0.018740897998213768,
-0.1005827933549881,
-0.1521243155002594,
0.1141105517745018,
0.13593526184558868,
0.03474428132176399,
-0.08954653888940811,
-0.07697480171918869,
-0.08154512941837311,
0.15605998039245605,
-0.16867241263389587,
0.04038715362548828,
-0.06921832263469696,
-0.08829392492771149,
0.07447763532400131,
-0.05886637046933174,
0.033048115670681,
-0.05293397977948189,
0.09819139540195465,
-0.010522345080971718,
-0.16308218240737915,
0.13241323828697205,
-0.12312711775302887,
-0.14370237290859222,
-0.05992847681045532,
0.06809408962726593,
-0.06873819231987,
0.0022854453418403864,
0.06494661420583725,
-0.003753822762519121,
-0.0391383059322834,
-0.0660630539059639,
-0.10953924804925919,
0.1077568382024765,
0.020387794822454453,
0.018395371735095978,
-0.11601611226797104,
-0.22736132144927979,
0.01998201198875904,
-0.03141530975699425,
0.05466332286596298,
0.15044312179088593,
-0.03014368936419487,
-0.006456559058278799,
0.23687884211540222,
-0.055429477244615555,
-0.22862359881401062,
-0.018901793286204338,
-0.042703378945589066,
-0.02188730798661709,
-0.051531583070755005,
-0.06719859689474106,
0.10814088582992554,
0.1138487309217453,
-0.03043392300605774,
0.10296455770730972,
-0.2704268991947174,
-0.10182666778564453,
0.085641048848629,
0.14373528957366943,
0.16225220263004303,
-0.16549363732337952,
-0.01028093695640564,
-0.08030227571725845,
-0.20055076479911804,
0.20391269028186798,
-0.07938387244939804,
0.09214778244495392,
-0.010821088217198849,
-0.019544538110494614,
-0.028718506917357445,
-0.068844273686409,
0.1017010435461998,
-0.00977392215281725,
0.03257446363568306,
-0.0581856369972229,
0.05149603635072708,
0.08367886394262314,
0.005444946698844433,
0.044167716056108475,
-0.15532472729682922,
0.03681670501828194,
-0.002691866597160697,
-0.05362054705619812,
-0.012732550501823425,
-0.0026201787404716015,
-0.006864391267299652,
-0.0015344780404120684,
-0.02427084371447563,
0.06051024794578552,
-0.04315687716007233,
-0.039240580052137375,
0.036032360047101974,
-0.021986784413456917,
0.07572407275438309,
0.18682101368904114,
0.13099586963653564,
-0.1729888617992401,
0.10569115728139877,
-0.0014597418485209346,
-0.02547169290482998,
0.10732989013195038,
0.030407506972551346,
0.026273900642991066,
0.11428198963403702,
-0.06834873557090759,
0.08438757807016373,
0.07266460359096527,
0.006285837385803461,
-0.026078861206769943,
0.10444124788045883,
-0.15946952998638153,
-0.09831534326076508,
-0.010685903020203114,
0.11417429149150848,
-0.008124001324176788,
0.09837585687637329,
0.1708424687385559,
-0.018011750653386116,
0.0062541416846215725,
0.024372871965169907,
0.01395859383046627,
0.001576199196279049,
0.13970249891281128,
-0.033791929483413696,
0.06328099220991135,
-0.07360316067934036,
0.015294077806174755,
0.013761095702648163,
-0.12430055439472198,
-0.021107856184244156,
0.13191480934619904,
-0.16038714349269867,
-0.11507382243871689,
-0.01596260815858841,
0.09649673849344254,
-0.025922004133462906,
-0.1084810271859169,
-0.12643732130527496,
-0.1255151331424713,
0.016684943810105324,
0.08722863346338272,
0.0702880248427391,
0.047615308314561844,
-0.0021655927412211895,
-0.028156030923128128,
-0.1034560576081276,
0.09210143983364105,
-0.049840815365314484,
0.09839409589767456,
-0.12467662245035172,
0.05477287247776985,
-0.03807368874549866,
-0.06821146607398987,
-0.04842457175254822,
0.036598365753889084,
-0.1255132555961609,
-0.029645606875419617,
-0.13487930595874786,
0.046103499829769135,
-0.11327613890171051,
0.004807859659194946,
0.006071087438613176,
0.022464342415332794,
-0.014938781037926674,
0.017471235245466232,
-0.04343966394662857,
0.021671941503882408,
-0.019466500729322433,
0.046391528099775314,
-0.07856854796409607,
0.009350280277431011,
0.00014505963190458715,
-0.06051967293024063,
0.06773857027292252,
0.04083047807216644,
-0.057474058121442795,
0.03246474266052246,
-0.1741316020488739,
-0.004279972054064274,
0.046109482645988464,
0.07096154242753983,
0.018934648483991623,
-0.07202838361263275,
0.03143496811389923,
0.12119660526514053,
0.050228673964738846,
0.012352420948445797,
0.1968432068824768,
-0.049027252942323685,
-0.0008978642290458083,
-0.121609166264534,
-0.050753772258758545,
-0.05384121090173721,
-0.011370809748768806,
0.07051318138837814,
-0.015221349895000458,
0.14751338958740234,
-0.07086507976055145,
-0.03176601976156235,
-0.08708439022302628,
0.011213849298655987,
0.032696571201086044,
-0.13200896978378296,
-0.07990989834070206,
-0.03358033671975136,
0.047560565173625946,
0.007654953747987747,
0.07226736098527908,
-0.058019887655973434,
-0.10394604504108429,
0.013476954773068428,
-0.03505850210785866,
0.04594137892127037,
0.034802939742803574,
0.16488976776599884,
0.10157549381256104,
0.06970089673995972,
-0.032272033393383026,
0.047491468489170074,
0.07565147429704666,
0.12210555374622345,
0.08361344039440155,
0.0760960653424263,
-0.027566850185394287,
0.1667456328868866,
0.07843437790870667,
-0.07557085901498795,
-0.04427323862910271,
0.0855315774679184,
-0.1697453111410141,
0.09349703788757324,
-0.05657625198364258,
0.14889127016067505,
0.16008391976356506,
-0.04360553249716759,
-0.06964000314474106,
-0.10133937746286392,
-0.10060598701238632,
-0.0737171396613121,
-0.144444078207016,
-0.11598177254199982,
-0.15823926031589508,
-0.02021319605410099,
-0.06507106870412827,
-0.09253256767988205,
0.04086383432149887,
0.037152670323848724,
-0.010272729210555553,
0.18889251351356506,
-0.01605699583888054,
0.03838229924440384,
-0.0321146585047245,
0.0017693012487143278,
-0.008410545065999031,
0.036619048565626144,
-0.1548120677471161,
-0.011051954701542854,
-0.03576201573014259,
0.03767706826329231,
0.021387584507465363,
0.023337924852967262,
0.05549028515815735,
-0.0033308430574834347,
-0.04863503575325012,
-0.01920263096690178,
-0.0011281870538368821,
-0.01649872586131096,
0.12027281522750854,
-0.006309852935373783,
-0.05069490149617195,
0.03028200939297676,
0.02589396759867668,
-0.020493607968091965,
-0.11464788764715195,
-0.10810388624668121,
0.11736121028661728,
-0.07860458642244339,
0.044269416481256485,
0.013559659011662006,
-0.0101328669115901,
-0.023432109504938126,
0.18963681161403656,
0.2287255823612213,
-0.09979473054409027,
-0.014849985018372536,
0.015992846339941025,
-0.013664601370692253,
-0.040227457880973816,
0.1684797704219818,
0.09711184352636337,
0.2037757933139801,
0.025360161438584328,
-0.021103184670209885,
-0.001195923425257206,
-0.005482147913426161,
-0.11532525718212128,
-0.039835765957832336,
-0.04180289804935455,
-0.03520563989877701,
0.009702207520604134,
0.042784806340932846,
0.006989783141762018,
-0.03218588978052139,
-0.010033383965492249,
-0.06130514293909073,
-0.07618565857410431,
-0.06477157026529312,
0.1305445283651352,
-0.09517543017864227,
0.03688139468431473,
-0.06840561330318451,
0.0195605605840683,
0.013379605486989021,
-0.021147551015019417,
-0.1106223315000534,
-0.04146788269281387,
0.02109948731958866,
-0.1297861486673355,
0.14164212346076965,
-0.036643948405981064,
0.11645273864269257,
0.12261927127838135,
0.010852943174540997,
-0.14264562726020813,
0.07332352548837662,
0.031738582998514175,
-0.11479264497756958,
0.0776853933930397,
-0.0013804935151711106,
-0.05474866181612015,
0.16480295360088348,
0.015371039509773254,
-0.07446736097335815,
0.02516375482082367,
-0.03275401145219803,
0.002308108378201723,
-0.04203716292977333,
0.009467897936701775,
-0.061638735234737396,
0.14279285073280334,
0.09066151082515717,
-0.015788983553647995,
-0.03130638599395752,
-0.010479123331606388,
0.0966024249792099,
-0.03391670063138008,
-0.022660452872514725,
-0.015216921456158161,
-0.30464059114456177,
-0.030301308259367943,
-0.012125648558139801,
0.040927741676568985,
-0.1680280864238739,
-0.08409134298563004,
-0.13633382320404053,
-0.02465103566646576,
-0.1408102959394455,
0.032521095126867294,
0.1642039567232132,
-0.003878029529005289,
-0.05764879658818245,
-0.17590895295143127,
-0.08574333786964417,
0.0627649575471878,
-0.11513547599315643,
-0.18672840297222137
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | feature-extraction | furrutiav/bert_qa_extractor_cockatiel_2022_nllf_mixtral_v2_it_676 | [
"transformers",
"safetensors",
"bert",
"feature-extraction",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:24:46+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
39,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.052746038883924484,
0.20255789160728455,
-0.0045078229159116745,
0.0248473659157753,
0.10497838258743286,
0.00675728265196085,
0.06521498411893845,
0.11486967653036118,
-0.0023755673319101334,
0.12028469145298004,
0.027631845325231552,
0.08119397610425949,
0.12110675126314163,
0.15393014252185822,
0.005160121712833643,
-0.24253977835178375,
0.05344875901937485,
-0.09366832673549652,
0.004077504388988018,
0.11452110856771469,
0.1343945860862732,
-0.10780399292707443,
0.08976872265338898,
-0.00683097867295146,
-0.01712046191096306,
-0.015751034021377563,
-0.07134060561656952,
-0.06668227165937424,
0.05541034787893295,
0.07649129629135132,
0.0725555345416069,
0.010986946523189545,
0.07830587029457092,
-0.2806258797645569,
0.014425364322960377,
0.08005264401435852,
0.0010765197221189737,
0.06795802712440491,
0.08151742070913315,
-0.06789936870336533,
0.1251654475927353,
-0.0605485662817955,
0.14059753715991974,
0.07639917731285095,
-0.08928128331899643,
-0.19590547680854797,
-0.06669555604457855,
0.07481247186660767,
0.129872128367424,
0.05026249960064888,
-0.02990107797086239,
0.1371748298406601,
-0.09688840061426163,
0.00786701962351799,
0.12302009761333466,
-0.07360870391130447,
-0.05524582043290138,
0.031063849106431007,
0.10805318504571915,
0.09297362715005875,
-0.11762315034866333,
-0.008467874489724636,
0.029582185670733452,
0.022175652906298637,
0.08627551048994064,
0.015828849747776985,
0.1525639444589615,
0.041341137140989304,
-0.14141254127025604,
-0.0526716373860836,
0.09056255221366882,
0.03701045364141464,
-0.050960201770067215,
-0.23367193341255188,
-0.026245610788464546,
-0.012442239560186863,
-0.03079850971698761,
-0.04234880208969116,
0.053594592958688736,
-0.03630254790186882,
0.07596245408058167,
-0.007196845952421427,
-0.07732249796390533,
-0.031211229041218758,
0.05230424553155899,
0.06785056740045547,
0.018615471199154854,
-0.006994647905230522,
0.019442738965153694,
0.11387838423252106,
0.07708574831485748,
-0.13029205799102783,
-0.07214002311229706,
-0.0739525631070137,
-0.09558356553316116,
-0.04332297295331955,
0.03707554563879967,
0.07106684148311615,
0.04390906170010567,
0.20283061265945435,
-0.017690327018499374,
0.046562306582927704,
0.0476159006357193,
0.005842953454703093,
0.07147589325904846,
0.10925443470478058,
-0.06689215451478958,
-0.14432233572006226,
-0.06022803485393524,
0.08875485509634018,
-0.009834992699325085,
-0.03670760244131088,
-0.049119677394628525,
0.04676154628396034,
0.03209913894534111,
0.11318106204271317,
0.08643888682126999,
-0.003593706525862217,
-0.0628826767206192,
-0.042073074728250504,
0.22331053018569946,
-0.14625342190265656,
0.043256524950265884,
0.007445589639246464,
-0.0429743155837059,
-0.0076383077539503574,
0.005870272871106863,
0.014089803211390972,
-0.03238216042518616,
0.10351061820983887,
-0.0778173878788948,
-0.035906463861465454,
-0.1116463914513588,
-0.06868703663349152,
0.024910317733883858,
0.0025890374090522528,
-0.018393149599432945,
-0.04424213990569115,
-0.11253650486469269,
-0.051282741129398346,
0.0724339634180069,
-0.07579848170280457,
-0.05524555593729019,
0.009976830333471298,
-0.04834962263703346,
0.0031978494953364134,
0.00010397454752819613,
0.11258035898208618,
-0.03314845636487007,
0.025259260088205338,
-0.04850656911730766,
0.06803499162197113,
0.10959596186876297,
0.038730688393116,
-0.0804535374045372,
0.07286878675222397,
-0.22788093984127045,
0.10223092138767242,
-0.09346398711204529,
0.025767935439944267,
-0.14578653872013092,
-0.04199126362800598,
0.02854149229824543,
0.02887420728802681,
-0.010361229069530964,
0.1268649846315384,
-0.1982942521572113,
-0.035082314163446426,
0.15190726518630981,
-0.11336656659841537,
-0.09347330778837204,
0.065653957426548,
-0.05610617995262146,
0.11296144872903824,
0.04835578054189682,
-0.019556574523448944,
0.06953749805688858,
-0.1281629204750061,
-0.04506009817123413,
-0.021473335102200508,
-0.008493004366755486,
0.14857245981693268,
0.06750676780939102,
-0.05737153813242912,
0.07104712724685669,
0.02051553688943386,
-0.037109848111867905,
-0.03301886469125748,
-0.03470754995942116,
-0.09331934154033661,
0.009520708583295345,
-0.07244295626878738,
0.03737799823284149,
-0.02224314957857132,
-0.08870045095682144,
-0.030656753107905388,
-0.17619828879833221,
0.043274905532598495,
0.08050142228603363,
0.008233942091464996,
-0.021131468936800957,
-0.09287237375974655,
0.02556683123111725,
-0.009385489858686924,
-0.021018607541918755,
-0.1641797423362732,
-0.044834475964307785,
0.04416196420788765,
-0.1971662938594818,
0.023802341893315315,
-0.03283040598034859,
0.05093098804354668,
0.03247829154133797,
-0.04019762575626373,
-0.005096070934087038,
0.0028117431793361902,
0.01809627003967762,
-0.026984719559550285,
-0.200385183095932,
-0.031109308823943138,
-0.029154371470212936,
0.1362139731645584,
-0.22226740419864655,
0.028292208909988403,
0.07483648508787155,
0.13521188497543335,
0.0009690870065242052,
-0.04426588490605354,
0.010693409480154514,
-0.05366935580968857,
-0.053671274334192276,
-0.06512755900621414,
-0.007102466654032469,
-0.03287021815776825,
-0.04422381520271301,
0.06460095942020416,
-0.19425635039806366,
-0.03641216829419136,
0.10608077049255371,
0.10164625942707062,
-0.14719000458717346,
-0.028969714418053627,
-0.04096706584095955,
-0.06081128865480423,
-0.09094393998384476,
-0.0630471333861351,
0.14371246099472046,
0.04861542955040932,
0.048413511365652084,
-0.08624191582202911,
-0.0630124881863594,
0.00895135197788477,
0.0006565740332007408,
-0.03649118170142174,
0.08907787501811981,
0.08782777935266495,
-0.10737399011850357,
0.08881597965955734,
0.08605224639177322,
0.06605713814496994,
0.10539878904819489,
0.001256609451957047,
-0.10750970244407654,
-0.029154706746339798,
0.005644100718200207,
0.01547710970044136,
0.14092515408992767,
-0.044270921498537064,
0.04743899777531624,
0.05656488984823227,
-0.027443327009677887,
0.01715722121298313,
-0.10313762724399567,
0.02984124980866909,
0.046840768307447433,
-0.010507673025131226,
0.012429861351847649,
-0.03895113617181778,
0.025837475433945656,
0.08796556293964386,
0.03584056720137596,
0.027896199375391006,
0.0029043578542768955,
-0.03437814116477966,
-0.10392027348279953,
0.17429527640342712,
-0.0878753736615181,
-0.28357240557670593,
-0.1356295943260193,
-0.00747122336179018,
0.05167245492339134,
-0.022715993225574493,
0.013256389647722244,
-0.04903135821223259,
-0.11467588692903519,
-0.10348290205001831,
0.008818334899842739,
0.0437844917178154,
-0.07700283080339432,
-0.07256268709897995,
0.046553414314985275,
0.033613573759794235,
-0.14174877107143402,
0.022300107404589653,
0.048012908548116684,
-0.03855963796377182,
-0.015413837507367134,
0.07170835882425308,
0.10258439928293228,
0.17387451231479645,
-0.004228805657476187,
-0.01945391111075878,
0.023280048742890358,
0.24459126591682434,
-0.14296141266822815,
0.10647262632846832,
0.15432609617710114,
-0.06630013138055801,
0.1025824174284935,
0.19176462292671204,
0.02610800787806511,
-0.07571171224117279,
0.03370760753750801,
0.03715203329920769,
-0.053104497492313385,
-0.23274335265159607,
-0.060641512274742126,
0.0011178229469805956,
-0.06850682199001312,
0.09104112535715103,
0.08915619552135468,
0.11183936148881912,
0.0454646460711956,
-0.08415863662958145,
-0.06847929954528809,
0.019614145159721375,
0.10642454773187637,
-0.03275766968727112,
0.007264797575771809,
0.09054313600063324,
-0.04184457287192345,
-0.005177726969122887,
0.10835286974906921,
0.007426192983984947,
0.1962665617465973,
0.031048519536852837,
0.15333782136440277,
0.07211130857467651,
0.0342402458190918,
0.026680786162614822,
0.025636766105890274,
0.023090654984116554,
0.009547512046992779,
-0.01598707027733326,
-0.08795502036809921,
0.027014199644327164,
0.13500221073627472,
0.07871367782354355,
0.029795078560709953,
0.020392734557390213,
-0.0429922379553318,
0.062152985483407974,
0.15964233875274658,
0.006258485373109579,
-0.2136749029159546,
-0.03950631618499756,
0.08867984265089035,
-0.0793125256896019,
-0.1237078458070755,
-0.02518491819500923,
0.03823186457157135,
-0.1809074580669403,
0.04127289727330208,
-0.01795332506299019,
0.11453432589769363,
-0.11700457334518433,
-0.028958700597286224,
0.039744846522808075,
0.08327627927064896,
-0.03253408893942833,
0.07922478020191193,
-0.1647184044122696,
0.1165376752614975,
0.012328862212598324,
0.05802180990576744,
-0.11617794632911682,
0.09878876805305481,
0.012594180181622505,
-0.009003117680549622,
0.16720694303512573,
-0.0008162438753060997,
-0.07339610159397125,
-0.06517832726240158,
-0.07867198437452316,
-0.022016214206814766,
0.09116258472204208,
-0.11647430807352066,
0.08271238952875137,
-0.012302344664931297,
-0.03819865360856056,
0.002976413816213608,
-0.1073245257139206,
-0.12343364208936691,
-0.191313698887825,
0.05862122401595116,
-0.11746024340391159,
0.00024363139527849853,
-0.10003595799207687,
-0.05551697313785553,
-0.04721582680940628,
0.19990667700767517,
-0.14306047558784485,
-0.09675363451242447,
-0.1526252180337906,
-0.09468596428632736,
0.1679719239473343,
-0.04768168181180954,
0.08716544508934021,
-0.00014324963558465242,
0.22273695468902588,
0.00589721417054534,
-0.010143720544874668,
0.07824880629777908,
-0.08608578145503998,
-0.17828822135925293,
-0.07740302383899689,
0.12055730819702148,
0.12802201509475708,
0.05279289186000824,
-0.012038013897836208,
0.020934196189045906,
-0.036648161709308624,
-0.11678951978683472,
0.003050430677831173,
0.1217387318611145,
0.05949230119585991,
0.039503831416368484,
-0.002558275358751416,
-0.10200468450784683,
-0.07551230490207672,
-0.0352395698428154,
0.02261841483414173,
0.18903005123138428,
-0.08441178500652313,
0.15781226754188538,
0.13112787902355194,
-0.05333179607987404,
-0.21253353357315063,
0.030583804473280907,
0.043237145990133286,
0.004318034742027521,
0.0612679123878479,
-0.17720702290534973,
0.08167627453804016,
0.025727098807692528,
-0.05116020143032074,
0.15224720537662506,
-0.16569727659225464,
-0.15514664351940155,
0.0824643224477768,
0.05010354146361351,
-0.22108957171440125,
-0.12386278063058853,
-0.0879128947854042,
-0.06589758396148682,
-0.1396872103214264,
0.08584427833557129,
0.014041651971638203,
-0.0018043812597170472,
0.05013851076364517,
0.033740755170583725,
0.018914686515927315,
-0.048698488622903824,
0.21615906059741974,
-0.0022440196480602026,
0.03326340764760971,
-0.07553089410066605,
-0.10180798172950745,
0.06950566172599792,
-0.05141735449433327,
0.08518881350755692,
-0.03099823370575905,
0.005753061734139919,
-0.08320630341768265,
-0.057475052773952484,
-0.05255331099033356,
0.03318103775382042,
-0.08139406144618988,
-0.10520965605974197,
-0.06759276986122131,
0.09429939836263657,
0.09139011800289154,
-0.03298058733344078,
-0.04032526910305023,
-0.08896728605031967,
0.039150089025497437,
0.20617929100990295,
0.17360219359397888,
0.05333937704563141,
-0.10111589729785919,
0.002542630536481738,
-0.01915728859603405,
0.040264517068862915,
-0.21200114488601685,
0.04798245429992676,
0.04617756977677345,
0.024147402495145798,
0.12109645456075668,
-0.0176423080265522,
-0.1646004468202591,
-0.047221194952726364,
0.0562983863055706,
-0.03494611009955406,
-0.20504815876483917,
-0.01314060389995575,
0.04864202439785004,
-0.18736153841018677,
-0.06957933306694031,
0.016700902953743935,
-0.014444489032030106,
-0.027432914823293686,
0.013032985851168633,
0.06286440044641495,
0.025481918826699257,
0.10238313674926758,
0.05989401787519455,
0.1000840812921524,
-0.112981878221035,
0.0795830711722374,
0.09043775498867035,
-0.08344172686338425,
0.009394102729856968,
0.06964189559221268,
-0.05280066654086113,
-0.02294989861547947,
0.022772129625082016,
0.06757686287164688,
-0.003049787599593401,
-0.057536181062459946,
-0.02079189568758011,
-0.10809285193681717,
0.06586270034313202,
0.1269281655550003,
0.0400845967233181,
-0.006831571459770203,
0.04905473813414574,
0.02419281378388405,
-0.07880669087171555,
0.11321208626031876,
0.03362756222486496,
0.03722309693694115,
-0.05989459529519081,
-0.01674187369644642,
0.04316421225667,
0.005734616424888372,
-0.02047782577574253,
-0.025104478001594543,
-0.05658029392361641,
-0.013948953710496426,
-0.18932224810123444,
0.014544147998094559,
-0.07588981091976166,
0.005138450767844915,
0.014814606867730618,
-0.040141742676496506,
-0.018671197816729546,
0.012856033630669117,
-0.08163223415613174,
-0.05027473345398903,
-0.0038707295898348093,
0.09766460955142975,
-0.1400173306465149,
0.008230311796069145,
0.09175591170787811,
-0.11852382868528366,
0.06848865002393723,
-0.019968708977103233,
-0.014717686921358109,
0.0038272906094789505,
-0.1270400881767273,
0.04572216048836708,
-0.004586559720337391,
0.02062096633017063,
0.04444560408592224,
-0.17065683007240295,
0.004877567756921053,
-0.0423397533595562,
-0.0478336401283741,
-0.015323328785598278,
-0.08405033499002457,
-0.11406292766332626,
0.10921793431043625,
0.002206311793997884,
-0.08430022746324539,
-0.010287429206073284,
0.04696008190512657,
0.10919637978076935,
-0.03898061811923981,
0.124757781624794,
0.0047785635106265545,
0.06639395654201508,
-0.18268363177776337,
-0.024298490956425667,
-0.014514438807964325,
0.007352736312896013,
0.027192458510398865,
-0.016180848702788353,
0.04238643869757652,
-0.01372526679188013,
0.2601816952228546,
-0.021822240203619003,
0.07231466472148895,
0.0637383759021759,
0.042024899274110794,
0.016651110723614693,
0.08318763226270676,
0.06755662709474564,
0.016758481040596962,
0.004258559085428715,
0.02265608124434948,
-0.03241465613245964,
-0.016654497012495995,
-0.15768693387508392,
0.07677853107452393,
0.14623822271823883,
0.08591317385435104,
0.007676990237087011,
0.06586159020662308,
-0.10330242663621902,
-0.10554943233728409,
0.08015866577625275,
-0.03888537734746933,
-0.0009790018666535616,
-0.058588381856679916,
0.15355949103832245,
0.14971502125263214,
-0.17422176897525787,
0.08231138437986374,
-0.03791337087750435,
-0.04883022606372833,
-0.11436772346496582,
-0.15839459002017975,
-0.06608819216489792,
-0.029153592884540558,
-0.0041826991364359856,
-0.05528274551033974,
0.06748054921627045,
0.10802645981311798,
-0.0021057529374957085,
-0.00038325722562149167,
0.09545762091875076,
-0.026331622153520584,
-0.01757199876010418,
0.03465426340699196,
0.04817976430058479,
0.033562518656253815,
-0.04831063002347946,
0.020485511049628258,
0.004976877011358738,
0.03976510092616081,
0.05864322930574417,
0.023703020066022873,
-0.03892989084124565,
0.014479226432740688,
-0.01092575490474701,
-0.1049860492348671,
0.022427968680858612,
-0.029776830226182938,
-0.07360642403364182,
0.13104131817817688,
0.029177764430642128,
0.019099419936537743,
-0.03228067234158516,
0.20109383761882782,
-0.07107947021722794,
-0.06925153732299805,
-0.14109766483306885,
0.10889512300491333,
-0.03372858464717865,
0.06323269009590149,
0.058447178453207016,
-0.1133023053407669,
-0.002398417331278324,
0.1314154714345932,
0.133079394698143,
-0.033533163368701935,
0.005780258681625128,
0.03008044883608818,
0.00756559893488884,
-0.0482633113861084,
0.045497048646211624,
0.031092669814825058,
0.15440985560417175,
-0.06949599832296371,
0.07780899107456207,
0.00008295764564536512,
-0.08774317800998688,
-0.036128852516412735,
0.1405542492866516,
0.006535779219120741,
0.03079606406390667,
-0.06559351831674576,
0.10371401906013489,
-0.07252706587314606,
-0.23936228454113007,
0.045033879578113556,
-0.07753164321184158,
-0.15683837234973907,
-0.013978141359984875,
0.02726292423903942,
-0.009009851142764091,
0.02702206000685692,
0.0654432401061058,
-0.06469112634658813,
0.161378413438797,
0.03472336754202843,
-0.08781957626342773,
-0.05673113837838173,
0.07957270741462708,
-0.09192227572202682,
0.2958409786224365,
0.013188840821385384,
0.029593972489237785,
0.10327941924333572,
-0.019989576190710068,
-0.13285429775714874,
0.030561091378331184,
0.10066051781177521,
-0.09982595592737198,
0.06684590131044388,
0.18159176409244537,
-0.009470577351748943,
0.10021016746759415,
0.07437440752983093,
-0.061603669077157974,
0.05807222053408623,
-0.0826035663485527,
-0.06770919263362885,
-0.09389114379882812,
0.05970105528831482,
-0.06468918174505234,
0.14543601870536804,
0.1228262409567833,
-0.04243761673569679,
-0.004415105562657118,
-0.02816380001604557,
0.043726447969675064,
0.012194468639791012,
0.12871193885803223,
0.008576037362217903,
-0.1618158370256424,
0.026840461418032646,
0.0030557403806596994,
0.10387714207172394,
-0.21997274458408356,
-0.08367477357387543,
0.04838619381189346,
-0.029553698375821114,
-0.05334814265370369,
0.10579082369804382,
0.06295353919267654,
0.0504634715616703,
-0.04548325017094612,
-0.05543007701635361,
-0.008723298087716103,
0.14979462325572968,
-0.1187625601887703,
-0.006005466915667057
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-70k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:26:05+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-80k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:28:04+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-DEPlain
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6826
- Rouge1: 55.2811
- Rouge2: 33.4022
- Rougel: 49.0555
- Rougelsum: 49.8535
- Gen Len: 16.3063
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 6.1176 | 1.0 | 1333 | 2.2908 | 44.5349 | 24.6346 | 39.4206 | 40.1782 | 14.1202 |
| 2.9848 | 2.0 | 2666 | 2.0502 | 50.238 | 29.4215 | 44.3707 | 45.2709 | 15.4249 |
| 2.7551 | 3.0 | 3999 | 1.9383 | 52.4619 | 30.9025 | 46.0413 | 47.0121 | 15.814 |
| 2.5148 | 4.0 | 5332 | 1.8737 | 53.5574 | 31.7729 | 47.2411 | 48.1681 | 15.9764 |
| 2.3973 | 5.0 | 6665 | 1.8404 | 54.3931 | 32.4048 | 47.8747 | 48.7838 | 16.1422 |
| 2.3364 | 6.0 | 7998 | 1.7939 | 54.1979 | 32.253 | 47.8117 | 48.6785 | 16.0699 |
| 2.2807 | 7.0 | 9331 | 1.7804 | 54.3636 | 32.486 | 48.0067 | 48.8565 | 16.1324 |
| 2.2326 | 8.0 | 10664 | 1.7678 | 54.7743 | 32.7932 | 48.3657 | 49.1933 | 16.1608 |
| 2.1839 | 9.0 | 11997 | 1.7436 | 54.8052 | 32.8554 | 48.4859 | 49.3042 | 16.2047 |
| 2.1508 | 10.0 | 13330 | 1.7309 | 54.8064 | 32.8648 | 48.4888 | 49.3149 | 16.1779 |
| 2.1245 | 11.0 | 14663 | 1.7251 | 55.0598 | 33.1609 | 48.7331 | 49.6079 | 16.2705 |
| 2.1003 | 12.0 | 15996 | 1.7104 | 54.9449 | 33.1058 | 48.7477 | 49.5681 | 16.2185 |
| 2.0486 | 13.0 | 17329 | 1.6998 | 55.2225 | 33.3383 | 48.9821 | 49.8075 | 16.2494 |
| 2.0494 | 14.0 | 18662 | 1.6966 | 55.1758 | 33.3602 | 48.9134 | 49.7473 | 16.2648 |
| 2.0307 | 15.0 | 19995 | 1.6912 | 55.2276 | 33.3542 | 49.0322 | 49.8302 | 16.2721 |
| 2.0296 | 16.0 | 21328 | 1.6845 | 55.153 | 33.289 | 48.8609 | 49.7004 | 16.2754 |
| 2.01 | 17.0 | 22661 | 1.6842 | 55.3664 | 33.4755 | 49.1395 | 49.9518 | 16.3168 |
| 1.989 | 18.0 | 23994 | 1.6836 | 55.2333 | 33.3763 | 49.0259 | 49.8265 | 16.2794 |
| 2.0067 | 19.0 | 25327 | 1.6829 | 55.3122 | 33.4023 | 49.1034 | 49.8989 | 16.3022 |
| 2.0174 | 20.0 | 26660 | 1.6826 | 55.2811 | 33.4022 | 49.0555 | 49.8535 | 16.3063 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "base_model": "google/mt5-small", "model-index": [{"name": "mt5-small-finetuned-DEPlain", "results": []}]} | text2text-generation | jonathandechert/mt5-small-finetuned-DEPlain | [
"transformers",
"tensorboard",
"safetensors",
"mt5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/mt5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T18:28:30+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-google/mt5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| mt5-small-finetuned-DEPlain
===========================
This model is a fine-tuned version of google/mt5-small on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 1.6826
* Rouge1: 55.2811
* Rouge2: 33.4022
* Rougel: 49.0555
* Rougelsum: 49.8535
* Gen Len: 16.3063
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 20
### Training results
### Framework versions
* Transformers 4.36.2
* Pytorch 2.1.2+cu121
* Datasets 2.16.1
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
"TAGS\n#transformers #tensorboard #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-google/mt5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
81,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #mt5 #text2text-generation #generated_from_trainer #base_model-google/mt5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 20### Training results### Framework versions\n\n\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.0"
] | [
-0.10201549530029297,
0.09844040125608444,
-0.0018744843546301126,
0.10830382257699966,
0.12114319205284119,
-0.01082697231322527,
0.1894831359386444,
0.1208469420671463,
-0.05065315589308739,
0.0532439686357975,
0.14736022055149078,
0.10797104984521866,
0.016010407358407974,
0.15279652178287506,
-0.06950004398822784,
-0.20235803723335266,
0.01647568680346012,
0.025243310257792473,
-0.03707977756857872,
0.13232605159282684,
0.09571345895528793,
-0.12156059592962265,
0.11082404851913452,
0.0035748325753957033,
-0.14401276409626007,
0.0017900855746120214,
0.02351217158138752,
-0.056519705802202225,
0.12642474472522736,
0.03497042506933212,
0.08451063185930252,
0.049771811813116074,
0.046398717910051346,
-0.17573368549346924,
0.012967560440301895,
0.04996328800916672,
-0.004897905979305506,
0.08979203552007675,
0.0554448626935482,
-0.010389955714344978,
0.05465592443943024,
-0.08372125029563904,
0.0368785634636879,
0.02438836358487606,
-0.1201556921005249,
-0.19297374784946442,
-0.07988353818655014,
0.034642305225133896,
0.07741408050060272,
0.0972900241613388,
-0.015015345998108387,
0.14923496544361115,
-0.027006950229406357,
0.09179415553808212,
0.23105722665786743,
-0.3189026117324829,
-0.05878128111362457,
0.039150599390268326,
0.04589775949716568,
0.09980642795562744,
-0.08707793802022934,
0.003956357948482037,
0.05023061856627464,
0.015760347247123718,
0.14089787006378174,
-0.02194576896727085,
0.0008326225215569139,
-0.005640936549752951,
-0.12845379114151,
-0.04081768915057182,
0.19938866794109344,
0.0665706917643547,
-0.05313348397612572,
-0.08797924965620041,
-0.07489239424467087,
-0.12250577658414841,
-0.02595820091664791,
-0.010993472300469875,
0.05178384110331535,
-0.007891901768743992,
-0.08808527886867523,
-0.06062785163521767,
-0.11020144820213318,
-0.06216297298669815,
-0.03591436520218849,
0.11454399675130844,
0.021196870133280754,
-0.003337436355650425,
-0.027008142322301865,
0.09548293799161911,
-0.016673844307661057,
-0.15032045543193817,
0.01381976343691349,
0.02225368097424507,
0.04253271594643593,
-0.03613532334566116,
-0.05167083069682121,
-0.11804888397455215,
0.02659624256193638,
0.13087333738803864,
-0.042322028428316116,
0.04266751930117607,
-0.004138781223446131,
0.05100790411233902,
-0.11133715510368347,
0.1652737557888031,
-0.036393120884895325,
-0.053248338401317596,
0.05278933793306351,
0.11487213522195816,
0.09013383835554123,
-0.012368250638246536,
-0.1366422176361084,
0.02290930598974228,
0.11171611398458481,
0.023600831627845764,
-0.024421578273177147,
0.07111874967813492,
-0.06047067418694496,
-0.015829579904675484,
0.034528765827417374,
-0.084123894572258,
0.014713695272803307,
-0.0030926591716706753,
-0.05440833419561386,
-0.07530411332845688,
0.028808653354644775,
0.03147217631340027,
-0.0007708438788540661,
0.0679040253162384,
-0.08608952164649963,
0.00267783016897738,
-0.06790594011545181,
-0.1031467616558075,
0.019773056730628014,
-0.06068222597241402,
0.02074083685874939,
-0.11690530180931091,
-0.20736365020275116,
-0.006971160415560007,
0.049793798476457596,
-0.03044179081916809,
-0.062149666249752045,
-0.06279982626438141,
-0.0730486512184143,
0.01502352673560381,
-0.017071254551410675,
0.0804002583026886,
-0.065046027302742,
0.09429982304573059,
0.05497746914625168,
0.05642969533801079,
-0.05816204473376274,
0.03577585145831108,
-0.11432979255914688,
0.049268629401922226,
-0.15394841134548187,
0.04613903909921646,
-0.021838052198290825,
0.0787564292550087,
-0.09480492770671844,
-0.062237441539764404,
-0.03597446531057358,
-0.010301985777914524,
0.07356224954128265,
0.11978144943714142,
-0.1408662050962448,
-0.06843410432338715,
0.17118597030639648,
-0.084408700466156,
-0.1845838576555252,
0.14325344562530518,
-0.0428147092461586,
0.07319208979606628,
0.07393001765012741,
0.18770459294319153,
0.058241602033376694,
-0.07272380590438843,
-0.0005800650105811656,
-0.017692305147647858,
0.06482191383838654,
-0.059439126402139664,
0.09723109751939774,
-0.016860032454133034,
-0.00019643781706690788,
0.011492348276078701,
-0.05038594827055931,
0.06329803913831711,
-0.06513024121522903,
-0.08221592754125595,
-0.044871699064970016,
-0.10431187599897385,
0.04276825115084648,
0.03829583153128624,
0.0767832100391388,
-0.11707782745361328,
-0.0930057168006897,
0.033121101558208466,
0.05838355794548988,
-0.08282600343227386,
0.014478514902293682,
-0.07438217103481293,
0.10530219227075577,
-0.11113680899143219,
-0.007751275785267353,
-0.14005549252033234,
-0.039500635117292404,
0.03065817430615425,
-0.021123778074979782,
0.011029897257685661,
-0.031829919666051865,
0.08494208008050919,
0.06818316876888275,
-0.07398147881031036,
-0.047968052327632904,
-0.008450483903288841,
0.00018235063180327415,
-0.12092038989067078,
-0.17394712567329407,
-0.008582721464335918,
-0.026981310918927193,
0.15598414838314056,
-0.2142793983221054,
0.051406778395175934,
0.013052043505012989,
0.08350283652544022,
0.04386629909276962,
-0.01810290478169918,
-0.00972936674952507,
0.036794502288103104,
-0.04842078313231468,
-0.07194860279560089,
0.07087642699480057,
0.032656654715538025,
-0.12428019195795059,
0.018568890169262886,
-0.16639888286590576,
0.19359903037548065,
0.13737092912197113,
-0.061694175004959106,
-0.040115926414728165,
-0.009379941038787365,
-0.03599230945110321,
-0.03414167836308479,
-0.04263911023736,
-0.023018114268779755,
0.1265801191329956,
0.003867941675707698,
0.16331087052822113,
-0.1099071130156517,
-0.04524848237633705,
0.02059130184352398,
-0.040906645357608795,
-0.005322277545928955,
0.10889986902475357,
0.04622235149145126,
-0.13482391834259033,
0.15054835379123688,
0.19782406091690063,
-0.0635441392660141,
0.13817699253559113,
-0.044453952461481094,
-0.059914518147706985,
-0.0271003358066082,
0.035502977669239044,
0.022309236228466034,
0.08192959427833557,
-0.098021499812603,
0.0038051053415983915,
0.0153055964037776,
0.01517125591635704,
0.02114284597337246,
-0.20187394320964813,
-0.01990266889333725,
0.04964129254221916,
-0.05922051891684532,
0.0008023893460631371,
-0.006583035457879305,
-0.02606528252363205,
0.0856112390756607,
0.0057545932941138744,
-0.05902927368879318,
0.06619225442409515,
0.0007590911700390279,
-0.08651508390903473,
0.1915031522512436,
-0.05545816197991371,
-0.17439177632331848,
-0.16019335389137268,
-0.04357212409377098,
-0.07799053192138672,
0.0382312647998333,
0.07054505497217178,
-0.04702073708176613,
-0.03757942095398903,
-0.13560737669467926,
0.00021361176914069802,
0.02322228252887726,
0.01887955516576767,
0.015682600438594818,
-0.00443514296784997,
0.09366277605295181,
-0.09535063058137894,
-0.012053190730512142,
-0.009257889352738857,
-0.031033135950565338,
0.034172967076301575,
0.003417130559682846,
0.11049961298704147,
0.10874411463737488,
-0.010984566062688828,
0.005576200783252716,
-0.0259937085211277,
0.22348608076572418,
-0.06020405888557434,
-0.014191859401762486,
0.1628127247095108,
-0.0015022383304312825,
0.05998197942972183,
0.13100269436836243,
0.040206536650657654,
-0.10106132924556732,
0.028164271265268326,
0.0163043811917305,
-0.033147722482681274,
-0.20841701328754425,
-0.014433272182941437,
-0.04686836898326874,
0.006489073392003775,
0.10508409887552261,
0.03791387751698494,
0.047224391251802444,
0.07801046222448349,
0.004720410797744989,
0.08974556624889374,
0.008484039455652237,
0.081317238509655,
0.12508133053779602,
0.05413256958127022,
0.13085876405239105,
-0.048065848648548126,
-0.05518423020839691,
0.03639967367053032,
-0.0028012110851705074,
0.18814699351787567,
0.011842495761811733,
0.2166927456855774,
0.0357535183429718,
0.1333085000514984,
0.010532490909099579,
0.06963551044464111,
-0.00041519952355884016,
-0.030648017302155495,
-0.019487980753183365,
-0.05983983352780342,
-0.036739230155944824,
0.038870666176080704,
-0.058795638382434845,
0.06911303848028183,
-0.09077756851911545,
0.03365270793437958,
0.058234795928001404,
0.26510152220726013,
0.04159853979945183,
-0.35436415672302246,
-0.09369779378175735,
0.027712929993867874,
-0.017058515921235085,
-0.027761442586779594,
0.02237163484096527,
0.148667111992836,
-0.056797269731760025,
0.04088325798511505,
-0.08712375164031982,
0.08831913769245148,
-0.04972236603498459,
0.04371444135904312,
0.03427140787243843,
0.07304242998361588,
-0.006779489107429981,
0.06473667174577713,
-0.2852678894996643,
0.2519729435443878,
0.02118060737848282,
0.07191234827041626,
-0.05447652190923691,
0.0018099825829267502,
0.03455286845564842,
0.05963371694087982,
0.08288709074258804,
-0.01733560487627983,
-0.04052243009209633,
-0.15251407027244568,
-0.10650300234556198,
0.02501976676285267,
0.08362473547458649,
-0.06276733428239822,
0.10371440649032593,
-0.04570763185620308,
-0.008779442869126797,
0.06674006581306458,
0.0200607068836689,
-0.07095987349748611,
-0.10262778401374817,
-0.004116197116672993,
0.06365815550088882,
0.0021123280748724937,
-0.09322082996368408,
-0.09494395554065704,
-0.1051262840628624,
0.15122902393341064,
-0.012575637549161911,
-0.04710879176855087,
-0.10056022554636002,
0.05343829095363617,
0.050945643335580826,
-0.08280403167009354,
0.039744675159454346,
0.0024547495413571596,
0.10446035861968994,
0.01722656562924385,
-0.05321276932954788,
0.1255999654531479,
-0.06462010741233826,
-0.1815830022096634,
-0.051511164754629135,
0.13723896443843842,
-0.0198811125010252,
0.041575271636247635,
-0.002290792763233185,
0.02298983559012413,
-0.04118703678250313,
-0.06964877247810364,
0.03365590050816536,
-0.01742633804678917,
0.052093181759119034,
-0.0013705964665859938,
-0.020043224096298218,
0.02619815617799759,
-0.051603928208351135,
-0.05053272098302841,
0.17175643146038055,
0.2984066903591156,
-0.06283339112997055,
0.002842454705387354,
0.05910290777683258,
-0.04735970124602318,
-0.18713445961475372,
0.022246219217777252,
0.01708521693944931,
0.006256863009184599,
0.059457927942276,
-0.12940257787704468,
0.06428262591362,
0.0838417261838913,
-0.035369738936424255,
0.10041198134422302,
-0.2976255416870117,
-0.14290273189544678,
0.09285318106412888,
0.15762940049171448,
0.12489298731088638,
-0.1657152771949768,
-0.06865054368972778,
-0.05151602253317833,
-0.11417143046855927,
0.10212663561105728,
-0.1345157027244568,
0.1113891750574112,
-0.006662135478109121,
0.03663438931107521,
0.007323115132749081,
-0.060507215559482574,
0.1300906091928482,
-0.03797003999352455,
0.09190041571855545,
-0.060940057039260864,
0.0033901315182447433,
0.08482948690652847,
-0.0652797520160675,
0.03766250237822533,
-0.14876481890678406,
0.039885263890028,
-0.047612350434064865,
-0.03841529041528702,
-0.04709732159972191,
0.0327816940844059,
-0.028794359415769577,
-0.04862920939922333,
-0.02860388532280922,
0.008933698758482933,
0.052068524062633514,
0.003250017063692212,
0.174147367477417,
0.0018962927861139178,
0.11864160746335983,
0.15646611154079437,
0.1065356656908989,
-0.07523707300424576,
-0.026673078536987305,
-0.01974867843091488,
-0.04299256205558777,
0.05056588724255562,
-0.155612513422966,
0.04566403850913048,
0.09907728433609009,
0.0014659500448033214,
0.14765910804271698,
0.06127733737230301,
-0.03469133377075195,
0.026697348803281784,
0.06546999514102936,
-0.17416203022003174,
-0.15175923705101013,
-0.04425866901874542,
-0.02049208991229534,
-0.1301484853029251,
0.04480328783392906,
0.1311795860528946,
-0.06687241792678833,
0.0034853110555559397,
-0.009715298190712929,
0.012846038676798344,
-0.018235547468066216,
0.16089439392089844,
0.0466233566403389,
0.044478271156549454,
-0.08122684061527252,
0.0944594219326973,
0.050816770642995834,
-0.07460279762744904,
0.014589119702577591,
0.03612154722213745,
-0.09486610442399979,
-0.04488759860396385,
0.030846230685710907,
0.16922816634178162,
-0.014708097092807293,
-0.056781526654958725,
-0.16868093609809875,
-0.10871916264295578,
0.04435688257217407,
0.11486852169036865,
0.08232935518026352,
0.02065514400601387,
-0.01879439875483513,
-0.006737904157489538,
-0.09702681750059128,
0.127139151096344,
0.03996078670024872,
0.08435585349798203,
-0.16248290240764618,
0.08688945323228836,
-0.006554547697305679,
0.004299786873161793,
-0.02053254283964634,
0.04447461664676666,
-0.0922919511795044,
-0.007439121603965759,
-0.12844496965408325,
0.009548305533826351,
-0.026633208617568016,
-0.009543023072183132,
-0.011692670173943043,
-0.05429818108677864,
-0.07507260143756866,
0.0203535296022892,
-0.10022353380918503,
-0.04277385026216507,
0.03107478655874729,
0.05704104155302048,
-0.10830074548721313,
-0.03342071920633316,
0.03504108637571335,
-0.08096715807914734,
0.08361601829528809,
0.020467858761548996,
0.006359717808663845,
0.025937767699360847,
-0.1520732343196869,
0.032207734882831573,
0.057834163308143616,
0.007066050078719854,
0.02139640972018242,
-0.0995761826634407,
-0.014052162878215313,
0.02102900668978691,
0.028287235647439957,
0.012736836448311806,
0.08946339786052704,
-0.1250009834766388,
-0.0006622648797929287,
-0.017863281071186066,
-0.03820464015007019,
-0.05809583142399788,
0.022367514669895172,
0.06148795783519745,
0.009438740089535713,
0.22503089904785156,
-0.09542378783226013,
0.004217279143631458,
-0.20795024931430817,
0.016841432079672813,
0.0014482982223853469,
-0.130623921751976,
-0.13069294393062592,
-0.05411714315414429,
0.049507081508636475,
-0.059279993176460266,
0.13379225134849548,
-0.012519294396042824,
0.023543838411569595,
0.03563109040260315,
0.003553959308192134,
0.06674978137016296,
0.02020770125091076,
0.22897890210151672,
0.014198926277458668,
-0.03436499834060669,
0.04273088276386261,
0.0283264871686697,
0.11927541345357895,
0.08529985696077347,
0.15890662372112274,
0.16156846284866333,
-0.03673126548528671,
0.11519406735897064,
0.041393183171749115,
-0.01477845199406147,
-0.151084303855896,
0.052799154072999954,
-0.031400166451931,
0.1092328131198883,
-0.013789614662528038,
0.2074872851371765,
0.12338568270206451,
-0.14734499156475067,
0.009023750200867653,
-0.053137801587581635,
-0.05903163179755211,
-0.09742454439401627,
-0.10713473707437515,
-0.10867960005998611,
-0.1500854641199112,
-0.0066163670271635056,
-0.09811842441558838,
0.0036536389961838722,
0.08890091627836227,
-0.0010566626442596316,
-0.03575504571199417,
0.17943978309631348,
0.009674430824816227,
0.003421774599701166,
0.05063355341553688,
-0.01639760471880436,
-0.040483519434928894,
-0.06878519058227539,
-0.10886594653129578,
0.013403159566223621,
-0.011746032163500786,
0.03223592787981033,
-0.0313132144510746,
-0.022066859528422356,
0.0308836717158556,
-0.01935415528714657,
-0.11435166746377945,
0.0018673113081604242,
0.029180459678173065,
0.04798378795385361,
0.02997066266834736,
0.01240488700568676,
-0.0067397067323327065,
0.0066934628412127495,
0.22634342312812805,
-0.07048899680376053,
-0.057551946491003036,
-0.08782423287630081,
0.14876562356948853,
0.01022244617342949,
-0.002156573347747326,
0.0077028158120810986,
-0.09666293859481812,
0.04295755550265312,
0.212874174118042,
0.18462719023227692,
-0.0827762708067894,
0.0005009205779060721,
-0.014913967810571194,
-0.01157658826559782,
-0.02462448738515377,
0.07057759165763855,
0.09617011249065399,
-0.0021018567495048046,
-0.06900273263454437,
-0.009575865231454372,
-0.03615657612681389,
-0.009240863844752312,
-0.04356316477060318,
0.08759642392396927,
0.012342327274382114,
0.013741719536483288,
-0.040980029851198196,
0.056237418204545975,
-0.02784731239080429,
-0.0747271478176117,
0.011910972185432911,
-0.2006765604019165,
-0.1339072585105896,
-0.027894316241145134,
0.09259581565856934,
-0.005810621660202742,
0.04871775582432747,
-0.024739423766732216,
0.014648901298642159,
0.02062956430017948,
-0.027621017768979073,
-0.0833173468708992,
-0.04763394221663475,
0.054030146449804306,
-0.11935988068580627,
0.2317904382944107,
-0.031983382999897,
0.025282306596636772,
0.1312856823205948,
0.024536075070500374,
-0.09975382685661316,
0.09859438240528107,
0.04234281927347183,
-0.043313417583703995,
0.057596687227487564,
0.08112310618162155,
-0.026550712063908577,
0.11348257958889008,
0.053487468510866165,
-0.08449247479438782,
0.011953892186284065,
-0.040027450770139694,
-0.05583631619811058,
-0.05889386683702469,
-0.055168524384498596,
-0.05947820097208023,
0.13243341445922852,
0.15069076418876648,
-0.05658923462033272,
-0.005110286176204681,
-0.038655661046504974,
0.030715027824044228,
0.0842822790145874,
0.0354597307741642,
-0.021739833056926727,
-0.23992490768432617,
0.008553290739655495,
0.08785177767276764,
0.003975918982177973,
-0.3173392713069916,
-0.0881747156381607,
-0.02800430916249752,
-0.04610172659158707,
-0.09862881153821945,
0.07634058594703674,
0.13968442380428314,
0.043772175908088684,
-0.06164638325572014,
-0.06897908449172974,
-0.08122715353965759,
0.15913763642311096,
-0.12908416986465454,
-0.09625046700239182
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2 | {"library_name": "peft", "base_model": "NousResearch/Llama-2-7b-chat-hf"} | null | anas72/query_optimization_models | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:NousResearch/Llama-2-7b-chat-hf",
"region:us"
] | 2024-02-13T18:28:59+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-NousResearch/Llama-2-7b-chat-hf #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.8.2 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-NousResearch/Llama-2-7b-chat-hf #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
43,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
11
] | [
"passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-NousResearch/Llama-2-7b-chat-hf #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2"
] | [
-0.11769948899745941,
0.20666998624801636,
-0.002912783296778798,
0.02549395151436329,
0.07785112410783768,
0.015407757833600044,
0.05577832832932472,
0.13303913176059723,
0.03283666446805,
0.11651013046503067,
0.06938543915748596,
0.11774429678916931,
0.1151692196726799,
0.21962304413318634,
0.003263794118538499,
-0.1657102108001709,
0.01971868798136711,
-0.07241468876600266,
0.01743026077747345,
0.11806745082139969,
0.14102990925312042,
-0.09932662546634674,
0.07670142501592636,
-0.020442117005586624,
0.0024542235769331455,
-0.027936438098549843,
-0.06807847321033478,
-0.011055584996938705,
0.05399150028824806,
0.03122783452272415,
0.056819941848516464,
-0.010763264261186123,
0.08520374447107315,
-0.2704300880432129,
0.01883009262382984,
0.04265301674604416,
-0.00045290516573004425,
0.08344653248786926,
0.09688374400138855,
-0.04538474604487419,
0.12346991151571274,
-0.021854383870959282,
0.13367369771003723,
0.09051225334405899,
-0.09567297995090485,
-0.2351798564195633,
-0.06292394548654556,
0.07993721961975098,
0.18764273822307587,
0.08551130443811417,
-0.04316225275397301,
0.12375939637422562,
-0.0640316754579544,
0.022428808733820915,
0.06704075634479523,
-0.10372592508792877,
-0.06345343589782715,
0.06291820853948593,
0.1294797956943512,
0.0773601308465004,
-0.12618185579776764,
-0.037074875086545944,
0.035886481404304504,
0.04580415412783623,
0.0580124706029892,
0.006647665984928608,
0.1484030783176422,
0.028769001364707947,
-0.1454513818025589,
-0.049566421657800674,
0.13674598932266235,
0.010416027158498764,
-0.03749023377895355,
-0.21604330837726593,
-0.00459075253456831,
-0.09522778540849686,
-0.03878160938620567,
-0.04798002541065216,
0.03698987141251564,
0.010453630238771439,
0.13307736814022064,
-0.049591004848480225,
-0.09215915948152542,
-0.014346052892506123,
0.11040274053812027,
0.0616430938243866,
0.02060583047568798,
-0.01945985108613968,
0.008026303723454475,
0.12192189693450928,
0.0676833912730217,
-0.13428759574890137,
-0.06298412382602692,
-0.06815947592258453,
-0.03369535133242607,
-0.024816837161779404,
0.040182024240493774,
0.017229147255420685,
0.0635613352060318,
0.27198895812034607,
-0.04016723483800888,
0.06374870985746384,
0.04097883775830269,
0.022351374849677086,
0.03009030781686306,
0.10533419251441956,
-0.03212955966591835,
-0.16400747001171112,
-0.007433966733515263,
0.10063730925321579,
0.002702203579246998,
-0.03417186439037323,
-0.05627066642045975,
0.03344479948282242,
0.03579871356487274,
0.11764659732580185,
0.10942773520946503,
-0.028066188097000122,
-0.0745202898979187,
-0.05581606552004814,
0.19079482555389404,
-0.15589196979999542,
0.043175265192985535,
0.031009791418910027,
0.0013891590060666203,
-0.06065008044242859,
0.008123516105115414,
0.018420519307255745,
-0.03341829776763916,
0.0739302784204483,
-0.06741747260093689,
-0.0401163212954998,
-0.12049110978841782,
-0.029961997643113136,
0.03624962642788887,
0.009220915846526623,
-0.04452921822667122,
-0.042916469275951385,
-0.07037478685379028,
-0.10976991057395935,
0.1085909754037857,
-0.054557181894779205,
-0.05871255323290825,
-0.028399605304002762,
-0.08273676037788391,
0.018992358818650246,
0.03493666648864746,
0.06826084107160568,
-0.026227839291095734,
0.046194083988666534,
-0.010782663710415363,
0.06776405870914459,
0.06998622417449951,
0.030902881175279617,
-0.0827704519033432,
0.06522461771965027,
-0.19576740264892578,
0.07253402471542358,
-0.08013460040092468,
0.044235534965991974,
-0.1595429927110672,
-0.004312295466661453,
-0.0022420838940888643,
0.029259683564305305,
0.041751157492399216,
0.16127003729343414,
-0.21196487545967102,
-0.03095497004687786,
0.1684923619031906,
-0.10783151537179947,
-0.13275355100631714,
0.040584247559309006,
-0.03692902997136116,
0.18247874081134796,
0.02804495394229889,
0.029673883691430092,
0.08894111216068268,
-0.16022709012031555,
-0.02174060046672821,
-0.018446754664182663,
0.010418129153549671,
0.06808888167142868,
0.08132006227970123,
-0.09663040190935135,
-0.001616360037587583,
0.010858171619474888,
-0.061541199684143066,
-0.01785045862197876,
-0.04080429673194885,
-0.1045517548918724,
0.004818684887140989,
-0.08689999580383301,
0.010899664834141731,
0.005562866572290659,
-0.09412923455238342,
-0.00767026050016284,
-0.15247979760169983,
-0.05846627429127693,
0.08434145152568817,
0.00026128877652809024,
-0.01405352633446455,
-0.09419026970863342,
0.06373747438192368,
-0.03559573367238045,
-0.020782528445124626,
-0.14397205412387848,
-0.015432771295309067,
0.017898816615343094,
-0.13868916034698486,
0.0012420830316841602,
-0.11995251476764679,
0.06763311475515366,
0.004810863174498081,
-0.05048419162631035,
-0.04406342655420303,
-0.002766441088169813,
-0.004278186243027449,
-0.06090925633907318,
-0.23663276433944702,
-0.02428145334124565,
-0.052476897835731506,
0.1713789999485016,
-0.23148222267627716,
0.04160921275615692,
0.0034466448705643415,
0.11964506655931473,
0.0047644018195569515,
-0.058687981218099594,
0.022583601996302605,
-0.06231268495321274,
-0.024701951071619987,
-0.06840142607688904,
-0.0037527058739215136,
0.003462479216977954,
-0.02865241840481758,
0.014165260829031467,
-0.12116673588752747,
-0.06389053910970688,
0.09515070170164108,
0.058769457042217255,
-0.1450631022453308,
0.00842469185590744,
-0.040074050426483154,
-0.056336693465709686,
-0.06754444539546967,
-0.07108866423368454,
0.08409534394741058,
0.05292753130197525,
0.047818623483181,
-0.08274413645267487,
-0.06752345710992813,
0.003514396958053112,
-0.02452346496284008,
-0.013681194745004177,
0.12610596418380737,
0.09137961268424988,
-0.09851912409067154,
0.09228390455245972,
0.07080904394388199,
0.021283060312271118,
0.08558592200279236,
-0.02348261885344982,
-0.10639158636331558,
-0.02593001164495945,
0.05667613446712494,
0.01070303376764059,
0.1701316386461258,
-0.07188218832015991,
0.055811841040849686,
0.047385260462760925,
-0.05746626481413841,
0.04811330884695053,
-0.09233375638723373,
0.006447041407227516,
-0.0029063266701996326,
-0.015782566741108894,
0.036864910274744034,
-0.016450000926852226,
0.004836694337427616,
0.09010760486125946,
0.062471237033605576,
0.021535998210310936,
0.012572001665830612,
-0.0362418070435524,
-0.14193294942378998,
0.1797328144311905,
-0.09205848723649979,
-0.23891016840934753,
-0.15006007254123688,
0.054771315306425095,
0.05779189616441727,
-0.013948877342045307,
0.03144465386867523,
-0.05449340119957924,
-0.09502875059843063,
-0.08760391175746918,
0.004416328854858875,
0.03345770016312599,
-0.06084810197353363,
-0.06309141218662262,
0.03578837960958481,
0.03894244134426117,
-0.12027259171009064,
0.023747729137539864,
0.05629263445734978,
-0.0018340221140533686,
-0.003648567944765091,
0.045919474214315414,
0.09278853237628937,
0.20445209741592407,
-0.002732523949816823,
0.0053982362151145935,
0.05899197608232498,
0.2761322557926178,
-0.15901462733745575,
0.11325082182884216,
0.13837623596191406,
-0.06625627726316452,
0.07702389359474182,
0.1908654421567917,
0.030556995421648026,
-0.09384198486804962,
0.018727079033851624,
0.031007766723632812,
-0.023953305557370186,
-0.27104878425598145,
-0.05058536306023598,
-0.023827584460377693,
-0.07544421404600143,
0.08135921508073807,
0.08835428208112717,
0.09257134795188904,
0.028403934091329575,
-0.06399580091238022,
-0.09893711656332016,
0.02674330212175846,
0.11227049678564072,
-0.017586790025234222,
0.0025482589844614267,
0.07991060614585876,
-0.04866483062505722,
0.004952625837177038,
0.08520778268575668,
-0.02139362134039402,
0.12702924013137817,
0.056118953973054886,
0.1073608547449112,
0.08325479924678802,
0.08240807801485062,
-0.009224953129887581,
0.03056410513818264,
0.0027502768207341433,
0.020547926425933838,
0.020710214972496033,
-0.09094986319541931,
0.01736580580472946,
0.11510791629552841,
0.014805049635469913,
0.020639518275856972,
0.014339569956064224,
-0.059905439615249634,
0.037447262555360794,
0.1929825097322464,
0.03151291236281395,
-0.2053559273481369,
-0.0801534503698349,
0.05455378443002701,
-0.0739559680223465,
-0.15504314005374908,
-0.00788013357669115,
0.014482896775007248,
-0.1574634462594986,
0.018814608454704285,
-0.03978566825389862,
0.10737770050764084,
-0.06571333855390549,
-0.03766518458724022,
0.10156018286943436,
0.047414667904376984,
-0.028234774246811867,
0.04994218423962593,
-0.19223366677761078,
0.10771425813436508,
0.028445864096283913,
0.06718984991312027,
-0.08868084102869034,
0.08744743466377258,
-0.001796784228645265,
-0.011346758343279362,
0.1650870144367218,
-0.0022033178247511387,
-0.06180639937520027,
-0.07702392339706421,
-0.07925916463136673,
-0.005427278578281403,
0.07996804267168045,
-0.13732460141181946,
0.07520841062068939,
-0.0333210825920105,
-0.031404491513967514,
-0.007430676370859146,
-0.086235411465168,
-0.11866632848978043,
-0.16253423690795898,
0.061424531042575836,
-0.08553852140903473,
0.025479501113295555,
-0.08024374395608902,
-0.052194323390722275,
0.03343738615512848,
0.17655520141124725,
-0.2028171271085739,
-0.10914232581853867,
-0.14351201057434082,
-0.10141443461179733,
0.15255947411060333,
-0.04746145382523537,
0.08725551515817642,
-0.007392728701233864,
0.16233710944652557,
0.000411053973948583,
-0.01836213283240795,
0.08401200920343399,
-0.09487809985876083,
-0.18540970981121063,
-0.04660943150520325,
0.18383155763149261,
0.1311776340007782,
0.028439510613679886,
-0.011346815153956413,
0.026449725031852722,
-0.06680743396282196,
-0.10957765579223633,
0.030112503096461296,
0.1476605385541916,
0.06770458072423935,
-0.020437177270650864,
-0.042344409972429276,
-0.09610117226839066,
-0.06520573794841766,
-0.04310684651136398,
-0.002870124764740467,
0.20515766739845276,
-0.07029063999652863,
0.15548402070999146,
0.11205708235502243,
-0.060042425990104675,
-0.21054470539093018,
0.032464709132909775,
0.03981616720557213,
0.016663486137986183,
0.03228053078055382,
-0.1917620599269867,
0.08767081797122955,
-0.02572266198694706,
-0.08159942924976349,
0.1786719262599945,
-0.19226399064064026,
-0.129422128200531,
0.10824183374643326,
0.02104264684021473,
-0.201046884059906,
-0.150085911154747,
-0.10347102582454681,
-0.01812194101512432,
-0.12009748816490173,
0.04840534180402756,
0.008618081919848919,
0.010992096737027168,
0.011450343765318394,
0.020118551328778267,
0.041532836854457855,
-0.04830056428909302,
0.20299124717712402,
-0.04482565075159073,
-0.005569585133343935,
-0.0527876652777195,
-0.07773393392562866,
0.013384186662733555,
-0.054856233298778534,
0.12370224297046661,
-0.015441779978573322,
0.033861491829156876,
-0.16196617484092712,
-0.04311643913388252,
-0.06270512193441391,
0.035143591463565826,
-0.09606029093265533,
-0.0794484093785286,
-0.04419834166765213,
0.08294829726219177,
0.09136927872896194,
-0.012586906552314758,
0.01242639496922493,
-0.09655292332172394,
0.09700454771518707,
0.1995052993297577,
0.19330982863903046,
0.06315502524375916,
-0.053107570856809616,
0.02997264452278614,
-0.038537558168172836,
0.04430471360683441,
-0.21931912004947662,
0.04287564381957054,
0.06498876214027405,
0.026542434468865395,
0.06985615193843842,
-0.005677002016454935,
-0.1625482589006424,
-0.09128525853157043,
0.08836907148361206,
-0.06292731314897537,
-0.17292796075344086,
-0.033785052597522736,
0.041705161333084106,
-0.20931172370910645,
-0.04640975967049599,
0.03935948386788368,
-0.0181092731654644,
-0.041782595217227936,
0.02617095597088337,
0.08081985265016556,
-0.021255910396575928,
0.08439317345619202,
0.09534917026758194,
0.08989959210157394,
-0.09506035596132278,
0.05267556756734848,
0.07946302741765976,
-0.019431734457612038,
0.029825052246451378,
0.13751423358917236,
-0.0364147424697876,
-0.04645836725831032,
0.0798555314540863,
0.12185007333755493,
-0.002486835466697812,
-0.05506465584039688,
0.004287934862077236,
-0.049309078603982925,
0.061294808983802795,
0.12155837565660477,
0.021408192813396454,
-0.01193462684750557,
0.07872650027275085,
0.025506949052214622,
-0.09194063395261765,
0.12346944957971573,
0.04140791669487953,
0.02029072493314743,
-0.03513696417212486,
-0.028924908488988876,
-0.013744531199336052,
-0.0018778513185679913,
-0.014825914986431599,
0.00004693585287895985,
-0.0909915491938591,
0.0014284261269494891,
-0.11594712734222412,
0.01780756004154682,
-0.06718336790800095,
-0.0002576978877186775,
0.028643004596233368,
-0.0489656962454319,
-0.003824668936431408,
-0.005410241428762674,
-0.07838259637355804,
-0.05261590704321861,
-0.021815035492181778,
0.07858611643314362,
-0.13979020714759827,
0.03456014022231102,
0.07484147697687149,
-0.10328766703605652,
0.06876613199710846,
-0.008326759561896324,
0.013081645593047142,
0.008228299207985401,
-0.1439802497625351,
0.056155234575271606,
-0.029309317469596863,
-0.006359034683555365,
0.0010422393679618835,
-0.17944684624671936,
-0.011577526107430458,
-0.042701829224824905,
-0.07143910974264145,
0.013309884816408157,
-0.013215545564889908,
-0.1226518526673317,
0.11009237170219421,
0.008095293305814266,
-0.06616021692752838,
-0.015245208516716957,
0.044449418783187866,
0.07164029777050018,
-0.012409849092364311,
0.10877691954374313,
-0.02684897929430008,
0.083103708922863,
-0.1807156205177307,
-0.00621566828340292,
-0.016833368688821793,
0.05384806543588638,
-0.018549276515841484,
-0.04573789983987808,
0.05623883008956909,
-0.020538190379738808,
0.16466617584228516,
-0.0018338061636313796,
0.0742441937327385,
0.051905106753110886,
0.010930253192782402,
0.04378392919898033,
0.0728876143693924,
0.06468360126018524,
-0.016203518956899643,
-0.004701197147369385,
0.03255317360162735,
-0.0020409130956977606,
-0.045227568596601486,
-0.14094270765781403,
0.07253962010145187,
0.17666760087013245,
0.07048549503087997,
0.02179078198969364,
0.008067925460636616,
-0.1332378387451172,
-0.07408107072114944,
0.10511837154626846,
-0.017402758821845055,
-0.031061973422765732,
-0.06629138439893723,
0.22787198424339294,
0.14990010857582092,
-0.18986721336841583,
0.07560385763645172,
-0.05423163250088692,
-0.03786854073405266,
-0.14348988234996796,
-0.16802245378494263,
-0.05776524171233177,
-0.04911024123430252,
-0.0318753756582737,
-0.05938649922609329,
0.050970252603292465,
0.03954758495092392,
-0.004729952663183212,
-0.02203095331788063,
0.10803087800741196,
0.031586550176143646,
-0.04009048268198967,
0.045863546431064606,
0.060998860746622086,
0.04236721992492676,
-0.09942521899938583,
0.011735196225345135,
0.001886715879663825,
0.008814944885671139,
0.062213458120822906,
0.023173239082098007,
-0.06990323960781097,
0.02930132858455181,
-0.01787971705198288,
-0.12080670148134232,
0.0495670922100544,
-0.007516996935009956,
-0.021949628368020058,
0.14967697858810425,
0.03512033075094223,
0.008099704049527645,
-0.010065858252346516,
0.23994873464107513,
-0.07199644297361374,
-0.0820726528763771,
-0.13058407604694366,
0.08454304188489914,
-0.0638623833656311,
0.023955434560775757,
0.015532204881310463,
-0.12446270138025284,
0.012716526165604591,
0.17904044687747955,
0.11603523045778275,
-0.019778354093432426,
0.013520904816687107,
0.04626742750406265,
0.009430119767785072,
-0.03490632027387619,
0.011960557661950588,
0.055921632796525955,
0.20638400316238403,
-0.07805577665567398,
0.06097545102238655,
-0.017648804932832718,
-0.0689961239695549,
-0.031498104333877563,
0.10827583074569702,
-0.011656714603304863,
-0.01122299861162901,
-0.05968675762414932,
0.14143596589565277,
-0.07639602571725845,
-0.21431203186511993,
0.05089925602078438,
-0.08246009796857834,
-0.13886047899723053,
-0.04927203059196472,
0.027118146419525146,
-0.02602965012192726,
0.005761643406003714,
0.06048549711704254,
-0.05353428050875664,
0.18044669926166534,
0.029145246371626854,
-0.042828578501939774,
-0.09458549320697784,
0.056870587170124054,
-0.16182497143745422,
0.2819679081439972,
0.021850652992725372,
0.0487053208053112,
0.1097458079457283,
-0.021935712546110153,
-0.1319884955883026,
0.015168975107371807,
0.1129152700304985,
-0.0632040724158287,
0.06390555948019028,
0.1606759876012802,
0.0027896345127373934,
0.12182102352380753,
0.06664198637008667,
-0.0592242032289505,
0.035914625972509384,
-0.06755085289478302,
-0.05441083759069443,
-0.11569532752037048,
0.07832225412130356,
-0.0966244786977768,
0.1526871919631958,
0.12093057483434677,
-0.07346441596746445,
-0.0029697499703615904,
-0.020845314487814903,
0.08185786008834839,
0.018558043986558914,
0.10965380072593689,
0.008656207472085953,
-0.1857033669948578,
0.046339020133018494,
0.00887568574398756,
0.09886037558317184,
-0.21062983572483063,
-0.04863942787051201,
0.041914358735084534,
-0.017102444544434547,
-0.08565417677164078,
0.11376497149467468,
0.03838564455509186,
0.01722962036728859,
-0.035149652510881424,
-0.04790586978197098,
0.01729344017803669,
0.15234188735485077,
-0.1053488478064537,
-0.014266646467149258
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-87k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:30:23+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# clip-vit-large-patch14-finetuned-sofas
This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "openai/clip-vit-large-patch14", "model-index": [{"name": "clip-vit-large-patch14-finetuned-sofas", "results": []}]} | zero-shot-image-classification | vinluvie/clip-vit-large-patch14-finetuned-sofas | [
"transformers",
"safetensors",
"clip",
"zero-shot-image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:openai/clip-vit-large-patch14",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:30:52+00:00 | [] | [] | TAGS
#transformers #safetensors #clip #zero-shot-image-classification #generated_from_trainer #dataset-imagefolder #base_model-openai/clip-vit-large-patch14 #endpoints_compatible #region-us
|
# clip-vit-large-patch14-finetuned-sofas
This model is a fine-tuned version of openai/clip-vit-large-patch14 on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0325
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10.0
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
| [
"# clip-vit-large-patch14-finetuned-sofas\n\nThis model is a fine-tuned version of openai/clip-vit-large-patch14 on the imagefolder dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 3.0325",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.2.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #clip #zero-shot-image-classification #generated_from_trainer #dataset-imagefolder #base_model-openai/clip-vit-large-patch14 #endpoints_compatible #region-us \n",
"# clip-vit-large-patch14-finetuned-sofas\n\nThis model is a fine-tuned version of openai/clip-vit-large-patch14 on the imagefolder dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 3.0325",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.2.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.2"
] | [
65,
67,
6,
12,
8,
3,
91,
4,
38
] | [
"passage: TAGS\n#transformers #safetensors #clip #zero-shot-image-classification #generated_from_trainer #dataset-imagefolder #base_model-openai/clip-vit-large-patch14 #endpoints_compatible #region-us \n# clip-vit-large-patch14-finetuned-sofas\n\nThis model is a fine-tuned version of openai/clip-vit-large-patch14 on the imagefolder dataset.\nIt achieves the following results on the evaluation set:\n- Loss: 3.0325## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 32\n- eval_batch_size: 32\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10.0### Training results### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.2.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.2"
] | [
-0.12403267621994019,
0.17483308911323547,
-0.0020193944219499826,
0.09480033814907074,
0.12669363617897034,
0.023877859115600586,
0.07804790139198303,
0.16146516799926758,
-0.08887024223804474,
0.09608058631420135,
0.08666681498289108,
0.06001865491271019,
0.08026114851236343,
0.19830773770809174,
-0.039936549961566925,
-0.23877651989459991,
0.03348338231444359,
0.0177862998098135,
0.047862112522125244,
0.09632469713687897,
0.08899717777967453,
-0.09691474586725235,
0.08161873370409012,
0.028266992419958115,
-0.13855595886707306,
-0.013416497968137264,
-0.01968231610953808,
-0.05481235310435295,
0.07429375499486923,
0.00752966059371829,
0.05763101577758789,
-0.002383145969361067,
0.083772674202919,
-0.1720512956380844,
-0.004003099165856838,
0.07401160895824432,
0.0190761536359787,
0.08376049250364304,
0.044035546481609344,
0.04536798223853111,
0.05164145678281784,
-0.17273077368736267,
0.08507553488016129,
0.01156691089272499,
-0.06656553596258163,
-0.17010387778282166,
-0.07748699188232422,
0.064845010638237,
0.09644470363855362,
0.08885558694601059,
0.01959194988012314,
0.1920900046825409,
0.01613631285727024,
0.07784822583198547,
0.13445772230625153,
-0.2584189474582672,
-0.059689462184906006,
0.01920650154352188,
0.05118989571928978,
0.07473748177289963,
-0.11089935153722763,
-0.002771942177787423,
0.025125090032815933,
0.028350265696644783,
0.09551708400249481,
-0.016510574147105217,
-0.03004569374024868,
-0.06676260381937027,
-0.09860851615667343,
-0.07050176709890366,
0.18395765125751495,
0.052174150943756104,
-0.07922046631574631,
-0.15082120895385742,
-0.07261864095926285,
-0.07784725725650787,
-0.04315240681171417,
-0.02138480916619301,
0.024624738842248917,
-0.045598648488521576,
-0.017248954623937607,
-0.06839903444051743,
-0.07676806300878525,
-0.051690392196178436,
0.018774403259158134,
0.11926151067018509,
0.024241730570793152,
0.04172976315021515,
-0.021152716130018234,
0.08766686916351318,
-0.05255155637860298,
-0.1491440087556839,
-0.042302489280700684,
-0.022180931642651558,
-0.04743604734539986,
-0.046190984547138214,
-0.02421916276216507,
-0.11299493163824081,
-0.02582896314561367,
0.10922957211732864,
-0.056547872722148895,
0.07700345665216446,
-0.01961040124297142,
0.010006745345890522,
-0.006958596874028444,
0.14219270646572113,
-0.01716700755059719,
-0.042490169405937195,
0.02225831151008606,
0.12033329904079437,
0.056741345673799515,
-0.03330939635634422,
-0.08002735674381256,
-0.03555341809988022,
0.09475423395633698,
0.030005961656570435,
0.01115040760487318,
0.030683964490890503,
-0.04066275432705879,
-0.05342338979244232,
0.13253448903560638,
-0.11864421516656876,
0.04101024568080902,
-0.03659661114215851,
-0.07348959147930145,
-0.046372510492801666,
0.043127357959747314,
-0.02613125927746296,
-0.05236320197582245,
0.06877297163009644,
-0.0885251834988594,
0.00009317421790910885,
-0.06817225366830826,
-0.06799200922250748,
0.009288819506764412,
-0.0638619139790535,
-0.007910768501460552,
-0.0912461057305336,
-0.19597476720809937,
-0.0254672784358263,
0.05483395233750343,
-0.06612316519021988,
-0.034541718661785126,
0.0002670666726771742,
-0.04903899133205414,
0.0381246916949749,
-0.006169345695525408,
0.05232716351747513,
-0.05009826272726059,
0.07758267223834991,
0.014694679528474808,
0.027299929410219193,
-0.0111450906842947,
0.03221970796585083,
-0.08930513262748718,
0.05359388887882233,
-0.12260064482688904,
0.0751713365316391,
-0.06790380924940109,
0.016348697245121002,
-0.12333360314369202,
-0.1119055449962616,
-0.012780616991221905,
-0.05411512404680252,
0.07296767830848694,
0.14062346518039703,
-0.1360825151205063,
0.007280454970896244,
0.13086558878421783,
-0.10670337080955505,
-0.09901151061058044,
0.0862506628036499,
-0.025482650846242905,
0.012945243157446384,
0.040323469787836075,
0.15846699476242065,
0.15845206379890442,
-0.13824965059757233,
-0.04376322776079178,
0.027568507939577103,
0.03366067633032799,
-0.020630188286304474,
0.07334616780281067,
0.013112268410623074,
0.03669113665819168,
0.006783992517739534,
-0.07205552607774734,
-0.0051662977784872055,
-0.05338982492685318,
-0.07781495898962021,
-0.06212543323636055,
-0.05757516250014305,
0.031775690615177155,
0.03905733302235603,
0.023280447348952293,
-0.06637930870056152,
-0.10793306678533554,
0.07463338971138,
0.1298774778842926,
-0.05917467549443245,
0.010272073559463024,
-0.08608385175466537,
0.09272325038909912,
-0.1303381770849228,
-0.018969248980283737,
-0.18852461874485016,
-0.1027628630399704,
0.06702595204114914,
-0.07553272694349289,
-0.00876294169574976,
-0.04467688128352165,
0.07051108777523041,
0.08449836075305939,
-0.039949774742126465,
-0.055078525096178055,
-0.08187530934810638,
-0.007212224416434765,
-0.1011534184217453,
-0.11667955666780472,
-0.06795134395360947,
-0.041883908212184906,
0.12775427103042603,
-0.20150698721408844,
-0.004218615125864744,
0.05193425342440605,
0.12186288833618164,
0.050575096160173416,
-0.07150566577911377,
0.03271075338125229,
0.0058129774406552315,
-0.0036869391333311796,
-0.11198458820581436,
0.04953125864267349,
0.031126152724027634,
-0.06943943351507187,
-0.04729722440242767,
-0.1543075442314148,
0.08280786871910095,
0.08626226335763931,
0.06563539803028107,
-0.07092520594596863,
-0.03561393916606903,
-0.04960735887289047,
-0.04551487788558006,
-0.06640506535768509,
-0.016465162858366966,
0.12766213715076447,
0.022581106051802635,
0.12762637436389923,
-0.06755860894918442,
-0.036348454654216766,
0.046151719987392426,
0.023874575272202492,
-0.05575555935502052,
0.013817346654832363,
-0.005583961494266987,
-0.17166638374328613,
0.08157527446746826,
0.10764864087104797,
-0.021179039031267166,
0.12718823552131653,
-0.03541875258088112,
-0.1026478111743927,
-0.030460111796855927,
0.039461277425289154,
0.01614426262676716,
0.14385415613651276,
-0.06323343515396118,
0.006512402556836605,
0.059648431837558746,
0.014219226315617561,
-0.00011561307474039495,
-0.1524488478899002,
0.012945075519382954,
0.04866720363497734,
-0.020145559683442116,
0.009032046422362328,
-0.002037524711340666,
-0.005445144139230251,
0.06745550781488419,
0.046594150364398956,
-0.008524182252585888,
0.03502936661243439,
-0.01889413222670555,
-0.05688871443271637,
0.14501947164535522,
-0.08895331621170044,
-0.18891794979572296,
-0.12670478224754333,
0.024523209780454636,
-0.07166024297475815,
-0.018172314390540123,
0.00709740212187171,
-0.021558353677392006,
-0.07578133046627045,
-0.10558409988880157,
-0.08595964312553406,
-0.030680706724524498,
0.0018915400141850114,
0.05538582056760788,
-0.016390174627304077,
0.11736553907394409,
-0.10465564578771591,
-0.00937126949429512,
0.023270918056368828,
-0.02740209363400936,
-0.0023999828845262527,
0.05262346193194389,
0.11697545647621155,
0.046123258769512177,
-0.04431647062301636,
0.029695972800254822,
-0.020847059786319733,
0.26214399933815,
-0.08966188132762909,
0.0059198010712862015,
0.15681150555610657,
-0.012676304206252098,
0.08456169813871384,
0.11974085867404938,
0.021810485050082207,
-0.08964638411998749,
0.005573112517595291,
0.012436976656317711,
-0.02011941559612751,
-0.15889039635658264,
-0.04522264748811722,
-0.051620300859212875,
-0.046462807804346085,
0.13634933531284332,
0.05756623297929764,
0.00568200321868062,
0.0766126811504364,
-0.017870508134365082,
0.07412881404161453,
-0.0287658479064703,
0.11574424058198929,
0.10395797342061996,
0.05590805783867836,
0.08221910148859024,
-0.03329175338149071,
-0.0034105705562978983,
0.07310643047094345,
0.021797388792037964,
0.21287046372890472,
-0.04495963454246521,
0.1496925801038742,
-0.0010214970679953694,
0.1464918553829193,
-0.01804625801742077,
0.06863044202327728,
-0.02697508968412876,
0.01798221841454506,
0.004448420368134975,
-0.07531186938285828,
-0.0654640942811966,
0.031061870977282524,
-0.0164069514721632,
0.05283632501959801,
-0.07820689678192139,
0.010518337599933147,
0.021131299436092377,
0.20279623568058014,
0.06646482646465302,
-0.3606008291244507,
-0.0949527770280838,
0.009220701642334461,
-0.0053322650492191315,
-0.11477618664503098,
-0.024997621774673462,
0.13975466787815094,
-0.12043165415525436,
0.08916672319173813,
-0.10448405146598816,
0.07981251180171967,
-0.08767157047986984,
-0.005632371641695499,
0.06003913655877113,
0.07720417529344559,
0.004469227511435747,
0.07524324208498001,
-0.12473950535058975,
0.18332383036613464,
0.041085802018642426,
0.10062851011753082,
-0.08035445213317871,
0.043606918305158615,
0.030908141285181046,
0.09768741577863693,
0.14750729501247406,
-0.00507526658475399,
-0.01858314499258995,
-0.1650318205356598,
-0.11398836970329285,
0.007305285427719355,
0.08863579481840134,
-0.023448845371603966,
0.07628148049116135,
-0.04016103222966194,
-0.014778063632547855,
0.01143227145075798,
-0.0077921426855027676,
-0.12261826545000076,
-0.14197129011154175,
0.04965193197131157,
0.04348394647240639,
-0.00837631244212389,
-0.0664871409535408,
-0.0928439199924469,
0.022852087393403053,
0.17682935297489166,
0.05276922136545181,
-0.0680079385638237,
-0.15623845160007477,
0.058036841452121735,
0.11024324595928192,
-0.06652074307203293,
0.04558077082037926,
-0.008986826054751873,
0.16532868146896362,
0.02470296435058117,
-0.0842694565653801,
0.0493156872689724,
-0.06356664001941681,
-0.12467610836029053,
-0.03734495863318443,
0.10992611199617386,
-0.015457861125469208,
0.029913950711488724,
0.014484956860542297,
0.04100223258137703,
0.010488053783774376,
-0.06860827654600143,
0.009574276395142078,
0.03225754201412201,
0.1083931177854538,
0.023420924320816994,
-0.011534949764609337,
0.013795671053230762,
-0.02866554819047451,
0.031871069222688675,
0.1189989298582077,
0.19664394855499268,
-0.07377094030380249,
0.0462615042924881,
0.030646350234746933,
-0.053229499608278275,
-0.17091408371925354,
0.03572629392147064,
0.0875091403722763,
0.02107473649084568,
0.060721319168806076,
-0.13040779531002045,
0.05253764986991882,
0.0650496557354927,
-0.04511178284883499,
0.09677309542894363,
-0.2804814875125885,
-0.10619444400072098,
0.042185619473457336,
0.15373998880386353,
0.039928410202264786,
-0.12241365760564804,
-0.06291906535625458,
-0.0236308965831995,
-0.147196426987648,
0.09779863804578781,
-0.032755348831415176,
0.09953637421131134,
-0.025693899020552635,
0.04815353453159332,
0.03968360275030136,
-0.05211583524942398,
0.16598841547966003,
-0.020158817991614342,
0.0685734897851944,
-0.0886644795536995,
0.05316529795527458,
0.08929166197776794,
-0.09756846725940704,
0.11783531308174133,
-0.03950197994709015,
0.07865161448717117,
-0.169188991189003,
-0.013318536803126335,
-0.05130096897482872,
0.04011153429746628,
-0.03151434659957886,
-0.05367378517985344,
-0.02423802576959133,
0.056786637753248215,
0.06568920612335205,
-0.021031629294157028,
0.10555693507194519,
0.05300440266728401,
0.03653375059366226,
0.1449924111366272,
0.07191354781389236,
0.007528819143772125,
-0.16465914249420166,
-0.011647378094494343,
-0.021328765898942947,
0.08849118649959564,
-0.11938035488128662,
0.027668248862028122,
0.10802921652793884,
0.02659149095416069,
0.12380499392747879,
0.013499090448021889,
-0.04088972881436348,
0.012990167364478111,
0.04921923205256462,
-0.11854289472103119,
-0.14903438091278076,
-0.02317119389772415,
0.029464995488524437,
-0.15277916193008423,
-0.007966560311615467,
0.12035436183214188,
-0.0724484995007515,
0.0015029277419671416,
-0.008226479403674603,
0.02037346176803112,
0.0024528156500309706,
0.15500082075595856,
0.03130574896931648,
0.05071840435266495,
-0.07416006177663803,
0.10537973046302795,
0.08650067448616028,
-0.126345694065094,
0.048896294087171555,
0.03724226355552673,
-0.10088420659303665,
-0.030928052961826324,
0.05252865329384804,
0.09465478360652924,
0.022024543955922127,
-0.047611840069293976,
-0.04774364084005356,
-0.03404955565929413,
0.030149338766932487,
0.03394750878214836,
0.05154235661029816,
-0.011330264620482922,
-0.03088144212961197,
0.004559749737381935,
-0.13446465134620667,
0.11134843528270721,
0.024497104808688164,
0.08794160932302475,
-0.18048644065856934,
0.027838891372084618,
0.006466459017246962,
0.053278665989637375,
-0.023063985630869865,
0.0030396366491913795,
-0.051268190145492554,
-0.030309461057186127,
-0.07838311046361923,
0.04240677133202553,
-0.03909393772482872,
0.0022642638068646193,
-0.03274410590529442,
-0.03682883456349373,
-0.043865613639354706,
0.04934946820139885,
-0.05229394882917404,
-0.089043989777565,
0.025272637605667114,
0.03632660210132599,
-0.1160852462053299,
-0.02896616980433464,
0.013491520658135414,
-0.10089277476072311,
0.08503837883472443,
0.04509953409433365,
-0.0009051477536559105,
-0.016284329816699028,
0.00503162294626236,
-0.012925956398248672,
0.04109368473291397,
0.02248283289372921,
0.04677199199795723,
-0.07661382853984833,
0.01121346652507782,
-0.008978787809610367,
-0.020582595840096474,
-0.0016196317737922072,
0.12403031438589096,
-0.13066154718399048,
-0.039406418800354004,
-0.05345771461725235,
-0.01876020058989525,
-0.05355031043291092,
0.054740339517593384,
0.0965145155787468,
0.013868911191821098,
0.16678239405155182,
-0.059443190693855286,
0.03861475735902786,
-0.20215123891830444,
-0.04237755015492439,
0.011553335003554821,
-0.0638856515288353,
-0.0431559793651104,
-0.034393321722745895,
0.07701665908098221,
-0.0655340626835823,
0.08258643746376038,
0.0005581434816122055,
0.11512386053800583,
0.03854788467288017,
0.006696399766951799,
-0.020034534856677055,
-0.01632644608616829,
0.172601118683815,
0.04933738708496094,
-0.02636229619383812,
0.10759400576353073,
-0.02131326124072075,
0.06385090947151184,
0.07233833521604538,
0.08910036087036133,
0.12831459939479828,
0.013073424808681011,
0.08352358639240265,
0.03595275431871414,
-0.05641486868262291,
-0.21400615572929382,
0.028023913502693176,
-0.026171335950493813,
0.15382882952690125,
-0.032722435891628265,
0.09098350256681442,
0.09270849823951721,
-0.1496572345495224,
0.05073142796754837,
-0.02727026678621769,
-0.0997346043586731,
-0.0668664500117302,
-0.14429384469985962,
-0.08032190799713135,
-0.1010998785495758,
0.014644267037510872,
-0.09515897184610367,
0.023439399898052216,
0.0866243913769722,
-0.017378346994519234,
-0.015263780951499939,
0.23220889270305634,
-0.06967444717884064,
-0.0023864558897912502,
0.07823774218559265,
0.0099539365619421,
-0.009076258167624474,
-0.006586874835193157,
-0.049788862466812134,
0.040838927030563354,
0.015508072450757027,
0.10083937644958496,
-0.024194268509745598,
0.0364532433450222,
0.04136789217591286,
0.013856795616447926,
-0.09954791516065598,
0.014543700963258743,
0.02516724355518818,
0.025949658825993538,
0.05524818226695061,
0.03617999702692032,
0.028187697753310204,
-0.05006589740514755,
0.2282312959432602,
-0.05969223007559776,
-0.028496159240603447,
-0.11029379069805145,
0.1150781661272049,
0.031048515811562538,
-0.03381277620792389,
0.06069164350628853,
-0.1185009554028511,
0.006893189623951912,
0.12243054062128067,
0.0957394540309906,
-0.06019701436161995,
-0.016852758824825287,
0.008112439885735512,
-0.011797331273555756,
-0.036867547780275345,
0.10815716534852982,
0.06008314713835716,
0.02233002334833145,
-0.04812801256775856,
0.00920699629932642,
-0.024737076833844185,
-0.03236765414476395,
-0.06002749502658844,
0.04201681539416313,
0.0019145454280078411,
0.01701476238667965,
-0.05642406642436981,
0.06545491516590118,
0.04324715957045555,
-0.13723741471767426,
0.07126808911561966,
-0.17219343781471252,
-0.1778130829334259,
0.004311088006943464,
0.08807694911956787,
-0.020478704944252968,
0.03649080917239189,
-0.013021813705563545,
0.020177902653813362,
0.1067429706454277,
-0.02283838763833046,
-0.041284408420324326,
-0.0987868532538414,
0.053733307868242264,
-0.09855365008115768,
0.2516673803329468,
0.012529721483588219,
0.061267782002687454,
0.09073890745639801,
0.006366620305925608,
-0.16230042278766632,
0.03219715505838394,
0.07205454260110855,
-0.03411488980054855,
0.035733334720134735,
0.19339749217033386,
-0.04415001720190048,
0.07680173218250275,
0.03875552862882614,
-0.11370714008808136,
-0.05672646313905716,
-0.02359287440776825,
0.015359717421233654,
-0.06293250620365143,
-0.024124376475811005,
-0.06366509944200516,
0.1746503710746765,
0.16525448858737946,
-0.02624918520450592,
-0.023366056382656097,
-0.06745531409978867,
0.036491647362709045,
0.07028894871473312,
0.06804025173187256,
-0.02538856863975525,
-0.1688990592956543,
0.003618221264332533,
0.0018353478517383337,
0.045097194612026215,
-0.20919615030288696,
-0.11138581484556198,
0.045136187225580215,
-0.0529777966439724,
-0.05758088454604149,
0.09852249175310135,
0.03451084718108177,
0.0032284113112837076,
-0.04755450785160065,
-0.0688479095697403,
-0.046569280326366425,
0.11909759044647217,
-0.14437220990657806,
-0.053945839405059814
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-100k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:32:30+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-sst2
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3189
- Accuracy: 0.9060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1751 | 1.0 | 1053 | 0.2378 | 0.9071 |
| 0.103 | 2.0 | 2106 | 0.2611 | 0.9083 |
| 0.0591 | 3.0 | 3159 | 0.3189 | 0.9060 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "distilbert-base-uncased-finetuned-sst2", "results": []}]} | text-classification | roiyeho/distilbert-base-uncased-finetuned-sst2 | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:33:36+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-sst2
======================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3189
* Accuracy: 0.9060
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
72,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #distilbert #text-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.10037743300199509,
0.1123831644654274,
-0.0026233477983623743,
0.11458652466535568,
0.14239436388015747,
0.01729029044508934,
0.16183379292488098,
0.11428531259298325,
-0.06722681224346161,
0.04588453844189644,
0.12773750722408295,
0.12793385982513428,
0.016437863931059837,
0.11750757694244385,
-0.0813516154885292,
-0.211990088224411,
0.008314643986523151,
0.024034110829234123,
-0.057851795107126236,
0.11533873528242111,
0.09255673736333847,
-0.12096185982227325,
0.0898887887597084,
-0.019815372303128242,
-0.1670098602771759,
0.008008929900825024,
0.018305974081158638,
-0.048946645110845566,
0.124291330575943,
0.032869596034288406,
0.13174699246883392,
0.035548802465200424,
0.08528441935777664,
-0.19132216274738312,
0.010846993885934353,
0.06296297907829285,
-0.005975381005555391,
0.08043711632490158,
0.03367244824767113,
-0.005204331129789352,
0.06554208695888519,
-0.09293507039546967,
0.06080244481563568,
0.016985300928354263,
-0.12795718014240265,
-0.21055935323238373,
-0.08850276470184326,
0.03383653238415718,
0.09114351868629456,
0.07542895525693893,
-0.010141990147531033,
0.11822286993265152,
-0.049817658960819244,
0.09757818281650543,
0.19821816682815552,
-0.30602869391441345,
-0.0615595281124115,
0.05002220720052719,
0.02600446715950966,
0.09242241084575653,
-0.09680736809968948,
-0.01917429454624653,
0.05776626989245415,
0.023804033175110817,
0.1272796243429184,
-0.024302737787365913,
-0.05501049384474754,
0.0007424504728987813,
-0.14217594265937805,
-0.01792948693037033,
0.1542154997587204,
0.05109255015850067,
-0.0465211421251297,
-0.045473724603652954,
-0.07367043197154999,
-0.1323997974395752,
-0.041090451180934906,
-0.007547793909907341,
0.04921505227684975,
-0.019677577540278435,
-0.06252609938383102,
-0.024126561358571053,
-0.09537677466869354,
-0.06588289141654968,
-0.0571955069899559,
0.14058946073055267,
0.03367222473025322,
0.00563694117590785,
-0.009757760912179947,
0.10076980292797089,
-0.027991054579615593,
-0.14498500525951385,
0.02195172943174839,
0.018293224275112152,
0.0028358253184705973,
-0.04987792298197746,
-0.051858916878700256,
-0.0766296312212944,
0.02128482237458229,
0.16226844489574432,
-0.048900946974754333,
0.05459156259894371,
0.0013662460260093212,
0.04610087350010872,
-0.1021566241979599,
0.16704398393630981,
-0.041439928114414215,
-0.03604837879538536,
0.025830818340182304,
0.09259150922298431,
0.05797652155160904,
-0.01633574441075325,
-0.13188408315181732,
0.03280113637447357,
0.10586897283792496,
0.01902083307504654,
-0.05355865880846977,
0.068079873919487,
-0.05876236781477928,
-0.013764660805463791,
0.04128251597285271,
-0.093795545399189,
0.02671539969742298,
0.004717630799859762,
-0.055295828729867935,
-0.04650195688009262,
0.030640896409749985,
0.021033871918916702,
0.0057392725721001625,
0.10424210876226425,
-0.0809185653924942,
0.00936119444668293,
-0.08517076075077057,
-0.13112513720989227,
0.01684487983584404,
-0.09450725466012955,
0.020112281665205956,
-0.10899347811937332,
-0.1858588606119156,
-0.013745328411459923,
0.06316505372524261,
-0.029940534383058548,
-0.029522905126214027,
-0.06087733805179596,
-0.07653672248125076,
0.018463321030139923,
-0.011985271237790585,
0.06956472992897034,
-0.06501851230859756,
0.09768815338611603,
0.03733949363231659,
0.06666593998670578,
-0.06678060442209244,
0.041502196341753006,
-0.10108062624931335,
0.040369171649217606,
-0.17648179829120636,
0.037693992257118225,
-0.07143144309520721,
0.06732449680566788,
-0.0796348974108696,
-0.07144609838724136,
0.0035466484259814024,
-0.0027839355170726776,
0.07571696490049362,
0.09606879949569702,
-0.17847897112369537,
-0.0605643056333065,
0.1520504504442215,
-0.0858871266245842,
-0.13992229104042053,
0.1370679885149002,
-0.059254929423332214,
0.04051167517900467,
0.06390019506216049,
0.18945792317390442,
0.07351468503475189,
-0.08348141610622406,
0.005107703618705273,
0.0037605674006044865,
0.06921680271625519,
-0.0320473238825798,
0.06910229474306107,
-0.00015887564222794026,
-0.0019328477792441845,
0.012661016546189785,
-0.0555926151573658,
0.0497092604637146,
-0.07703472673892975,
-0.09058941155672073,
-0.04145878180861473,
-0.10491085797548294,
0.06379059702157974,
0.04998006299138069,
0.06250026822090149,
-0.10872544348239899,
-0.08635479211807251,
0.06252022832632065,
0.0741235539317131,
-0.07421190291643143,
0.022746481001377106,
-0.0702611580491066,
0.09096260368824005,
-0.05799666792154312,
-0.0145413838326931,
-0.1567414253950119,
-0.04529602453112602,
0.020510822534561157,
0.004389498382806778,
0.016481241211295128,
-0.009833008050918579,
0.07216837257146835,
0.08496604859828949,
-0.06824390590190887,
-0.03128014877438545,
-0.013961415737867355,
0.015511777251958847,
-0.12377995252609253,
-0.1990494728088379,
-0.016786113381385803,
-0.03496358543634415,
0.1486656218767166,
-0.2308911234140396,
0.053165268152952194,
-0.002256792038679123,
0.08893739432096481,
0.039817918092012405,
-0.011716820299625397,
-0.038118626922369,
0.07262393832206726,
-0.048966240137815475,
-0.07076127082109451,
0.06119604781270027,
0.00991024263203144,
-0.10485776513814926,
-0.0472557470202446,
-0.15023380517959595,
0.18633528053760529,
0.13146688044071198,
-0.0786556527018547,
-0.07273896038532257,
0.005461950786411762,
-0.03356514126062393,
-0.02791302464902401,
-0.03545935079455376,
0.001411042409017682,
0.12537503242492676,
-0.006630335468798876,
0.15434864163398743,
-0.08621683716773987,
-0.031776346266269684,
0.019492020830512047,
-0.04520284757018089,
0.0089998384937644,
0.113751120865345,
0.09114046394824982,
-0.10911599546670914,
0.14906486868858337,
0.1943940371274948,
-0.09831029176712036,
0.13485971093177795,
-0.045425232499837875,
-0.0514354333281517,
-0.02501799166202545,
0.008036715909838676,
0.01569169946014881,
0.11101803183555603,
-0.11680018901824951,
0.0023332329001277685,
0.009077005088329315,
0.011464609764516354,
0.0103158475831151,
-0.21384751796722412,
-0.025858979672193527,
0.04052390903234482,
-0.05169552192091942,
-0.000377437099814415,
-0.024085858836770058,
-0.00769591610878706,
0.09740586578845978,
-0.005556193646043539,
-0.08842739462852478,
0.048295896500349045,
-0.004598754923790693,
-0.07516602426767349,
0.20335721969604492,
-0.09489664435386658,
-0.14233005046844482,
-0.13670587539672852,
-0.07300195842981339,
-0.055043358355760574,
0.03186170384287834,
0.0606386698782444,
-0.06839413940906525,
-0.04077970236539841,
-0.11164690554141998,
-0.007671493571251631,
0.02895222418010235,
0.021513693034648895,
0.021103212609887123,
-0.006730690598487854,
0.08524848520755768,
-0.10080291330814362,
-0.006726544816046953,
-0.03600470349192619,
-0.05153579264879227,
0.037415068596601486,
0.024572312831878662,
0.11207284033298492,
0.14539074897766113,
-0.024642763659358025,
-0.007408164441585541,
-0.026769423857331276,
0.23023144900798798,
-0.057636890560388565,
-0.00503764720633626,
0.1258493810892105,
-0.03173907473683357,
0.05698927119374275,
0.13650387525558472,
0.0643167570233345,
-0.09860221296548843,
0.02045505866408348,
0.033959899097681046,
-0.03546007350087166,
-0.2139018476009369,
-0.032960694283246994,
-0.03865625709295273,
0.004459364339709282,
0.09471230953931808,
0.029598945751786232,
0.02248494327068329,
0.06637738645076752,
0.020928381010890007,
0.08256203681230545,
-0.010491833090782166,
0.07057347148656845,
0.1148829385638237,
0.03995085507631302,
0.13176561892032623,
-0.0458795428276062,
-0.05082126706838608,
0.0418887585401535,
0.0005710436380468309,
0.19947639107704163,
0.02223214879631996,
0.1467467099428177,
0.04946324601769447,
0.16196148097515106,
-0.0012280454393476248,
0.061208561062812805,
-0.012577691115438938,
-0.034546371549367905,
-0.016492146998643875,
-0.04988566413521767,
-0.029954371973872185,
0.03201061114668846,
-0.08402381092309952,
0.054217904806137085,
-0.10016355663537979,
0.012268719263374805,
0.05875076726078987,
0.23353739082813263,
0.054328933358192444,
-0.32403138279914856,
-0.08951862156391144,
0.031503695994615555,
-0.01796182431280613,
-0.021589312702417374,
0.025670545175671577,
0.12518224120140076,
-0.045642055571079254,
0.038071159273386,
-0.06994304805994034,
0.08588836342096329,
-0.04179000109434128,
0.044451259076595306,
0.052581872791051865,
0.08688545972108841,
-0.012264098972082138,
0.0650811642408371,
-0.28102782368659973,
0.25653624534606934,
0.019438771530985832,
0.06841528415679932,
-0.04514138400554657,
0.0010826890356838703,
0.04016874358057976,
0.09481993317604065,
0.06738507747650146,
-0.015285576693713665,
-0.05198027938604355,
-0.19251073896884918,
-0.06673479080200195,
0.021775558590888977,
0.09666523337364197,
-0.039756547659635544,
0.10020525008440018,
-0.029309513047337532,
0.001584743964485824,
0.08063405752182007,
-0.016919860616326332,
-0.08312591165304184,
-0.10067781060934067,
-0.00992171186953783,
0.04048290103673935,
-0.0351758636534214,
-0.07956106215715408,
-0.09732797741889954,
-0.13254451751708984,
0.15175245702266693,
-0.07462244480848312,
-0.03651246055960655,
-0.10337407141923904,
0.05435413867235184,
0.05893652141094208,
-0.07838582247495651,
0.041623909026384354,
0.0035359635949134827,
0.0820765495300293,
0.01787528395652771,
-0.06625676155090332,
0.12183187901973724,
-0.07371862977743149,
-0.17837992310523987,
-0.0712871178984642,
0.10523255169391632,
0.020348593592643738,
0.043481189757585526,
-0.008525731973350048,
0.011399186216294765,
-0.01706758141517639,
-0.07873986661434174,
0.026102282106876373,
0.005727613344788551,
0.0514473132789135,
0.03203817084431648,
-0.06101159378886223,
-0.007966863922774792,
-0.05722088739275932,
-0.02385444939136505,
0.1488921344280243,
0.29096728563308716,
-0.08398453146219254,
0.010054405778646469,
0.06239387020468712,
-0.06865459680557251,
-0.20844122767448425,
0.035940565168857574,
0.026050148531794548,
0.004463996272534132,
0.045079588890075684,
-0.1548576056957245,
0.10078920423984528,
0.10412801802158356,
-0.02776835486292839,
0.12033538520336151,
-0.28957435488700867,
-0.13618937134742737,
0.12581995129585266,
0.14764361083507538,
0.1257331818342209,
-0.16041573882102966,
-0.042274054139852524,
-0.038362570106983185,
-0.10226594656705856,
0.10831475257873535,
-0.13070544600486755,
0.11168381571769714,
-0.007970927283167839,
0.04976649582386017,
0.004561020061373711,
-0.052307941019535065,
0.13822412490844727,
-0.0023563976865261793,
0.11830870062112808,
-0.06227714940905571,
-0.01100817508995533,
0.062192678451538086,
-0.06097368896007538,
0.018495885655283928,
-0.1193835511803627,
0.04507724568247795,
-0.06094571202993393,
-0.023440733551979065,
-0.043424464762210846,
0.034167852252721786,
-0.03935501351952553,
-0.057780928909778595,
-0.04142840579152107,
0.025403980165719986,
0.04245589300990105,
-0.007988306693732738,
0.1616767793893814,
0.013606716878712177,
0.14279012382030487,
0.14856871962547302,
0.07647385448217392,
-0.06476863473653793,
-0.008988522924482822,
-0.006408217363059521,
-0.03784342482686043,
0.0646689236164093,
-0.15347382426261902,
0.03978506103157997,
0.12335192412137985,
0.010624760761857033,
0.14781378209590912,
0.07104399800300598,
-0.027667252346873283,
0.014778097160160542,
0.061263781040906906,
-0.16331790387630463,
-0.1044762060046196,
-0.005189666990190744,
-0.031387463212013245,
-0.11869385838508606,
0.059294961392879486,
0.12890098989009857,
-0.06369283050298691,
0.007718258537352085,
-0.005494796670973301,
0.01566087268292904,
-0.031512659043073654,
0.18132689595222473,
0.06981045752763748,
0.04464934021234512,
-0.08575067669153214,
0.09337463229894638,
0.05513639748096466,
-0.07372736930847168,
0.011663243174552917,
0.044873446226119995,
-0.08760714530944824,
-0.04667244851589203,
0.03786524385213852,
0.19261939823627472,
-0.034518033266067505,
-0.04871745407581329,
-0.14706411957740784,
-0.11039026826620102,
0.05346192792057991,
0.17828701436519623,
0.09728554636240005,
0.01526761706918478,
-0.03669939190149307,
0.011040221899747849,
-0.10840509086847305,
0.11728862673044205,
0.04360130801796913,
0.09131663292646408,
-0.1514173150062561,
0.11044043302536011,
-0.005147157236933708,
0.006712484173476696,
-0.025402555242180824,
0.046639323234558105,
-0.11750367283821106,
-0.009286404587328434,
-0.1463020294904709,
-0.0027541127055883408,
-0.019854839891195297,
0.010221265256404877,
0.0010222226846963167,
-0.05451445281505585,
-0.05628887563943863,
0.013138833455741405,
-0.09792476892471313,
-0.025155898183584213,
0.03517887741327286,
0.049489300698041916,
-0.12264782935380936,
-0.04831281304359436,
0.02188008837401867,
-0.0736098662018776,
0.07118786871433258,
0.019920075312256813,
0.019132863730192184,
0.046018339693546295,
-0.18384189903736115,
0.021815698593854904,
0.05485783889889717,
0.019077403470873833,
0.04463757202029228,
-0.08197727799415588,
-0.020935293287038803,
-0.004196661990135908,
0.0428294911980629,
0.01970715820789337,
0.09497840702533722,
-0.12229789048433304,
0.01531007420271635,
-0.027334826067090034,
-0.06004037708044052,
-0.0516212098300457,
0.03463485836982727,
0.08985590934753418,
0.014554793015122414,
0.20632371306419373,
-0.09728136658668518,
0.015189245343208313,
-0.20017756521701813,
0.006141203455626965,
0.0028512359131127596,
-0.11909200996160507,
-0.11741208285093307,
-0.05295649170875549,
0.05105189234018326,
-0.06024409458041191,
0.14011773467063904,
0.006367457564920187,
0.0240271408110857,
0.03397466614842415,
-0.031005755066871643,
0.03976798802614212,
0.026491884142160416,
0.2196906954050064,
0.032604895532131195,
-0.04247166961431503,
0.014834441244602203,
0.026263101026415825,
0.11259490251541138,
0.08034335821866989,
0.1642480492591858,
0.16671298444271088,
-0.047791846096515656,
0.09779398143291473,
0.04259829223155975,
-0.049886688590049744,
-0.13586808741092682,
0.06800305843353271,
-0.03979484736919403,
0.10482755303382874,
-0.019372502341866493,
0.2013818472623825,
0.08796639740467072,
-0.15319307148456573,
0.016120918095111847,
-0.04733441025018692,
-0.08641942590475082,
-0.10755547881126404,
-0.060739535838365555,
-0.0986708253622055,
-0.14326632022857666,
-0.005008965730667114,
-0.11203663051128387,
0.01227620244026184,
0.10221381485462189,
0.0031482854392379522,
-0.016323480755090714,
0.16374391317367554,
0.006921535357832909,
0.033812474459409714,
0.06410346925258636,
-0.0000411189794249367,
-0.04517606273293495,
-0.07013608515262604,
-0.1023804172873497,
0.011042057536542416,
-0.01039956882596016,
0.024990694597363472,
-0.0462009571492672,
-0.020001593977212906,
0.041191939264535904,
-0.008920620195567608,
-0.11012545228004456,
0.011059531942009926,
0.03006550297141075,
0.04712998867034912,
0.05343586951494217,
0.012405937537550926,
0.009379589930176735,
0.001607858925126493,
0.21755307912826538,
-0.07568149268627167,
-0.06338479369878769,
-0.09653031826019287,
0.21299093961715698,
0.022336766123771667,
0.011638443917036057,
0.011490792967379093,
-0.09278034418821335,
0.030518289655447006,
0.20636938512325287,
0.18599428236484528,
-0.09832361340522766,
-0.0010812232503667474,
-0.016809236258268356,
-0.00929209217429161,
-0.03559084236621857,
0.09431327879428864,
0.11169705539941788,
0.0051999324932694435,
-0.07207497954368591,
-0.05450468510389328,
-0.03692986071109772,
-0.008289536461234093,
-0.050974711775779724,
0.05448675528168678,
0.027359316125512123,
0.008808289654552937,
-0.0520961657166481,
0.058316558599472046,
-0.03747634217143059,
-0.10941903293132782,
0.05298587679862976,
-0.1924000233411789,
-0.15322260558605194,
-0.017783084884285927,
0.11167101562023163,
-0.011763522401452065,
0.04289846494793892,
-0.03369036689400673,
0.0025556848850101233,
0.06679234653711319,
-0.03170677646994591,
-0.06078457087278366,
-0.06199013069272041,
0.05924764648079872,
-0.10504284501075745,
0.22272250056266785,
-0.03277740254998207,
0.04695296287536621,
0.12719199061393738,
0.04776474088430405,
-0.07101079821586609,
0.08638395369052887,
0.045605678111314774,
-0.060453157871961594,
0.03382038325071335,
0.08609829097986221,
-0.04214721545577049,
0.12476005405187607,
0.06155350059270859,
-0.13030363619327545,
0.010135870426893234,
-0.03366661071777344,
-0.09619681537151337,
-0.05426289513707161,
-0.04285532236099243,
-0.06098749488592148,
0.13393166661262512,
0.18687336146831512,
-0.03503762558102608,
0.010779949836432934,
-0.04305185377597809,
0.016484741121530533,
0.06861147284507751,
0.03497100621461868,
-0.03761477768421173,
-0.22857365012168884,
0.0266150813549757,
0.06611241400241852,
-0.0016935624880716205,
-0.2819153368473053,
-0.0824965238571167,
-0.014740969985723495,
-0.04090109467506409,
-0.09464144706726074,
0.0884632021188736,
0.11415113508701324,
0.05158517137169838,
-0.06183724105358124,
-0.0886429026722908,
-0.07585013657808304,
0.15363483130931854,
-0.12804341316223145,
-0.09579318761825562
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# serhii-korobchenko/marian-finetuned-kde4-en-to-fr
This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.0610
- Validation Loss: 0.8947
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 5911, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.0610 | 0.8947 | 0 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "Helsinki-NLP/opus-mt-en-fr", "model-index": [{"name": "serhii-korobchenko/marian-finetuned-kde4-en-to-fr", "results": []}]} | text2text-generation | serhii-korobchenko/marian-finetuned-kde4-en-to-fr | [
"transformers",
"tf",
"marian",
"text2text-generation",
"generated_from_keras_callback",
"base_model:Helsinki-NLP/opus-mt-en-fr",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:33:36+00:00 | [] | [] | TAGS
#transformers #tf #marian #text2text-generation #generated_from_keras_callback #base_model-Helsinki-NLP/opus-mt-en-fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| serhii-korobchenko/marian-finetuned-kde4-en-to-fr
=================================================
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-fr on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 1.0610
* Validation Loss: 0.8947
* Epoch: 0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'name': 'AdamWeightDecay', 'learning\_rate': {'module': 'keras.optimizers.schedules', 'class\_name': 'PolynomialDecay', 'config': {'initial\_learning\_rate': 5e-05, 'decay\_steps': 5911, 'end\_learning\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\_name': None}, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\_decay\_rate': 0.01}
* training\_precision: mixed\_float16
### Training results
### Framework versions
* Transformers 4.35.2
* TensorFlow 2.15.0
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 5e-05, 'decay\\_steps': 5911, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: mixed\\_float16",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* TensorFlow 2.15.0\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tf #marian #text2text-generation #generated_from_keras_callback #base_model-Helsinki-NLP/opus-mt-en-fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 5e-05, 'decay\\_steps': 5911, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: mixed\\_float16",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* TensorFlow 2.15.0\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
78,
231,
4,
31
] | [
"passage: TAGS\n#transformers #tf #marian #text2text-generation #generated_from_keras_callback #base_model-Helsinki-NLP/opus-mt-en-fr #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'name': 'AdamWeightDecay', 'learning\\_rate': {'module': 'keras.optimizers.schedules', 'class\\_name': 'PolynomialDecay', 'config': {'initial\\_learning\\_rate': 5e-05, 'decay\\_steps': 5911, 'end\\_learning\\_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered\\_name': None}, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight\\_decay\\_rate': 0.01}\n* training\\_precision: mixed\\_float16### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* TensorFlow 2.15.0\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.06042703613638878,
0.09893426299095154,
-0.008005702868103981,
0.07366356253623962,
0.11793465167284012,
0.05316304415464401,
0.11783703416585922,
0.14514632523059845,
-0.08521223068237305,
0.13934215903282166,
0.09006819874048233,
0.12188072502613068,
0.05129591375589371,
0.1300043910741806,
-0.08975275605916977,
-0.1364012062549591,
0.050800688564777374,
-0.03022431768476963,
-0.051299210637807846,
0.06840906292200089,
0.07648413628339767,
-0.05218248441815376,
0.07034280896186829,
-0.044111087918281555,
-0.07341479510068893,
0.012623993679881096,
0.02738325670361519,
-0.052249010652303696,
0.08848295360803604,
0.07055265456438065,
0.07622232288122177,
0.023012539371848106,
0.002750928048044443,
-0.2185964435338974,
0.004811716731637716,
0.10399699211120605,
0.0008443978149443865,
0.07004432380199432,
0.044865477830171585,
-0.036833930760622025,
0.12806744873523712,
-0.09299041330814362,
0.038790881633758545,
0.027131441980600357,
-0.14723986387252808,
-0.22571131587028503,
-0.08862201124429703,
0.027051696553826332,
0.08780428767204285,
0.06905017793178558,
0.001661289599724114,
0.1318596452474594,
-0.06718990206718445,
0.08301443606615067,
0.1444806158542633,
-0.24196141958236694,
-0.03406132012605667,
0.058492373675107956,
-0.0024418362881988287,
0.031005866825580597,
-0.06625501066446304,
-0.010775718837976456,
0.01700848713517189,
0.015167406760156155,
0.03298721835017204,
-0.01282257679849863,
0.008851500228047371,
-0.03761064633727074,
-0.06526649743318558,
-0.07444342970848083,
0.136055588722229,
0.06706470996141434,
-0.02994353510439396,
-0.0725303515791893,
-0.03612571954727173,
-0.1781872659921646,
-0.009587348438799381,
-0.019197246059775352,
0.02025582268834114,
0.01689540222287178,
-0.012811939232051373,
0.014289109967648983,
-0.05092748627066612,
-0.0331479087471962,
0.012038735672831535,
0.0785674974322319,
0.03541230410337448,
0.015271500684320927,
-0.009109177626669407,
0.058570973575115204,
-0.04111321270465851,
-0.12671209871768951,
-0.03388367220759392,
0.008090180344879627,
-0.06068187952041626,
-0.0390690341591835,
-0.0538710318505764,
-0.00243949331343174,
0.10805235803127289,
0.19191735982894897,
-0.08220960199832916,
0.1224234402179718,
-0.015000710263848305,
0.02100757695734501,
-0.08769451826810837,
0.07394658774137497,
0.021578408777713776,
-0.058335427194833755,
-0.017302365973591805,
0.06471981108188629,
0.012924367561936378,
-0.03500720486044884,
-0.0409940704703331,
0.03461148589849472,
0.10205551981925964,
0.03972719609737396,
-0.00453232554718852,
0.08394572138786316,
-0.06501748412847519,
-0.005813230760395527,
0.015670716762542725,
-0.11557690054178238,
0.03305908665060997,
0.051704611629247665,
-0.08460075408220291,
0.0485578328371048,
0.039803486317396164,
-0.0023882919922471046,
-0.07984233647584915,
0.06095900386571884,
-0.04727568104863167,
-0.03985840827226639,
-0.0763353705406189,
-0.09088584035634995,
0.04280193895101547,
-0.06228451430797577,
-0.023359011858701706,
-0.07773228734731674,
-0.14562109112739563,
-0.07355937361717224,
0.09042281657457352,
-0.04680367931723595,
-0.047212954610586166,
-0.07728291302919388,
-0.1467674970626831,
0.0650196522474289,
-0.009667090140283108,
0.11089784651994705,
-0.06561952084302902,
0.05362502858042717,
-0.0041672284714877605,
0.03165614232420921,
0.019897209480404854,
0.02823494002223015,
-0.06507187336683273,
0.03324349969625473,
-0.17092306911945343,
0.09752222895622253,
-0.0739668607711792,
0.0538954995572567,
-0.16116489470005035,
-0.04551952704787254,
0.029031237587332726,
0.01506925467401743,
0.08496413379907608,
0.1261579543352127,
-0.13542111217975616,
-0.06470093876123428,
0.1307402104139328,
-0.10030452162027359,
-0.07003164291381836,
0.07813654094934464,
-0.024449670687317848,
-0.033243339508771896,
0.08095195889472961,
0.1021481528878212,
0.054105933755636215,
-0.07289858162403107,
0.007891304790973663,
-0.056570038199424744,
0.037186551839113235,
0.02942155860364437,
0.04622248560190201,
-0.07677000761032104,
-0.06432612985372543,
0.023374946787953377,
0.0038340070750564337,
-0.013893541879951954,
-0.04924720153212547,
-0.05407465621829033,
-0.03731859475374222,
-0.054748911410570145,
0.022028952836990356,
0.03450136259198189,
0.01688629947602749,
-0.08796969801187515,
-0.16555550694465637,
0.025210700929164886,
0.05925401672720909,
-0.06783550977706909,
0.028031177818775177,
-0.06542456895112991,
0.07032424956560135,
0.05409666895866394,
0.001978652784600854,
-0.16128498315811157,
-0.08387897163629532,
0.021780474111437798,
-0.06043402850627899,
0.018162976950407028,
-0.028765780851244926,
0.053224220871925354,
0.027662428095936775,
-0.05785903334617615,
-0.00693645840510726,
0.013696159236133099,
0.008870622143149376,
-0.04208950698375702,
-0.23306110501289368,
-0.021968044340610504,
-0.018813401460647583,
0.1144748330116272,
-0.2847850024700165,
0.004332742188125849,
0.05356627702713013,
0.13776034116744995,
0.03323807567358017,
-0.034105539321899414,
-0.01830351911485195,
0.059556618332862854,
-0.02826170064508915,
-0.06390950083732605,
0.041318923234939575,
0.012090696953237057,
-0.10847338289022446,
-0.05578252673149109,
-0.1772010177373886,
0.0638057067990303,
0.1088770404458046,
-0.05857203155755997,
-0.13035263121128082,
0.010429619811475277,
-0.017292210832238197,
-0.03438020870089531,
-0.0035189599730074406,
0.03332008793950081,
0.1341756135225296,
0.03834037110209465,
0.13022644817829132,
-0.036424074321985245,
-0.030615368857979774,
0.010975404642522335,
-0.01791119948029518,
-0.0226947870105505,
0.13492222130298615,
0.019236916676163673,
-0.09133706986904144,
0.08427061885595322,
0.06829609721899033,
-0.10244369506835938,
0.10804546624422073,
-0.06000611558556557,
-0.061975665390491486,
-0.07188493013381958,
0.06716899573802948,
0.05285859480500221,
0.022653138265013695,
-0.09935735911130905,
0.012028507888317108,
0.01679218001663685,
0.03240155428647995,
0.005134474951773882,
-0.128569558262825,
0.026633916422724724,
-0.0019008078379556537,
-0.05598805099725723,
0.06897469609975815,
-0.008155180141329765,
0.009960890747606754,
0.10806557536125183,
0.0315927155315876,
-0.055325768887996674,
0.044136304408311844,
-0.030647365376353264,
-0.08262506872415543,
0.21003970503807068,
-0.10376477986574173,
-0.11561315506696701,
-0.09615682810544968,
-0.0337039977312088,
-0.05592525750398636,
-0.017265789210796356,
0.023139074444770813,
-0.07315777987241745,
-0.061438873410224915,
-0.08252496272325516,
-0.037147991359233856,
-0.03461790829896927,
0.004722331650555134,
-0.0030320310033857822,
0.02675115503370762,
0.11750226467847824,
-0.09338461607694626,
-0.03933033347129822,
-0.003702806541696191,
-0.08216016739606857,
0.00688149593770504,
0.010280738584697247,
0.005869398359209299,
0.14182795584201813,
0.004184202756732702,
0.0172733161598444,
-0.04576284438371658,
0.19854585826396942,
-0.06572972238063812,
0.025140883401036263,
0.11304543167352676,
-0.013054023496806622,
0.06980589777231216,
0.17152228951454163,
0.04376749321818352,
-0.09178829938173294,
0.020571308210492134,
0.0813269391655922,
-0.007848980836570263,
-0.25612738728523254,
-0.032426320016384125,
-0.04427755996584892,
-0.05908932909369469,
0.07452744245529175,
0.06055568903684616,
0.16302748024463654,
0.00700225867331028,
-0.005219952203333378,
0.04558718204498291,
0.058333512395620346,
0.08964195847511292,
0.15187327563762665,
0.10656832158565521,
0.10190264880657196,
-0.03975706547498703,
0.018504977226257324,
0.036207713186740875,
-0.0038888484705239534,
0.18401643633842468,
0.02232685312628746,
0.12339019030332565,
0.08680184930562973,
0.06252115964889526,
0.0031897115986794233,
-0.027365069836378098,
0.017388850450515747,
0.016285553574562073,
0.00918958056718111,
-0.07206949591636658,
-0.03565548360347748,
0.03631148487329483,
0.020319808274507523,
0.03641236200928688,
-0.10312607139348984,
0.0074862828478217125,
0.053740065544843674,
0.2012820541858673,
0.12617838382720947,
-0.2897154986858368,
-0.07898891717195511,
0.01827714964747429,
-0.03400903940200806,
-0.029141822829842567,
0.009024964645504951,
0.027984464541077614,
-0.07252175360918045,
0.10880015045404434,
-0.028271619230508804,
0.07878396660089493,
-0.08680513501167297,
0.040734004229307175,
0.08241957426071167,
0.09516024589538574,
0.014085264876484871,
0.017598744481801987,
-0.3346082270145416,
0.284745454788208,
0.0145637271925807,
0.11393462121486664,
-0.04676913842558861,
0.06076502427458763,
0.0355323851108551,
-0.03125276044011116,
0.07047499716281891,
-0.018903018906712532,
-0.1983262002468109,
-0.1544966995716095,
-0.049163080751895905,
0.0012171660782769322,
0.10187927633523941,
-0.02898034267127514,
0.09888952225446701,
-0.04028933122754097,
-0.011417334899306297,
0.03969971835613251,
0.00973875354975462,
-0.1621195673942566,
-0.0754978209733963,
0.05958787724375725,
0.049752674996852875,
-0.010165715590119362,
-0.052309807389974594,
-0.05213896185159683,
-0.0830201804637909,
0.19195304811000824,
-0.11901285499334335,
-0.04682488366961479,
-0.1328977644443512,
0.06334178894758224,
0.09916875511407852,
-0.07514689117670059,
0.030055448412895203,
-0.016935337334871292,
0.06928779184818268,
0.06188918650150299,
-0.06466218829154968,
0.11272381991147995,
-0.014366391114890575,
-0.1979932337999344,
-0.06631328910589218,
0.12238038331270218,
0.024733100086450577,
0.027097288519144058,
-0.007883201353251934,
0.07626613229513168,
0.050814468413591385,
-0.07901594042778015,
0.08051595836877823,
0.022749418392777443,
0.057228077203035355,
0.04900968819856644,
-0.022734643891453743,
-0.08000010997056961,
-0.04418708756566048,
-0.01737707480788231,
0.08283279091119766,
0.3146309554576874,
-0.07453011721372604,
0.037169646471738815,
0.0655226856470108,
-0.10871726274490356,
-0.15312616527080536,
0.023717105388641357,
0.09059040248394012,
-0.018114281818270683,
-0.06378654390573502,
-0.18481531739234924,
0.06699575483798981,
0.11263438314199448,
-0.007931152358651161,
0.030208781361579895,
-0.2771783173084259,
-0.14248277246952057,
0.06819067150354385,
0.08790659159421921,
0.021453531458973885,
-0.19073675572872162,
-0.07741759717464447,
-0.0607408732175827,
-0.09700161218643188,
0.12012605369091034,
-0.0512097105383873,
0.09088616818189621,
0.025967702269554138,
-0.0019408161751925945,
0.021132059395313263,
-0.030699845403432846,
0.13990554213523865,
0.020184794440865517,
0.07576760649681091,
-0.06179444491863251,
-0.027278050780296326,
0.05536975339055061,
-0.10248036682605743,
0.024580014869570732,
-0.07243726402521133,
0.022037142887711525,
-0.15392571687698364,
-0.006333261728286743,
-0.06642534583806992,
0.05961491912603378,
-0.06783520430326462,
-0.004205047618597746,
-0.01717567816376686,
0.06187351420521736,
0.10885659605264664,
0.002599548315629363,
0.13788166642189026,
-0.04108503460884094,
0.21736833453178406,
0.16933384537696838,
0.07619019597768784,
0.007358556613326073,
-0.06689900159835815,
0.05647388473153114,
-0.03201938793063164,
0.042191095650196075,
-0.1677827090024948,
0.050539132207632065,
0.13764408230781555,
0.00041285218321718276,
0.13203580677509308,
0.04908064380288124,
-0.04437718912959099,
0.01047405507415533,
0.06853596121072769,
-0.09937070310115814,
-0.0581829659640789,
0.01443082932382822,
-0.017409199848771095,
-0.05520932376384735,
0.01693614199757576,
0.1573747992515564,
-0.02802850678563118,
0.026540381833910942,
0.013751352205872536,
0.03909999877214432,
-0.056808196008205414,
0.12986043095588684,
0.0004952679155394435,
0.0939030721783638,
-0.07848484814167023,
0.1380157321691513,
0.10387726873159409,
-0.12126478552818298,
0.10060311108827591,
0.07807136327028275,
-0.06131584569811821,
-0.03861577436327934,
0.05565474554896355,
0.1337851881980896,
0.041006024926900864,
-0.05646681785583496,
-0.09592315554618835,
-0.12234173715114594,
0.10540449619293213,
0.17089755833148956,
0.028416793793439865,
0.04674534872174263,
-0.015117744915187359,
-0.008445111103355885,
-0.10168756544589996,
0.0601448118686676,
0.060645174235105515,
0.041202232241630554,
-0.11031858623027802,
0.1554335057735443,
0.0033527016639709473,
-0.048392366617918015,
0.00949909258633852,
-0.005184476729482412,
-0.1833459436893463,
0.00028141765506006777,
-0.11641501635313034,
0.040424879640340805,
0.004693451803177595,
0.0009028749773278832,
0.03318440541625023,
-0.03922754153609276,
-0.05786336213350296,
0.019743863493204117,
-0.10338624566793442,
-0.04776809737086296,
0.03473057970404625,
0.09196474403142929,
-0.1258808821439743,
-0.046403054147958755,
0.0022823105100542307,
-0.10683785378932953,
0.04332142695784569,
0.013504146598279476,
-0.0053464267402887344,
0.02780456840991974,
-0.12083739042282104,
0.012375122867524624,
0.010090301744639874,
0.0019922121427953243,
0.011667165905237198,
-0.15187545120716095,
0.02362511120736599,
-0.0218974519520998,
0.027756741270422935,
0.019848890602588654,
0.028511537238955498,
-0.09720320254564285,
-0.038392115384340286,
-0.025034409016370773,
-0.03960752859711647,
-0.0375288650393486,
0.041613880544900894,
0.14673267304897308,
-0.04708966985344887,
0.1591079831123352,
-0.09839333593845367,
0.03531363233923912,
-0.18003010749816895,
-0.012199665419757366,
0.022858859971165657,
-0.07552795112133026,
-0.12420116364955902,
-0.02066470868885517,
0.11447928845882416,
-0.08297676593065262,
0.08082591742277145,
-0.032519593834877014,
0.08249181509017944,
0.042521387338638306,
-0.096137635409832,
-0.07452306896448135,
0.07542942464351654,
0.17715515196323395,
0.08319666981697083,
-0.01387703325599432,
0.08803805708885193,
-0.03964117169380188,
0.04674675688147545,
0.07923367619514465,
0.1996963620185852,
0.14776168763637543,
0.03730936720967293,
0.08389796316623688,
0.047296326607465744,
-0.09521123766899109,
-0.10034073889255524,
0.16277040541172028,
-0.06311140209436417,
0.17975211143493652,
-0.055014435201883316,
0.08822896331548691,
0.05223662406206131,
-0.1712314337491989,
0.04489102214574814,
-0.08121000230312347,
-0.08118884265422821,
-0.11297212541103363,
-0.1436358541250229,
-0.10542325675487518,
-0.09643743187189102,
0.004576847888529301,
-0.10253173857927322,
0.03688930720090866,
0.10512033104896545,
0.035231344401836395,
0.010456554591655731,
0.020769260823726654,
-0.03463808819651604,
0.020647544413805008,
0.11084720492362976,
-0.012893762439489365,
-0.01111854612827301,
-0.051700394600629807,
-0.06201882287859917,
0.030560480430722237,
0.006161626894026995,
0.02305969037115574,
0.02109389193356037,
0.005822975654155016,
0.06272440403699875,
-0.012653535231947899,
-0.10034825652837753,
0.07150276750326157,
0.019826002418994904,
0.020166659727692604,
0.07585682719945908,
0.030615024268627167,
-0.03235063701868057,
-0.0044624097645282745,
0.16026172041893005,
-0.06889896094799042,
-0.0824510008096695,
-0.1482820063829422,
0.24440884590148926,
-0.004484524950385094,
0.02469649910926819,
0.016924837604165077,
-0.0719451829791069,
-0.02020893804728985,
0.14866788685321808,
0.14540259540081024,
-0.013256039470434189,
-0.020574292168021202,
0.08530598878860474,
-0.008792603388428688,
-0.015904806554317474,
0.1291416734457016,
0.059608325362205505,
-0.01109897531569004,
-0.040610287338495255,
-0.02519174851477146,
0.008747749961912632,
-0.023441942408680916,
-0.06906811147928238,
0.09328141063451767,
-0.0008989017806015909,
-0.02385626547038555,
-0.008398476056754589,
0.07405497878789902,
-0.09624660760164261,
-0.11350452154874802,
0.08462338894605637,
-0.20972317457199097,
-0.17959685623645782,
-0.026933465152978897,
0.03721853345632553,
0.02352328598499298,
0.035972557961940765,
0.0008134087547659874,
-0.029279641807079315,
0.1057269275188446,
-0.04577279090881348,
-0.024142857640981674,
-0.11819765716791153,
0.01882881298661232,
-0.0036444601137191057,
0.19615444540977478,
-0.005952273029834032,
0.05034113675355911,
0.15616090595722198,
0.01565021090209484,
-0.09022931754589081,
0.05541858822107315,
0.08749906718730927,
-0.10812214016914368,
0.04759380593895912,
0.08137248456478119,
-0.03303251042962074,
0.17094343900680542,
0.096413254737854,
-0.09690385311841965,
0.018128428608179092,
-0.00968437921255827,
-0.06005193293094635,
-0.03721386566758156,
-0.03673384711146355,
-0.06727863848209381,
0.11734717339277267,
0.21761107444763184,
-0.03336845710873604,
-0.006169338244944811,
-0.03850746899843216,
0.04258594661951065,
0.030194275081157684,
0.031009629368782043,
-0.06799587607383728,
-0.21746936440467834,
0.08488135039806366,
0.02750490792095661,
0.06501641869544983,
-0.14327867329120636,
-0.07983522117137909,
0.010997943580150604,
-0.015723800286650658,
-0.11510433256626129,
0.11967066675424576,
0.055076804012060165,
0.02954104356467724,
-0.0601578988134861,
-0.16011112928390503,
-0.028206149116158485,
0.18785448372364044,
-0.11597815155982971,
-0.07200999557971954
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-110k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:34:37+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | skypro1111/mbart-large-50-verbalization-131k-ckpt | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:36:42+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Hu - cleaned
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 hu cleaned dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0982
- Wer Ortho: 11.0788
- Wer: 10.2129
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.25e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:|
| 0.0904 | 1.33 | 200 | 0.1232 | 15.4117 | 14.4286 |
| 0.0316 | 2.66 | 400 | 0.0950 | 11.8467 | 10.9171 |
| 0.0136 | 3.99 | 600 | 0.0950 | 11.3208 | 10.4348 |
| 0.0047 | 5.32 | 800 | 0.0959 | 10.9079 | 10.0424 |
| 0.0029 | 6.64 | 1000 | 0.0982 | 11.0788 | 10.2129 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"language": ["hu"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_16_0"], "metrics": ["wer"], "widget": [{"example_title": "Sample 1", "src": "https://huggingface.co/datasets/Hungarians/samples/resolve/main/Sample1.flac"}, {"example_title": "Sample 2", "src": "https://huggingface.co/datasets/Hungarians/samples/resolve/main/Sample2.flac"}], "base_model": "openai/whisper-small", "model-index": [{"name": "Whisper Small Hu Cleaned", "results": []}]} | automatic-speech-recognition | Hungarians/Whisper-small-hu-cleaned | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"generated_from_trainer",
"hu",
"dataset:mozilla-foundation/common_voice_16_0",
"base_model:openai/whisper-small",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:36:42+00:00 | [] | [
"hu"
] | TAGS
#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #hu #dataset-mozilla-foundation/common_voice_16_0 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us
| Whisper Small Hu - cleaned
==========================
This model is a fine-tuned version of openai/whisper-small on the Common Voice 16.1 hu cleaned dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0982
* Wer Ortho: 11.0788
* Wer: 10.2129
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1.25e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 256
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: constant\_with\_warmup
* lr\_scheduler\_warmup\_steps: 100
* training\_steps: 1000
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.25e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #hu #dataset-mozilla-foundation/common_voice_16_0 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.25e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
90,
166,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #hu #dataset-mozilla-foundation/common_voice_16_0 #base_model-openai/whisper-small #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1.25e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 256\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: constant\\_with\\_warmup\n* lr\\_scheduler\\_warmup\\_steps: 100\n* training\\_steps: 1000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.12337280809879303,
0.16208380460739136,
-0.004962134640663862,
0.05676334351301193,
0.07400676608085632,
0.013834904879331589,
0.10285216569900513,
0.14870968461036682,
-0.03231041133403778,
0.11430463939905167,
0.09369154274463654,
0.06798884272575378,
0.07843432575464249,
0.15342266857624054,
-0.02075023576617241,
-0.27450475096702576,
0.019056707620620728,
-0.0354403592646122,
-0.12684161961078644,
0.11251755803823471,
0.0774054080247879,
-0.1035517081618309,
0.025305502116680145,
-0.0038724439218640327,
-0.060912828892469406,
-0.03655610978603363,
-0.05518283694982529,
-0.049333907663822174,
0.10438637435436249,
0.012008900754153728,
0.04169590026140213,
0.06409473717212677,
0.10251163691282272,
-0.2675316631793976,
0.008891175501048565,
0.05258084461092949,
0.04199976846575737,
0.0729624405503273,
0.08403804898262024,
-0.01022659707814455,
0.08642803132534027,
-0.08641080558300018,
0.05898391082882881,
0.05046764388680458,
-0.09302765130996704,
-0.25779297947883606,
-0.0734386220574379,
0.045068833976984024,
0.12939590215682983,
0.05038795247673988,
-0.024053381755948067,
0.051305804401636124,
-0.07661514729261398,
0.0766252875328064,
0.2539258301258087,
-0.24652338027954102,
-0.05617145448923111,
-0.0379779115319252,
0.036739714443683624,
0.032857563346624374,
-0.11688821762800217,
-0.01450244802981615,
0.01775897480547428,
0.0035945645067840815,
0.10611755400896072,
0.024577392265200615,
0.02602415345609188,
-0.007604694459587336,
-0.12555204331874847,
-0.036759644746780396,
0.09396305680274963,
0.07673970609903336,
-0.02164590172469616,
-0.13301986455917358,
-0.041376177221536636,
-0.2024414986371994,
-0.060835447162389755,
0.015904918313026428,
0.03413594886660576,
-0.0519716702401638,
-0.050592090934515,
0.04239412024617195,
-0.04639498144388199,
-0.07398226112127304,
0.060927316546440125,
0.15520474314689636,
0.05838919058442116,
-0.03322233632206917,
0.037422437220811844,
0.09562446177005768,
0.08726230263710022,
-0.17239680886268616,
-0.007156271953135729,
0.042728979140520096,
-0.11363545060157776,
0.0016949839191511273,
-0.012395470403134823,
0.04436401277780533,
0.0693826973438263,
0.17227113246917725,
-0.009730665944516659,
0.095394067466259,
0.04986971616744995,
0.009426305070519447,
-0.0735776424407959,
0.13825081288814545,
-0.0717581957578659,
-0.09536271542310715,
-0.024166423827409744,
0.14495402574539185,
0.02084273099899292,
-0.013568042777478695,
-0.05734242498874664,
0.02746337652206421,
0.11157883703708649,
0.06123215705156326,
-0.009453370235860348,
0.03339766338467598,
-0.06968673318624496,
-0.008546924218535423,
0.011626306921243668,
-0.12191630154848099,
0.03205375745892525,
0.059255827218294144,
-0.06497688591480255,
-0.04391463100910187,
-0.006621230393648148,
0.00615718076005578,
-0.014460723847150803,
0.0893276259303093,
-0.054359566420316696,
-0.030262257903814316,
-0.0526156909763813,
-0.061399027705192566,
0.032968681305646896,
-0.08418358862400055,
0.00404270039871335,
-0.04262617230415344,
-0.07287890464067459,
-0.057554807513952255,
0.06181931495666504,
-0.073786161839962,
-0.09111522138118744,
-0.07916904240846634,
-0.09302574396133423,
0.05538929998874664,
-0.009417750872671604,
0.1616435945034027,
-0.060500845313072205,
0.09402257949113846,
-0.0035128395538777113,
0.07550671696662903,
0.1089765876531601,
0.05393189191818237,
-0.033815205097198486,
0.06867551803588867,
-0.14866313338279724,
0.09211970120668411,
-0.10845959186553955,
0.053472135215997696,
-0.14512097835540771,
-0.08903250843286514,
0.009222307242453098,
-0.00974744837731123,
0.09522306174039841,
0.15465161204338074,
-0.18427038192749023,
-0.061557233333587646,
0.1674593985080719,
-0.06590364128351212,
-0.08964641392230988,
0.13248732686042786,
-0.012103580869734287,
-0.03706299141049385,
0.007869374006986618,
0.1920209527015686,
0.10157059878110886,
-0.09455756098031998,
0.01577182300388813,
-0.029038678854703903,
0.11325203627347946,
0.03748142719268799,
0.0847887173295021,
-0.031428221613168716,
0.0302723441272974,
0.003642529947683215,
-0.031052786856889725,
0.047938570380210876,
-0.08227208256721497,
-0.08748434484004974,
-0.00953997578471899,
-0.087323397397995,
0.00468693720176816,
0.04295598715543747,
0.005017023533582687,
-0.08392678946256638,
-0.13434986770153046,
-0.03784501180052757,
0.10628791153430939,
-0.09654896706342697,
0.015709511935710907,
-0.08190438896417618,
0.05839844420552254,
0.024537667632102966,
-0.004818679299205542,
-0.1248110756278038,
-0.019084032624959946,
0.043467406183481216,
-0.07414282858371735,
-0.0005680462345480919,
-0.04244203120470047,
0.08291254192590714,
0.05495684966444969,
-0.03764864429831505,
-0.07106386870145798,
-0.024168018251657486,
0.00683936569839716,
-0.06171309947967529,
-0.2497098743915558,
-0.07475630193948746,
-0.02893032133579254,
0.18117469549179077,
-0.190910205245018,
0.010684189386665821,
0.01714472845196724,
0.12815141677856445,
0.01899556629359722,
-0.05549965426325798,
0.030052922666072845,
0.03225574269890785,
-0.004888508468866348,
-0.0791454091668129,
0.030807191506028175,
0.007154842372983694,
-0.12028026580810547,
0.032997291535139084,
-0.13753648102283478,
0.07247991114854813,
0.06962454319000244,
0.09383024275302887,
-0.09532617032527924,
-0.06098867580294609,
-0.06748230755329132,
-0.06094435974955559,
-0.0008368364069610834,
0.01894424855709076,
0.16722744703292847,
0.033010873943567276,
0.09042023122310638,
-0.08327129483222961,
-0.06655320525169373,
0.030482107773423195,
0.0016371820820495486,
-0.0013867294183000922,
0.16154402494430542,
0.05741318687796593,
-0.046755604445934296,
0.08910593390464783,
0.05739862471818924,
-0.04305494949221611,
0.10694189369678497,
-0.08736733347177505,
-0.0838252604007721,
-0.0367555133998394,
0.04715012013912201,
0.024005789309740067,
0.12565113604068756,
-0.12433969229459763,
0.00512581504881382,
0.02935650385916233,
0.0020434900652617216,
0.011131583712995052,
-0.1750510334968567,
-0.011140392161905766,
0.03323123976588249,
-0.07954664528369904,
-0.012399156577885151,
-0.003680533031001687,
-0.00521483039483428,
0.08853372186422348,
0.002706834813579917,
-0.08731112629175186,
-0.03398112952709198,
-0.03544049337506294,
-0.07509833574295044,
0.18043656647205353,
-0.08954593539237976,
-0.12385281175374985,
-0.09051039069890976,
0.00004972340684616938,
0.007286537438631058,
-0.025395061820745468,
0.028280064463615417,
-0.08402813225984573,
-0.0419091060757637,
-0.08180017024278641,
0.00032036073389463127,
0.003709345357492566,
0.03764498978853226,
0.03691308945417404,
0.0076448325999081135,
0.06925322115421295,
-0.08268608897924423,
0.01767907477915287,
-0.021466031670570374,
-0.019511133432388306,
0.027258921414613724,
0.041317928582429886,
0.08205181360244751,
0.14722958207130432,
0.047568514943122864,
0.028379466384649277,
-0.01508682407438755,
0.16775500774383545,
-0.11494524776935577,
0.026580043137073517,
0.09245483577251434,
-0.007524244021624327,
0.051753196865320206,
0.17757068574428558,
0.039041753858327866,
-0.0893334224820137,
0.0037359646521508694,
0.03914154693484306,
-0.016579534858465195,
-0.20802834630012512,
-0.032101571559906006,
-0.044174931943416595,
-0.02036462165415287,
0.10943830758333206,
0.040427710860967636,
-0.049223095178604126,
0.02307736687362194,
-0.016142593696713448,
-0.06925506889820099,
0.03905801847577095,
0.03994598612189293,
0.029038134962320328,
0.03573160246014595,
0.09926174581050873,
-0.003648733254522085,
-0.03459258750081062,
0.015071561560034752,
0.006664926651865244,
0.22286298871040344,
-0.030990121886134148,
0.19463570415973663,
0.0380929596722126,
0.14214202761650085,
0.0003426837793085724,
0.06009221449494362,
0.009778010658919811,
-0.008972330950200558,
0.011803464964032173,
-0.05059877410531044,
-0.026235520839691162,
0.029976971447467804,
0.07135212421417236,
0.0149431973695755,
-0.09830600768327713,
0.0516667477786541,
0.029011309146881104,
0.35062897205352783,
0.08746174722909927,
-0.2717669904232025,
-0.06245081126689911,
0.008725164458155632,
-0.07479513436555862,
-0.03851091116666794,
0.03852939233183861,
0.12775015830993652,
-0.0706658735871315,
0.07075710594654083,
-0.05572986975312233,
0.07186813652515411,
-0.08518293499946594,
-0.001487927744165063,
0.06917978823184967,
0.1040075495839119,
0.004320845939218998,
0.04923703894019127,
-0.21273615956306458,
0.2843317687511444,
-0.022099191322922707,
0.058960020542144775,
-0.049498651176691055,
0.027391143143177032,
0.008385155349969864,
-0.04575220122933388,
0.1092609092593193,
-0.004847902338951826,
-0.09632101655006409,
-0.1495325118303299,
-0.147231787443161,
0.02544902265071869,
0.12658065557479858,
-0.06408074498176575,
0.11395537853240967,
-0.03052375651896,
-0.045388657599687576,
0.042281828820705414,
-0.0877750813961029,
-0.07582461088895798,
-0.1099284440279007,
0.02719300426542759,
-0.002878286177292466,
0.03080703690648079,
-0.09162771701812744,
-0.10027255117893219,
-0.07539772987365723,
0.13466182351112366,
-0.08397571742534637,
-0.04788665845990181,
-0.13339218497276306,
0.030972719192504883,
0.18632808327674866,
-0.06826017051935196,
0.04191095754504204,
0.013392750173807144,
0.11197560280561447,
0.02390020340681076,
-0.00984292570501566,
0.10926493257284164,
-0.08350970596075058,
-0.22102324664592743,
-0.04957021772861481,
0.19063353538513184,
0.047822970896959305,
0.06393253058195114,
-0.025961244478821754,
0.024354415014386177,
-0.00016284675803035498,
-0.07692136615514755,
0.07117006182670593,
0.022539133206009865,
0.012899596244096756,
0.01601051539182663,
-0.03853010758757591,
0.039241973310709,
-0.06989926844835281,
-0.04312783107161522,
0.10867521911859512,
0.30369025468826294,
-0.09781648218631744,
0.09264077246189117,
0.05252562835812569,
-0.03916602209210396,
-0.17025098204612732,
-0.048855699598789215,
0.1274925321340561,
0.03276222199201584,
-0.01934964209794998,
-0.2007564753293991,
0.03839319571852684,
0.06689784675836563,
-0.025764016434550285,
0.07906071096658707,
-0.3328120708465576,
-0.13350647687911987,
0.10773088037967682,
0.06996113061904907,
-0.010489736683666706,
-0.1485891044139862,
-0.05962274223566055,
0.0015831971541047096,
-0.06832530349493027,
0.045143987983465195,
0.013526341877877712,
0.11810977756977081,
-0.00958070158958435,
0.006655271165072918,
0.03142065927386284,
-0.05999517813324928,
0.13886477053165436,
0.005307807587087154,
0.04660205915570259,
-0.023545516654849052,
0.024279844015836716,
-0.03083256259560585,
-0.06559088826179504,
0.010991159826517105,
-0.12227119505405426,
0.030687671154737473,
-0.0993756428360939,
-0.019493605941534042,
-0.08865133672952652,
0.023185867816209793,
-0.04925498738884926,
-0.021450819447636604,
-0.013203684240579605,
0.05110040679574013,
0.10859892517328262,
0.0014739672187715769,
0.08206092566251755,
-0.03659220412373543,
0.11323276907205582,
0.12806110084056854,
0.1031186655163765,
-0.02452760376036167,
-0.08191748708486557,
-0.001484441920183599,
-0.00301348720677197,
0.02673523873090744,
-0.08831900358200073,
0.03687732666730881,
0.13828496634960175,
0.05283409357070923,
0.11583691835403442,
0.04274902492761612,
-0.07487304508686066,
-0.025015927851200104,
0.06566675007343292,
-0.09090810269117355,
-0.17054037749767303,
0.0006506714853458107,
0.019204722717404366,
-0.13678507506847382,
0.0015779794193804264,
0.08805014938116074,
-0.036555010825395584,
-0.009883658960461617,
0.011825921945273876,
0.0666661262512207,
0.001475064316764474,
0.22436800599098206,
0.025551678612828255,
0.10198703408241272,
-0.10584977269172668,
0.09565028548240662,
0.03473855182528496,
-0.10088812559843063,
0.05329057201743126,
0.0960017666220665,
-0.07073669880628586,
-0.010098705068230629,
0.07808398455381393,
0.052994322031736374,
0.07113058120012283,
-0.033266667276620865,
-0.12243038415908813,
-0.15097707509994507,
0.0856780856847763,
0.09831281006336212,
0.022357702255249023,
0.02748856693506241,
0.00323114194907248,
0.022336697205901146,
-0.09336425364017487,
0.12302988022565842,
0.10653837025165558,
0.06116124987602234,
-0.10857085138559341,
0.10142621397972107,
-0.004377313889563084,
0.002750295214354992,
-0.002929294016212225,
0.019397137686610222,
-0.1097971647977829,
0.002954092575237155,
-0.1010616272687912,
-0.000783943512942642,
-0.060532908886671066,
0.006411148700863123,
0.0022455365397036076,
-0.05467306077480316,
-0.043013330549001694,
0.013844774104654789,
-0.10875782370567322,
-0.045409850776195526,
-0.02779197134077549,
0.05467391759157181,
-0.10046244412660599,
-0.025794871151447296,
0.04586518183350563,
-0.13779227435588837,
0.11744623631238937,
0.038358137011528015,
0.010927394963800907,
0.0031512193381786346,
-0.0839814692735672,
-0.008594107814133167,
0.020313633605837822,
-0.0011799274943768978,
0.02374010905623436,
-0.20636789500713348,
-0.01802772656083107,
-0.04375264048576355,
-0.011889905668795109,
-0.020396122708916664,
0.03958045691251755,
-0.1234411746263504,
0.008214344270527363,
-0.04099450260400772,
-0.034896351397037506,
-0.057972922921180725,
0.03263507038354874,
0.06656850874423981,
0.011029030196368694,
0.13883894681930542,
-0.0745541900396347,
0.06422964483499527,
-0.21332219243049622,
-0.0022007038351148367,
-0.013403136283159256,
-0.053742602467536926,
-0.07209386676549911,
-0.002947188215330243,
0.10651785880327225,
-0.05534561350941658,
0.09193987399339676,
-0.06312812864780426,
0.00010791754175443202,
0.01744956336915493,
-0.07860067486763,
0.022856391966342926,
0.06387903541326523,
0.17136570811271667,
0.030371908098459244,
-0.03219052404165268,
0.07729630172252655,
-0.02032461389899254,
0.036949560046195984,
0.06850016862154007,
0.1615453064441681,
0.1570233851671219,
0.05887914076447487,
0.06064365804195404,
0.07508696615695953,
-0.14848411083221436,
-0.12285491079092026,
0.1897120177745819,
-0.06893206387758255,
0.12444441020488739,
-0.02748681791126728,
0.22741228342056274,
0.092311330139637,
-0.18727944791316986,
0.06332451850175858,
-0.03535427153110504,
-0.08667730540037155,
-0.11014827340841293,
-0.09739650040864944,
-0.08915575593709946,
-0.14890410006046295,
0.017445312812924385,
-0.09482292830944061,
0.04219032824039459,
0.03591465204954147,
0.04152761027216911,
0.04972323775291443,
0.10564803332090378,
0.06366948783397675,
0.014769336208701134,
0.09549809247255325,
0.04121359810233116,
-0.03365859389305115,
-0.029526354745030403,
-0.10550063848495483,
0.0456945076584816,
-0.00707524036988616,
0.044849082827568054,
-0.04009382054209709,
-0.07890552282333374,
0.06494791060686111,
0.014844824559986591,
-0.10071112960577011,
0.024882478639483452,
-0.03659065440297127,
0.07299358397722244,
0.061151932924985886,
0.0432431697845459,
-0.0070928484201431274,
-0.02684198133647442,
0.224867582321167,
-0.08843297511339188,
-0.07769014686346054,
-0.12700417637825012,
0.21212370693683624,
-0.018185636028647423,
-0.005104230251163244,
0.03739292174577713,
-0.061045289039611816,
-0.01846066489815712,
0.14900130033493042,
0.15903344750404358,
-0.04377686232328415,
-0.013681044802069664,
0.00478976359590888,
-0.007835977710783482,
-0.028636418282985687,
0.08010274916887283,
0.12144514173269272,
0.0327361524105072,
-0.056264523416757584,
-0.036796458065509796,
-0.03119175136089325,
-0.0673232302069664,
-0.05741450563073158,
0.10711858421564102,
0.013548417016863823,
-0.0008850463200360537,
-0.03541284054517746,
0.09665736556053162,
-0.07658011466264725,
-0.16966548562049866,
0.01428935956209898,
-0.1849830448627472,
-0.19509606063365936,
-0.04710482060909271,
0.05359480157494545,
0.0378650538623333,
0.04197749122977257,
0.02168845571577549,
-0.02655772492289543,
0.09973470121622086,
0.008288092911243439,
-0.03126584365963936,
-0.06703337281942368,
0.05819818377494812,
-0.10235898196697235,
0.204900324344635,
-0.022110285237431526,
0.015760060399770737,
0.11678294837474823,
0.04104090481996536,
-0.11366106569766998,
0.03717566281557083,
0.09450262039899826,
-0.13859449326992035,
0.048371147364377975,
0.18477250635623932,
-0.030512461438775063,
0.10168219357728958,
0.044017620384693146,
-0.07439279556274414,
0.0003622784570325166,
-0.08083437383174896,
-0.04947824776172638,
-0.060127679258584976,
0.004005126655101776,
-0.02920052781701088,
0.14426377415657043,
0.20514973998069763,
-0.0784292221069336,
-0.011334356851875782,
-0.048795588314533234,
0.0010092488955706358,
0.033950258046388626,
0.09551633894443512,
-0.01982938125729561,
-0.26596346497535706,
0.020305434241890907,
-0.01436520554125309,
0.038409966975450516,
-0.17064736783504486,
-0.07907197624444962,
0.019244423136115074,
-0.047881197184324265,
-0.06958979368209839,
0.11613388359546661,
0.0678880363702774,
0.051848169416189194,
-0.052839312702417374,
-0.057929959148168564,
-0.02372060716152191,
0.1754431128501892,
-0.18271861970424652,
-0.045000284910202026
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# emotion_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3694
- Accuracy: 0.55
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 1.9385 | 0.35 |
| No log | 2.0 | 80 | 1.6433 | 0.3875 |
| No log | 3.0 | 120 | 1.4689 | 0.5375 |
| No log | 4.0 | 160 | 1.3533 | 0.55 |
| No log | 5.0 | 200 | 1.3162 | 0.5813 |
| No log | 6.0 | 240 | 1.3131 | 0.5437 |
| No log | 7.0 | 280 | 1.2160 | 0.6 |
| No log | 8.0 | 320 | 1.2660 | 0.5437 |
| No log | 9.0 | 360 | 1.2594 | 0.55 |
| No log | 10.0 | 400 | 1.1873 | 0.5687 |
| No log | 11.0 | 440 | 1.1169 | 0.5875 |
| No log | 12.0 | 480 | 1.2015 | 0.5687 |
| 1.125 | 13.0 | 520 | 1.2653 | 0.5375 |
| 1.125 | 14.0 | 560 | 1.2801 | 0.5563 |
| 1.125 | 15.0 | 600 | 1.2304 | 0.5563 |
| 1.125 | 16.0 | 640 | 1.2341 | 0.5437 |
| 1.125 | 17.0 | 680 | 1.2981 | 0.5312 |
| 1.125 | 18.0 | 720 | 1.3277 | 0.5687 |
| 1.125 | 19.0 | 760 | 1.2174 | 0.5875 |
| 1.125 | 20.0 | 800 | 1.1810 | 0.6 |
| 1.125 | 21.0 | 840 | 1.2280 | 0.5687 |
| 1.125 | 22.0 | 880 | 1.3576 | 0.525 |
| 1.125 | 23.0 | 920 | 1.3897 | 0.5375 |
| 1.125 | 24.0 | 960 | 1.3216 | 0.5625 |
| 0.3612 | 25.0 | 1000 | 1.3033 | 0.6062 |
| 0.3612 | 26.0 | 1040 | 1.3501 | 0.5625 |
| 0.3612 | 27.0 | 1080 | 1.2310 | 0.575 |
| 0.3612 | 28.0 | 1120 | 1.2495 | 0.6062 |
| 0.3612 | 29.0 | 1160 | 1.2974 | 0.5875 |
| 0.3612 | 30.0 | 1200 | 1.2985 | 0.5813 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "emotion_classification", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.55, "name": "Accuracy"}]}]}]} | image-classification | Marxulia/emotion_classification | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:36:54+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| emotion\_classification
=======================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 1.3694
* Accuracy: 0.55
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 4e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 30
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
86,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.11873245984315872,
0.13550062477588654,
-0.002548842690885067,
0.12001879513263702,
0.14039090275764465,
0.0044062030501663685,
0.14137189090251923,
0.13895264267921448,
-0.07186538726091385,
0.08016026765108109,
0.14894288778305054,
0.13030533492565155,
0.030205508694052696,
0.18524323403835297,
-0.04914204031229019,
-0.2228427529335022,
0.025972511619329453,
0.04759741947054863,
-0.04930886998772621,
0.1216738224029541,
0.08754833042621613,
-0.13751772046089172,
0.1180194690823555,
0.025622695684432983,
-0.20250041782855988,
-0.008233713917434216,
0.028857268393039703,
-0.05753800645470619,
0.1170787364244461,
0.03663819655776024,
0.09194671362638474,
0.027661636471748352,
0.054032545536756516,
-0.14859525859355927,
0.010507342405617237,
0.07526041567325592,
-0.008467982523143291,
0.09704278409481049,
0.054599612951278687,
0.011539788916707039,
0.013353164307773113,
-0.09397675842046738,
0.03905405104160309,
0.025643477216362953,
-0.11287838965654373,
-0.23393329977989197,
-0.08663586527109146,
0.05761865898966789,
0.07604403048753738,
0.07204854488372803,
-0.002056470140814781,
0.14562825858592987,
-0.005467590875923634,
0.09759331494569778,
0.22914275527000427,
-0.27521875500679016,
-0.0761607363820076,
0.036813829094171524,
0.017865411937236786,
0.07665089517831802,
-0.10203210264444351,
0.012536343187093735,
0.05851605162024498,
0.01456903014332056,
0.15287598967552185,
-0.006051913369446993,
-0.010805406607687473,
-0.026666542515158653,
-0.12473949790000916,
-0.06333645433187485,
0.19253766536712646,
0.0903417244553566,
-0.04819176346063614,
-0.08149867504835129,
-0.08086990565061569,
-0.137924924492836,
-0.0470585972070694,
-0.008897020481526852,
0.05740145221352577,
-0.034201979637145996,
-0.06545692682266235,
-0.03503884747624397,
-0.09740087389945984,
-0.06927797198295593,
-0.014940399676561356,
0.10063036531209946,
0.05389828979969025,
0.01372574269771576,
-0.019269568845629692,
0.08115807920694351,
-0.03863271325826645,
-0.14644181728363037,
-0.006841561757028103,
0.01853380724787712,
0.025974247604608536,
-0.030359502881765366,
-0.02468995749950409,
-0.11257438361644745,
0.020712127909064293,
0.10975652188062668,
-0.07268836349248886,
0.05616731196641922,
-0.019585099071264267,
0.051734257489442825,
-0.11143101006746292,
0.19111022353172302,
-0.04909411817789078,
0.014603032730519772,
0.04043908044695854,
0.1028318777680397,
0.05209146440029144,
-0.0018476140685379505,
-0.10629982501268387,
0.017743011936545372,
0.11859466135501862,
0.005997257772833109,
-0.03531765937805176,
0.0816696435213089,
-0.061565764248371124,
-0.0290763471275568,
0.08011016249656677,
-0.08639748394489288,
0.026164164766669273,
-0.006972118280827999,
-0.0537915863096714,
-0.05627391114830971,
0.04656575992703438,
-0.011818069964647293,
-0.013476628810167313,
0.040437813848257065,
-0.10133067518472672,
0.012275105342268944,
-0.06756546348333359,
-0.10812321305274963,
0.012834525667130947,
-0.11390543729066849,
0.015124090947210789,
-0.1223316639661789,
-0.13903236389160156,
-0.013344332575798035,
0.060112375766038895,
-0.029450206086039543,
-0.050635453313589096,
-0.04022521153092384,
-0.0804821252822876,
0.027314994484186172,
0.004813135601580143,
0.0451120063662529,
-0.05739949643611908,
0.08853062987327576,
0.045542895793914795,
0.07659607380628586,
-0.022318018600344658,
0.045824334025382996,
-0.08793158829212189,
0.05778556317090988,
-0.20407718420028687,
0.03644212707877159,
-0.05696265399456024,
0.08719796687364578,
-0.1187496930360794,
-0.08723029494285583,
0.0009414242231287062,
-0.019817881286144257,
0.06524956971406937,
0.10766813158988953,
-0.13839063048362732,
-0.057869862765073776,
0.17145004868507385,
-0.10174240171909332,
-0.15601719915866852,
0.1131708025932312,
-0.030916579067707062,
0.028535787016153336,
0.05560213327407837,
0.19609355926513672,
0.07881118357181549,
-0.10878843814134598,
-0.006720358971506357,
-0.03102327138185501,
0.033522456884384155,
-0.05464361235499382,
0.07627172768115997,
-0.0008843872346915305,
-0.008928908966481686,
0.021420657634735107,
-0.09404764324426651,
0.06356347352266312,
-0.072784923017025,
-0.08423110842704773,
-0.06549277901649475,
-0.08829627931118011,
0.041235487908124924,
0.05941331386566162,
0.06469046324491501,
-0.10153057426214218,
-0.09141673892736435,
0.028334543108940125,
0.08208384364843369,
-0.09501460939645767,
0.017655793577432632,
-0.08164516091346741,
0.11159996688365936,
-0.10866628587245941,
0.000718947034329176,
-0.13485775887966156,
-0.03168309107422829,
0.048902206122875214,
-0.06038246303796768,
-0.007925326935946941,
-0.036976031959056854,
0.07359302043914795,
0.06281200051307678,
-0.06373417377471924,
-0.07352937012910843,
-0.03981451690196991,
-0.0031180286314338446,
-0.09838869422674179,
-0.19286412000656128,
-0.02475256472826004,
-0.027023471891880035,
0.10501936078071594,
-0.21706821024417877,
0.041159488260746,
0.05195371434092522,
0.10080226510763168,
0.05904218181967735,
-0.03126908466219902,
0.0042741806246340275,
0.017851419746875763,
-0.039991989731788635,
-0.09031812101602554,
0.06267400830984116,
0.015773555263876915,
-0.06846220791339874,
0.0072299279272556305,
-0.10033591091632843,
0.17374633252620697,
0.13158077001571655,
-0.035225097090005875,
-0.06369266659021378,
-0.0037812856025993824,
-0.043608326464891434,
-0.034532807767391205,
-0.03572503477334976,
0.008240907453000546,
0.08158225566148758,
-0.008600069209933281,
0.16276994347572327,
-0.10509193688631058,
-0.025926679372787476,
0.05715139955282211,
-0.03033570572733879,
-0.036308858543634415,
0.08838851004838943,
0.06532688438892365,
-0.13836365938186646,
0.1471432000398636,
0.16571323573589325,
-0.0669230967760086,
0.1255473494529724,
-0.04781966283917427,
-0.06184692680835724,
-0.024233441799879074,
0.03984619677066803,
0.032651543617248535,
0.13033680617809296,
-0.11630617082118988,
-0.013432730920612812,
0.024030284956097603,
0.002202945062890649,
-0.008495711721479893,
-0.20137040317058563,
-0.008448533713817596,
0.03849136084318161,
-0.06039580702781677,
0.0264508668333292,
-0.006174297071993351,
-0.021711796522140503,
0.08479122072458267,
0.009311255998909473,
-0.042927078902721405,
0.04701116681098938,
0.010620830580592155,
-0.06999784708023071,
0.1944143921136856,
-0.08338739722967148,
-0.2154434770345688,
-0.13346517086029053,
-0.0223834328353405,
-0.08034880459308624,
0.0220839474350214,
0.05695178359746933,
-0.09423036128282547,
-0.05728483572602272,
-0.10379058867692947,
-0.01567581295967102,
0.03077327460050583,
0.03906533494591713,
0.04298818111419678,
-0.001954476349055767,
0.13140565156936646,
-0.09853508323431015,
-0.008662141859531403,
-0.010767338797450066,
-0.021803392097353935,
0.04765576124191284,
0.019478460773825645,
0.12088657915592194,
0.08635230362415314,
-0.027586055919528008,
0.03429432585835457,
-0.020255668088793755,
0.24173298478126526,
-0.07357404381036758,
-0.001085475436411798,
0.15291211009025574,
0.018799811601638794,
0.0681704506278038,
0.12939710915088654,
0.03981081396341324,
-0.1030728667974472,
0.008186732418835163,
0.02198624797165394,
-0.026675930246710777,
-0.185756117105484,
-0.017649926245212555,
-0.039467114955186844,
-0.006299028638750315,
0.1518956571817398,
0.05521412566304207,
0.059286706149578094,
0.09333830326795578,
0.00007756434933980927,
0.09039140492677689,
-0.006469433195888996,
0.08808789402246475,
0.11013094335794449,
0.04735111445188522,
0.10956791788339615,
-0.04499374330043793,
-0.029333101585507393,
0.032997481524944305,
0.01605381816625595,
0.2237498164176941,
0.00042531549115665257,
0.17552940547466278,
0.047200094908475876,
0.18856513500213623,
0.018458448350429535,
0.05568094179034233,
-0.021902695298194885,
-0.027090735733509064,
-0.008994432166218758,
-0.0547860711812973,
-0.021674832329154015,
0.035722263157367706,
-0.0510462261736393,
0.06602205336093903,
-0.09193611890077591,
0.04197363182902336,
0.06363227963447571,
0.26475074887275696,
0.03870507329702377,
-0.38037681579589844,
-0.09619610756635666,
-0.005573412869125605,
-0.01419796235859394,
-0.06384299695491791,
0.0029764079954475164,
0.14404581487178802,
-0.06090973690152168,
0.060801003128290176,
-0.10375139117240906,
0.08214358985424042,
-0.05346321314573288,
0.021845480427145958,
0.07716384530067444,
0.08868768066167831,
0.008121965453028679,
0.05597565323114395,
-0.24557341635227203,
0.25777512788772583,
0.016016386449337006,
0.06308434158563614,
-0.04711221158504486,
0.013007386587560177,
0.0366213321685791,
0.10622423887252808,
0.10990841686725616,
-0.004991903901100159,
-0.011287868954241276,
-0.17499198019504547,
-0.08872585743665695,
0.005494754295796156,
0.07178656756877899,
-0.04362324997782707,
0.08247075229883194,
-0.03044084832072258,
-0.024055996909737587,
0.050400376319885254,
-0.005464659538120031,
-0.08882926404476166,
-0.09412069618701935,
-0.00882630329579115,
0.04419663920998573,
0.014536446891725063,
-0.09533435106277466,
-0.09712807834148407,
-0.10507503896951675,
0.13476252555847168,
-0.013015937991440296,
-0.041419610381126404,
-0.12003665417432785,
0.0872448980808258,
0.05800991132855415,
-0.09214777499437332,
0.07904615253210068,
-0.029102355241775513,
0.1374296396970749,
0.029877090826630592,
-0.0615178607404232,
0.10871776938438416,
-0.059326525777578354,
-0.17241349816322327,
-0.04690400883555412,
0.10540970414876938,
-0.019077321514487267,
0.02471543662250042,
0.0008806076366454363,
0.02874799631536007,
-0.01191825419664383,
-0.05916878953576088,
0.057382624596357346,
0.00885623786598444,
0.06031051650643349,
-0.01309974305331707,
-0.02017134428024292,
0.009375356137752533,
-0.0631466880440712,
-0.029132302850484848,
0.13523821532726288,
0.24374401569366455,
-0.09678329527378082,
0.0041963160037994385,
0.02057604491710663,
-0.04993973672389984,
-0.19686901569366455,
0.04731922224164009,
0.06449814885854721,
0.002005628775805235,
0.02991294302046299,
-0.15457023680210114,
0.07259534299373627,
0.07958448678255081,
-0.03022824414074421,
0.09291011840105057,
-0.26300865411758423,
-0.13290368020534515,
0.08035967499017715,
0.18387416005134583,
0.06759745627641678,
-0.14497220516204834,
-0.05498469993472099,
-0.014322519302368164,
-0.09303413331508636,
0.0940057784318924,
-0.06031304970383644,
0.10524968802928925,
-0.028879640623927116,
0.0038942894898355007,
0.005763646215200424,
-0.05804948881268501,
0.12983818352222443,
-0.033046238124370575,
0.1075640395283699,
-0.05759667977690697,
-0.009467664174735546,
0.07976850122213364,
-0.07731165736913681,
0.06402109563350677,
-0.09039386361837387,
0.06342662870883942,
-0.0629279613494873,
-0.015982285141944885,
-0.07049336284399033,
0.032472237944602966,
-0.018244000151753426,
-0.02612164244055748,
-0.05159628763794899,
0.024436460807919502,
0.05106711387634277,
-0.0009748504962772131,
0.19964341819286346,
0.04919891431927681,
0.08767873048782349,
0.1373765766620636,
0.04436172917485237,
-0.07712206244468689,
-0.10011026263237,
-0.027297379449009895,
-0.027330419048666954,
0.08664829283952713,
-0.18514567613601685,
0.04973233491182327,
0.09596196562051773,
0.010730678215622902,
0.14319999516010284,
0.04585132747888565,
-0.032829880714416504,
0.018631180748343468,
0.07115045189857483,
-0.15409883856773376,
-0.15933866798877716,
-0.031245607882738113,
-0.021532336249947548,
-0.11474725604057312,
0.06281155347824097,
0.11234786361455917,
-0.08342690765857697,
0.004106671549379826,
-0.0072897253558039665,
0.014180698432028294,
-0.0031157496850937605,
0.16085776686668396,
0.08179344981908798,
0.04450354725122452,
-0.09231365472078323,
0.09737873822450638,
0.05274549871683121,
-0.10123618692159653,
0.022510303184390068,
0.026968134567141533,
-0.10528294742107391,
-0.03737178072333336,
0.06580230593681335,
0.1460268497467041,
-0.0018970349337905645,
-0.05183309689164162,
-0.14635413885116577,
-0.09367513656616211,
0.05715075880289078,
0.12311997264623642,
0.09301374107599258,
0.015225084498524666,
-0.012694132514297962,
-0.0010391093092039227,
-0.10461965203285217,
0.11805181205272675,
0.030512964352965355,
0.09717588126659393,
-0.2180895060300827,
0.05794208496809006,
0.018399110063910484,
0.03234315291047096,
-0.019636310636997223,
0.02922183834016323,
-0.09776831418275833,
-0.015432009473443031,
-0.06392765045166016,
0.04110761731863022,
-0.03678157553076744,
0.005589733365923166,
-0.007624622900038958,
-0.06848258525133133,
-0.060873035341501236,
0.041303057223558426,
-0.10001466423273087,
-0.04648025333881378,
0.03699738532304764,
0.06931984424591064,
-0.10153942555189133,
-0.02893727272748947,
0.025020092725753784,
-0.07996302843093872,
0.07942963391542435,
0.013294468633830547,
0.00029190973145887256,
0.022677002474665642,
-0.09674274176359177,
0.00941502209752798,
0.08434825390577316,
0.0031387044582515955,
0.029963627457618713,
-0.1032046228647232,
0.006579539738595486,
-0.0011157088447362185,
0.001864917459897697,
-0.008228614926338196,
0.10740697383880615,
-0.13254648447036743,
-0.023738451302051544,
-0.037495579570531845,
-0.03260813653469086,
-0.05912401154637337,
0.06343784928321838,
0.0866016149520874,
-0.0027669924311339855,
0.2003924399614334,
-0.08580312132835388,
-0.0001713152159936726,
-0.22397950291633606,
0.00406599510461092,
-0.004238029941916466,
-0.13719698786735535,
-0.12638618052005768,
-0.02872522547841072,
0.053059931844472885,
-0.0719655305147171,
0.09656976163387299,
0.015415254049003124,
0.005191822070628405,
0.03560766577720642,
0.005012895911931992,
-0.0020616042893379927,
0.025631718337535858,
0.18614739179611206,
-0.007456997409462929,
-0.02168925665318966,
0.07193704694509506,
0.018222175538539886,
0.11727346479892731,
0.08327572792768478,
0.0978793054819107,
0.1622494012117386,
-0.03922393545508385,
0.10395368933677673,
0.05063333362340927,
-0.021274974569678307,
-0.17275314033031464,
0.1011105552315712,
-0.07475398480892181,
0.14266382157802582,
-0.01190879661589861,
0.16394583880901337,
0.1212623342871666,
-0.1573030948638916,
0.02819206379354,
-0.02803235687315464,
-0.07324951142072678,
-0.07017025351524353,
-0.14212265610694885,
-0.11626097559928894,
-0.18443872034549713,
0.014942015521228313,
-0.09780102968215942,
0.006266059819608927,
0.07382446527481079,
-0.009642314165830612,
-0.023174962028861046,
0.2070995271205902,
0.04821173474192619,
-0.0027779885567724705,
0.06959155946969986,
0.0012393222423270345,
-0.06750385463237762,
-0.05856337025761604,
-0.08477654308080673,
0.03860565274953842,
-0.008537381887435913,
0.03375004976987839,
-0.02879744954407215,
-0.005466013681143522,
0.04941728338599205,
0.00046416447730734944,
-0.11077944189310074,
0.017194334417581558,
0.015923360362648964,
0.012195018120110035,
0.004150679334998131,
0.004270945675671101,
0.007712741382420063,
-0.010305187664926052,
0.18155522644519806,
-0.05505474656820297,
-0.008781650103628635,
-0.11786030977964401,
0.12566646933555603,
0.02669699117541313,
-0.016346795484423637,
0.028262456879019737,
-0.07946643233299255,
0.027116550132632256,
0.21956047415733337,
0.14684288203716278,
-0.020858317613601685,
-0.001311168889515102,
-0.0074778832495212555,
-0.02044372819364071,
-0.03019598498940468,
0.0928281620144844,
0.09268534928560257,
-0.0449187271296978,
-0.05472387745976448,
-0.02552977204322815,
-0.048988379538059235,
-0.016867157071828842,
-0.03731193020939827,
0.039078790694475174,
0.01801403984427452,
0.014862545765936375,
-0.06459508091211319,
0.04266247898340225,
0.020806359127163887,
-0.07443075627088547,
0.09069357067346573,
-0.1962963342666626,
-0.13917598128318787,
-0.03217165172100067,
0.0983763039112091,
-0.005631865933537483,
0.029183445498347282,
-0.021159518510103226,
0.016985343769192696,
0.07009748369455338,
-0.0238678976893425,
-0.0826905220746994,
-0.09726497530937195,
0.05090794712305069,
-0.13457822799682617,
0.24409092962741852,
-0.0326523594558239,
0.007486148737370968,
0.11257816851139069,
0.01808081567287445,
-0.11865375190973282,
0.05321432650089264,
0.025094181299209595,
-0.03741265460848808,
0.025483302772045135,
0.11071160435676575,
-0.02019040286540985,
0.10696619004011154,
0.033877916634082794,
-0.08921940624713898,
-0.01826130598783493,
-0.051990970969200134,
-0.04226846620440483,
-0.05683780461549759,
-0.02566009759902954,
-0.06870429217815399,
0.12506888806819916,
0.17280180752277374,
-0.04202844575047493,
-0.026252100244164467,
-0.06287478655576706,
0.037025775760412216,
0.09249255061149597,
0.013434314168989658,
-0.013882325030863285,
-0.22825710475444794,
0.017366770654916763,
0.02277689054608345,
-0.004333203192800283,
-0.21577051281929016,
-0.1104673221707344,
-0.016863631084561348,
-0.05305633321404457,
-0.0877290889620781,
0.0861673653125763,
0.11562921851873398,
0.0509134866297245,
-0.05987695977091789,
-0.04284864664077759,
-0.06850399821996689,
0.1593765914440155,
-0.1234433501958847,
-0.08579215407371521
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# agriparts-4
This model is a fine-tuned version of [malteos/gpt2-uk](https://huggingface.co/malteos/gpt2-uk) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3695
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 182 | 0.4886 |
| No log | 2.0 | 364 | 0.3933 |
| 0.7402 | 3.0 | 546 | 0.3695 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "base_model": "malteos/gpt2-uk", "model-index": [{"name": "agriparts-4", "results": []}]} | text-generation | Gan1108/agriparts-4 | [
"transformers",
"safetensors",
"gpt2",
"text-generation",
"generated_from_trainer",
"base_model:malteos/gpt2-uk",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T18:39:29+00:00 | [] | [] | TAGS
#transformers #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-malteos/gpt2-uk #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| agriparts-4
===========
This model is a fine-tuned version of malteos/gpt2-uk on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3695
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.1.2+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-malteos/gpt2-uk #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
73,
113,
4,
33
] | [
"passage: TAGS\n#transformers #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-malteos/gpt2-uk #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.0928979143500328,
0.07282734662294388,
-0.00358171621337533,
0.0843195766210556,
0.10880281031131744,
-0.002292317571118474,
0.17753741145133972,
0.1322612166404724,
-0.10905562341213226,
0.0676180049777031,
0.14209526777267456,
0.12566889822483063,
0.03713937848806381,
0.19171397387981415,
-0.07157785445451736,
-0.24544227123260498,
0.07470378279685974,
0.025964293628931046,
-0.015350384637713432,
0.11833614856004715,
0.09447159618139267,
-0.134052112698555,
0.09593567997217178,
0.015354914590716362,
-0.17440202832221985,
-0.01175922155380249,
0.01601632684469223,
-0.07945182919502258,
0.11164559423923492,
0.03433825448155403,
0.09531040489673615,
0.05740276351571083,
0.055559612810611725,
-0.1730612814426422,
0.011901697143912315,
0.04845939576625824,
-0.0005006552673876286,
0.08199557662010193,
0.05011722072958946,
-0.02296593226492405,
0.10250984132289886,
-0.06374917924404144,
0.07242018729448318,
0.022793501615524292,
-0.14833799004554749,
-0.26468148827552795,
-0.10736034065485,
0.033197514712810516,
0.08760877698659897,
0.06326962262392044,
-0.016604645177721977,
0.17530177533626556,
-0.02622557058930397,
0.10161451250314713,
0.2599634528160095,
-0.33944225311279297,
-0.05877428874373436,
0.011975917033851147,
0.06027136743068695,
0.08772878348827362,
-0.08999078720808029,
-0.010423554107546806,
0.03894943371415138,
0.02905344031751156,
0.1440460979938507,
-0.016677984967827797,
0.005353183019906282,
-0.021351972594857216,
-0.1369517743587494,
-0.06246991455554962,
0.17073465883731842,
0.03724951669573784,
-0.06706112623214722,
-0.07317959517240524,
-0.0670754611492157,
-0.15820223093032837,
-0.05835201218724251,
-0.019001025706529617,
0.04691731929779053,
-0.021044235676527023,
-0.09282276034355164,
-0.017458762973546982,
-0.0741698369383812,
-0.06566575914621353,
-0.04165460914373398,
0.1911974400281906,
0.04747297987341881,
0.00955823715776205,
-0.0364479124546051,
0.08271070569753647,
-0.07936415821313858,
-0.1525929719209671,
-0.042853593826293945,
0.005306045524775982,
0.030586376786231995,
-0.056103914976119995,
-0.03287939727306366,
-0.09603631496429443,
0.02192162349820137,
0.18344222009181976,
-0.1263224482536316,
0.06914925575256348,
-0.038915347307920456,
0.033489953726530075,
-0.085572250187397,
0.16399745643138885,
-0.017882702872157097,
0.02143586240708828,
0.02396743930876255,
0.06896945834159851,
0.05904613062739372,
-0.022353192791342735,
-0.10693901032209396,
0.038995906710624695,
0.1262529194355011,
0.03464116156101227,
-0.06709631532430649,
0.08068262040615082,
-0.0515688955783844,
0.0004920024075545371,
0.0681251585483551,
-0.09647288173437119,
0.03729484975337982,
-0.017161529511213303,
-0.047246892005205154,
-0.055815938860177994,
0.004630232695490122,
0.020710015669465065,
-0.008631903678178787,
0.09159576147794724,
-0.08113609999418259,
0.019087674096226692,
-0.07228843122720718,
-0.13934163749217987,
0.01943676546216011,
-0.07935848087072372,
0.011839772574603558,
-0.1100347563624382,
-0.15890507400035858,
0.00030410720501095057,
0.047888826578855515,
-0.04068441316485405,
-0.013088744133710861,
-0.05930964648723602,
-0.09058508276939392,
0.03628500550985336,
-0.02068857103586197,
0.029209448024630547,
-0.075368732213974,
0.09015078842639923,
0.06250452995300293,
0.08635079860687256,
-0.05414343997836113,
0.026250528171658516,
-0.10792522877454758,
0.04743790253996849,
-0.245230033993721,
0.042903099209070206,
-0.05205283686518669,
0.08335220813751221,
-0.09195969998836517,
-0.09493881464004517,
0.010487797670066357,
-0.012275057844817638,
0.09062938392162323,
0.10750532150268555,
-0.1370517760515213,
-0.06875445693731308,
0.23164701461791992,
-0.12774187326431274,
-0.15291939675807953,
0.13438314199447632,
-0.046530380845069885,
0.030470294877886772,
0.06926177442073822,
0.21489578485488892,
0.03088967129588127,
-0.11194650083780289,
-0.008570107631385326,
-0.06962297111749649,
0.03161167725920677,
-0.00938245840370655,
0.07389429211616516,
-0.00006508961814688519,
0.04904681071639061,
0.009758134372532368,
0.00020412028243299574,
0.020421456545591354,
-0.0874074399471283,
-0.07122155278921127,
-0.05465259030461311,
-0.07620430737733841,
0.043123871088027954,
0.022282086312770844,
0.06620267778635025,
-0.1566479355096817,
-0.10109167546033859,
0.056854888796806335,
0.05693235248327255,
-0.0766911655664444,
0.04212012514472008,
-0.12010230869054794,
0.12098171561956406,
-0.07467178255319595,
-0.0032810720149427652,
-0.15300564467906952,
-0.04515838250517845,
0.04056404531002045,
-0.0012205769307911396,
0.01792876049876213,
-0.0659191906452179,
0.08343501389026642,
0.09530988335609436,
-0.05648129805922508,
-0.043415531516075134,
-0.008890324272215366,
0.009579884819686413,
-0.10603941231966019,
-0.19242332875728607,
-0.01686619594693184,
-0.041621770709753036,
0.08230791985988617,
-0.1781434863805771,
0.05834360420703888,
0.08553951978683472,
0.10858149081468582,
0.05050453171133995,
-0.027089502662420273,
-0.01199878565967083,
0.0575871504843235,
-0.043342769145965576,
-0.07412008196115494,
0.04850780591368675,
0.023790033534169197,
-0.08429867774248123,
0.0033315643668174744,
-0.19197548925876617,
0.20982331037521362,
0.1431148797273636,
-0.018931884318590164,
-0.07369434088468552,
-0.020001782104372978,
-0.040805693715810776,
-0.012596785090863705,
-0.02979007177054882,
0.012096676044166088,
0.13846173882484436,
-0.003217728342860937,
0.14869458973407745,
-0.11130551993846893,
-0.045558393001556396,
0.05532228574156761,
-0.05482211709022522,
-0.005749094299972057,
0.08251923322677612,
0.0022363034076988697,
-0.13689926266670227,
0.13977742195129395,
0.16486775875091553,
-0.03347877040505409,
0.1354474127292633,
-0.05202266201376915,
-0.04652814567089081,
-0.03526175767183304,
0.021234190091490746,
0.030523667111992836,
0.1003708615899086,
-0.12037879228591919,
-0.01798734813928604,
0.014495182782411575,
0.041838377714157104,
-0.0061721401289105415,
-0.1981128454208374,
-0.004032105207443237,
0.04383813589811325,
-0.06321139633655548,
-0.037767134606838226,
-0.005100785288959742,
0.00065553531749174,
0.1019875556230545,
0.020515814423561096,
-0.05216817185282707,
0.03793521970510483,
0.01587916724383831,
-0.07524034380912781,
0.18455825746059418,
-0.1030639111995697,
-0.13444818556308746,
-0.10998626053333282,
-0.09378579258918762,
-0.058578893542289734,
0.02808501198887825,
0.0949920266866684,
-0.0815238505601883,
-0.05591267719864845,
-0.11751551181077957,
-0.014248860999941826,
0.011249622330069542,
0.026356367394328117,
0.03246261551976204,
-0.014298444613814354,
0.06105109304189682,
-0.10482873022556305,
-0.03913962095975876,
-0.016019945964217186,
-0.023284045979380608,
0.07189325988292694,
0.007009840104728937,
0.11243510246276855,
0.11128692328929901,
-0.045773595571517944,
0.03633517399430275,
-0.04727691411972046,
0.24667119979858398,
-0.07879894971847534,
-0.01984696090221405,
0.11898095160722733,
-0.005142669193446636,
0.07566298544406891,
0.1439243108034134,
0.045557569712400436,
-0.1262301355600357,
0.009725214913487434,
-0.0030342796817421913,
-0.0463741309940815,
-0.19501546025276184,
-0.012394587509334087,
-0.037290383130311966,
0.001941582653671503,
0.09714239090681076,
0.03870624676346779,
0.04268870875239372,
0.060831744223833084,
-0.004328127484768629,
0.045196983963251114,
0.03571949899196625,
0.1277155578136444,
0.1039709523320198,
0.06062931939959526,
0.14572787284851074,
-0.04929850995540619,
-0.042032599449157715,
0.04176038131117821,
-0.011437546461820602,
0.2145775854587555,
0.029335519298911095,
0.14897431433200836,
0.0496392697095871,
0.14048288762569427,
0.041366420686244965,
0.06934715062379837,
-0.012668115086853504,
-0.028752075508236885,
-0.014589055441319942,
-0.05061161890625954,
-0.0366072803735733,
0.03510969504714012,
-0.09590966999530792,
0.030606914311647415,
-0.12520691752433777,
0.00879338663071394,
0.06728704273700714,
0.2622162401676178,
0.03391645848751068,
-0.3698621988296509,
-0.11302509158849716,
0.02622876688838005,
-0.0378350205719471,
-0.046185482293367386,
0.01494693849235773,
0.09266713261604309,
-0.06099270284175873,
0.08399099856615067,
-0.07598166912794113,
0.08801516145467758,
-0.02881002053618431,
0.04117713123559952,
0.025341277942061424,
0.07610297948122025,
-0.028736166656017303,
0.03768531233072281,
-0.2862551212310791,
0.2892180383205414,
0.03488972783088684,
0.08996407687664032,
-0.046034663915634155,
0.01351519487798214,
0.014257052913308144,
0.10095103085041046,
0.07996383309364319,
-0.015666386112570763,
-0.15974192321300507,
-0.18255272507667542,
-0.060619108378887177,
0.021681565791368484,
0.12399303168058395,
0.0011872296454384923,
0.13067878782749176,
-0.01946629211306572,
0.003872669767588377,
0.050534624606370926,
-0.04564017429947853,
-0.08208009600639343,
-0.08600535988807678,
0.00836876593530178,
0.0420149527490139,
0.054100800305604935,
-0.0918242558836937,
-0.07922188937664032,
-0.08913896232843399,
0.1861339956521988,
-0.00319876242429018,
-0.06236285716295242,
-0.11885451525449753,
0.021290980279445648,
0.053765833377838135,
-0.07695738226175308,
0.041019320487976074,
-0.00937298871576786,
0.11970195919275284,
-0.0035662713926285505,
-0.05079253762960434,
0.14255666732788086,
-0.052793607115745544,
-0.19230201840400696,
-0.04585140570998192,
0.1131771057844162,
0.008340710774064064,
0.04613135755062103,
0.009893600828945637,
0.047644492238759995,
-0.007139630150049925,
-0.07803035527467728,
0.034586578607559204,
-0.004070069175213575,
0.06608652323484421,
-0.02563726156949997,
-0.012575897388160229,
0.020097315311431885,
-0.06156902760267258,
-0.027124673128128052,
0.15320193767547607,
0.3186967074871063,
-0.08081845939159393,
0.046003974974155426,
0.06266382336616516,
-0.049719177186489105,
-0.16433613002300262,
0.01801004260778427,
0.007096147630363703,
-0.013235497288405895,
-0.009027406573295593,
-0.14695125818252563,
0.023328810930252075,
0.10156482458114624,
-0.02489994838833809,
0.07042593508958817,
-0.2782703936100006,
-0.1346524953842163,
0.09238047152757645,
0.15167559683322906,
0.11966803669929504,
-0.16976198554039001,
-0.04716293513774872,
-0.03262149170041084,
-0.1278819888830185,
0.09581948071718216,
-0.12142345309257507,
0.10806440562009811,
-0.020250428467988968,
0.07060441374778748,
0.00793179590255022,
-0.05662861466407776,
0.12720420956611633,
-0.019332822412252426,
0.11199980974197388,
-0.07842115312814713,
0.03319905698299408,
0.11085918545722961,
-0.081711046397686,
0.050269950181245804,
-0.0924733430147171,
0.030235163867473602,
-0.06224559247493744,
-0.027357887476682663,
-0.04333068057894707,
0.015106333419680595,
-0.02254927158355713,
-0.048542413860559464,
-0.05982993170619011,
0.012373990379273891,
0.05301769822835922,
-0.017228135839104652,
0.19335722923278809,
-0.0038360983598977327,
0.17774556577205658,
0.14171425998210907,
0.11454083025455475,
-0.14849387109279633,
0.01638396456837654,
0.02900145761668682,
-0.03594455122947693,
0.050345540046691895,
-0.15091197192668915,
0.05195186659693718,
0.12092024832963943,
-0.004290593788027763,
0.13080669939517975,
0.0740855485200882,
-0.05135340243577957,
0.04693527892231941,
0.0630781427025795,
-0.17563962936401367,
-0.127500519156456,
0.00914133619517088,
0.03719433397054672,
-0.09542282670736313,
0.077562615275383,
0.13364966213703156,
-0.06449027359485626,
-0.011113821528851986,
-0.010707387700676918,
0.018151385709643364,
-0.020393237471580505,
0.16935180127620697,
0.013102916069328785,
0.059967804700136185,
-0.09879636019468307,
0.072811558842659,
0.038300175219774246,
-0.09267279505729675,
0.04819221794605255,
0.07993035018444061,
-0.11058074980974197,
-0.035927508026361465,
0.027485033497214317,
0.165535107254982,
-0.04953036457300186,
-0.05622238665819168,
-0.1480131596326828,
-0.13388870656490326,
0.06748922914266586,
0.20033952593803406,
0.06563588976860046,
0.016095010563731194,
-0.004523248877376318,
0.018319787457585335,
-0.11848819255828857,
0.091115802526474,
0.03421229124069214,
0.09580853581428528,
-0.13325108587741852,
0.12210015952587128,
-0.01266343891620636,
0.005235728342086077,
-0.022931069135665894,
0.018252162262797356,
-0.1270245611667633,
0.0019136262126266956,
-0.12250888347625732,
-0.0033376498613506556,
-0.06394079327583313,
-0.0030065865721553564,
-0.011458605527877808,
-0.049812376499176025,
-0.06071840226650238,
0.01493653655052185,
-0.10661361366510391,
-0.019140908494591713,
0.023285409435629845,
0.03225742653012276,
-0.12521663308143616,
-0.024530237540602684,
0.012026464566588402,
-0.08331535011529922,
0.08004001528024673,
0.04758832976222038,
-0.0028665424324572086,
0.035435888916254044,
-0.09965267032384872,
0.018355559557676315,
0.06920220702886581,
-0.017388639971613884,
0.04802675172686577,
-0.11058162152767181,
-0.01624055579304695,
0.016123618930578232,
0.026480458676815033,
0.041673850268125534,
0.10496483743190765,
-0.10964591056108475,
0.016468340530991554,
-0.007998472079634666,
-0.06014806777238846,
-0.0531521737575531,
0.046685922890901566,
0.10719386488199234,
-0.015813546255230904,
0.18522556126117706,
-0.10358469933271408,
0.0009439906571060419,
-0.19015532732009888,
0.00003570954140741378,
0.017655836418271065,
-0.148636594414711,
-0.10204602032899857,
-0.04475843533873558,
0.05322781950235367,
-0.06254620850086212,
0.14699581265449524,
-0.00710969977080822,
0.023676497861742973,
0.05587335303425789,
-0.05739143490791321,
0.0021704481914639473,
0.023511316627264023,
0.1926288902759552,
0.037864990532398224,
-0.056619200855493546,
0.049958422780036926,
0.027862563729286194,
0.09421998262405396,
0.04472748562693596,
0.1830562800168991,
0.14020873606204987,
0.009469622746109962,
0.10321883112192154,
0.03211091086268425,
-0.01894800364971161,
-0.16847194731235504,
0.046713829040527344,
-0.027697715908288956,
0.1028091311454773,
-0.006860912777483463,
0.18122641742229462,
0.17051991820335388,
-0.14712592959403992,
0.026475341990590096,
-0.029232267290353775,
-0.07326315343379974,
-0.12049630284309387,
-0.07766498625278473,
-0.11095341295003891,
-0.17796924710273743,
0.00675863167271018,
-0.12242895364761353,
0.04579387232661247,
0.04293357580900192,
0.011821376159787178,
0.006957575678825378,
0.15926222503185272,
0.010230621322989464,
0.032326944172382355,
0.04450681805610657,
-0.016214067116379738,
-0.04146994650363922,
-0.02909226156771183,
-0.1005881056189537,
0.023051200434565544,
-0.02672143466770649,
0.04509624093770981,
0.008028917945921421,
-0.01595761999487877,
0.029832590371370316,
-0.030050551518797874,
-0.11293411254882812,
0.012697414495050907,
0.0543021559715271,
0.04274653643369675,
0.014606398530304432,
0.014410627074539661,
-0.019487686455249786,
0.00014276984438765794,
0.1965530663728714,
-0.06854661554098129,
-0.06229459121823311,
-0.10429419577121735,
0.2545526921749115,
0.03404056280851364,
0.004060081671923399,
0.015271334908902645,
-0.07136877626180649,
0.02117406576871872,
0.17450587451457977,
0.1677146553993225,
-0.013616770505905151,
0.00713578425347805,
-0.04427729547023773,
-0.011395279318094254,
-0.018096262589097023,
0.08380074054002762,
0.10815763473510742,
-0.005246277898550034,
-0.06545404344797134,
-0.02383122406899929,
-0.050145216286182404,
-0.0012573178391903639,
-0.05870320647954941,
0.06282786279916763,
0.018999548628926277,
0.007570735178887844,
-0.048740632832050323,
0.05840856209397316,
-0.04285503923892975,
-0.034434184432029724,
0.022115781903266907,
-0.18523752689361572,
-0.12515664100646973,
0.011679760180413723,
0.053983092308044434,
-0.012256455607712269,
0.06033550947904587,
-0.008521107956767082,
-0.019833974540233612,
0.06260959059000015,
-0.009441273286938667,
-0.07132607698440552,
-0.08089274168014526,
0.0756644457578659,
-0.13832315802574158,
0.21178293228149414,
-0.02548881806433201,
0.02175861783325672,
0.14142945408821106,
0.02412804588675499,
-0.10480864346027374,
0.08713383227586746,
0.04030279070138931,
-0.05849488452076912,
0.0072881742380559444,
0.12529538571834564,
-0.02822960913181305,
0.10048841685056686,
0.054700616747140884,
-0.1411226987838745,
0.0038524323608726263,
-0.07173360884189606,
-0.05391063541173935,
-0.030384723097085953,
-0.038216959685087204,
-0.04497722163796425,
0.11737225949764252,
0.1679137647151947,
-0.03489197418093681,
0.014965774491429329,
-0.04551976919174194,
0.04049587622284889,
0.07783319801092148,
0.007653682958334684,
-0.036931075155735016,
-0.2825441062450409,
0.008734812960028648,
0.12719915807247162,
-0.012450161390006542,
-0.29162701964378357,
-0.09319201111793518,
-0.01296151801943779,
-0.013214189559221268,
-0.09802591800689697,
0.09198060631752014,
0.11889252811670303,
0.052652135491371155,
-0.06552404910326004,
-0.0897650197148323,
-0.06578755378723145,
0.18582116067409515,
-0.12208524346351624,
-0.07066652923822403
] |
null | null | diffusers | ### My-Pet-Dog Dreambooth model trained by rishi454 following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 21KT1A0536
Sample pictures of this concept:
| {"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]} | text-to-image | rishi454/my-pet-dog | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-13T18:41:08+00:00 | [] | [] | TAGS
#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### My-Pet-Dog Dreambooth model trained by rishi454 following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 21KT1A0536
Sample pictures of this concept:
| [
"### My-Pet-Dog Dreambooth model trained by rishi454 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21KT1A0536\n\nSample pictures of this concept:"
] | [
"TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### My-Pet-Dog Dreambooth model trained by rishi454 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21KT1A0536\n\nSample pictures of this concept:"
] | [
73,
54
] | [
"passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-Pet-Dog Dreambooth model trained by rishi454 following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21KT1A0536\n\nSample pictures of this concept:"
] | [
-0.08704987913370132,
0.10372401028871536,
-0.0012890081852674484,
-0.015422584488987923,
0.08147547394037247,
-0.010798327624797821,
0.20477662980556488,
0.007955187931656837,
0.007417664397507906,
0.030079681426286697,
0.1234947219491005,
0.09773498773574829,
0.011603914201259613,
0.1642819344997406,
-0.0050321114249527454,
-0.1393907070159912,
0.05745895951986313,
0.08252797275781631,
0.03902694582939148,
0.05131026357412338,
0.06328700482845306,
-0.08130979537963867,
0.11268356442451477,
0.0014083803398534656,
-0.15125204622745514,
-0.01134486123919487,
-0.04854709282517433,
-0.016076358035206795,
0.055182650685310364,
0.006455952767282724,
0.06178845092654228,
0.09234361350536346,
0.039995916187763214,
-0.022298160940408707,
0.04018301144242287,
0.013515869155526161,
-0.06302618980407715,
0.059473101049661636,
0.0696813240647316,
0.02058049477636814,
0.09887362271547318,
0.02735847793519497,
-0.05702855437994003,
0.04162871465086937,
-0.05350123345851898,
-0.01598544977605343,
0.039234016090631485,
0.15363001823425293,
0.11925815790891647,
0.11717362701892853,
-0.010782629251480103,
0.09960102289915085,
0.07336393743753433,
0.1259443610906601,
0.15136569738388062,
-0.28408530354499817,
-0.08995115756988525,
0.2148687094449997,
0.027536731213331223,
0.0030921753495931625,
-0.04614797607064247,
0.08858805894851685,
0.10387241095304489,
-0.019494373351335526,
0.03151099011301994,
-0.05432072654366493,
0.04684671014547348,
-0.10364428162574768,
-0.11724859476089478,
0.012362620793282986,
0.20295663177967072,
0.05982594192028046,
-0.054618071764707565,
-0.040473226457834244,
-0.09206777811050415,
-0.024916818365454674,
-0.06783640384674072,
-0.013695958070456982,
-0.05386442691087723,
0.02559185028076172,
-0.027596687898039818,
-0.038584545254707336,
-0.13805608451366425,
-0.07364451140165329,
-0.05508296564221382,
0.1822228729724884,
0.03043665736913681,
0.05557044968008995,
-0.12215966731309891,
0.0975487008690834,
0.001841038349084556,
-0.1004675105214119,
0.03650740161538124,
-0.06223345175385475,
0.017126688733696938,
0.05743557587265968,
0.024002214893698692,
-0.09722104668617249,
0.10226623713970184,
0.002820811700075865,
0.03746254742145538,
-0.032408636063337326,
0.04248585179448128,
0.07385165989398956,
0.006606642156839371,
-0.07366517931222916,
-0.09938224405050278,
-0.05110732838511467,
0.0029282865580171347,
-0.06052892655134201,
0.0017454223707318306,
-0.011483307927846909,
-0.08948906511068344,
-0.006552067585289478,
-0.037132833153009415,
0.02205474115908146,
0.053824711591005325,
0.08562296628952026,
-0.011178642511367798,
-0.030551953241229057,
0.16780202090740204,
0.046078186482191086,
-0.043995410203933716,
-0.024925997480750084,
0.02148314192891121,
0.06252545863389969,
0.04009099304676056,
0.00001341104507446289,
-0.004906882531940937,
0.04482176899909973,
-0.08183373510837555,
-0.056706786155700684,
-0.03435663506388664,
-0.04130248352885246,
-0.008966545574367046,
-0.16641683876514435,
0.0680173933506012,
-0.2011314481496811,
-0.12022310495376587,
0.04689023643732071,
0.05546052008867264,
-0.034902967512607574,
-0.0605483241379261,
-0.04190322011709213,
-0.1005399152636528,
0.014484778046607971,
-0.010436230339109898,
0.01330979447811842,
-0.03443348780274391,
0.031512316316366196,
-0.012413375079631805,
0.09093326330184937,
-0.23307496309280396,
0.01352253183722496,
-0.06067049130797386,
0.006011962424963713,
0.02997892163693905,
-0.0006295208004303277,
-0.020710229873657227,
0.11160526424646378,
-0.026721354573965073,
0.005174097139388323,
-0.06150606647133827,
-0.008889292366802692,
0.02502230927348137,
0.14354830980300903,
-0.08867324888706207,
0.018993932753801346,
0.1527644395828247,
-0.13726194202899933,
-0.1731904149055481,
0.10953637957572937,
0.06158800423145294,
0.1500888466835022,
0.07751207053661346,
0.1068645566701889,
0.10186005383729935,
-0.24721252918243408,
-0.03295541927218437,
0.031617388129234314,
-0.13703657686710358,
-0.1684657782316208,
-0.007883214391767979,
0.12595736980438232,
-0.07400007545948029,
0.017553923651576042,
-0.08318760246038437,
0.11398769170045853,
-0.0899265855550766,
-0.024005867540836334,
-0.04007979854941368,
-0.13243544101715088,
0.0033889967016875744,
0.019003527238965034,
0.0600394606590271,
-0.011373532935976982,
0.017652815207839012,
-0.13969045877456665,
0.030680350959300995,
-0.011869031935930252,
-0.019398318603634834,
-0.09763162583112717,
0.05273779109120369,
-0.0478963777422905,
0.022635826840996742,
-0.03815127909183502,
-0.05150135979056358,
0.02251615934073925,
0.145402729511261,
0.004792512394487858,
0.19234775006771088,
0.05495008826255798,
0.03379243612289429,
-0.007290228269994259,
-0.08955684304237366,
0.11535751819610596,
0.022912057116627693,
-0.0746951699256897,
-0.15832100808620453,
0.12145232409238815,
-0.06134288012981415,
-0.054047904908657074,
-0.12264787405729294,
0.05937729775905609,
0.032593149691820145,
0.14807173609733582,
0.02113836258649826,
0.00973489973694086,
0.03261955827474594,
-0.015301120467483997,
-0.05651719868183136,
0.004608286079019308,
0.08048846572637558,
0.04782836139202118,
-0.09105610847473145,
0.17673592269420624,
-0.09637176245450974,
0.18048492074012756,
0.10984192043542862,
-0.02023961953818798,
-0.0317951925098896,
0.02922442927956581,
-0.059684112668037415,
-0.004933167714625597,
-0.003520738100633025,
-0.029806390404701233,
0.002258055843412876,
-0.05097300931811333,
0.11414757370948792,
-0.055131006985902786,
-0.014633688144385815,
0.05910849571228027,
-0.04050382226705551,
-0.0158012043684721,
0.10086258500814438,
-0.01784483529627323,
-0.14430418610572815,
0.13446597754955292,
0.08705300092697144,
-0.0007039581541903317,
0.18847356736660004,
0.01934659108519554,
-0.02117880992591381,
-0.035987913608551025,
0.0950237438082695,
0.023773860186338425,
0.19608736038208008,
-0.10015293210744858,
0.02935776859521866,
0.02531791664659977,
0.006834706757217646,
0.038670726120471954,
-0.12006425857543945,
-0.05267878249287605,
-0.028570393100380898,
-0.03181848302483559,
0.10904789716005325,
0.09727907925844193,
-0.11118587106466293,
0.09957614541053772,
-0.07404699176549911,
-0.09110185503959656,
0.053029242902994156,
0.005559813696891069,
-0.06864456087350845,
0.08261480182409286,
-0.05065909028053284,
-0.20872075855731964,
-0.12461645156145096,
-0.09073856472969055,
-0.06365998089313507,
-0.01201678067445755,
0.07347925007343292,
-0.07407674938440323,
-0.021179715171456337,
-0.05757148936390877,
-0.05229923501610756,
-0.08685142546892166,
0.0742955207824707,
0.06177733466029167,
0.03365126624703407,
0.0004240914131514728,
-0.03895282745361328,
0.015172317624092102,
-0.04396636411547661,
0.014161096885800362,
0.11492880433797836,
0.007718909997493029,
0.16971208155155182,
0.06023915112018585,
-0.009269624017179012,
-0.03108314983546734,
-0.0044763111509382725,
0.253450483083725,
-0.03338809311389923,
0.08212217688560486,
0.11594337224960327,
0.039345890283584595,
0.07144808769226074,
0.1752670705318451,
0.03715468943119049,
-0.09058842808008194,
0.06062813848257065,
-0.044520504772663116,
-0.110666923224926,
-0.13338594138622284,
-0.06988503038883209,
-0.05845756456255913,
0.13689275085926056,
0.022026849910616875,
0.08556200563907623,
0.11672214418649673,
0.18083833158016205,
-0.0036775448825210333,
-0.01321522518992424,
-0.05857594683766365,
0.1146182045340538,
0.0016282073920592666,
-0.037729740142822266,
0.049989137798547745,
-0.09985143691301346,
-0.04044587165117264,
0.07607066631317139,
0.05674411356449127,
0.15012545883655548,
0.02805769443511963,
0.007819866761565208,
0.09737489372491837,
0.14700379967689514,
0.11928083002567291,
0.12961134314537048,
-0.04450725391507149,
-0.08558943122625351,
0.0049844239838421345,
-0.06903477758169174,
0.08775531500577927,
0.07950939983129501,
-0.08853607624769211,
-0.02008720301091671,
0.06790399551391602,
0.05931664630770683,
-0.03140605613589287,
0.1455155611038208,
0.08094646036624908,
-0.24256646633148193,
0.003629016224294901,
-0.02489267848432064,
0.036913156509399414,
-0.05221838504076004,
0.0038208328187465668,
0.21672086417675018,
-0.00490741990506649,
0.07941282540559769,
-0.02562933973968029,
0.07875105738639832,
0.04026293754577637,
0.01007286086678505,
-0.0818658173084259,
0.012999601662158966,
-0.01750022917985916,
0.04437703266739845,
-0.23949794471263885,
0.1935872733592987,
-0.009708661586046219,
0.077140212059021,
-0.0013568501453846693,
-0.036852773278951645,
-0.041348524391651154,
0.17545299232006073,
0.17431272566318512,
0.006172095891088247,
-0.025583473965525627,
-0.04784008488059044,
-0.09939275681972504,
0.018038582056760788,
0.03834831342101097,
0.026159316301345825,
0.031054405495524406,
0.0662722960114479,
-0.019752858206629753,
-0.006836527958512306,
0.04471482336521149,
-0.19956989586353302,
-0.11028721928596497,
-0.02656128816306591,
0.25533974170684814,
0.10079620033502579,
-0.011128690093755722,
0.03235592320561409,
-0.05575051158666611,
0.06183252111077309,
-0.21772272884845734,
-0.09106552600860596,
-0.08188720792531967,
-0.06869856268167496,
-0.04281247779726982,
-0.0495401993393898,
0.00755383912473917,
-0.08619881421327591,
0.052855297923088074,
-0.04714261740446091,
-0.12975680828094482,
-0.0059355455450713634,
-0.19545742869377136,
-0.11872642487287521,
-0.10351093113422394,
0.021257679909467697,
0.07159892469644547,
0.014481999911367893,
0.011652751825749874,
-0.06024755910038948,
-0.04743315652012825,
-0.08407826721668243,
0.022614860907197,
0.05873701348900795,
-0.038557663559913635,
-0.07399595528841019,
-0.09636188298463821,
-0.10898029804229736,
-0.06602021306753159,
-0.06300460547208786,
0.07415211200714111,
0.239276722073555,
-0.061502695083618164,
0.062297165393829346,
0.22866442799568176,
-0.051598530262708664,
-0.23299472033977509,
-0.11635895818471909,
-0.022416329011321068,
-0.023661350831389427,
-0.029407348483800888,
-0.12630684673786163,
0.14776426553726196,
0.029389305040240288,
-0.048569872975349426,
0.1568402349948883,
-0.21312904357910156,
-0.07486805319786072,
0.047703392803668976,
0.15804624557495117,
0.3399799168109894,
-0.16488339006900787,
-0.03476819768548012,
0.010930485092103481,
-0.16914592683315277,
0.1697685867547989,
0.0013906804379075766,
0.06272799521684647,
-0.05110768601298332,
-0.0017775221494957805,
-0.02514912188053131,
-0.01511639915406704,
0.0853276178240776,
-0.01673286035656929,
0.03745931386947632,
-0.06951793283224106,
0.0975596159696579,
0.17141468822956085,
-0.008056300692260265,
0.046099841594696045,
-0.11828718334436417,
0.024697057902812958,
-0.10788439214229584,
-0.002729838714003563,
-0.03397929295897484,
-0.0027392138727009296,
-0.0379011444747448,
-0.14474479854106903,
-0.07196220010519028,
-0.005367050413042307,
0.02685963362455368,
0.0005076624220237136,
-0.025857511907815933,
-0.0019108261913061142,
0.02013951726257801,
0.1591244488954544,
0.02895192615687847,
-0.07972830533981323,
-0.029576312750577927,
-0.07818862050771713,
-0.06913121789693832,
0.12662771344184875,
-0.02813667245209217,
-0.043355390429496765,
0.10448768734931946,
-0.005602406337857246,
0.021025212481617928,
0.03131396323442459,
-0.04500647261738777,
0.037594474852085114,
0.12375427037477493,
-0.1498485803604126,
-0.16308622062206268,
-0.009481447748839855,
0.16051197052001953,
0.06883066892623901,
0.12245060503482819,
0.13187536597251892,
-0.09184432029724121,
0.040728405117988586,
-0.036324430257081985,
-0.007366138510406017,
-0.020322609692811966,
0.05501052737236023,
-0.04485576972365379,
0.052493270486593246,
-0.06586626917123795,
0.012910679914057255,
-0.03543107956647873,
-0.05441754311323166,
-0.016217967495322227,
0.008866400457918644,
-0.1205839142203331,
-0.06689796596765518,
0.021728303283452988,
0.12081358581781387,
-0.13186290860176086,
-0.10153035074472427,
-0.045975372195243835,
-0.07897955179214478,
0.041920777410268784,
0.06293684989213943,
0.013564758002758026,
0.014545396901667118,
0.05370355397462845,
-0.009000783786177635,
-0.07181941717863083,
0.026651829481124878,
-0.03296101838350296,
0.10478241741657257,
-0.25392889976501465,
-0.06881027668714523,
0.0007365293568000197,
0.019057497382164,
-0.08064860850572586,
-0.014557912014424801,
-0.09688754379749298,
0.01440839096903801,
0.0017668812070041895,
0.0733027383685112,
-0.12713241577148438,
-0.08658351749181747,
-0.020638491958379745,
-0.021507930010557175,
-0.03829013556241989,
0.02021482214331627,
-0.03157985582947731,
0.05681019276380539,
0.053505685180425644,
0.0067878058180212975,
-0.001659723580814898,
-0.0046963319182395935,
-0.04313747584819794,
-0.02274129167199135,
0.06578855961561203,
-0.009027572348713875,
-0.10242211073637009,
-0.03383776545524597,
-0.25336819887161255,
0.03969111293554306,
0.11562828719615936,
-0.00328634399920702,
-0.0026972084306180477,
0.10114249587059021,
-0.02030372805893421,
0.03236136585474014,
0.04684767872095108,
0.0010315179824829102,
0.05142156407237053,
-0.10809671878814697,
-0.0044633266516029835,
-0.05551890283823013,
0.03686859458684921,
-0.08494292944669724,
-0.03705416992306709,
0.1179470643401146,
0.037195827811956406,
0.1586844027042389,
-0.11918333172798157,
0.03252657130360603,
-0.011766877956688404,
0.027358444407582283,
0.07537688314914703,
-0.068376824259758,
0.04822661355137825,
-0.07805458456277847,
-0.029990235343575478,
0.020963840186595917,
0.0983065813779831,
-0.060328442603349686,
-0.2691879868507385,
0.005975269712507725,
-0.09725780785083771,
-0.04938780516386032,
-0.040120773017406464,
0.2945106625556946,
0.012533547356724739,
-0.0010765640763565898,
-0.15291418135166168,
0.0951492115855217,
0.07385726273059845,
0.07655338943004608,
0.034855104982852936,
0.08069293200969696,
0.001859876443631947,
0.08686169236898422,
0.05983400344848633,
0.029503630474209785,
-0.11271810531616211,
0.015149267390370369,
-0.1829311102628708,
0.13229331374168396,
-0.02284987084567547,
0.0959930568933487,
0.19251690804958344,
-0.011891292408108711,
-0.03207411617040634,
0.09054245054721832,
0.007832630537450314,
-0.03521358594298363,
-0.1958012729883194,
-0.03809056431055069,
-0.15646682679653168,
0.011926800012588501,
-0.043066274374723434,
-0.041453372687101364,
-0.003594172652810812,
0.06624574214220047,
-0.04424964636564255,
0.0776282474398613,
0.07689493894577026,
-0.002299430314451456,
0.07686532288789749,
0.0012339279055595398,
-0.04243113845586777,
0.020039038732647896,
0.006070585455745459,
0.017658453434705734,
0.020948242396116257,
-0.023638231679797173,
0.059257831424474716,
0.0030398413073271513,
0.04768819361925125,
0.03639468550682068,
-0.03885810822248459,
-0.020836737006902695,
0.014804860576987267,
0.01815037615597248,
0.13790471851825714,
0.03679133579134941,
-0.034786153584718704,
0.0006667979178018868,
0.10400567948818207,
-0.010001503862440586,
-0.040109410881996155,
-0.08157713711261749,
0.06550924479961395,
-0.12491694837808609,
0.061085473746061325,
-0.017708702012896538,
-0.026401223614811897,
-0.06819479167461395,
0.2797929346561432,
0.12934638559818268,
-0.025807108730077744,
0.011988252401351929,
-0.08757007867097855,
0.01319163292646408,
-0.06347417831420898,
0.08410846441984177,
0.05477074533700943,
0.2892371416091919,
-0.032765164971351624,
-0.016596412286162376,
-0.11197808384895325,
-0.03833628445863724,
-0.10250525176525116,
-0.12231545895338058,
0.009924141690135002,
-0.05425660312175751,
-0.09381696581840515,
0.06433757394552231,
-0.20114782452583313,
-0.04607101157307625,
0.1091950535774231,
0.015819748863577843,
0.002085957443341613,
-0.04778418689966202,
0.07471094280481339,
0.028770221397280693,
0.04825849086046219,
-0.10297968983650208,
0.06920419633388519,
0.02492043562233448,
-0.04828226566314697,
-0.07467462122440338,
0.0783037394285202,
-0.018071196973323822,
-0.15928541123867035,
0.14761364459991455,
-0.020854128524661064,
0.017346268519759178,
0.07562573254108429,
-0.07078224420547485,
-0.16510982811450958,
0.10202834755182266,
-0.055473774671554565,
-0.08291780203580856,
-0.005611486732959747,
0.08985903114080429,
0.01637962833046913,
-0.0104229049757123,
0.016253214329481125,
-0.0971655622124672,
-0.034679509699344635,
0.09693469107151031,
0.047008004039525986,
-0.10199585556983948,
0.09669853746891022,
-0.047300856560468674,
0.09431122988462448,
0.002210883190855384,
-0.03978681564331055,
-0.039590537548065186,
-0.006455547641962767,
0.03275565803050995,
0.0014107609167695045,
-0.09118898212909698,
0.05021652579307556,
-0.16469800472259521,
-0.034281179308891296,
0.07507499307394028,
0.03995165228843689,
-0.2169191986322403,
-0.01872507855296135,
-0.1713172197341919,
0.0017770203994587064,
-0.06800942122936249,
0.00023268374206963927,
0.219069242477417,
0.008886630646884441,
0.0061406628228724,
-0.14064159989356995,
-0.04781974479556084,
0.03954637423157692,
0.008881486020982265,
-0.13627555966377258
] |
null | null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# zephyr-tiny-dpo-qlora
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5999
- Rewards/chosen: -1.4826
- Rewards/rejected: -1.9237
- Rewards/accuracies: 0.6735
- Rewards/margins: 0.4412
- Logps/rejected: -493.4848
- Logps/chosen: -481.0047
- Logits/rejected: -2.2428
- Logits/chosen: -2.2348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.693 | 0.0 | 10 | 0.6931 | 0.0000 | -0.0000 | 0.4965 | 0.0001 | -301.1112 | -332.7445 | -2.7351 | -2.7424 |
| 0.6932 | 0.0 | 20 | 0.6931 | 0.0001 | -0.0001 | 0.4980 | 0.0002 | -301.1186 | -332.7424 | -2.7355 | -2.7427 |
| 0.6931 | 0.0 | 30 | 0.6931 | 0.0000 | 0.0000 | 0.4930 | 0.0000 | -301.1074 | -332.7456 | -2.7351 | -2.7423 |
| 0.6931 | 0.01 | 40 | 0.6931 | 0.0001 | -0.0001 | 0.5095 | 0.0001 | -301.1160 | -332.7425 | -2.7352 | -2.7424 |
| 0.6935 | 0.01 | 50 | 0.6931 | 0.0002 | 0.0001 | 0.4980 | 0.0001 | -301.1013 | -332.7299 | -2.7349 | -2.7422 |
| 0.6932 | 0.01 | 60 | 0.6930 | 0.0001 | -0.0002 | 0.5100 | 0.0003 | -301.1270 | -332.7393 | -2.7349 | -2.7421 |
| 0.6933 | 0.01 | 70 | 0.6931 | 0.0001 | -0.0001 | 0.5210 | 0.0002 | -301.1194 | -332.7415 | -2.7352 | -2.7424 |
| 0.693 | 0.01 | 80 | 0.6930 | 0.0002 | 0.0000 | 0.5010 | 0.0002 | -301.1097 | -332.7282 | -2.7352 | -2.7424 |
| 0.6933 | 0.01 | 90 | 0.6931 | 0.0001 | 0.0000 | 0.4975 | 0.0000 | -301.1066 | -332.7416 | -2.7350 | -2.7424 |
| 0.6935 | 0.01 | 100 | 0.6932 | 0.0000 | 0.0001 | 0.4940 | -0.0001 | -301.0979 | -332.7456 | -2.7352 | -2.7424 |
| 0.6925 | 0.01 | 110 | 0.6931 | -0.0000 | -0.0001 | 0.4895 | 0.0001 | -301.1203 | -332.7512 | -2.7352 | -2.7425 |
| 0.6927 | 0.02 | 120 | 0.6931 | -0.0000 | -0.0001 | 0.4920 | 0.0001 | -301.1205 | -332.7540 | -2.7350 | -2.7423 |
| 0.6931 | 0.02 | 130 | 0.6931 | -0.0000 | -0.0002 | 0.5085 | 0.0002 | -301.1299 | -332.7500 | -2.7352 | -2.7424 |
| 0.6932 | 0.02 | 140 | 0.6931 | -0.0000 | -0.0001 | 0.4985 | 0.0001 | -301.1245 | -332.7522 | -2.7351 | -2.7424 |
| 0.6925 | 0.02 | 150 | 0.6931 | 0.0001 | -0.0000 | 0.5015 | 0.0001 | -301.1144 | -332.7434 | -2.7348 | -2.7420 |
| 0.6931 | 0.02 | 160 | 0.6931 | -0.0001 | -0.0001 | 0.4935 | 0.0000 | -301.1194 | -332.7556 | -2.7346 | -2.7418 |
| 0.693 | 0.02 | 170 | 0.6931 | -0.0001 | -0.0001 | 0.4925 | 0.0000 | -301.1203 | -332.7569 | -2.7350 | -2.7422 |
| 0.6938 | 0.02 | 180 | 0.6931 | -0.0002 | -0.0002 | 0.5 | 0.0000 | -301.1345 | -332.7730 | -2.7347 | -2.7420 |
| 0.6929 | 0.02 | 190 | 0.6930 | -0.0000 | -0.0003 | 0.5260 | 0.0003 | -301.1443 | -332.7518 | -2.7349 | -2.7422 |
| 0.6924 | 0.03 | 200 | 0.6931 | -0.0003 | -0.0005 | 0.5040 | 0.0002 | -301.1588 | -332.7804 | -2.7350 | -2.7422 |
| 0.6932 | 0.03 | 210 | 0.6931 | -0.0002 | -0.0004 | 0.5050 | 0.0002 | -301.1479 | -332.7717 | -2.7350 | -2.7422 |
| 0.6934 | 0.03 | 220 | 0.6930 | -0.0003 | -0.0005 | 0.4965 | 0.0002 | -301.1607 | -332.7756 | -2.7345 | -2.7418 |
| 0.693 | 0.03 | 230 | 0.6929 | -0.0004 | -0.0009 | 0.5290 | 0.0005 | -301.2017 | -332.7917 | -2.7351 | -2.7422 |
| 0.6928 | 0.03 | 240 | 0.6930 | -0.0006 | -0.0008 | 0.5175 | 0.0003 | -301.1921 | -332.8048 | -2.7354 | -2.7426 |
| 0.6935 | 0.03 | 250 | 0.6929 | -0.0005 | -0.0010 | 0.5370 | 0.0005 | -301.2145 | -332.8021 | -2.7352 | -2.7423 |
| 0.6934 | 0.03 | 260 | 0.6929 | -0.0007 | -0.0013 | 0.5275 | 0.0006 | -301.2392 | -332.8221 | -2.7351 | -2.7423 |
| 0.6937 | 0.04 | 270 | 0.6929 | -0.0008 | -0.0013 | 0.5150 | 0.0006 | -301.2431 | -332.8276 | -2.7349 | -2.7422 |
| 0.6925 | 0.04 | 280 | 0.6929 | -0.0009 | -0.0015 | 0.5270 | 0.0006 | -301.2622 | -332.8435 | -2.7354 | -2.7424 |
| 0.6927 | 0.04 | 290 | 0.6929 | -0.0012 | -0.0018 | 0.5320 | 0.0006 | -301.2879 | -332.8693 | -2.7349 | -2.7419 |
| 0.693 | 0.04 | 300 | 0.6928 | -0.0015 | -0.0022 | 0.5395 | 0.0008 | -301.3325 | -332.8954 | -2.7350 | -2.7421 |
| 0.6922 | 0.04 | 310 | 0.6927 | -0.0017 | -0.0026 | 0.5510 | 0.0009 | -301.3729 | -332.9208 | -2.7347 | -2.7417 |
| 0.693 | 0.04 | 320 | 0.6926 | -0.0020 | -0.0030 | 0.5585 | 0.0010 | -301.4145 | -332.9500 | -2.7348 | -2.7418 |
| 0.6927 | 0.04 | 330 | 0.6926 | -0.0023 | -0.0034 | 0.5520 | 0.0011 | -301.4496 | -332.9778 | -2.7345 | -2.7415 |
| 0.6924 | 0.04 | 340 | 0.6925 | -0.0028 | -0.0042 | 0.5600 | 0.0014 | -301.5256 | -333.0244 | -2.7347 | -2.7416 |
| 0.6921 | 0.05 | 350 | 0.6922 | -0.0033 | -0.0051 | 0.5725 | 0.0018 | -301.6199 | -333.0765 | -2.7345 | -2.7414 |
| 0.6918 | 0.05 | 360 | 0.6922 | -0.0039 | -0.0059 | 0.5835 | 0.0019 | -301.6956 | -333.1432 | -2.7348 | -2.7417 |
| 0.6918 | 0.05 | 370 | 0.6920 | -0.0048 | -0.0071 | 0.5925 | 0.0023 | -301.8189 | -333.2271 | -2.7351 | -2.7419 |
| 0.6905 | 0.05 | 380 | 0.6919 | -0.0059 | -0.0085 | 0.5855 | 0.0026 | -301.9619 | -333.3396 | -2.7354 | -2.7421 |
| 0.691 | 0.05 | 390 | 0.6916 | -0.0074 | -0.0107 | 0.5925 | 0.0032 | -302.1753 | -333.4940 | -2.7360 | -2.7425 |
| 0.6929 | 0.05 | 400 | 0.6912 | -0.0090 | -0.0129 | 0.6005 | 0.0039 | -302.4012 | -333.6461 | -2.7361 | -2.7426 |
| 0.6911 | 0.05 | 410 | 0.6910 | -0.0101 | -0.0144 | 0.6000 | 0.0043 | -302.5548 | -333.7640 | -2.7362 | -2.7425 |
| 0.6914 | 0.05 | 420 | 0.6907 | -0.0115 | -0.0164 | 0.6045 | 0.0049 | -302.7467 | -333.8960 | -2.7361 | -2.7424 |
| 0.6921 | 0.06 | 430 | 0.6907 | -0.0127 | -0.0178 | 0.5905 | 0.0051 | -302.8855 | -334.0163 | -2.7368 | -2.7430 |
| 0.6918 | 0.06 | 440 | 0.6903 | -0.0134 | -0.0191 | 0.6005 | 0.0057 | -303.0195 | -334.0882 | -2.7364 | -2.7426 |
| 0.6928 | 0.06 | 450 | 0.6904 | -0.0140 | -0.0197 | 0.6060 | 0.0056 | -303.0764 | -334.1518 | -2.7364 | -2.7424 |
| 0.6894 | 0.06 | 460 | 0.6901 | -0.0158 | -0.0220 | 0.6035 | 0.0062 | -303.3061 | -334.3250 | -2.7361 | -2.7421 |
| 0.6894 | 0.06 | 470 | 0.6896 | -0.0182 | -0.0254 | 0.6020 | 0.0072 | -303.6496 | -334.5720 | -2.7358 | -2.7416 |
| 0.6896 | 0.06 | 480 | 0.6892 | -0.0212 | -0.0294 | 0.6105 | 0.0082 | -304.0499 | -334.8725 | -2.7352 | -2.7409 |
| 0.6878 | 0.06 | 490 | 0.6885 | -0.0252 | -0.0347 | 0.6080 | 0.0095 | -304.5756 | -335.2660 | -2.7347 | -2.7402 |
| 0.6893 | 0.07 | 500 | 0.6880 | -0.0300 | -0.0407 | 0.6145 | 0.0107 | -305.1786 | -335.7523 | -2.7344 | -2.7397 |
| 0.6898 | 0.07 | 510 | 0.6875 | -0.0332 | -0.0449 | 0.6170 | 0.0117 | -305.6008 | -336.0675 | -2.7342 | -2.7394 |
| 0.6869 | 0.07 | 520 | 0.6869 | -0.0368 | -0.0498 | 0.6135 | 0.0130 | -306.0887 | -336.4317 | -2.7340 | -2.7389 |
| 0.686 | 0.07 | 530 | 0.6863 | -0.0420 | -0.0563 | 0.6150 | 0.0143 | -306.7418 | -336.9489 | -2.7337 | -2.7384 |
| 0.6835 | 0.07 | 540 | 0.6854 | -0.0494 | -0.0657 | 0.6115 | 0.0163 | -307.6848 | -337.6916 | -2.7339 | -2.7382 |
| 0.6832 | 0.07 | 550 | 0.6844 | -0.0592 | -0.0778 | 0.6115 | 0.0186 | -308.8883 | -338.6699 | -2.7335 | -2.7374 |
| 0.6788 | 0.07 | 560 | 0.6833 | -0.0714 | -0.0924 | 0.6150 | 0.0211 | -310.3549 | -339.8881 | -2.7331 | -2.7365 |
| 0.6815 | 0.07 | 570 | 0.6821 | -0.0845 | -0.1083 | 0.6075 | 0.0238 | -311.9396 | -341.1985 | -2.7324 | -2.7352 |
| 0.678 | 0.08 | 580 | 0.6810 | -0.0998 | -0.1264 | 0.6070 | 0.0266 | -313.7509 | -342.7325 | -2.7315 | -2.7338 |
| 0.6724 | 0.08 | 590 | 0.6796 | -0.1214 | -0.1516 | 0.5960 | 0.0301 | -316.2653 | -344.8932 | -2.7310 | -2.7325 |
| 0.686 | 0.08 | 600 | 0.6781 | -0.1427 | -0.1765 | 0.6000 | 0.0338 | -318.7592 | -347.0211 | -2.7295 | -2.7301 |
| 0.6694 | 0.08 | 610 | 0.6772 | -0.1567 | -0.1929 | 0.6025 | 0.0362 | -320.3974 | -348.4165 | -2.7311 | -2.7311 |
| 0.6606 | 0.08 | 620 | 0.6753 | -0.2050 | -0.2468 | 0.6080 | 0.0418 | -325.7889 | -353.2503 | -2.7336 | -2.7319 |
| 0.668 | 0.08 | 630 | 0.6737 | -0.2591 | -0.3064 | 0.6020 | 0.0473 | -331.7452 | -358.6589 | -2.7307 | -2.7269 |
| 0.6781 | 0.08 | 640 | 0.6721 | -0.3056 | -0.3586 | 0.6075 | 0.0531 | -336.9739 | -363.3046 | -2.7222 | -2.7167 |
| 0.6732 | 0.09 | 650 | 0.6708 | -0.2917 | -0.3474 | 0.6095 | 0.0556 | -335.8477 | -361.9241 | -2.7171 | -2.7116 |
| 0.6768 | 0.09 | 660 | 0.6700 | -0.2857 | -0.3432 | 0.6130 | 0.0575 | -335.4340 | -361.3224 | -2.7157 | -2.7105 |
| 0.667 | 0.09 | 670 | 0.6692 | -0.2830 | -0.3423 | 0.6185 | 0.0593 | -335.3443 | -361.0500 | -2.7128 | -2.7082 |
| 0.6693 | 0.09 | 680 | 0.6685 | -0.2968 | -0.3588 | 0.6145 | 0.0620 | -336.9861 | -362.4294 | -2.7100 | -2.7054 |
| 0.6707 | 0.09 | 690 | 0.6676 | -0.3056 | -0.3703 | 0.6150 | 0.0647 | -338.1431 | -363.3129 | -2.7089 | -2.7039 |
| 0.6718 | 0.09 | 700 | 0.6671 | -0.2991 | -0.3646 | 0.6145 | 0.0654 | -337.5663 | -362.6632 | -2.7051 | -2.7002 |
| 0.6511 | 0.09 | 710 | 0.6659 | -0.3404 | -0.4112 | 0.6135 | 0.0708 | -342.2339 | -366.7898 | -2.6996 | -2.6940 |
| 0.6685 | 0.09 | 720 | 0.6651 | -0.3662 | -0.4408 | 0.6110 | 0.0746 | -345.1917 | -369.3723 | -2.6963 | -2.6901 |
| 0.6702 | 0.1 | 730 | 0.6645 | -0.3862 | -0.4637 | 0.6135 | 0.0775 | -347.4822 | -371.3727 | -2.6940 | -2.6870 |
| 0.6723 | 0.1 | 740 | 0.6644 | -0.3721 | -0.4493 | 0.6145 | 0.0772 | -346.0402 | -369.9626 | -2.6951 | -2.6883 |
| 0.6484 | 0.1 | 750 | 0.6638 | -0.3937 | -0.4738 | 0.6110 | 0.0802 | -348.4942 | -372.1144 | -2.6951 | -2.6878 |
| 0.6701 | 0.1 | 760 | 0.6634 | -0.3749 | -0.4545 | 0.6160 | 0.0797 | -346.5627 | -370.2365 | -2.6956 | -2.6885 |
| 0.6578 | 0.1 | 770 | 0.6631 | -0.3941 | -0.4756 | 0.6140 | 0.0815 | -348.6732 | -372.1638 | -2.6923 | -2.6855 |
| 0.6555 | 0.1 | 780 | 0.6628 | -0.4020 | -0.4850 | 0.6170 | 0.0830 | -349.6146 | -372.9538 | -2.6920 | -2.6853 |
| 0.6354 | 0.1 | 790 | 0.6619 | -0.4552 | -0.5451 | 0.6095 | 0.0899 | -355.6183 | -378.2653 | -2.6796 | -2.6718 |
| 0.643 | 0.1 | 800 | 0.6610 | -0.5059 | -0.6043 | 0.6095 | 0.0985 | -361.5449 | -383.3349 | -2.6665 | -2.6568 |
| 0.6762 | 0.11 | 810 | 0.6602 | -0.4854 | -0.5858 | 0.6110 | 0.1004 | -359.6948 | -381.2932 | -2.6608 | -2.6501 |
| 0.6559 | 0.11 | 820 | 0.6599 | -0.4742 | -0.5764 | 0.6105 | 0.1022 | -358.7486 | -380.1671 | -2.6537 | -2.6431 |
| 0.638 | 0.11 | 830 | 0.6609 | -0.5706 | -0.6834 | 0.6040 | 0.1128 | -369.4500 | -389.8056 | -2.6360 | -2.6246 |
| 0.6485 | 0.11 | 840 | 0.6623 | -0.6102 | -0.7278 | 0.6045 | 0.1176 | -373.8880 | -393.7682 | -2.6275 | -2.6167 |
| 0.6393 | 0.11 | 850 | 0.6640 | -0.6622 | -0.7881 | 0.6055 | 0.1260 | -379.9243 | -398.9680 | -2.6169 | -2.6060 |
| 0.6465 | 0.11 | 860 | 0.6670 | -0.7285 | -0.8637 | 0.6070 | 0.1352 | -387.4784 | -405.5987 | -2.6065 | -2.5957 |
| 0.6604 | 0.11 | 870 | 0.6644 | -0.6914 | -0.8228 | 0.6060 | 0.1314 | -383.3900 | -401.8903 | -2.6138 | -2.6024 |
| 0.6875 | 0.12 | 880 | 0.6669 | -0.7485 | -0.8871 | 0.6015 | 0.1386 | -389.8181 | -407.5961 | -2.6100 | -2.5992 |
| 0.6721 | 0.12 | 890 | 0.6637 | -0.6864 | -0.8203 | 0.6060 | 0.1339 | -383.1368 | -401.3889 | -2.6204 | -2.6104 |
| 0.7118 | 0.12 | 900 | 0.6599 | -0.5840 | -0.7083 | 0.6020 | 0.1243 | -371.9418 | -391.1490 | -2.6316 | -2.6222 |
| 0.612 | 0.12 | 910 | 0.6612 | -0.6170 | -0.7458 | 0.6100 | 0.1288 | -375.6937 | -394.4494 | -2.6216 | -2.6122 |
| 0.6676 | 0.12 | 920 | 0.6611 | -0.6209 | -0.7518 | 0.6090 | 0.1309 | -376.2944 | -394.8423 | -2.6197 | -2.6095 |
| 0.6577 | 0.12 | 930 | 0.6620 | -0.6461 | -0.7813 | 0.6090 | 0.1352 | -379.2373 | -397.3580 | -2.6148 | -2.6049 |
| 0.637 | 0.12 | 940 | 0.6590 | -0.5819 | -0.7113 | 0.6095 | 0.1294 | -372.2401 | -390.9405 | -2.6263 | -2.6165 |
| 0.6663 | 0.12 | 950 | 0.6571 | -0.5252 | -0.6501 | 0.6115 | 0.1250 | -366.1216 | -385.2651 | -2.6330 | -2.6230 |
| 0.6437 | 0.13 | 960 | 0.6564 | -0.5218 | -0.6483 | 0.6140 | 0.1265 | -365.9413 | -384.9284 | -2.6313 | -2.6211 |
| 0.6053 | 0.13 | 970 | 0.6567 | -0.5715 | -0.7062 | 0.6180 | 0.1347 | -371.7264 | -389.8969 | -2.6223 | -2.6111 |
| 0.63 | 0.13 | 980 | 0.6615 | -0.7128 | -0.8643 | 0.6125 | 0.1516 | -387.5418 | -404.0250 | -2.5987 | -2.5871 |
| 0.6434 | 0.13 | 990 | 0.6638 | -0.7523 | -0.9096 | 0.6075 | 0.1573 | -392.0733 | -407.9801 | -2.5910 | -2.5807 |
| 0.6192 | 0.13 | 1000 | 0.6646 | -0.7700 | -0.9321 | 0.6080 | 0.1620 | -394.3170 | -409.7525 | -2.5899 | -2.5800 |
| 0.6942 | 0.13 | 1010 | 0.6576 | -0.6474 | -0.7958 | 0.6145 | 0.1484 | -380.6887 | -397.4907 | -2.6080 | -2.5973 |
| 0.6408 | 0.13 | 1020 | 0.6591 | -0.6905 | -0.8454 | 0.6150 | 0.1549 | -385.6538 | -401.7998 | -2.5979 | -2.5869 |
| 0.6204 | 0.13 | 1030 | 0.6608 | -0.7136 | -0.8728 | 0.6185 | 0.1592 | -388.3903 | -404.1101 | -2.5930 | -2.5825 |
| 0.5986 | 0.14 | 1040 | 0.6670 | -0.8048 | -0.9774 | 0.6125 | 0.1726 | -398.8505 | -413.2312 | -2.5784 | -2.5676 |
| 0.6624 | 0.14 | 1050 | 0.6649 | -0.7874 | -0.9602 | 0.6150 | 0.1728 | -397.1287 | -411.4896 | -2.5844 | -2.5734 |
| 0.6528 | 0.14 | 1060 | 0.6576 | -0.6652 | -0.8239 | 0.6170 | 0.1587 | -383.4967 | -399.2669 | -2.6061 | -2.5949 |
| 0.6332 | 0.14 | 1070 | 0.6563 | -0.6362 | -0.7933 | 0.6175 | 0.1571 | -380.4353 | -396.3664 | -2.6101 | -2.5985 |
| 0.6364 | 0.14 | 1080 | 0.6564 | -0.6426 | -0.8019 | 0.6140 | 0.1593 | -381.3039 | -397.0139 | -2.6074 | -2.5956 |
| 0.6063 | 0.14 | 1090 | 0.6589 | -0.6922 | -0.8596 | 0.6140 | 0.1674 | -387.0664 | -401.9653 | -2.5995 | -2.5879 |
| 0.6684 | 0.14 | 1100 | 0.6570 | -0.6425 | -0.8050 | 0.6160 | 0.1624 | -381.6060 | -397.0017 | -2.6067 | -2.5950 |
| 0.6948 | 0.15 | 1110 | 0.6534 | -0.5348 | -0.6827 | 0.6240 | 0.1479 | -369.3778 | -386.2302 | -2.6269 | -2.6154 |
| 0.683 | 0.15 | 1120 | 0.6526 | -0.4925 | -0.6328 | 0.6255 | 0.1404 | -364.3933 | -381.9963 | -2.6371 | -2.6261 |
| 0.5879 | 0.15 | 1130 | 0.6523 | -0.4921 | -0.6319 | 0.6210 | 0.1397 | -364.2989 | -381.9638 | -2.6393 | -2.6282 |
| 0.6422 | 0.15 | 1140 | 0.6521 | -0.4999 | -0.6428 | 0.6235 | 0.1429 | -365.3921 | -382.7381 | -2.6401 | -2.6286 |
| 0.6534 | 0.15 | 1150 | 0.6519 | -0.5132 | -0.6594 | 0.6215 | 0.1462 | -367.0510 | -384.0742 | -2.6356 | -2.6237 |
| 0.642 | 0.15 | 1160 | 0.6519 | -0.5355 | -0.6859 | 0.6240 | 0.1504 | -369.7019 | -386.3025 | -2.6312 | -2.6188 |
| 0.6138 | 0.15 | 1170 | 0.6526 | -0.5731 | -0.7317 | 0.6230 | 0.1585 | -374.2781 | -390.0626 | -2.6258 | -2.6126 |
| 0.6603 | 0.15 | 1180 | 0.6529 | -0.6232 | -0.7897 | 0.6185 | 0.1665 | -380.0800 | -395.0720 | -2.6229 | -2.6091 |
| 0.6446 | 0.16 | 1190 | 0.6540 | -0.6478 | -0.8187 | 0.6160 | 0.1709 | -382.9786 | -397.5279 | -2.6169 | -2.6025 |
| 0.6647 | 0.16 | 1200 | 0.6546 | -0.6563 | -0.8288 | 0.6185 | 0.1725 | -383.9888 | -398.3748 | -2.6143 | -2.5996 |
| 0.6214 | 0.16 | 1210 | 0.6534 | -0.6735 | -0.8479 | 0.6225 | 0.1744 | -385.8965 | -400.0964 | -2.6187 | -2.6038 |
| 0.7606 | 0.16 | 1220 | 0.6501 | -0.6053 | -0.7665 | 0.6235 | 0.1612 | -377.7646 | -393.2815 | -2.6355 | -2.6217 |
| 0.64 | 0.16 | 1230 | 0.6489 | -0.5571 | -0.7096 | 0.6235 | 0.1525 | -372.0700 | -388.4599 | -2.6485 | -2.6351 |
| 0.6503 | 0.16 | 1240 | 0.6486 | -0.5107 | -0.6566 | 0.6280 | 0.1460 | -366.7746 | -383.8181 | -2.6544 | -2.6420 |
| 0.6625 | 0.16 | 1250 | 0.6486 | -0.4712 | -0.6109 | 0.6290 | 0.1397 | -362.1982 | -379.8656 | -2.6617 | -2.6501 |
| 0.6365 | 0.16 | 1260 | 0.6484 | -0.4679 | -0.6087 | 0.6300 | 0.1407 | -361.9755 | -379.5409 | -2.6599 | -2.6480 |
| 0.6314 | 0.17 | 1270 | 0.6475 | -0.5215 | -0.6731 | 0.6275 | 0.1516 | -368.4208 | -384.9039 | -2.6515 | -2.6390 |
| 0.6429 | 0.17 | 1280 | 0.6468 | -0.5830 | -0.7443 | 0.6265 | 0.1613 | -375.5394 | -391.0509 | -2.6435 | -2.6299 |
| 0.6351 | 0.17 | 1290 | 0.6463 | -0.6230 | -0.7897 | 0.6255 | 0.1668 | -380.0834 | -395.0453 | -2.6434 | -2.6293 |
| 0.6147 | 0.17 | 1300 | 0.6467 | -0.6928 | -0.8684 | 0.6220 | 0.1757 | -387.9538 | -402.0265 | -2.6450 | -2.6303 |
| 0.6809 | 0.17 | 1310 | 0.6478 | -0.7348 | -0.9135 | 0.6215 | 0.1787 | -392.4579 | -406.2247 | -2.6489 | -2.6348 |
| 0.6469 | 0.17 | 1320 | 0.6465 | -0.6788 | -0.8506 | 0.6200 | 0.1718 | -386.1691 | -400.6298 | -2.6541 | -2.6406 |
| 0.5969 | 0.17 | 1330 | 0.6460 | -0.6713 | -0.8464 | 0.6215 | 0.1750 | -385.7466 | -399.8843 | -2.6493 | -2.6348 |
| 0.6755 | 0.18 | 1340 | 0.6460 | -0.6794 | -0.8585 | 0.6210 | 0.1791 | -386.9584 | -400.6845 | -2.6436 | -2.6283 |
| 0.6043 | 0.18 | 1350 | 0.6464 | -0.6744 | -0.8555 | 0.6265 | 0.1812 | -386.6622 | -400.1864 | -2.6353 | -2.6195 |
| 0.6213 | 0.18 | 1360 | 0.6477 | -0.7281 | -0.9177 | 0.6275 | 0.1896 | -392.8765 | -405.5606 | -2.6236 | -2.6073 |
| 0.6907 | 0.18 | 1370 | 0.6469 | -0.7326 | -0.9235 | 0.625 | 0.1909 | -393.4615 | -406.0066 | -2.6231 | -2.6075 |
| 0.6027 | 0.18 | 1380 | 0.6468 | -0.7486 | -0.9422 | 0.6215 | 0.1937 | -395.3317 | -407.6045 | -2.6168 | -2.6010 |
| 0.6505 | 0.18 | 1390 | 0.6457 | -0.7204 | -0.9097 | 0.625 | 0.1892 | -392.0762 | -404.7940 | -2.6223 | -2.6073 |
| 0.6131 | 0.18 | 1400 | 0.6448 | -0.6976 | -0.8840 | 0.6265 | 0.1864 | -389.5133 | -402.5106 | -2.6269 | -2.6119 |
| 0.6537 | 0.18 | 1410 | 0.6441 | -0.6774 | -0.8600 | 0.6275 | 0.1827 | -387.1135 | -400.4853 | -2.6296 | -2.6148 |
| 0.6384 | 0.19 | 1420 | 0.6434 | -0.6711 | -0.8524 | 0.6280 | 0.1813 | -386.3515 | -399.8629 | -2.6321 | -2.6176 |
| 0.6132 | 0.19 | 1430 | 0.6432 | -0.7036 | -0.8889 | 0.6270 | 0.1854 | -390.0041 | -403.1084 | -2.6326 | -2.6182 |
| 0.6443 | 0.19 | 1440 | 0.6423 | -0.7073 | -0.8938 | 0.6265 | 0.1865 | -390.4881 | -403.4806 | -2.6346 | -2.6199 |
| 0.615 | 0.19 | 1450 | 0.6419 | -0.6898 | -0.8742 | 0.6270 | 0.1844 | -388.5262 | -401.7285 | -2.6376 | -2.6228 |
| 0.6368 | 0.19 | 1460 | 0.6420 | -0.7207 | -0.9126 | 0.6365 | 0.1919 | -392.3671 | -404.8150 | -2.6282 | -2.6125 |
| 0.6896 | 0.19 | 1470 | 0.6410 | -0.6924 | -0.8807 | 0.6320 | 0.1882 | -389.1761 | -401.9932 | -2.6298 | -2.6142 |
| 0.6412 | 0.19 | 1480 | 0.6412 | -0.7362 | -0.9274 | 0.6295 | 0.1913 | -393.8524 | -406.3655 | -2.6306 | -2.6154 |
| 0.6064 | 0.19 | 1490 | 0.6418 | -0.7669 | -0.9592 | 0.6245 | 0.1923 | -397.0263 | -409.4356 | -2.6332 | -2.6182 |
| 0.6325 | 0.2 | 1500 | 0.6417 | -0.7711 | -0.9637 | 0.6285 | 0.1926 | -397.4810 | -409.8640 | -2.6361 | -2.6212 |
| 0.6424 | 0.2 | 1510 | 0.6402 | -0.7373 | -0.9315 | 0.6320 | 0.1941 | -394.2556 | -406.4838 | -2.6307 | -2.6155 |
| 0.5892 | 0.2 | 1520 | 0.6411 | -0.7950 | -0.9991 | 0.6355 | 0.2041 | -401.0219 | -412.2532 | -2.6197 | -2.6038 |
| 0.7037 | 0.2 | 1530 | 0.6403 | -0.7732 | -0.9738 | 0.6340 | 0.2006 | -398.4938 | -410.0700 | -2.6243 | -2.6087 |
| 0.6159 | 0.2 | 1540 | 0.6390 | -0.7238 | -0.9190 | 0.6340 | 0.1952 | -393.0093 | -405.1262 | -2.6230 | -2.6075 |
| 0.6365 | 0.2 | 1550 | 0.6391 | -0.7273 | -0.9224 | 0.6370 | 0.1951 | -393.3499 | -405.4745 | -2.6207 | -2.6051 |
| 0.6055 | 0.2 | 1560 | 0.6391 | -0.7326 | -0.9318 | 0.6335 | 0.1992 | -394.2929 | -406.0096 | -2.6110 | -2.5947 |
| 0.6129 | 0.21 | 1570 | 0.6402 | -0.7043 | -0.9034 | 0.6360 | 0.1991 | -391.4497 | -403.1786 | -2.5989 | -2.5811 |
| 0.6286 | 0.21 | 1580 | 0.6425 | -0.7866 | -1.0002 | 0.6380 | 0.2135 | -401.1251 | -411.4100 | -2.5811 | -2.5616 |
| 0.6803 | 0.21 | 1590 | 0.6425 | -0.8338 | -1.0554 | 0.6375 | 0.2216 | -406.6456 | -416.1252 | -2.5802 | -2.5604 |
| 0.6037 | 0.21 | 1600 | 0.6421 | -0.8273 | -1.0473 | 0.6400 | 0.2200 | -405.8362 | -415.4784 | -2.5802 | -2.5603 |
| 0.7021 | 0.21 | 1610 | 0.6421 | -0.7084 | -0.9104 | 0.6340 | 0.2020 | -392.1523 | -403.5919 | -2.5816 | -2.5623 |
| 0.6388 | 0.21 | 1620 | 0.6410 | -0.6609 | -0.8549 | 0.6315 | 0.1940 | -386.6023 | -398.8391 | -2.5855 | -2.5669 |
| 0.5835 | 0.21 | 1630 | 0.6402 | -0.7310 | -0.9371 | 0.6365 | 0.2061 | -394.8233 | -405.8494 | -2.5778 | -2.5591 |
| 0.6083 | 0.21 | 1640 | 0.6409 | -0.8032 | -1.0213 | 0.6340 | 0.2182 | -403.2436 | -413.0656 | -2.5690 | -2.5498 |
| 0.6022 | 0.22 | 1650 | 0.6415 | -0.8630 | -1.0908 | 0.6365 | 0.2278 | -410.1859 | -419.0446 | -2.5710 | -2.5515 |
| 0.6203 | 0.22 | 1660 | 0.6407 | -0.8503 | -1.0771 | 0.6370 | 0.2268 | -408.8165 | -417.7774 | -2.5823 | -2.5632 |
| 0.6444 | 0.22 | 1670 | 0.6396 | -0.8407 | -1.0657 | 0.6355 | 0.2250 | -407.6794 | -416.8189 | -2.5919 | -2.5731 |
| 0.6084 | 0.22 | 1680 | 0.6388 | -0.8054 | -1.0262 | 0.6380 | 0.2208 | -403.7292 | -413.2849 | -2.5990 | -2.5808 |
| 0.6797 | 0.22 | 1690 | 0.6387 | -0.8254 | -1.0483 | 0.6410 | 0.2230 | -405.9435 | -415.2863 | -2.5981 | -2.5806 |
| 0.6111 | 0.22 | 1700 | 0.6385 | -0.8136 | -1.0354 | 0.6390 | 0.2218 | -404.6506 | -414.1109 | -2.5919 | -2.5750 |
| 0.6356 | 0.22 | 1710 | 0.6393 | -0.8148 | -1.0369 | 0.6340 | 0.2220 | -404.7968 | -414.2316 | -2.5836 | -2.5671 |
| 0.5897 | 0.23 | 1720 | 0.6413 | -0.8275 | -1.0512 | 0.6350 | 0.2236 | -406.2257 | -415.5031 | -2.5779 | -2.5621 |
| 0.6146 | 0.23 | 1730 | 0.6429 | -0.8567 | -1.0856 | 0.6340 | 0.2289 | -409.6731 | -418.4196 | -2.5745 | -2.5588 |
| 0.6418 | 0.23 | 1740 | 0.6437 | -0.9051 | -1.1429 | 0.6295 | 0.2378 | -415.3972 | -423.2546 | -2.5724 | -2.5562 |
| 0.6322 | 0.23 | 1750 | 0.6413 | -0.8541 | -1.0862 | 0.6340 | 0.2322 | -409.7335 | -418.1546 | -2.5868 | -2.5712 |
| 0.628 | 0.23 | 1760 | 0.6369 | -0.7892 | -1.0117 | 0.6310 | 0.2225 | -402.2831 | -411.6743 | -2.6153 | -2.6007 |
| 0.5509 | 0.23 | 1770 | 0.6369 | -0.7881 | -1.0129 | 0.6290 | 0.2247 | -402.3954 | -411.5599 | -2.6190 | -2.6041 |
| 0.5959 | 0.23 | 1780 | 0.6371 | -0.7471 | -0.9675 | 0.6295 | 0.2203 | -397.8552 | -407.4631 | -2.6175 | -2.6019 |
| 0.6137 | 0.23 | 1790 | 0.6370 | -0.7905 | -1.0189 | 0.6265 | 0.2283 | -402.9956 | -411.8017 | -2.6157 | -2.5999 |
| 0.6518 | 0.24 | 1800 | 0.6367 | -0.8300 | -1.0656 | 0.6310 | 0.2355 | -407.6683 | -415.7537 | -2.6121 | -2.5960 |
| 0.6444 | 0.24 | 1810 | 0.6359 | -0.8129 | -1.0451 | 0.6315 | 0.2322 | -405.6207 | -414.0361 | -2.6105 | -2.5939 |
| 0.645 | 0.24 | 1820 | 0.6362 | -0.8089 | -1.0419 | 0.6335 | 0.2329 | -405.2971 | -413.6440 | -2.6049 | -2.5881 |
| 0.6188 | 0.24 | 1830 | 0.6372 | -0.8706 | -1.1143 | 0.6265 | 0.2437 | -412.5353 | -419.8054 | -2.5952 | -2.5781 |
| 0.597 | 0.24 | 1840 | 0.6378 | -0.8381 | -1.0796 | 0.6245 | 0.2414 | -409.0667 | -416.5643 | -2.5903 | -2.5728 |
| 0.6169 | 0.24 | 1850 | 0.6380 | -0.8494 | -1.0920 | 0.6255 | 0.2426 | -410.3075 | -417.6918 | -2.5900 | -2.5729 |
| 0.5578 | 0.24 | 1860 | 0.6403 | -0.8872 | -1.1355 | 0.6255 | 0.2484 | -414.6641 | -421.4672 | -2.5811 | -2.5646 |
| 0.6017 | 0.24 | 1870 | 0.6397 | -0.9055 | -1.1567 | 0.6245 | 0.2513 | -416.7841 | -423.2950 | -2.5861 | -2.5702 |
| 0.6193 | 0.25 | 1880 | 0.6379 | -0.9120 | -1.1633 | 0.6280 | 0.2513 | -417.4392 | -423.9531 | -2.5942 | -2.5784 |
| 0.6376 | 0.25 | 1890 | 0.6372 | -0.9484 | -1.2006 | 0.6305 | 0.2522 | -421.1735 | -427.5891 | -2.6016 | -2.5859 |
| 0.6282 | 0.25 | 1900 | 0.6361 | -0.9367 | -1.1858 | 0.6335 | 0.2491 | -419.6852 | -426.4164 | -2.6061 | -2.5904 |
| 0.6556 | 0.25 | 1910 | 0.6358 | -0.9203 | -1.1659 | 0.6315 | 0.2456 | -417.7047 | -424.7823 | -2.6082 | -2.5926 |
| 0.6259 | 0.25 | 1920 | 0.6337 | -0.8454 | -1.0800 | 0.6340 | 0.2346 | -409.1140 | -417.2929 | -2.6206 | -2.6057 |
| 0.7005 | 0.25 | 1930 | 0.6329 | -0.8074 | -1.0319 | 0.6390 | 0.2245 | -404.2984 | -413.4906 | -2.6362 | -2.6222 |
| 0.6331 | 0.25 | 1940 | 0.6326 | -0.7858 | -1.0043 | 0.6350 | 0.2185 | -401.5396 | -411.3259 | -2.6430 | -2.6293 |
| 0.6362 | 0.26 | 1950 | 0.6318 | -0.7784 | -0.9987 | 0.6375 | 0.2202 | -400.9760 | -410.5943 | -2.6435 | -2.6298 |
| 0.5862 | 0.26 | 1960 | 0.6319 | -0.8285 | -1.0595 | 0.6355 | 0.2310 | -407.0627 | -415.5986 | -2.6348 | -2.6206 |
| 0.6907 | 0.26 | 1970 | 0.6316 | -0.7761 | -1.0016 | 0.6345 | 0.2255 | -401.2738 | -410.3633 | -2.6301 | -2.6154 |
| 0.6349 | 0.26 | 1980 | 0.6315 | -0.7514 | -0.9749 | 0.6330 | 0.2234 | -398.5971 | -407.8918 | -2.6283 | -2.6133 |
| 0.618 | 0.26 | 1990 | 0.6315 | -0.8443 | -1.0831 | 0.6415 | 0.2387 | -409.4156 | -417.1805 | -2.6258 | -2.6106 |
| 0.6924 | 0.26 | 2000 | 0.6317 | -0.8507 | -1.0894 | 0.6390 | 0.2387 | -410.0538 | -417.8204 | -2.6258 | -2.6107 |
| 0.6461 | 0.26 | 2010 | 0.6307 | -0.8010 | -1.0331 | 0.6405 | 0.2321 | -404.4166 | -412.8479 | -2.6269 | -2.6121 |
| 0.6233 | 0.26 | 2020 | 0.6306 | -0.7717 | -1.0007 | 0.6405 | 0.2290 | -401.1810 | -409.9208 | -2.6243 | -2.6096 |
| 0.6237 | 0.27 | 2030 | 0.6305 | -0.7362 | -0.9611 | 0.6380 | 0.2250 | -397.2237 | -406.3678 | -2.6218 | -2.6072 |
| 0.5939 | 0.27 | 2040 | 0.6308 | -0.7560 | -0.9877 | 0.6385 | 0.2317 | -399.8785 | -408.3467 | -2.6155 | -2.6006 |
| 0.5974 | 0.27 | 2050 | 0.6328 | -0.7690 | -1.0063 | 0.6390 | 0.2372 | -401.7351 | -409.6518 | -2.6026 | -2.5867 |
| 0.6569 | 0.27 | 2060 | 0.6336 | -0.8145 | -1.0587 | 0.6370 | 0.2442 | -406.9814 | -414.1979 | -2.5981 | -2.5818 |
| 0.6322 | 0.27 | 2070 | 0.6324 | -0.8495 | -1.0992 | 0.6410 | 0.2497 | -411.0252 | -417.6963 | -2.6044 | -2.5878 |
| 0.6262 | 0.27 | 2080 | 0.6311 | -0.8940 | -1.1476 | 0.6400 | 0.2536 | -415.8672 | -422.1446 | -2.6086 | -2.5924 |
| 0.6663 | 0.27 | 2090 | 0.6304 | -0.8916 | -1.1427 | 0.6425 | 0.2511 | -415.3799 | -421.9053 | -2.6108 | -2.5941 |
| 0.6222 | 0.27 | 2100 | 0.6301 | -0.8936 | -1.1429 | 0.6385 | 0.2493 | -415.3976 | -422.1054 | -2.6116 | -2.5948 |
| 0.6496 | 0.28 | 2110 | 0.6297 | -0.8529 | -1.0969 | 0.6410 | 0.2440 | -410.8004 | -418.0361 | -2.6108 | -2.5937 |
| 0.6135 | 0.28 | 2120 | 0.6296 | -0.8347 | -1.0778 | 0.6390 | 0.2431 | -408.8890 | -416.2200 | -2.6070 | -2.5897 |
| 0.65 | 0.28 | 2130 | 0.6301 | -0.8876 | -1.1407 | 0.6405 | 0.2532 | -415.1848 | -421.5057 | -2.5947 | -2.5773 |
| 0.6562 | 0.28 | 2140 | 0.6285 | -0.8648 | -1.1125 | 0.6465 | 0.2478 | -412.3636 | -419.2277 | -2.5994 | -2.5827 |
| 0.5989 | 0.28 | 2150 | 0.6281 | -0.8920 | -1.1425 | 0.6475 | 0.2505 | -415.3588 | -421.9513 | -2.5980 | -2.5814 |
| 0.6232 | 0.28 | 2160 | 0.6284 | -0.9406 | -1.1958 | 0.6460 | 0.2552 | -420.6875 | -426.8111 | -2.5974 | -2.5812 |
| 0.6596 | 0.28 | 2170 | 0.6278 | -0.9201 | -1.1694 | 0.6465 | 0.2493 | -418.0499 | -424.7549 | -2.5999 | -2.5843 |
| 0.5964 | 0.29 | 2180 | 0.6268 | -0.8547 | -1.0934 | 0.6515 | 0.2387 | -410.4538 | -418.2219 | -2.6082 | -2.5931 |
| 0.5492 | 0.29 | 2190 | 0.6265 | -0.8444 | -1.0852 | 0.6515 | 0.2408 | -409.6349 | -417.1944 | -2.6069 | -2.5917 |
| 0.6317 | 0.29 | 2200 | 0.6260 | -0.8036 | -1.0426 | 0.6520 | 0.2390 | -405.3683 | -413.1067 | -2.6051 | -2.5893 |
| 0.6286 | 0.29 | 2210 | 0.6260 | -0.8071 | -1.0510 | 0.6445 | 0.2439 | -406.2112 | -413.4576 | -2.5994 | -2.5829 |
| 0.6342 | 0.29 | 2220 | 0.6260 | -0.8266 | -1.0738 | 0.6465 | 0.2471 | -408.4855 | -415.4107 | -2.5996 | -2.5829 |
| 0.6217 | 0.29 | 2230 | 0.6261 | -0.8837 | -1.1394 | 0.6465 | 0.2557 | -415.0464 | -421.1188 | -2.5963 | -2.5795 |
| 0.5913 | 0.29 | 2240 | 0.6272 | -0.9178 | -1.1822 | 0.6430 | 0.2644 | -419.3282 | -424.5318 | -2.5881 | -2.5709 |
| 0.6624 | 0.29 | 2250 | 0.6280 | -0.9283 | -1.1962 | 0.6420 | 0.2679 | -420.7293 | -425.5768 | -2.5880 | -2.5705 |
| 0.6178 | 0.3 | 2260 | 0.6282 | -0.8820 | -1.1434 | 0.6410 | 0.2614 | -415.4528 | -420.9500 | -2.5934 | -2.5759 |
| 0.6685 | 0.3 | 2270 | 0.6269 | -0.8848 | -1.1448 | 0.6455 | 0.2600 | -415.5908 | -421.2300 | -2.6020 | -2.5852 |
| 0.6301 | 0.3 | 2280 | 0.6263 | -0.8919 | -1.1514 | 0.6475 | 0.2595 | -416.2523 | -421.9367 | -2.6086 | -2.5923 |
| 0.6861 | 0.3 | 2290 | 0.6259 | -0.9077 | -1.1691 | 0.6495 | 0.2615 | -418.0213 | -423.5156 | -2.6069 | -2.5906 |
| 0.6088 | 0.3 | 2300 | 0.6266 | -0.9163 | -1.1805 | 0.6460 | 0.2643 | -419.1643 | -424.3768 | -2.5942 | -2.5775 |
| 0.6074 | 0.3 | 2310 | 0.6268 | -0.8724 | -1.1313 | 0.6400 | 0.2589 | -414.2422 | -419.9903 | -2.5912 | -2.5742 |
| 0.5575 | 0.3 | 2320 | 0.6284 | -0.9361 | -1.2070 | 0.6435 | 0.2709 | -421.8108 | -426.3576 | -2.5855 | -2.5676 |
| 0.5775 | 0.3 | 2330 | 0.6299 | -1.0124 | -1.2958 | 0.6420 | 0.2834 | -430.6888 | -433.9893 | -2.5848 | -2.5665 |
| 0.5663 | 0.31 | 2340 | 0.6300 | -1.0415 | -1.3312 | 0.6415 | 0.2896 | -434.2276 | -436.9039 | -2.5871 | -2.5689 |
| 0.5976 | 0.31 | 2350 | 0.6304 | -1.0252 | -1.3144 | 0.6395 | 0.2893 | -432.5544 | -435.2654 | -2.5829 | -2.5647 |
| 0.6032 | 0.31 | 2360 | 0.6298 | -1.0167 | -1.3058 | 0.6395 | 0.2891 | -431.6937 | -434.4194 | -2.5829 | -2.5649 |
| 0.6569 | 0.31 | 2370 | 0.6289 | -0.9922 | -1.2770 | 0.6410 | 0.2848 | -428.8085 | -431.9676 | -2.5831 | -2.5654 |
| 0.6557 | 0.31 | 2380 | 0.6288 | -1.0161 | -1.3029 | 0.6410 | 0.2868 | -431.3999 | -434.3564 | -2.5849 | -2.5677 |
| 0.593 | 0.31 | 2390 | 0.6294 | -1.0361 | -1.3256 | 0.6415 | 0.2894 | -433.6670 | -436.3635 | -2.5798 | -2.5628 |
| 0.5738 | 0.31 | 2400 | 0.6283 | -0.9909 | -1.2721 | 0.6395 | 0.2812 | -428.3227 | -431.8421 | -2.5818 | -2.5653 |
| 0.6016 | 0.32 | 2410 | 0.6278 | -0.9433 | -1.2179 | 0.6380 | 0.2746 | -422.9002 | -427.0763 | -2.5861 | -2.5696 |
| 0.5889 | 0.32 | 2420 | 0.6304 | -0.9423 | -1.2183 | 0.6345 | 0.2759 | -422.9380 | -426.9832 | -2.5738 | -2.5568 |
| 0.6591 | 0.32 | 2430 | 0.6299 | -0.9346 | -1.2097 | 0.6325 | 0.2751 | -422.0822 | -426.2091 | -2.5687 | -2.5523 |
| 0.5945 | 0.32 | 2440 | 0.6298 | -0.8958 | -1.1637 | 0.6350 | 0.2679 | -417.4772 | -422.3305 | -2.5713 | -2.5549 |
| 0.6374 | 0.32 | 2450 | 0.6289 | -0.8744 | -1.1411 | 0.6365 | 0.2667 | -415.2203 | -420.1926 | -2.5727 | -2.5563 |
| 0.5373 | 0.32 | 2460 | 0.6304 | -0.8982 | -1.1686 | 0.6325 | 0.2704 | -417.9743 | -422.5689 | -2.5652 | -2.5485 |
| 0.5907 | 0.32 | 2470 | 0.6326 | -0.9999 | -1.2865 | 0.6310 | 0.2867 | -429.7646 | -432.7390 | -2.5503 | -2.5329 |
| 0.611 | 0.32 | 2480 | 0.6332 | -1.0077 | -1.2965 | 0.6340 | 0.2888 | -430.7619 | -433.5213 | -2.5407 | -2.5233 |
| 0.6033 | 0.33 | 2490 | 0.6321 | -0.9828 | -1.2667 | 0.6365 | 0.2839 | -427.7772 | -431.0261 | -2.5417 | -2.5246 |
| 0.6122 | 0.33 | 2500 | 0.6308 | -0.9669 | -1.2466 | 0.6365 | 0.2797 | -425.7724 | -429.4399 | -2.5516 | -2.5352 |
| 0.6077 | 0.33 | 2510 | 0.6286 | -0.9640 | -1.2432 | 0.6405 | 0.2791 | -425.4290 | -429.1539 | -2.5640 | -2.5483 |
| 0.6255 | 0.33 | 2520 | 0.6296 | -1.0321 | -1.3234 | 0.6390 | 0.2913 | -433.4538 | -435.9596 | -2.5582 | -2.5429 |
| 0.6172 | 0.33 | 2530 | 0.6300 | -1.0458 | -1.3408 | 0.6410 | 0.2950 | -435.1912 | -437.3290 | -2.5550 | -2.5393 |
| 0.6536 | 0.33 | 2540 | 0.6278 | -0.9740 | -1.2585 | 0.6435 | 0.2846 | -426.9625 | -430.1458 | -2.5626 | -2.5464 |
| 0.6565 | 0.33 | 2550 | 0.6263 | -0.8894 | -1.1583 | 0.6400 | 0.2689 | -416.9401 | -421.6891 | -2.5767 | -2.5606 |
| 0.6676 | 0.33 | 2560 | 0.6265 | -0.7948 | -1.0474 | 0.6440 | 0.2526 | -405.8482 | -412.2315 | -2.5837 | -2.5675 |
| 0.6483 | 0.34 | 2570 | 0.6275 | -0.7013 | -0.9355 | 0.6490 | 0.2342 | -394.6591 | -402.8755 | -2.5958 | -2.5800 |
| 0.6541 | 0.34 | 2580 | 0.6273 | -0.6840 | -0.9158 | 0.6495 | 0.2318 | -392.6910 | -401.1508 | -2.6069 | -2.5906 |
| 0.6052 | 0.34 | 2590 | 0.6277 | -0.7188 | -0.9566 | 0.6505 | 0.2378 | -396.7696 | -404.6281 | -2.6081 | -2.5914 |
| 0.6153 | 0.34 | 2600 | 0.6282 | -0.7864 | -1.0365 | 0.6395 | 0.2501 | -404.7595 | -411.3907 | -2.6071 | -2.5894 |
| 0.616 | 0.34 | 2610 | 0.6287 | -0.8500 | -1.1083 | 0.6380 | 0.2583 | -411.9449 | -417.7501 | -2.6081 | -2.5905 |
| 0.5428 | 0.34 | 2620 | 0.6287 | -0.9487 | -1.2222 | 0.6365 | 0.2736 | -423.3333 | -427.6159 | -2.6181 | -2.6005 |
| 0.5982 | 0.34 | 2630 | 0.6308 | -1.0299 | -1.3177 | 0.6385 | 0.2878 | -432.8792 | -435.7413 | -2.6165 | -2.5989 |
| 0.609 | 0.35 | 2640 | 0.6294 | -0.9973 | -1.2819 | 0.6360 | 0.2847 | -429.3039 | -432.4779 | -2.6236 | -2.6060 |
| 0.5885 | 0.35 | 2650 | 0.6293 | -0.9876 | -1.2707 | 0.6350 | 0.2831 | -428.1784 | -431.5092 | -2.6261 | -2.6082 |
| 0.6198 | 0.35 | 2660 | 0.6307 | -0.9949 | -1.2792 | 0.6355 | 0.2843 | -429.0344 | -432.2407 | -2.6180 | -2.5988 |
| 0.6223 | 0.35 | 2670 | 0.6331 | -1.0108 | -1.2990 | 0.6340 | 0.2881 | -431.0054 | -433.8322 | -2.6062 | -2.5861 |
| 0.6479 | 0.35 | 2680 | 0.6315 | -1.0010 | -1.2894 | 0.6365 | 0.2884 | -430.0517 | -432.8544 | -2.6071 | -2.5871 |
| 0.5703 | 0.35 | 2690 | 0.6307 | -1.0420 | -1.3373 | 0.6365 | 0.2953 | -434.8387 | -436.9498 | -2.6051 | -2.5856 |
| 0.6217 | 0.35 | 2700 | 0.6307 | -1.0655 | -1.3643 | 0.6335 | 0.2989 | -437.5450 | -439.2961 | -2.6074 | -2.5881 |
| 0.6502 | 0.35 | 2710 | 0.6275 | -0.9870 | -1.2725 | 0.6350 | 0.2855 | -428.3634 | -431.4541 | -2.6215 | -2.6021 |
| 0.6013 | 0.36 | 2720 | 0.6255 | -0.9180 | -1.1917 | 0.6380 | 0.2737 | -420.2796 | -424.5511 | -2.6357 | -2.6167 |
| 0.643 | 0.36 | 2730 | 0.6250 | -0.9205 | -1.1955 | 0.6400 | 0.2749 | -420.6579 | -424.8026 | -2.6373 | -2.6182 |
| 0.6072 | 0.36 | 2740 | 0.6246 | -0.9305 | -1.2071 | 0.6410 | 0.2766 | -421.8180 | -425.8010 | -2.6340 | -2.6148 |
| 0.6327 | 0.36 | 2750 | 0.6255 | -0.9322 | -1.2088 | 0.6385 | 0.2766 | -421.9896 | -425.9725 | -2.6241 | -2.6044 |
| 0.5996 | 0.36 | 2760 | 0.6251 | -0.8971 | -1.1675 | 0.6410 | 0.2704 | -417.8635 | -422.4580 | -2.6229 | -2.6033 |
| 0.7056 | 0.36 | 2770 | 0.6238 | -0.8368 | -1.0969 | 0.6410 | 0.2601 | -410.8011 | -416.4323 | -2.6285 | -2.6097 |
| 0.606 | 0.36 | 2780 | 0.6237 | -0.8490 | -1.1129 | 0.6400 | 0.2639 | -412.4020 | -417.6534 | -2.6183 | -2.5995 |
| 0.5751 | 0.37 | 2790 | 0.6247 | -0.8342 | -1.0972 | 0.6455 | 0.2630 | -410.8312 | -416.1697 | -2.6151 | -2.5960 |
| 0.6504 | 0.37 | 2800 | 0.6250 | -0.8142 | -1.0753 | 0.6425 | 0.2612 | -408.6443 | -414.1668 | -2.6188 | -2.5991 |
| 0.5513 | 0.37 | 2810 | 0.6251 | -0.8915 | -1.1658 | 0.6475 | 0.2743 | -417.6894 | -421.8967 | -2.6137 | -2.5935 |
| 0.5198 | 0.37 | 2820 | 0.6288 | -1.0581 | -1.3604 | 0.6365 | 0.3024 | -437.1532 | -438.5566 | -2.5996 | -2.5784 |
| 0.5981 | 0.37 | 2830 | 0.6319 | -1.1625 | -1.4817 | 0.6355 | 0.3191 | -449.2752 | -449.0024 | -2.5958 | -2.5738 |
| 0.6637 | 0.37 | 2840 | 0.6316 | -1.1947 | -1.5196 | 0.6335 | 0.3249 | -453.0709 | -452.2231 | -2.5948 | -2.5727 |
| 0.6351 | 0.37 | 2850 | 0.6327 | -1.1942 | -1.5206 | 0.6350 | 0.3265 | -453.1729 | -452.1654 | -2.5927 | -2.5702 |
| 0.6009 | 0.37 | 2860 | 0.6324 | -1.1937 | -1.5215 | 0.6370 | 0.3277 | -453.2584 | -452.1236 | -2.6020 | -2.5798 |
| 0.6586 | 0.38 | 2870 | 0.6291 | -1.1207 | -1.4380 | 0.6420 | 0.3173 | -444.9077 | -444.8151 | -2.6147 | -2.5923 |
| 0.5718 | 0.38 | 2880 | 0.6276 | -1.0123 | -1.3148 | 0.6430 | 0.3025 | -432.5858 | -433.9771 | -2.6220 | -2.5997 |
| 0.6098 | 0.38 | 2890 | 0.6266 | -0.9581 | -1.2546 | 0.6465 | 0.2966 | -426.5735 | -428.5566 | -2.6148 | -2.5929 |
| 0.6727 | 0.38 | 2900 | 0.6264 | -0.9209 | -1.2142 | 0.6495 | 0.2933 | -422.5286 | -424.8429 | -2.6086 | -2.5872 |
| 0.6066 | 0.38 | 2910 | 0.6250 | -0.8989 | -1.1895 | 0.6490 | 0.2906 | -420.0552 | -422.6353 | -2.6062 | -2.5857 |
| 0.6094 | 0.38 | 2920 | 0.6240 | -0.8737 | -1.1607 | 0.6480 | 0.2869 | -417.1783 | -420.1236 | -2.6009 | -2.5808 |
| 0.5938 | 0.38 | 2930 | 0.6239 | -0.8604 | -1.1456 | 0.6480 | 0.2852 | -415.6716 | -418.7934 | -2.5991 | -2.5792 |
| 0.6039 | 0.38 | 2940 | 0.6244 | -0.9125 | -1.2053 | 0.6470 | 0.2928 | -421.6431 | -424.0008 | -2.5930 | -2.5733 |
| 0.5952 | 0.39 | 2950 | 0.6246 | -0.9209 | -1.2148 | 0.6445 | 0.2939 | -422.5884 | -424.8386 | -2.5878 | -2.5684 |
| 0.6394 | 0.39 | 2960 | 0.6238 | -0.9098 | -1.2006 | 0.6475 | 0.2908 | -421.1725 | -423.7320 | -2.5848 | -2.5659 |
| 0.509 | 0.39 | 2970 | 0.6250 | -0.9394 | -1.2352 | 0.6490 | 0.2958 | -424.6266 | -426.6901 | -2.5797 | -2.5607 |
| 0.6274 | 0.39 | 2980 | 0.6261 | -0.9802 | -1.2836 | 0.6495 | 0.3034 | -429.4747 | -430.7714 | -2.5700 | -2.5506 |
| 0.6132 | 0.39 | 2990 | 0.6257 | -1.0083 | -1.3179 | 0.6465 | 0.3096 | -432.9015 | -433.5816 | -2.5660 | -2.5463 |
| 0.6322 | 0.39 | 3000 | 0.6249 | -1.0075 | -1.3160 | 0.6505 | 0.3085 | -432.7070 | -433.4970 | -2.5640 | -2.5444 |
| 0.6969 | 0.39 | 3010 | 0.6242 | -0.9749 | -1.2759 | 0.6505 | 0.3010 | -428.6985 | -430.2418 | -2.5559 | -2.5365 |
| 0.632 | 0.4 | 3020 | 0.6225 | -0.9385 | -1.2307 | 0.6495 | 0.2922 | -424.1770 | -426.5962 | -2.5630 | -2.5436 |
| 0.6207 | 0.4 | 3030 | 0.6220 | -0.9339 | -1.2229 | 0.6510 | 0.2890 | -423.4004 | -426.1408 | -2.5665 | -2.5473 |
| 0.6059 | 0.4 | 3040 | 0.6213 | -0.9029 | -1.1867 | 0.6555 | 0.2837 | -419.7774 | -423.0438 | -2.5660 | -2.5473 |
| 0.6284 | 0.4 | 3050 | 0.6215 | -0.8856 | -1.1664 | 0.6540 | 0.2808 | -417.7492 | -421.3135 | -2.5671 | -2.5482 |
| 0.5785 | 0.4 | 3060 | 0.6219 | -0.8867 | -1.1684 | 0.6505 | 0.2817 | -417.9524 | -421.4232 | -2.5619 | -2.5430 |
| 0.6048 | 0.4 | 3070 | 0.6220 | -0.9453 | -1.2379 | 0.6510 | 0.2926 | -424.8985 | -427.2796 | -2.5593 | -2.5402 |
| 0.6668 | 0.4 | 3080 | 0.6213 | -1.0331 | -1.3385 | 0.6510 | 0.3054 | -434.9569 | -436.0604 | -2.5602 | -2.5416 |
| 0.6687 | 0.4 | 3090 | 0.6203 | -1.0575 | -1.3637 | 0.6525 | 0.3063 | -437.4830 | -438.4970 | -2.5609 | -2.5425 |
| 0.5243 | 0.41 | 3100 | 0.6207 | -1.0842 | -1.3960 | 0.6515 | 0.3118 | -440.7137 | -441.1709 | -2.5574 | -2.5390 |
| 0.6149 | 0.41 | 3110 | 0.6214 | -1.0752 | -1.3867 | 0.6525 | 0.3114 | -439.7763 | -440.2719 | -2.5518 | -2.5333 |
| 0.6346 | 0.41 | 3120 | 0.6199 | -1.0468 | -1.3509 | 0.6500 | 0.3041 | -436.2013 | -437.4295 | -2.5647 | -2.5467 |
| 0.637 | 0.41 | 3130 | 0.6197 | -1.0924 | -1.3981 | 0.6495 | 0.3057 | -440.9231 | -441.9938 | -2.5670 | -2.5497 |
| 0.6076 | 0.41 | 3140 | 0.6205 | -1.1591 | -1.4689 | 0.6515 | 0.3098 | -448.0017 | -448.6626 | -2.5616 | -2.5451 |
| 0.5972 | 0.41 | 3150 | 0.6221 | -1.2200 | -1.5345 | 0.6515 | 0.3145 | -454.5576 | -454.7509 | -2.5591 | -2.5434 |
| 0.6125 | 0.41 | 3160 | 0.6223 | -1.2220 | -1.5388 | 0.6515 | 0.3168 | -454.9926 | -454.9516 | -2.5502 | -2.5345 |
| 0.5862 | 0.41 | 3170 | 0.6220 | -1.2133 | -1.5298 | 0.6510 | 0.3165 | -454.0869 | -454.0766 | -2.5417 | -2.5259 |
| 0.6327 | 0.42 | 3180 | 0.6194 | -1.1016 | -1.4098 | 0.6555 | 0.3082 | -442.0906 | -442.9092 | -2.5381 | -2.5217 |
| 0.6965 | 0.42 | 3190 | 0.6185 | -0.9944 | -1.2890 | 0.6525 | 0.2946 | -430.0141 | -432.1944 | -2.5400 | -2.5234 |
| 0.6283 | 0.42 | 3200 | 0.6186 | -0.9402 | -1.2252 | 0.6575 | 0.2850 | -423.6346 | -426.7724 | -2.5438 | -2.5269 |
| 0.5662 | 0.42 | 3210 | 0.6193 | -0.8699 | -1.1460 | 0.6575 | 0.2761 | -415.7131 | -419.7384 | -2.5412 | -2.5234 |
| 0.6209 | 0.42 | 3220 | 0.6200 | -0.8226 | -1.0938 | 0.6590 | 0.2712 | -410.4877 | -415.0109 | -2.5410 | -2.5229 |
| 0.6044 | 0.42 | 3230 | 0.6196 | -0.8333 | -1.1091 | 0.6575 | 0.2758 | -412.0194 | -416.0751 | -2.5373 | -2.5192 |
| 0.5752 | 0.42 | 3240 | 0.6205 | -0.9074 | -1.1990 | 0.6550 | 0.2916 | -421.0147 | -423.4896 | -2.5106 | -2.4921 |
| 0.624 | 0.43 | 3250 | 0.6234 | -0.9683 | -1.2706 | 0.6520 | 0.3023 | -428.1665 | -429.5796 | -2.4790 | -2.4604 |
| 0.5992 | 0.43 | 3260 | 0.6249 | -1.0305 | -1.3426 | 0.6510 | 0.3121 | -435.3685 | -435.7988 | -2.4621 | -2.4435 |
| 0.5932 | 0.43 | 3270 | 0.6256 | -1.0746 | -1.3921 | 0.6490 | 0.3175 | -440.3195 | -440.2114 | -2.4506 | -2.4320 |
| 0.6325 | 0.43 | 3280 | 0.6251 | -1.0963 | -1.4150 | 0.6495 | 0.3187 | -442.6060 | -442.3782 | -2.4523 | -2.4339 |
| 0.6279 | 0.43 | 3290 | 0.6231 | -1.1019 | -1.4195 | 0.6505 | 0.3176 | -443.0581 | -442.9397 | -2.4587 | -2.4407 |
| 0.6383 | 0.43 | 3300 | 0.6217 | -1.0491 | -1.3572 | 0.6545 | 0.3080 | -436.8260 | -437.6624 | -2.4678 | -2.4499 |
| 0.6163 | 0.43 | 3310 | 0.6200 | -0.9923 | -1.2910 | 0.6560 | 0.2987 | -430.2067 | -431.9793 | -2.4774 | -2.4601 |
| 0.6353 | 0.43 | 3320 | 0.6191 | -0.9202 | -1.2069 | 0.6570 | 0.2867 | -421.8025 | -424.7696 | -2.4884 | -2.4712 |
| 0.6372 | 0.44 | 3330 | 0.6183 | -0.8986 | -1.1825 | 0.6575 | 0.2838 | -419.3560 | -422.6133 | -2.4916 | -2.4742 |
| 0.604 | 0.44 | 3340 | 0.6180 | -0.9320 | -1.2233 | 0.6575 | 0.2913 | -423.4430 | -425.9539 | -2.4876 | -2.4701 |
| 0.6338 | 0.44 | 3350 | 0.6166 | -1.0067 | -1.3090 | 0.6570 | 0.3023 | -432.0136 | -433.4238 | -2.4934 | -2.4763 |
| 0.6361 | 0.44 | 3360 | 0.6161 | -1.0169 | -1.3203 | 0.6585 | 0.3034 | -433.1445 | -434.4416 | -2.4932 | -2.4760 |
| 0.6455 | 0.44 | 3370 | 0.6161 | -0.9787 | -1.2777 | 0.6630 | 0.2990 | -428.8773 | -430.6172 | -2.4973 | -2.4798 |
| 0.6137 | 0.44 | 3380 | 0.6161 | -0.9883 | -1.2883 | 0.6625 | 0.3000 | -429.9381 | -431.5823 | -2.4944 | -2.4770 |
| 0.6181 | 0.44 | 3390 | 0.6154 | -1.0101 | -1.3142 | 0.6605 | 0.3041 | -432.5337 | -433.7590 | -2.4847 | -2.4677 |
| 0.6161 | 0.44 | 3400 | 0.6145 | -1.0551 | -1.3645 | 0.6610 | 0.3094 | -437.5621 | -438.2620 | -2.4762 | -2.4600 |
| 0.6071 | 0.45 | 3410 | 0.6144 | -1.0811 | -1.3958 | 0.6590 | 0.3147 | -440.6938 | -440.8622 | -2.4734 | -2.4571 |
| 0.5929 | 0.45 | 3420 | 0.6146 | -1.1149 | -1.4354 | 0.6565 | 0.3205 | -444.6485 | -444.2359 | -2.4678 | -2.4514 |
| 0.6345 | 0.45 | 3430 | 0.6144 | -1.1151 | -1.4362 | 0.6595 | 0.3212 | -444.7310 | -444.2546 | -2.4649 | -2.4484 |
| 0.5878 | 0.45 | 3440 | 0.6142 | -1.0856 | -1.4063 | 0.6600 | 0.3207 | -441.7399 | -441.3051 | -2.4639 | -2.4468 |
| 0.6214 | 0.45 | 3450 | 0.6137 | -1.0192 | -1.3320 | 0.6605 | 0.3128 | -434.3102 | -434.6713 | -2.4644 | -2.4471 |
| 0.5646 | 0.45 | 3460 | 0.6137 | -1.0486 | -1.3665 | 0.6590 | 0.3179 | -437.7554 | -437.6047 | -2.4569 | -2.4395 |
| 0.5993 | 0.45 | 3470 | 0.6142 | -1.0594 | -1.3801 | 0.6615 | 0.3207 | -439.1224 | -438.6912 | -2.4468 | -2.4293 |
| 0.6814 | 0.46 | 3480 | 0.6140 | -1.0330 | -1.3506 | 0.6655 | 0.3176 | -436.1695 | -436.0477 | -2.4459 | -2.4283 |
| 0.6004 | 0.46 | 3490 | 0.6140 | -0.9839 | -1.2953 | 0.6645 | 0.3114 | -430.6406 | -431.1418 | -2.4500 | -2.4319 |
| 0.6039 | 0.46 | 3500 | 0.6142 | -0.9341 | -1.2398 | 0.6655 | 0.3057 | -425.0884 | -426.1593 | -2.4562 | -2.4382 |
| 0.5735 | 0.46 | 3510 | 0.6141 | -0.9224 | -1.2246 | 0.6640 | 0.3022 | -423.5655 | -424.9874 | -2.4525 | -2.4344 |
| 0.6345 | 0.46 | 3520 | 0.6133 | -0.9708 | -1.2758 | 0.6630 | 0.3050 | -428.6861 | -429.8299 | -2.4437 | -2.4260 |
| 0.5534 | 0.46 | 3530 | 0.6132 | -1.0074 | -1.3172 | 0.6625 | 0.3099 | -432.8323 | -433.4846 | -2.4411 | -2.4236 |
| 0.6593 | 0.46 | 3540 | 0.6123 | -1.0400 | -1.3534 | 0.6635 | 0.3134 | -436.4506 | -436.7543 | -2.4444 | -2.4274 |
| 0.5675 | 0.46 | 3550 | 0.6121 | -1.0763 | -1.3937 | 0.6640 | 0.3175 | -440.4826 | -440.3762 | -2.4413 | -2.4247 |
| 0.5771 | 0.47 | 3560 | 0.6120 | -1.0978 | -1.4217 | 0.6635 | 0.3240 | -443.2840 | -442.5283 | -2.4349 | -2.4184 |
| 0.5887 | 0.47 | 3570 | 0.6119 | -1.1004 | -1.4268 | 0.6650 | 0.3264 | -443.7903 | -442.7873 | -2.4389 | -2.4226 |
| 0.5473 | 0.47 | 3580 | 0.6124 | -1.0942 | -1.4231 | 0.6620 | 0.3289 | -443.4171 | -442.1665 | -2.4356 | -2.4190 |
| 0.5784 | 0.47 | 3590 | 0.6133 | -1.0677 | -1.3958 | 0.6605 | 0.3282 | -440.6925 | -439.5168 | -2.4448 | -2.4275 |
| 0.6345 | 0.47 | 3600 | 0.6135 | -1.0318 | -1.3578 | 0.6625 | 0.3259 | -436.8870 | -435.9315 | -2.4577 | -2.4402 |
| 0.6347 | 0.47 | 3610 | 0.6143 | -0.9720 | -1.2907 | 0.6620 | 0.3187 | -430.1793 | -429.9488 | -2.4687 | -2.4507 |
| 0.5758 | 0.47 | 3620 | 0.6142 | -0.9592 | -1.2771 | 0.6660 | 0.3179 | -428.8227 | -428.6710 | -2.4701 | -2.4518 |
| 0.5851 | 0.48 | 3630 | 0.6145 | -0.9787 | -1.2997 | 0.6690 | 0.3210 | -431.0766 | -430.6168 | -2.4605 | -2.4421 |
| 0.5792 | 0.48 | 3640 | 0.6144 | -1.0240 | -1.3503 | 0.6640 | 0.3264 | -436.1448 | -435.1482 | -2.4517 | -2.4333 |
| 0.6328 | 0.48 | 3650 | 0.6136 | -1.0785 | -1.4141 | 0.6630 | 0.3355 | -442.5193 | -440.6043 | -2.4517 | -2.4341 |
| 0.5169 | 0.48 | 3660 | 0.6136 | -1.1687 | -1.5162 | 0.6655 | 0.3475 | -452.7323 | -449.6213 | -2.4361 | -2.4193 |
| 0.5708 | 0.48 | 3670 | 0.6136 | -1.2193 | -1.5729 | 0.6650 | 0.3536 | -458.3980 | -454.6792 | -2.4262 | -2.4102 |
| 0.6218 | 0.48 | 3680 | 0.6138 | -1.1217 | -1.4635 | 0.6700 | 0.3418 | -447.4606 | -444.9193 | -2.4316 | -2.4147 |
| 0.6159 | 0.48 | 3690 | 0.6135 | -1.0458 | -1.3775 | 0.6645 | 0.3317 | -438.8553 | -437.3271 | -2.4344 | -2.4173 |
| 0.6424 | 0.48 | 3700 | 0.6131 | -1.0156 | -1.3406 | 0.6690 | 0.3250 | -435.1674 | -434.3116 | -2.4294 | -2.4127 |
| 0.6458 | 0.49 | 3710 | 0.6136 | -0.9696 | -1.2884 | 0.6665 | 0.3188 | -429.9492 | -429.7126 | -2.4342 | -2.4173 |
| 0.6061 | 0.49 | 3720 | 0.6134 | -0.9417 | -1.2530 | 0.6625 | 0.3112 | -426.4054 | -426.9236 | -2.4437 | -2.4274 |
| 0.5655 | 0.49 | 3730 | 0.6129 | -0.9922 | -1.3103 | 0.6585 | 0.3181 | -432.1391 | -431.9655 | -2.4445 | -2.4288 |
| 0.5771 | 0.49 | 3740 | 0.6123 | -1.0362 | -1.3626 | 0.6640 | 0.3264 | -437.3710 | -436.3723 | -2.4406 | -2.4252 |
| 0.545 | 0.49 | 3750 | 0.6121 | -1.0961 | -1.4339 | 0.6680 | 0.3377 | -444.4958 | -442.3606 | -2.4329 | -2.4175 |
| 0.5936 | 0.49 | 3760 | 0.6123 | -1.1387 | -1.4844 | 0.6650 | 0.3457 | -449.5539 | -446.6186 | -2.4249 | -2.4095 |
| 0.5423 | 0.49 | 3770 | 0.6134 | -1.2118 | -1.5678 | 0.6675 | 0.3560 | -457.8913 | -453.9317 | -2.4115 | -2.3963 |
| 0.5582 | 0.49 | 3780 | 0.6143 | -1.3007 | -1.6687 | 0.6665 | 0.3680 | -467.9823 | -462.8208 | -2.4034 | -2.3885 |
| 0.6335 | 0.5 | 3790 | 0.6135 | -1.2724 | -1.6368 | 0.6655 | 0.3645 | -464.7911 | -459.9854 | -2.4086 | -2.3936 |
| 0.6201 | 0.5 | 3800 | 0.6127 | -1.2043 | -1.5598 | 0.6685 | 0.3555 | -457.0860 | -453.1758 | -2.4176 | -2.4023 |
| 0.6459 | 0.5 | 3810 | 0.6118 | -1.1504 | -1.4996 | 0.6690 | 0.3492 | -451.0744 | -447.7943 | -2.4238 | -2.4085 |
| 0.6382 | 0.5 | 3820 | 0.6118 | -1.0880 | -1.4282 | 0.6625 | 0.3403 | -443.9344 | -441.5482 | -2.4337 | -2.4177 |
| 0.5423 | 0.5 | 3830 | 0.6126 | -1.0752 | -1.4137 | 0.6630 | 0.3385 | -442.4804 | -440.2653 | -2.4332 | -2.4167 |
| 0.6351 | 0.5 | 3840 | 0.6130 | -1.0526 | -1.3889 | 0.6625 | 0.3363 | -440.0002 | -438.0135 | -2.4357 | -2.4188 |
| 0.5856 | 0.5 | 3850 | 0.6132 | -1.0088 | -1.3390 | 0.6615 | 0.3302 | -435.0101 | -433.6245 | -2.4328 | -2.4155 |
| 0.6039 | 0.51 | 3860 | 0.6130 | -0.9962 | -1.3252 | 0.6645 | 0.3290 | -433.6270 | -432.3664 | -2.4292 | -2.4116 |
| 0.6142 | 0.51 | 3870 | 0.6130 | -1.0363 | -1.3713 | 0.6660 | 0.3350 | -438.2383 | -436.3745 | -2.4198 | -2.4027 |
| 0.6128 | 0.51 | 3880 | 0.6126 | -1.0562 | -1.3935 | 0.6685 | 0.3373 | -440.4647 | -438.3700 | -2.4229 | -2.4060 |
| 0.5771 | 0.51 | 3890 | 0.6129 | -1.1143 | -1.4607 | 0.6630 | 0.3465 | -447.1836 | -444.1776 | -2.4166 | -2.4000 |
| 0.6089 | 0.51 | 3900 | 0.6129 | -1.1517 | -1.5051 | 0.6595 | 0.3534 | -451.6172 | -447.9149 | -2.4096 | -2.3933 |
| 0.5962 | 0.51 | 3910 | 0.6135 | -1.2297 | -1.5929 | 0.6640 | 0.3632 | -460.4048 | -455.7222 | -2.3943 | -2.3782 |
| 0.6028 | 0.51 | 3920 | 0.6141 | -1.2632 | -1.6300 | 0.6625 | 0.3668 | -464.1088 | -459.0703 | -2.3852 | -2.3692 |
| 0.5829 | 0.51 | 3930 | 0.6144 | -1.2719 | -1.6401 | 0.6640 | 0.3682 | -465.1200 | -459.9415 | -2.3783 | -2.3625 |
| 0.6861 | 0.52 | 3940 | 0.6125 | -1.3075 | -1.6792 | 0.6685 | 0.3717 | -469.0307 | -463.4975 | -2.3805 | -2.3653 |
| 0.538 | 0.52 | 3950 | 0.6125 | -1.3497 | -1.7240 | 0.6695 | 0.3743 | -473.5096 | -467.7172 | -2.3714 | -2.3566 |
| 0.6141 | 0.52 | 3960 | 0.6124 | -1.3573 | -1.7321 | 0.6690 | 0.3748 | -474.3214 | -468.4812 | -2.3679 | -2.3530 |
| 0.5655 | 0.52 | 3970 | 0.6137 | -1.3834 | -1.7630 | 0.6655 | 0.3796 | -477.4090 | -471.0898 | -2.3595 | -2.3446 |
| 0.7222 | 0.52 | 3980 | 0.6141 | -1.3709 | -1.7493 | 0.6645 | 0.3785 | -476.0443 | -469.8363 | -2.3585 | -2.3434 |
| 0.6808 | 0.52 | 3990 | 0.6125 | -1.3452 | -1.7185 | 0.6640 | 0.3734 | -472.9637 | -467.2671 | -2.3647 | -2.3494 |
| 0.6083 | 0.52 | 4000 | 0.6122 | -1.4112 | -1.7912 | 0.6660 | 0.3800 | -480.2320 | -473.8741 | -2.3620 | -2.3472 |
| 0.5894 | 0.52 | 4010 | 0.6117 | -1.4239 | -1.8068 | 0.6690 | 0.3829 | -481.7857 | -475.1352 | -2.3753 | -2.3608 |
| 0.5505 | 0.53 | 4020 | 0.6107 | -1.3710 | -1.7479 | 0.6685 | 0.3770 | -475.9028 | -469.8470 | -2.3907 | -2.3762 |
| 0.5603 | 0.53 | 4030 | 0.6103 | -1.3201 | -1.6926 | 0.6640 | 0.3724 | -470.3679 | -464.7631 | -2.3949 | -2.3801 |
| 0.5443 | 0.53 | 4040 | 0.6113 | -1.3058 | -1.6789 | 0.6640 | 0.3731 | -468.9954 | -463.3285 | -2.3889 | -2.3736 |
| 0.602 | 0.53 | 4050 | 0.6118 | -1.3440 | -1.7218 | 0.6650 | 0.3779 | -473.2949 | -467.1461 | -2.3782 | -2.3630 |
| 0.6865 | 0.53 | 4060 | 0.6116 | -1.2918 | -1.6658 | 0.6630 | 0.3741 | -467.6927 | -461.9251 | -2.3818 | -2.3661 |
| 0.5712 | 0.53 | 4070 | 0.6122 | -1.2839 | -1.6608 | 0.6655 | 0.3769 | -467.1933 | -461.1422 | -2.3814 | -2.3657 |
| 0.5086 | 0.53 | 4080 | 0.6120 | -1.3058 | -1.6867 | 0.6635 | 0.3809 | -469.7808 | -463.3338 | -2.3840 | -2.3687 |
| 0.6036 | 0.54 | 4090 | 0.6132 | -1.3522 | -1.7409 | 0.6670 | 0.3887 | -475.1984 | -467.9704 | -2.3819 | -2.3666 |
| 0.6175 | 0.54 | 4100 | 0.6129 | -1.3540 | -1.7427 | 0.6630 | 0.3887 | -475.3802 | -468.1484 | -2.3884 | -2.3732 |
| 0.5335 | 0.54 | 4110 | 0.6126 | -1.3234 | -1.7093 | 0.6655 | 0.3859 | -472.0410 | -465.0862 | -2.3903 | -2.3750 |
| 0.5439 | 0.54 | 4120 | 0.6133 | -1.2514 | -1.6309 | 0.6660 | 0.3795 | -464.2002 | -457.8871 | -2.3826 | -2.3668 |
| 0.5798 | 0.54 | 4130 | 0.6135 | -1.2421 | -1.6217 | 0.6650 | 0.3796 | -463.2823 | -456.9606 | -2.3756 | -2.3600 |
| 0.5875 | 0.54 | 4140 | 0.6132 | -1.2480 | -1.6304 | 0.6680 | 0.3824 | -464.1453 | -457.5472 | -2.3784 | -2.3628 |
| 0.6093 | 0.54 | 4150 | 0.6121 | -1.2028 | -1.5811 | 0.6685 | 0.3782 | -459.2161 | -453.0315 | -2.3913 | -2.3756 |
| 0.6094 | 0.54 | 4160 | 0.6126 | -1.1965 | -1.5764 | 0.6675 | 0.3799 | -458.7521 | -452.4034 | -2.3903 | -2.3746 |
| 0.5578 | 0.55 | 4170 | 0.6135 | -1.1913 | -1.5715 | 0.6640 | 0.3802 | -458.2640 | -451.8808 | -2.3806 | -2.3649 |
| 0.5732 | 0.55 | 4180 | 0.6135 | -1.2209 | -1.6056 | 0.6635 | 0.3847 | -461.6699 | -454.8421 | -2.3748 | -2.3598 |
| 0.6302 | 0.55 | 4190 | 0.6119 | -1.2402 | -1.6244 | 0.6675 | 0.3842 | -463.5510 | -456.7697 | -2.3702 | -2.3560 |
| 0.5961 | 0.55 | 4200 | 0.6114 | -1.2962 | -1.6845 | 0.6645 | 0.3883 | -469.5615 | -462.3665 | -2.3610 | -2.3472 |
| 0.5818 | 0.55 | 4210 | 0.6110 | -1.3111 | -1.7016 | 0.6660 | 0.3904 | -471.2656 | -463.8641 | -2.3614 | -2.3477 |
| 0.5239 | 0.55 | 4220 | 0.6106 | -1.3856 | -1.7838 | 0.6650 | 0.3982 | -479.4876 | -471.3082 | -2.3499 | -2.3371 |
| 0.6414 | 0.55 | 4230 | 0.6106 | -1.3526 | -1.7466 | 0.6625 | 0.3940 | -475.7720 | -468.0067 | -2.3459 | -2.3327 |
| 0.5823 | 0.55 | 4240 | 0.6103 | -1.3410 | -1.7315 | 0.6665 | 0.3905 | -474.2635 | -466.8490 | -2.3409 | -2.3276 |
| 0.5697 | 0.56 | 4250 | 0.6097 | -1.3256 | -1.7137 | 0.6630 | 0.3881 | -472.4780 | -465.3107 | -2.3411 | -2.3279 |
| 0.6178 | 0.56 | 4260 | 0.6091 | -1.3146 | -1.7002 | 0.6640 | 0.3856 | -471.1262 | -464.2101 | -2.3492 | -2.3361 |
| 0.5538 | 0.56 | 4270 | 0.6090 | -1.3202 | -1.7063 | 0.6645 | 0.3861 | -471.7410 | -464.7739 | -2.3483 | -2.3354 |
| 0.5863 | 0.56 | 4280 | 0.6093 | -1.3589 | -1.7489 | 0.6655 | 0.3900 | -476.0021 | -468.6414 | -2.3455 | -2.3329 |
| 0.7136 | 0.56 | 4290 | 0.6085 | -1.3297 | -1.7127 | 0.6650 | 0.3830 | -472.3789 | -465.7173 | -2.3507 | -2.3380 |
| 0.5972 | 0.56 | 4300 | 0.6079 | -1.3082 | -1.6882 | 0.6645 | 0.3800 | -469.9287 | -463.5664 | -2.3609 | -2.3482 |
| 0.5835 | 0.56 | 4310 | 0.6075 | -1.3021 | -1.6804 | 0.6640 | 0.3783 | -469.1508 | -462.9638 | -2.3665 | -2.3537 |
| 0.6176 | 0.57 | 4320 | 0.6073 | -1.2384 | -1.6101 | 0.6610 | 0.3718 | -462.1248 | -456.5874 | -2.3729 | -2.3594 |
| 0.5657 | 0.57 | 4330 | 0.6068 | -1.2357 | -1.6063 | 0.6655 | 0.3706 | -461.7419 | -456.3203 | -2.3783 | -2.3649 |
| 0.5632 | 0.57 | 4340 | 0.6075 | -1.2425 | -1.6167 | 0.6630 | 0.3743 | -462.7846 | -456.9960 | -2.3777 | -2.3639 |
| 0.5542 | 0.57 | 4350 | 0.6082 | -1.2211 | -1.5968 | 0.6610 | 0.3757 | -460.7910 | -454.8632 | -2.3769 | -2.3625 |
| 0.5563 | 0.57 | 4360 | 0.6087 | -1.2121 | -1.5894 | 0.6655 | 0.3773 | -460.0541 | -453.9595 | -2.3772 | -2.3623 |
| 0.6174 | 0.57 | 4370 | 0.6090 | -1.2275 | -1.6065 | 0.6655 | 0.3790 | -461.7597 | -455.4985 | -2.3718 | -2.3571 |
| 0.5537 | 0.57 | 4380 | 0.6089 | -1.2755 | -1.6611 | 0.6630 | 0.3857 | -467.2224 | -460.2952 | -2.3658 | -2.3511 |
| 0.5696 | 0.57 | 4390 | 0.6087 | -1.2992 | -1.6884 | 0.6630 | 0.3891 | -469.9460 | -462.6728 | -2.3660 | -2.3512 |
| 0.6052 | 0.58 | 4400 | 0.6088 | -1.2843 | -1.6719 | 0.6640 | 0.3876 | -468.2998 | -461.1801 | -2.3670 | -2.3520 |
| 0.5886 | 0.58 | 4410 | 0.6096 | -1.2518 | -1.6381 | 0.6680 | 0.3862 | -464.9155 | -457.9314 | -2.3629 | -2.3476 |
| 0.586 | 0.58 | 4420 | 0.6092 | -1.2219 | -1.6049 | 0.6705 | 0.3830 | -461.5989 | -454.9422 | -2.3620 | -2.3466 |
| 0.5653 | 0.58 | 4430 | 0.6092 | -1.2220 | -1.6058 | 0.6685 | 0.3838 | -461.6927 | -454.9484 | -2.3646 | -2.3493 |
| 0.5427 | 0.58 | 4440 | 0.6097 | -1.2912 | -1.6855 | 0.6670 | 0.3944 | -469.6636 | -461.8674 | -2.3584 | -2.3431 |
| 0.6427 | 0.58 | 4450 | 0.6095 | -1.2999 | -1.6954 | 0.6650 | 0.3955 | -470.6503 | -462.7432 | -2.3661 | -2.3506 |
| 0.5438 | 0.58 | 4460 | 0.6078 | -1.3272 | -1.7233 | 0.6660 | 0.3961 | -473.4425 | -465.4693 | -2.3749 | -2.3599 |
| 0.6207 | 0.58 | 4470 | 0.6082 | -1.4102 | -1.8150 | 0.6655 | 0.4048 | -482.6093 | -473.7710 | -2.3687 | -2.3542 |
| 0.5768 | 0.59 | 4480 | 0.6080 | -1.4470 | -1.8543 | 0.6655 | 0.4073 | -486.5352 | -477.4463 | -2.3649 | -2.3507 |
| 0.583 | 0.59 | 4490 | 0.6082 | -1.4630 | -1.8713 | 0.6680 | 0.4083 | -488.2443 | -479.0501 | -2.3612 | -2.3469 |
| 0.531 | 0.59 | 4500 | 0.6085 | -1.4314 | -1.8384 | 0.6640 | 0.4070 | -484.9482 | -475.8860 | -2.3648 | -2.3505 |
| 0.5774 | 0.59 | 4510 | 0.6080 | -1.4081 | -1.8115 | 0.6655 | 0.4034 | -482.2588 | -473.5545 | -2.3643 | -2.3501 |
| 0.5757 | 0.59 | 4520 | 0.6074 | -1.4011 | -1.8027 | 0.6645 | 0.4015 | -481.3769 | -472.8622 | -2.3612 | -2.3472 |
| 0.6138 | 0.59 | 4530 | 0.6079 | -1.3853 | -1.7881 | 0.6640 | 0.4028 | -479.9247 | -471.2820 | -2.3578 | -2.3434 |
| 0.6412 | 0.59 | 4540 | 0.6090 | -1.3856 | -1.7915 | 0.6685 | 0.4059 | -480.2601 | -471.3085 | -2.3510 | -2.3363 |
| 0.6387 | 0.6 | 4550 | 0.6085 | -1.3671 | -1.7706 | 0.6700 | 0.4035 | -478.1710 | -469.4595 | -2.3546 | -2.3398 |
| 0.6527 | 0.6 | 4560 | 0.6076 | -1.3293 | -1.7265 | 0.6695 | 0.3972 | -473.7643 | -465.6805 | -2.3617 | -2.3467 |
| 0.6187 | 0.6 | 4570 | 0.6070 | -1.2703 | -1.6581 | 0.6655 | 0.3878 | -466.9198 | -459.7823 | -2.3709 | -2.3556 |
| 0.5671 | 0.6 | 4580 | 0.6069 | -1.2354 | -1.6189 | 0.6665 | 0.3835 | -463.0015 | -456.2862 | -2.3760 | -2.3605 |
| 0.5615 | 0.6 | 4590 | 0.6073 | -1.2305 | -1.6122 | 0.6640 | 0.3817 | -462.3292 | -455.7953 | -2.3773 | -2.3618 |
| 0.5716 | 0.6 | 4600 | 0.6075 | -1.2738 | -1.6620 | 0.6645 | 0.3882 | -467.3115 | -460.1276 | -2.3730 | -2.3582 |
| 0.6994 | 0.6 | 4610 | 0.6072 | -1.2497 | -1.6347 | 0.6665 | 0.3849 | -464.5757 | -457.7208 | -2.3777 | -2.3629 |
| 0.5692 | 0.6 | 4620 | 0.6064 | -1.2480 | -1.6324 | 0.6675 | 0.3843 | -464.3478 | -457.5532 | -2.3810 | -2.3665 |
| 0.6417 | 0.61 | 4630 | 0.6064 | -1.2718 | -1.6597 | 0.6655 | 0.3879 | -467.0786 | -459.9271 | -2.3775 | -2.3633 |
| 0.5776 | 0.61 | 4640 | 0.6066 | -1.2728 | -1.6606 | 0.6680 | 0.3878 | -467.1727 | -460.0281 | -2.3752 | -2.3608 |
| 0.5816 | 0.61 | 4650 | 0.6066 | -1.2339 | -1.6182 | 0.6715 | 0.3843 | -462.9325 | -456.1402 | -2.3803 | -2.3653 |
| 0.6182 | 0.61 | 4660 | 0.6067 | -1.2355 | -1.6206 | 0.6725 | 0.3851 | -463.1687 | -456.3025 | -2.3818 | -2.3668 |
| 0.6184 | 0.61 | 4670 | 0.6065 | -1.2204 | -1.6020 | 0.6730 | 0.3816 | -461.3111 | -454.7910 | -2.3838 | -2.3689 |
| 0.7167 | 0.61 | 4680 | 0.6063 | -1.1829 | -1.5569 | 0.6720 | 0.3740 | -456.8003 | -451.0386 | -2.3845 | -2.3691 |
| 0.6275 | 0.61 | 4690 | 0.6053 | -1.1718 | -1.5449 | 0.6765 | 0.3731 | -455.6019 | -449.9286 | -2.3861 | -2.3711 |
| 0.6771 | 0.62 | 4700 | 0.6052 | -1.1293 | -1.4940 | 0.6720 | 0.3646 | -450.5074 | -445.6831 | -2.3901 | -2.3747 |
| 0.5374 | 0.62 | 4710 | 0.6049 | -1.1402 | -1.5062 | 0.6730 | 0.3660 | -451.7311 | -446.7706 | -2.3915 | -2.3762 |
| 0.6618 | 0.62 | 4720 | 0.6050 | -1.1356 | -1.5011 | 0.6735 | 0.3655 | -451.2221 | -446.3118 | -2.3926 | -2.3770 |
| 0.5748 | 0.62 | 4730 | 0.6047 | -1.1772 | -1.5464 | 0.6730 | 0.3692 | -455.7526 | -450.4693 | -2.3833 | -2.3679 |
| 0.5787 | 0.62 | 4740 | 0.6052 | -1.2308 | -1.6054 | 0.6740 | 0.3746 | -461.6516 | -455.8304 | -2.3719 | -2.3567 |
| 0.5646 | 0.62 | 4750 | 0.6055 | -1.2672 | -1.6459 | 0.6715 | 0.3788 | -465.7005 | -459.4644 | -2.3647 | -2.3497 |
| 0.6502 | 0.62 | 4760 | 0.6065 | -1.2693 | -1.6472 | 0.6685 | 0.3779 | -465.8286 | -459.6805 | -2.3614 | -2.3465 |
| 0.5963 | 0.62 | 4770 | 0.6069 | -1.2670 | -1.6452 | 0.6705 | 0.3782 | -465.6266 | -459.4496 | -2.3618 | -2.3467 |
| 0.5687 | 0.63 | 4780 | 0.6083 | -1.2872 | -1.6667 | 0.6660 | 0.3795 | -467.7753 | -461.4662 | -2.3575 | -2.3423 |
| 0.644 | 0.63 | 4790 | 0.6084 | -1.2855 | -1.6635 | 0.6670 | 0.3780 | -467.4568 | -461.2979 | -2.3562 | -2.3410 |
| 0.6323 | 0.63 | 4800 | 0.6083 | -1.2909 | -1.6675 | 0.6655 | 0.3766 | -467.8597 | -461.8417 | -2.3520 | -2.3370 |
| 0.575 | 0.63 | 4810 | 0.6071 | -1.3168 | -1.6989 | 0.6675 | 0.3821 | -471.0045 | -464.4340 | -2.3510 | -2.3364 |
| 0.645 | 0.63 | 4820 | 0.6062 | -1.3283 | -1.7136 | 0.6690 | 0.3853 | -472.4665 | -465.5768 | -2.3563 | -2.3418 |
| 0.5161 | 0.63 | 4830 | 0.6059 | -1.3482 | -1.7355 | 0.6685 | 0.3873 | -474.6637 | -467.5699 | -2.3577 | -2.3437 |
| 0.5804 | 0.63 | 4840 | 0.6062 | -1.3654 | -1.7547 | 0.6685 | 0.3893 | -476.5826 | -469.2888 | -2.3566 | -2.3427 |
| 0.571 | 0.63 | 4850 | 0.6069 | -1.4012 | -1.7944 | 0.6705 | 0.3932 | -480.5474 | -472.8697 | -2.3505 | -2.3366 |
| 0.5553 | 0.64 | 4860 | 0.6074 | -1.4313 | -1.8287 | 0.6705 | 0.3975 | -483.9844 | -475.8781 | -2.3444 | -2.3307 |
| 0.5774 | 0.64 | 4870 | 0.6080 | -1.5003 | -1.9043 | 0.6700 | 0.4040 | -491.5416 | -482.7806 | -2.3361 | -2.3231 |
| 0.5515 | 0.64 | 4880 | 0.6097 | -1.5513 | -1.9610 | 0.6755 | 0.4097 | -497.2055 | -487.8764 | -2.3208 | -2.3077 |
| 0.6337 | 0.64 | 4890 | 0.6100 | -1.5310 | -1.9385 | 0.6730 | 0.4075 | -494.9562 | -485.8458 | -2.3206 | -2.3071 |
| 0.5866 | 0.64 | 4900 | 0.6095 | -1.4995 | -1.9040 | 0.6770 | 0.4045 | -491.5080 | -482.6980 | -2.3238 | -2.3102 |
| 0.5647 | 0.64 | 4910 | 0.6100 | -1.5086 | -1.9153 | 0.6750 | 0.4067 | -492.6382 | -483.6107 | -2.3202 | -2.3065 |
| 0.5853 | 0.64 | 4920 | 0.6107 | -1.5200 | -1.9283 | 0.6710 | 0.4083 | -493.9432 | -484.7543 | -2.3136 | -2.3000 |
| 0.5357 | 0.65 | 4930 | 0.6109 | -1.5621 | -1.9755 | 0.6710 | 0.4134 | -498.6618 | -488.9641 | -2.3044 | -2.2915 |
| 0.5771 | 0.65 | 4940 | 0.6104 | -1.5724 | -1.9886 | 0.6705 | 0.4162 | -499.9727 | -489.9909 | -2.3034 | -2.2909 |
| 0.6244 | 0.65 | 4950 | 0.6088 | -1.5091 | -1.9208 | 0.6690 | 0.4117 | -493.1936 | -483.6585 | -2.3098 | -2.2972 |
| 0.6303 | 0.65 | 4960 | 0.6076 | -1.4571 | -1.8616 | 0.6675 | 0.4045 | -487.2698 | -478.4640 | -2.3175 | -2.3047 |
| 0.6038 | 0.65 | 4970 | 0.6065 | -1.4138 | -1.8135 | 0.6665 | 0.3997 | -482.4593 | -474.1258 | -2.3254 | -2.3127 |
| 0.5813 | 0.65 | 4980 | 0.6059 | -1.4060 | -1.8064 | 0.6670 | 0.4003 | -481.7451 | -473.3541 | -2.3301 | -2.3177 |
| 0.6386 | 0.65 | 4990 | 0.6056 | -1.4087 | -1.8092 | 0.6690 | 0.4005 | -482.0347 | -473.6238 | -2.3296 | -2.3173 |
| 0.5541 | 0.65 | 5000 | 0.6063 | -1.4046 | -1.8043 | 0.6680 | 0.3996 | -481.5383 | -473.2132 | -2.3281 | -2.3157 |
| 0.5711 | 0.66 | 5010 | 0.6074 | -1.4198 | -1.8227 | 0.6625 | 0.4029 | -483.3791 | -474.7254 | -2.3221 | -2.3095 |
| 0.581 | 0.66 | 5020 | 0.6066 | -1.4242 | -1.8285 | 0.6670 | 0.4043 | -483.9621 | -475.1689 | -2.3250 | -2.3125 |
| 0.5567 | 0.66 | 5030 | 0.6062 | -1.3981 | -1.7988 | 0.6685 | 0.4007 | -480.9871 | -472.5576 | -2.3259 | -2.3132 |
| 0.6432 | 0.66 | 5040 | 0.6064 | -1.3544 | -1.7481 | 0.6660 | 0.3937 | -475.9248 | -468.1942 | -2.3287 | -2.3157 |
| 0.5867 | 0.66 | 5050 | 0.6065 | -1.3267 | -1.7154 | 0.6660 | 0.3887 | -472.6463 | -465.4153 | -2.3287 | -2.3153 |
| 0.6339 | 0.66 | 5060 | 0.6065 | -1.3145 | -1.7008 | 0.6675 | 0.3863 | -471.1906 | -464.2018 | -2.3257 | -2.3122 |
| 0.5926 | 0.66 | 5070 | 0.6058 | -1.3217 | -1.7079 | 0.6665 | 0.3862 | -471.9014 | -464.9194 | -2.3274 | -2.3143 |
| 0.5513 | 0.66 | 5080 | 0.6063 | -1.3381 | -1.7276 | 0.6655 | 0.3895 | -473.8685 | -466.5625 | -2.3230 | -2.3099 |
| 0.5409 | 0.67 | 5090 | 0.6059 | -1.3585 | -1.7519 | 0.6670 | 0.3934 | -476.3036 | -468.5992 | -2.3208 | -2.3079 |
| 0.6739 | 0.67 | 5100 | 0.6048 | -1.3714 | -1.7666 | 0.6690 | 0.3952 | -477.7746 | -469.8893 | -2.3227 | -2.3101 |
| 0.625 | 0.67 | 5110 | 0.6042 | -1.3673 | -1.7623 | 0.6705 | 0.3950 | -477.3434 | -469.4795 | -2.3219 | -2.3094 |
| 0.5985 | 0.67 | 5120 | 0.6042 | -1.3484 | -1.7413 | 0.6720 | 0.3929 | -475.2369 | -467.5905 | -2.3202 | -2.3079 |
| 0.5549 | 0.67 | 5130 | 0.6044 | -1.3560 | -1.7509 | 0.6725 | 0.3949 | -476.2039 | -468.3487 | -2.3192 | -2.3069 |
| 0.538 | 0.67 | 5140 | 0.6046 | -1.3726 | -1.7721 | 0.6695 | 0.3995 | -478.3188 | -470.0095 | -2.3133 | -2.3013 |
| 0.5572 | 0.67 | 5150 | 0.6042 | -1.3898 | -1.7935 | 0.6705 | 0.4036 | -480.4564 | -471.7322 | -2.3119 | -2.3006 |
| 0.6035 | 0.68 | 5160 | 0.6036 | -1.4091 | -1.8167 | 0.6710 | 0.4076 | -482.7805 | -473.6597 | -2.3149 | -2.3041 |
| 0.6602 | 0.68 | 5170 | 0.6028 | -1.3672 | -1.7699 | 0.6695 | 0.4026 | -478.0995 | -469.4742 | -2.3193 | -2.3088 |
| 0.6586 | 0.68 | 5180 | 0.6025 | -1.3193 | -1.7167 | 0.6695 | 0.3973 | -472.7758 | -464.6819 | -2.3273 | -2.3165 |
| 0.602 | 0.68 | 5190 | 0.6024 | -1.3076 | -1.7028 | 0.6685 | 0.3952 | -471.3895 | -463.5138 | -2.3308 | -2.3200 |
| 0.5896 | 0.68 | 5200 | 0.6021 | -1.2985 | -1.6931 | 0.6680 | 0.3946 | -470.4217 | -462.6008 | -2.3333 | -2.3227 |
| 0.5838 | 0.68 | 5210 | 0.6023 | -1.2915 | -1.6853 | 0.6695 | 0.3937 | -469.6354 | -461.9039 | -2.3328 | -2.3221 |
| 0.5508 | 0.68 | 5220 | 0.6024 | -1.3181 | -1.7163 | 0.6710 | 0.3982 | -472.7376 | -464.5602 | -2.3234 | -2.3129 |
| 0.6031 | 0.68 | 5230 | 0.6027 | -1.3546 | -1.7569 | 0.6690 | 0.4022 | -476.7962 | -468.2120 | -2.3135 | -2.3035 |
| 0.5353 | 0.69 | 5240 | 0.6029 | -1.3838 | -1.7888 | 0.6705 | 0.4050 | -479.9906 | -471.1338 | -2.3098 | -2.3001 |
| 0.6128 | 0.69 | 5250 | 0.6029 | -1.3925 | -1.7994 | 0.6710 | 0.4070 | -481.0536 | -471.9944 | -2.3091 | -2.2995 |
| 0.6085 | 0.69 | 5260 | 0.6027 | -1.3932 | -1.8015 | 0.6665 | 0.4083 | -481.2573 | -472.0663 | -2.3098 | -2.3003 |
| 0.567 | 0.69 | 5270 | 0.6027 | -1.3861 | -1.7952 | 0.6685 | 0.4091 | -480.6314 | -471.3566 | -2.3091 | -2.2996 |
| 0.5273 | 0.69 | 5280 | 0.6027 | -1.3948 | -1.8051 | 0.6690 | 0.4103 | -481.6187 | -472.2327 | -2.3090 | -2.2997 |
| 0.6205 | 0.69 | 5290 | 0.6027 | -1.3917 | -1.8015 | 0.6720 | 0.4098 | -481.2578 | -471.9218 | -2.3106 | -2.3015 |
| 0.5601 | 0.69 | 5300 | 0.6029 | -1.3888 | -1.7989 | 0.6700 | 0.4102 | -481.0042 | -471.6266 | -2.3104 | -2.3011 |
| 0.6486 | 0.69 | 5310 | 0.6028 | -1.3772 | -1.7872 | 0.6695 | 0.4099 | -479.8280 | -470.4731 | -2.3131 | -2.3036 |
| 0.6643 | 0.7 | 5320 | 0.6026 | -1.3416 | -1.7468 | 0.6685 | 0.4053 | -475.7929 | -466.9066 | -2.3151 | -2.3053 |
| 0.5421 | 0.7 | 5330 | 0.6024 | -1.3182 | -1.7214 | 0.6715 | 0.4031 | -473.2466 | -464.5736 | -2.3194 | -2.3096 |
| 0.5113 | 0.7 | 5340 | 0.6026 | -1.3590 | -1.7692 | 0.6690 | 0.4102 | -478.0335 | -468.6505 | -2.3123 | -2.3026 |
| 0.6035 | 0.7 | 5350 | 0.6023 | -1.3846 | -1.7986 | 0.6665 | 0.4140 | -480.9702 | -471.2071 | -2.3131 | -2.3039 |
| 0.624 | 0.7 | 5360 | 0.6023 | -1.4222 | -1.8393 | 0.6675 | 0.4171 | -485.0402 | -474.9680 | -2.3080 | -2.2991 |
| 0.6991 | 0.7 | 5370 | 0.6021 | -1.4114 | -1.8263 | 0.6680 | 0.4149 | -483.7427 | -473.8944 | -2.3069 | -2.2977 |
| 0.6203 | 0.7 | 5380 | 0.6022 | -1.4162 | -1.8295 | 0.6685 | 0.4133 | -484.0582 | -474.3677 | -2.3084 | -2.2993 |
| 0.5684 | 0.71 | 5390 | 0.6022 | -1.4173 | -1.8301 | 0.6705 | 0.4128 | -484.1182 | -474.4789 | -2.3084 | -2.2992 |
| 0.5489 | 0.71 | 5400 | 0.6021 | -1.4273 | -1.8411 | 0.6700 | 0.4138 | -485.2168 | -475.4793 | -2.3097 | -2.3006 |
| 0.6004 | 0.71 | 5410 | 0.6020 | -1.4495 | -1.8666 | 0.6705 | 0.4171 | -487.7728 | -477.7010 | -2.3075 | -2.2987 |
| 0.5903 | 0.71 | 5420 | 0.6023 | -1.4712 | -1.8890 | 0.6710 | 0.4179 | -490.0103 | -479.8645 | -2.3070 | -2.2984 |
| 0.6109 | 0.71 | 5430 | 0.6023 | -1.4889 | -1.9092 | 0.6720 | 0.4203 | -492.0335 | -481.6418 | -2.3054 | -2.2969 |
| 0.6214 | 0.71 | 5440 | 0.6022 | -1.4918 | -1.9141 | 0.6720 | 0.4223 | -492.5202 | -481.9297 | -2.3042 | -2.2957 |
| 0.6564 | 0.71 | 5450 | 0.6024 | -1.4996 | -1.9228 | 0.6695 | 0.4232 | -493.3854 | -482.7044 | -2.3003 | -2.2915 |
| 0.5649 | 0.71 | 5460 | 0.6026 | -1.5087 | -1.9321 | 0.6715 | 0.4234 | -494.3249 | -483.6240 | -2.2964 | -2.2877 |
| 0.5814 | 0.72 | 5470 | 0.6026 | -1.5360 | -1.9601 | 0.6700 | 0.4241 | -497.1153 | -486.3497 | -2.2902 | -2.2821 |
| 0.5398 | 0.72 | 5480 | 0.6029 | -1.5681 | -1.9948 | 0.6735 | 0.4267 | -500.5901 | -489.5582 | -2.2844 | -2.2764 |
| 0.6122 | 0.72 | 5490 | 0.6029 | -1.5733 | -2.0018 | 0.6725 | 0.4285 | -501.2864 | -490.0792 | -2.2859 | -2.2778 |
| 0.6479 | 0.72 | 5500 | 0.6027 | -1.6022 | -2.0328 | 0.6740 | 0.4306 | -504.3878 | -492.9660 | -2.2816 | -2.2736 |
| 0.5748 | 0.72 | 5510 | 0.6027 | -1.6220 | -2.0526 | 0.6735 | 0.4305 | -506.3680 | -494.9524 | -2.2814 | -2.2736 |
| 0.6292 | 0.72 | 5520 | 0.6025 | -1.6303 | -2.0608 | 0.6735 | 0.4306 | -507.1917 | -495.7747 | -2.2816 | -2.2740 |
| 0.6393 | 0.72 | 5530 | 0.6021 | -1.5771 | -2.0037 | 0.6735 | 0.4266 | -501.4786 | -490.4625 | -2.2865 | -2.2784 |
| 0.5557 | 0.72 | 5540 | 0.6021 | -1.5724 | -2.0001 | 0.6715 | 0.4277 | -501.1238 | -489.9896 | -2.2840 | -2.2756 |
| 0.5549 | 0.73 | 5550 | 0.6022 | -1.5744 | -2.0027 | 0.6695 | 0.4284 | -501.3837 | -490.1856 | -2.2797 | -2.2712 |
| 0.6443 | 0.73 | 5560 | 0.6020 | -1.5546 | -1.9813 | 0.6740 | 0.4268 | -499.2418 | -488.2054 | -2.2797 | -2.2707 |
| 0.6073 | 0.73 | 5570 | 0.6023 | -1.5423 | -1.9675 | 0.6710 | 0.4252 | -497.8640 | -486.9791 | -2.2825 | -2.2734 |
| 0.6376 | 0.73 | 5580 | 0.6021 | -1.5152 | -1.9388 | 0.6725 | 0.4236 | -494.9881 | -484.2668 | -2.2875 | -2.2780 |
| 0.6265 | 0.73 | 5590 | 0.6015 | -1.4874 | -1.9086 | 0.6745 | 0.4212 | -491.9718 | -481.4869 | -2.2933 | -2.2835 |
| 0.6676 | 0.73 | 5600 | 0.6013 | -1.4712 | -1.8909 | 0.6725 | 0.4197 | -490.2027 | -479.8711 | -2.2954 | -2.2854 |
| 0.4983 | 0.73 | 5610 | 0.6012 | -1.4842 | -1.9058 | 0.6735 | 0.4216 | -491.6890 | -481.1645 | -2.2920 | -2.2822 |
| 0.5565 | 0.74 | 5620 | 0.6014 | -1.5119 | -1.9369 | 0.6735 | 0.4250 | -494.7960 | -483.9367 | -2.2888 | -2.2794 |
| 0.6331 | 0.74 | 5630 | 0.6015 | -1.5473 | -1.9765 | 0.6735 | 0.4292 | -498.7556 | -487.4776 | -2.2837 | -2.2744 |
| 0.6273 | 0.74 | 5640 | 0.6017 | -1.5554 | -1.9867 | 0.6755 | 0.4313 | -499.7832 | -488.2908 | -2.2835 | -2.2743 |
| 0.5639 | 0.74 | 5650 | 0.6018 | -1.5614 | -1.9936 | 0.6740 | 0.4322 | -500.4703 | -488.8882 | -2.2821 | -2.2733 |
| 0.5558 | 0.74 | 5660 | 0.6019 | -1.5714 | -2.0041 | 0.6740 | 0.4327 | -501.5212 | -489.8941 | -2.2794 | -2.2709 |
| 0.6319 | 0.74 | 5670 | 0.6019 | -1.5723 | -2.0042 | 0.6735 | 0.4319 | -501.5251 | -489.9786 | -2.2804 | -2.2721 |
| 0.6027 | 0.74 | 5680 | 0.6015 | -1.5680 | -2.0002 | 0.6720 | 0.4322 | -501.1277 | -489.5482 | -2.2797 | -2.2714 |
| 0.6094 | 0.74 | 5690 | 0.6015 | -1.5415 | -1.9713 | 0.6750 | 0.4298 | -498.2379 | -486.8965 | -2.2808 | -2.2723 |
| 0.5418 | 0.75 | 5700 | 0.6014 | -1.5354 | -1.9670 | 0.6750 | 0.4316 | -497.8123 | -486.2874 | -2.2794 | -2.2710 |
| 0.5983 | 0.75 | 5710 | 0.6017 | -1.5420 | -1.9751 | 0.6735 | 0.4331 | -498.6161 | -486.9491 | -2.2744 | -2.2659 |
| 0.514 | 0.75 | 5720 | 0.6015 | -1.5405 | -1.9739 | 0.6725 | 0.4334 | -498.4978 | -486.7947 | -2.2747 | -2.2666 |
| 0.619 | 0.75 | 5730 | 0.6015 | -1.5384 | -1.9720 | 0.6730 | 0.4336 | -498.3121 | -486.5901 | -2.2757 | -2.2674 |
| 0.5531 | 0.75 | 5740 | 0.6019 | -1.5533 | -1.9897 | 0.6725 | 0.4364 | -500.0756 | -488.0777 | -2.2726 | -2.2643 |
| 0.5954 | 0.75 | 5750 | 0.6021 | -1.5835 | -2.0237 | 0.6745 | 0.4402 | -503.4766 | -491.0956 | -2.2693 | -2.2611 |
| 0.5817 | 0.75 | 5760 | 0.6024 | -1.6254 | -2.0683 | 0.6750 | 0.4429 | -507.9390 | -495.2908 | -2.2635 | -2.2559 |
| 0.5812 | 0.76 | 5770 | 0.6024 | -1.6415 | -2.0864 | 0.6765 | 0.4448 | -509.7454 | -496.9005 | -2.2598 | -2.2523 |
| 0.5655 | 0.76 | 5780 | 0.6029 | -1.6498 | -2.0966 | 0.6765 | 0.4468 | -510.7715 | -497.7293 | -2.2540 | -2.2464 |
| 0.6 | 0.76 | 5790 | 0.6028 | -1.6294 | -2.0754 | 0.6715 | 0.4461 | -508.6549 | -495.6884 | -2.2514 | -2.2434 |
| 0.6685 | 0.76 | 5800 | 0.6028 | -1.6148 | -2.0592 | 0.6725 | 0.4444 | -507.0347 | -494.2293 | -2.2512 | -2.2427 |
| 0.6623 | 0.76 | 5810 | 0.6024 | -1.5823 | -2.0239 | 0.6715 | 0.4417 | -503.5045 | -490.9775 | -2.2543 | -2.2455 |
| 0.6156 | 0.76 | 5820 | 0.6024 | -1.5591 | -1.9976 | 0.6715 | 0.4385 | -500.8722 | -488.6615 | -2.2581 | -2.2488 |
| 0.5679 | 0.76 | 5830 | 0.6022 | -1.5655 | -2.0044 | 0.6705 | 0.4389 | -501.5492 | -489.2959 | -2.2560 | -2.2467 |
| 0.6497 | 0.76 | 5840 | 0.6025 | -1.5583 | -1.9964 | 0.6735 | 0.4381 | -500.7491 | -488.5802 | -2.2547 | -2.2453 |
| 0.6452 | 0.77 | 5850 | 0.6020 | -1.5256 | -1.9603 | 0.6705 | 0.4348 | -497.1414 | -485.3049 | -2.2623 | -2.2525 |
| 0.546 | 0.77 | 5860 | 0.6018 | -1.5230 | -1.9569 | 0.6700 | 0.4339 | -496.7984 | -485.0486 | -2.2654 | -2.2555 |
| 0.6034 | 0.77 | 5870 | 0.6015 | -1.5071 | -1.9384 | 0.6735 | 0.4314 | -494.9550 | -483.4576 | -2.2698 | -2.2598 |
| 0.5887 | 0.77 | 5880 | 0.6013 | -1.4953 | -1.9255 | 0.6740 | 0.4302 | -493.6579 | -482.2775 | -2.2736 | -2.2638 |
| 0.5731 | 0.77 | 5890 | 0.6009 | -1.4838 | -1.9140 | 0.6740 | 0.4302 | -492.5089 | -481.1261 | -2.2764 | -2.2662 |
| 0.6046 | 0.77 | 5900 | 0.6010 | -1.4705 | -1.9000 | 0.6750 | 0.4296 | -491.1149 | -479.7953 | -2.2782 | -2.2681 |
| 0.5727 | 0.77 | 5910 | 0.6009 | -1.4594 | -1.8879 | 0.6735 | 0.4284 | -489.8962 | -478.6908 | -2.2779 | -2.2677 |
| 0.5793 | 0.77 | 5920 | 0.6010 | -1.4513 | -1.8791 | 0.6760 | 0.4278 | -489.0226 | -477.8806 | -2.2761 | -2.2660 |
| 0.6688 | 0.78 | 5930 | 0.6011 | -1.4367 | -1.8628 | 0.6760 | 0.4261 | -487.3903 | -476.4221 | -2.2776 | -2.2672 |
| 0.5613 | 0.78 | 5940 | 0.6014 | -1.4325 | -1.8585 | 0.6760 | 0.4260 | -486.9581 | -476.0000 | -2.2755 | -2.2652 |
| 0.6437 | 0.78 | 5950 | 0.6014 | -1.4301 | -1.8567 | 0.6725 | 0.4266 | -486.7827 | -475.7590 | -2.2753 | -2.2648 |
| 0.6239 | 0.78 | 5960 | 0.6013 | -1.4308 | -1.8581 | 0.6725 | 0.4273 | -486.9198 | -475.8329 | -2.2759 | -2.2654 |
| 0.5621 | 0.78 | 5970 | 0.6014 | -1.4235 | -1.8496 | 0.6760 | 0.4261 | -486.0708 | -475.1019 | -2.2778 | -2.2671 |
| 0.6296 | 0.78 | 5980 | 0.6015 | -1.4237 | -1.8494 | 0.6765 | 0.4257 | -486.0506 | -475.1184 | -2.2758 | -2.2650 |
| 0.4725 | 0.78 | 5990 | 0.6017 | -1.4337 | -1.8609 | 0.6745 | 0.4272 | -487.2033 | -476.1204 | -2.2733 | -2.2625 |
| 0.6035 | 0.79 | 6000 | 0.6018 | -1.4383 | -1.8669 | 0.6745 | 0.4286 | -487.7992 | -476.5792 | -2.2711 | -2.2605 |
| 0.5114 | 0.79 | 6010 | 0.6022 | -1.4395 | -1.8688 | 0.6740 | 0.4294 | -487.9946 | -476.6972 | -2.2685 | -2.2581 |
| 0.5019 | 0.79 | 6020 | 0.6023 | -1.4624 | -1.8952 | 0.6760 | 0.4328 | -490.6270 | -478.9855 | -2.2634 | -2.2532 |
| 0.6167 | 0.79 | 6030 | 0.6028 | -1.4654 | -1.8987 | 0.6750 | 0.4332 | -490.9763 | -479.2915 | -2.2592 | -2.2490 |
| 0.6122 | 0.79 | 6040 | 0.6032 | -1.4651 | -1.8986 | 0.6725 | 0.4335 | -490.9661 | -479.2563 | -2.2553 | -2.2450 |
| 0.5706 | 0.79 | 6050 | 0.6031 | -1.4481 | -1.8801 | 0.6720 | 0.4319 | -489.1151 | -477.5636 | -2.2554 | -2.2449 |
| 0.5889 | 0.79 | 6060 | 0.6033 | -1.4543 | -1.8874 | 0.6725 | 0.4330 | -489.8466 | -478.1839 | -2.2540 | -2.2436 |
| 0.5764 | 0.79 | 6070 | 0.6034 | -1.4572 | -1.8903 | 0.6740 | 0.4331 | -490.1448 | -478.4716 | -2.2523 | -2.2420 |
| 0.5793 | 0.8 | 6080 | 0.6037 | -1.4698 | -1.9044 | 0.6735 | 0.4346 | -491.5454 | -479.7290 | -2.2481 | -2.2379 |
| 0.4869 | 0.8 | 6090 | 0.6040 | -1.4920 | -1.9302 | 0.6725 | 0.4381 | -494.1254 | -481.9536 | -2.2420 | -2.2323 |
| 0.6102 | 0.8 | 6100 | 0.6045 | -1.5036 | -1.9434 | 0.6725 | 0.4398 | -495.4472 | -483.1098 | -2.2380 | -2.2282 |
| 0.6125 | 0.8 | 6110 | 0.6041 | -1.4916 | -1.9317 | 0.6730 | 0.4401 | -494.2773 | -481.9097 | -2.2412 | -2.2313 |
| 0.6175 | 0.8 | 6120 | 0.6041 | -1.4701 | -1.9080 | 0.6745 | 0.4379 | -491.9110 | -479.7631 | -2.2444 | -2.2342 |
| 0.5436 | 0.8 | 6130 | 0.6043 | -1.4647 | -1.9015 | 0.6740 | 0.4368 | -491.2646 | -479.2216 | -2.2439 | -2.2337 |
| 0.6058 | 0.8 | 6140 | 0.6044 | -1.4708 | -1.9089 | 0.6730 | 0.4381 | -492.0013 | -479.8325 | -2.2408 | -2.2307 |
| 0.5545 | 0.8 | 6150 | 0.6044 | -1.4790 | -1.9189 | 0.6730 | 0.4399 | -492.9983 | -480.6499 | -2.2386 | -2.2288 |
| 0.6665 | 0.81 | 6160 | 0.6042 | -1.4721 | -1.9111 | 0.6725 | 0.4389 | -492.2158 | -479.9612 | -2.2403 | -2.2305 |
| 0.6219 | 0.81 | 6170 | 0.6039 | -1.4595 | -1.8962 | 0.6720 | 0.4367 | -490.7255 | -478.6950 | -2.2436 | -2.2336 |
| 0.543 | 0.81 | 6180 | 0.6037 | -1.4572 | -1.8943 | 0.6725 | 0.4371 | -490.5428 | -478.4734 | -2.2443 | -2.2341 |
| 0.6159 | 0.81 | 6190 | 0.6039 | -1.4503 | -1.8862 | 0.6740 | 0.4359 | -489.7291 | -477.7792 | -2.2451 | -2.2349 |
| 0.6169 | 0.81 | 6200 | 0.6038 | -1.4394 | -1.8735 | 0.6720 | 0.4341 | -488.4582 | -476.6858 | -2.2470 | -2.2366 |
| 0.6039 | 0.81 | 6210 | 0.6034 | -1.4335 | -1.8673 | 0.6725 | 0.4338 | -487.8377 | -476.0990 | -2.2483 | -2.2380 |
| 0.5264 | 0.81 | 6220 | 0.6035 | -1.4395 | -1.8747 | 0.6710 | 0.4352 | -488.5808 | -476.7023 | -2.2481 | -2.2378 |
| 0.5109 | 0.82 | 6230 | 0.6032 | -1.4545 | -1.8930 | 0.6740 | 0.4385 | -490.4145 | -478.2023 | -2.2481 | -2.2381 |
| 0.643 | 0.82 | 6240 | 0.6029 | -1.4584 | -1.8979 | 0.6735 | 0.4395 | -490.9009 | -478.5943 | -2.2486 | -2.2388 |
| 0.5155 | 0.82 | 6250 | 0.6031 | -1.4727 | -1.9134 | 0.6735 | 0.4407 | -492.4518 | -480.0223 | -2.2470 | -2.2375 |
| 0.5705 | 0.82 | 6260 | 0.6028 | -1.4889 | -1.9324 | 0.6750 | 0.4434 | -494.3459 | -481.6424 | -2.2439 | -2.2348 |
| 0.5888 | 0.82 | 6270 | 0.6022 | -1.4921 | -1.9362 | 0.6735 | 0.4441 | -494.7316 | -481.9577 | -2.2443 | -2.2355 |
| 0.6121 | 0.82 | 6280 | 0.6020 | -1.4811 | -1.9240 | 0.6715 | 0.4429 | -493.5086 | -480.8594 | -2.2465 | -2.2377 |
| 0.5833 | 0.82 | 6290 | 0.6018 | -1.4718 | -1.9141 | 0.6750 | 0.4422 | -492.5155 | -479.9310 | -2.2482 | -2.2396 |
| 0.5904 | 0.82 | 6300 | 0.6015 | -1.4774 | -1.9204 | 0.6765 | 0.4430 | -493.1514 | -480.4924 | -2.2485 | -2.2400 |
| 0.6735 | 0.83 | 6310 | 0.6016 | -1.4760 | -1.9184 | 0.6735 | 0.4424 | -492.9498 | -480.3462 | -2.2479 | -2.2396 |
| 0.6187 | 0.83 | 6320 | 0.6015 | -1.4718 | -1.9134 | 0.6760 | 0.4416 | -492.4515 | -479.9319 | -2.2485 | -2.2398 |
| 0.5178 | 0.83 | 6330 | 0.6015 | -1.4734 | -1.9145 | 0.6720 | 0.4411 | -492.5597 | -480.0934 | -2.2471 | -2.2387 |
| 0.6297 | 0.83 | 6340 | 0.6014 | -1.4725 | -1.9142 | 0.6770 | 0.4417 | -492.5256 | -479.9998 | -2.2469 | -2.2386 |
| 0.6506 | 0.83 | 6350 | 0.6013 | -1.4623 | -1.9031 | 0.6750 | 0.4408 | -491.4187 | -478.9766 | -2.2484 | -2.2398 |
| 0.5739 | 0.83 | 6360 | 0.6014 | -1.4581 | -1.8985 | 0.6720 | 0.4404 | -490.9558 | -478.5584 | -2.2497 | -2.2410 |
| 0.6565 | 0.83 | 6370 | 0.6011 | -1.4530 | -1.8930 | 0.6765 | 0.4401 | -490.4146 | -478.0468 | -2.2505 | -2.2417 |
| 0.6382 | 0.83 | 6380 | 0.6013 | -1.4393 | -1.8764 | 0.6745 | 0.4371 | -488.7548 | -476.6830 | -2.2538 | -2.2449 |
| 0.6057 | 0.84 | 6390 | 0.6012 | -1.4351 | -1.8714 | 0.6750 | 0.4362 | -488.2466 | -476.2626 | -2.2531 | -2.2441 |
| 0.6532 | 0.84 | 6400 | 0.6009 | -1.4353 | -1.8712 | 0.6755 | 0.4359 | -488.2312 | -476.2788 | -2.2520 | -2.2431 |
| 0.5729 | 0.84 | 6410 | 0.6010 | -1.4356 | -1.8711 | 0.6755 | 0.4355 | -488.2205 | -476.3065 | -2.2515 | -2.2426 |
| 0.6151 | 0.84 | 6420 | 0.6009 | -1.4369 | -1.8726 | 0.6760 | 0.4357 | -488.3709 | -476.4427 | -2.2507 | -2.2421 |
| 0.5601 | 0.84 | 6430 | 0.6007 | -1.4476 | -1.8846 | 0.6750 | 0.4370 | -489.5664 | -477.5064 | -2.2488 | -2.2402 |
| 0.6153 | 0.84 | 6440 | 0.6009 | -1.4535 | -1.8915 | 0.6735 | 0.4380 | -490.2575 | -478.0989 | -2.2487 | -2.2400 |
| 0.6261 | 0.84 | 6450 | 0.6006 | -1.4479 | -1.8847 | 0.6750 | 0.4367 | -489.5791 | -477.5443 | -2.2504 | -2.2418 |
| 0.5422 | 0.85 | 6460 | 0.6005 | -1.4579 | -1.8954 | 0.6735 | 0.4376 | -490.6540 | -478.5351 | -2.2494 | -2.2409 |
| 0.6368 | 0.85 | 6470 | 0.6006 | -1.4674 | -1.9056 | 0.6745 | 0.4382 | -491.6706 | -479.4929 | -2.2467 | -2.2385 |
| 0.6252 | 0.85 | 6480 | 0.6006 | -1.4788 | -1.9180 | 0.6745 | 0.4392 | -492.9149 | -480.6306 | -2.2452 | -2.2368 |
| 0.5981 | 0.85 | 6490 | 0.6004 | -1.4836 | -1.9234 | 0.6735 | 0.4398 | -493.4492 | -481.1080 | -2.2443 | -2.2361 |
| 0.5529 | 0.85 | 6500 | 0.6005 | -1.4882 | -1.9282 | 0.6755 | 0.4399 | -493.9290 | -481.5741 | -2.2433 | -2.2351 |
| 0.6469 | 0.85 | 6510 | 0.6005 | -1.4900 | -1.9300 | 0.6735 | 0.4400 | -494.1065 | -481.7479 | -2.2430 | -2.2349 |
| 0.6271 | 0.85 | 6520 | 0.6005 | -1.4929 | -1.9331 | 0.6740 | 0.4402 | -494.4227 | -482.0384 | -2.2423 | -2.2341 |
| 0.5816 | 0.85 | 6530 | 0.6005 | -1.4980 | -1.9391 | 0.6745 | 0.4412 | -495.0234 | -482.5449 | -2.2424 | -2.2341 |
| 0.561 | 0.86 | 6540 | 0.6007 | -1.5037 | -1.9458 | 0.6725 | 0.4421 | -495.6880 | -483.1202 | -2.2405 | -2.2322 |
| 0.5886 | 0.86 | 6550 | 0.6009 | -1.5090 | -1.9518 | 0.6740 | 0.4428 | -496.2926 | -483.6520 | -2.2384 | -2.2301 |
| 0.6015 | 0.86 | 6560 | 0.6009 | -1.5022 | -1.9446 | 0.6735 | 0.4424 | -495.5720 | -482.9744 | -2.2390 | -2.2307 |
| 0.6231 | 0.86 | 6570 | 0.6007 | -1.4893 | -1.9303 | 0.6740 | 0.4410 | -494.1352 | -481.6789 | -2.2410 | -2.2327 |
| 0.6087 | 0.86 | 6580 | 0.6006 | -1.4819 | -1.9219 | 0.6735 | 0.4400 | -493.3043 | -480.9399 | -2.2421 | -2.2338 |
| 0.5943 | 0.86 | 6590 | 0.6004 | -1.4827 | -1.9231 | 0.6740 | 0.4404 | -493.4203 | -481.0194 | -2.2437 | -2.2355 |
| 0.6125 | 0.86 | 6600 | 0.6005 | -1.4879 | -1.9284 | 0.6730 | 0.4405 | -493.9536 | -481.5439 | -2.2421 | -2.2341 |
| 0.6032 | 0.86 | 6610 | 0.6003 | -1.4909 | -1.9317 | 0.6735 | 0.4409 | -494.2845 | -481.8366 | -2.2431 | -2.2351 |
| 0.6535 | 0.87 | 6620 | 0.6003 | -1.4926 | -1.9331 | 0.6745 | 0.4404 | -494.4171 | -482.0134 | -2.2435 | -2.2355 |
| 0.5795 | 0.87 | 6630 | 0.6000 | -1.4915 | -1.9315 | 0.6735 | 0.4400 | -494.2554 | -481.8948 | -2.2451 | -2.2373 |
| 0.5202 | 0.87 | 6640 | 0.6003 | -1.4941 | -1.9337 | 0.6735 | 0.4396 | -494.4771 | -482.1590 | -2.2457 | -2.2377 |
| 0.596 | 0.87 | 6650 | 0.6002 | -1.4945 | -1.9348 | 0.6730 | 0.4403 | -494.5907 | -482.2015 | -2.2449 | -2.2370 |
| 0.5465 | 0.87 | 6660 | 0.6003 | -1.4961 | -1.9363 | 0.6730 | 0.4403 | -494.7445 | -482.3565 | -2.2444 | -2.2366 |
| 0.6745 | 0.87 | 6670 | 0.6003 | -1.4969 | -1.9371 | 0.6740 | 0.4402 | -494.8221 | -482.4366 | -2.2445 | -2.2366 |
| 0.5327 | 0.87 | 6680 | 0.6003 | -1.4935 | -1.9334 | 0.6730 | 0.4399 | -494.4505 | -482.1029 | -2.2454 | -2.2372 |
| 0.6052 | 0.88 | 6690 | 0.6002 | -1.4960 | -1.9363 | 0.6740 | 0.4404 | -494.7440 | -482.3472 | -2.2428 | -2.2348 |
| 0.6264 | 0.88 | 6700 | 0.6001 | -1.4950 | -1.9355 | 0.6720 | 0.4405 | -494.6638 | -482.2544 | -2.2435 | -2.2355 |
| 0.599 | 0.88 | 6710 | 0.6001 | -1.4921 | -1.9320 | 0.6730 | 0.4398 | -494.3063 | -481.9610 | -2.2442 | -2.2363 |
| 0.5517 | 0.88 | 6720 | 0.6001 | -1.4943 | -1.9340 | 0.6725 | 0.4397 | -494.5126 | -482.1774 | -2.2440 | -2.2361 |
| 0.6085 | 0.88 | 6730 | 0.6002 | -1.4970 | -1.9368 | 0.6740 | 0.4399 | -494.7940 | -482.4478 | -2.2429 | -2.2351 |
| 0.5446 | 0.88 | 6740 | 0.6001 | -1.4981 | -1.9387 | 0.6740 | 0.4406 | -494.9825 | -482.5581 | -2.2426 | -2.2350 |
| 0.6626 | 0.88 | 6750 | 0.6001 | -1.4952 | -1.9352 | 0.6730 | 0.4400 | -494.6258 | -482.2665 | -2.2437 | -2.2359 |
| 0.5305 | 0.88 | 6760 | 0.6001 | -1.4934 | -1.9334 | 0.6735 | 0.4400 | -494.4462 | -482.0895 | -2.2436 | -2.2358 |
| 0.5956 | 0.89 | 6770 | 0.6001 | -1.4894 | -1.9287 | 0.6735 | 0.4394 | -493.9832 | -481.6857 | -2.2441 | -2.2362 |
| 0.5703 | 0.89 | 6780 | 0.6001 | -1.4882 | -1.9282 | 0.6745 | 0.4401 | -493.9348 | -481.5654 | -2.2426 | -2.2347 |
| 0.519 | 0.89 | 6790 | 0.6002 | -1.4868 | -1.9265 | 0.6750 | 0.4397 | -493.7627 | -481.4301 | -2.2427 | -2.2348 |
| 0.5557 | 0.89 | 6800 | 0.6001 | -1.4811 | -1.9207 | 0.6725 | 0.4396 | -493.1782 | -480.8570 | -2.2430 | -2.2351 |
| 0.5928 | 0.89 | 6810 | 0.6001 | -1.4777 | -1.9173 | 0.6735 | 0.4396 | -492.8398 | -480.5160 | -2.2429 | -2.2350 |
| 0.6184 | 0.89 | 6820 | 0.6002 | -1.4767 | -1.9157 | 0.6740 | 0.4391 | -492.6844 | -480.4144 | -2.2435 | -2.2355 |
| 0.6065 | 0.89 | 6830 | 0.6002 | -1.4773 | -1.9164 | 0.6745 | 0.4391 | -492.7512 | -480.4826 | -2.2431 | -2.2352 |
| 0.5943 | 0.9 | 6840 | 0.6000 | -1.4732 | -1.9122 | 0.6750 | 0.4390 | -492.3344 | -480.0720 | -2.2437 | -2.2358 |
| 0.6122 | 0.9 | 6850 | 0.6000 | -1.4720 | -1.9109 | 0.6730 | 0.4389 | -492.1989 | -479.9487 | -2.2437 | -2.2359 |
| 0.5781 | 0.9 | 6860 | 0.6001 | -1.4710 | -1.9093 | 0.6730 | 0.4384 | -492.0443 | -479.8468 | -2.2447 | -2.2366 |
| 0.5874 | 0.9 | 6870 | 0.6000 | -1.4727 | -1.9116 | 0.6750 | 0.4389 | -492.2703 | -480.0219 | -2.2447 | -2.2367 |
| 0.5447 | 0.9 | 6880 | 0.6000 | -1.4736 | -1.9128 | 0.6730 | 0.4392 | -492.3921 | -480.1127 | -2.2442 | -2.2363 |
| 0.6112 | 0.9 | 6890 | 0.6000 | -1.4744 | -1.9133 | 0.6760 | 0.4389 | -492.4407 | -480.1896 | -2.2447 | -2.2367 |
| 0.6134 | 0.9 | 6900 | 0.6000 | -1.4721 | -1.9106 | 0.6740 | 0.4385 | -492.1670 | -479.9587 | -2.2454 | -2.2376 |
| 0.5998 | 0.9 | 6910 | 0.5998 | -1.4742 | -1.9133 | 0.6745 | 0.4391 | -492.4361 | -480.1688 | -2.2456 | -2.2376 |
| 0.5518 | 0.91 | 6920 | 0.5998 | -1.4790 | -1.9189 | 0.6740 | 0.4398 | -492.9962 | -480.6544 | -2.2448 | -2.2370 |
| 0.5815 | 0.91 | 6930 | 0.5999 | -1.4786 | -1.9181 | 0.6740 | 0.4395 | -492.9165 | -480.6068 | -2.2453 | -2.2374 |
| 0.5728 | 0.91 | 6940 | 0.6001 | -1.4789 | -1.9180 | 0.6735 | 0.4392 | -492.9147 | -480.6366 | -2.2449 | -2.2372 |
| 0.6253 | 0.91 | 6950 | 0.5999 | -1.4758 | -1.9150 | 0.6745 | 0.4392 | -492.6123 | -480.3330 | -2.2457 | -2.2377 |
| 0.5998 | 0.91 | 6960 | 0.5999 | -1.4739 | -1.9128 | 0.6745 | 0.4389 | -492.3878 | -480.1388 | -2.2452 | -2.2372 |
| 0.6105 | 0.91 | 6970 | 0.6001 | -1.4719 | -1.9099 | 0.6740 | 0.4380 | -492.0994 | -479.9435 | -2.2454 | -2.2372 |
| 0.6255 | 0.91 | 6980 | 0.6001 | -1.4747 | -1.9137 | 0.6745 | 0.4390 | -492.4775 | -480.2217 | -2.2446 | -2.2366 |
| 0.5663 | 0.91 | 6990 | 0.6001 | -1.4757 | -1.9147 | 0.6725 | 0.4390 | -492.5836 | -480.3205 | -2.2450 | -2.2370 |
| 0.5424 | 0.92 | 7000 | 0.6002 | -1.4762 | -1.9151 | 0.6720 | 0.4388 | -492.6167 | -480.3715 | -2.2453 | -2.2373 |
| 0.596 | 0.92 | 7010 | 0.6001 | -1.4744 | -1.9133 | 0.6715 | 0.4389 | -492.4364 | -480.1894 | -2.2453 | -2.2373 |
| 0.6293 | 0.92 | 7020 | 0.6000 | -1.4734 | -1.9122 | 0.6735 | 0.4388 | -492.3290 | -480.0872 | -2.2456 | -2.2375 |
| 0.5241 | 0.92 | 7030 | 0.6000 | -1.4747 | -1.9138 | 0.6730 | 0.4391 | -492.4926 | -480.2183 | -2.2451 | -2.2371 |
| 0.5432 | 0.92 | 7040 | 0.5999 | -1.4788 | -1.9185 | 0.6735 | 0.4397 | -492.9648 | -480.6302 | -2.2449 | -2.2370 |
| 0.5755 | 0.92 | 7050 | 0.6002 | -1.4815 | -1.9213 | 0.6715 | 0.4398 | -493.2392 | -480.9036 | -2.2448 | -2.2368 |
| 0.6344 | 0.92 | 7060 | 0.5998 | -1.4828 | -1.9233 | 0.6745 | 0.4405 | -493.4417 | -481.0281 | -2.2442 | -2.2363 |
| 0.659 | 0.93 | 7070 | 0.6000 | -1.4846 | -1.9248 | 0.6735 | 0.4402 | -493.5932 | -481.2086 | -2.2447 | -2.2367 |
| 0.5947 | 0.93 | 7080 | 0.5999 | -1.4873 | -1.9283 | 0.6745 | 0.4410 | -493.9436 | -481.4794 | -2.2434 | -2.2357 |
| 0.628 | 0.93 | 7090 | 0.5999 | -1.4877 | -1.9287 | 0.6725 | 0.4410 | -493.9813 | -481.5184 | -2.2437 | -2.2360 |
| 0.5261 | 0.93 | 7100 | 0.6000 | -1.4864 | -1.9272 | 0.6730 | 0.4408 | -493.8281 | -481.3865 | -2.2443 | -2.2363 |
| 0.5201 | 0.93 | 7110 | 0.6001 | -1.4839 | -1.9243 | 0.6730 | 0.4405 | -493.5434 | -481.1351 | -2.2444 | -2.2364 |
| 0.6504 | 0.93 | 7120 | 0.6000 | -1.4834 | -1.9242 | 0.6725 | 0.4407 | -493.5276 | -481.0939 | -2.2440 | -2.2361 |
| 0.5956 | 0.93 | 7130 | 0.6002 | -1.4819 | -1.9223 | 0.6745 | 0.4404 | -493.3448 | -480.9442 | -2.2441 | -2.2362 |
| 0.67 | 0.93 | 7140 | 0.6001 | -1.4802 | -1.9205 | 0.6755 | 0.4403 | -493.1571 | -480.7647 | -2.2438 | -2.2358 |
| 0.5571 | 0.94 | 7150 | 0.6002 | -1.4785 | -1.9185 | 0.6745 | 0.4400 | -492.9625 | -480.6026 | -2.2442 | -2.2361 |
| 0.6067 | 0.94 | 7160 | 0.6002 | -1.4792 | -1.9194 | 0.6760 | 0.4401 | -493.0470 | -480.6741 | -2.2441 | -2.2360 |
| 0.567 | 0.94 | 7170 | 0.6002 | -1.4793 | -1.9195 | 0.6725 | 0.4402 | -493.0614 | -480.6815 | -2.2448 | -2.2367 |
| 0.5853 | 0.94 | 7180 | 0.6000 | -1.4790 | -1.9196 | 0.6740 | 0.4406 | -493.0687 | -480.6484 | -2.2436 | -2.2355 |
| 0.5763 | 0.94 | 7190 | 0.6001 | -1.4800 | -1.9204 | 0.6750 | 0.4404 | -493.1496 | -480.7488 | -2.2434 | -2.2354 |
| 0.6433 | 0.94 | 7200 | 0.6002 | -1.4802 | -1.9203 | 0.6745 | 0.4401 | -493.1400 | -480.7719 | -2.2436 | -2.2355 |
| 0.5246 | 0.94 | 7210 | 0.6001 | -1.4812 | -1.9217 | 0.6745 | 0.4405 | -493.2789 | -480.8667 | -2.2441 | -2.2360 |
| 0.5472 | 0.94 | 7220 | 0.6003 | -1.4813 | -1.9215 | 0.6745 | 0.4402 | -493.2612 | -480.8844 | -2.2436 | -2.2355 |
| 0.6258 | 0.95 | 7230 | 0.6001 | -1.4824 | -1.9230 | 0.6715 | 0.4406 | -493.4081 | -480.9859 | -2.2436 | -2.2355 |
| 0.5519 | 0.95 | 7240 | 0.6001 | -1.4807 | -1.9211 | 0.6725 | 0.4404 | -493.2167 | -480.8148 | -2.2437 | -2.2357 |
| 0.5803 | 0.95 | 7250 | 0.6002 | -1.4806 | -1.9210 | 0.6755 | 0.4405 | -493.2137 | -480.8081 | -2.2439 | -2.2359 |
| 0.566 | 0.95 | 7260 | 0.6001 | -1.4824 | -1.9232 | 0.6760 | 0.4408 | -493.4316 | -480.9936 | -2.2438 | -2.2358 |
| 0.5685 | 0.95 | 7270 | 0.6002 | -1.4828 | -1.9236 | 0.6745 | 0.4408 | -493.4701 | -481.0330 | -2.2429 | -2.2350 |
| 0.6324 | 0.95 | 7280 | 0.6000 | -1.4838 | -1.9251 | 0.6740 | 0.4413 | -493.6228 | -481.1298 | -2.2434 | -2.2355 |
| 0.6182 | 0.95 | 7290 | 0.6004 | -1.4825 | -1.9229 | 0.6735 | 0.4404 | -493.4010 | -481.0028 | -2.2432 | -2.2352 |
| 0.5617 | 0.96 | 7300 | 0.6000 | -1.4842 | -1.9254 | 0.6750 | 0.4413 | -493.6541 | -481.1675 | -2.2425 | -2.2347 |
| 0.5804 | 0.96 | 7310 | 0.6001 | -1.4858 | -1.9270 | 0.6755 | 0.4412 | -493.8114 | -481.3324 | -2.2423 | -2.2345 |
| 0.5918 | 0.96 | 7320 | 0.6002 | -1.4852 | -1.9264 | 0.6755 | 0.4413 | -493.7545 | -481.2686 | -2.2423 | -2.2344 |
| 0.5686 | 0.96 | 7330 | 0.6002 | -1.4855 | -1.9265 | 0.6755 | 0.4410 | -493.7621 | -481.3024 | -2.2426 | -2.2346 |
| 0.6209 | 0.96 | 7340 | 0.6001 | -1.4852 | -1.9264 | 0.6735 | 0.4412 | -493.7498 | -481.2669 | -2.2423 | -2.2345 |
| 0.6103 | 0.96 | 7350 | 0.6003 | -1.4839 | -1.9245 | 0.6765 | 0.4406 | -493.5627 | -481.1436 | -2.2428 | -2.2349 |
| 0.6426 | 0.96 | 7360 | 0.6001 | -1.4830 | -1.9239 | 0.6735 | 0.4409 | -493.4968 | -481.0446 | -2.2431 | -2.2351 |
| 0.5438 | 0.96 | 7370 | 0.6001 | -1.4843 | -1.9252 | 0.6720 | 0.4409 | -493.6325 | -481.1817 | -2.2427 | -2.2347 |
| 0.6082 | 0.97 | 7380 | 0.6000 | -1.4825 | -1.9235 | 0.6735 | 0.4410 | -493.4592 | -480.9968 | -2.2430 | -2.2351 |
| 0.6119 | 0.97 | 7390 | 0.6001 | -1.4820 | -1.9226 | 0.6725 | 0.4406 | -493.3720 | -480.9541 | -2.2430 | -2.2350 |
| 0.5542 | 0.97 | 7400 | 0.6002 | -1.4823 | -1.9229 | 0.6740 | 0.4406 | -493.3987 | -480.9829 | -2.2430 | -2.2352 |
| 0.6158 | 0.97 | 7410 | 0.6000 | -1.4825 | -1.9236 | 0.6755 | 0.4411 | -493.4675 | -480.9962 | -2.2434 | -2.2355 |
| 0.5374 | 0.97 | 7420 | 0.6002 | -1.4828 | -1.9233 | 0.6740 | 0.4405 | -493.4400 | -481.0262 | -2.2435 | -2.2354 |
| 0.5666 | 0.97 | 7430 | 0.6002 | -1.4830 | -1.9238 | 0.6720 | 0.4408 | -493.4920 | -481.0496 | -2.2426 | -2.2347 |
| 0.5652 | 0.97 | 7440 | 0.6001 | -1.4821 | -1.9228 | 0.6745 | 0.4407 | -493.3924 | -480.9587 | -2.2423 | -2.2343 |
| 0.6496 | 0.97 | 7450 | 0.6000 | -1.4818 | -1.9229 | 0.6740 | 0.4410 | -493.3951 | -480.9341 | -2.2430 | -2.2349 |
| 0.6299 | 0.98 | 7460 | 0.6000 | -1.4829 | -1.9238 | 0.6715 | 0.4409 | -493.4858 | -481.0392 | -2.2427 | -2.2347 |
| 0.5913 | 0.98 | 7470 | 0.6001 | -1.4828 | -1.9238 | 0.6725 | 0.4409 | -493.4869 | -481.0333 | -2.2426 | -2.2348 |
| 0.5809 | 0.98 | 7480 | 0.6001 | -1.4827 | -1.9233 | 0.6745 | 0.4406 | -493.4411 | -481.0244 | -2.2431 | -2.2351 |
| 0.522 | 0.98 | 7490 | 0.6003 | -1.4830 | -1.9237 | 0.6745 | 0.4407 | -493.4762 | -481.0496 | -2.2425 | -2.2346 |
| 0.4985 | 0.98 | 7500 | 0.6000 | -1.4829 | -1.9241 | 0.6755 | 0.4412 | -493.5171 | -481.0412 | -2.2425 | -2.2346 |
| 0.5986 | 0.98 | 7510 | 0.5999 | -1.4831 | -1.9246 | 0.6730 | 0.4414 | -493.5656 | -481.0641 | -2.2424 | -2.2346 |
| 0.5748 | 0.98 | 7520 | 0.6001 | -1.4831 | -1.9241 | 0.6735 | 0.4410 | -493.5204 | -481.0576 | -2.2431 | -2.2353 |
| 0.6262 | 0.99 | 7530 | 0.6000 | -1.4837 | -1.9249 | 0.6750 | 0.4412 | -493.6004 | -481.1151 | -2.2427 | -2.2348 |
| 0.5998 | 0.99 | 7540 | 0.6003 | -1.4827 | -1.9236 | 0.6745 | 0.4409 | -493.4674 | -481.0206 | -2.2430 | -2.2351 |
| 0.5577 | 0.99 | 7550 | 0.6001 | -1.4841 | -1.9250 | 0.6745 | 0.4409 | -493.6079 | -481.1554 | -2.2426 | -2.2347 |
| 0.5462 | 0.99 | 7560 | 0.6002 | -1.4830 | -1.9236 | 0.6735 | 0.4407 | -493.4738 | -481.0464 | -2.2431 | -2.2352 |
| 0.6308 | 0.99 | 7570 | 0.6000 | -1.4823 | -1.9234 | 0.6720 | 0.4411 | -493.4492 | -480.9828 | -2.2429 | -2.2349 |
| 0.5767 | 0.99 | 7580 | 0.6001 | -1.4825 | -1.9234 | 0.6760 | 0.4409 | -493.4526 | -480.9988 | -2.2432 | -2.2352 |
| 0.7282 | 0.99 | 7590 | 0.6002 | -1.4823 | -1.9229 | 0.6750 | 0.4406 | -493.4012 | -480.9802 | -2.2429 | -2.2350 |
| 0.6687 | 0.99 | 7600 | 0.6001 | -1.4835 | -1.9246 | 0.6755 | 0.4411 | -493.5691 | -481.1004 | -2.2425 | -2.2346 |
| 0.5566 | 1.0 | 7610 | 0.6003 | -1.4834 | -1.9240 | 0.6735 | 0.4406 | -493.5092 | -481.0875 | -2.2429 | -2.2350 |
| 0.5543 | 1.0 | 7620 | 0.6000 | -1.4825 | -1.9237 | 0.6730 | 0.4412 | -493.4799 | -481.0030 | -2.2429 | -2.2350 |
| 0.5888 | 1.0 | 7630 | 0.6003 | -1.4823 | -1.9229 | 0.6745 | 0.4406 | -493.3998 | -480.9838 | -2.2430 | -2.2350 |
| 0.5937 | 1.0 | 7640 | 0.5999 | -1.4826 | -1.9237 | 0.6735 | 0.4412 | -493.4848 | -481.0051 | -2.2428 | -2.2347 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.0 | {"license": "apache-2.0", "library_name": "peft", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "model-index": [{"name": "zephyr-tiny-dpo-qlora", "results": []}]} | null | dball/zephyr-tiny-dpo-qlora | [
"peft",
"tensorboard",
"safetensors",
"llama",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"region:us"
] | 2024-02-13T18:42:08+00:00 | [] | [] | TAGS
#peft #tensorboard #safetensors #llama #alignment-handbook #generated_from_trainer #trl #dpo #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us
| zephyr-tiny-dpo-qlora
=====================
This model is a fine-tuned version of TinyLlama/TinyLlama-1.1B-Chat-v1.0 on the HuggingFaceH4/ultrafeedback\_binarized dataset.
It achieves the following results on the evaluation set:
* Loss: 0.5999
* Rewards/chosen: -1.4826
* Rewards/rejected: -1.9237
* Rewards/accuracies: 0.6735
* Rewards/margins: 0.4412
* Logps/rejected: -493.4848
* Logps/chosen: -481.0047
* Logits/rejected: -2.2428
* Logits/chosen: -2.2348
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-06
* train\_batch\_size: 1
* eval\_batch\_size: 2
* seed: 42
* distributed\_type: multi-GPU
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 8
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 1
### Training results
### Framework versions
* PEFT 0.7.1
* Transformers 4.36.2
* Pytorch 2.1.2
* Datasets 2.14.6
* Tokenizers 0.15.0
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.14.6\n* Tokenizers 0.15.0"
] | [
"TAGS\n#peft #tensorboard #safetensors #llama #alignment-handbook #generated_from_trainer #trl #dpo #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.14.6\n* Tokenizers 0.15.0"
] | [
88,
156,
4,
36
] | [
"passage: TAGS\n#peft #tensorboard #safetensors #llama #alignment-handbook #generated_from_trainer #trl #dpo #dataset-HuggingFaceH4/ultrafeedback_binarized #base_model-TinyLlama/TinyLlama-1.1B-Chat-v1.0 #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2\n* Datasets 2.14.6\n* Tokenizers 0.15.0"
] | [
-0.12148987501859665,
0.10382799059152603,
-0.004213760606944561,
0.09933336824178696,
0.08505436033010483,
0.04313104972243309,
0.13066111505031586,
0.14546306431293488,
-0.037140097469091415,
0.12867243587970734,
0.10241402685642242,
0.04384094849228859,
0.08284874260425568,
0.20753620564937592,
-0.010010265745222569,
-0.2568936347961426,
0.014309469610452652,
-0.029454395174980164,
-0.11093728989362717,
0.09528519213199615,
0.07931789010763168,
-0.09773384034633636,
0.08307179808616638,
-0.010168345645070076,
-0.12274279445409775,
-0.050398461520671844,
-0.05072055011987686,
-0.004437355324625969,
0.09554746747016907,
0.021702531725168228,
0.09754234552383423,
0.0356326587498188,
0.09995383024215698,
-0.22690993547439575,
0.008756401017308235,
0.05989374220371246,
0.00810979213565588,
0.070492684841156,
0.10292374342679977,
0.017829418182373047,
0.09308408945798874,
-0.11459318548440933,
0.06954164803028107,
0.021790742874145508,
-0.12638235092163086,
-0.20074209570884705,
-0.08923482894897461,
0.04708327725529671,
0.11506867408752441,
0.053800418972969055,
-0.012296117842197418,
0.10004058480262756,
-0.046415671706199646,
0.07124488800764084,
0.24137362837791443,
-0.23232290148735046,
-0.0823311135172844,
0.04202945902943611,
0.03137486055493355,
0.0714072734117508,
-0.1257258653640747,
-0.023240333423018456,
0.027099620550870895,
0.023220589384436607,
0.10732649266719818,
0.000315199518809095,
0.03429353982210159,
-0.02304486371576786,
-0.1327349990606308,
-0.05317406728863716,
0.13490955531597137,
0.07855035364627838,
-0.017473667860031128,
-0.1170341894030571,
-0.043288473039865494,
-0.18002109229564667,
-0.057817477732896805,
-0.00025036456645466387,
0.03625547140836716,
-0.052330996841192245,
-0.050345707684755325,
0.021819686517119408,
-0.08361717313528061,
-0.07567949593067169,
0.02735282853245735,
0.08764264732599258,
0.04664256423711777,
-0.01530928909778595,
0.025294549763202667,
0.12270711362361908,
0.020940177142620087,
-0.16637232899665833,
-0.017838498577475548,
0.00640458520501852,
-0.09048531949520111,
-0.029374586418271065,
-0.006439886521548033,
0.06745919585227966,
0.061651989817619324,
0.1724196821451187,
-0.04189653322100639,
0.07750824838876724,
0.0542541965842247,
0.012224908918142319,
-0.06772889941930771,
0.13365767896175385,
-0.04743922874331474,
-0.08047335594892502,
-0.023771293461322784,
0.14165766537189484,
0.03576689586043358,
-0.006457197014242411,
-0.06374616920948029,
0.034119755029678345,
0.09128642082214355,
0.04302459582686424,
0.01121270190924406,
0.016370967030525208,
-0.08643777668476105,
-0.03896515816450119,
0.1229846403002739,
-0.09357278794050217,
0.05442742630839348,
0.03366435691714287,
-0.04699477553367615,
-0.050722748041152954,
0.012126809917390347,
0.007505614310503006,
0.008995524607598782,
0.0748206302523613,
-0.08516830950975418,
-0.006790304556488991,
-0.04958321899175644,
-0.06560488045215607,
0.03358195349574089,
-0.09634887427091599,
0.0017267104703933,
-0.07320532202720642,
-0.09846966713666916,
-0.06985769420862198,
0.03128241002559662,
-0.07538926601409912,
-0.07240353524684906,
-0.06200278177857399,
-0.07852870225906372,
0.038892485201358795,
0.010507284663617611,
0.10819127410650253,
-0.06955736875534058,
0.07803528755903244,
-0.009323693811893463,
0.05873606726527214,
0.055087730288505554,
0.03909832984209061,
-0.05243143439292908,
0.06736177206039429,
-0.16828398406505585,
0.05227676033973694,
-0.0921507179737091,
0.0674719288945198,
-0.11082398146390915,
-0.0731513649225235,
-0.024294111877679825,
-0.027183085680007935,
0.0721530020236969,
0.1316385567188263,
-0.16840076446533203,
-0.06524378806352615,
0.18802595138549805,
-0.09997141361236572,
-0.1248679906129837,
0.12793414294719696,
-0.007279346231371164,
-0.03936413675546646,
0.005555878859013319,
0.1819884330034256,
0.14251847565174103,
-0.14514191448688507,
-0.022684084251523018,
-0.019633693620562553,
0.09628193080425262,
0.02738002873957157,
0.08953328430652618,
-0.022246822714805603,
0.06867027282714844,
0.007005354855209589,
-0.04290476068854332,
0.049273841083049774,
-0.08101911842823029,
-0.08524154126644135,
-0.03802868723869324,
-0.07931946218013763,
-0.008026808500289917,
0.06163947284221649,
0.008805184625089169,
-0.08013749122619629,
-0.09742818027734756,
-0.05081416293978691,
0.12953144311904907,
-0.07185733318328857,
0.013781781308352947,
-0.03164231404662132,
0.07527163624763489,
-0.014316875487565994,
-0.01766904443502426,
-0.1391046941280365,
-0.12448082864284515,
0.06044088304042816,
-0.030928468331694603,
-0.006596301682293415,
-0.01845267042517662,
0.0759318545460701,
0.08278772979974747,
-0.04948677867650986,
-0.06437437981367111,
-0.04374897852540016,
-0.007301000412553549,
-0.08237593621015549,
-0.2401956170797348,
-0.04450265318155289,
-0.04185305908322334,
0.21616916358470917,
-0.2064908742904663,
0.014691072516143322,
0.004552379250526428,
0.1457059383392334,
0.03924087807536125,
-0.06323450803756714,
0.013809370808303356,
0.03886479511857033,
-0.020933041349053383,
-0.10171333700418472,
0.043336160480976105,
0.007853489369153976,
-0.08100904524326324,
-0.01114385761320591,
-0.15229539573192596,
0.10267573595046997,
0.0828675627708435,
0.06880827993154526,
-0.11134959012269974,
-0.07296673208475113,
-0.07362242043018341,
-0.05793415382504463,
-0.04558533430099487,
0.014233454130589962,
0.10389778017997742,
0.008413395844399929,
0.09878505021333694,
-0.07411959767341614,
-0.05291586369276047,
0.041148826479911804,
-0.0029589147306978703,
-0.010130435228347778,
0.14026184380054474,
0.05777433142066002,
-0.09600771218538284,
0.127639040350914,
0.1027437224984169,
-0.03485225886106491,
0.12768419086933136,
-0.07992381602525711,
-0.08727657794952393,
-0.04837733879685402,
0.04776298254728317,
0.03295406326651573,
0.14107684791088104,
-0.04438118264079094,
0.022389661520719528,
0.035606469959020615,
0.012195542454719543,
-0.001954955980181694,
-0.18031825125217438,
-0.01893492601811886,
0.024801338091492653,
-0.07100378721952438,
0.041087742894887924,
-0.01671796292066574,
-0.005238951649516821,
0.09865875542163849,
-0.0075922030955553055,
-0.06849810481071472,
-0.03088735044002533,
-0.011581018567085266,
-0.07738535851240158,
0.19454865157604218,
-0.08335115760564804,
-0.13123935461044312,
-0.09615027159452438,
0.037543922662734985,
-0.030847683548927307,
-0.0016091967700049281,
0.030548209324479103,
-0.05478016659617424,
-0.03727390617132187,
-0.0993950292468071,
-0.031175335869193077,
0.021467676386237144,
0.03930061683058739,
-0.0016536688199266791,
0.00306092482060194,
0.06960096210241318,
-0.08492578566074371,
0.00405436335131526,
-0.01681104302406311,
-0.01290846150368452,
0.050201717764139175,
0.006607474759221077,
0.11375604569911957,
0.1368405967950821,
0.06243148818612099,
0.007715274579823017,
-0.02782817929983139,
0.183572456240654,
-0.11010709404945374,
0.03013848327100277,
0.06026953086256981,
0.011080044321715832,
0.06692159175872803,
0.151609867811203,
0.037364449352025986,
-0.07967889308929443,
0.0076687755063176155,
0.03679569438099861,
-0.02702498249709606,
-0.18334533274173737,
-0.0507582426071167,
-0.04730045795440674,
0.029100945219397545,
0.1322074979543686,
0.04292452335357666,
0.001976929372176528,
0.04329473525285721,
-0.025863921269774437,
0.000661361962556839,
0.017377782613039017,
0.06247907876968384,
0.014814685098826885,
0.05082171782851219,
0.11248297989368439,
-0.032689418643713,
-0.035864684730768204,
0.05109168589115143,
0.009001998230814934,
0.22913289070129395,
-0.029857825487852097,
0.17782534658908844,
0.03793103247880936,
0.15943098068237305,
-0.01952594891190529,
0.03586658835411072,
0.03345061466097832,
-0.029586154967546463,
0.005669813137501478,
-0.0487237349152565,
0.001529505243524909,
0.046211645007133484,
0.0626227855682373,
0.014325428754091263,
-0.09964106976985931,
0.027097046375274658,
0.04471209645271301,
0.2688339054584503,
0.09570919722318649,
-0.30619972944259644,
-0.057690974324941635,
0.01882042922079563,
-0.012687202543020248,
-0.0316668264567852,
-0.009747723117470741,
0.13578703999519348,
-0.08635865151882172,
0.09631603211164474,
-0.05997506529092789,
0.06923045963048935,
-0.06380899995565414,
-0.015358424745500088,
0.07108791172504425,
0.09659392386674881,
-0.0067435563541948795,
0.03979276120662689,
-0.20088958740234375,
0.26643866300582886,
-0.004187840037047863,
0.03813713416457176,
-0.0414554737508297,
0.023851193487644196,
0.03393556550145149,
0.03786098584532738,
0.1049552857875824,
-0.0021832336205989122,
-0.09419136494398117,
-0.18298955261707306,
-0.15005217492580414,
0.015713050961494446,
0.11075560003519058,
-0.08828938752412796,
0.09711228311061859,
-0.01794584095478058,
-0.03804049640893936,
0.031701333820819855,
-0.05197897553443909,
-0.0769270583987236,
-0.1067664697766304,
0.03338826447725296,
-0.01664118468761444,
-0.0326031818985939,
-0.0743837058544159,
-0.1021447628736496,
-0.09490475803613663,
0.14132007956504822,
-0.05051418021321297,
-0.035771846771240234,
-0.14453651010990143,
0.06566094607114792,
0.14699618518352509,
-0.08938199281692505,
0.03780524805188179,
-0.005449739284813404,
0.10356558859348297,
0.019244059920310974,
-0.022537896409630775,
0.08819086849689484,
-0.08116526901721954,
-0.21409454941749573,
-0.05820764601230621,
0.15871720016002655,
0.042762234807014465,
0.06430676579475403,
-0.025406818836927414,
0.03372463956475258,
-0.00262023345567286,
-0.09595802426338196,
0.07406637817621231,
0.0587519071996212,
0.0565621554851532,
0.033504679799079895,
-0.028314758092164993,
0.02796500362455845,
-0.052049268037080765,
-0.035135667771101,
0.08199082314968109,
0.321903258562088,
-0.09495476633310318,
0.05077986419200897,
-0.0052973423153162,
-0.054963767528533936,
-0.1651821881532669,
-0.04542256519198418,
0.11611128598451614,
0.028966084122657776,
0.028508992865681648,
-0.15438808500766754,
0.05061784386634827,
0.08862054347991943,
-0.0302974134683609,
0.10521408170461655,
-0.2841142416000366,
-0.1359192579984665,
0.08607689291238785,
0.08268722146749496,
-0.03230929747223854,
-0.1766425520181656,
-0.06243876367807388,
0.02949017472565174,
-0.09887971729040146,
0.08725397288799286,
-0.025780368596315384,
0.12131071090698242,
-0.03136320784687996,
-0.02023012563586235,
0.0214410200715065,
-0.04291129484772682,
0.1835942268371582,
0.008922343142330647,
0.06663096696138382,
-0.029976455494761467,
0.013363580219447613,
-0.004325673915445805,
-0.0842437744140625,
0.029512152075767517,
-0.07748652994632721,
0.029047450050711632,
-0.12346633523702621,
-0.007461746223270893,
-0.08354076743125916,
0.022672949358820915,
-0.0461168996989727,
-0.01940794289112091,
-0.052758004516363144,
0.05297807231545448,
0.06048274040222168,
-0.00009478336869506165,
0.13113783299922943,
0.006528174038976431,
0.12199125438928604,
0.1168675571680069,
0.056311313062906265,
0.00969399232417345,
-0.10405139625072479,
-0.04158790782094002,
-0.01563728228211403,
0.010563901625573635,
-0.12281996756792068,
0.02761324867606163,
0.13892266154289246,
0.02865283191204071,
0.11783722788095474,
0.040755413472652435,
-0.0707801803946495,
-0.012946397066116333,
0.08029584586620331,
-0.11207867413759232,
-0.11887866258621216,
-0.0011104859877377748,
-0.02396440878510475,
-0.1609031707048416,
-0.0068949866108596325,
0.1141127198934555,
-0.02429196611046791,
-0.00948965921998024,
-0.003183983499184251,
0.05293133482336998,
-0.005618866533041,
0.22045141458511353,
0.0508083701133728,
0.06981395184993744,
-0.09461502730846405,
0.08504518866539001,
0.04302270710468292,
-0.1006382629275322,
0.018554242327809334,
0.10144064575433731,
-0.08596205711364746,
-0.027780918404459953,
0.11065571755170822,
0.13234780728816986,
0.0040020691230893135,
-0.03239266574382782,
-0.1299326866865158,
-0.12267322093248367,
0.07795190811157227,
0.0703667625784874,
0.06266038864850998,
0.03032984770834446,
0.01721661537885666,
0.01802288182079792,
-0.08311408758163452,
0.1190750002861023,
0.09105581790208817,
0.09040553867816925,
-0.13951945304870605,
0.07713905721902847,
-0.003107973374426365,
0.020591825246810913,
-0.00995112769305706,
0.030722718685865402,
-0.11864835768938065,
-0.036183543503284454,
-0.05045030638575554,
0.023168141022324562,
-0.0506117008626461,
0.0021060884464532137,
0.008468050509691238,
-0.0630536675453186,
-0.029172217473387718,
0.005995869170874357,
-0.08666188269853592,
-0.06285054981708527,
-0.03560207784175873,
0.07060189545154572,
-0.10365615785121918,
-0.05065891891717911,
0.041718531399965286,
-0.11690957099199295,
0.09450068324804306,
0.0328831784427166,
0.05657684803009033,
-0.012009370140731335,
-0.08019299060106277,
0.03456656262278557,
0.044773150235414505,
0.00036344517138786614,
0.03598101809620857,
-0.1595330536365509,
-0.021235447376966476,
-0.051352519541978836,
-0.008301956579089165,
0.010288516990840435,
0.0580606609582901,
-0.11612628400325775,
0.02509302645921707,
-0.052050333470106125,
-0.08162299543619156,
-0.05398773029446602,
0.024484962224960327,
0.07081303745508194,
0.012409410439431667,
0.12408903241157532,
-0.07551587373018265,
0.057553891092538834,
-0.25215163826942444,
-0.014184528030455112,
-0.0026608449406921864,
-0.06479552388191223,
-0.016240080818533897,
-0.025461584329605103,
0.09789565950632095,
-0.024750813841819763,
0.06820745766162872,
-0.031037937849760056,
0.03722488135099411,
0.01232222467660904,
-0.012003728188574314,
0.05870574340224266,
0.05924643576145172,
0.11239254474639893,
0.02492797002196312,
-0.0349850207567215,
0.0737123191356659,
0.002120021963492036,
0.08398796617984772,
0.06900323182344437,
0.18759098649024963,
0.10628112405538559,
0.005153362639248371,
0.07253521680831909,
0.05247585102915764,
-0.1589675098657608,
-0.1249840185046196,
0.10607343912124634,
-0.07473992556333542,
0.11138112097978592,
-0.011622525751590729,
0.14118444919586182,
0.07936964184045792,
-0.22447828948497772,
0.025516510009765625,
-0.035958342254161835,
-0.09393546730279922,
-0.08939167112112045,
-0.057728614658117294,
-0.09711547940969467,
-0.15797853469848633,
-0.006984265986829996,
-0.10401421040296555,
0.023366888985037804,
0.09713436663150787,
0.018652059137821198,
0.04712210223078728,
0.13126757740974426,
0.05523817613720894,
0.02575635351240635,
0.06071343272924423,
0.048758286982774734,
-0.01294486690312624,
-0.039116255939006805,
-0.09127988666296005,
0.013578257523477077,
-0.02076619304716587,
0.039425864815711975,
-0.06598915159702301,
-0.019364623352885246,
0.08388126641511917,
0.01955620013177395,
-0.10419563204050064,
0.0198897086083889,
-0.022905776277184486,
0.027124129235744476,
0.05342888459563255,
0.02961144410073757,
0.024396153166890144,
-0.013322182931005955,
0.19696274399757385,
-0.05466713383793831,
-0.04272716864943504,
-0.13355481624603271,
0.18091335892677307,
-0.03224979713559151,
-0.02424708567559719,
0.04062599316239357,
-0.06890890747308731,
-0.001271747867576778,
0.14223024249076843,
0.16064587235450745,
-0.05108471214771271,
-0.004048564471304417,
0.014219987206161022,
-0.011731650680303574,
-0.008696469478309155,
0.07927898317575455,
0.09703687578439713,
0.045298196375370026,
-0.07999381422996521,
-0.03602562099695206,
-0.020221687853336334,
-0.039295364171266556,
-0.050444453954696655,
0.04166987165808678,
0.0304498802870512,
0.02238553762435913,
-0.03103793039917946,
0.07407546788454056,
-0.019919641315937042,
-0.07373717427253723,
0.10392757505178452,
-0.21482568979263306,
-0.18568377196788788,
-0.0357753187417984,
0.048189591616392136,
0.004679008852690458,
0.05326056480407715,
-0.014568622224032879,
-0.019632428884506226,
0.12248456478118896,
-0.026526372879743576,
-0.07841501384973526,
-0.087386853992939,
0.041585177183151245,
-0.12676399946212769,
0.20245899260044098,
-0.03695693239569664,
0.038645271211862564,
0.11802670359611511,
0.024900775402784348,
-0.12055207788944244,
0.012764248996973038,
0.07170950621366501,
-0.07023070752620697,
0.03640924394130707,
0.14832600951194763,
-0.04392390325665474,
0.0622301883995533,
0.0661773756146431,
-0.07592814415693283,
-0.006216829642653465,
-0.02752022072672844,
-0.02037321962416172,
-0.044669315218925476,
0.004450658336281776,
-0.05418546870350838,
0.15931779146194458,
0.1801084727048874,
-0.049166809767484665,
-0.012655118480324745,
-0.012846298515796661,
0.027593443170189857,
0.058038145303726196,
0.12086952477693558,
-0.017596391960978508,
-0.2389727532863617,
0.03936301916837692,
0.004782852251082659,
0.019339213147759438,
-0.1813635677099228,
-0.11617901921272278,
0.012078640051186085,
-0.05288644880056381,
-0.08561686426401138,
0.12194889783859253,
0.018719296902418137,
0.03570094704627991,
-0.05115485191345215,
-0.0824679583311081,
-0.039433084428310394,
0.14552870392799377,
-0.1503789871931076,
-0.07555298507213593
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Capstone-project-bert-qa
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 1.4990
- Validation Loss: 1.1426
- Epoch: 0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'Adam', 'config': {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
### Training results
| Train Loss | Validation Loss | Epoch |
|:----------:|:---------------:|:-----:|
| 1.4990 | 1.1426 | 0 |
### Framework versions
- Transformers 4.28.0.dev0
- TensorFlow 2.12.0
- Datasets 2.11.0
- Tokenizers 0.13.2
| {"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "Capstone-project-bert-qa", "results": []}]} | question-answering | Shruthi-S/bert-qa | [
"transformers",
"tf",
"distilbert",
"question-answering",
"generated_from_keras_callback",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:42:34+00:00 | [] | [] | TAGS
#transformers #tf #distilbert #question-answering #generated_from_keras_callback #license-apache-2.0 #endpoints_compatible #region-us
| Capstone-project-bert-qa
========================
This model is a fine-tuned version of distilbert-base-cased on an unknown dataset.
It achieves the following results on the evaluation set:
* Train Loss: 1.4990
* Validation Loss: 1.1426
* Epoch: 0
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* optimizer: {'inner\_optimizer': {'class\_name': 'Adam', 'config': {'name': 'Adam', 'learning\_rate': 5e-05, 'decay': 0.0, 'beta\_1': 0.9, 'beta\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}, 'dynamic': True, 'initial\_scale': 32768.0, 'dynamic\_growth\_steps': 2000}
* training\_precision: mixed\_float16
### Training results
### Framework versions
* Transformers 4.28.0.dev0
* TensorFlow 2.12.0
* Datasets 2.11.0
* Tokenizers 0.13.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'inner\\_optimizer': {'class\\_name': 'Adam', 'config': {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}, 'dynamic': True, 'initial\\_scale': 32768.0, 'dynamic\\_growth\\_steps': 2000}\n* training\\_precision: mixed\\_float16",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0.dev0\n* TensorFlow 2.12.0\n* Datasets 2.11.0\n* Tokenizers 0.13.2"
] | [
"TAGS\n#transformers #tf #distilbert #question-answering #generated_from_keras_callback #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'inner\\_optimizer': {'class\\_name': 'Adam', 'config': {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}, 'dynamic': True, 'initial\\_scale': 32768.0, 'dynamic\\_growth\\_steps': 2000}\n* training\\_precision: mixed\\_float16",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.28.0.dev0\n* TensorFlow 2.12.0\n* Datasets 2.11.0\n* Tokenizers 0.13.2"
] | [
49,
166,
4,
36
] | [
"passage: TAGS\n#transformers #tf #distilbert #question-answering #generated_from_keras_callback #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* optimizer: {'inner\\_optimizer': {'class\\_name': 'Adam', 'config': {'name': 'Adam', 'learning\\_rate': 5e-05, 'decay': 0.0, 'beta\\_1': 0.9, 'beta\\_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}}, 'dynamic': True, 'initial\\_scale': 32768.0, 'dynamic\\_growth\\_steps': 2000}\n* training\\_precision: mixed\\_float16### Training results### Framework versions\n\n\n* Transformers 4.28.0.dev0\n* TensorFlow 2.12.0\n* Datasets 2.11.0\n* Tokenizers 0.13.2"
] | [
-0.09917629510164261,
0.051584452390670776,
-0.0031878219451755285,
0.060427505522966385,
0.1467018872499466,
0.02475801855325699,
0.12686856091022491,
0.12623858451843262,
-0.12309833616018295,
0.08454324305057526,
0.12415391206741333,
0.09796422719955444,
0.04076392948627472,
0.10634002089500427,
-0.09474216401576996,
-0.19917605817317963,
0.04219698905944824,
-0.008709746412932873,
-0.19759760797023773,
0.1007574275135994,
0.09659185260534286,
-0.0845642015337944,
0.08851532638072968,
0.030750306323170662,
-0.17569027841091156,
0.03751451149582863,
0.060486745089292526,
-0.053975172340869904,
0.10890012234449387,
0.09394854307174683,
0.10747462511062622,
0.0004896799800917506,
0.029765663668513298,
-0.18245014548301697,
0.017819905653595924,
0.11758026480674744,
0.014327215030789375,
0.0789838507771492,
0.03857726976275444,
-0.0071722338907420635,
0.12989728152751923,
-0.07224627584218979,
0.03299374133348465,
0.06806287914514542,
-0.12704575061798096,
-0.29759907722473145,
-0.14167743921279907,
0.04260683432221413,
0.09508756548166275,
0.06791150569915771,
0.003312251530587673,
0.14379805326461792,
-0.019784487783908844,
0.0972563698887825,
0.17619307339191437,
-0.3144257366657257,
-0.08475311845541,
0.020303962752223015,
0.041202694177627563,
0.022571276873350143,
-0.06359829008579254,
0.0247591994702816,
0.05045764893293381,
0.031751442700624466,
0.05734775587916374,
-0.019474327564239502,
-0.05624468997120857,
-0.01622810773551464,
-0.10560816526412964,
-0.04128145053982735,
0.15834102034568787,
0.0784778892993927,
-0.08233179152011871,
-0.03914080560207367,
-0.06623711436986923,
-0.15942195057868958,
-0.006651542615145445,
-0.0757831409573555,
0.028045162558555603,
-0.015263235196471214,
-0.08358320593833923,
-0.07683325558900833,
-0.08127942681312561,
-0.09221925586462021,
-0.03364754840731621,
0.20462630689144135,
0.0316774919629097,
0.04732828214764595,
-0.0480448342859745,
0.0864221528172493,
-0.020604681223630905,
-0.13063830137252808,
-0.0494975820183754,
0.0030391332693398,
-0.08141333609819412,
-0.034328021109104156,
-0.10107193142175674,
-0.047552913427352905,
0.04608593508601189,
0.16438870131969452,
-0.08863858878612518,
0.07598143815994263,
-0.022119838744401932,
0.013755857944488525,
-0.11210042983293533,
0.15918967127799988,
-0.03846372291445732,
0.0002073379437206313,
0.013125095516443253,
0.04519188404083252,
0.021603580564260483,
-0.0236599650233984,
-0.05434228479862213,
0.007195346523076296,
0.06714873015880585,
0.02198014222085476,
-0.02534056268632412,
0.06234486773610115,
-0.04499805346131325,
-0.026921026408672333,
0.0013342448510229588,
-0.08618676662445068,
0.018672870472073555,
0.006330023519694805,
-0.11163263022899628,
-0.004399693105369806,
0.050321899354457855,
0.010032566264271736,
-0.017637787386775017,
0.03117991052567959,
-0.08366779237985611,
-0.035588882863521576,
-0.0989319458603859,
-0.12322579324245453,
0.02403865195810795,
-0.06412020325660706,
-0.010343074798583984,
-0.07128393650054932,
-0.19525191187858582,
-0.018717925995588303,
0.06922593712806702,
-0.025314508005976677,
-0.0110953813418746,
-0.016838647425174713,
-0.14851197600364685,
0.030787300318479538,
-0.00896439142525196,
0.1226169615983963,
-0.047451648861169815,
0.06702128797769547,
0.06037549301981926,
0.041523247957229614,
-0.06375890970230103,
0.03781110420823097,
-0.0427948422729969,
0.05034462735056877,
-0.1538272500038147,
0.0867241844534874,
-0.08916870504617691,
0.028780773282051086,
-0.14680397510528564,
-0.08870036154985428,
0.03352416306734085,
0.01377131137996912,
0.11711888015270233,
0.11281871050596237,
-0.14478492736816406,
-0.07010789215564728,
0.11406881362199783,
-0.07425671815872192,
-0.14743591845035553,
0.09726162999868393,
-0.03335672244429588,
0.025391297414898872,
0.07335042953491211,
0.07507086545228958,
0.056057095527648926,
-0.09606999903917313,
0.009817827492952347,
-0.03989839553833008,
0.030079595744609833,
0.013780446723103523,
0.050396934151649475,
-0.02637399174273014,
-0.02496875822544098,
0.01400728803128004,
-0.08107075095176697,
0.027686579152941704,
-0.09082072973251343,
-0.07025455683469772,
-0.049314696341753006,
-0.07826963812112808,
0.04095655307173729,
0.030534671619534492,
0.06292072683572769,
-0.09509023278951645,
-0.13210535049438477,
0.09049153327941895,
0.0711778774857521,
-0.051104892045259476,
0.017555156722664833,
-0.08993528038263321,
0.0370279885828495,
-0.0034785419702529907,
0.017929261550307274,
-0.18590526282787323,
-0.12638108432292938,
0.004868455231189728,
0.0031015994027256966,
0.019096655771136284,
-0.008261655457317829,
0.0848899856209755,
0.032278891652822495,
-0.06513658165931702,
-0.010326972231268883,
-0.07599925249814987,
-0.006336526945233345,
-0.059110045433044434,
-0.22161124646663666,
-0.06834661215543747,
-0.02393326722085476,
0.12260619550943375,
-0.24709808826446533,
0.025199810042977333,
0.05441829562187195,
0.13037662208080292,
0.055559784173965454,
-0.031785763800144196,
-0.04130859673023224,
0.03936914727091789,
-0.0371718592941761,
-0.06966699659824371,
0.00933384895324707,
0.029037468135356903,
-0.12972983717918396,
-0.025158841162919998,
-0.11976325511932373,
0.14802846312522888,
0.11143459379673004,
-0.030287735164165497,
-0.11403077840805054,
0.03500207141041756,
-0.06265295296907425,
-0.03364359587430954,
-0.0027617798186838627,
0.013329057022929192,
0.12348753213882446,
0.03250806778669357,
0.13342152535915375,
-0.05824461579322815,
-0.04126869514584541,
0.027549374848604202,
-0.021296871826052666,
-0.0016788685461506248,
0.06760981678962708,
-0.011135530658066273,
-0.11847703158855438,
0.09832430630922318,
0.12814956903457642,
-0.11877041310071945,
0.12787698209285736,
-0.07152271270751953,
-0.07430782914161682,
-0.07393968105316162,
0.057310640811920166,
0.04801371321082115,
0.10832049697637558,
-0.07008209824562073,
0.011598240584135056,
0.015641963109374046,
0.023367030546069145,
-0.0002706138475332409,
-0.2036648541688919,
0.0064320252276957035,
0.021342435851693153,
-0.0656239315867424,
-0.005798399914056063,
0.025576822459697723,
0.00006767455488443375,
0.091469906270504,
0.03246038034558296,
-0.023185227066278458,
0.057446036487817764,
-0.011309275403618813,
-0.07485691457986832,
0.22428078949451447,
-0.12404663115739822,
-0.08026349544525146,
-0.13812309503555298,
-0.034544430673122406,
-0.10375009477138519,
0.0021161262411624193,
0.015009096823632717,
-0.09439878910779953,
-0.049650903791189194,
-0.03699256852269173,
0.032005246728658676,
-0.025622939690947533,
0.02075636200606823,
0.027035580947995186,
-0.016341879963874817,
0.1369098722934723,
-0.11987641453742981,
-0.0057502612471580505,
-0.015434030443429947,
-0.0831592008471489,
-0.01042459812015295,
0.04136113077402115,
0.06048334762454033,
0.112679123878479,
-0.007281205616891384,
0.028473135083913803,
-0.04154808074235916,
0.23731015622615814,
-0.07570084929466248,
-0.013974917121231556,
0.1576421707868576,
-0.015313769690692425,
0.0451301671564579,
0.0985785573720932,
0.051658786833286285,
-0.12068137526512146,
0.042255885899066925,
0.0878552496433258,
-0.021428650245070457,
-0.27305978536605835,
-0.004321349319070578,
-0.051351167261600494,
-0.07177920639514923,
0.03650572896003723,
0.02990833669900894,
0.1490897834300995,
0.04200967401266098,
-0.014536743983626366,
0.07722798734903336,
-0.0008068036404438317,
0.08334371447563171,
0.18250112235546112,
0.06275591999292374,
0.11025246977806091,
-0.039672404527664185,
0.004008201416581869,
0.04650094732642174,
0.0012178566539660096,
0.22462573647499084,
0.020060613751411438,
0.11409225314855576,
0.07894919812679291,
0.10982631891965866,
-0.03191390261054039,
0.02557370811700821,
0.03189103305339813,
-0.037044230848550797,
0.01098998449742794,
-0.0606275349855423,
-0.03637280687689781,
0.0490376241505146,
-0.020092666149139404,
0.08383893221616745,
-0.09991779178380966,
0.049684904515743256,
0.04036717116832733,
0.32964569330215454,
0.06433331221342087,
-0.3332582116127014,
-0.15845927596092224,
0.0006612727302126586,
-0.024838263168931007,
-0.05785296857357025,
-0.013725725933909416,
0.11222609132528305,
-0.08182726800441742,
0.07608715444803238,
-0.08722936362028122,
0.08668578416109085,
0.013645470142364502,
0.031419433653354645,
0.10836626589298248,
0.131795734167099,
0.007010460365563631,
0.012950467877089977,
-0.2690078318119049,
0.3004482388496399,
0.02979266084730625,
0.12879085540771484,
-0.02790915034711361,
0.05768153443932533,
0.056945983320474625,
0.03415456414222717,
0.0601213313639164,
-0.025686470791697502,
-0.07421635091304779,
-0.14673352241516113,
-0.007824770174920559,
0.024119136855006218,
0.1435142159461975,
-0.007119909860193729,
0.11900969594717026,
-0.04710846021771431,
0.007726570591330528,
0.08510930091142654,
-0.0023108627647161484,
-0.15241479873657227,
-0.04377232491970062,
0.025960180908441544,
0.015456785447895527,
0.01774103194475174,
-0.09902747720479965,
-0.08899260312318802,
-0.04010916128754616,
0.20750445127487183,
-0.11037149280309677,
-0.02915422059595585,
-0.1438736468553543,
0.11833630502223969,
0.11036546528339386,
-0.0629735141992569,
0.046711187809705734,
-0.009941734373569489,
0.09716726839542389,
0.058611296117305756,
-0.08952909708023071,
0.129431813955307,
-0.05964323505759239,
-0.2172393798828125,
-0.04575725644826889,
0.101156085729599,
0.02070574089884758,
0.030676141381263733,
-0.012277642264962196,
0.053566791117191315,
0.024087054654955864,
-0.10277958959341049,
0.07401566207408905,
-0.0028019598685204983,
-0.0003366200253367424,
0.05592335760593414,
0.010271701030433178,
0.010830584913492203,
-0.032393962144851685,
0.02037827856838703,
0.10240828990936279,
0.28528741002082825,
-0.08771715313196182,
-0.02943316660821438,
0.01401553675532341,
-0.0572780966758728,
-0.16247674822807312,
0.10772339999675751,
0.13676784932613373,
0.008786510676145554,
-0.021075773984193802,
-0.19150233268737793,
0.09389793127775192,
0.10638296604156494,
-0.03554452955722809,
0.11326534301042557,
-0.27579155564308167,
-0.14820705354213715,
0.07297394424676895,
0.13087676465511322,
0.08916907012462616,
-0.17606903612613678,
-0.0635351836681366,
-0.04361965134739876,
-0.11925072968006134,
0.12732505798339844,
-0.11184089630842209,
0.08692900091409683,
0.020792318508028984,
0.05100109800696373,
-0.0028695722576230764,
-0.026511577889323235,
0.15126806497573853,
-0.03476705029606819,
0.10775750130414963,
-0.021916629746556282,
0.031894486397504807,
0.14303654432296753,
-0.07873369008302689,
0.012202415615320206,
-0.03891327232122421,
0.04837557300925255,
-0.09453337639570236,
-0.002005521208047867,
-0.09080640971660614,
0.0814242735505104,
-0.05284999683499336,
-0.03072831965982914,
-0.019907914102077484,
0.03780393674969673,
0.03787795826792717,
-0.030421316623687744,
0.16302038729190826,
0.0018377074738964438,
0.200697124004364,
0.1606704592704773,
0.06420169025659561,
0.0012305316049605608,
-0.045794252306222916,
0.04726068302989006,
-0.022197604179382324,
0.08290118724107742,
-0.19518804550170898,
0.033010732382535934,
0.1275157630443573,
0.036923930048942566,
0.1370861530303955,
0.06850830465555191,
-0.05732479318976402,
0.045423585921525955,
0.0633675828576088,
-0.1199679747223854,
-0.17359332740306854,
-0.005117789376527071,
-0.039889145642519,
-0.11925557255744934,
0.09316351264715195,
0.15028688311576843,
-0.0538470484316349,
0.03203350678086281,
0.01744461990892887,
-0.00013296917313709855,
-0.08241376280784607,
0.15883801877498627,
0.03457954525947571,
0.061378348618745804,
-0.09108829498291016,
0.11917979270219803,
0.025866160169243813,
-0.11773990094661713,
0.06681250780820847,
0.022030852735042572,
-0.04819992557168007,
0.00034726140438579023,
0.012689807452261448,
0.07105088979005814,
-0.037966568022966385,
-0.05921359732747078,
-0.13041076064109802,
-0.14820599555969238,
0.06744224578142166,
0.21798768639564514,
0.054617322981357574,
0.0458197295665741,
-0.05078329145908356,
0.04347790405154228,
-0.09192278236150742,
0.07527147233486176,
0.05702691152691841,
0.07574388384819031,
-0.17971941828727722,
0.15239578485488892,
0.0010692791547626257,
0.015316790901124477,
-0.012507067061960697,
-0.009860601276159286,
-0.12783579528331757,
-0.003892873879522085,
-0.2129579335451126,
-0.031492266803979874,
-0.016609644517302513,
-0.00894651934504509,
0.019034745171666145,
-0.07749627530574799,
-0.10916592925786972,
0.06124727800488472,
-0.11754671484231949,
-0.0557997040450573,
0.05067116394639015,
0.05352836474776268,
-0.1551019698381424,
-0.03642191365361214,
0.02668502740561962,
-0.10757268220186234,
0.062389686703681946,
0.0626724362373352,
0.0149111682549119,
0.061377860605716705,
-0.06772585958242416,
-0.00381950824521482,
0.054684147238731384,
-0.003760024905204773,
0.07110834121704102,
-0.12250134348869324,
0.0031502367928624153,
-0.02644682489335537,
0.05938720703125,
0.002035818761214614,
0.08519212901592255,
-0.09096601605415344,
-0.07617586851119995,
-0.020775463432073593,
-0.00515880947932601,
-0.06352360546588898,
0.042488761246204376,
0.1297864466905594,
0.03825748711824417,
0.18594108521938324,
-0.08504866808652878,
-0.004390069283545017,
-0.20669525861740112,
0.003888108767569065,
-0.00778186833485961,
-0.10095605999231339,
-0.12332537025213242,
-0.017350319772958755,
0.09388621896505356,
-0.09625853598117828,
0.07093284279108047,
-0.08298982679843903,
0.12943167984485626,
0.05394074693322182,
-0.08242649585008621,
-0.04202841967344284,
0.054644275456666946,
0.2168504297733307,
0.05855146050453186,
-0.0036374700721353292,
0.06623680889606476,
0.009954378008842468,
0.06868819892406464,
0.06472362577915192,
0.24253179132938385,
0.1195625513792038,
-0.044753264635801315,
0.14340579509735107,
0.08613907545804977,
-0.06997733563184738,
-0.10498914122581482,
0.07015404105186462,
-0.05158219486474991,
0.1615247279405594,
-0.033189766108989716,
0.09250447154045105,
0.08953902125358582,
-0.17723782360553741,
0.030652910470962524,
-0.07086904346942902,
-0.07298172265291214,
-0.12478184700012207,
-0.03203548118472099,
-0.07317033410072327,
-0.1777561902999878,
0.010668030008673668,
-0.13220086693763733,
0.050136253237724304,
0.051912058144807816,
0.03567370027303696,
-0.0035799993202090263,
0.15478894114494324,
-0.037046704441308975,
-0.0009215436293743551,
0.0931544080376625,
-0.017927274107933044,
-0.016032906249165535,
-0.03392890840768814,
-0.09037219732999802,
0.049669038504362106,
-0.009610435925424099,
0.04756902903318405,
-0.021774418652057648,
-0.05335162207484245,
0.05649426206946373,
-0.0322018563747406,
-0.09549068659543991,
0.04439565911889076,
0.06672276556491852,
0.03105340152978897,
0.029587218537926674,
0.031297266483306885,
0.001243907492607832,
-0.019658707082271576,
0.20829038321971893,
-0.12569162249565125,
-0.032992567867040634,
-0.18551455438137054,
0.29443755745887756,
0.01205355953425169,
0.010180188342928886,
0.027347376570105553,
-0.08147282153367996,
-0.04891211912035942,
0.13564720749855042,
0.1312350034713745,
-0.051183316856622696,
-0.02847585640847683,
0.04339582473039627,
-0.01714702509343624,
-0.08430881053209305,
0.12498278170824051,
0.08097289502620697,
0.003751328680664301,
-0.04185224696993828,
-0.05548405274748802,
-0.009285437874495983,
-0.04532400891184807,
-0.0074315667152404785,
0.07335284352302551,
0.016853995621204376,
-0.0253701563924551,
-0.0020072341430932283,
0.0865957960486412,
-0.05447790399193764,
-0.15801110863685608,
0.07569970935583115,
-0.17249657213687897,
-0.17292776703834534,
-0.03821104019880295,
-0.0008768921834416687,
0.012139858677983284,
0.07425455003976822,
-0.011193503625690937,
-0.026249459013342857,
0.1439565271139145,
-0.03361845761537552,
-0.028621060773730278,
-0.13569936156272888,
0.11837948113679886,
-0.09253343194723129,
0.16929785907268524,
-0.03247423470020294,
0.030288908630609512,
0.13347932696342468,
0.03018347918987274,
-0.10526370257139206,
0.013654666021466255,
0.07704923301935196,
-0.13997510075569153,
-0.012193365022540092,
0.11240993440151215,
-0.027289628982543945,
0.115074023604393,
0.05166857689619064,
-0.13014428317546844,
0.009728468954563141,
-0.0650564581155777,
-0.07048236578702927,
-0.07408730685710907,
-0.03718646615743637,
-0.07614528387784958,
0.12139086425304413,
0.2695184051990509,
-0.04207060486078262,
0.02723422460258007,
-0.05904516577720642,
0.027621351182460785,
0.09338054805994034,
0.07616549730300903,
-0.05379771068692207,
-0.24815227091312408,
0.06952716410160065,
0.0748450830578804,
-0.0025923647917807102,
-0.18600201606750488,
-0.08820142596960068,
0.0508451871573925,
-0.025278190150856972,
-0.025551699101924896,
0.10331494361162186,
0.1021202802658081,
0.05839122459292412,
-0.04461285471916199,
-0.1408739686012268,
-0.06815402209758759,
0.1790277361869812,
-0.1270599067211151,
-0.0745483934879303
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| {"library_name": "peft", "base_model": "meta-llama/Llama-2-13b-chat-hf"} | null | bmehrba/Llama-2-13b-chat-hf-fine-tuned-adapters_ChatGPT_t1_Llama13b_Seed103 | [
"peft",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-13b-chat-hf",
"region:us"
] | 2024-02-13T18:42:42+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #arxiv-1910.09700 #base_model-meta-llama/Llama-2-13b-chat-hf #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Framework versions
- PEFT 0.7.0.dev0
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] | [
"TAGS\n#peft #arxiv-1910.09700 #base_model-meta-llama/Llama-2-13b-chat-hf #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: True\n- bnb_4bit_compute_dtype: bfloat16",
"### Framework versions\n\n\n- PEFT 0.7.0.dev0"
] | [
38,
6,
3,
45,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
154,
14,
154,
14
] | [
"passage: TAGS\n#peft #arxiv-1910.09700 #base_model-meta-llama/Llama-2-13b-chat-hf #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.08950838446617126,
0.17622625827789307,
-0.003707088530063629,
0.032576385885477066,
0.08380123972892761,
0.019701125100255013,
0.05203324928879738,
0.11702486872673035,
-0.05330678075551987,
0.09448089450597763,
0.048484884202480316,
0.10060896724462509,
0.09846198558807373,
0.18868719041347504,
-0.0011855853954330087,
-0.2060726284980774,
0.015578063204884529,
-0.10931064933538437,
0.005876870360225439,
0.12358442693948746,
0.15569306910037994,
-0.09741293638944626,
0.08712729811668396,
-0.01551457867026329,
-0.010067826136946678,
-0.025396287441253662,
-0.07361544668674469,
-0.05290524289011955,
0.04710441827774048,
0.07490185648202896,
0.047730859369039536,
0.003742797765880823,
0.08045824617147446,
-0.2711505889892578,
0.01725192740559578,
0.03912210091948509,
-0.010164672508835793,
0.08416316658258438,
0.08157632499933243,
-0.061213672161102295,
0.10719792544841766,
-0.04486960545182228,
0.12389195710420609,
0.06922121345996857,
-0.06562015414237976,
-0.1487942785024643,
-0.0805540531873703,
0.06815578043460846,
0.16221418976783752,
0.07476766407489777,
-0.04304589703679085,
0.16949640214443207,
-0.13273242115974426,
0.007597264833748341,
0.046794891357421875,
-0.035554688423871994,
-0.08115267008543015,
0.060742560774087906,
0.09725039452314377,
0.07205293327569962,
-0.13358467817306519,
-0.029269445687532425,
0.031876083463430405,
0.026171350851655006,
0.07599646598100662,
0.02472980134189129,
0.14272165298461914,
0.05110684782266617,
-0.13597595691680908,
-0.032095685601234436,
0.1667022556066513,
0.05657454952597618,
-0.05146843194961548,
-0.20977118611335754,
0.010412882082164288,
-0.06257046014070511,
-0.019110077992081642,
-0.0394989438354969,
0.04172099754214287,
-0.026554755866527557,
0.06876977533102036,
0.0052980040200054646,
-0.0955195426940918,
-0.042122215032577515,
0.08467143774032593,
0.03501870483160019,
0.025577984750270844,
-0.03146751970052719,
-0.005369491875171661,
0.13237224519252777,
0.05266503989696503,
-0.11971335113048553,
-0.06415551900863647,
-0.06459555774927139,
-0.05922604724764824,
-0.05847278982400894,
0.025247467681765556,
0.031127413734793663,
0.0707581415772438,
0.20909400284290314,
0.02113768272101879,
0.04728280380368233,
0.06350736320018768,
0.01767423190176487,
0.07364732772111893,
0.08452971279621124,
-0.08042320609092712,
-0.13752959668636322,
-0.026864496991038322,
0.09401044249534607,
-0.004670456051826477,
-0.015377101488411427,
-0.04042273387312889,
0.04590466991066933,
0.03928038105368614,
0.09635873883962631,
0.08342839032411575,
-0.006302335299551487,
-0.08958663791418076,
-0.05172271281480789,
0.21430253982543945,
-0.1486416757106781,
0.022579502314329147,
0.00532573601230979,
-0.046220771968364716,
-0.050389427691698074,
0.013791119679808617,
0.021902183070778847,
-0.01725425384938717,
0.09078584611415863,
-0.07412354648113251,
-0.030390940606594086,
-0.11564502120018005,
-0.00758272223174572,
0.035115793347358704,
0.05083532631397247,
-0.0026497903745621443,
-0.019051065668463707,
-0.06038069352507591,
-0.07015779614448547,
0.08611448109149933,
-0.08802679926156998,
-0.06949871778488159,
-0.022058209404349327,
-0.08482711762189865,
0.008333494886755943,
0.004399609286338091,
0.13455772399902344,
-0.032166268676519394,
0.04013873636722565,
-0.009890900924801826,
0.05181796848773956,
0.06774567812681198,
0.03500198572874069,
-0.053186893463134766,
0.056685443967580795,
-0.19885419309139252,
0.10022944211959839,
-0.09629994630813599,
0.028232630342245102,
-0.15368616580963135,
-0.016224225983023643,
0.024259883910417557,
0.00603050272911787,
0.023533180356025696,
0.13508757948875427,
-0.2269131988286972,
-0.009413540363311768,
0.1492016613483429,
-0.08191759884357452,
-0.11286741495132446,
0.05882270261645317,
-0.06703686714172363,
0.13632111251354218,
0.024114999920129776,
-0.03846221789717674,
0.05126623064279556,
-0.1477012187242508,
-0.034279413521289825,
-0.027603546157479286,
-0.011836200952529907,
0.11866577714681625,
0.09630073606967926,
-0.0608704648911953,
0.048884205520153046,
0.020479585975408554,
-0.032701265066862106,
-0.042141854763031006,
-0.050704531371593475,
-0.12829554080963135,
0.0009587573586031795,
-0.07328714430332184,
0.04790837690234184,
-0.02088468335568905,
-0.06889110058546066,
-0.018932033330202103,
-0.16518932580947876,
0.002006813418120146,
0.09172286838293076,
0.02033841609954834,
-0.03539799153804779,
-0.10069174319505692,
0.0036235731095075607,
-0.011536587961018085,
-0.035604726523160934,
-0.13578550517559052,
-0.02210777997970581,
0.019318837672472,
-0.13882264494895935,
0.030753053724765778,
-0.07345959544181824,
0.051180385053157806,
0.016524922102689743,
-0.05861951783299446,
-0.010977345518767834,
-0.023012345656752586,
0.024373451247811317,
-0.0456857830286026,
-0.24518829584121704,
-0.01426833588629961,
-0.032443173229694366,
0.1618536114692688,
-0.23377619683742523,
0.038241252303123474,
0.06515999883413315,
0.11937034130096436,
-0.02269211784005165,
-0.050194818526506424,
0.02402755618095398,
-0.0810660794377327,
-0.03478178381919861,
-0.05240238085389137,
-0.0170640479773283,
-0.02249637059867382,
-0.06970936059951782,
0.013335862196981907,
-0.10944215208292007,
-0.04154296964406967,
0.10713886469602585,
0.08292265236377716,
-0.15724287927150726,
-0.043278347700834274,
-0.03408950939774513,
-0.08576270937919617,
-0.08529800176620483,
-0.0566803403198719,
0.13487502932548523,
0.05090935528278351,
0.02855822816491127,
-0.08846847712993622,
-0.07940267771482468,
0.00988192018121481,
-0.03207101300358772,
-0.028083765879273415,
0.10094649344682693,
0.07611845433712006,
-0.10813652724027634,
0.08834784477949142,
0.07578150928020477,
0.012136061675846577,
0.11384404450654984,
-0.011400082148611546,
-0.11351825296878815,
-0.04137531667947769,
0.03633233532309532,
0.002555434126406908,
0.1695048063993454,
-0.09464383870363235,
0.06803114712238312,
0.03927377983927727,
-0.022211823612451553,
0.05476415529847145,
-0.10076725482940674,
0.01427049096673727,
0.006726768799126148,
-0.012228100560605526,
-0.011376895941793919,
-0.036163002252578735,
0.020614514127373695,
0.07891662418842316,
0.03816615790128708,
0.036182720214128494,
0.03572281077504158,
-0.04122483730316162,
-0.1245279312133789,
0.19345727562904358,
-0.10554436594247818,
-0.2273423671722412,
-0.1516016721725464,
0.05401213839650154,
0.03572985157370567,
-0.030572842806577682,
0.008941974490880966,
-0.05140937119722366,
-0.0966159775853157,
-0.08070044219493866,
0.005514310672879219,
0.03883929178118706,
-0.07613059133291245,
-0.07262902706861496,
0.05921752378344536,
0.05427297204732895,
-0.13442036509513855,
0.0406947135925293,
0.054035235196352005,
-0.04148136079311371,
0.008404599502682686,
0.06944910436868668,
0.07862463593482971,
0.15086530148983002,
-0.020428497344255447,
-0.020412612706422806,
0.05437345430254936,
0.2643863558769226,
-0.15086820721626282,
0.09670513868331909,
0.09954504668712616,
-0.06504277884960175,
0.07992210984230042,
0.18344183266162872,
0.033216435462236404,
-0.10660552978515625,
0.045308101922273636,
0.031075740233063698,
-0.0188649483025074,
-0.2811678647994995,
-0.06357815116643906,
0.0033266504760831594,
-0.10220301896333694,
0.062428005039691925,
0.0793466567993164,
0.09731262922286987,
0.04918764531612396,
-0.06440604478120804,
-0.07534892857074738,
0.02199655771255493,
0.07507231831550598,
-0.04625728353857994,
0.0006049389485269785,
0.08203481882810593,
-0.0200007613748312,
0.008962401188910007,
0.11015255749225616,
0.013906295411288738,
0.1873634159564972,
0.04269689694046974,
0.11463924497365952,
0.10168035328388214,
0.10507753491401672,
0.000024342234610230662,
0.015555954538285732,
0.02079109288752079,
0.012282595038414001,
-0.002983907237648964,
-0.08613301068544388,
0.02277722768485546,
0.12184786051511765,
0.06945348531007767,
0.04476168751716614,
0.024970298632979393,
-0.050061535090208054,
0.05980529636144638,
0.1768452227115631,
-0.01209972519427538,
-0.1998264193534851,
-0.062326882034540176,
0.06751304864883423,
-0.082801952958107,
-0.11640139669179916,
-0.02261449582874775,
0.050769247114658356,
-0.17440687119960785,
0.015001747757196426,
-0.04254560545086861,
0.09033802151679993,
-0.09127394109964371,
-0.037229955196380615,
0.05321357026696205,
0.07545126974582672,
-0.023492055013775826,
0.09048163145780563,
-0.17921186983585358,
0.13352392613887787,
0.01737614907324314,
0.06370522826910019,
-0.09815072268247604,
0.10393797606229782,
0.015243546105921268,
-0.0071698566898703575,
0.14627893269062042,
0.008973979391157627,
-0.019879506900906563,
-0.058314017951488495,
-0.10938628017902374,
-0.0015536772552877665,
0.08220188319683075,
-0.11720426380634308,
0.06481732428073883,
0.00044200546108186245,
-0.019408708438277245,
0.010529479943215847,
-0.0697939544916153,
-0.14233455061912537,
-0.1691078543663025,
0.06332679092884064,
-0.12960782647132874,
0.05657918378710747,
-0.10196143388748169,
-0.07344398647546768,
-0.006228356156498194,
0.1857890486717224,
-0.19167372584342957,
-0.0651763305068016,
-0.13295814394950867,
-0.08307469636201859,
0.17686748504638672,
-0.038926977664232254,
0.07132517546415329,
0.017756011337041855,
0.17197521030902863,
0.030676020309329033,
0.013996497727930546,
0.10165295004844666,
-0.0863775908946991,
-0.18250107765197754,
-0.06872538477182388,
0.145328551530838,
0.15727265179157257,
0.04947395995259285,
-0.01222315151244402,
0.0006382534629665315,
-0.05825969576835632,
-0.12492486834526062,
0.00552456034347415,
0.14077237248420715,
0.09738009423017502,
0.015011516399681568,
-0.02072962000966072,
-0.12298290431499481,
-0.06933344155550003,
-0.07234511524438858,
0.010791660286486149,
0.1811780333518982,
-0.06657543778419495,
0.1483541578054428,
0.12124106287956238,
-0.0507206916809082,
-0.18955619633197784,
0.04781363531947136,
0.0678601861000061,
0.021055543795228004,
0.06329847872257233,
-0.1708568036556244,
0.10241113603115082,
0.03779063746333122,
-0.056044332683086395,
0.12532320618629456,
-0.13762390613555908,
-0.15448996424674988,
0.08908607810735703,
0.059379611164331436,
-0.23717626929283142,
-0.10756765305995941,
-0.09208329766988754,
-0.04467558488249779,
-0.11974717676639557,
0.07756773382425308,
-0.008080631494522095,
0.01312070433050394,
0.038425788283348083,
0.04747161641716957,
0.010422809049487114,
-0.04883774369955063,
0.2077513337135315,
0.00663892924785614,
0.03319171071052551,
-0.04891526326537132,
-0.10318257659673691,
0.04049978777766228,
-0.04806138575077057,
0.09715691953897476,
-0.014642413705587387,
0.021955221891403198,
-0.1253223717212677,
-0.0439610481262207,
-0.06654173135757446,
0.030696231871843338,
-0.09619533270597458,
-0.09483709931373596,
-0.05548068508505821,
0.10141977667808533,
0.07960876822471619,
-0.03827962279319763,
-0.018101584166288376,
-0.08076406270265579,
0.028281690552830696,
0.192597895860672,
0.20835207402706146,
0.049149978905916214,
-0.06995424628257751,
0.007349140010774136,
-0.012700160034000874,
0.04521884396672249,
-0.2468501627445221,
0.056316666305065155,
0.04637942090630531,
0.019014067947864532,
0.11265500634908676,
-0.035475291311740875,
-0.16250301897525787,
-0.05557123199105263,
0.07098683714866638,
-0.039137084037065506,
-0.15694621205329895,
-0.024994002655148506,
0.05066932737827301,
-0.20187702775001526,
-0.029669208452105522,
0.010474429465830326,
-0.02148980274796486,
-0.04393318295478821,
0.011044103652238846,
0.08090483397245407,
-0.018578581511974335,
0.1367349922657013,
0.07980240881443024,
0.09522033482789993,
-0.10692083835601807,
0.07168128341436386,
0.06122429668903351,
-0.051465462893247604,
0.021644625812768936,
0.06818753480911255,
-0.04446205869317055,
-0.032580625265836716,
0.07838873565196991,
0.058368146419525146,
0.04023381322622299,
-0.0497741736471653,
-0.009552556090056896,
-0.05499427020549774,
0.049196142703294754,
0.10447074472904205,
0.05076836422085762,
0.0006935194251127541,
0.047793444246053696,
0.018387768417596817,
-0.08049451559782028,
0.10598240047693253,
0.05339374020695686,
0.02360537275671959,
-0.0398079976439476,
-0.03602069616317749,
0.018247995525598526,
-0.010786417871713638,
-0.0149832833558321,
-0.016455529257655144,
-0.07099823653697968,
-0.013593231327831745,
-0.13733075559139252,
0.04016523063182831,
-0.08189219981431961,
0.01841694675385952,
0.022008292376995087,
-0.05440347641706467,
-0.007398437242954969,
0.015957478433847427,
-0.07759089022874832,
-0.04222242161631584,
-0.0045568388886749744,
0.12033451348543167,
-0.11743347346782684,
0.041315708309412,
0.0889706164598465,
-0.10073781758546829,
0.08179357647895813,
0.005519764963537455,
0.006593905854970217,
0.027770070359110832,
-0.18307223916053772,
0.07270024716854095,
-0.02148648537695408,
0.003687589429318905,
0.03217103332281113,
-0.22772879898548126,
-0.010953521355986595,
-0.03648538142442703,
-0.016809485852718353,
0.0019160229712724686,
-0.03937701880931854,
-0.13335061073303223,
0.07287079840898514,
-0.01058956515043974,
-0.08660455048084259,
-0.032185930758714676,
0.03226194903254509,
0.1112515926361084,
-0.03534836322069168,
0.15059389173984528,
-0.005941883195191622,
0.05801843851804733,
-0.17130136489868164,
-0.011426819488406181,
-0.019129110500216484,
0.03652174770832062,
-0.018265437334775925,
-0.014729461632668972,
0.053084973245859146,
-0.03412574157118797,
0.2234855443239212,
-0.03480256348848343,
0.06502514332532883,
0.05183198302984238,
0.02280556410551071,
-0.006614799611270428,
0.08636770397424698,
0.06560425460338593,
-0.01096076425164938,
0.02718065120279789,
0.028059065341949463,
-0.012954981066286564,
-0.037562232464551926,
-0.1630524843931198,
0.05572279915213585,
0.1581650972366333,
0.04094236344099045,
0.011616811156272888,
0.06928509473800659,
-0.10752071440219879,
-0.07898375391960144,
0.1387312412261963,
-0.01259393710643053,
-0.032576363533735275,
-0.07013807445764542,
0.13943122327327728,
0.124080128967762,
-0.19758351147174835,
0.07208021730184555,
-0.0731193795800209,
-0.07801702618598938,
-0.10079838335514069,
-0.14738084375858307,
-0.061444323509931564,
-0.052179500460624695,
-0.011450962163507938,
-0.06768535077571869,
0.05396997556090355,
0.10480605065822601,
0.0069710006937384605,
-0.026146549731492996,
0.10475686937570572,
0.0007574855699203908,
-0.027480410411953926,
0.0275881364941597,
0.06416697055101395,
0.01868068240582943,
-0.10241235792636871,
0.016462087631225586,
0.0009010558133013546,
0.028261849656701088,
0.058421481400728226,
0.0037333546206355095,
-0.035359520465135574,
-0.012541528791189194,
-0.022329136729240417,
-0.11025683581829071,
0.038418930023908615,
-0.031967371702194214,
-0.03549599647521973,
0.11972174793481827,
0.021107889711856842,
0.0024782961700111628,
-0.022964047268033028,
0.22632580995559692,
-0.07606904208660126,
-0.0824858620762825,
-0.1684485524892807,
0.048732075840234756,
-0.06246444582939148,
0.03944636881351471,
0.04816613346338272,
-0.1110905185341835,
0.02492443658411503,
0.13681943714618683,
0.13383808732032776,
-0.017702074721455574,
0.0072706313803792,
0.041554342955350876,
-0.001966990763321519,
-0.051138825714588165,
0.022816691547632217,
0.04751669988036156,
0.09492984414100647,
-0.05958498641848564,
0.09289880096912384,
-0.006714127957820892,
-0.08313115686178207,
0.011414550244808197,
0.11385775357484818,
-0.004354037344455719,
0.008586743846535683,
-0.06612556427717209,
0.14033369719982147,
-0.05520116165280342,
-0.2502851188182831,
0.03959165886044502,
-0.0734434500336647,
-0.16861815750598907,
-0.03511347249150276,
0.018955450505018234,
-0.019131824374198914,
0.017461534589529037,
0.07813186943531036,
-0.05068197101354599,
0.17512299120426178,
0.04293905943632126,
-0.08064883947372437,
-0.06616055220365524,
0.07387921214103699,
-0.11062787473201752,
0.28079262375831604,
0.012751048430800438,
0.06857820600271225,
0.10455191880464554,
-0.016430502757430077,
-0.11872978508472443,
0.042664192616939545,
0.10075171291828156,
-0.07164205610752106,
0.08039859682321548,
0.18360178172588348,
0.0013276869431138039,
0.15462037920951843,
0.06878916919231415,
-0.0453730933368206,
0.03654608130455017,
-0.12163300812244415,
-0.05294680967926979,
-0.10768717527389526,
0.08729486167430878,
-0.07798956334590912,
0.15596513450145721,
0.13275524973869324,
-0.07110930234193802,
-0.006204865872859955,
-0.025767024606466293,
0.08593760430812836,
-0.009336618706583977,
0.1176052987575531,
0.00486786337569356,
-0.20527753233909607,
0.022964732721447945,
0.006658138707280159,
0.10234756767749786,
-0.21353045105934143,
-0.06055140495300293,
0.06063069403171539,
-0.027994666248559952,
-0.050338197499513626,
0.11621229350566864,
0.05960828810930252,
0.04527933895587921,
-0.034697841852903366,
-0.03217756003141403,
-0.02518811635673046,
0.13280846178531647,
-0.11107352375984192,
-0.014744595624506474
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Goodreads_Books_Reviews_small1_50
This model is a fine-tuned version of [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8363
- F1: 0.6040
- Accuracy: 0.6482
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|
| 0.8845 | 1.0 | 6329 | 0.8679 | 0.5733 | 0.629 |
| 0.8357 | 2.0 | 12658 | 0.8420 | 0.5918 | 0.6398 |
| 0.8054 | 3.0 | 18987 | 0.8365 | 0.6037 | 0.6459 |
| 0.7764 | 4.0 | 25316 | 0.8363 | 0.6040 | 0.6482 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1", "accuracy"], "model-index": [{"name": "Goodreads_Books_Reviews_small1_50", "results": []}]} | text-classification | lilouuch/Goodreads_Books_Reviews_small1_50 | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T18:43:00+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
| Goodreads\_Books\_Reviews\_small1\_50
=====================================
This model is a fine-tuned version of prajjwal1/bert-small on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.8363
* F1: 0.6040
* Accuracy: 0.6482
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 128
* eval\_batch\_size: 128
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.20.1
* Pytorch 1.11.0
* Datasets 2.1.0
* Tokenizers 0.12.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.20.1\n* Pytorch 1.11.0\n* Datasets 2.1.0\n* Tokenizers 0.12.1"
] | [
"TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.20.1\n* Pytorch 1.11.0\n* Datasets 2.1.0\n* Tokenizers 0.12.1"
] | [
48,
116,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 128\n* eval\\_batch\\_size: 128\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.20.1\n* Pytorch 1.11.0\n* Datasets 2.1.0\n* Tokenizers 0.12.1"
] | [
-0.09053042531013489,
0.0522126704454422,
-0.0018318939255550504,
0.12090862542390823,
0.19054275751113892,
0.033407147973775864,
0.10981044918298721,
0.12343045324087143,
-0.09937118738889694,
0.010982552543282509,
0.12215083837509155,
0.17683206498622894,
0.007567660883069038,
0.12108592689037323,
-0.057538531720638275,
-0.28655117750167847,
-0.01840611733496189,
0.019685963168740273,
-0.06804961711168289,
0.13506940007209778,
0.08921131491661072,
-0.144878089427948,
0.08922982960939407,
-0.0013956583570688963,
-0.20766644179821014,
0.01552634872496128,
0.013609184883534908,
-0.05491426959633827,
0.15810900926589966,
0.00899993721395731,
0.1251896619796753,
0.021695341914892197,
0.11493124812841415,
-0.1999494880437851,
0.007553660776466131,
0.04592384025454521,
0.01470879651606083,
0.07716356962919235,
0.04665357619524002,
-0.013643145561218262,
0.13125839829444885,
-0.09674284607172012,
0.07424406707286835,
0.017757605761289597,
-0.13524867594242096,
-0.22460030019283295,
-0.08007116615772247,
0.008886624127626419,
0.07383596897125244,
0.0929202288389206,
-0.006518632173538208,
0.1359216272830963,
-0.1160917729139328,
0.1013939157128334,
0.24836422502994537,
-0.2822052836418152,
-0.06800825893878937,
0.03165852651000023,
0.0008048588060773909,
0.07383797317743301,
-0.1203862652182579,
-0.012763407081365585,
0.0422656424343586,
0.047071777284145355,
0.1350570172071457,
-0.03391185775399208,
-0.10369882732629776,
0.026355309411883354,
-0.1383758783340454,
-0.01579451747238636,
0.07710173726081848,
0.027063444256782532,
-0.03851892426609993,
-0.03685756027698517,
-0.04799346998333931,
-0.17609383165836334,
-0.047895003110170364,
-0.021187102422118187,
0.055403776466846466,
-0.052520886063575745,
-0.08671709895133972,
0.01394527405500412,
-0.08829960227012634,
-0.07586771994829178,
-0.04969530925154686,
0.1611505001783371,
0.036245957016944885,
0.0027256340254098177,
-0.013301687315106392,
0.11939233541488647,
0.0030330526642501354,
-0.13580262660980225,
0.013321740552783012,
0.028445471078157425,
-0.02751135267317295,
-0.0657636746764183,
-0.06225927174091339,
-0.0195572879165411,
0.002437626477330923,
0.11955322325229645,
-0.055316824465990067,
0.06646059453487396,
0.03425924852490425,
0.020648162811994553,
-0.10250953584909439,
0.19346143305301666,
-0.01843259297311306,
-0.031781673431396484,
-0.015021591447293758,
0.04862695187330246,
-0.012575618922710419,
-0.020790133625268936,
-0.12175849825143814,
0.0069394404999911785,
0.09749256074428558,
0.019290506839752197,
-0.09684272110462189,
0.07730116695165634,
-0.041714463382959366,
-0.01584716886281967,
0.0007569156587123871,
-0.09956081211566925,
0.05447956919670105,
0.002191663719713688,
-0.09472260624170303,
-0.048818569630384445,
0.012672177515923977,
0.023746144026517868,
-0.008026313968002796,
0.1644769161939621,
-0.08288615196943283,
0.04983094707131386,
-0.10323603451251984,
-0.12144127488136292,
0.00011807843839051202,
-0.08214552700519562,
0.025829780846834183,
-0.0932583436369896,
-0.16095390915870667,
-0.011856351979076862,
0.0636904388666153,
-0.04480566456913948,
-0.03566565364599228,
-0.06419344246387482,
-0.07256394624710083,
0.01674686372280121,
-0.024828292429447174,
0.1636407971382141,
-0.0699537917971611,
0.10918615013360977,
0.037982091307640076,
0.0682198703289032,
-0.039652019739151,
0.055347442626953125,
-0.09586494415998459,
0.0020185457542538643,
-0.21349410712718964,
0.05616816505789757,
-0.055893171578645706,
0.06576936691999435,
-0.07739030569791794,
-0.12074365466833115,
0.0330699160695076,
0.003977532498538494,
0.0798315554857254,
0.10595155507326126,
-0.17412181198596954,
-0.07853704690933228,
0.1464439332485199,
-0.06071968004107475,
-0.10319717228412628,
0.10711025446653366,
-0.07553520053625107,
0.0500556081533432,
0.07917043566703796,
0.17901325225830078,
0.06579244881868362,
-0.09371998906135559,
0.03577326238155365,
-0.020554397255182266,
0.05842700973153114,
-0.03432084992527962,
0.05001716688275337,
0.008966470137238503,
0.018872268497943878,
0.024689292535185814,
-0.03231818601489067,
0.05220392718911171,
-0.10996794700622559,
-0.09366414695978165,
-0.02651878073811531,
-0.09178921580314636,
0.06516280025243759,
0.06370393186807632,
0.08212825655937195,
-0.1206766813993454,
-0.08278565108776093,
0.09313798695802689,
0.06706760078668594,
-0.04455108940601349,
0.034000903367996216,
-0.06261591613292694,
0.03688004985451698,
0.00020702421898022294,
-0.024939214810729027,
-0.18326421082019806,
-0.01475333422422409,
0.00804068148136139,
0.026344062760472298,
0.030797431245446205,
0.005943451542407274,
0.07900228351354599,
0.07529847323894501,
-0.07152202725410461,
-0.011815836653113365,
-0.02898797020316124,
0.008533638902008533,
-0.14528150856494904,
-0.21472162008285522,
-0.033097151666879654,
-0.01073344238102436,
0.10963723063468933,
-0.2198253571987152,
0.034330155700445175,
-0.007110704202204943,
0.06310160458087921,
0.005691882222890854,
-0.009120521135628223,
-0.06592082232236862,
0.09514280408620834,
-0.025852082297205925,
-0.05189566686749458,
0.07537338137626648,
-0.009734764695167542,
-0.08666790276765823,
-0.05544149875640869,
-0.10187699645757675,
0.1634335070848465,
0.13282805681228638,
-0.11462278664112091,
-0.1032242402434349,
-0.013621215708553791,
-0.05679544433951378,
-0.026145264506340027,
-0.04833094775676727,
0.052469559013843536,
0.194431871175766,
-0.009361160919070244,
0.1464329957962036,
-0.0583537295460701,
-0.04324148967862129,
0.019062494859099388,
-0.030469266697764397,
0.04927201196551323,
0.1260325312614441,
0.1251777708530426,
-0.08438233286142349,
0.13083875179290771,
0.13803844153881073,
-0.07666569203138351,
0.12921859323978424,
-0.026351410895586014,
-0.05923398584127426,
-0.01619759388267994,
-0.027763620018959045,
-0.007133211009204388,
0.09785193204879761,
-0.12698538601398468,
-0.012112501077353954,
0.0049139768816530704,
0.03943036496639252,
0.0056741549633443356,
-0.22759248316287994,
-0.04381656274199486,
0.04099120572209358,
-0.045181531459093094,
-0.03374062851071358,
-0.030417971312999725,
0.011614101007580757,
0.11143125593662262,
0.016128309071063995,
-0.0812610536813736,
0.027306826785206795,
0.0006453530513681471,
-0.07222165912389755,
0.21244972944259644,
-0.08432407677173615,
-0.11426037549972534,
-0.09582921862602234,
-0.1150968000292778,
-0.04073416814208031,
0.01908058114349842,
0.06381713598966599,
-0.11387030780315399,
-0.017535965889692307,
-0.05338745936751366,
0.021765708923339844,
0.0005892916233278811,
0.04296712577342987,
-0.00476520461961627,
-0.00620330311357975,
0.04922713711857796,
-0.10206332057714462,
-0.023159939795732498,
-0.058363109827041626,
-0.07413411885499954,
0.061215609312057495,
0.04923746734857559,
0.10716245323419571,
0.15073460340499878,
-0.03813257813453674,
0.012914695776998997,
-0.043777160346508026,
0.24032597243785858,
-0.07473183423280716,
-0.027855107560753822,
0.10702426731586456,
-0.012506213039159775,
0.052138641476631165,
0.1200428381562233,
0.07501555234193802,
-0.10539433360099792,
0.02048802375793457,
0.04314868152141571,
-0.03903765603899956,
-0.20133870840072632,
-0.03025069460272789,
-0.04517710208892822,
-0.02882138080894947,
0.09313962608575821,
0.023030981421470642,
0.026972584426403046,
0.05712292715907097,
0.05264506861567497,
0.054309796541929245,
-0.026828836649656296,
0.05835655704140663,
0.09811493754386902,
0.053233418613672256,
0.13014686107635498,
-0.033759355545043945,
-0.07229232043027878,
0.03316115215420723,
-0.03198646381497383,
0.22702334821224213,
0.014057029038667679,
0.08970073610544205,
0.054533835500478745,
0.16942539811134338,
-0.002776774112135172,
0.08135189861059189,
0.012583059258759022,
-0.05163919925689697,
-0.01648183912038803,
-0.03971685469150543,
-0.03394019976258278,
0.02587691694498062,
-0.05494580790400505,
0.04312591999769211,
-0.13984635472297668,
-0.008631151169538498,
0.05914710462093353,
0.2667331099510193,
0.02863936685025692,
-0.31007489562034607,
-0.08008382469415665,
0.005367596168071032,
-0.039174389094114304,
-0.01090500969439745,
0.012070250697433949,
0.09122846275568008,
-0.1141383945941925,
0.0446554571390152,
-0.058289919048547745,
0.09310412406921387,
-0.02526364102959633,
0.05520052835345268,
0.07217031717300415,
0.09293482452630997,
-0.01252666488289833,
0.07172694802284241,
-0.33682534098625183,
0.29037895798683167,
0.005193937569856644,
0.08052685111761093,
-0.08340582251548767,
-0.006725147366523743,
0.03720484673976898,
0.06615256518125534,
0.04973297566175461,
-0.015603996813297272,
-0.06502438336610794,
-0.2263956218957901,
-0.028740771114826202,
0.0317307710647583,
0.12208693474531174,
-0.032506853342056274,
0.10752268135547638,
-0.028242142871022224,
0.007740702014416456,
0.07962954789400101,
-0.009761362336575985,
-0.05781707167625427,
-0.0797327309846878,
-0.027066443115472794,
0.008706759661436081,
-0.029552601277828217,
-0.054575733840465546,
-0.11512163281440735,
-0.10937926918268204,
0.1418561339378357,
0.001027982565574348,
-0.029750404879450798,
-0.12506422400474548,
0.08180869370698929,
0.06642523407936096,
-0.0843333974480629,
0.03538315370678902,
0.024141889065504074,
0.05241305008530617,
0.03255988657474518,
-0.055447567254304886,
0.1268436312675476,
-0.057771988213062286,
-0.1812034249305725,
-0.058096084743738174,
0.0932641252875328,
0.05254159867763519,
0.07223556190729141,
-0.013596488162875175,
0.02590075694024563,
-0.018233684822916985,
-0.09599889069795609,
0.03721829131245613,
-0.043445490300655365,
0.06977860629558563,
0.02337227389216423,
-0.06810004264116287,
0.03581888973712921,
-0.06768031418323517,
-0.03278347849845886,
0.17765581607818604,
0.27729034423828125,
-0.10033518075942993,
0.04264882579445839,
0.028499223291873932,
-0.07072174549102783,
-0.1929401010274887,
0.06525424122810364,
0.0712709054350853,
-0.002556219696998596,
0.06130097061395645,
-0.18853747844696045,
0.1253965049982071,
0.10113772749900818,
-0.006319011561572552,
0.10959818959236145,
-0.3020250201225281,
-0.14043305814266205,
0.10695003718137741,
0.1547001153230667,
0.11635635048151016,
-0.13907605409622192,
-0.006737863644957542,
-0.03432242572307587,
-0.11867604404687881,
0.09354708343744278,
-0.067980095744133,
0.12903304398059845,
-0.020830249413847923,
0.10049229860305786,
0.007993905805051327,
-0.046979647129774094,
0.11018296331167221,
0.029298415407538414,
0.11701174825429916,
-0.06901674717664719,
-0.041822709143161774,
0.013710257597267628,
-0.0377705954015255,
-0.0036305361427366734,
-0.08147352188825607,
0.015311394818127155,
-0.09222730994224548,
-0.02116994559764862,
-0.08729038387537003,
0.03556039556860924,
-0.04162586107850075,
-0.07552298158407211,
-0.02604920230805874,
0.03537541255354881,
0.05871300399303436,
-0.024718590080738068,
0.11949648708105087,
-0.012670407071709633,
0.16365595161914825,
0.0924927219748497,
0.08052033185958862,
-0.07031767070293427,
-0.026309847831726074,
0.003194403601810336,
-0.009220468811690807,
0.045177798718214035,
-0.12817178666591644,
0.02891470491886139,
0.1464390903711319,
0.02259068936109543,
0.13407383859157562,
0.09263846278190613,
-0.007716536056250334,
0.010355601087212563,
0.0649123266339302,
-0.15044064819812775,
-0.05962605029344559,
0.00849424209445715,
-0.08407211303710938,
-0.09137174487113953,
0.042644042521715164,
0.08853643387556076,
-0.06908625364303589,
-0.008186046034097672,
-0.010149920359253883,
0.003586988430470228,
-0.06865409016609192,
0.21220502257347107,
0.0540505088865757,
0.05978607013821602,
-0.10573077201843262,
0.06680991500616074,
0.04969300329685211,
-0.05413465201854706,
0.017258169129490852,
0.08791745454072952,
-0.08732635527849197,
-0.02702934294939041,
0.09828895330429077,
0.19501258432865143,
-0.05977242812514305,
-0.02337247133255005,
-0.1405724734067917,
-0.1298559010028839,
0.07835514098405838,
0.17241355776786804,
0.1064872294664383,
-0.0010537448106333613,
-0.05787549167871475,
0.03273392096161842,
-0.1298048496246338,
0.08140989392995834,
0.03500066697597504,
0.07123267650604248,
-0.13114124536514282,
0.19073988497257233,
0.001346009667031467,
0.045858751982450485,
-0.02501850202679634,
0.030803970992565155,
-0.12842516601085663,
0.02491048537194729,
-0.12670007348060608,
-0.05023087188601494,
-0.014156953431665897,
0.006915022153407335,
-0.005302058532834053,
-0.06818893551826477,
-0.054045457392930984,
0.002693733898922801,
-0.12908445298671722,
-0.020816868171095848,
0.031948767602443695,
0.04916304722428322,
-0.11815702170133591,
-0.04716421663761139,
0.02400260604918003,
-0.06214248761534691,
0.05986112728714943,
0.05137239396572113,
0.005357350222766399,
0.06990590691566467,
-0.1490347981452942,
-0.0020425275433808565,
0.0572170652449131,
-0.004918321501463652,
0.08048324286937714,
-0.08667393773794174,
-0.012014782056212425,
-0.0137657904997468,
0.09114807844161987,
0.034537047147750854,
0.08726593106985092,
-0.13704438507556915,
0.015858862549066544,
-0.02853134460747242,
-0.10618846863508224,
-0.05368275195360184,
0.037063904106616974,
0.08283665031194687,
0.0055518741719424725,
0.1893802434206009,
-0.09349129348993301,
0.04877631366252899,
-0.21069185435771942,
-0.016698911786079407,
-0.011926453560590744,
-0.10743270069360733,
-0.1291840523481369,
-0.08566612005233765,
0.08042898029088974,
-0.05579696223139763,
0.13782931864261627,
0.04812689870595932,
0.059970155358314514,
0.036421969532966614,
-0.05029371753334999,
0.006979493889957666,
0.023722615092992783,
0.20332860946655273,
0.04268563911318779,
-0.04945991933345795,
0.09190180897712708,
0.06853904575109482,
0.09240613877773285,
0.10249319672584534,
0.2377210110425949,
0.15276069939136505,
-0.008615669794380665,
0.08162696659564972,
0.031037211418151855,
-0.07377439737319946,
-0.16157054901123047,
0.020379267632961273,
-0.04093353450298309,
0.09074273705482483,
-0.047613486647605896,
0.224685400724411,
0.04532063007354736,
-0.18273372948169708,
0.056672438979148865,
-0.06906133145093918,
-0.09615758061408997,
-0.12760961055755615,
-0.009282854385674,
-0.08749230206012726,
-0.15634410083293915,
0.008264297619462013,
-0.10551930218935013,
0.03670499846339226,
0.11480219662189484,
0.01316389162093401,
-0.009992060251533985,
0.16355569660663605,
0.011222298257052898,
0.041605278849601746,
0.05560416728258133,
-0.003397664986550808,
-0.016125863417983055,
-0.10485828667879105,
-0.07588645070791245,
-0.01827806420624256,
-0.018065981566905975,
0.03001408651471138,
-0.0647864118218422,
-0.09569625556468964,
0.027572963386774063,
-0.019706767052412033,
-0.10082659125328064,
0.027109693735837936,
0.025383716449141502,
0.08023030310869217,
0.04307703673839569,
0.0011635224800556898,
0.008672022260725498,
-0.01904289610683918,
0.23867642879486084,
-0.08795427531003952,
-0.09448801726102829,
-0.08486095070838928,
0.31317338347435,
0.05854317545890808,
0.0054125976748764515,
0.021915262565016747,
-0.06387493014335632,
0.0005913372151553631,
0.23436497151851654,
0.20383962988853455,
-0.11025799065828323,
-0.006689518224447966,
-0.012170611880719662,
-0.0074829463846981525,
-0.0050543383695185184,
0.13738873600959778,
0.1318061351776123,
0.012851906009018421,
-0.10105899721384048,
-0.0287188570946455,
-0.048233114182949066,
-0.02332444116473198,
-0.04278554022312164,
0.07555336505174637,
0.05320326238870621,
0.013172829523682594,
-0.04672972857952118,
0.06168370693922043,
-0.0625331848859787,
-0.1282530426979065,
0.06998096406459808,
-0.21080535650253296,
-0.16193915903568268,
-0.007821380160748959,
0.09317609667778015,
0.0057549141347408295,
0.07051310688257217,
-0.019004425033926964,
-0.007349295541644096,
0.05354120582342148,
-0.019626367837190628,
-0.06351972371339798,
-0.09322739392518997,
0.11227300763130188,
-0.119893878698349,
0.19566091895103455,
-0.051977258175611496,
0.050155654549598694,
0.12479057163000107,
0.06869398802518845,
-0.05666803941130638,
0.0727594867348671,
0.04587665945291519,
-0.10396870970726013,
0.02575775235891342,
0.09572122246026993,
-0.0486350879073143,
0.052644263952970505,
0.03865939378738403,
-0.14774779975414276,
0.03381846845149994,
-0.07304180413484573,
-0.0694943368434906,
-0.038919612765312195,
-0.050698570907115936,
-0.049794360995292664,
0.1191670149564743,
0.23775061964988708,
-0.020528852939605713,
0.031886257231235504,
-0.08620104193687439,
0.010947010479867458,
0.04650259390473366,
0.024891793727874756,
-0.0941970944404602,
-0.25128641724586487,
0.012875620275735855,
0.1006287932395935,
-0.029989046975970268,
-0.23991835117340088,
-0.0934252068400383,
0.014751789160072803,
-0.062112826853990555,
-0.08939236402511597,
0.09904954582452774,
0.06138823181390762,
0.05542559176683426,
-0.0551617331802845,
-0.1318853795528412,
-0.0729181170463562,
0.18130987882614136,
-0.1580401062965393,
-0.08140682429075241
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.