sha
null | last_modified
null | library_name
stringclasses 154
values | text
stringlengths 1
900k
| metadata
stringlengths 2
348k
| pipeline_tag
stringclasses 45
values | id
stringlengths 5
122
| tags
sequencelengths 1
1.84k
| created_at
stringlengths 25
25
| arxiv
sequencelengths 0
201
| languages
sequencelengths 0
1.83k
| tags_str
stringlengths 17
9.34k
| text_str
stringlengths 0
389k
| text_lists
sequencelengths 0
722
| processed_texts
sequencelengths 1
723
| tokens_length
sequencelengths 1
723
| input_texts
sequencelengths 1
61
| embeddings
sequencelengths 768
768
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | xiongjie/test | [
"transformers",
"safetensors",
"opt",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"2-bit",
"region:us"
] | 2024-02-13T11:08:47+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #opt #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #2-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #opt #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #2-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
59,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #opt #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #2-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.049170833081007004,
0.16198848187923431,
-0.005190991796553135,
0.021571705117821693,
0.0979180783033371,
0.01467918697744608,
0.0699252188205719,
0.11047854274511337,
-0.021535035222768784,
0.11337409168481827,
0.033155061304569244,
0.0971774309873581,
0.114289291203022,
0.15209169685840607,
-0.002870935248211026,
-0.22957533597946167,
0.0495295412838459,
-0.12533123791217804,
-0.039111655205488205,
0.11607788503170013,
0.14861613512039185,
-0.10086528956890106,
0.07689101248979568,
-0.028480786830186844,
-0.009497293271124363,
-0.03205317258834839,
-0.054988257586956024,
-0.049288827925920486,
0.050328366458415985,
0.07532238960266113,
0.06749630719423294,
0.0021713837049901485,
0.09404468536376953,
-0.2670741677284241,
0.019935572519898415,
0.07338369637727737,
-0.0028388705104589462,
0.07634877413511276,
0.05360584333539009,
-0.07476172596216202,
0.090842105448246,
-0.05028632655739784,
0.14661851525306702,
0.08044753223657608,
-0.09091687202453613,
-0.19308970868587494,
-0.08784127235412598,
0.10332374274730682,
0.18332456052303314,
0.04607527703046799,
-0.022277506068348885,
0.10029050707817078,
-0.08700262755155563,
0.010260428301990032,
0.0507538802921772,
-0.06616614013910294,
-0.05124916881322861,
0.057780466973781586,
0.0793466567993164,
0.07653313875198364,
-0.1233893409371376,
-0.021835653111338615,
0.0081423195078969,
0.006692252121865749,
0.08228161185979843,
0.024068549275398254,
0.15211834013462067,
0.038492750376462936,
-0.12633022665977478,
-0.05067048966884613,
0.10637541860342026,
0.04209933429956436,
-0.048003219068050385,
-0.2520873248577118,
-0.03062254749238491,
-0.02893611416220665,
-0.02905288338661194,
-0.0391596220433712,
0.04320291429758072,
-0.006713845767080784,
0.08224431425333023,
-0.009788140654563904,
-0.07570131123065948,
-0.03883981704711914,
0.06181107833981514,
0.06403261423110962,
0.026267772540450096,
-0.011432701721787453,
0.010246727615594864,
0.11722525209188461,
0.10686469823122025,
-0.12480292469263077,
-0.051411885768175125,
-0.06313536316156387,
-0.08106169104576111,
-0.04296424984931946,
0.0354854017496109,
0.04010898992419243,
0.04733821004629135,
0.25039154291152954,
0.01469036377966404,
0.055061500519514084,
0.03787510469555855,
0.009948170743882656,
0.06327510625123978,
0.11490370333194733,
-0.059159062802791595,
-0.09566701203584671,
-0.024995286017656326,
0.09071090072393417,
0.01280492264777422,
-0.04106017202138901,
-0.05778486281633377,
0.06236753985285759,
0.016156231984496117,
0.11847085505723953,
0.09400323033332825,
0.003213626565411687,
-0.0716661661863327,
-0.06493537127971649,
0.1979834884405136,
-0.16277234256267548,
0.04922086372971535,
0.0355292484164238,
-0.039484620094299316,
-0.004727351013571024,
0.010316649451851845,
0.022852204740047455,
-0.023261457681655884,
0.08989035338163376,
-0.05635272338986397,
-0.03971875086426735,
-0.10943810641765594,
-0.03454022854566574,
0.030717406421899796,
0.01268637366592884,
-0.03268726170063019,
-0.03135320916771889,
-0.08196987211704254,
-0.06830578297376633,
0.09538301825523376,
-0.07262731343507767,
-0.05473502725362778,
-0.016445109620690346,
-0.07304321974515915,
0.026126375421881676,
0.019475245848298073,
0.0758209228515625,
-0.02053503505885601,
0.04256386309862137,
-0.05430709570646286,
0.058995503932237625,
0.11160552501678467,
0.034402765333652496,
-0.0557267852127552,
0.061494000256061554,
-0.2422214150428772,
0.1014256626367569,
-0.06560516357421875,
0.05301498621702194,
-0.14899878203868866,
-0.024446677416563034,
0.04859573766589165,
0.007910138927400112,
-0.010678759776055813,
0.1374710649251938,
-0.21436849236488342,
-0.030357496812939644,
0.16269616782665253,
-0.09577398747205734,
-0.07733462005853653,
0.05962523818016052,
-0.05237007886171341,
0.10447851568460464,
0.040158241987228394,
-0.02749822661280632,
0.06525209546089172,
-0.13550889492034912,
-0.00035895872861146927,
-0.04517172649502754,
-0.021901128813624382,
0.15621617436408997,
0.0752730593085289,
-0.06880663335323334,
0.07249116897583008,
0.023747190833091736,
-0.026268646121025085,
-0.04396800696849823,
-0.015831245109438896,
-0.1080995723605156,
0.010006312280893326,
-0.060351815074682236,
0.018678223714232445,
-0.025422759354114532,
-0.0934939906001091,
-0.028493301942944527,
-0.1764521300792694,
-0.018678655847907066,
0.085250623524189,
-0.00987936183810234,
-0.017979342490434647,
-0.11764157563447952,
0.015513843856751919,
0.03406654670834541,
0.003528318600729108,
-0.1324118971824646,
-0.04851723834872246,
0.02749089151620865,
-0.16440466046333313,
0.03422077000141144,
-0.05544563755393028,
0.04855962097644806,
0.030926084145903587,
-0.031543172895908356,
-0.030350161716341972,
0.021501870825886726,
0.00385159975849092,
-0.013288331218063831,
-0.246257022023201,
-0.027381807565689087,
-0.020316166803240776,
0.1709442138671875,
-0.2168433964252472,
0.03758486732840538,
0.06789994984865189,
0.15150806307792664,
0.008454582653939724,
-0.03769021853804588,
0.0012308784062042832,
-0.07611696422100067,
-0.032904066145420074,
-0.06017618998885155,
-0.010591342113912106,
-0.034569889307022095,
-0.05680151283740997,
0.04983774945139885,
-0.1692695915699005,
-0.03191101923584938,
0.1016041710972786,
0.06140619143843651,
-0.13618701696395874,
-0.02039909176528454,
-0.03594690561294556,
-0.04373536258935928,
-0.05650991201400757,
-0.057259079068899155,
0.10658112168312073,
0.05783999338746071,
0.04686099290847778,
-0.06433536857366562,
-0.07518009841442108,
0.000654307019431144,
-0.02017962746322155,
-0.022668050602078438,
0.09024973958730698,
0.07437626272439957,
-0.1256479024887085,
0.09234675019979477,
0.1037575751543045,
0.08625266700983047,
0.09818492829799652,
-0.02209872007369995,
-0.08374965190887451,
-0.04983105510473251,
0.02357219159603119,
0.017680825665593147,
0.13350553810596466,
-0.006062052212655544,
0.05459131672978401,
0.04177427664399147,
-0.01450229249894619,
0.008901262655854225,
-0.09227537363767624,
0.03393802419304848,
0.03528270870447159,
-0.019344348460435867,
0.03968391567468643,
-0.04265449196100235,
0.020299578085541725,
0.08950541168451309,
0.048390328884124756,
0.042253170162439346,
0.015565188601613045,
-0.04618202894926071,
-0.11227741837501526,
0.16479140520095825,
-0.12861226499080658,
-0.23674333095550537,
-0.14843933284282684,
0.004591445904225111,
0.03574511408805847,
-0.008303241804242134,
0.0007960894727148116,
-0.06444387137889862,
-0.11858661472797394,
-0.09126687049865723,
0.010597828775644302,
0.050096988677978516,
-0.08541590720415115,
-0.06226570904254913,
0.05694679170846939,
0.04339847341179848,
-0.14415781199932098,
0.019220467656850815,
0.048479706048965454,
-0.09028518199920654,
-0.010805817320942879,
0.08412187546491623,
0.06628703325986862,
0.17982617020606995,
0.012236363254487514,
-0.023031635209918022,
0.03492186963558197,
0.21380411088466644,
-0.1369556486606598,
0.11297917366027832,
0.14346681535243988,
-0.09142249077558517,
0.08323720842599869,
0.19897069036960602,
0.03993945196270943,
-0.09998279809951782,
0.032807644456624985,
0.018502691760659218,
-0.030774690210819244,
-0.24251775443553925,
-0.07109015434980392,
-0.00029916688799858093,
-0.059870749711990356,
0.07756546884775162,
0.09038366377353668,
0.09220625460147858,
0.01614059880375862,
-0.09692560136318207,
-0.07808346301317215,
0.05328871309757233,
0.10324276983737946,
0.020093364641070366,
-0.010530885308980942,
0.09017650783061981,
-0.0335906445980072,
0.017507396638393402,
0.09135937690734863,
-0.0013992792228236794,
0.16908471286296844,
0.05603606998920441,
0.18483251333236694,
0.07369183748960495,
0.07438871264457703,
0.01437248382717371,
0.010884713381528854,
0.021030597388744354,
0.026341887190937996,
-0.002735405694693327,
-0.08540801703929901,
-0.01865762285888195,
0.12040604650974274,
0.07578230649232864,
0.019478559494018555,
0.01467901561409235,
-0.03969162330031395,
0.08210137486457825,
0.17303945124149323,
-0.001011825748719275,
-0.18325401842594147,
-0.06421419978141785,
0.08105294406414032,
-0.09352102130651474,
-0.10244064033031464,
-0.025828706100583076,
0.031383201479911804,
-0.17116591334342957,
0.024979708716273308,
-0.017584437504410744,
0.11248911172151566,
-0.14036902785301208,
-0.019775744527578354,
0.06688156723976135,
0.0737331286072731,
0.00009154872532235458,
0.059280361980199814,
-0.16047589480876923,
0.10066599398851395,
0.013169991783797741,
0.06725788861513138,
-0.0974937453866005,
0.1025100126862526,
-0.006648096721619368,
-0.011854474432766438,
0.13049273192882538,
0.009415663778781891,
-0.070615254342556,
-0.07873132079839706,
-0.09403380751609802,
-0.009925325401127338,
0.12589406967163086,
-0.14837560057640076,
0.0849296897649765,
-0.03725266829133034,
-0.04288018122315407,
0.0012108784867450595,
-0.1089700236916542,
-0.11997327953577042,
-0.1881079375743866,
0.05486595258116722,
-0.1330527663230896,
0.04108545556664467,
-0.10646186023950577,
-0.034253090620040894,
-0.026039455085992813,
0.19145771861076355,
-0.2292139232158661,
-0.06866984814405441,
-0.15210078656673431,
-0.09558134526014328,
0.14376989006996155,
-0.05097728222608566,
0.08524919301271439,
-0.005851114168763161,
0.18077152967453003,
0.02285030111670494,
-0.02331576682627201,
0.09896180778741837,
-0.09356821328401566,
-0.19613730907440186,
-0.08113795518875122,
0.1569223254919052,
0.13532865047454834,
0.035456180572509766,
-0.0034855583216995,
0.03669538348913193,
-0.020352529361844063,
-0.12192966789007187,
0.020918626338243484,
0.1760985106229782,
0.06402076780796051,
0.026955509558320045,
-0.023787254467606544,
-0.11225306987762451,
-0.06704118102788925,
-0.031475190073251724,
0.028174852952361107,
0.18225990235805511,
-0.07097197324037552,
0.1852104365825653,
0.1445818394422531,
-0.05844130739569664,
-0.19619807600975037,
0.008661778643727303,
0.03515733778476715,
0.008143552578985691,
0.03472118824720383,
-0.20338191092014313,
0.08479582518339157,
-0.001653822255320847,
-0.05247025936841965,
0.1336890459060669,
-0.1687612682580948,
-0.15031954646110535,
0.0734296441078186,
0.03594363108277321,
-0.19411681592464447,
-0.11765897274017334,
-0.0893033966422081,
-0.0552956759929657,
-0.1780804544687271,
0.10457314550876617,
0.03526831418275833,
0.00717711029574275,
0.03324727714061737,
0.027340246364474297,
0.017233682796359062,
-0.03835901990532875,
0.19132989645004272,
-0.02928444929420948,
0.030956003814935684,
-0.0859936773777008,
-0.06720370054244995,
0.04544598236680031,
-0.056044962257146835,
0.0759386420249939,
-0.029600022360682487,
0.010443905368447304,
-0.10349930077791214,
-0.04253120347857475,
-0.02796008065342903,
0.014698881655931473,
-0.0948486253619194,
-0.08842093497514725,
-0.04998389258980751,
0.09194335341453552,
0.09528714418411255,
-0.03599812835454941,
-0.033649224787950516,
-0.06944136321544647,
0.03873288631439209,
0.18542082607746124,
0.17678189277648926,
0.045025020837783813,
-0.07986798137426376,
-0.005364153068512678,
-0.010591051541268826,
0.0459139309823513,
-0.2160840481519699,
0.06565719842910767,
0.048213228583335876,
0.017313789576292038,
0.11879033595323563,
-0.02028387226164341,
-0.15564265847206116,
-0.07031043618917465,
0.06370700895786285,
-0.06116305664181709,
-0.19399765133857727,
0.004460938274860382,
0.051285382360219955,
-0.1698961704969406,
-0.05031894892454147,
0.04386390745639801,
-0.0036475518718361855,
-0.04015987366437912,
0.019564596936106682,
0.08978071063756943,
0.002710865344852209,
0.07006299495697021,
0.05808331072330475,
0.08210434019565582,
-0.10310018807649612,
0.07525928318500519,
0.08642028272151947,
-0.08068016916513443,
0.02755565755069256,
0.09115825593471527,
-0.05769815668463707,
-0.029320113360881805,
0.027054330334067345,
0.08049678057432175,
0.013557452708482742,
-0.04403543472290039,
0.01111027505248785,
-0.10192979872226715,
0.06264961510896683,
0.08188685029745102,
0.032434869557619095,
0.014753298833966255,
0.031511109322309494,
0.046259839087724686,
-0.07336548715829849,
0.12170027941465378,
0.02616371214389801,
0.015766222029924393,
-0.04206922650337219,
-0.051185838878154755,
0.025022972375154495,
-0.028728974983096123,
-0.006742666009813547,
-0.035502370446920395,
-0.07274159789085388,
-0.017176881432533264,
-0.16300231218338013,
-0.016261542215943336,
-0.047345247119665146,
0.01009264774620533,
0.030766930431127548,
-0.03802470117807388,
0.008191133849322796,
0.008189070969820023,
-0.07414191216230392,
-0.06672581285238266,
-0.021909380331635475,
0.0920926183462143,
-0.16495192050933838,
0.024319907650351524,
0.08751384913921356,
-0.1213507130742073,
0.09404405951499939,
0.020594758912920952,
-0.003682113252580166,
0.028338730335235596,
-0.14924561977386475,
0.03785111755132675,
-0.031144414097070694,
0.015141385607421398,
0.04373621568083763,
-0.22538013756275177,
0.002055845456197858,
-0.03312795236706734,
-0.06617877632379532,
-0.0105138486251235,
-0.03643820434808731,
-0.11452730000019073,
0.10567457973957062,
0.007801808882504702,
-0.08838670700788498,
-0.03229168429970741,
0.03411382809281349,
0.08156253397464752,
-0.023980850353837013,
0.15864823758602142,
-0.002770930528640747,
0.07251895219087601,
-0.16849316656589508,
-0.020027657970786095,
-0.009900744073092937,
0.021497974172234535,
-0.017225001007318497,
-0.013943124562501907,
0.04123537242412567,
-0.021448493003845215,
0.1825239509344101,
-0.021974390372633934,
0.02422330342233181,
0.0657886415719986,
0.03002234548330307,
-0.02431984804570675,
0.10496299713850021,
0.052227556705474854,
0.021881425753235817,
0.018764682114124298,
0.006388071458786726,
-0.04351559653878212,
-0.02272777259349823,
-0.1980840414762497,
0.062335919588804245,
0.1399301141500473,
0.0897616297006607,
-0.016961021348834038,
0.0825750082731247,
-0.10177206993103027,
-0.11467365175485611,
0.11418519914150238,
-0.0588296540081501,
-0.003989002201706171,
-0.06522200256586075,
0.13019709289073944,
0.14382769167423248,
-0.19020922482013702,
0.07052335888147354,
-0.0652226060628891,
-0.049197159707546234,
-0.1172417476773262,
-0.19833002984523773,
-0.0565955750644207,
-0.05397253483533859,
-0.01670248620212078,
-0.0451468788087368,
0.07499170303344727,
0.05708944797515869,
0.006252249702811241,
-0.0019704473670572042,
0.06370630860328674,
-0.02539406530559063,
-0.0013389402301982045,
0.026378508657217026,
0.0654287189245224,
0.012622720561921597,
-0.02886115200817585,
0.01627940870821476,
-0.00960475206375122,
0.04144100099802017,
0.06530549377202988,
0.04673837125301361,
-0.02804291993379593,
0.019876712933182716,
-0.037892118096351624,
-0.10724672675132751,
0.04220535233616829,
-0.029069464653730392,
-0.08186393231153488,
0.14871230721473694,
0.0243094302713871,
0.010154632851481438,
-0.0216835904866457,
0.2418351173400879,
-0.07356571406126022,
-0.09436094015836716,
-0.14836876094341278,
0.10339672863483429,
-0.04239942878484726,
0.06152459606528282,
0.044913191348314285,
-0.10439176112413406,
0.015472804196178913,
0.12521326541900635,
0.16305209696292877,
-0.04327208548784256,
0.021526522934436798,
0.027232125401496887,
0.0037832066882401705,
-0.0370444692671299,
0.05173435062170029,
0.06815244257450104,
0.15665242075920105,
-0.04688369482755661,
0.09716899693012238,
-0.001354025211185217,
-0.09762859344482422,
-0.03555363789200783,
0.1157844141125679,
-0.0191278625279665,
0.018281858414411545,
-0.055312901735305786,
0.11616947501897812,
-0.059389326721429825,
-0.23264332115650177,
0.06485582888126373,
-0.06406854838132858,
-0.13691210746765137,
-0.022015223279595375,
0.08249910175800323,
-0.013129141181707382,
0.0262971892952919,
0.07377610355615616,
-0.07541080564260483,
0.20148299634456635,
0.03635673224925995,
-0.05632239207625389,
-0.0545811653137207,
0.08099088817834854,
-0.1078939288854599,
0.2756272852420807,
0.016863826662302017,
0.049413248896598816,
0.10227051377296448,
-0.011857808567583561,
-0.13495121896266937,
0.02135378122329712,
0.09469113498926163,
-0.09559943526983261,
0.04289698228240013,
0.2008703052997589,
0.0007407558150589466,
0.11898288130760193,
0.08000301569700241,
-0.0749596357345581,
0.048241276293992996,
-0.10201335698366165,
-0.07043467462062836,
-0.09052638709545135,
0.09248443692922592,
-0.07626400887966156,
0.14341676235198975,
0.13071155548095703,
-0.05239382013678551,
0.010336225852370262,
-0.029622456058859825,
0.04510188847780228,
0.004108041990548372,
0.10247661173343658,
0.010352173820137978,
-0.18442241847515106,
0.021684950217604637,
0.015304234810173512,
0.10560385882854462,
-0.16510868072509766,
-0.09882407635450363,
0.04192545637488365,
-0.000052731294999830425,
-0.0588940791785717,
0.1295977532863617,
0.05882978066802025,
0.04627123847603798,
-0.04361991956830025,
-0.02116643823683262,
-0.009373124688863754,
0.1365443766117096,
-0.10190471261739731,
0.0015903471503406763
] |
null | null | null |
# Jaskier-7b-dpo-v3-experts
**This is work-in-progress model, may not be ready for production use**
Model based on `paulml/OGNO-7B` (downstream version of Mistral7B) finetuned using Direct Preference Optimization on lmsys/mt_bench_human_judgments.
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
```
## Changelog
- 2024-02-13: Initial release
## About bards.ai
At bards.ai, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: bards.ai
Let us know if you use our model :). Also, if you need any help, feel free to contact us at [email protected] | {"language": ["en"], "license": "cc-by-4.0", "tags": ["llm", "7b"], "datasets": ["lmsys/mt_bench_human_judgments"], "widget": [{"text": "I love AutoTrain because "}]} | null | bardsai/Jaskier-7b-dpo-v3-experts | [
"tensorboard",
"safetensors",
"llm",
"7b",
"en",
"dataset:lmsys/mt_bench_human_judgments",
"license:cc-by-4.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:11:11+00:00 | [] | [
"en"
] | TAGS
#tensorboard #safetensors #llm #7b #en #dataset-lmsys/mt_bench_human_judgments #license-cc-by-4.0 #endpoints_compatible #region-us
|
# Jaskier-7b-dpo-v3-experts
This is work-in-progress model, may not be ready for production use
Model based on 'paulml/OGNO-7B' (downstream version of Mistral7B) finetuned using Direct Preference Optimization on lmsys/mt_bench_human_judgments.
# Usage
## Changelog
- 2024-02-13: Initial release
## About URL
At URL, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: URL
Let us know if you use our model :). Also, if you need any help, feel free to contact us at info@URL | [
"# Jaskier-7b-dpo-v3-experts\n\nThis is work-in-progress model, may not be ready for production use\n\nModel based on 'paulml/OGNO-7B' (downstream version of Mistral7B) finetuned using Direct Preference Optimization on lmsys/mt_bench_human_judgments.",
"# Usage",
"## Changelog\n\n- 2024-02-13: Initial release",
"## About URL\n\nAt URL, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: URL\n\nLet us know if you use our model :). Also, if you need any help, feel free to contact us at info@URL"
] | [
"TAGS\n#tensorboard #safetensors #llm #7b #en #dataset-lmsys/mt_bench_human_judgments #license-cc-by-4.0 #endpoints_compatible #region-us \n",
"# Jaskier-7b-dpo-v3-experts\n\nThis is work-in-progress model, may not be ready for production use\n\nModel based on 'paulml/OGNO-7B' (downstream version of Mistral7B) finetuned using Direct Preference Optimization on lmsys/mt_bench_human_judgments.",
"# Usage",
"## Changelog\n\n- 2024-02-13: Initial release",
"## About URL\n\nAt URL, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: URL\n\nLet us know if you use our model :). Also, if you need any help, feel free to contact us at info@URL"
] | [
59,
81,
3,
13,
81
] | [
"passage: TAGS\n#tensorboard #safetensors #llm #7b #en #dataset-lmsys/mt_bench_human_judgments #license-cc-by-4.0 #endpoints_compatible #region-us \n# Jaskier-7b-dpo-v3-experts\n\nThis is work-in-progress model, may not be ready for production use\n\nModel based on 'paulml/OGNO-7B' (downstream version of Mistral7B) finetuned using Direct Preference Optimization on lmsys/mt_bench_human_judgments.# Usage## Changelog\n\n- 2024-02-13: Initial release## About URL\n\nAt URL, we focus on providing machine learning expertise and skills to our partners, particularly in the areas of nlp, machine vision and time series analysis. Our team is located in Wroclaw, Poland. Please visit our website for more information: URL\n\nLet us know if you use our model :). Also, if you need any help, feel free to contact us at info@URL"
] | [
-0.10770431160926819,
0.09942696988582611,
-0.0016248096944764256,
0.0053727515041828156,
0.04661489278078079,
-0.019785484299063683,
0.14067016541957855,
0.05126601830124855,
0.10081202536821365,
0.007140851579606533,
0.14008942246437073,
0.11510249227285385,
-0.0411992147564888,
0.08279972523450851,
-0.009521245025098324,
-0.17564505338668823,
0.03640313819050789,
0.0280561912804842,
-0.03289904445409775,
0.10606487840414047,
0.08139993995428085,
-0.09197723120450974,
0.07386478036642075,
0.01590530015528202,
-0.06718441843986511,
-0.01995030976831913,
-0.03798723593354225,
-0.0016038761241361499,
0.12296118587255478,
0.038961440324783325,
0.06280447542667389,
0.03653723746538162,
0.03742538020014763,
-0.05539267882704735,
0.028449587523937225,
-0.006192559842020273,
0.005039346404373646,
0.059848710894584656,
0.06411261856555939,
-0.038906559348106384,
0.20695613324642181,
-0.12974056601524353,
0.011792697012424469,
0.02030072920024395,
-0.04370752349495888,
-0.08841496706008911,
-0.07342136651277542,
0.05300770327448845,
0.15271922945976257,
0.05791250616312027,
-0.004009119234979153,
0.26940616965293884,
-0.06935299187898636,
0.07517427951097488,
0.10447823256254196,
-0.2754881978034973,
-0.0510130412876606,
0.18510688841342926,
0.08738958835601807,
0.000327964749885723,
-0.0667015090584755,
0.0680215135216713,
0.04823053628206253,
-0.002079916652292013,
0.06611673533916473,
-0.08181078732013702,
0.10417179018259048,
-0.034103743731975555,
-0.14841525256633759,
0.035601451992988586,
0.2859119176864624,
0.019108306616544724,
-0.06536883860826492,
-0.11012626439332962,
0.05419515445828438,
0.12016061693429947,
0.015590187162160873,
-0.017159709706902504,
-0.01075893733650446,
-0.03820206597447395,
-0.03631403669714928,
-0.1091572716832161,
-0.146889790892601,
-0.06940754503011703,
-0.0009976555593311787,
0.1996721476316452,
-0.005818251520395279,
0.06195887550711632,
-0.027829401195049286,
0.08118025958538055,
-0.03771722689270973,
-0.017174476757645607,
-0.032710496336221695,
-0.05080491304397583,
0.0028912315610796213,
-0.06316434592008591,
-0.01628076657652855,
-0.09858865290880203,
0.056954942643642426,
0.027478409931063652,
0.015332944691181183,
0.018355315551161766,
0.09632281959056854,
0.10119622200727463,
-0.007798407692462206,
0.083444744348526,
-0.055742137134075165,
-0.030009789392352104,
0.07335568964481354,
-0.04276001825928688,
0.04746623337268829,
0.029955096542835236,
-0.09183815866708755,
-0.10667505115270615,
0.018888946622610092,
0.07267415523529053,
0.024949906393885612,
0.11516452580690384,
0.022486986592411995,
-0.018599823117256165,
0.19298623502254486,
-0.06418292224407196,
0.004154557827860117,
0.010674532502889633,
-0.07043001055717468,
-0.013970312662422657,
0.02202492766082287,
0.0024133173283189535,
-0.03089776448905468,
0.025803646072745323,
-0.051945701241493225,
-0.007674615364521742,
-0.07622898370027542,
-0.06271940469741821,
0.089132159948349,
0.014180096797645092,
0.06293328106403351,
-0.1381923258304596,
-0.1985270082950592,
0.0019413946429267526,
0.029275255277752876,
-0.0005109183839522302,
0.017455263063311577,
0.006712718401104212,
0.0027564549818634987,
-0.03378819301724434,
-0.031277626752853394,
0.04908880218863487,
-0.018271951004862785,
0.04012717679142952,
-0.08683963119983673,
0.01796947792172432,
-0.16150780022144318,
-0.02046518214046955,
-0.12452937662601471,
0.006233553402125835,
-0.15816283226013184,
-0.05483240261673927,
-0.06293889135122299,
0.1102069616317749,
-0.09062083810567856,
-0.032803118228912354,
-0.07535038888454437,
0.01857617124915123,
-0.004585869610309601,
0.1499292552471161,
-0.14088647067546844,
0.04010268673300743,
0.02424474060535431,
-0.0840207114815712,
-0.10928474366664886,
0.12047049403190613,
0.0009149038232862949,
0.04756714031100273,
0.08183465152978897,
0.17943613231182098,
0.11310777068138123,
-0.169193834066391,
0.050075896084308624,
0.002963616279885173,
-0.13207238912582397,
-0.20081648230552673,
0.10338076204061508,
-0.008527959696948528,
-0.04033989459276199,
0.04698555916547775,
-0.1449868381023407,
0.04104616865515709,
-0.021476294845342636,
-0.051358528435230255,
-0.02591075748205185,
-0.08253597468137741,
-0.027891993522644043,
0.013389697298407555,
0.020760076120495796,
-0.1043161153793335,
-0.027796758338809013,
0.05802399292588234,
0.12273673713207245,
-0.016497604548931122,
-0.0354488305747509,
-0.052466001361608505,
0.10775736719369888,
-0.08537528663873672,
-0.008903604932129383,
-0.08075977116823196,
-0.09135190397500992,
-0.03180418163537979,
-0.0699220821261406,
0.0408342108130455,
0.1344723254442215,
0.10634961724281311,
0.013926627114415169,
-0.002368320245295763,
0.029298681765794754,
0.10133837163448334,
0.004131190944463015,
-0.046242985874414444,
-0.12087710946798325,
0.012095805257558823,
-0.06121526286005974,
0.03443163260817528,
-0.1724480539560318,
0.008647636510431767,
0.05820343270897865,
0.10000300407409668,
0.00953275803476572,
-0.05708970129489899,
0.06520221382379532,
0.0007632728083990514,
0.01573970913887024,
-0.03696255758404732,
0.06710484623908997,
0.012675328180193901,
-0.11416821926832199,
0.13863183557987213,
-0.12139540165662766,
0.1522398740053177,
0.10736800730228424,
0.044288843870162964,
-0.029249785467982292,
-0.10586373507976532,
-0.06013895198702812,
0.016418442130088806,
-0.008167860098183155,
-0.001204862492159009,
0.056684281677007675,
-0.009633578360080719,
0.03849571570754051,
-0.05882025137543678,
-0.06041087955236435,
-0.0061564939096570015,
-0.08217953145503998,
-0.06638962775468826,
0.10597436875104904,
-0.0015168763929978013,
-0.16406278312206268,
0.04580042138695717,
0.09077058732509613,
-0.07305749505758286,
0.20388197898864746,
0.011850731447339058,
-0.04708090424537659,
-0.03618202358484268,
0.09308683127164841,
-0.007258635479956865,
0.2405620962381363,
-0.1101326048374176,
-0.007315610069781542,
0.0403306782245636,
-0.032285355031490326,
0.058455031365156174,
-0.11768225580453873,
-0.030291540548205376,
-0.0348779633641243,
-0.025389529764652252,
0.011295652016997337,
0.08046763390302658,
-0.07906600832939148,
0.0824904665350914,
0.010778194293379784,
-0.006158763077110052,
0.018622588366270065,
-0.017516858875751495,
-0.09009990096092224,
0.15682750940322876,
-0.020732544362545013,
-0.16959436237812042,
-0.15884160995483398,
0.09446761757135391,
-0.07311447709798813,
-0.01110208872705698,
0.006439413875341415,
0.007369677070528269,
-0.0953991487622261,
-0.0390077643096447,
0.05160333216190338,
-0.036078762263059616,
-0.056902699172496796,
-0.010591430589556694,
0.04151808097958565,
0.027950704097747803,
-0.09480233490467072,
0.004042948596179485,
-0.037175193428993225,
-0.0423235259950161,
0.026046860963106155,
-0.03523179143667221,
0.10087072104215622,
0.06762831658124924,
-0.033085793256759644,
0.015463052317500114,
0.005789544433355331,
0.13956648111343384,
-0.06513107568025589,
0.037493959069252014,
0.11439143121242523,
0.010059930384159088,
-0.014925656840205193,
0.08515642583370209,
0.07431253790855408,
-0.06064208969473839,
0.019189422950148582,
0.022543087601661682,
-0.07150483876466751,
-0.15815870463848114,
-0.13234065473079681,
-0.03819914907217026,
-0.00919143296778202,
0.012716613709926605,
0.06592019647359848,
-0.030984751880168915,
0.11261652410030365,
-0.0441129095852375,
-0.07914392650127411,
0.024466831237077713,
0.10015624016523361,
-0.015299755148589611,
-0.017775893211364746,
0.04111161828041077,
-0.082035593688488,
-0.039998024702072144,
0.052689965814352036,
0.08550358563661575,
0.05463653430342674,
0.001951961894519627,
0.032104965299367905,
0.0738176628947258,
0.14534805715084076,
0.03316815197467804,
0.11202916502952576,
0.015373460948467255,
-0.032957177609205246,
-0.007132597267627716,
-0.11008275300264359,
-0.024972328916192055,
0.01980976201593876,
0.01450436469167471,
0.02481832727789879,
0.0009441677830182016,
-0.05116468295454979,
0.04769912362098694,
0.07876364141702652,
0.0023539154790341854,
-0.24819563329219818,
-0.03245730325579643,
0.010497217066586018,
0.04299885034561157,
-0.02305595576763153,
0.015654293820261955,
0.07460296154022217,
-0.056299254298210144,
0.019793862476944923,
-0.0414947047829628,
0.06144710257649422,
-0.08641240000724792,
-0.015271853655576706,
-0.071367546916008,
0.01627541333436966,
-0.04024209827184677,
0.11459711939096451,
-0.15233756601810455,
0.1801779419183731,
0.055059611797332764,
0.15132731199264526,
-0.0676334947347641,
-0.0649537518620491,
0.014926171861588955,
0.14851942658424377,
0.15846000611782074,
0.026093263179063797,
0.004159888252615929,
-0.08528511971235275,
-0.08458110690116882,
0.03673407807946205,
-0.02698678709566593,
0.049891147762537,
0.04123197868466377,
-0.003369041485711932,
0.004651409108191729,
-0.014687273651361465,
-0.06812510639429092,
-0.1503344476222992,
-0.04807442054152489,
-0.012993753887712955,
0.030960092321038246,
-0.03656947985291481,
-0.06714785099029541,
-0.02091941237449646,
-0.0530090257525444,
0.13295868039131165,
-0.06621949374675751,
-0.055236708372831345,
-0.12357062101364136,
-0.12036015838384628,
0.09352491796016693,
-0.06995982676744461,
-0.010155555792152882,
0.012103807181119919,
0.10391250252723694,
-0.03386617824435234,
-0.10274416208267212,
-0.0033501810394227505,
-0.10758280754089355,
-0.0335184782743454,
0.025907259434461594,
0.10084007680416107,
0.03477349877357483,
0.009994077496230602,
0.06558013707399368,
-0.058973584324121475,
-0.06926263123750687,
-0.1257971227169037,
0.03548401966691017,
0.10447276383638382,
0.09091990441083908,
-0.04194957762956619,
-0.03948969766497612,
0.021026086062192917,
-0.025106003507971764,
-0.035859476774930954,
0.04141801595687866,
0.18128353357315063,
-0.04847344383597374,
0.03718620166182518,
0.18371710181236267,
-0.017189454287290573,
-0.2594660520553589,
0.02027028612792492,
-0.05139909312129021,
0.03745438903570175,
0.018369439989328384,
0.03324936330318451,
0.029888460412621498,
0.06975214928388596,
-0.056593094021081924,
0.040571428835392,
-0.18270756304264069,
-0.11354260891675949,
0.15415090322494507,
0.15179723501205444,
0.22061672806739807,
-0.08993317931890488,
-0.009241759777069092,
-0.014975838363170624,
-0.10228163748979568,
0.07241253554821014,
-0.12190326303243637,
0.06448859721422195,
-0.02974223904311657,
0.1347295343875885,
0.029220430180430412,
-0.08308004587888718,
0.1448022574186325,
-0.07216860353946686,
0.07067649066448212,
-0.05122910812497139,
-0.022562354803085327,
0.021188044920563698,
-0.08851788938045502,
0.18186917901039124,
-0.03270426392555237,
0.035525526851415634,
-0.09532349556684494,
-0.057462554425001144,
-0.04401618242263794,
0.17613857984542847,
-0.011672114953398705,
-0.08952325582504272,
-0.036985695362091064,
0.06598906219005585,
-0.07621004432439804,
-0.018251381814479828,
0.07901329547166824,
-0.05833975598216057,
-0.01826360449194908,
0.11821822822093964,
0.1645151525735855,
-0.0876813605427742,
0.008465967141091824,
0.0414174385368824,
-0.04429901763796806,
0.09346531331539154,
-0.07984112948179245,
-0.020401818677783012,
0.08293014764785767,
0.025089716538786888,
0.05162705108523369,
-0.002157513052225113,
-0.11937595903873444,
-0.010658509097993374,
0.07390285283327103,
-0.1457844078540802,
-0.10168498009443283,
-0.02164524793624878,
-0.010965964756906033,
0.011027330532670021,
0.15232481062412262,
0.1063348799943924,
-0.11492153257131577,
0.004330111667513847,
0.009265352040529251,
0.005376796703785658,
-0.06331770122051239,
0.14656035602092743,
0.08138586580753326,
0.03722907975316048,
-0.05282687023282051,
0.07713537663221359,
-0.048421334475278854,
-0.023067239671945572,
-0.0065625556744635105,
-0.05872947722673416,
-0.10201631486415863,
-0.09661748260259628,
0.06603806465864182,
0.11449506133794785,
-0.12544746696949005,
-0.09774105995893478,
-0.0333610363304615,
-0.0729028582572937,
-0.05120575800538063,
0.10563547909259796,
0.08380062878131866,
0.027018887922167778,
0.011638309806585312,
-0.017804645001888275,
-0.13536269962787628,
0.08842845261096954,
0.025706134736537933,
-0.004315323196351528,
-0.15314441919326782,
0.05454245209693909,
-0.04210394620895386,
0.00695836404338479,
-0.06278058141469955,
0.007840106263756752,
-0.15172308683395386,
0.0011390727013349533,
-0.08298409730195999,
-0.019725825637578964,
-0.15517663955688477,
0.03602232038974762,
0.0030097784474492073,
-0.05164019390940666,
-0.05119844526052475,
0.03587685152888298,
-0.056200481951236725,
0.04622574895620346,
0.00038177179521881044,
0.032288894057273865,
-0.04615313559770584,
-0.0486227348446846,
-0.007401640061289072,
0.008412860333919525,
0.02926037833094597,
0.04015820473432541,
0.018560316413640976,
0.07165170460939407,
-0.12811288237571716,
0.08876140415668488,
0.052091699093580246,
-0.02369053103029728,
0.04625603184103966,
-0.06375671923160553,
-0.06054941937327385,
0.04277454689145088,
0.03041728585958481,
0.025595523416996002,
0.0316859595477581,
-0.0957072377204895,
0.0035292061511427164,
0.01017853058874607,
-0.06020047143101692,
-0.056644100695848465,
0.056854911148548126,
0.0673835277557373,
0.1058785617351532,
0.11624293029308319,
-0.0729013979434967,
-0.030340638011693954,
-0.04328329488635063,
0.016105186194181442,
0.015285004861652851,
-0.05605703964829445,
-0.01240585371851921,
0.04024908319115639,
0.03016342781484127,
-0.034390777349472046,
0.17106091976165771,
0.02927430160343647,
-0.07591437548398972,
0.001426230650395155,
-0.006487904116511345,
0.03405080735683441,
-0.02726411446928978,
0.1739310473203659,
-0.10557150095701218,
0.018891382962465286,
-0.043930813670158386,
0.09403056651353836,
0.01509543415158987,
-0.07021390646696091,
0.06636268645524979,
0.15536756813526154,
-0.03352893143892288,
0.07040075957775116,
0.09203684329986572,
0.020568011328577995,
-0.06494066119194031,
-0.05293726921081543,
0.07024316489696503,
-0.009654929861426353,
-0.10142497718334198,
0.08717361837625504,
0.2600470185279846,
-0.1099725291132927,
-0.027005568146705627,
0.0041965157724916935,
-0.04020504653453827,
-0.1014697328209877,
-0.2662886679172516,
-0.0437263585627079,
-0.0744309052824974,
-0.004089180380105972,
-0.0698447972536087,
-0.04108383506536484,
0.0068666329607367516,
0.0458279587328434,
-0.03132849186658859,
0.16659903526306152,
-0.02620754949748516,
-0.019858183339238167,
0.023236602544784546,
0.015251697972416878,
-0.04281513765454292,
-0.04371410235762596,
0.035544153302907944,
-0.0005457736551761627,
-0.0711427852511406,
0.03199188783764839,
-0.021944455802440643,
-0.005146059673279524,
-0.001557950978167355,
-0.00395952770486474,
-0.03828512877225876,
-0.04442973807454109,
0.07160057872533798,
0.06475698947906494,
0.07223682850599289,
0.046454187482595444,
-0.0763796716928482,
-0.019648343324661255,
0.22787974774837494,
0.00396143551915884,
-0.0433950312435627,
-0.057654544711112976,
0.12614081799983978,
-0.028985148295760155,
0.018579429015517235,
-0.014897599816322327,
-0.0727270320057869,
0.13860677182674408,
0.23130804300308228,
0.17009581625461578,
0.026685921475291252,
0.025719452649354935,
-0.07209676504135132,
0.011890583671629429,
-0.05251273885369301,
0.11810321360826492,
-0.030143611133098602,
0.19872558116912842,
-0.02489767223596573,
0.037860170006752014,
-0.036775633692741394,
0.024312816560268402,
-0.07316520065069199,
0.005826679989695549,
0.03220953792333603,
-0.04574413597583771,
-0.08294282108545303,
0.10214603692293167,
-0.04623989760875702,
-0.083097442984581,
-0.0368027463555336,
0.01973147690296173,
-0.04996424540877342,
0.0023336918093264103,
0.026211248710751534,
-0.03710128739476204,
0.10161841660737991,
-0.10817860066890717,
-0.0022857608273625374,
-0.02505652606487274,
0.009609443135559559,
-0.1310216188430786,
-0.052510909736156464,
0.055947937071323395,
0.17569400370121002,
0.2271326631307602,
-0.01292400248348713,
0.05871551111340523,
0.06269858777523041,
-0.04464447870850563,
-0.15047097206115723,
0.05072265490889549,
-0.014295230619609356,
-0.12249961495399475,
0.056568700820207596,
0.061257414519786835,
-0.03174975514411926,
0.09888285398483276,
0.03914739936590195,
-0.05454819276928902,
0.033382926136255264,
0.028377262875437737,
0.03010336309671402,
-0.0897049531340599,
0.14229875802993774,
-0.09087958186864853,
0.15344056487083435,
0.05608583241701126,
-0.021264227107167244,
-0.01903337985277176,
-0.05527149513363838,
0.08613453060388565,
0.08857601135969162,
-0.008251409977674484,
0.011729265563189983,
-0.13526105880737305,
-0.010609816759824753,
-0.03256317973136902,
-0.050303105264902115,
-0.19981151819229126,
-0.02584705874323845,
-0.03968128189444542,
-0.029059525579214096,
-0.007945588789880276,
0.013026870787143707,
0.09103123098611832,
0.021695749834179878,
-0.03573288023471832,
-0.10957518965005875,
-0.015687016770243645,
0.055572785437107086,
-0.10770784318447113,
-0.07627589255571365
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-speechocean762-fluency_V2
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1.dev0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "facebook/wav2vec2-base", "model-index": [{"name": "wav2vec2-base-speechocean762-fluency_V2", "results": []}]} | automatic-speech-recognition | papasega/wav2vec2-base-speechocean762-fluency_V2 | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:facebook/wav2vec2-base",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:11:26+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-facebook/wav2vec2-base #license-apache-2.0 #endpoints_compatible #region-us
|
# wav2vec2-base-speechocean762-fluency_V2
This model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.1.dev0
- Tokenizers 0.15.1
| [
"# wav2vec2-base-speechocean762-fluency_V2\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 20\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.1.dev0\n- Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-facebook/wav2vec2-base #license-apache-2.0 #endpoints_compatible #region-us \n",
"# wav2vec2-base-speechocean762-fluency_V2\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 20\n- mixed_precision_training: Native AMP",
"### Training results",
"### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.1.dev0\n- Tokenizers 0.15.1"
] | [
70,
46,
6,
12,
8,
3,
117,
4,
41
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-facebook/wav2vec2-base #license-apache-2.0 #endpoints_compatible #region-us \n# wav2vec2-base-speechocean762-fluency_V2\n\nThis model is a fine-tuned version of facebook/wav2vec2-base on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0001\n- train_batch_size: 32\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 1000\n- num_epochs: 20\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.1.dev0\n- Tokenizers 0.15.1"
] | [
-0.12021946161985397,
0.1731763482093811,
-0.0033459763508290052,
0.04886091127991676,
0.10937388986349106,
0.006716238334774971,
0.09987857937812805,
0.13061001896858215,
-0.07598232477903366,
0.08182580769062042,
0.07348589599132538,
-0.015986882150173187,
0.08320488780736923,
0.15632182359695435,
-0.03066374734044075,
-0.22690308094024658,
0.017824506387114525,
-0.023763567209243774,
-0.09861675649881363,
0.08959207683801651,
0.11443811655044556,
-0.07844754308462143,
0.05721978470683098,
0.016660241410136223,
-0.11105768382549286,
0.029575591906905174,
-0.03835690766572952,
-0.08721508085727692,
0.08482229709625244,
0.029131339862942696,
0.06481173634529114,
0.03301813080906868,
0.12444981187582016,
-0.2347443848848343,
0.0006119345198385417,
0.0864567682147026,
0.024452554062008858,
0.07608404755592346,
0.092200867831707,
-0.015018516220152378,
0.058916594833135605,
-0.1592453271150589,
0.09506645798683167,
0.05056342855095863,
-0.07030460238456726,
-0.19906291365623474,
-0.10295114666223526,
0.13946011662483215,
0.1155305728316307,
0.09943404048681259,
0.0068655493669211864,
0.0889192447066307,
-0.04063961282372475,
0.06719313561916351,
0.16574671864509583,
-0.2467270940542221,
-0.06404810398817062,
-0.0097651407122612,
0.056057319045066833,
0.039742883294820786,
-0.10132394731044769,
0.014799358323216438,
0.042395852506160736,
0.024498438462615013,
0.07665131986141205,
0.0027894978411495686,
-0.07616592943668365,
-0.013144776225090027,
-0.12085884064435959,
-0.028432244434952736,
0.17760738730430603,
0.07365323603153229,
-0.0595928356051445,
-0.10402114689350128,
-0.0317358523607254,
-0.07197286188602448,
-0.0092701381072402,
-0.054964419454336166,
0.015903985127806664,
-0.04212278500199318,
-0.054727017879486084,
-0.06994397193193436,
-0.07931863516569138,
-0.07154815644025803,
0.03574492782354355,
0.1015830934047699,
0.027632948011159897,
0.020171836018562317,
-0.029960498213768005,
0.09677990525960922,
0.006151129025965929,
-0.13310950994491577,
-0.032732151448726654,
-0.006362393964082003,
-0.10931430757045746,
-0.042826659977436066,
-0.009248808026313782,
0.006861045025289059,
-0.0033570192754268646,
0.14460892975330353,
-0.05202342942357063,
0.08117694407701492,
-0.01054418459534645,
-0.011334173381328583,
-0.033945586532354355,
0.14001701772212982,
-0.05639742687344551,
-0.05581251159310341,
0.00376351410523057,
0.09448788315057755,
-0.0010628321906551719,
-0.011478389613330364,
-0.06576233357191086,
-0.04301070049405098,
0.0936472937464714,
0.08663810044527054,
-0.010789187625050545,
0.0021718780044466257,
-0.03255969658493996,
-0.02699277736246586,
0.05328002944588661,
-0.13917018473148346,
0.040623389184474945,
0.018259648233652115,
-0.0732230618596077,
-0.02314567007124424,
0.06228717043995857,
0.012553432025015354,
-0.04103647917509079,
0.02111739292740822,
-0.04956669732928276,
-0.03974952921271324,
-0.04929786175489426,
-0.03424214571714401,
0.036691002547740936,
-0.05856187641620636,
-0.014129302464425564,
-0.07953858375549316,
-0.19859017431735992,
-0.035708457231521606,
0.024902814999222755,
-0.06958907842636108,
-0.05393343046307564,
-0.018542421981692314,
-0.07164247334003448,
0.017604533582925797,
-0.024599242955446243,
0.12431549280881882,
-0.03483296185731888,
0.05029352754354477,
0.013870337046682835,
0.027543192729353905,
0.05134659633040428,
0.04422880336642265,
-0.04195534065365791,
0.04642210900783539,
-0.09146681427955627,
0.09570072591304779,
-0.117311991751194,
0.008779634721577168,
-0.14427685737609863,
-0.08535393327474594,
0.011618106625974178,
-0.03285980597138405,
0.06894556432962418,
0.14434343576431274,
-0.17017970979213715,
-0.03186066821217537,
0.13753177225589752,
-0.0846036970615387,
-0.09419534355401993,
0.08748487383127213,
-0.012070073746144772,
0.01789540797472,
0.048416487872600555,
0.11110042035579681,
0.1427668184041977,
-0.16979779303073883,
-0.023985568434000015,
0.012004419229924679,
0.06283165514469147,
0.034892939031124115,
0.0734977200627327,
-0.025867043063044548,
0.04518578574061394,
0.002925023902207613,
-0.07608568668365479,
-0.014115860685706139,
-0.07701542228460312,
-0.09129124879837036,
-0.05368071794509888,
-0.09889817237854004,
0.038615673780441284,
0.007799115497618914,
0.01071309857070446,
-0.05340986326336861,
-0.14086829125881195,
0.08035270124673843,
0.13993488252162933,
-0.056062668561935425,
0.012926461175084114,
-0.09152425080537796,
0.005053446628153324,
0.0030917252879589796,
-0.023882631212472916,
-0.16358590126037598,
-0.11484621465206146,
0.03171652555465698,
-0.08654636889696121,
0.02217400260269642,
-0.016240794211626053,
0.06735046207904816,
0.05527013912796974,
-0.04451010748744011,
-0.04667472094297409,
-0.10720479488372803,
0.01819697953760624,
-0.05932427570223808,
-0.1807583123445511,
-0.08768069744110107,
-0.02951188012957573,
0.18580688536167145,
-0.2252131551504135,
0.027241205796599388,
0.06448516994714737,
0.17781111598014832,
0.018755154684185982,
-0.05276428163051605,
0.016610099002718925,
0.01611836813390255,
0.018116960301995277,
-0.10463739931583405,
0.010756846517324448,
0.002468889346346259,
-0.09571777284145355,
-0.018983522430062294,
-0.1015201136469841,
0.062156688421964645,
0.06564537435770035,
0.1206173375248909,
-0.07615171372890472,
-0.005565401166677475,
-0.06404828280210495,
-0.056194107979536057,
-0.06642653793096542,
-0.02586718648672104,
0.1853838562965393,
0.036793362349271774,
0.09563839435577393,
-0.05702098831534386,
-0.06402560323476791,
0.01649443618953228,
0.012805398553609848,
-0.047079574316740036,
0.06690111011266708,
0.011238041333854198,
-0.09000099450349808,
0.08137422800064087,
0.07575611770153046,
-0.02600095234811306,
0.1305914670228958,
-0.06160154193639755,
-0.08867587149143219,
-0.022611048072576523,
0.018449721857905388,
0.0018405226292088628,
0.13171060383319855,
-0.0847868099808693,
0.0036158363800495863,
0.026019373908638954,
-0.0002868714218493551,
0.040448252111673355,
-0.1483645737171173,
0.010447178035974503,
0.021495899185538292,
-0.06606899201869965,
-0.01621018722653389,
-0.01843833737075329,
0.030782779678702354,
0.054520104080438614,
0.03198438510298729,
-0.004028474446386099,
0.0305656585842371,
-0.016033850610256195,
-0.09944372624158859,
0.16869878768920898,
-0.11487971991300583,
-0.18917153775691986,
-0.15680882334709167,
0.09468189626932144,
-0.048341263085603714,
-0.03725136071443558,
0.001126231625676155,
-0.08759021013975143,
-0.06702109426259995,
-0.06845176219940186,
0.0031272026244550943,
-0.0291682668030262,
-0.006629023235291243,
0.0852980762720108,
0.03224244341254234,
0.1086312085390091,
-0.12476015090942383,
0.029256291687488556,
0.01677999272942543,
-0.08176825940608978,
-0.043619345873594284,
0.047772400081157684,
0.07883041352033615,
0.10948249697685242,
-0.0023611325304955244,
0.029191456735134125,
-0.027328576892614365,
0.2070295363664627,
-0.09559162706136703,
0.031062902882695198,
0.15881919860839844,
0.0016989954747259617,
0.044234488159418106,
0.09438114613294601,
0.018354590982198715,
-0.08200175315141678,
0.01938348077237606,
0.060757532715797424,
-0.0045515126548707485,
-0.2687854766845703,
-0.045808177441358566,
-0.008746146224439144,
-0.037421029061079025,
0.0948415994644165,
0.05157962813973427,
0.02780655026435852,
0.0357208326458931,
-0.03361428156495094,
0.0023105256259441376,
0.01635233499109745,
0.07570482790470123,
0.08930080384016037,
0.03397310525178909,
0.08962070941925049,
-0.0262199267745018,
0.01307691354304552,
0.06440191715955734,
0.03567986562848091,
0.22475315630435944,
-0.007293200585991144,
0.11138513684272766,
0.024503909051418304,
0.15470461547374725,
-0.02507842890918255,
0.03389746695756912,
0.034709930419921875,
0.012009224854409695,
0.033421434462070465,
-0.06997615844011307,
-0.011969072744250298,
0.05131826549768448,
0.003787460271269083,
0.029402442276477814,
-0.0844799280166626,
0.03764810413122177,
0.007775221019983292,
0.30793559551239014,
0.0425560288131237,
-0.27562591433525085,
-0.105659119784832,
0.02237859182059765,
-0.05410012975335121,
-0.07816926389932632,
0.00934609118849039,
0.11148721724748611,
-0.14266201853752136,
0.09955653548240662,
-0.046870775520801544,
0.0934915691614151,
-0.015642166137695312,
-0.009443712420761585,
0.05368506535887718,
0.09057531505823135,
0.01060378085821867,
0.08370280265808105,
-0.171952024102211,
0.19900837540626526,
0.018908537924289703,
0.12018514424562454,
-0.05281466618180275,
0.05529525503516197,
0.003229143563657999,
0.08243588358163834,
0.11894107609987259,
-0.015596752054989338,
-0.04899654537439346,
-0.11047641932964325,
-0.10688169300556183,
0.026481065899133682,
0.10819084197282791,
-0.04292824864387512,
0.07417501509189606,
-0.03116503171622753,
-0.012743636965751648,
0.04671238735318184,
-0.07331676781177521,
-0.2085258513689041,
-0.11942552030086517,
0.035062555223703384,
0.009940302930772305,
0.06162983924150467,
-0.10594358295202255,
-0.10608981549739838,
-0.019991477951407433,
0.1683044731616974,
-0.07908888161182404,
-0.05318509042263031,
-0.1513347029685974,
0.04528259113430977,
0.16079211235046387,
-0.052327509969472885,
0.03513404354453087,
0.02452583983540535,
0.1829163283109665,
0.012533356435596943,
-0.081810362637043,
0.03489812836050987,
-0.09637397527694702,
-0.2066098004579544,
-0.025757793337106705,
0.17131729423999786,
0.06852708011865616,
0.03230012208223343,
0.018049707636237144,
0.014147941954433918,
0.017464321106672287,
-0.08732439577579498,
0.043084368109703064,
0.06615128368139267,
0.03564506769180298,
0.031295809894800186,
-0.031001687049865723,
-0.03520777076482773,
-0.05417490005493164,
-0.025930160656571388,
0.08882493525743484,
0.1835886836051941,
-0.08418005704879761,
0.09269767254590988,
0.08921042829751968,
-0.0696287676692009,
-0.170070618391037,
0.05281496047973633,
0.12749819457530975,
0.021059485152363777,
0.017356926575303078,
-0.19949199259281158,
0.09747037291526794,
0.09934791177511215,
-0.03753025084733963,
0.04513362795114517,
-0.26140478253364563,
-0.1409563273191452,
0.11049295961856842,
0.05599968135356903,
-0.053145311772823334,
-0.12875626981258392,
-0.06334589421749115,
-0.04624268785119057,
-0.1577809751033783,
0.11044881492853165,
-0.1318621039390564,
0.07053617388010025,
0.007540814578533173,
0.08498900383710861,
0.01427056360989809,
-0.025286557152867317,
0.1596304327249527,
0.04050327092409134,
0.04739685729146004,
-0.023663589730858803,
0.056315433233976364,
0.08203183114528656,
-0.0759216919541359,
0.06612161546945572,
-0.014974196441471577,
0.06869266927242279,
-0.14245711266994476,
-0.020100172609090805,
-0.08112891018390656,
0.08894351869821548,
-0.06616388261318207,
-0.038105323910713196,
-0.017606262117624283,
0.056657884269952774,
0.03289889171719551,
-0.03239339590072632,
0.0580073744058609,
0.006448280531913042,
0.0960950031876564,
0.1836654245853424,
0.11412853002548218,
0.01727082021534443,
-0.0916334018111229,
0.0016889050602912903,
-0.04493313655257225,
0.06480082869529724,
-0.10101620107889175,
0.039950039237737656,
0.10026054084300995,
0.04627370834350586,
0.12638768553733826,
0.010585797019302845,
-0.105150505900383,
-0.013788371346890926,
0.02452213130891323,
-0.0956476628780365,
-0.14955361187458038,
-0.030453190207481384,
0.01534721814095974,
-0.12375408411026001,
0.03868726268410683,
0.13224521279335022,
-0.06437450647354126,
-0.015875227749347687,
-0.01481600757688284,
0.0324067659676075,
-0.03171654790639877,
0.17592182755470276,
0.06404957920312881,
0.08861923962831497,
-0.06943979114294052,
0.14480893313884735,
0.0686013400554657,
-0.09887206554412842,
0.07433817535638809,
0.07584509998559952,
-0.07403168827295303,
-0.01978406310081482,
0.026794089004397392,
0.09907747060060501,
-0.016964050009846687,
-0.08699891716241837,
-0.06606633216142654,
-0.12104927003383636,
0.056722648441791534,
0.1554500162601471,
0.0073177204467356205,
0.003094231942668557,
-0.010072192177176476,
0.028563255444169044,
-0.12157486379146576,
0.09721815586090088,
0.06221240758895874,
0.042072031646966934,
-0.16474999487400055,
0.11688360571861267,
0.016948385164141655,
0.046953242272138596,
-0.014491414651274681,
0.011956880800426006,
-0.07851001620292664,
-0.011728097684681416,
-0.17437808215618134,
-0.005986385978758335,
-0.02687850594520569,
0.00677669420838356,
-0.02099599689245224,
-0.06692956387996674,
-0.04273039475083351,
0.07294412702322006,
-0.04857238009572029,
-0.05940157175064087,
-0.00710499519482255,
0.04639417305588722,
-0.1581304967403412,
-0.0019644652493298054,
0.03745095059275627,
-0.11288845539093018,
0.08571793138980865,
0.06539451330900192,
0.035432275384664536,
0.03172711655497551,
-0.055391404777765274,
-0.000029034530598437414,
0.015119572170078754,
0.021774066612124443,
0.046113308519124985,
-0.14811043441295624,
-0.01132926531136036,
-0.03208818659186363,
0.015404021367430687,
0.012603291310369968,
0.07408775389194489,
-0.09388820081949234,
-0.038475435227155685,
-0.03759881481528282,
-0.01593920588493347,
-0.060357045382261276,
0.05998905003070831,
0.13082146644592285,
0.03154697269201279,
0.12335168570280075,
-0.08272980153560638,
0.04084852710366249,
-0.1916808933019638,
-0.018029753118753433,
-0.02351192757487297,
-0.006967321503907442,
-0.025021230801939964,
0.005984534975141287,
0.08873146772384644,
-0.053790684789419174,
0.09318117797374725,
-0.056080855429172516,
0.11154977232217789,
0.05182464420795441,
-0.09317182004451752,
-0.0702366977930069,
0.04618191719055176,
0.14823304116725922,
0.06606665998697281,
0.008333979174494743,
0.079778753221035,
-0.05020048841834068,
0.03508825600147247,
-0.001112571102567017,
0.15001191198825836,
0.14271533489227295,
-0.03556403890252113,
0.0808042585849762,
0.1137228012084961,
-0.13860304653644562,
-0.12485603243112564,
0.07863451540470123,
-0.04678104817867279,
0.100311778485775,
-0.06270574033260345,
0.10141678899526596,
0.11109365522861481,
-0.1783716231584549,
0.043183449655771255,
-0.0468028262257576,
-0.10838983952999115,
-0.10735046118497849,
-0.028404489159584045,
-0.06380564719438553,
-0.12263244390487671,
0.02689761109650135,
-0.10950132459402084,
0.038984257727861404,
0.039921216666698456,
0.015745515003800392,
0.011828147806227207,
0.14741234481334686,
-0.019951116293668747,
-0.01216984260827303,
0.08552207052707672,
0.019762130454182625,
-0.0010559442453086376,
-0.038122065365314484,
-0.04787352308630943,
0.07070887088775635,
0.04006951302289963,
0.06363425403833389,
-0.03515196219086647,
-0.013527631759643555,
0.04170110076665878,
0.010079986415803432,
-0.07463489472866058,
0.025482747703790665,
0.010224948637187481,
0.029289036989212036,
0.06078610196709633,
0.05223263055086136,
0.0047358437441289425,
-0.03015528805553913,
0.2589294910430908,
-0.09294141083955765,
-0.0876765251159668,
-0.1563311666250229,
0.15055301785469055,
0.003961607813835144,
-0.0013633467024192214,
0.06356849521398544,
-0.11167560517787933,
-0.03061266802251339,
0.13649043440818787,
0.10441984236240387,
-0.021894648671150208,
-0.00687361229211092,
-0.016062691807746887,
-0.018696678802371025,
-0.04984097555279732,
0.09243862330913544,
0.10497501492500305,
0.04378671944141388,
-0.05350049212574959,
0.002961336402222514,
0.019768765196204185,
-0.06245609372854233,
-0.07553285360336304,
0.11778871715068817,
-0.03870085999369621,
0.008705299347639084,
-0.01735013909637928,
0.0966472402215004,
-0.004499860107898712,
-0.23108050227165222,
0.02581619657576084,
-0.15091805160045624,
-0.18307144939899445,
-0.030741477385163307,
0.054951880127191544,
-0.014740610495209694,
0.04142731428146362,
0.017153367400169373,
-0.0205726008862257,
0.18613001704216003,
0.005452044308185577,
-0.036841847002506256,
-0.1055503711104393,
0.0918317437171936,
-0.09198785573244095,
0.21224117279052734,
-0.011478545144200325,
0.059712689369916916,
0.089304618537426,
0.002669943729415536,
-0.15713004767894745,
0.011719898320734501,
0.07909692078828812,
-0.05022510886192322,
0.025810837745666504,
0.17699511349201202,
-0.05246967449784279,
0.11723951250314713,
0.031234117224812508,
-0.13981471955776215,
-0.049064841121435165,
-0.015527457930147648,
-0.023290934041142464,
-0.08560130000114441,
0.016511691734194756,
-0.05847476050257683,
0.14599081873893738,
0.16374199092388153,
-0.07108858972787857,
-0.002698872471228242,
-0.0655365064740181,
0.041871581226587296,
0.043931588530540466,
0.10703253000974655,
0.012914860621094704,
-0.20239810645580292,
0.030235599726438522,
-0.012128747068345547,
0.04933245852589607,
-0.2273867428302765,
-0.079227514564991,
0.04295436665415764,
-0.045586660504341125,
-0.024344483390450478,
0.10944940894842148,
0.05672840401530266,
0.023824375122785568,
-0.029472781345248222,
-0.07213229686021805,
-0.041774049401283264,
0.13881291449069977,
-0.16710039973258972,
-0.02521633170545101
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | kenchenxingyu/flan-large-lora-stance-human7 | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:12:46+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | diffusers | # replicate_lora
<Gallery />
## Trigger words
You should use `qq` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/sduo/qq/tree/main) them in the Files & versions tab.
| {"license": "apache-2.0", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora"], "widget": [{"text": "-", "output": {"url": "images/AlenaAenami_Lights_1k.jpg"}}], "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "qq"} | text-to-image | sduo/qq | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"base_model:runwayml/stable-diffusion-v1-5",
"license:apache-2.0",
"region:us"
] | 2024-02-13T11:13:40+00:00 | [] | [] | TAGS
#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-runwayml/stable-diffusion-v1-5 #license-apache-2.0 #region-us
| # replicate_lora
<Gallery />
## Trigger words
You should use 'qq' to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
| [
"# replicate_lora\n\n<Gallery />",
"## Trigger words\n\nYou should use 'qq' to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab."
] | [
"TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-runwayml/stable-diffusion-v1-5 #license-apache-2.0 #region-us \n",
"# replicate_lora\n\n<Gallery />",
"## Trigger words\n\nYou should use 'qq' to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab."
] | [
62,
11,
16,
28
] | [
"passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #base_model-runwayml/stable-diffusion-v1-5 #license-apache-2.0 #region-us \n# replicate_lora\n\n<Gallery />## Trigger words\n\nYou should use 'qq' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab."
] | [
-0.12144207954406738,
-0.00824687909334898,
-0.0019451163243502378,
0.03809784725308418,
0.08072858303785324,
0.04576229304075241,
0.0975005105137825,
0.08705539256334305,
0.10560081899166107,
0.030315233394503593,
0.06685444712638855,
0.05430467054247856,
0.05108094960451126,
0.18680067360401154,
-0.05195890739560127,
-0.16066007316112518,
0.05748971551656723,
-0.0018388316966593266,
-0.12629558145999908,
0.04184187203645706,
0.03234299644827843,
-0.041314300149679184,
0.11001419275999069,
-0.028182320296764374,
0.012639351189136505,
0.036452073603868484,
0.02292289212346077,
-0.02060212753713131,
0.03240588307380676,
0.055369772017002106,
-0.05525585263967514,
0.18929585814476013,
0.11197680234909058,
-0.14163422584533691,
0.061658892780542374,
0.009845814667642117,
-0.09950760751962662,
0.016146553680300713,
-0.008904144167900085,
-0.03021956980228424,
0.046278346329927444,
-0.012171401642262936,
-0.09669329971075058,
0.033413346856832504,
-0.019292905926704407,
-0.11692113429307938,
0.0025868676602840424,
-0.03862939402461052,
0.10166160762310028,
-0.03770337998867035,
0.005548159126192331,
0.016704870387911797,
-0.03146359324455261,
0.02229081466794014,
0.2026134729385376,
-0.33297041058540344,
-0.025291496887803078,
0.23749016225337982,
0.0659114420413971,
0.15857326984405518,
-0.021500620990991592,
0.11530949920415878,
0.10211930423974991,
-0.025616362690925598,
0.0026241966988891363,
-0.0691201388835907,
0.04923427477478981,
-0.027372706681489944,
-0.08224611729383469,
0.041814982891082764,
0.27720415592193604,
0.03889872878789902,
-0.0329282209277153,
-0.056248925626277924,
-0.08627461642026901,
0.12344294786453247,
-0.09476451575756073,
0.017575135454535484,
0.03865613788366318,
0.06001269817352295,
-0.04847414046525955,
-0.08968159556388855,
-0.08051658421754837,
-0.10354936867952347,
-0.03806439787149429,
-0.008886149153113365,
0.038729503750801086,
0.06360935419797897,
-0.040426105260849,
0.11066516488790512,
-0.15644562244415283,
-0.13524499535560608,
-0.03158440813422203,
-0.1457148790359497,
0.07087912410497665,
0.1000676080584526,
-0.010249114595353603,
-0.0519479438662529,
0.1742701530456543,
0.03602006658911705,
0.1359323114156723,
-0.01893683522939682,
-0.005457467399537563,
0.10196352750062943,
-0.04101144149899483,
0.056103769689798355,
-0.030673805624246597,
-0.09102989733219147,
0.12310639023780823,
0.09838058054447174,
0.019975945353507996,
-0.027567798271775246,
-0.17186938226222992,
-0.04702797159552574,
-0.07815852761268616,
0.0769704207777977,
0.011026072315871716,
0.02292691543698311,
-0.02342139184474945,
-0.020326951518654823,
0.1261342465877533,
0.019596967846155167,
-0.108254075050354,
-0.013419085182249546,
0.00702460203319788,
0.1255580484867096,
0.11939803510904312,
0.008668584749102592,
0.08064956218004227,
-0.0951208621263504,
-0.03270331770181656,
-0.05611930787563324,
-0.01210209634155035,
-0.04542612284421921,
-0.027898039668798447,
-0.05791962519288063,
0.04348670318722725,
-0.16455218195915222,
-0.23294386267662048,
0.028928058221936226,
0.05177697911858559,
-0.007813261821866035,
-0.01486324705183506,
-0.021357590332627296,
-0.005505736917257309,
-0.023617519065737724,
0.010454949922859669,
0.04721612110733986,
-0.07079625874757767,
0.11129467934370041,
-0.026229457929730415,
0.1600424349308014,
-0.13175632059574127,
0.024912556633353233,
-0.10203980654478073,
0.07697158306837082,
-0.14131852984428406,
0.04180159047245979,
-0.07407461851835251,
0.01717069372534752,
-0.05764473229646683,
-0.030019722878932953,
-0.03170422837138176,
0.0048414296470582485,
-0.0009411011706106365,
0.18097437918186188,
-0.26321783661842346,
-0.03673265874385834,
0.11625533550977707,
-0.14207342267036438,
-0.15088263154029846,
0.05759814381599426,
0.01380753330886364,
0.1283433735370636,
0.04900014027953148,
0.15978683531284332,
0.12979450821876526,
-0.21825933456420898,
0.030271360650658607,
0.11376765370368958,
-0.07770819216966629,
-0.12108300626277924,
0.06777457147836685,
0.08799882978200912,
-0.05687845125794411,
0.08432025462388992,
-0.16230416297912598,
0.10234172642230988,
-0.059872280806303024,
-0.04574557766318321,
-0.058108750730752945,
-0.14270037412643433,
0.045398253947496414,
-0.02712106704711914,
0.012905935756862164,
0.06146059185266495,
-0.015414277091622353,
-0.1038537248969078,
0.08516649156808853,
-0.06966442614793777,
-0.02095356211066246,
-0.02704843319952488,
0.18224753439426422,
-0.1463167369365692,
0.053105153143405914,
-0.0207672081887722,
-0.03841692581772804,
0.028570886701345444,
0.07296989858150482,
0.03654934838414192,
0.050004057586193085,
0.07843845337629318,
0.035363487899303436,
-0.07114527374505997,
-0.03940059617161751,
0.06617240607738495,
-0.03457432985305786,
-0.05259142443537712,
-0.0874672532081604,
-0.005148307885974646,
-0.05275290459394455,
0.060894645750522614,
-0.09576296806335449,
0.03129102662205696,
-0.025050858035683632,
0.01769425719976425,
0.035602353513240814,
0.0653950572013855,
0.04746638983488083,
-0.06332419812679291,
-0.0318329855799675,
-0.002601748565211892,
0.06177568808197975,
0.01457094307988882,
-0.09891849011182785,
0.1454196572303772,
-0.03336416184902191,
0.12267675995826721,
0.1258060336112976,
0.10890663415193558,
0.08273434638977051,
-0.16976800560951233,
-0.002096224343404174,
0.025930775329470634,
-0.03178560361266136,
-0.017106177285313606,
-0.08383088558912277,
0.007924506440758705,
0.055607981979846954,
-0.10964170098304749,
0.05709046125411987,
0.04377543181180954,
-0.021078338846564293,
-0.01465807855129242,
0.09880806505680084,
0.23213805258274078,
0.003575589507818222,
0.02413678728044033,
0.2405080497264862,
-0.027962472289800644,
0.09490998834371567,
-0.03292810171842575,
-0.1032630130648613,
0.04639413580298424,
0.0551907978951931,
0.024033542722463608,
0.19098752737045288,
0.08772434294223785,
0.018572814762592316,
0.05002138018608093,
-0.07529930770397186,
0.00189007178414613,
-0.10096218436956406,
-0.0788608267903328,
-0.0304165780544281,
-0.0787445679306984,
-0.0030373253393918276,
0.11501706391572952,
-0.047569721937179565,
0.07935573905706406,
-0.07109733670949936,
-0.04475901275873184,
-0.004660571459680796,
-0.03270438313484192,
-0.036822609603405,
0.1208169236779213,
-0.012574649415910244,
-0.09067925065755844,
-0.14508478343486786,
0.031759392470121384,
-0.10010388493537903,
-0.020781926810741425,
0.08152381330728531,
-0.08371192961931229,
-0.029690947383642197,
-0.0348813459277153,
0.06640879064798355,
0.13957084715366364,
0.01661376655101776,
-0.06487396359443665,
0.012405443005263805,
-0.0007559822406619787,
-0.10615664720535278,
-0.007258044555783272,
-0.09621614217758179,
-0.04060130938887596,
0.07818103581666946,
-0.13196058571338654,
0.14863532781600952,
0.059624649584293365,
0.020588809624314308,
0.03765442967414856,
-0.011518791317939758,
0.2696205973625183,
-0.014567725360393524,
0.09173416346311569,
0.272799015045166,
0.1011611670255661,
0.045999675989151,
0.15616852045059204,
0.0198046937584877,
-0.08078192174434662,
0.05135058984160423,
-0.012960204854607582,
-0.10721663385629654,
-0.07966674864292145,
-0.07713644206523895,
-0.04992891848087311,
0.01629900000989437,
-0.008537182584404945,
0.0448446124792099,
-0.020937183871865273,
0.17482274770736694,
-0.025468861684203148,
-0.007346595171838999,
0.027001574635505676,
0.02017798274755478,
0.020685354247689247,
0.021393826231360435,
0.05990144982933998,
-0.05027466639876366,
-0.000979581498540938,
0.125385120511055,
0.13672742247581482,
0.2438008040189743,
-0.042322929948568344,
-0.04472662881016731,
0.07829058915376663,
0.18388760089874268,
0.15428711473941803,
0.12683026492595673,
-0.05339986830949783,
-0.03553681820631027,
-0.04888276755809784,
-0.09707695990800858,
0.057498499751091,
0.09264720231294632,
-0.013732213526964188,
-0.003115851664915681,
-0.030375253409147263,
0.11207867413759232,
0.013467492535710335,
0.11534500122070312,
0.04833485558629036,
-0.17009337246418,
0.07068312913179398,
0.07244472950696945,
0.12681648135185242,
-0.0008083601132966578,
0.09144878387451172,
0.08663786947727203,
-0.05813274905085564,
-0.012544839642941952,
-0.025793470442295074,
0.09839393943548203,
0.04535967484116554,
-0.03887579217553139,
-0.05211402103304863,
0.07554125785827637,
-0.006917113903909922,
0.04518556222319603,
-0.1494973599910736,
0.07997105270624161,
0.008254842832684517,
0.020477861166000366,
0.0034176823683083057,
-0.03834715485572815,
0.12748445570468903,
0.10396968573331833,
0.18151375651359558,
-0.024792835116386414,
0.10241729021072388,
-0.09419400244951248,
-0.15395601093769073,
0.0918223187327385,
-0.011269476264715195,
-0.033199142664670944,
0.03475220501422882,
-0.0021034011151641607,
-0.014206405729055405,
-0.004340196028351784,
0.13194061815738678,
-0.14846092462539673,
-0.06413818895816803,
-0.05578259006142616,
0.07500682771205902,
0.06495391577482224,
-0.06608022749423981,
-0.041221022605895996,
-0.14270751178264618,
-0.05184345692396164,
-0.0032444389071315527,
-0.14459994435310364,
-0.04236328974366188,
-0.11351244151592255,
0.08741515129804611,
-0.06688842922449112,
0.03231519088149071,
-0.030141202732920647,
0.08184640109539032,
-0.093468077480793,
-0.19340655207633972,
0.022853253409266472,
-0.07685495913028717,
-0.08976173400878906,
-0.02224121242761612,
0.07213699817657471,
-0.07818529009819031,
0.01753891259431839,
0.05372554436326027,
-0.027235472574830055,
-0.032405074685811996,
-0.12784689664840698,
0.023651601746678352,
-0.04221251234412193,
-0.0525394082069397,
-0.005527580622583628,
-0.11800865083932877,
-0.08095422387123108,
-0.032711535692214966,
0.021747559309005737,
0.05466131865978241,
0.25881755352020264,
-0.09233057498931885,
0.03151318058371544,
0.15531738102436066,
-0.0012633133446797729,
-0.23173373937606812,
-0.09279671311378479,
-0.055648937821388245,
-0.002041896339505911,
0.05392304062843323,
-0.042426805943250656,
0.13598249852657318,
0.11338958144187927,
-0.05032668635249138,
0.16058824956417084,
-0.3081555962562561,
-0.10475388169288635,
0.06862994283437729,
0.15213054418563843,
0.22162991762161255,
-0.18726548552513123,
-0.039680976420640945,
-0.04740985855460167,
-0.19114916026592255,
0.040325988084077835,
-0.16818717122077942,
0.05104885250329971,
-0.0361514687538147,
-0.02656475454568863,
-0.034283172339200974,
0.007843571715056896,
0.16233094036579132,
-0.05741962790489197,
0.0451275110244751,
0.0064984713681042194,
-0.012514248490333557,
0.04822994023561478,
-0.043595053255558014,
0.03779015317559242,
-0.2113509625196457,
0.06497088074684143,
-0.05739949643611908,
-0.006738468073308468,
-0.03229905664920807,
0.037581417709589005,
-0.0037841747980564833,
-0.08752921968698502,
-0.025854116305708885,
0.000909085210878402,
0.01876058429479599,
0.01571228727698326,
-0.0012656934559345245,
-0.06608109921216965,
-0.01649116538465023,
0.16731096804141998,
-0.029890060424804688,
-0.04999808967113495,
-0.06054086610674858,
-0.06184079498052597,
-0.06004656106233597,
0.11684442311525345,
-0.1694837361574173,
-0.005106573458760977,
0.09717658162117004,
-0.008290000259876251,
0.06504891067743301,
0.04586374759674072,
0.0478164404630661,
0.1486358642578125,
0.10978733748197556,
-0.05620066449046135,
-0.11877357214689255,
-0.0827656239271164,
-0.013581939041614532,
-0.0005954166990704834,
0.06992651522159576,
0.07947251200675964,
-0.055260468274354935,
0.00112329819239676,
-0.0028853423427790403,
0.01980249024927616,
-0.044698216021060944,
0.06562652438879013,
0.11420819908380508,
0.011290190741419792,
-0.11261741816997528,
0.09728013724088669,
-0.043571747839450836,
0.014499452896416187,
-0.11231251806020737,
0.013732745312154293,
-0.11385951936244965,
-0.05908167362213135,
0.04239601269364357,
0.12802666425704956,
-0.10967618972063065,
0.0033354938495904207,
-0.07349526137113571,
-0.10795009881258011,
-0.03760666400194168,
0.1491767168045044,
0.06815462559461594,
-0.06481929123401642,
0.033717796206474304,
-0.03299583122134209,
0.00830170325934887,
0.08898430317640305,
0.06816878169775009,
0.04909219965338707,
-0.1637468785047531,
-0.17447742819786072,
-0.016029566526412964,
0.10488831251859665,
-0.11495672911405563,
-0.029553908854722977,
-0.08507811278104782,
0.017775624990463257,
-0.20073315501213074,
0.11286839097738266,
-0.08243656903505325,
0.010195420123636723,
-0.08454065769910812,
-0.05567421019077301,
-0.06372419744729996,
0.03583844006061554,
-0.07912694662809372,
0.017303554341197014,
-0.018965311348438263,
0.07534071058034897,
-0.056201644241809845,
-0.033907193690538406,
0.028282517567276955,
-0.049733612686395645,
0.0464903861284256,
-0.030106429010629654,
-0.07173334807157516,
0.044711727648973465,
-0.0980924665927887,
-0.032105907797813416,
0.05373385176062584,
0.07200372964143753,
-0.0012377308448776603,
0.1168869361281395,
0.05057448893785477,
-0.015998370945453644,
-0.04615851491689682,
-0.03040616400539875,
-0.04056871682405472,
-0.09837760031223297,
0.06985816359519958,
-0.08942075818777084,
0.06684625148773193,
-0.007135178428143263,
-0.03146971017122269,
0.12163981795310974,
0.12103313207626343,
0.1067470833659172,
-0.0986558347940445,
0.003680129535496235,
-0.13337570428848267,
0.004737057723104954,
0.032879531383514404,
-0.07536567747592926,
-0.10121969878673553,
-0.06649893522262573,
-0.006421287544071674,
-0.004706080537289381,
0.16652104258537292,
-0.007273190189152956,
-0.021231716498732567,
-0.030694788321852684,
0.11995930969715118,
0.0986667275428772,
-0.02496049553155899,
0.2454485297203064,
0.10748562961816788,
0.11998698860406876,
-0.08867564052343369,
0.0975247323513031,
0.09668028354644775,
-0.04517139494419098,
-0.0281029362231493,
0.07047805190086365,
0.06704757362604141,
0.10766594111919403,
0.05320994183421135,
0.09714101999998093,
0.0466509647667408,
0.05229121819138527,
-0.005532740615308285,
0.023642614483833313,
-0.03047890216112137,
0.019511841237545013,
0.18119198083877563,
-0.06075069308280945,
-0.03583948314189911,
0.09209781140089035,
0.008451617322862148,
-0.10830893367528915,
-0.1676655411720276,
-0.08567215502262115,
-0.2518879771232605,
0.024755289778113365,
-0.06646814942359924,
-0.06076645478606224,
0.13165424764156342,
0.026149731129407883,
0.01607242226600647,
0.027723832055926323,
-0.06970551609992981,
-0.07202931493520737,
0.06830739229917526,
-0.04262565076351166,
-0.04407914727926254,
0.012825214304029942,
-0.015570624731481075,
0.13463051617145538,
-0.060567643493413925,
-0.058572035282850266,
0.05265408381819725,
0.01173058245331049,
0.04304090514779091,
-0.06403151899576187,
-0.05678302049636841,
-0.04520371928811073,
0.03085910901427269,
-0.035290371626615524,
0.14536933600902557,
0.034643422812223434,
0.005272548645734787,
0.019814329221844673,
0.13889606297016144,
-0.02050221525132656,
-0.10810325294733047,
-0.09958354383707047,
0.01853301003575325,
-0.10626763105392456,
0.06597713381052017,
-0.02496439777314663,
-0.08927463740110397,
-0.024124082177877426,
0.32007983326911926,
0.1317223161458969,
-0.150116965174675,
-0.004492708016186953,
-0.016972076147794724,
0.004627135116606951,
-0.03991217166185379,
0.07703319936990738,
0.07757975161075592,
0.19264543056488037,
-0.11401984095573425,
-0.021832404658198357,
-0.08946431428194046,
-0.01776413433253765,
-0.06721512228250504,
-0.036844417452812195,
-0.009605111554265022,
-0.0632462278008461,
-0.05337065830826759,
0.10838394612073898,
-0.1591372787952423,
0.09589407593011856,
-0.057082343846559525,
-0.046120643615722656,
-0.02814452350139618,
-0.13795386254787445,
0.004728114232420921,
0.08174505829811096,
-0.05793139711022377,
-0.12278606742620468,
0.05481553450226784,
-0.02318488247692585,
-0.04178069531917572,
-0.08095504343509674,
-0.08772515505552292,
0.030967658385634422,
-0.03917043283581734,
0.12982431054115295,
0.0002619306615088135,
-0.0353214405477047,
-0.011972686275839806,
-0.010893854312598705,
-0.04567743092775345,
0.11485177278518677,
0.006445702165365219,
-0.1635259985923767,
-0.03529851883649826,
-0.02443252131342888,
-0.039746105670928955,
0.09936416894197464,
-0.011196665465831757,
-0.042550452053546906,
0.0417250394821167,
0.14698708057403564,
-0.06350737810134888,
-0.07458300143480301,
0.07254281640052795,
-0.09984375536441803,
0.07120918482542038,
-0.004896137863397598,
-0.011251268908381462,
-0.01422641146928072,
-0.03314676135778427,
0.10058929771184921,
0.08176267892122269,
-0.05921533331274986,
0.05753626301884651,
-0.009265216067433357,
-0.046122923493385315,
0.006458592135459185,
-0.0367107093334198,
-0.1718985140323639,
-0.02404113858938217,
-0.17046113312244415,
0.035540953278541565,
-0.02459484338760376,
0.09188828617334366,
0.2629965543746948,
0.003265470266342163,
-0.011025453917682171,
-0.2185327410697937,
0.02620217576622963,
0.04142453521490097,
-0.1096610352396965,
-0.09388666599988937
] |
null | null | transformers |

# Monarch-7B
**Update 13/02/24: Monarch-7B is the best-performing model on the YALL leaderboard.**
Monarch-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
* [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
## 🏆 Evaluation
The evaluation was performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval) on Nous suite. See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [**Monarch-7B**](https://huggingface.co/mlabonne/Monarch-7B) [📄](https://gist.github.com/mlabonne/0b8d057c5ece41e0290580a108c7a093) | **62.68** | **45.48** | **77.07** | **78.04** | **50.14** |
| [teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/88b21dd9698ffed75d6163ebdc2f6cc8) | 52.42 | 42.75 | 72.99 | 52.99 | 40.94 |
| [mlabonne/NeuralHermes-2.5-Mistral-7B](https://huggingface.co/mlabonne/NeuralHermes-2.5-Mistral-7B) [📄](https://gist.github.com/mlabonne/14687f1eb3425b166db511f31f8e66f6) | 53.51 | 43.67 | 73.24 | 55.37 | 41.76 |
| [mlabonne/NeuralBeagle14-7B](https://huggingface.co/mlabonne/NeuralBeagle14-7B) [📄](https://gist.github.com/mlabonne/ad0c665bbe581c8420136c3b52b3c15c) | 60.25 | 46.06 | 76.77 | 70.32 | 47.86 |
| [eren23/dpo-binarized-NeuralTrix-7B](https://huggingface.co/eren23/dpo-binarized-NeuralTrix-7B) [📄](https://gist.github.com/CultriX-Github/dbdde67ead233df0c7c56f1b091f728c) | 62.5 | 44.57 | 76.34 | 79.81 | 49.27 |
| [CultriX/NeuralTrix-7B-dpo](https://huggingface.co/CultriX/NeuralTrix-7B-dpo) [📄](https://gist.github.com/CultriX-Github/df0502599867d4043b45d9dafb5976e8) | 62.5 | 44.61 | 76.33 | 79.8 | 49.24 |
## 🧩 Configuration
```yaml
models:
- model: mistralai/Mistral-7B-v0.1
# no parameters necessary for base model
- model: mlabonne/OmniTruthyBeagle-7B-v0
parameters:
density: 0.65
weight: 0.36
- model: mlabonne/NeuBeagle-7B
parameters:
density: 0.6
weight: 0.34
- model: mlabonne/NeuralOmniBeagle-7B
parameters:
density: 0.6
weight: 0.3
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Monarch-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "cc-by-nc-4.0", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": ["mlabonne/OmniTruthyBeagle-7B-v0", "mlabonne/NeuBeagle-7B", "mlabonne/NeuralOmniBeagle-7B"]} | text-generation | mlabonne/Monarch-7B | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"base_model:mlabonne/OmniTruthyBeagle-7B-v0",
"base_model:mlabonne/NeuBeagle-7B",
"base_model:mlabonne/NeuralOmniBeagle-7B",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:14:30+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/OmniTruthyBeagle-7B-v0 #base_model-mlabonne/NeuBeagle-7B #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| !image/jpeg
Monarch-7B
==========
Update 13/02/24: Monarch-7B is the best-performing model on the YALL leaderboard.
Monarch-7B is a merge of the following models using LazyMergekit:
* mlabonne/OmniTruthyBeagle-7B-v0
* mlabonne/NeuBeagle-7B
* mlabonne/NeuralOmniBeagle-7B
Evaluation
----------
The evaluation was performed using LLM AutoEval on Nous suite. See the entire leaderboard here.
Configuration
-------------
Usage
-----
| [] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/OmniTruthyBeagle-7B-v0 #base_model-mlabonne/NeuBeagle-7B #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
124
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/OmniTruthyBeagle-7B-v0 #base_model-mlabonne/NeuBeagle-7B #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.03171207010746002,
0.05988817289471626,
-0.005457030609250069,
0.012348882853984833,
0.0621623657643795,
0.03427324444055557,
0.18211525678634644,
0.09208811819553375,
-0.006350107491016388,
0.03628147765994072,
0.12695077061653137,
0.15688006579875946,
-0.0065443795174360275,
0.10190165042877197,
-0.06162845343351364,
-0.1812572479248047,
0.08068788051605225,
0.028836267068982124,
0.02234497107565403,
0.07886272668838501,
0.10019291937351227,
-0.030452841892838478,
0.09777487814426422,
-0.04148299992084503,
-0.11218062788248062,
0.02554638497531414,
0.024579942226409912,
-0.04901210218667984,
0.09398659318685532,
0.07524888217449188,
0.07169485092163086,
0.06397867947816849,
-0.03649827092885971,
-0.15530145168304443,
0.04766049236059189,
0.010547172278165817,
-0.06258520483970642,
0.06604472547769547,
0.0015665916725993156,
-0.05915724113583565,
0.14083710312843323,
-0.059022195637226105,
0.007368316873908043,
0.07861928641796112,
-0.13188347220420837,
-0.05757098272442818,
-0.05056750029325485,
0.10489718616008759,
0.045956384390592575,
0.05801631882786751,
-0.038220107555389404,
0.13893362879753113,
0.02074384316802025,
0.10463972389698029,
0.15922562777996063,
-0.32305532693862915,
-0.042250022292137146,
0.170669823884964,
0.06918703764677048,
0.016474617645144463,
-0.023618184030056,
0.09497614204883575,
0.08045995235443115,
-0.009573930874466896,
0.03309779614210129,
-0.07186915725469589,
0.14101628959178925,
-0.022177020087838173,
-0.11229120194911957,
0.020067283883690834,
0.15368430316448212,
0.021854829043149948,
0.001081204740330577,
-0.07708703726530075,
-0.08256012946367264,
0.08696788549423218,
-0.0646272599697113,
-0.00743940519168973,
0.002194647677242756,
0.023449206724762917,
0.012256481684744358,
-0.08318626880645752,
-0.048287343233823776,
-0.013136221095919609,
-0.12546908855438232,
0.1540406048297882,
-0.017672032117843628,
-0.013111181557178497,
-0.004356659948825836,
0.05169614404439926,
-0.06587277352809906,
-0.12466522306203842,
0.004798083566129208,
-0.06461544334888458,
0.03152835741639137,
-0.024249466136097908,
-0.05197412520647049,
-0.03450499102473259,
0.12621602416038513,
0.21735301613807678,
-0.015977350994944572,
0.030710555613040924,
-0.037462349981069565,
0.06629229336977005,
-0.0036238795146346092,
-0.05226759612560272,
-0.10157460719347,
-0.15679633617401123,
0.08927733451128006,
0.06291726231575012,
0.08927559852600098,
-0.0344589501619339,
-0.10237346589565277,
-0.02476133592426777,
0.0286985095590353,
0.023549767211079597,
0.08695195615291595,
0.11067135632038116,
-0.07631213217973709,
-0.024552375078201294,
0.12097056210041046,
-0.05907805263996124,
-0.011265985667705536,
0.014509191736578941,
0.008768410421907902,
0.017997344955801964,
0.042001545429229736,
0.05600500479340553,
-0.006740889512002468,
-0.004445699974894524,
-0.09730710089206696,
-0.06161608546972275,
-0.024195710197091103,
-0.0808195024728775,
0.033522769808769226,
-0.004728552419692278,
-0.00100902677513659,
-0.12363173067569733,
-0.22268858551979065,
-0.0064157587476074696,
0.0396348237991333,
-0.05268397554755211,
-0.058500081300735474,
-0.09074375033378601,
-0.05224230885505676,
0.01536574400961399,
-0.012028124183416367,
-0.04565170407295227,
-0.031918153166770935,
0.024952899664640427,
0.019412316381931305,
0.061533037573099136,
-0.17974093556404114,
0.006105548236519098,
-0.07626156508922577,
0.050947658717632294,
-0.18011924624443054,
0.07072582840919495,
-0.04630070924758911,
0.12461022287607193,
-0.06568125635385513,
-0.007310708053410053,
-0.07796332240104675,
0.04319929704070091,
0.028747795149683952,
0.17890916764736176,
-0.08097539097070694,
-0.10857535898685455,
0.10748957842588425,
-0.11734605580568314,
-0.17475537955760956,
0.12183286994695663,
-0.005609407089650631,
0.06848737597465515,
0.12240304797887802,
0.2022181749343872,
0.03912559896707535,
-0.01639888435602188,
-0.03999858349561691,
0.014434095472097397,
-0.03348430246114731,
-0.012714451178908348,
0.056789278984069824,
0.02460652031004429,
-0.12478389590978622,
0.030905993655323982,
0.03436143696308136,
0.04495549574494362,
-0.032792992889881134,
-0.05779381841421127,
-0.04225686565041542,
-0.06590227782726288,
0.08533754199743271,
0.0012654014863073826,
0.0229517612606287,
-0.10151035338640213,
-0.05842239409685135,
0.07262158393859863,
0.0689639300107956,
-0.024337422102689743,
0.009543593972921371,
-0.06681350618600845,
0.09459950774908066,
-0.039273519068956375,
0.05618903785943985,
-0.0977434292435646,
-0.1047336533665657,
-0.020376533269882202,
0.01209685392677784,
0.07029604911804199,
-0.000489991158246994,
0.06715184450149536,
0.02544976957142353,
-0.09449928998947144,
-0.028588755056262016,
0.107465460896492,
0.01807180978357792,
-0.03040565364062786,
-0.21465744078159332,
0.029820729047060013,
-0.06347344070672989,
0.19289518892765045,
-0.15858478844165802,
0.08604013919830322,
0.034603334963321686,
0.15983761847019196,
-0.009766492061316967,
0.013012804090976715,
0.02924703247845173,
0.0007768023060634732,
-0.040432289242744446,
0.007130018435418606,
0.10342788696289062,
0.0014583764132112265,
-0.16081199049949646,
0.10984554141759872,
-0.16569209098815918,
0.18010276556015015,
0.16090281307697296,
-0.07822764664888382,
-0.012187519110739231,
-0.026669418439269066,
0.0002598429564386606,
-0.03313031792640686,
0.10084304213523865,
-0.0872253030538559,
0.04745092615485191,
-0.006679384037852287,
0.11102014034986496,
-0.09047655761241913,
-0.06031118333339691,
-0.0016619320958852768,
-0.03247373551130295,
-0.05097781494259834,
0.09062328934669495,
-0.03563476726412773,
-0.20824113488197327,
0.13628754019737244,
0.16933085024356842,
0.0027237371541559696,
0.16922545433044434,
0.018704866990447044,
0.02364528737962246,
-0.04341590404510498,
-0.00742688262835145,
0.02250474877655506,
0.011916736140847206,
-0.11995929479598999,
0.009895775467157364,
0.03664977848529816,
-0.021592816337943077,
0.06579292565584183,
-0.05485106259584427,
-0.01879577338695526,
-0.01762305200099945,
-0.009699387475848198,
0.047676391899585724,
0.07107353955507278,
-0.0117885060608387,
0.09920911490917206,
0.008726970292627811,
-0.03767825663089752,
0.03807981684803963,
-0.022046009078621864,
-0.0949980765581131,
0.17226813733577728,
-0.13640132546424866,
-0.22132478654384613,
-0.15093287825584412,
-0.0752638578414917,
-0.10497808456420898,
0.013214565813541412,
0.06014183908700943,
-0.02960493415594101,
-0.004420712124556303,
-0.11698054522275925,
0.053031351417303085,
0.040275219827890396,
-0.004843535367399454,
0.03537946566939354,
0.024910766631364822,
-0.003746386617422104,
-0.1193043515086174,
-0.03434479609131813,
-0.002842240035533905,
-0.05348256602883339,
0.05856350064277649,
-0.10822231322526932,
0.07987672090530396,
0.13894976675510406,
0.0501963272690773,
-0.025818828493356705,
-0.042335256934165955,
0.23778249323368073,
-0.057300277054309845,
0.06174901872873306,
0.1285943239927292,
-0.01654873602092266,
0.05429180711507797,
0.19633200764656067,
0.022984379902482033,
-0.08078694343566895,
0.03970372676849365,
0.0013209003955125809,
-0.026754897087812424,
-0.18634659051895142,
-0.11407175660133362,
-0.06463934481143951,
0.09687358140945435,
0.031357962638139725,
0.044102251529693604,
0.12686298787593842,
0.05855384096503258,
-0.07145750522613525,
-0.016067467629909515,
0.08852332085371017,
0.1042691171169281,
0.2430383861064911,
-0.021006902679800987,
0.13748633861541748,
-0.05371271073818207,
-0.04776611924171448,
0.06938192248344421,
0.0405745804309845,
0.025127459317445755,
0.06968811899423599,
0.12477557361125946,
0.03516243025660515,
0.013784841634333134,
0.07097826153039932,
0.06824515759944916,
-0.037802740931510925,
-0.05746838450431824,
-0.03263738378882408,
-0.08452735841274261,
-0.005781041923910379,
0.04845363646745682,
-0.06151552125811577,
0.04679813235998154,
-0.028863390907645226,
-0.04505534842610359,
0.10971049964427948,
0.0690048336982727,
0.101010762155056,
-0.2520424723625183,
-0.05486295744776726,
0.0756426453590393,
0.00733209727331996,
-0.04060046374797821,
0.011047715321183205,
0.027674270793795586,
-0.045116763561964035,
0.1344636082649231,
-0.013395644724369049,
0.09035961329936981,
-0.006024784408509731,
0.055721431970596313,
-0.08722322434186935,
0.05051508545875549,
-0.03667651116847992,
0.04162665829062462,
-0.2053627222776413,
0.16438795626163483,
0.03932496905326843,
0.02905251830816269,
0.024040013551712036,
-0.0025275745429098606,
0.054401323199272156,
0.20336201786994934,
0.08341530710458755,
-0.006917634047567844,
-0.029635857790708542,
-0.034660715609788895,
-0.05398669093847275,
0.013794159516692162,
0.06028991937637329,
-0.06266694515943527,
0.06810788065195084,
-0.02073766104876995,
-0.03246501460671425,
0.027195261791348457,
0.02042298950254917,
-0.16760292649269104,
-0.13875582814216614,
0.059474337846040726,
0.0836254209280014,
0.0816507637500763,
-0.07977564632892609,
-0.0548117533326149,
-0.0616769902408123,
0.22776629030704498,
-0.11128634214401245,
-0.058811005204916,
-0.09988830238580704,
-0.01572127267718315,
0.07778690755367279,
-0.05239688605070114,
0.06081468239426613,
-0.050498105585575104,
0.053455956280231476,
-0.07818471640348434,
-0.13959293067455292,
0.09567002952098846,
-0.08332750201225281,
-0.09111146628856659,
-0.03722340613603592,
0.1431482881307602,
-0.041578665375709534,
0.03832437843084335,
0.029272841289639473,
0.04224766045808792,
-0.03728961944580078,
-0.07401559501886368,
0.010009707883000374,
0.011392125859856606,
0.00014957075472921133,
0.07167929410934448,
-0.09345892816781998,
-0.15010161697864532,
-0.041336726397275925,
0.004060251638293266,
0.17698591947555542,
0.37548309564590454,
-0.010245567187666893,
0.05321341007947922,
0.21691755950450897,
-0.07947669923305511,
-0.259708046913147,
-0.03860592842102051,
-0.06948387622833252,
-0.03028341755270958,
-0.019781142473220825,
-0.1321147084236145,
0.09288565814495087,
0.09306319057941437,
-0.001101295929402113,
0.048657000064849854,
-0.23817598819732666,
-0.12230932712554932,
0.08213083446025848,
0.05070589482784271,
0.270845890045166,
-0.1599443554878235,
-0.09000211954116821,
-0.1120569035410881,
-0.155597522854805,
0.0879063755273819,
-0.13146883249282837,
0.09512915462255478,
0.0010499299969524145,
-0.020380796864628792,
0.011402882635593414,
-0.02975016087293625,
0.11395712196826935,
-0.020568963140249252,
0.051634907722473145,
-0.08739573508501053,
-0.04615969583392143,
0.16180719435214996,
-0.022136319428682327,
0.04020792245864868,
-0.16612130403518677,
0.017906436696648598,
-0.0350806787610054,
-0.03620615974068642,
-0.05082744359970093,
0.08265109360218048,
-0.042671192437410355,
-0.07287518680095673,
-0.030914848670363426,
0.05433236062526703,
0.010405417531728745,
0.02553996443748474,
0.13975487649440765,
-0.07821831107139587,
0.15322376787662506,
0.15325848758220673,
0.12734465301036835,
-0.14498522877693176,
0.11782408505678177,
0.006741474382579327,
-0.0892225056886673,
0.03407658636569977,
-0.08887393772602081,
-0.0018439705017954111,
0.09671561419963837,
-0.014369252137839794,
0.09375562518835068,
0.06145544350147247,
-0.017393702641129494,
-0.025621600449085236,
0.1315745711326599,
-0.17455032467842102,
-0.1198432520031929,
-0.03345715254545212,
-0.016167575493454933,
-0.04426668956875801,
0.09273459762334824,
0.20295996963977814,
-0.02245679683983326,
-0.010398156940937042,
0.036474037915468216,
-0.013540908694267273,
-0.08608359843492508,
0.07839268445968628,
0.049056027084589005,
0.050181157886981964,
-0.08450458943843842,
0.040692009031772614,
0.012474458664655685,
-0.05744254216551781,
0.007658304180949926,
0.11725816130638123,
-0.10430407524108887,
-0.11137617379426956,
-0.08617134392261505,
0.18134929239749908,
-0.06442873924970627,
-0.004852276295423508,
-0.11967237293720245,
-0.11426578462123871,
0.0403982438147068,
0.21793851256370544,
0.07917389273643494,
0.05077672004699707,
0.02394275926053524,
-0.02379859983921051,
-0.03741120174527168,
0.09431450814008713,
-0.01428049523383379,
0.06921324878931046,
-0.0731833428144455,
-0.007214713376015425,
-0.02815563976764679,
0.0059501901268959045,
-0.07228392362594604,
0.003916483372449875,
-0.1842271089553833,
-0.03257658705115318,
-0.1294778734445572,
-0.05324621871113777,
-0.129871666431427,
-0.029324358329176903,
-0.013129791244864464,
-0.04421832412481308,
-0.05245048552751541,
-0.026274606585502625,
-0.04595037177205086,
-0.025796668604016304,
0.027332687750458717,
0.07992332428693771,
-0.10194139927625656,
-0.016845818608999252,
0.044421643018722534,
-0.04650525376200676,
0.08914534747600555,
0.011292741633951664,
-0.020558472722768784,
0.04065779969096184,
-0.19421713054180145,
-0.016634538769721985,
0.04907263070344925,
-0.010226183570921421,
-0.0042220428586006165,
-0.062061432749032974,
-0.016149407252669334,
0.03110606223344803,
0.02844267338514328,
0.05346221476793289,
0.10599039494991302,
-0.0734705924987793,
0.025782838463783264,
-0.04067709296941757,
-0.0823872834444046,
-0.03631989285349846,
-0.026037538424134254,
0.04845920950174332,
-0.0016890305560082197,
0.1592620611190796,
-0.08661888539791107,
0.0035089817829430103,
-0.1461072415113449,
0.027297765016555786,
0.0003381625865586102,
-0.17577707767486572,
-0.03651805967092514,
-0.06445597112178802,
0.01986977830529213,
0.00173854548484087,
0.1666003316640854,
-0.07582148909568787,
-0.15317973494529724,
0.062331199645996094,
0.005433251149952412,
0.01763194426894188,
0.0422845259308815,
0.26470425724983215,
0.10945433378219604,
-0.02817445993423462,
-0.08043880015611649,
0.07152414321899414,
0.05180184543132782,
0.004340800456702709,
0.059756677597761154,
0.13176864385604858,
0.017624717205762863,
0.09896117448806763,
0.10028422623872757,
0.0685414969921112,
-0.016501041129231453,
0.051797740161418915,
-0.0011360469507053494,
0.035527147352695465,
-0.030636517331004143,
0.13089609146118164,
0.20830325782299042,
-0.07525593042373657,
0.02500758320093155,
0.008298899047076702,
-0.03020220808684826,
-0.10294265300035477,
-0.13433024287223816,
-0.10822059959173203,
-0.14344069361686707,
-0.017438802868127823,
-0.13539427518844604,
-0.06021920591592789,
0.003088317345827818,
0.03710494562983513,
-0.009304863400757313,
0.1252240687608719,
-0.00499432859942317,
-0.01934589073061943,
0.078313447535038,
-0.033551882952451706,
-0.04598792642354965,
-0.03578713536262512,
-0.05157940462231636,
-0.017228150740265846,
0.020413028076291084,
-0.027534931898117065,
0.030791161581873894,
-0.027362018823623657,
0.04081154242157936,
-0.07469359040260315,
-0.13074958324432373,
-0.011803103610873222,
0.05575667694211006,
0.0050396062433719635,
0.06438421458005905,
0.010721231810748577,
-0.0757421925663948,
0.03407987207174301,
0.162115216255188,
-0.016804099082946777,
-0.15249206125736237,
-0.08515706658363342,
0.15701596438884735,
-0.022577447816729546,
0.0751221626996994,
-0.04916468635201454,
-0.05105016008019447,
0.01729764975607395,
0.2095145583152771,
0.2992238700389862,
-0.07793929427862167,
0.025499286130070686,
0.01945885829627514,
0.024743925780057907,
0.051063381135463715,
0.051189884543418884,
0.052441325038671494,
0.13946571946144104,
-0.05216387286782265,
0.0006661377847194672,
-0.025073405355215073,
-0.04889192432165146,
-0.08872062712907791,
-0.011820792220532894,
0.04227804020047188,
-0.014228983782231808,
-0.02084233984351158,
0.09489618241786957,
-0.12270664423704147,
0.037882059812545776,
-0.04572531208395958,
-0.14584606885910034,
-0.06876002997159958,
-0.07560307532548904,
0.05633993446826935,
-0.009714306332170963,
0.06364662945270538,
-0.016826655715703964,
-0.04754997789859772,
0.009996689856052399,
-0.02855839766561985,
-0.10558958351612091,
-0.0662224143743515,
0.03257184475660324,
-0.046467725187540054,
0.10410736501216888,
-0.05456603690981865,
0.0007009429391473532,
0.1456136852502823,
-0.030125431716442108,
-0.09481970220804214,
0.06847284734249115,
0.018200192600488663,
-0.028910038992762566,
0.033697765320539474,
0.04429652541875839,
0.006487809121608734,
0.10591518133878708,
0.06497779488563538,
-0.1121082454919815,
0.043471809476614,
0.015654630959033966,
-0.07728473842144012,
-0.057656776160001755,
0.07119150459766388,
-0.06631895899772644,
0.1082187220454216,
0.10168170183897018,
-0.03798602893948555,
-0.013552865944802761,
-0.025863606482744217,
0.005939848721027374,
0.06794263422489166,
0.03642486408352852,
-0.02860483154654503,
-0.20675954222679138,
-0.020245332270860672,
0.06326586753129959,
0.008534003049135208,
-0.30984169244766235,
-0.08781889826059341,
-0.14478595554828644,
0.04124175384640694,
-0.11754748225212097,
0.08362016081809998,
0.1867225468158722,
-0.011199346743524075,
-0.01734986901283264,
-0.19871509075164795,
0.0005496992962434888,
0.1062685176730156,
-0.0900973230600357,
-0.11481279879808426
] |
null | null | transformers |
# OmnixBeagle-7B
OmnixBeagle-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp)
## 🧩 Configuration
```yaml
models:
- model: eren23/dpo-binarized-NeutrixOmnibe-7B
# No parameters necessary for base model
- model: Gille/StrangeMerges_21-7B-slerp
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: eren23/dpo-binarized-NeutrixOmnibe-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/OmnixBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "cc-by-nc-4.0", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": ["Gille/StrangeMerges_21-7B-slerp"]} | text-generation | shadowml/OmnixBeagle-7B | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"base_model:Gille/StrangeMerges_21-7B-slerp",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:18:49+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-Gille/StrangeMerges_21-7B-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# OmnixBeagle-7B
OmnixBeagle-7B is a merge of the following models using LazyMergekit:
* Gille/StrangeMerges_21-7B-slerp
## Configuration
## Usage
| [
"# OmnixBeagle-7B\n\nOmnixBeagle-7B is a merge of the following models using LazyMergekit:\n* Gille/StrangeMerges_21-7B-slerp",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-Gille/StrangeMerges_21-7B-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# OmnixBeagle-7B\n\nOmnixBeagle-7B is a merge of the following models using LazyMergekit:\n* Gille/StrangeMerges_21-7B-slerp",
"## Configuration",
"## Usage"
] | [
90,
44,
4,
3
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-Gille/StrangeMerges_21-7B-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# OmnixBeagle-7B\n\nOmnixBeagle-7B is a merge of the following models using LazyMergekit:\n* Gille/StrangeMerges_21-7B-slerp## Configuration## Usage"
] | [
-0.056105807423591614,
-0.004901740234345198,
-0.0032955827191472054,
0.01739075966179371,
0.05394097790122032,
0.0474281907081604,
0.20340430736541748,
0.05915949121117592,
0.046815790235996246,
0.022842630743980408,
0.10537747293710709,
0.17654143273830414,
0.0040444182232022285,
0.1379590481519699,
-0.09682437777519226,
-0.18645824491977692,
0.10087808221578598,
0.019821004942059517,
-0.07323558628559113,
0.07998298853635788,
0.11582276970148087,
-0.02805360220372677,
0.11885151267051697,
0.00037118300679139793,
-0.09289287775754929,
-0.0058971731923520565,
0.026567496359348297,
-0.05705440789461136,
0.09784126281738281,
0.11334772408008575,
0.03630548343062401,
0.08486940711736679,
-0.004766298923641443,
-0.08880319446325302,
0.03947789594531059,
-0.03203548118472099,
-0.06504590809345245,
0.06755223870277405,
0.0490647591650486,
-0.02026551216840744,
0.09684539586305618,
-0.040515344589948654,
0.01152610220015049,
0.055499643087387085,
-0.09666230529546738,
-0.07582428306341171,
-0.07998603582382202,
0.0756918340921402,
0.02100387215614319,
0.04358886182308197,
0.0003939964226447046,
0.16356103122234344,
-0.029353933408856392,
0.09060540795326233,
0.14202645421028137,
-0.34911441802978516,
-0.021052297204732895,
0.17817746102809906,
0.0978807583451271,
0.020958056673407555,
0.007380111608654261,
0.05905570462346077,
0.028964107856154442,
0.005749521777033806,
0.04433944448828697,
-0.080482617020607,
0.1465800404548645,
-0.0441514253616333,
-0.11691468209028244,
-0.010324337519705296,
0.19019508361816406,
0.03851551190018654,
-0.009617320261895657,
-0.14595308899879456,
-0.08102848380804062,
0.09630341827869415,
-0.05904155597090721,
-0.03208455070853233,
0.024296822026371956,
0.03680500015616417,
0.003298575524240732,
-0.06328518688678741,
-0.05980110168457031,
-0.01634279638528824,
-0.11813540011644363,
0.15459387004375458,
-0.009147584438323975,
0.018277982249855995,
-0.025078702718019485,
0.0455801896750927,
-0.08045133948326111,
-0.10820327699184418,
-0.009607353247702122,
-0.04124990850687027,
0.03375717252492905,
-0.01817878521978855,
-0.05017713084816933,
-0.07158803939819336,
0.1276044398546219,
0.25324130058288574,
-0.015155993402004242,
0.06529954075813293,
-0.03603890910744667,
0.09295843541622162,
-0.009672861546278,
0.007959840819239616,
-0.04188874736428261,
-0.17278268933296204,
0.0745130255818367,
0.026186034083366394,
0.09140846878290176,
-0.03589950129389763,
-0.1467837393283844,
-0.01482360903173685,
-0.001275326474569738,
0.006036198697984219,
0.05618269369006157,
0.13711294531822205,
-0.042285412549972534,
-0.026096496731042862,
0.2399882674217224,
-0.052511896938085556,
0.027527380734682083,
-0.017401952296495438,
-0.0051564788445830345,
-0.016061807051301003,
0.05999007821083069,
0.056697405874729156,
0.002796945860609412,
0.0731629952788353,
-0.051558930426836014,
-0.06274557113647461,
-0.0012256792979314923,
-0.09760357439517975,
0.021023329347372055,
0.019597630947828293,
-0.009944973513484001,
-0.10389404743909836,
-0.21109053492546082,
-0.0125741520896554,
0.06387469917535782,
-0.0365440733730793,
-0.09753359109163284,
-0.06681927293539047,
-0.023636506870388985,
0.014814193360507488,
-0.01956760883331299,
-0.012821760028600693,
-0.03817865252494812,
0.016893845051527023,
-0.045968543738126755,
0.005686756689101458,
-0.21995487809181213,
0.015847720205783844,
-0.10788378864526749,
0.06160677596926689,
-0.15337267518043518,
0.06564394384622574,
-0.0867578312754631,
0.05805722624063492,
-0.058352574706077576,
-0.008102668449282646,
-0.037716444581747055,
0.05070928484201431,
-0.007594199385493994,
0.13090571761131287,
-0.03056829795241356,
-0.07345367223024368,
0.10453778505325317,
-0.13896316289901733,
-0.1815105527639389,
0.09532012790441513,
0.0008219338487833738,
0.10022419691085815,
0.058415405452251434,
0.1863342821598053,
0.07074378430843353,
-0.024582205340266228,
0.014976941049098969,
0.06818430125713348,
-0.07140892744064331,
-0.03994918614625931,
0.05946165323257446,
-0.019120551645755768,
-0.07468026131391525,
0.0511782132089138,
0.008188262581825256,
0.04965643957257271,
0.0031506421510130167,
-0.04889873415231705,
-0.05829443410038948,
-0.04206034168601036,
0.04016704857349396,
-0.03814557567238808,
0.053813543170690536,
-0.07872048765420914,
-0.04586416482925415,
0.054618801921606064,
0.05104221776127815,
-0.029058868065476418,
0.0008009948651306331,
-0.08439909666776657,
0.07397006452083588,
-0.027332039549946785,
0.05340774729847908,
-0.08944910764694214,
-0.10178527981042862,
0.012426490895450115,
0.0006400714046321809,
0.05448680743575096,
0.03430604189634323,
0.07480403035879135,
0.029541566967964172,
-0.06614891439676285,
-0.005320345982909203,
0.1708405613899231,
0.03501017764210701,
-0.05082936957478523,
-0.1870783269405365,
-0.01745687983930111,
-0.041349057108163834,
0.14849892258644104,
-0.11486201733350754,
0.07272697985172272,
0.07433848083019257,
0.13234926760196686,
-0.007662533782422543,
0.02667643502354622,
-0.010065446607768536,
0.0004303821187932044,
-0.04120885208249092,
-0.0027414285577833652,
0.10998357087373734,
0.028143763542175293,
-0.15057212114334106,
0.18913324177265167,
-0.17268693447113037,
0.1959119290113449,
0.15626227855682373,
-0.045647356659173965,
-0.0010512052103877068,
-0.06922200322151184,
0.009318756870925426,
-0.06940264999866486,
0.07917267829179764,
-0.07428508251905441,
0.045088112354278564,
-0.016421988606452942,
0.13440322875976562,
-0.07004602253437042,
-0.024154135957360268,
0.007194452453404665,
-0.005880286917090416,
-0.06488785892724991,
0.07019507139921188,
0.01635870523750782,
-0.22844238579273224,
0.13527047634124756,
0.16864603757858276,
0.0311613567173481,
0.08682502806186676,
-0.020428448915481567,
0.0587056428194046,
-0.038168251514434814,
0.036079831421375275,
0.047039180994033813,
-0.011940937489271164,
-0.1073693335056305,
0.01965104043483734,
0.06529730558395386,
0.033551909029483795,
0.08638042956590652,
-0.06313527375459671,
0.01902601309120655,
0.0031427096109837294,
-0.014914538711309433,
0.08655557781457901,
0.09714639186859131,
-0.011650391854345798,
0.06713447719812393,
0.00004371352042653598,
-0.0825970396399498,
0.0932387262582779,
0.0018409774638712406,
-0.09506719559431076,
0.12245672941207886,
-0.11491474509239197,
-0.17378167808055878,
-0.22386042773723602,
-0.10493285953998566,
-0.09009554237127304,
-0.013523965142667294,
0.07995911687612534,
0.06489727646112442,
-0.034651707857847214,
-0.13925844430923462,
-0.014745880849659443,
0.00039404549170285463,
-0.054252739995718,
-0.006711247842758894,
-0.009171154350042343,
-0.013307151384651661,
-0.14137639105319977,
-0.03745770454406738,
0.030598534271121025,
-0.03104102611541748,
0.0722305104136467,
-0.0958714634180069,
0.08593344688415527,
0.09716345369815826,
0.0169422198086977,
-0.008841094560921192,
-0.052273377776145935,
0.21146899461746216,
-0.04287317022681236,
0.062143974006175995,
0.13796600699424744,
-0.04157017916440964,
0.05477339029312134,
0.14507143199443817,
0.03643302619457245,
-0.06599019467830658,
-0.0013254850637167692,
-0.0426986888051033,
-0.06571599096059799,
-0.1447121500968933,
-0.12229880690574646,
-0.08400677144527435,
0.08858894556760788,
0.04641074687242508,
0.07758094370365143,
0.10016453266143799,
0.08357731252908707,
-0.07232559472322464,
0.06959176063537598,
0.11052092909812927,
0.08774372190237045,
0.25104638934135437,
0.013770489022135735,
0.122197724878788,
-0.036956317722797394,
-0.02668081410229206,
0.07727796584367752,
-0.019615445286035538,
0.035585831850767136,
0.07305192947387695,
0.19398602843284607,
0.034939151257276535,
0.03031499683856964,
0.08436106890439987,
0.06632384657859802,
-0.006562480237334967,
-0.004623797256499529,
-0.038392774760723114,
-0.09521622955799103,
0.014330985955893993,
0.04802779480814934,
-0.06763127446174622,
0.019730109721422195,
0.02388462796807289,
-0.025302119553089142,
0.07099606841802597,
0.10723227262496948,
0.01590224914252758,
-0.20395426452159882,
-0.05187374725937843,
0.06415537744760513,
0.006696261465549469,
-0.04139656946063042,
0.0227142795920372,
0.03179270029067993,
-0.08772186189889908,
0.13058167695999146,
-0.05457257106900215,
0.10983490198850632,
0.007835534401237965,
0.03802797570824623,
-0.04539774730801582,
0.04839712753891945,
-0.01735873706638813,
0.07543410360813141,
-0.23103919625282288,
0.09832113981246948,
0.03148452192544937,
0.02081175334751606,
-0.034404072910547256,
0.025862010195851326,
0.05498528480529785,
0.18064384162425995,
0.046501997858285904,
-0.012690357863903046,
-0.04324875399470329,
-0.008403478190302849,
-0.08230569213628769,
0.017396142706274986,
0.05059259012341499,
-0.02424299344420433,
0.035520389676094055,
-0.04540877416729927,
-0.03213923051953316,
0.03930353745818138,
0.04625794291496277,
-0.11588257551193237,
-0.14989601075649261,
0.074065662920475,
0.10486199706792831,
0.10298296809196472,
-0.0984768271446228,
-0.012332232668995857,
-0.17724935710430145,
0.269864946603775,
-0.1360693871974945,
-0.033786527812480927,
-0.10488416999578476,
-0.05690004304051399,
0.07664020359516144,
-0.04482029750943184,
0.05105293542146683,
-0.034515973180532455,
0.017888925969600677,
-0.0864737406373024,
-0.15317758917808533,
0.10609300434589386,
-0.0759422704577446,
-0.1274522840976715,
-0.020853210240602493,
0.0898757204413414,
-0.06492786854505539,
0.031714171171188354,
0.0020462791435420513,
0.06349306553602219,
-0.03771727904677391,
-0.10086774826049805,
-0.0025110971182584763,
0.005485461093485355,
-0.016832806169986725,
0.07746095210313797,
-0.05765468627214432,
-0.15565529465675354,
0.019653119146823883,
-0.04469645768404007,
0.17059247195720673,
0.31913429498672485,
-0.02274320088326931,
0.09832388162612915,
0.16830499470233917,
-0.051033370196819305,
-0.24475717544555664,
-0.06627717614173889,
-0.06445799022912979,
-0.012462745420634747,
0.03094100020825863,
-0.08474407345056534,
0.07778365910053253,
0.13961419463157654,
-0.04205460846424103,
0.10452698171138763,
-0.2841736674308777,
-0.15194019675254822,
0.1083076149225235,
0.045528825372457504,
0.2352665513753891,
-0.13700425624847412,
-0.10490040481090546,
-0.07747218757867813,
-0.18829332292079926,
0.10085001587867737,
-0.06327501684427261,
0.0889817625284195,
-0.01287155132740736,
-0.020700760185718536,
-0.009811855852603912,
-0.04008140042424202,
0.11870478838682175,
-0.0663682296872139,
0.0891445055603981,
-0.10247546434402466,
-0.1024448573589325,
0.17322906851768494,
-0.014799472875893116,
0.0662701427936554,
-0.23205363750457764,
0.015566276386380196,
0.022687949240207672,
-0.034143734723329544,
-0.044073436409235,
0.09711058437824249,
-0.043811991810798645,
-0.06366705149412155,
-0.043479133397340775,
0.014681735076010227,
-0.004117185715585947,
0.007996096275746822,
0.23551110923290253,
-0.052937060594558716,
0.07055658102035522,
0.1917002946138382,
0.10210598260164261,
-0.16772376000881195,
0.04153061285614967,
-0.037531062960624695,
-0.08149733394384384,
0.052574142813682556,
-0.009405321441590786,
-0.01091036293655634,
0.0767761692404747,
-0.008275074884295464,
0.10616325587034225,
0.055565930902957916,
-0.02178548090159893,
0.002149029169231653,
0.09639512002468109,
-0.14983302354812622,
-0.15786102414131165,
-0.02420659549534321,
-0.005909036844968796,
0.00213793758302927,
0.04947682097554207,
0.19007882475852966,
-0.02719486877322197,
0.0036713408771902323,
0.0417727492749691,
-0.00009258785576093942,
-0.06580864638090134,
0.08522929251194,
-0.022462185472249985,
0.032608408480882645,
-0.10050998628139496,
0.02121053636074066,
0.055047471076250076,
-0.08397047966718674,
-0.021201753988862038,
0.11222539842128754,
-0.12582449615001678,
-0.09892576187849045,
-0.035974640399217606,
0.16774506866931915,
-0.01910197176039219,
-0.050801705569028854,
-0.08995231240987778,
-0.12476612627506256,
0.038372330367565155,
0.13760541379451752,
0.07150889933109283,
0.061567507684230804,
0.021575268357992172,
-0.04056227207183838,
-0.024716585874557495,
0.06579788029193878,
-0.03240150958299637,
0.0939108282327652,
-0.09896868467330933,
0.01616123504936695,
-0.02176995761692524,
-0.02752283588051796,
-0.06217505782842636,
0.007637700065970421,
-0.1730688512325287,
-0.06745444983243942,
-0.16852901875972748,
-0.007720115128904581,
-0.15459784865379333,
-0.016973720863461494,
0.002697553252801299,
-0.000654742878396064,
-0.029968667775392532,
0.004840206820517778,
-0.03248169273138046,
-0.04021900147199631,
-0.0019483021460473537,
0.07879012823104858,
-0.08019409328699112,
-0.005196890793740749,
0.02614927850663662,
-0.043892692774534225,
0.059811949729919434,
0.029307885095477104,
-0.054224446415901184,
-0.008536524139344692,
-0.1749299168586731,
-0.039749741554260254,
0.045284952968358994,
0.01117544062435627,
0.028976349160075188,
-0.013446711003780365,
-0.03651830926537514,
0.05889755114912987,
-0.013584999367594719,
0.024285564199090004,
0.14623965322971344,
-0.09619348496198654,
0.039962202310562134,
-0.04977629333734512,
-0.07339474558830261,
-0.04253707081079483,
-0.0005010614986531436,
0.061853837221860886,
-0.006330945063382387,
0.19573435187339783,
-0.08438679575920105,
-0.0009138742461800575,
-0.12354259192943573,
-0.004297987557947636,
0.01626686379313469,
-0.19115541875362396,
-0.05199398100376129,
-0.057286474853754044,
-0.008207079954445362,
-0.0015995176509022713,
0.21119913458824158,
-0.04525521770119667,
-0.21980345249176025,
0.04871656745672226,
0.002010265365242958,
0.031422123312950134,
0.010907992720603943,
0.21651875972747803,
0.08448950201272964,
-0.00031106529058888555,
-0.09189514070749283,
0.07283051311969757,
0.021931422874331474,
-0.035114631056785583,
0.04925747215747833,
0.06062885373830795,
-0.05743824690580368,
0.09200616925954819,
0.09971761703491211,
-0.021355032920837402,
-0.06463272869586945,
0.008229566738009453,
-0.0053672888316214085,
0.08896050602197647,
-0.04274856299161911,
0.09275373816490173,
0.13311508297920227,
-0.08953367173671722,
0.03044305555522442,
-0.0043232738971710205,
-0.005625377409160137,
-0.07823167741298676,
-0.16346639394760132,
-0.11500083655118942,
-0.10901442170143127,
-0.026386212557554245,
-0.0814683809876442,
-0.036338869482278824,
0.03607657924294472,
0.007568724453449249,
0.002616100711748004,
0.08710771799087524,
-0.10505181550979614,
-0.014224070124328136,
0.021982936188578606,
-0.04988628998398781,
-0.04709107056260109,
-0.033454086631536484,
-0.07890844345092773,
-0.022803669795393944,
-0.011795534752309322,
0.001849972060881555,
0.03499956429004669,
0.022629356011748314,
0.026657072827219963,
-0.07566680014133453,
-0.0992201492190361,
-0.013944271951913834,
0.06348736584186554,
0.01535138301551342,
0.014748722314834595,
0.009596251882612705,
-0.042719680815935135,
0.02709651179611683,
0.11765094846487045,
-0.028442729264497757,
-0.17837710678577423,
-0.04221787676215172,
0.1914500594139099,
-0.023611221462488174,
0.05277138575911522,
-0.0004581229295581579,
-0.05084491893649101,
0.03258552402257919,
0.1712082028388977,
0.3522733747959137,
-0.051875039935112,
0.0322013720870018,
0.055000271648168564,
0.004368365742266178,
0.05966074392199516,
0.06565055251121521,
-0.014361497946083546,
0.2015095055103302,
-0.04129151999950409,
0.024341968819499016,
-0.03847430646419525,
-0.05716609209775925,
-0.07974191755056381,
0.041254960000514984,
0.022715775296092033,
-0.049545228481292725,
0.011980896815657616,
0.061233632266521454,
-0.06145137920975685,
0.04645569995045662,
-0.0011464818380773067,
-0.09561656415462494,
-0.05287393555045128,
-0.04998626932501793,
0.040606118738651276,
-0.0029464997351169586,
0.04842453822493553,
-0.022538067772984505,
-0.026730859652161598,
-0.03268599882721901,
-0.047277748584747314,
-0.12246205657720566,
0.0014916672371327877,
0.014426213689148426,
-0.09584293514490128,
0.07396413385868073,
-0.023230290040373802,
0.0770643949508667,
0.11513998359441757,
0.021282657980918884,
-0.06685946881771088,
0.07312069088220596,
0.005198980215936899,
-0.04917240887880325,
0.0436856746673584,
-0.048513080924749374,
-0.019129056483507156,
0.13386084139347076,
0.038922615349292755,
-0.1549389660358429,
0.06676218658685684,
0.07522863894701004,
-0.10199490189552307,
-0.04097915440797806,
0.011816764250397682,
-0.0454275868833065,
0.11226192116737366,
0.12204955518245697,
-0.0065208845771849155,
-0.03246348723769188,
-0.015361794270575047,
0.03426631540060043,
0.07492382824420929,
0.022378966212272644,
-0.05877729132771492,
-0.2174399197101593,
-0.03104068525135517,
0.053439248353242874,
0.02374284900724888,
-0.25469914078712463,
-0.08653027564287186,
-0.18123812973499298,
0.01607770286500454,
-0.08833055943250656,
0.034297630190849304,
0.18561555445194244,
-0.01354576088488102,
-0.018083563074469566,
-0.09817882627248764,
-0.011101368814706802,
0.09234542399644852,
-0.09771169722080231,
-0.07410217821598053
] |
null | null | transformers |
# LLaVA-JP Model Card
## Model detail
**Model type:**
LLaVA-JP is a vision-language model that can converse about input images.<br>
This model was trained by fine-tuning [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) using [LLaVA](https://llava-vl.github.io/) method and [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) is used as Image Encoder.
**Training:**
This model was initially trained with the Vision Projector using [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co/datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA) and STAIR Captions. <br>
In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
## How to use the model
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/LLaVA-JP.git
```
**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
parser = transformers.HfArgumentParser(
(ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
model_path = 'toshi456/llava-jp-1.3b-v1.0-siglip-so400m-patch14-384'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1024,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(image, return_tensors='pt')['pixel_values'].to(torch_dtype)
# create prompt
# ユーザー: <image>\n{prompt}
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True,
temperature=0.01,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""猫の隣にはノートパソコンがある。<EOD|LLM-jp>"""
```
## Training dataset
**Stage1 Pretrain**
- [LLaVA-CC3M-Pretrain-595K-JA](https://huggingface.co/datasets/toshi456/LLaVA-CC3M-Pretrain-595K-JA)
- [Japanese STAIR Captions](http://captions.stair.center/)
**Stage2 Fine-tuning**
- [LLaVA-Instruct-150K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Instruct-150K-JA)
- [Japanese Visual Genome VQA dataset](https://github.com/yahoojapan/ja-vg-vqa)
## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [LLM-jp](https://llm-jp.nii.ac.jp/)
## License
cc-by-nc-4.0 | {"language": ["ja"], "license": "cc-by-nc-4.0", "tags": ["vision", "image-captioning", "VQA"], "datasets": ["toshi456/LLaVA-CC3M-Pretrain-595K-JA", "turing-motors/LLaVA-Instruct-150K-JA"], "pipeline_tag": "image-to-text"} | image-to-text | toshi456/llava-jp-1.3b-v1.0-siglip-so400m-patch14-384 | [
"transformers",
"safetensors",
"llava-jp",
"text-generation",
"vision",
"image-captioning",
"VQA",
"image-to-text",
"ja",
"dataset:toshi456/LLaVA-CC3M-Pretrain-595K-JA",
"dataset:turing-motors/LLaVA-Instruct-150K-JA",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:21:26+00:00 | [] | [
"ja"
] | TAGS
#transformers #safetensors #llava-jp #text-generation #vision #image-captioning #VQA #image-to-text #ja #dataset-toshi456/LLaVA-CC3M-Pretrain-595K-JA #dataset-turing-motors/LLaVA-Instruct-150K-JA #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #region-us
|
# LLaVA-JP Model Card
## Model detail
Model type:
LLaVA-JP is a vision-language model that can converse about input images.<br>
This model was trained by fine-tuning llm-jp/llm-jp-1.3b-v1.0 using LLaVA method and google/siglip-so400m-patch14-384 is used as Image Encoder.
Training:
This model was initially trained with the Vision Projector using LLaVA-CC3M-Pretrain-595K-JA and STAIR Captions. <br>
In the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.
resources for more information: URL
## How to use the model
1. Download dependencies
2. Inference
## Training dataset
Stage1 Pretrain
- LLaVA-CC3M-Pretrain-595K-JA
- Japanese STAIR Captions
Stage2 Fine-tuning
- LLaVA-Instruct-150K-JA
- Japanese Visual Genome VQA dataset
## Acknowledgement
- LLaVA
- LLM-jp
## License
cc-by-nc-4.0 | [
"# LLaVA-JP Model Card",
"## Model detail\n\nModel type:\n\nLLaVA-JP is a vision-language model that can converse about input images.<br>\nThis model was trained by fine-tuning llm-jp/llm-jp-1.3b-v1.0 using LLaVA method and google/siglip-so400m-patch14-384 is used as Image Encoder.\n\nTraining:\n\nThis model was initially trained with the Vision Projector using LLaVA-CC3M-Pretrain-595K-JA and STAIR Captions. <br>\nIn the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.\n\nresources for more information: URL",
"## How to use the model\n1. Download dependencies\n\n\n2. Inference",
"## Training dataset\nStage1 Pretrain\n- LLaVA-CC3M-Pretrain-595K-JA\n- Japanese STAIR Captions\n\nStage2 Fine-tuning\n- LLaVA-Instruct-150K-JA\n- Japanese Visual Genome VQA dataset",
"## Acknowledgement\n- LLaVA\n- LLM-jp",
"## License\ncc-by-nc-4.0"
] | [
"TAGS\n#transformers #safetensors #llava-jp #text-generation #vision #image-captioning #VQA #image-to-text #ja #dataset-toshi456/LLaVA-CC3M-Pretrain-595K-JA #dataset-turing-motors/LLaVA-Instruct-150K-JA #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"# LLaVA-JP Model Card",
"## Model detail\n\nModel type:\n\nLLaVA-JP is a vision-language model that can converse about input images.<br>\nThis model was trained by fine-tuning llm-jp/llm-jp-1.3b-v1.0 using LLaVA method and google/siglip-so400m-patch14-384 is used as Image Encoder.\n\nTraining:\n\nThis model was initially trained with the Vision Projector using LLaVA-CC3M-Pretrain-595K-JA and STAIR Captions. <br>\nIn the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.\n\nresources for more information: URL",
"## How to use the model\n1. Download dependencies\n\n\n2. Inference",
"## Training dataset\nStage1 Pretrain\n- LLaVA-CC3M-Pretrain-595K-JA\n- Japanese STAIR Captions\n\nStage2 Fine-tuning\n- LLaVA-Instruct-150K-JA\n- Japanese Visual Genome VQA dataset",
"## Acknowledgement\n- LLaVA\n- LLM-jp",
"## License\ncc-by-nc-4.0"
] | [
113,
8,
154,
14,
57,
14,
10
] | [
"passage: TAGS\n#transformers #safetensors #llava-jp #text-generation #vision #image-captioning #VQA #image-to-text #ja #dataset-toshi456/LLaVA-CC3M-Pretrain-595K-JA #dataset-turing-motors/LLaVA-Instruct-150K-JA #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #region-us \n# LLaVA-JP Model Card## Model detail\n\nModel type:\n\nLLaVA-JP is a vision-language model that can converse about input images.<br>\nThis model was trained by fine-tuning llm-jp/llm-jp-1.3b-v1.0 using LLaVA method and google/siglip-so400m-patch14-384 is used as Image Encoder.\n\nTraining:\n\nThis model was initially trained with the Vision Projector using LLaVA-CC3M-Pretrain-595K-JA and STAIR Captions. <br>\nIn the second phase, it was fine-tuned with LLaVA-Instruct-150K-JA and Japanese Visual Genome.\n\nresources for more information: URL## How to use the model\n1. Download dependencies\n\n\n2. Inference## Training dataset\nStage1 Pretrain\n- LLaVA-CC3M-Pretrain-595K-JA\n- Japanese STAIR Captions\n\nStage2 Fine-tuning\n- LLaVA-Instruct-150K-JA\n- Japanese Visual Genome VQA dataset## Acknowledgement\n- LLaVA\n- LLM-jp## License\ncc-by-nc-4.0"
] | [
-0.05255386605858803,
0.16566510498523712,
-0.003311512293294072,
0.04506717622280121,
0.10203617811203003,
0.03729945793747902,
0.07773055881261826,
0.18873950839042664,
-0.061615463346242905,
0.09408210217952728,
-0.004742905031889677,
0.06919871270656586,
0.1364866942167282,
0.1170027032494545,
0.03291875496506691,
-0.248268261551857,
0.02234550565481186,
-0.03652569651603699,
-0.03471210598945618,
0.09049957245588303,
0.12725892663002014,
-0.07751248776912689,
0.0582621730864048,
-0.04566965624690056,
-0.07328140735626221,
0.0010012317216023803,
-0.007866675965487957,
-0.04661918058991432,
0.0448763445019722,
0.03557901456952095,
0.044294074177742004,
0.01229693554341793,
0.12276478856801987,
-0.2564571499824524,
0.014522363431751728,
0.06374259293079376,
-0.002091695787385106,
0.06987918168306351,
0.06922730058431625,
-0.01180017925798893,
0.023372849449515343,
-0.12456510215997696,
0.07014288753271103,
0.08913270384073257,
-0.05331265926361084,
-0.11119113117456436,
-0.049978774040937424,
0.08617524802684784,
0.17054204642772675,
0.05622846633195877,
-0.000013861146726412699,
0.008861980400979519,
-0.00785255990922451,
0.05215577408671379,
0.09592434018850327,
-0.16351822018623352,
-0.05200684070587158,
0.17787662148475647,
-0.014371630735695362,
0.05832749605178833,
-0.09253262728452682,
0.06542090326547623,
0.03627143055200577,
-0.02749088779091835,
0.061397310346364975,
-0.031214073300361633,
0.044244419783353806,
-0.03245789185166359,
-0.0834134891629219,
-0.048245321959257126,
0.20707471668720245,
0.016074979677796364,
-0.04419098421931267,
-0.11612354218959808,
-0.03709341958165169,
-0.020091461017727852,
-0.06001986190676689,
-0.012758788652718067,
0.016896529123187065,
-0.013426114805042744,
0.03796611353754997,
-0.09078078716993332,
-0.07822316884994507,
-0.10255705565214157,
0.06508897244930267,
0.05380754917860031,
0.06072288006544113,
0.023345738649368286,
-0.00405131746083498,
0.09258168935775757,
0.0040633887983858585,
-0.10313613712787628,
-0.06648290902376175,
-0.05143096670508385,
-0.10181217640638351,
0.01694006472826004,
0.04016737639904022,
-0.07483568787574768,
0.03025827743113041,
0.04406335577368736,
0.010705814696848392,
0.04631675407290459,
-0.04837379232048988,
0.00815377663820982,
0.048004694283008575,
0.05841269716620445,
-0.08077509701251984,
-0.01596527360379696,
0.05103876814246178,
0.04822564870119095,
0.013279912061989307,
-0.008073411881923676,
-0.05293244868516922,
-0.08290930837392807,
0.0018124935450032353,
0.10797733813524246,
-0.0023010794539004564,
0.035457879304885864,
-0.03406653553247452,
-0.041221488267183304,
0.05151985213160515,
-0.1596696972846985,
0.03245682641863823,
0.011376972310245037,
-0.046911198645830154,
0.0724746584892273,
0.06907644122838974,
-0.06120093911886215,
-0.06729342043399811,
-0.10231181234121323,
-0.0059827580116689205,
0.014398030936717987,
-0.11125980317592621,
-0.0512424074113369,
0.003294276772066951,
0.0603705570101738,
-0.04612743481993675,
-0.11240330338478088,
-0.14910051226615906,
-0.03135598450899124,
0.05046948790550232,
-0.07744691520929337,
0.008190053515136242,
-0.03974221274256706,
-0.03931707143783569,
0.03317975252866745,
-0.007110957521945238,
0.02146807685494423,
-0.013935921713709831,
0.05703429505228996,
-0.05820228159427643,
0.09045226871967316,
0.09903834015130997,
0.04451311379671097,
-0.014809221029281616,
0.07573939859867096,
-0.15493737161159515,
0.11854676157236099,
-0.12245670706033707,
-0.061954185366630554,
-0.14652395248413086,
-0.04281587526202202,
0.06144633889198303,
-0.008344782516360283,
0.038157783448696136,
0.13690897822380066,
-0.2142958641052246,
0.03328990563750267,
0.20254561305046082,
-0.10286199301481247,
-0.04894885793328285,
0.058968376368284225,
-0.028798140585422516,
0.09121158719062805,
0.09034732729196548,
0.08301667869091034,
0.17519859969615936,
-0.16472873091697693,
-0.05246046185493469,
0.037906013429164886,
0.00848650187253952,
0.05773405358195305,
0.06439043581485748,
0.041716013103723526,
-0.03110947087407112,
0.0344213992357254,
-0.08291629701852798,
-0.007917357608675957,
-0.032978858798742294,
-0.0865044817328453,
-0.004016838036477566,
-0.06652030348777771,
-0.040265925228595734,
-0.021774135529994965,
-0.03983766958117485,
0.00011525564332259819,
-0.04299881309270859,
-0.001314337830990553,
0.16299769282341003,
-0.11735004931688309,
0.028483865782618523,
-0.05724761635065079,
-0.0018137998413294554,
-0.06528548151254654,
0.02180607244372368,
-0.07004116475582123,
-0.04684831574559212,
0.05829910188913345,
-0.06881675869226456,
0.009911902248859406,
-0.0584549717605114,
0.02326134406030178,
0.06174131855368614,
-0.029651392251253128,
-0.054102249443531036,
-0.03257310763001442,
-0.019290409982204437,
-0.023766500875353813,
-0.13951680064201355,
-0.0440865233540535,
-0.03387167304754257,
0.12541836500167847,
-0.09381972998380661,
0.026811977848410606,
0.012762323953211308,
0.11119385808706284,
-0.015347354114055634,
-0.0243680402636528,
0.08178074657917023,
-0.0501631535589695,
-0.02083011344075203,
-0.05101803317666054,
0.014759114943444729,
-0.02816198207437992,
-0.05778273567557335,
0.0987827330827713,
-0.06357195228338242,
-0.05404733493924141,
0.08650340139865875,
-0.0009060082375071943,
-0.1055600494146347,
-0.06679796427488327,
-0.006242768839001656,
-0.020061710849404335,
-0.10525631159543991,
-0.09417865425348282,
0.09609463810920715,
-0.008767100051045418,
0.09955407679080963,
-0.07957243919372559,
-0.01834370382130146,
0.014510215260088444,
-0.03827303275465965,
-0.05078732594847679,
0.09349501132965088,
0.06347229331731796,
-0.11163464933633804,
0.08766046166419983,
0.00998641736805439,
0.038851842284202576,
0.1574704796075821,
0.03024214319884777,
-0.10699634253978729,
-0.056302912533283234,
0.038012731820344925,
0.03432633355259895,
0.1178261861205101,
-0.030290570110082626,
-0.004808306228369474,
0.040048565715551376,
-0.009591548703610897,
0.0029545938596129417,
-0.12694044411182404,
-0.006196448113769293,
0.0013635670766234398,
-0.10670503228902817,
0.11579049378633499,
-0.03032011166214943,
-0.011778036132454872,
0.1146514043211937,
0.013773121871054173,
0.0629478245973587,
-0.006606108509004116,
-0.06401783227920532,
-0.10071536898612976,
0.1482498198747635,
-0.14132674038410187,
-0.3018820583820343,
-0.13849876821041107,
0.0024456558749079704,
-0.033854998648166656,
0.0017564280424267054,
-0.03262973949313164,
-0.08456400781869888,
-0.11069098860025406,
-0.09973210841417313,
0.02804962918162346,
-0.08438316732645035,
-0.039589229971170425,
-0.03419943153858185,
0.08585383743047714,
0.04145502299070358,
-0.10800890624523163,
0.022806130349636078,
0.0682358518242836,
-0.11630091816186905,
0.012485099025070667,
0.019241346046328545,
0.08962656557559967,
0.05480923876166344,
0.017183907330036163,
0.03769638389348984,
-0.0044309226796031,
0.18108618259429932,
-0.10509993135929108,
0.11094542592763901,
0.15831178426742554,
0.009455850347876549,
0.02562141977250576,
0.15126566588878632,
0.03198648989200592,
-0.06160317733883858,
0.02260592393577099,
-0.0064985002391040325,
-0.0516512431204319,
-0.2351055145263672,
-0.047296151518821716,
-0.05198134109377861,
-0.011763754300773144,
0.10156849771738052,
0.06364018470048904,
0.021592233330011368,
0.0805918276309967,
-0.09580697864294052,
0.08486505597829819,
0.08653511106967926,
0.07878775894641876,
0.044978756457567215,
-0.04024454206228256,
0.02589762955904007,
-0.044508326798677444,
0.004319260828197002,
0.06149918958544731,
0.11505798995494843,
0.1796126365661621,
-0.025128161534667015,
0.1224256157875061,
0.04105248302221298,
0.13482049107551575,
0.05171659588813782,
0.02230159565806389,
0.011509142816066742,
0.06130419671535492,
-0.0050574117340147495,
-0.09263234585523605,
-0.03876428306102753,
0.07241787016391754,
0.018377143889665604,
0.020791543647646904,
0.01969733089208603,
-0.001202570740133524,
0.03551420569419861,
0.13176456093788147,
0.0343547984957695,
-0.15466061234474182,
-0.012606645934283733,
0.07576830685138702,
-0.003611044492572546,
-0.09653880447149277,
0.06989092379808426,
0.0962928831577301,
-0.14253786206245422,
0.07228636741638184,
-0.03291979432106018,
0.10013992339372635,
-0.16043299436569214,
-0.06611168384552002,
0.005359755363315344,
0.0630272924900055,
0.0019339577993378043,
0.11252846568822861,
-0.2605443000793457,
0.11549567431211472,
0.04332371801137924,
0.07556980848312378,
-0.03440418466925621,
0.05899420380592346,
0.02973894774913788,
0.043583761900663376,
0.18031913042068481,
-0.000618519785348326,
0.008658908307552338,
-0.13040855526924133,
-0.12098228931427002,
-0.004852963611483574,
0.0656733438372612,
-0.06424884498119354,
0.07439547777175903,
-0.03406859189271927,
-0.05147896707057953,
-0.060713835060596466,
-0.03442171961069107,
-0.17884798347949982,
-0.1505707949399948,
0.026763858273625374,
-0.02581115812063217,
0.09639903157949448,
-0.044160522520542145,
-0.02005607821047306,
-0.04457191750407219,
0.1358145922422409,
-0.138084277510643,
-0.08761594444513321,
-0.14618200063705444,
0.05438787490129471,
0.12961602210998535,
-0.06656835228204727,
0.04214639589190483,
0.004734844900667667,
0.16585823893547058,
-0.016023512929677963,
-0.11742071062326431,
-0.03532123938202858,
-0.07978703081607819,
-0.13132020831108093,
-0.015696702525019646,
0.1230662390589714,
0.030716851353645325,
0.05044795572757721,
0.036410413682460785,
0.0001617853995412588,
0.053457148373126984,
-0.08584064990282059,
0.07977604120969772,
0.20823083817958832,
0.026906399056315422,
0.07102394104003906,
-0.08215918391942978,
-0.11404529958963394,
-0.10377408564090729,
-0.04352777078747749,
0.07194783538579941,
0.17211076617240906,
-0.05653303861618042,
0.09004692733287811,
0.08837198466062546,
-0.14605428278446198,
-0.22177627682685852,
-0.0010680312989279628,
0.0437178798019886,
0.039595089852809906,
-0.025464173406362534,
-0.21134936809539795,
0.04183132201433182,
0.07452107965946198,
-0.046475786715745926,
0.04206737503409386,
-0.24611158668994904,
-0.11374765634536743,
-0.011075671762228012,
0.15131795406341553,
-0.11532805860042572,
-0.0995042622089386,
-0.059815216809511185,
-0.04517310485243797,
-0.10617627203464508,
0.13808585703372955,
-0.005866545718163252,
0.09845133870840073,
-0.014989279210567474,
0.02655588462948799,
0.03897128999233246,
-0.04276810213923454,
0.1319311559200287,
-0.04455229267477989,
0.051822975277900696,
-0.061273664236068726,
0.02717374451458454,
0.06985726952552795,
-0.0610833466053009,
0.12720999121665955,
0.04717201367020607,
0.035183265805244446,
-0.08172266185283661,
-0.022044649347662926,
-0.05168713629245758,
-0.01940283551812172,
-0.07564529031515121,
-0.06963459402322769,
-0.1055963933467865,
0.09637292474508286,
0.10261093080043793,
-0.005361204035580158,
0.06699928641319275,
-0.007615003734827042,
-0.0007351409876719117,
0.10803316533565521,
0.08988061547279358,
0.14047928154468536,
-0.11904440075159073,
-0.042440202087163925,
-0.025594137609004974,
0.08474771678447723,
-0.18424029648303986,
0.05633065849542618,
0.04504779353737831,
0.014375954866409302,
0.15712042152881622,
-0.0031907614320516586,
-0.12186030298471451,
0.03816930949687958,
0.0319744236767292,
-0.07173551619052887,
-0.10936269164085388,
-0.018065305426716805,
0.026477275416254997,
-0.025740215554833412,
-0.026989785954356194,
0.1471206694841385,
-0.11443939059972763,
-0.009552433155477047,
-0.007107829675078392,
0.07862845808267593,
-0.01282515563070774,
0.12917447090148926,
0.09298379719257355,
0.04300820454955101,
-0.07523258030414581,
0.07734803855419159,
0.06231832504272461,
-0.018949830904603004,
0.06386196613311768,
0.09768733382225037,
-0.07348994165658951,
-0.04837989807128906,
-0.0041025541722774506,
0.06950215995311737,
-0.01009374763816595,
-0.04302264750003815,
-0.010533872060477734,
-0.07300543785095215,
0.02175126224756241,
0.040351465344429016,
-0.0014841360971331596,
-0.004882121458649635,
0.037940509617328644,
0.023435145616531372,
-0.10847915709018707,
0.13850165903568268,
-0.06883073598146439,
0.0365859754383564,
-0.11357082426548004,
0.0574834831058979,
0.04710504785180092,
0.04806118085980415,
-0.039829690009355545,
-0.04311121255159378,
-0.11941222101449966,
0.039565566927194595,
-0.07504679262638092,
0.08011317998170853,
-0.10408011823892593,
-0.018036050722002983,
-0.03662819415330887,
-0.006538439076393843,
-0.02076389454305172,
0.06375818699598312,
-0.03342372924089432,
-0.06484723091125488,
-0.058213911950588226,
0.07163131982088089,
-0.10704313218593597,
-0.03736912086606026,
0.03059418871998787,
-0.09089823812246323,
0.04698243737220764,
-0.019734280183911324,
-0.01719481311738491,
-0.0018459869315847754,
-0.1193934753537178,
0.028014300391077995,
0.014863867312669754,
0.06915193796157837,
0.025728639215230942,
-0.08872325718402863,
0.011214467696845531,
-0.018901793286204338,
-0.08224617689847946,
0.0015959832817316055,
0.029974721372127533,
-0.07107997685670853,
0.01319328136742115,
-0.12563574314117432,
0.011574221774935722,
-0.06833125650882721,
0.11085493862628937,
0.09521492570638657,
0.017322693020105362,
0.03515810891985893,
-0.0635744035243988,
0.12126777321100235,
-0.17825840413570404,
-0.03467801958322525,
0.00765907671302557,
-0.029990611597895622,
-0.04050517827272415,
-0.049475859850645065,
0.08285321295261383,
-0.059002771973609924,
0.12967078387737274,
0.061915073543787,
0.02819262631237507,
0.026130495592951775,
-0.05379501357674599,
0.010592414997518063,
0.03934858366847038,
0.10176704078912735,
0.0396379716694355,
0.04132479056715965,
0.05142013728618622,
0.022290941327810287,
0.01996644400060177,
0.00000766242101235548,
-0.03159703314304352,
0.06576709449291229,
0.07740753144025803,
0.03090333566069603,
0.035520635545253754,
-0.07059929519891739,
-0.04011993110179901,
0.07889540493488312,
-0.06129371002316475,
0.042034395039081573,
-0.026854069903492928,
0.008244159631431103,
0.17005594074726105,
-0.19536806643009186,
0.10606399178504944,
-0.00010454592120368034,
-0.08276917785406113,
-0.10367944836616516,
-0.2373586744070053,
-0.09853686392307281,
-0.0973864421248436,
0.0414242260158062,
-0.1385089010000229,
0.05004291608929634,
0.12236455827951431,
0.034970272332429886,
0.01485684048384428,
0.08152827620506287,
0.0720674991607666,
-0.04150141403079033,
0.057184476405382156,
0.044595587998628616,
0.04043252766132355,
-0.027665896341204643,
0.011313451454043388,
0.06817598640918732,
-0.014023921452462673,
0.05092833191156387,
0.03795827180147171,
0.04464280977845192,
0.03242601454257965,
-0.01878642663359642,
-0.060031790286302567,
0.018940500915050507,
-0.028477812185883522,
0.022307172417640686,
0.1416761726140976,
0.07480282336473465,
-0.03695853427052498,
-0.026767028495669365,
0.17547951638698578,
-0.03037143498659134,
-0.0050740111619234085,
-0.13301286101341248,
-0.008961779065430164,
-0.02026267908513546,
0.00950980931520462,
0.04599197208881378,
-0.08151174336671829,
-0.03108484484255314,
0.2627315819263458,
0.11752503365278244,
-0.0411844477057457,
-0.017771197482943535,
-0.0125186238437891,
-0.011134096421301365,
0.007939270697534084,
0.166450634598732,
0.07210859656333923,
0.14923544228076935,
-0.043324846774339676,
0.027495749294757843,
-0.041883889585733414,
-0.09787583351135254,
-0.0707017108798027,
0.06590010225772858,
-0.054101914167404175,
0.005648490972816944,
-0.03442838042974472,
0.0982547476887703,
-0.06831149756908417,
-0.20753386616706848,
0.08022838085889816,
-0.08180779218673706,
-0.0910714790225029,
-0.03157613053917885,
0.06247866153717041,
0.026482518762350082,
-0.03321396932005882,
-0.0410885252058506,
0.0577714778482914,
0.17208081483840942,
0.028180476278066635,
-0.07024362683296204,
-0.07339990139007568,
0.03997744247317314,
-0.09926585108041763,
0.2060043066740036,
0.025675896555185318,
0.04574894905090332,
0.042771920561790466,
-0.05013957992196083,
-0.14076286554336548,
0.047855980694293976,
0.060252897441387177,
-0.06614526361227036,
0.04194839298725128,
0.24053984880447388,
-0.03383258730173111,
0.13822536170482635,
0.06563017517328262,
-0.02673712745308876,
0.00008752967551117763,
0.06513603776693344,
-0.04373995214700699,
-0.10125689953565598,
0.06429898738861084,
-0.10326439887285233,
0.1269024759531021,
0.1549421101808548,
-0.057717159390449524,
-0.019792333245277405,
-0.08284242451190948,
0.04727122560143471,
-0.01915811002254486,
0.0774727389216423,
0.013412910513579845,
-0.11830189824104309,
-0.05232776328921318,
-0.004517836030572653,
0.07043474912643433,
-0.13222631812095642,
-0.0670582577586174,
0.012150974944233894,
-0.07603248208761215,
-0.1054445207118988,
0.10684067010879517,
0.08430055528879166,
0.03370331600308418,
-0.03228728845715523,
-0.12721124291419983,
0.024730253964662552,
0.08511962741613388,
-0.11261802911758423,
-0.05526529252529144
] |
null | null | null |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | mathreader/Reinforce-CartPole-v1 | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | 2024-02-13T11:21:53+00:00 | [] | [] | TAGS
#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
39,
54
] | [
"passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
0.007526164408773184,
-0.12498430907726288,
-0.0013541718944907188,
0.09601131081581116,
0.11848696321249008,
-0.04186001420021057,
0.11405468732118607,
0.05624859035015106,
0.09539441019296646,
0.04239490255713463,
0.13636724650859833,
0.06906966865062714,
-0.004102868959307671,
0.12412862479686737,
0.09840741008520126,
-0.26058563590049744,
0.07420794665813446,
-0.04403980076313019,
-0.009944677352905273,
0.10139261186122894,
0.07836852967739105,
-0.08325441926717758,
0.051592715084552765,
0.00009572553972247988,
-0.044259943068027496,
0.0321260429918766,
0.013628939166665077,
-0.053157225251197815,
0.1606452465057373,
-0.07313758134841919,
0.10494591295719147,
-0.03843724727630615,
0.14574295282363892,
-0.1126825287938118,
0.04758213832974434,
0.05111503228545189,
-0.04548581689596176,
0.03848232328891754,
-0.12538743019104004,
-0.06033875793218613,
0.026815801858901978,
-0.015865681692957878,
0.12249194830656052,
0.03647647053003311,
-0.1777559220790863,
-0.13461355865001678,
-0.0165896974503994,
0.12325166910886765,
0.1627800315618515,
0.00512364786118269,
0.014270431362092495,
0.16791965067386627,
-0.1761058121919632,
0.025937072932720184,
0.11400806158781052,
-0.37275227904319763,
-0.00034436015994288027,
0.2240462601184845,
0.06164427846670151,
0.1252165287733078,
-0.12646614015102386,
0.010440526530146599,
0.07403992861509323,
0.04368630796670914,
0.049784936010837555,
-0.015430688858032227,
-0.12260042130947113,
0.08455035835504532,
-0.1383819431066513,
-0.058066487312316895,
0.1495426446199417,
-0.019741326570510864,
-0.009476418606936932,
-0.016515808179974556,
-0.009238536469638348,
-0.050979889929294586,
-0.03430935740470886,
-0.11778499186038971,
0.10755524039268494,
0.04975730925798416,
0.0038771627005189657,
-0.04602450504899025,
-0.05612579360604286,
-0.09815777093172073,
-0.03123871050775051,
0.0372777059674263,
-0.013706400990486145,
0.01091629359871149,
0.027692900970578194,
0.09935613721609116,
-0.13446329534053802,
0.01825822703540325,
-0.028096558526158333,
-0.028040969744324684,
-0.1316804438829422,
-0.11984307318925858,
-0.026084421202540398,
0.004223645199090242,
0.03029833547770977,
0.20433813333511353,
0.020139509811997414,
0.059011414647102356,
-0.0022708347532898188,
0.09776382148265839,
0.029780851677060127,
0.13517548143863678,
-0.04466623440384865,
0.19488364458084106,
0.07711011171340942,
0.05364556983113289,
0.03204274922609329,
-0.05344729498028755,
-0.19369827210903168,
0.04861246794462204,
0.06659778952598572,
0.08274952322244644,
-0.1178959533572197,
0.0059632807970047,
-0.10316018015146255,
0.0028950648847967386,
-0.10474003106355667,
-0.0642905905842781,
-0.02892979420721531,
0.031841445714235306,
-0.10535725951194763,
0.028785312548279762,
0.025052599608898163,
0.04140377417206764,
0.0676041767001152,
-0.12253966927528381,
-0.07404746115207672,
-0.021733485162258148,
-0.12817098200321198,
-0.09923440217971802,
0.08802318572998047,
-0.026199497282505035,
-0.005110981408506632,
-0.1253623217344284,
-0.2661486268043518,
-0.05670225992798805,
0.06396034359931946,
-0.03231031447649002,
-0.08589376509189606,
-0.1633463054895401,
0.026403428986668587,
-0.07700273394584656,
0.05221332609653473,
0.04776721075177193,
-0.03665859252214432,
0.02023705095052719,
-0.07958202809095383,
0.12739010155200958,
0.049698662012815475,
0.00541001046076417,
-0.09916839748620987,
0.07882837951183319,
-0.3034103214740753,
-0.02581131085753441,
-0.15228183567523956,
0.0772043839097023,
-0.07893010973930359,
0.01308529730886221,
0.05044940114021301,
0.043790437281131744,
-0.016942394897341728,
0.16269747912883759,
-0.17043575644493103,
-0.05301272124052048,
0.026445282623171806,
-0.09261117875576019,
-0.09916394203901291,
0.07275339215993881,
-0.06339669227600098,
0.21263530850410461,
0.08751397579908371,
0.17006252706050873,
-0.011036526411771774,
-0.16256992518901825,
0.1207515075802803,
0.07522942125797272,
-0.1639646589756012,
0.004287737421691418,
0.061784300953149796,
-0.0016935690073296428,
0.02746843732893467,
-0.01872866041958332,
-0.07289361208677292,
0.06302516162395477,
-0.07825060933828354,
0.022581040859222412,
0.06258945167064667,
-0.09531243145465851,
0.23986859619617462,
-0.005434412509202957,
0.0862451046705246,
-0.025957979261875153,
-0.09802921861410141,
0.00908072479069233,
0.07164718210697174,
-0.0014321404742076993,
0.01703714393079281,
-0.14553219079971313,
0.23044352233409882,
-0.07965081930160522,
0.011176814325153828,
-0.11607582122087479,
-0.1256982982158661,
0.011873425915837288,
0.13336114585399628,
0.059921663254499435,
0.16569606959819794,
0.09518871456384659,
-0.032197169959545135,
0.017584815621376038,
-0.0023385772947221994,
-0.09040450304746628,
0.01580043137073517,
-0.0021571461111307144,
-0.12167251110076904,
-0.07353103160858154,
-0.08134473115205765,
0.12585052847862244,
-0.20988115668296814,
0.015492538921535015,
0.04099845886230469,
0.008103687316179276,
0.04467369243502617,
0.023746047168970108,
-0.013269703835248947,
-0.00007021807687124237,
0.03244573250412941,
-0.10098352283239365,
0.12937165796756744,
0.013381263241171837,
0.014676140621304512,
-0.006365173030644655,
-0.05572463944554329,
0.03720450773835182,
0.040439579635858536,
-0.11237845569849014,
-0.11330515146255493,
-0.009658765979111195,
-0.0015364213613793254,
0.02637762948870659,
-0.022321155294775963,
0.052120618522167206,
0.27587956190109253,
0.05387469753623009,
0.10401033610105515,
-0.05769326910376549,
0.015315087512135506,
-0.015322818420827389,
-0.07135670632123947,
0.06358719617128372,
0.025013601407408714,
0.08050397783517838,
-0.03531401976943016,
0.03759452700614929,
0.1675453782081604,
-0.015888912603259087,
0.11127935349941254,
-0.06545067578554153,
-0.03844274953007698,
-0.043109722435474396,
0.05627678707242012,
0.015021559782326221,
0.04564907029271126,
0.0000015355876712419558,
-0.08444724231958389,
-0.03503387048840523,
-0.03988509997725487,
-0.010637006722390652,
-0.12273643165826797,
-0.00499896751716733,
0.01265440508723259,
-0.021940499544143677,
0.04488934203982353,
0.07375624030828476,
-0.04849626496434212,
0.025821007788181305,
0.06070821359753609,
-0.10193055868148804,
0.08957115560770035,
0.015067169442772865,
-0.06946801394224167,
0.13769419491291046,
-0.07484805583953857,
-0.045293889939785004,
-0.1025395318865776,
-0.1568877100944519,
0.09384927153587341,
0.06704871356487274,
-0.05427970737218857,
-0.1503879576921463,
-0.0016851738328114152,
-0.008973666466772556,
0.09206123650074005,
-0.006399387493729591,
-0.12621140480041504,
0.01989075168967247,
0.08295059949159622,
-0.05633419007062912,
-0.09804849326610565,
-0.0075809285044670105,
-0.05280788615345955,
-0.17707788944244385,
-0.03888550028204918,
-0.06398582458496094,
-0.06734282523393631,
0.23586803674697876,
0.02017230913043022,
0.08274748176336288,
-0.044721852988004684,
0.04250151664018631,
-0.012231717817485332,
0.0006326579605229199,
0.10689259320497513,
-0.09043551236391068,
-0.017900818958878517,
-0.001320177922025323,
-0.024820495396852493,
-0.07327181100845337,
0.029733488336205482,
-0.04272191599011421,
-0.08249637484550476,
-0.1415451467037201,
-0.04993678629398346,
-0.011005163192749023,
0.10754310339689255,
0.07337497919797897,
0.0048001972027122974,
-0.11733713001012802,
0.062058478593826294,
0.13692134618759155,
0.031207585707306862,
0.004062763415277004,
0.028157465159893036,
0.14977529644966125,
-0.10706274956464767,
-0.022463621571660042,
-0.038119975477457047,
-0.054863203316926956,
0.004114252515137196,
0.016883620992302895,
0.08840765058994293,
0.1410384476184845,
0.11468084901571274,
0.047563645988702774,
0.0464191697537899,
0.06561273336410522,
0.1694946140050888,
0.059157438576221466,
-0.10448314249515533,
-0.044678982347249985,
-0.0040070898830890656,
-0.10903503000736237,
0.057307638227939606,
0.16030821204185486,
0.06326017528772354,
-0.14463356137275696,
0.021787412464618683,
-0.038982175290584564,
0.13649246096611023,
0.020638149231672287,
-0.2677258849143982,
-0.008139112964272499,
0.023630544543266296,
-0.0010347915813326836,
-0.012379839085042477,
0.10821118950843811,
-0.040134772658348083,
-0.233198344707489,
-0.12299054861068726,
0.010077533312141895,
0.031144635751843452,
-0.1509784311056137,
0.015542911365628242,
-0.14036494493484497,
0.08027976751327515,
-0.007007129956036806,
0.07418135553598404,
-0.025149788707494736,
0.15060245990753174,
-0.028731435537338257,
0.01628703810274601,
-0.07902143895626068,
-0.047717493027448654,
0.09898673743009567,
-0.0046631391160190105,
0.1931537538766861,
0.005480166990309954,
-0.023713182657957077,
-0.12098433077335358,
-0.05229806900024414,
-0.04967813938856125,
0.010598190128803253,
-0.05373382940888405,
0.0765683576464653,
-0.02441473677754402,
-0.0039579677395522594,
-0.010900177992880344,
0.08942947536706924,
-0.05291692912578583,
0.03636563941836357,
-0.11246588081121445,
-0.05034820735454559,
0.14550213515758514,
-0.09163831174373627,
-0.10174685716629028,
-0.16205860674381256,
0.14137998223304749,
0.15070600807666779,
0.058216437697410583,
-0.04001476243138313,
0.03867831453680992,
-0.019183965399861336,
-0.024241572245955467,
0.07880574464797974,
0.009653856977820396,
0.1324782371520996,
-0.08983246237039566,
0.014327390119433403,
0.14589735865592957,
-0.05275948345661163,
0.016191845759749413,
-0.02304735779762268,
0.12202176451683044,
0.04650457948446274,
0.06189403310418129,
0.018547222018241882,
0.06655703485012054,
0.06466961652040482,
-0.02262885868549347,
0.08456692099571228,
0.030712679028511047,
-0.18644161522388458,
0.058530256152153015,
-0.09805119782686234,
0.22581584751605988,
0.05066308751702309,
0.06047345697879791,
0.2993181645870209,
0.21986234188079834,
-0.05372472479939461,
0.1669820249080658,
0.044286344200372696,
-0.05891284719109535,
-0.21245966851711273,
-0.03684934973716736,
-0.030655447393655777,
0.09436552971601486,
0.15607263147830963,
-0.0981721356511116,
-0.04201313853263855,
-0.00972361396998167,
-0.032264553010463715,
0.020120708271861076,
-0.24663487076759338,
-0.01734781451523304,
0.14379777014255524,
0.10629188269376755,
0.2451348900794983,
-0.006132842972874641,
0.023609744384884834,
0.049030207097530365,
0.018605992197990417,
-0.02483358606696129,
-0.21013511717319489,
0.09079083055257797,
0.006071676965802908,
0.04935038834810257,
0.022885039448738098,
-0.006052911281585693,
0.04500092566013336,
-0.073696069419384,
0.08904470503330231,
-0.08561883866786957,
-0.08341272175312042,
0.2185351401567459,
-0.03945168852806091,
-0.00661163916811347,
0.12917985022068024,
-0.011526807211339474,
-0.1097102016210556,
-0.015364703722298145,
0.027403371408581734,
0.030678823590278625,
-0.030246863141655922,
-0.03609466925263405,
0.024012766778469086,
0.10202405601739883,
-0.04282205551862717,
0.04565315693616867,
0.10240072011947632,
-0.020902957767248154,
0.15945613384246826,
0.13205459713935852,
0.10420060157775879,
0.002927543595433235,
-0.06464727967977524,
0.014349685050547123,
-0.055471502244472504,
0.02962767891585827,
-0.17038846015930176,
-0.0070191239938139915,
0.055695805698633194,
0.04772466421127319,
0.0945243164896965,
0.11333164572715759,
-0.127106174826622,
0.0300484336912632,
0.028996523469686508,
-0.06286120414733887,
-0.06029998138546944,
-0.002275418024510145,
-0.016458535566926003,
-0.008173024281859398,
-0.09947093576192856,
0.07884971052408218,
-0.10555081814527512,
-0.03306307643651962,
0.05025126785039902,
-0.0607193186879158,
-0.12852220237255096,
-0.010904680006206036,
0.1252979338169098,
0.061709314584732056,
-0.05078592896461487,
0.14939077198505402,
0.06109785661101341,
-0.08055379986763,
0.037185851484537125,
0.027442200109362602,
-0.08008874952793121,
-0.10198270529508591,
-0.0004569833690766245,
0.31761088967323303,
0.06076094135642052,
-0.0329466350376606,
-0.11946453154087067,
-0.15002015233039856,
0.04840146750211716,
0.1035679280757904,
0.12359631806612015,
0.011757869273424149,
-0.05322748050093651,
0.02236519381403923,
-0.05275069922208786,
0.03814244270324707,
0.06910209357738495,
-0.03928454965353012,
-0.13761694729328156,
0.0077122850343585014,
0.026647454127669334,
0.10174071043729782,
-0.06771174818277359,
-0.09184598177671432,
-0.18085066974163055,
0.09208621084690094,
-0.03432070091366768,
-0.10890032351016998,
0.027215104550123215,
-0.017406610772013664,
0.014248576015233994,
0.07639352232217789,
-0.047281619161367416,
0.01244808267802,
-0.1517520695924759,
0.07082249224185944,
0.05706808716058731,
0.08926787972450256,
0.000014311663107946515,
-0.054843269288539886,
0.07618319988250732,
-0.05763502046465874,
0.06680037826299667,
-0.053477559238672256,
0.005539732985198498,
0.10781200975179672,
-0.23264040052890778,
-0.021164139732718468,
0.009476077742874622,
-0.04681631922721863,
0.08765807747840881,
-0.19047698378562927,
0.024190550670027733,
-0.08897756040096283,
-0.024605726823210716,
0.01802127994596958,
-0.1086471825838089,
-0.04306677728891373,
0.08475461602210999,
0.037119291722774506,
-0.031288959085941315,
-0.04612116143107414,
-0.019314980134367943,
-0.0914498046040535,
0.053634315729141235,
0.07442525774240494,
-0.0687926784157753,
0.08314394950866699,
-0.05507456883788109,
0.00841207429766655,
-0.052043743431568146,
0.06760627031326294,
-0.012366239912807941,
-0.12672528624534607,
-0.02123171091079712,
-0.044928714632987976,
0.11662110686302185,
-0.023402327671647072,
0.022080281749367714,
0.014599837362766266,
0.0323631577193737,
-0.012065601535141468,
0.05028461292386055,
0.1019197478890419,
0.05136820673942566,
0.014879679307341576,
0.02292765863239765,
0.055746350437402725,
0.0757644772529602,
-0.1134679913520813,
0.06457309424877167,
-0.02098844014108181,
-0.08620109409093857,
0.1013324111700058,
0.06909440457820892,
0.037490107119083405,
0.15593400597572327,
0.22674402594566345,
0.10539932548999786,
-0.03564648702740669,
-0.03126971051096916,
0.12967991828918457,
0.17799612879753113,
-0.07682197540998459,
0.015780627727508545,
-0.0020607721526175737,
-0.017265556380152702,
-0.09849067777395248,
-0.13722245395183563,
-0.060460351407527924,
-0.2453264594078064,
0.1078341007232666,
-0.03288164362311363,
-0.04169659689068794,
0.128489688038826,
0.027952738106250763,
0.03724630922079086,
0.08183616399765015,
-0.12909026443958282,
-0.013460557907819748,
0.07749562710523605,
-0.08914026618003845,
-0.033571500331163406,
-0.17521262168884277,
-0.06771576404571533,
-0.08741120994091034,
-0.15989220142364502,
-0.06844990700483322,
0.029948782175779343,
0.035394806414842606,
0.010386589914560318,
-0.039711855351924896,
-0.01962728053331375,
0.011063394136726856,
-0.0025537724141031504,
-0.04985455423593521,
-0.01753084547817707,
0.021317757666110992,
-0.11333847790956497,
-0.024336790665984154,
0.16320326924324036,
-0.03297848999500275,
-0.18396754562854767,
-0.0405106395483017,
0.2157316505908966,
0.025046708062291145,
0.0590171180665493,
-0.073721744120121,
-0.016323629766702652,
0.021523483097553253,
0.20813441276550293,
0.10171995311975479,
-0.10821312665939331,
0.015457749366760254,
-0.03655189648270607,
0.0013793212128803134,
-0.061893612146377563,
0.10775819420814514,
0.06519263982772827,
-0.07549984753131866,
-0.17567221820354462,
-0.04389495030045509,
-0.08628730475902557,
0.03370477631688118,
-0.14383791387081146,
-0.03786516562104225,
0.1168690100312233,
0.004516853019595146,
-0.053927481174468994,
0.07883694022893906,
-0.17713546752929688,
0.03441957011818886,
-0.04880853369832039,
-0.13215437531471252,
-0.09491758048534393,
-0.10123858600854874,
0.0027463934384286404,
0.08913854509592056,
0.15567956864833832,
-0.06151591241359711,
-0.07471925020217896,
-0.009579092264175415,
-0.028091613203287125,
-0.052700337022542953,
-0.07900123298168182,
0.059512585401535034,
0.0007560851518064737,
0.16147300601005554,
-0.07439453154802322,
0.09558981657028198,
0.09099138528108597,
-0.021246420219540596,
-0.00915549136698246,
0.032866667956113815,
-0.003863809397444129,
-0.07436864078044891,
-0.04970616102218628,
0.02312966249883175,
0.027639856562018394,
0.10846075415611267,
-0.030836544930934906,
-0.1934703141450882,
0.11230092495679855,
0.09140218049287796,
-0.04296138137578964,
-0.046487610787153244,
0.05351927503943443,
-0.07097935676574707,
0.1252279132604599,
0.03444884717464447,
-0.02163051813840866,
0.013762647286057472,
-0.06370721012353897,
0.08370721340179443,
0.11594565212726593,
-0.048265840858221054,
-0.08278503268957138,
-0.06164652109146118,
0.012770666740834713,
0.02961382456123829,
-0.13650155067443848,
-0.21160630881786346,
-0.10802312940359116,
-0.1383298933506012,
0.004740108735859394,
-0.04703504592180252,
0.08498300611972809,
0.12991970777511597,
0.09780163317918777,
-0.011416295543313026,
-0.004867587238550186,
0.018085451796650887,
0.13192623853683472,
-0.11232008039951324,
-0.08192373812198639
] |
null | null | transformers |
# DarkSapling-7B-v2.0-GGUF⚡
🪄 GGUF quants of [DarkSapling-7B-v2.0](https://huggingface.co/TeeZee/DarkSapling-7B-v2.0).
## 📜 Prompt template
- **❓**
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["not-for-all-audiences"], "pipeline_tag": "text-generation"} | text-generation | Meggido/DarkSapling-7B-v2.0-GGUF | [
"transformers",
"gguf",
"not-for-all-audiences",
"text-generation",
"en",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:22:04+00:00 | [] | [
"en"
] | TAGS
#transformers #gguf #not-for-all-audiences #text-generation #en #license-apache-2.0 #endpoints_compatible #region-us
|
# DarkSapling-7B-v2.0-GGUF
GGUF quants of DarkSapling-7B-v2.0.
## Prompt template
-
| [
"# DarkSapling-7B-v2.0-GGUF\n\n GGUF quants of DarkSapling-7B-v2.0.",
"## Prompt template\n\n-"
] | [
"TAGS\n#transformers #gguf #not-for-all-audiences #text-generation #en #license-apache-2.0 #endpoints_compatible #region-us \n",
"# DarkSapling-7B-v2.0-GGUF\n\n GGUF quants of DarkSapling-7B-v2.0.",
"## Prompt template\n\n-"
] | [
44,
29,
6
] | [
"passage: TAGS\n#transformers #gguf #not-for-all-audiences #text-generation #en #license-apache-2.0 #endpoints_compatible #region-us \n# DarkSapling-7B-v2.0-GGUF\n\n GGUF quants of DarkSapling-7B-v2.0.## Prompt template\n\n-"
] | [
-0.016552945598959923,
0.1034262552857399,
-0.00529788201674819,
0.027898814529180527,
-0.0031642441172152758,
0.006167749408632517,
0.04775701090693474,
0.13230778276920319,
-0.08724814653396606,
0.014837242662906647,
0.1450570523738861,
0.1030554547905922,
0.01676560752093792,
0.05344094708561897,
-0.019870297983288765,
-0.23537138104438782,
0.05343453586101532,
0.03625291585922241,
-0.07419905066490173,
0.07260257005691528,
0.07219166308641434,
0.021550631150603294,
0.01063572708517313,
-0.040380459278821945,
-0.1268003284931183,
-0.017275672405958176,
0.023404426872730255,
-0.08480530977249146,
0.006082168780267239,
0.0909002423286438,
-0.02329198457300663,
0.06278926134109497,
-0.08054878562688828,
-0.11399488151073456,
0.018979910761117935,
0.014646456576883793,
-0.05354531481862068,
0.0619281604886055,
-0.024880219250917435,
0.04761284217238426,
0.07191302627325058,
0.022602787241339684,
-0.05522445961833,
0.08971543610095978,
-0.08052917569875717,
-0.21951620280742645,
-0.12496818602085114,
0.07252677530050278,
-0.016243988648056984,
0.047606851905584335,
0.0012724752305075526,
0.07840844243764877,
-0.0427686870098114,
0.013784803450107574,
0.19838988780975342,
-0.347268670797348,
-0.046882592141628265,
0.06671146303415298,
0.018941199406981468,
0.011319393292069435,
-0.042334653437137604,
0.10864552855491638,
0.08746340870857239,
-0.00710526667535305,
0.013197419233620167,
-0.0450286939740181,
-0.09085486084222794,
-0.009919975884258747,
-0.10453493148088455,
-0.027704991400241852,
0.26781609654426575,
0.027942294254899025,
-0.00539996474981308,
-0.04682613164186478,
-0.056899167597293854,
0.04201875254511833,
-0.044759366661310196,
0.04695119336247444,
0.008088122121989727,
0.09108926355838776,
0.04722462221980095,
-0.12052414566278458,
-0.08906705677509308,
-0.095618337392807,
-0.08149629831314087,
0.20458126068115234,
-0.011775530874729156,
0.06403324753046036,
-0.026957819238305092,
0.03721582889556885,
-0.14889715611934662,
-0.14297547936439514,
-0.08371932804584503,
-0.0906473696231842,
0.11021007597446442,
0.0842176005244255,
-0.0271858312189579,
0.037841010838747025,
0.19032421708106995,
0.20926186442375183,
0.0576465018093586,
0.06938520073890686,
-0.06452760100364685,
0.0748821496963501,
-0.12139549851417542,
0.04792724922299385,
0.011000559665262699,
0.04592425376176834,
0.1810595840215683,
-0.0455978587269783,
0.1902686357498169,
-0.03844328224658966,
-0.10113438963890076,
-0.09766300767660141,
-0.06988366693258286,
0.07059456408023834,
0.08585361391305923,
0.06108024716377258,
-0.0417170524597168,
0.0037863904144614935,
0.1201324313879013,
-0.05448732525110245,
-0.027070099487900734,
0.00019834084378089756,
0.02770707756280899,
-0.03485015034675598,
0.039007775485515594,
0.013768280856311321,
-0.04944780841469765,
-0.014311655424535275,
-0.035276733338832855,
-0.05829116329550743,
-0.04046919569373131,
0.037798140197992325,
0.09773626923561096,
0.08359869569540024,
0.0141284866258502,
-0.06826687604188919,
-0.1859276294708252,
0.07383181154727936,
0.032990843057632446,
-0.015050682239234447,
-0.0975458174943924,
0.021875573322176933,
-0.09847205132246017,
0.059188779443502426,
-0.052646905183792114,
0.023980244994163513,
-0.06291217356920242,
0.05473022162914276,
0.07215911895036697,
0.040074318647384644,
-0.21053555607795715,
0.010347915813326836,
-0.07956251502037048,
0.037651460617780685,
-0.2200511246919632,
0.04880773276090622,
-0.1355040818452835,
0.10110198706388474,
-0.04680491238832474,
-0.0687122792005539,
-0.03177826851606369,
-0.03815667703747749,
-0.018303195014595985,
0.16687601804733276,
-0.06519872695207596,
-0.04711136221885681,
0.23909786343574524,
-0.16990543901920319,
-0.17335689067840576,
0.15146958827972412,
0.06685370206832886,
-0.08641260862350464,
0.02044031396508217,
0.2574304938316345,
0.08857540786266327,
0.05364082008600235,
-0.011417980305850506,
0.11230570822954178,
-0.07446447759866714,
0.02173810638487339,
0.12084800750017166,
-0.05686153843998909,
-0.12041716277599335,
0.054595209658145905,
-0.037056777626276016,
0.038300566375255585,
0.04522542282938957,
-0.06183438003063202,
-0.07317405939102173,
0.015583259984850883,
0.09303159266710281,
-0.018178142607212067,
0.01912645623087883,
-0.08741454780101776,
-0.06972180306911469,
-0.02148555777966976,
0.10315538942813873,
-0.028844967484474182,
0.03761904686689377,
-0.08263714611530304,
0.11699112504720688,
-0.06173861771821976,
0.06748282164335251,
-0.0059667625464499,
-0.031217064708471298,
-0.004232627805322409,
-0.07505759596824646,
0.04054154455661774,
-0.02636302448809147,
0.05016189068555832,
-0.02226381190121174,
-0.08430831134319305,
-0.00788227841258049,
0.0015635235467925668,
-0.017869675531983376,
0.053765155375003815,
-0.1123461052775383,
0.042355675250291824,
-0.003014336107298732,
0.1385643184185028,
-0.07946068048477173,
0.05144836753606796,
0.11149696260690689,
0.04134848713874817,
-0.04683626443147659,
-0.020496362820267677,
0.08400264382362366,
-0.10100728273391724,
0.019068321213126183,
-0.03557676821947098,
0.054045114666223526,
0.051126912236213684,
-0.19300921261310577,
0.097367063164711,
-0.07571958005428314,
0.218401700258255,
0.16214154660701752,
-0.11074849218130112,
0.09253977984189987,
-0.010692170821130276,
-0.019478727132081985,
-0.01346946507692337,
0.0836569145321846,
-0.006027364172041416,
0.07600662857294083,
-0.031405508518218994,
0.0507347397506237,
-0.09220502525568008,
-0.047377362847328186,
0.005046812351793051,
-0.05979152023792267,
0.009482916444540024,
0.044441916048526764,
-0.009148949757218361,
-0.168488547205925,
0.1255171000957489,
0.20547376573085785,
-0.060761649161577225,
0.09667017310857773,
-0.06394999474287033,
0.026949845254421234,
-0.009820525534451008,
0.04786472022533417,
0.027219822630286217,
0.0785910040140152,
-0.22220900654792786,
0.05790993571281433,
0.0670839175581932,
0.011264572851359844,
0.0734802782535553,
-0.111551433801651,
-0.07788852602243423,
-0.048327621072530746,
-0.1042475476861,
-0.07147739082574844,
0.0400233156979084,
-0.07186087220907211,
0.05774528533220291,
0.05331427603960037,
0.081511951982975,
0.11744960397481918,
-0.022956954315304756,
-0.09455307573080063,
0.12732134759426117,
-0.18064211308956146,
-0.1486566811800003,
-0.15281561017036438,
0.12913605570793152,
-0.12225145101547241,
0.018585748970508575,
0.10701446235179901,
-0.08233249932527542,
-0.030010895803570747,
-0.031459834426641464,
0.02668568678200245,
-0.08992550522089005,
0.025390133261680603,
0.05025983974337578,
-0.01300795003771782,
0.03391684219241142,
-0.12415897101163864,
-0.026295049116015434,
0.0042777215130627155,
-0.09291325509548187,
0.04306190460920334,
-0.11767632514238358,
0.07734734565019608,
0.10073991119861603,
0.0565875768661499,
0.016947945579886436,
-0.03296637162566185,
0.05423440411686897,
-0.09147888422012329,
-0.04210839793086052,
0.18859286606311798,
0.053444188088178635,
0.057660818099975586,
0.06851819157600403,
0.03777335211634636,
-0.07121620327234268,
-0.025101175531744957,
-0.004478796385228634,
-0.07206626981496811,
-0.13954193890094757,
-0.08497588336467743,
-0.12464400380849838,
0.09759161621332169,
-0.012201842851936817,
0.07703205943107605,
0.0061506968922913074,
0.10221825540065765,
-0.11227641999721527,
-0.05969491973519325,
0.09459039568901062,
0.11123540252447128,
0.2598784267902374,
0.00392052810639143,
0.04392855614423752,
-0.08089245855808258,
0.03068694658577442,
0.16567794978618622,
-0.012777436524629593,
0.07923572510480881,
-0.008527901954948902,
0.1610056459903717,
0.055511876940727234,
0.1286301165819168,
0.10216877609491348,
0.03963901847600937,
0.0004125471750739962,
-0.027127768844366074,
-0.03737514093518257,
-0.11030565202236176,
-0.1075984388589859,
0.014569821767508984,
-0.14253292977809906,
-0.0002838103682734072,
0.0052693793550133705,
-0.10125672072172165,
0.14211441576480865,
0.1716298758983612,
0.06806512922048569,
-0.11604329198598862,
-0.09101057797670364,
0.09324125200510025,
0.051248714327812195,
-0.07235625386238098,
0.06898622959852219,
0.005301219876855612,
-0.039716411381959915,
0.19258230924606323,
-0.05974792689085007,
0.08393542468547821,
0.03710588067770004,
0.009227080270648003,
-0.12249871343374252,
-0.010157045908272266,
0.010817809030413628,
0.16148585081100464,
-0.22509005665779114,
0.06734263151884079,
0.03590324521064758,
0.07201112806797028,
-0.040430109947919846,
0.039568740874528885,
0.04747321456670761,
0.13330286741256714,
0.12489098310470581,
0.02601192146539688,
0.03800363093614578,
0.08864348381757736,
-0.0719834640622139,
0.10189229995012283,
0.040293071419000626,
-0.016708606854081154,
-0.06282194703817368,
-0.030118601396679878,
0.03145390748977661,
0.04291116073727608,
0.0015362544218078256,
-0.069708451628685,
-0.1406012326478958,
0.10475184768438339,
0.058100905269384384,
0.01734035462141037,
-0.09564211219549179,
0.014101873151957989,
0.02114432491362095,
0.2310996800661087,
-0.13648942112922668,
-0.12262679636478424,
-0.06022079661488533,
-0.03707733750343323,
0.08061638474464417,
-0.0184144526720047,
0.05935513973236084,
-0.08292335271835327,
0.037934355437755585,
0.00040537863969802856,
-0.15216824412345886,
0.10860761255025864,
-0.08108054101467133,
-0.13101860880851746,
0.023771606385707855,
0.18085825443267822,
-0.10800515860319138,
0.039685264229774475,
0.025567676872015,
0.02756834588944912,
-0.01303007360547781,
-0.22240859270095825,
0.05330435931682587,
0.06033889576792717,
0.03485296666622162,
0.014041757211089134,
-0.00463922880589962,
0.0160080399364233,
0.06700938940048218,
-0.029579194262623787,
0.1460295021533966,
0.3008689284324646,
-0.06132647395133972,
0.1195947453379631,
0.16453827917575836,
-0.0646805390715599,
-0.22321800887584686,
-0.09308583289384842,
-0.09476625919342041,
-0.09891821444034576,
-0.12269030511379242,
-0.12638626992702484,
0.13616521656513214,
0.11659333854913712,
-0.07690032571554184,
0.10836295038461685,
-0.2541891634464264,
-0.08666493743658066,
0.04683502018451691,
-0.009112766943871975,
0.25308412313461304,
-0.17526602745056152,
-0.10917544364929199,
-0.09565802663564682,
-0.18848899006843567,
0.1035899668931961,
-0.12272249162197113,
0.08648378401994705,
-0.038978006690740585,
0.005183556582778692,
0.018527096137404442,
-0.04760320857167244,
0.15785831212997437,
-0.09078991413116455,
0.012474809773266315,
-0.1162252426147461,
0.013766487129032612,
0.19628511369228363,
-0.004066869616508484,
0.0546518974006176,
-0.1673663854598999,
0.036239318549633026,
-0.09196244180202484,
0.0004460013296920806,
-0.05261874198913574,
0.12487627565860748,
-0.02343634143471718,
-0.05155356600880623,
-0.08623366057872772,
-0.04677758365869522,
0.04262305423617363,
0.0327313132584095,
0.1876637190580368,
-0.030569374561309814,
0.07474424690008163,
0.07740923017263412,
0.09351915121078491,
-0.14131174981594086,
0.029153812676668167,
-0.010984226129949093,
-0.04325561970472336,
0.10185609757900238,
-0.1600271761417389,
0.06754788011312485,
0.056766219437122345,
0.03257184475660324,
-0.003984285984188318,
0.08782587945461273,
-0.015145773068070412,
0.041390061378479004,
0.08464674651622772,
-0.19795829057693481,
-0.17576864361763,
-0.03886035457253456,
0.04486832767724991,
0.016819270327687263,
0.14649711549282074,
0.08092793822288513,
-0.0028409126680344343,
-0.02280004508793354,
0.05742380768060684,
0.04953434318304062,
-0.10885202139616013,
0.05135069042444229,
-0.00021995569113641977,
0.013793433085083961,
-0.12864723801612854,
0.09815847128629684,
-0.014808570966124535,
-0.10403700917959213,
0.004338906146585941,
0.12027901411056519,
-0.09887027740478516,
-0.09458474069833755,
-0.016540680080652237,
0.0008402654784731567,
-0.05587007477879524,
-0.017146699130535126,
-0.04033246636390686,
-0.08530831336975098,
0.0035416551399976015,
0.09367673099040985,
0.06381265074014664,
0.04973496124148369,
0.06156676262617111,
0.06398513913154602,
0.008047199808061123,
-0.011181432753801346,
-0.08516295999288559,
0.06509019434452057,
-0.10776442289352417,
-0.016040127724409103,
-0.01574438437819481,
0.014568723738193512,
-0.07768553495407104,
0.0017895305063575506,
-0.10366489738225937,
-0.03618224710226059,
-0.11181002855300903,
0.052345871925354004,
-0.0769338384270668,
0.03644150123000145,
-0.030183888971805573,
-0.012164317071437836,
-0.0484636016190052,
0.043493371456861496,
-0.06048426777124405,
-0.055017102509737015,
-0.033335473388433456,
0.03192013502120972,
-0.13422836363315582,
-0.015545771457254887,
0.0524652861058712,
-0.019109448418021202,
0.14467351138591766,
0.13112755119800568,
0.010703718289732933,
0.04398109391331673,
-0.11902178078889847,
-0.08374255150556564,
0.08801966905593872,
0.010636048391461372,
-0.08147743344306946,
0.024748560041189194,
-0.02262449823319912,
0.05207611992955208,
-0.03884276747703552,
0.02667985111474991,
0.17313958704471588,
-0.1458529233932495,
-0.09091638028621674,
-0.051286131143569946,
-0.05001756176352501,
-0.05629589408636093,
-0.02388729341328144,
0.086650051176548,
0.05853576958179474,
0.09364008903503418,
-0.06196119636297226,
-0.017881965264678,
-0.06855741143226624,
0.010545273311436176,
0.010145475156605244,
-0.11373114585876465,
-0.0220174640417099,
0.07166246324777603,
0.00004608060044120066,
-0.02744445577263832,
0.17245344817638397,
-0.11626309156417847,
-0.06675399839878082,
0.048550717532634735,
-0.012508265674114227,
0.12290678918361664,
-0.003107282333076,
0.31582462787628174,
0.04653146117925644,
-0.016604039818048477,
0.01779153011739254,
0.047651439905166626,
0.01738419197499752,
-0.08857734501361847,
0.005685565993189812,
0.024469656869769096,
-0.07919838279485703,
0.06528691947460175,
0.0002333308948436752,
0.0007847962551750243,
-0.11268418282270432,
0.0973602905869484,
0.08705820888280869,
0.10532762110233307,
-0.01720360480248928,
0.09116550534963608,
0.1951487809419632,
-0.022400179877877235,
0.015497028827667236,
-0.013888963498175144,
-0.04083799198269844,
-0.11549928039312363,
-0.23075740039348602,
-0.08150240033864975,
-0.15035994350910187,
0.019089290872216225,
-0.12532708048820496,
0.05015562102198601,
0.034992460161447525,
0.01912255957722664,
-0.021901598200201988,
0.12360073626041412,
-0.005863321479409933,
-0.0666930079460144,
0.07046707719564438,
-0.044971317052841187,
-0.06198946759104729,
0.05488833785057068,
-0.033937007188797,
0.07659883052110672,
-0.01270824670791626,
0.01832367666065693,
0.06721610575914383,
0.02664756216108799,
0.00846158154308796,
-0.06585155427455902,
-0.05924614146351814,
-0.037154488265514374,
0.09133252501487732,
0.09730397909879684,
0.10761217772960663,
0.013368124142289162,
-0.06793610006570816,
0.05890746787190437,
0.21857057511806488,
-0.09542449563741684,
-0.06055377796292305,
-0.03688511252403259,
0.07002252340316772,
-0.07387440651655197,
0.05295957997441292,
-0.038108572363853455,
-0.045376215130090714,
-0.0029654211830347776,
0.16296501457691193,
0.20420758426189423,
-0.012671299278736115,
0.022815441712737083,
-0.04282929375767708,
0.027357587590813637,
0.029841868206858635,
0.07125075906515121,
0.07213270664215088,
0.15178892016410828,
-0.04687435179948807,
-0.057956188917160034,
0.007665244396775961,
0.035830408334732056,
-0.18322576582431793,
0.06316369026899338,
-0.009182574227452278,
-0.05271092429757118,
0.004614613018929958,
0.07301631569862366,
-0.03270275890827179,
0.0037826981861144304,
-0.09232254326343536,
-0.0956307053565979,
-0.03189804404973984,
-0.009240460582077503,
0.020962800830602646,
-0.0006090690148994327,
0.059016186743974686,
-0.005194277968257666,
-0.04207824915647507,
-0.022662842646241188,
0.012170339934527874,
-0.21242232620716095,
-0.03250027075409889,
0.06192781776189804,
-0.04225223511457443,
0.22786998748779297,
0.017531728371977806,
0.0628659576177597,
0.09563526511192322,
-0.02643669582903385,
-0.11502250283956528,
0.08269087225198746,
0.03407881781458855,
-0.13030274212360382,
-0.015672806650400162,
0.07543566823005676,
-0.0454515665769577,
0.031002407893538475,
0.0630914568901062,
-0.02289331704378128,
-0.011265236884355545,
0.06416267156600952,
-0.0478501096367836,
-0.0557565875351429,
0.013837164267897606,
-0.15624535083770752,
0.08259518444538116,
0.035398855805397034,
-0.062285348773002625,
-0.0766410380601883,
-0.0801580622792244,
0.022609181702136993,
0.04074076563119888,
-0.005397309083491564,
-0.017754314467310905,
-0.04515749588608742,
-0.031900517642498016,
0.09637622535228729,
0.013498300686478615,
-0.11815322935581207,
-0.0012244399404153228,
-0.09738119691610336,
0.07504726946353912,
-0.03994034603238106,
0.048628125339746475,
0.08746460825204849,
-0.0376296229660511,
-0.028492266312241554,
-0.28056201338768005,
-0.0005517686950042844,
0.06294650584459305,
-0.09019171446561813,
-0.07476344704627991
] |
null | null | peft |
<img src="https://huggingface.co/Menouar/saqr-7b-instruct/resolve/main/saqr.jpg" alt="Saqr Logo" width="800" style="margin-left:auto; margin-right:auto; display:block;"/>
# saqr-7b-instruct
This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) on [ultrachat_200k](https://huggingface.co/datasets/HuggingFaceH4/ultrachat_200k), [UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback), and [gsm8k](https://huggingface.co/datasets/gsm8k) datasets.
## Model description
This model is a fine-tuned version of [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.
## Training and evaluation data
The evaluation for training can be found [here](https://huggingface.co/Menouar/saqr-7b-instruct/tensorboard).
The evaluation can be found at the Hugging Face Leaderboard [here](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Menouar/saqr-7b-instruct/).
## Training procedure
Can be found [here](https://colab.research.google.com/github/menouarazib/llm/blob/main/Saqr_7B.ipynb).
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 7
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 5000
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1 | {"language": ["en"], "license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer", "Pytorch", "Falcon"], "datasets": ["HuggingFaceH4/ultrachat_200k", "openbmb/UltraFeedback", "gsm8k"], "base_model": "tiiuae/falcon-7b", "pipeline_tag": "text-generation", "model-index": [{"name": "saqr-7b-instruct", "results": []}]} | text-generation | Menouar/saqr-7b-instruct | [
"peft",
"tensorboard",
"safetensors",
"trl",
"sft",
"generated_from_trainer",
"Pytorch",
"Falcon",
"text-generation",
"conversational",
"en",
"dataset:HuggingFaceH4/ultrachat_200k",
"dataset:openbmb/UltraFeedback",
"dataset:gsm8k",
"base_model:tiiuae/falcon-7b",
"license:apache-2.0",
"region:us"
] | 2024-02-13T11:22:28+00:00 | [] | [
"en"
] | TAGS
#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #Pytorch #Falcon #text-generation #conversational #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-openbmb/UltraFeedback #dataset-gsm8k #base_model-tiiuae/falcon-7b #license-apache-2.0 #region-us
|
<img src="URL alt="Saqr Logo" width="800" style="margin-left:auto; margin-right:auto; display:block;"/>
# saqr-7b-instruct
This model is a fine-tuned version of tiiuae/falcon-7b on ultrachat_200k, UltraFeedback, and gsm8k datasets.
## Model description
This model is a fine-tuned version of tiiuae/falcon-7b using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.
## Training and evaluation data
The evaluation for training can be found here.
The evaluation can be found at the Hugging Face Leaderboard here.
## Training procedure
Can be found here.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 7
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 14
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- training_steps: 5000
### Training results
### Framework versions
- PEFT 0.8.2
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1 | [
"# saqr-7b-instruct\n\nThis model is a fine-tuned version of tiiuae/falcon-7b on ultrachat_200k, UltraFeedback, and gsm8k datasets.",
"## Model description\n\nThis model is a fine-tuned version of tiiuae/falcon-7b using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.",
"## Training and evaluation data\n\nThe evaluation for training can be found here.\n\nThe evaluation can be found at the Hugging Face Leaderboard here.",
"## Training procedure\n\nCan be found here.",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 7\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 14\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 5000",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
"TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #Pytorch #Falcon #text-generation #conversational #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-openbmb/UltraFeedback #dataset-gsm8k #base_model-tiiuae/falcon-7b #license-apache-2.0 #region-us \n",
"# saqr-7b-instruct\n\nThis model is a fine-tuned version of tiiuae/falcon-7b on ultrachat_200k, UltraFeedback, and gsm8k datasets.",
"## Model description\n\nThis model is a fine-tuned version of tiiuae/falcon-7b using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.",
"## Training and evaluation data\n\nThe evaluation for training can be found here.\n\nThe evaluation can be found at the Hugging Face Leaderboard here.",
"## Training procedure\n\nCan be found here.",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 7\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 14\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 5000",
"### Training results",
"### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
109,
50,
46,
28,
8,
127,
4,
44
] | [
"passage: TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #Pytorch #Falcon #text-generation #conversational #en #dataset-HuggingFaceH4/ultrachat_200k #dataset-openbmb/UltraFeedback #dataset-gsm8k #base_model-tiiuae/falcon-7b #license-apache-2.0 #region-us \n# saqr-7b-instruct\n\nThis model is a fine-tuned version of tiiuae/falcon-7b on ultrachat_200k, UltraFeedback, and gsm8k datasets.## Model description\n\nThis model is a fine-tuned version of tiiuae/falcon-7b using supervised fine-tuning on nearly the same datasets as Zephyr-7B-beta.## Training and evaluation data\n\nThe evaluation for training can be found here.\n\nThe evaluation can be found at the Hugging Face Leaderboard here.## Training procedure\n\nCan be found here.### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0002\n- train_batch_size: 7\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 2\n- total_train_batch_size: 14\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- training_steps: 5000### Training results### Framework versions\n\n- PEFT 0.8.2\n- Transformers 4.38.0.dev0\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
-0.11998126655817032,
0.1711125671863556,
-0.002321328967809677,
0.09697096049785614,
0.13898520171642303,
0.030525630339980125,
0.121830515563488,
0.16604039072990417,
-0.009223409928381443,
0.12940055131912231,
-0.0203490499407053,
0.014163663610816002,
0.11167074739933014,
0.19517742097377777,
0.08989164978265762,
-0.20227450132369995,
-0.017548242583870888,
-0.050104741007089615,
-0.01993912272155285,
0.08301129192113876,
0.09945446997880936,
-0.08519113063812256,
0.046038608998060226,
0.02178536355495453,
-0.10834591835737228,
0.0032389515545219183,
-0.05612874776124954,
-0.04374777525663376,
0.07040410488843918,
0.015443365089595318,
0.06697162985801697,
-0.03884614259004593,
0.06149948760867119,
-0.23046769201755524,
0.01704212836921215,
0.10373235493898392,
-0.0019113686867058277,
0.06356550753116608,
0.10781031101942062,
-0.057398706674575806,
0.1137126088142395,
-0.07360400259494781,
0.0729500874876976,
0.0796661227941513,
-0.10126391798257828,
-0.24649503827095032,
-0.10373584181070328,
0.06852103024721146,
0.11105666309595108,
0.08669239282608032,
-0.026209894567728043,
0.08860224485397339,
-0.053678303956985474,
0.044729601591825485,
0.19675251841545105,
-0.22029680013656616,
-0.0564100444316864,
0.030969837680459023,
-0.003633737564086914,
0.10641589760780334,
-0.16082729399204254,
-0.04213535040616989,
0.020212391391396523,
0.004722696729004383,
0.05469122529029846,
0.004171180073171854,
-0.011678879149258137,
-0.008474255912005901,
-0.10166394710540771,
0.015682626515626907,
0.07273753732442856,
0.0355948805809021,
-0.04304630681872368,
-0.1880301684141159,
-0.017821501940488815,
-0.11279045045375824,
-0.004750171676278114,
0.023211438208818436,
0.028782624751329422,
-0.00646664435043931,
0.011469639837741852,
-0.023109234869480133,
-0.05990418419241905,
-0.05068022385239601,
0.06538265943527222,
0.09476027637720108,
0.0005076912348158658,
-0.004411545116454363,
0.0028924772050231695,
0.11741708219051361,
-0.017904061824083328,
-0.12225139141082764,
-0.05934950336813927,
-0.02241298370063305,
-0.15299592912197113,
-0.05803809314966202,
-0.0365806482732296,
-0.006945696193724871,
0.0076453182846307755,
0.23894678056240082,
0.013227240182459354,
0.08837680518627167,
-0.033245861530303955,
0.019630294293165207,
-0.01504354365170002,
0.14267675578594208,
-0.029000645503401756,
-0.1397397220134735,
-0.01632346399128437,
0.10396238416433334,
0.024100489914417267,
-0.011644785292446613,
-0.03351840376853943,
-0.027033546939492226,
0.007355723530054092,
0.052665673196315765,
0.004813977517187595,
0.0013909933622926474,
-0.10986042767763138,
-0.05519140511751175,
0.058714404702186584,
-0.1283542960882187,
0.06310366094112396,
0.06987335532903671,
-0.041333869099617004,
-0.06185227259993553,
0.034986358135938644,
-0.00027838136884383857,
-0.024968143552541733,
0.030177921056747437,
-0.08237717300653458,
0.03812234103679657,
-0.051922451704740524,
-0.046958502382040024,
0.013531736098229885,
-0.08306892216205597,
-0.02089712955057621,
-0.06498613953590393,
-0.09514635056257248,
-0.08041485399007797,
0.0006320906686596572,
-0.07890967279672623,
0.008628166280686855,
-0.05829475075006485,
-0.03581786900758743,
0.02206100896000862,
0.018220454454421997,
0.08203336596488953,
-0.03685703128576279,
0.06044968590140343,
-0.005165822338312864,
0.057013146579265594,
0.09662428498268127,
0.03615080192685127,
-0.07394715398550034,
-0.014438034035265446,
-0.19031597673892975,
0.07916240394115448,
-0.13586705923080444,
0.08095376938581467,
-0.13049140572547913,
-0.030436627566814423,
-0.03377998620271683,
0.021667784079909325,
0.09641353785991669,
0.12338878214359283,
-0.1835554987192154,
-0.0764017403125763,
0.18159855902194977,
-0.08733358979225159,
-0.10122806578874588,
0.07383473962545395,
-0.011973757296800613,
0.059751857072114944,
0.017089886590838432,
0.19085638225078583,
0.18501245975494385,
-0.0684761106967926,
-0.023905903100967407,
-0.0266609825193882,
0.051717694848775864,
0.014007484540343285,
0.06365113705396652,
-0.07409361749887466,
0.08357793092727661,
0.019697975367307663,
-0.07664227485656738,
0.0199681855738163,
-0.0028019389137625694,
-0.061632972210645676,
-0.01544229406863451,
-0.0575161874294281,
-0.0021520236041396856,
0.017006726935505867,
-0.0025720505509525537,
-0.06937309354543686,
-0.0979829728603363,
0.032148879021406174,
0.12249524891376495,
-0.025336937978863716,
0.027786774560809135,
-0.058717403560876846,
0.06275766342878342,
0.011958234943449497,
-0.01497189886868,
-0.1774386465549469,
-0.038272395730018616,
0.03455115109682083,
-0.09179715812206268,
-0.000596756290178746,
-0.03426871448755264,
0.06739164143800735,
0.044643327593803406,
-0.02772056870162487,
-0.05193663388490677,
-0.08131462335586548,
-0.020010633394122124,
-0.08464495092630386,
-0.13970482349395752,
-0.01895860768854618,
-0.06361301243305206,
0.18158158659934998,
-0.18866802752017975,
0.02105363830924034,
0.09624630212783813,
0.1392398625612259,
0.06005293130874634,
-0.12118422985076904,
0.04529067501425743,
0.01706422120332718,
0.006256170570850372,
-0.11146187782287598,
0.034956056624650955,
0.0417303703725338,
-0.07825694233179092,
-0.04706498235464096,
-0.1328628659248352,
-0.02523047849535942,
0.08703461289405823,
0.13221289217472076,
-0.1159268170595169,
-0.09580951184034348,
-0.06654991209506989,
-0.005460001528263092,
-0.09345120936632156,
-0.012627237476408482,
0.15638473629951477,
0.04096762835979462,
0.10971646010875702,
-0.05045101046562195,
-0.058660924434661865,
-0.01994742825627327,
0.038480985909700394,
0.01577659137547016,
0.09323474019765854,
0.0256105475127697,
-0.028699904680252075,
0.08421022444963455,
0.07020040601491928,
0.02095440775156021,
0.13480959832668304,
-0.03764892369508743,
-0.10622362047433853,
-0.01746968738734722,
0.05250765010714531,
0.03824642673134804,
0.09808551520109177,
-0.046138301491737366,
0.009207363240420818,
0.03641556203365326,
0.013203647918999195,
-0.00729607418179512,
-0.11943937093019485,
-0.002545625204220414,
0.02675110474228859,
-0.009351168759167194,
-0.0026392610743641853,
0.00788373313844204,
-0.00020634668180719018,
0.07569451630115509,
0.025274435058236122,
0.04933876916766167,
-0.02955646999180317,
-0.04991970583796501,
-0.0932316929101944,
0.15881969034671783,
-0.15623070299625397,
-0.12892434000968933,
-0.14008837938308716,
0.06681093573570251,
-0.00005133152080816217,
-0.006916743703186512,
0.03442695364356041,
-0.09322068095207214,
-0.055693771690130234,
-0.07434561103582382,
-0.018403273075819016,
0.04117458313703537,
-0.0016590364975854754,
0.08185428380966187,
0.04008888453245163,
0.0946877971291542,
-0.11404837667942047,
0.01827182061970234,
0.017999621108174324,
-0.08601462095975876,
-0.007446774281561375,
0.06281400471925735,
0.03155779093503952,
0.06814562529325485,
0.08076281100511551,
0.02378222532570362,
-0.023786764591932297,
0.21443328261375427,
-0.12094634771347046,
0.06748766452074051,
0.05951249226927757,
0.02502516843378544,
0.07297800481319427,
0.08194281905889511,
0.030424105003476143,
-0.08346749097108841,
0.03353297337889671,
0.04648397117853165,
-0.021581904962658882,
-0.2161283940076828,
-0.02129395306110382,
-0.03829916566610336,
-0.036655254662036896,
0.09483293443918228,
0.060891736298799515,
-0.0010361415334045887,
0.025569356977939606,
-0.02090735174715519,
0.0013868303503841162,
0.036096349358558655,
0.08488480001688004,
-0.027881290763616562,
0.032101791352033615,
0.05832497775554657,
-0.06267546117305756,
0.052408672869205475,
0.07825028896331787,
0.019706768915057182,
0.1735917627811432,
-0.032379765063524246,
0.16031895577907562,
0.02710314281284809,
0.0775759369134903,
-0.024930698797106743,
0.03381907939910889,
0.013576574623584747,
-0.022522354498505592,
0.004941442981362343,
-0.06906479597091675,
-0.02872566692531109,
0.0836825743317604,
0.005308068357408047,
0.05050266534090042,
-0.0600292943418026,
-0.04817591980099678,
0.08633404970169067,
0.17711959779262543,
0.08057883381843567,
-0.20549094676971436,
-0.057695552706718445,
0.026616539806127548,
-0.019380396232008934,
-0.06464795023202896,
0.004263622220605612,
0.10389220714569092,
-0.13077525794506073,
0.06269419938325882,
-0.04859163239598274,
0.06773412972688675,
-0.055257607251405716,
-0.020927300676703453,
0.08504597842693329,
0.07799339294433594,
-0.021211490035057068,
0.033280160278081894,
-0.16109314560890198,
0.12550733983516693,
0.023929981514811516,
0.07650596648454666,
-0.01799366995692253,
0.04467766731977463,
0.06199004873633385,
0.016723861917853355,
0.15199171006679535,
0.013146979734301567,
-0.05967824161052704,
-0.15010395646095276,
-0.06113019585609436,
-0.024111144244670868,
0.10233546048402786,
-0.12887845933437347,
0.06821668148040771,
-0.03140244632959366,
-0.013163451105356216,
-0.03992687538266182,
-0.08487717807292938,
-0.07424375414848328,
-0.13359178602695465,
0.004823658615350723,
-0.025751348584890366,
0.005668157711625099,
-0.10144540667533875,
-0.06050318479537964,
-0.029630206525325775,
0.14432144165039062,
-0.1484384387731552,
-0.05653739348053932,
-0.16340072453022003,
0.049365151673555374,
0.09084800630807877,
-0.0682523101568222,
0.029940582811832428,
0.025203904137015343,
0.15179553627967834,
0.015333594754338264,
-0.03575730323791504,
0.05295742675662041,
-0.07644874602556229,
-0.1509697139263153,
-0.07957031577825546,
0.1498487889766693,
0.04605210945010185,
0.025566507130861282,
-0.023771367967128754,
0.05892419070005417,
0.010541748255491257,
-0.08529633283615112,
0.05740930140018463,
0.1801438331604004,
-0.021073535084724426,
0.04250948876142502,
-0.045229315757751465,
0.0043079727329313755,
-0.06012607365846634,
0.0025922460481524467,
0.09116881340742111,
0.22850880026817322,
-0.0904088169336319,
0.1272030919790268,
0.04304720461368561,
-0.0892845094203949,
-0.17687144875526428,
0.06936758011579514,
0.09496979415416718,
0.03309999778866768,
0.10814269632101059,
-0.20920626819133759,
0.09932412952184677,
0.0635763555765152,
-0.01996733993291855,
0.10909080505371094,
-0.27159789204597473,
-0.08794762939214706,
0.010726219043135643,
0.08073411881923676,
-0.1190718486905098,
-0.12714649736881256,
-0.09228412061929703,
-0.001752338488586247,
-0.0626923143863678,
-0.0017805175157263875,
-0.07833796739578247,
0.1049514189362526,
-0.033844683319330215,
0.00895864237099886,
0.05310735106468201,
-0.03642062842845917,
0.1145588755607605,
0.019102398306131363,
0.04408041760325432,
-0.05779912695288658,
0.09514515101909637,
0.07505571842193604,
-0.07914403080940247,
0.006659399718046188,
-0.03981546685099602,
0.03887106478214264,
-0.2138167917728424,
-0.0016577276401221752,
-0.05096527189016342,
0.035817112773656845,
-0.051063667982816696,
-0.028825432062149048,
-0.03370277211070061,
0.07976744323968887,
0.06208407133817673,
-0.022233255207538605,
0.016930870711803436,
0.007514285854995251,
0.10326826572418213,
0.08876729756593704,
0.04395459592342377,
0.08743583410978317,
-0.161062553524971,
-0.013133174739778042,
0.0013034925796091557,
0.03270355612039566,
-0.17245103418827057,
0.021406618878245354,
0.08836150169372559,
0.05247344449162483,
0.09533698111772537,
0.024701468646526337,
-0.12242142856121063,
0.008432636968791485,
0.10118183493614197,
-0.06275523453950882,
-0.07584641128778458,
-0.0405363067984581,
0.004271789453923702,
-0.11334090679883957,
-0.014054898172616959,
0.08365845680236816,
0.008345316164195538,
-0.03868265450000763,
0.009577902965247631,
0.045673783868551254,
-0.014379062689840794,
0.10305611789226532,
0.04541175067424774,
0.069636270403862,
-0.06789174675941467,
0.1333891898393631,
0.03568197041749954,
-0.02262054570019245,
0.031543489545583725,
0.11048104614019394,
-0.10883178561925888,
-0.03441065549850464,
0.038337819278240204,
0.07006212323904037,
0.034916117787361145,
0.010553505271673203,
-0.06614992767572403,
-0.029799003154039383,
0.017283998429775238,
0.0434546135365963,
0.04464086890220642,
-0.025266537442803383,
-0.020370371639728546,
0.009939477778971195,
-0.06741177290678024,
0.0795404464006424,
-0.017727747559547424,
0.047159161418676376,
-0.07506611943244934,
0.07207851111888885,
0.0032557686790823936,
-0.04283463582396507,
0.021060464903712273,
-0.01984306238591671,
-0.11952268332242966,
-0.018544211983680725,
-0.03844563290476799,
-0.04729457572102547,
-0.04962736740708351,
-0.005001532379537821,
-0.01608709804713726,
-0.03666995093226433,
0.016089338809251785,
0.03684234246611595,
-0.06834691017866135,
-0.0876542255282402,
-0.04132550582289696,
0.10395079106092453,
-0.13724784553050995,
0.0070046051405370235,
0.04545454680919647,
-0.12135326117277145,
0.10421847552061081,
0.01226712204515934,
0.03320111706852913,
0.019251110032200813,
-0.09325824677944183,
0.007011550012975931,
-0.009604021906852722,
-0.010025989264249802,
0.05166161060333252,
-0.12436161190271378,
0.014533831737935543,
-0.08011843264102936,
0.007492371369153261,
0.013365288265049458,
0.049694810062646866,
-0.11175376921892166,
-0.004942426458001137,
-0.030811350792646408,
-0.03693729266524315,
-0.07763861864805222,
0.03758864477276802,
0.12349580973386765,
0.050481632351875305,
0.1052650436758995,
-0.0626944750547409,
0.07940123975276947,
-0.183916836977005,
-0.032063595950603485,
-0.007075348868966103,
0.00669551407918334,
-0.03799343854188919,
-0.022843660786747932,
0.07566937059164047,
-0.020643098279833794,
0.05791815370321274,
-0.0627904161810875,
0.08192108571529388,
0.051926448941230774,
-0.0608443021774292,
-0.03779369220137596,
0.03425704315304756,
0.1394340991973877,
0.04310201108455658,
-0.013783548027276993,
0.07856587320566177,
-0.007453491911292076,
0.028990786522626877,
0.02988029271364212,
0.09128417819738388,
0.16487237811088562,
-0.027061646804213524,
0.05869150534272194,
0.025595026090741158,
-0.11323963105678558,
-0.13391122221946716,
0.08275210112333298,
-0.060682233422994614,
0.04493509605526924,
-0.0885234996676445,
0.17493505775928497,
0.0869799479842186,
-0.16968289017677307,
0.049741171300411224,
-0.037849027663469315,
-0.07133196294307709,
-0.06879615783691406,
-0.08521988242864609,
-0.05846412479877472,
-0.12185924500226974,
0.024450352415442467,
-0.06762340664863586,
0.05614738538861275,
0.043361786752939224,
0.03371557965874672,
0.020055266097187996,
0.1770847737789154,
-0.01807691715657711,
-0.010569454170763493,
0.0945831760764122,
0.023542027920484543,
-0.007825984619557858,
0.0042252615094184875,
-0.05238660052418709,
0.013893050141632557,
0.013799911364912987,
0.07367365807294846,
-0.007713876664638519,
-0.04231720045208931,
0.020129671320319176,
-0.018820418044924736,
-0.0684567242860794,
0.03160237520933151,
-0.022958213463425636,
-0.05614762380719185,
0.05828874558210373,
0.07455683499574661,
0.005611133761703968,
-0.04245665296912193,
0.30227574706077576,
-0.06638433784246445,
0.00671292282640934,
-0.14610177278518677,
0.13077008724212646,
0.04203652963042259,
-0.0003154081932734698,
-0.017334837466478348,
-0.1405457854270935,
0.0012931866804137826,
0.1390993744134903,
0.06627906858921051,
-0.029992014169692993,
0.009844405576586723,
0.023265093564987183,
-0.008627643808722496,
-0.022162895649671555,
0.07047110795974731,
0.07544940710067749,
-0.0021377599332481623,
-0.00782749243080616,
0.05654589459300041,
0.00875752791762352,
-0.09411800652742386,
-0.04320014640688896,
0.05849618464708328,
-0.03899030759930611,
0.0264742374420166,
-0.0795469582080841,
0.10443960875272751,
0.023138705641031265,
-0.19578935205936432,
0.09687887132167816,
-0.11875729262828827,
-0.17422911524772644,
-0.019164489582180977,
0.04581056907773018,
0.018761202692985535,
0.03519478812813759,
0.054683174937963486,
-0.018025921657681465,
0.15810948610305786,
-0.020353160798549652,
-0.000818101572804153,
-0.1421632468700409,
0.021238086745142937,
-0.20531772077083588,
0.24307584762573242,
-0.0170381348580122,
-0.02438720315694809,
0.10449006408452988,
0.046733830124139786,
-0.15724624693393707,
0.018872052431106567,
0.04943332076072693,
-0.0882604792714119,
0.0011542891152203083,
0.16979007422924042,
-0.03487129509449005,
0.05475476756691933,
0.056247174739837646,
-0.10303962975740433,
0.02289440482854843,
-0.05220838263630867,
-0.0029195717070251703,
-0.11548920720815659,
0.030774416401982307,
-0.06144106760621071,
0.16540618240833282,
0.19212958216667175,
-0.05823097750544548,
-0.027441401034593582,
-0.02372940070927143,
0.00011143812298541889,
0.026372242718935013,
0.10167825222015381,
-0.005242339801043272,
-0.17742283642292023,
0.019606828689575195,
0.006961539387702942,
0.051399994641542435,
-0.18633787333965302,
-0.0944516509771347,
0.029898598790168762,
-0.052341341972351074,
-0.035738591104745865,
0.13780048489570618,
0.034427084028720856,
0.017536917701363564,
-0.03171560540795326,
-0.14308057725429535,
-0.0033946477342396975,
0.15312114357948303,
-0.1259465217590332,
-0.06188549846410751
] |
null | null | transformers | Model description:
Model: bert-base-multilingual-cased
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 9
Best exact match: 89.29
Best epoch: 9
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 32
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.75_DROP1_mbert
Results
| epoch | train_loss | train_f1 | train_exact | dev_loss | dev_f1 | dev_exact | test_loss | test_f1 | test_exact |
|--------:|-------------:|-----------:|--------------:|-----------:|---------:|------------:|------------:|----------:|-------------:|
| 1 | 3.23 | 10.64 | 2.55 | 2.56 | 18.12 | 8.52 | 0 | 0 | 0 |
| 2 | 1.2 | 59 | 48.62 | 0.59 | 83.96 | 75.27 | 0 | 0 | 0 |
| 3 | 0.37 | 88.86 | 83.61 | 0.46 | 91.16 | 85.16 | 0 | 0 | 0 |
| 4 | 0.17 | 94.22 | 91.18 | 0.48 | 90.52 | 85.44 | 0 | 0 | 0 |
| 5 | 0.09 | 97.37 | 95.8 | 0.5 | 89.31 | 83.79 | 0 | 0 | 0 |
| 6 | 0.06 | 98.07 | 96.76 | 0.47 | 91.89 | 89.01 | 0 | 0 | 0 |
| 7 | 0.04 | 98.67 | 97.59 | 0.53 | 92.25 | 87.36 | 0 | 0 | 0 |
| 8 | 0.04 | 98.93 | 97.93 | 0.48 | 92.88 | 89.01 | 0 | 0 | 0 |
| 9 | 0.03 | 99.31 | 98.9 | 0.51 | 93.68 | 89.29 | 0 | 0 | 0 |
| 10 | 0.01 | 99.57 | 99.24 | 0.5 | 94.13 | 89.29 | 0 | 0 | 0 | | {} | question-answering | pgajo/mbert_EW-TT-PE_U0_S1_Tingredient_P0.75_DROP1_mbert_E9_DEV89.0 | [
"transformers",
"safetensors",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:23:48+00:00 | [] | [] | TAGS
#transformers #safetensors #bert #question-answering #endpoints_compatible #region-us
| Model description:
```
Model: bert-base-multilingual-cased
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 9
Best exact match: 89.29
Best epoch: 9
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 32
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.75_DROP1_mbert
```
Results
| [] | [
"TAGS\n#transformers #safetensors #bert #question-answering #endpoints_compatible #region-us \n"
] | [
30
] | [
"passage: TAGS\n#transformers #safetensors #bert #question-answering #endpoints_compatible #region-us \n"
] | [
-0.03100396879017353,
0.011429967358708382,
-0.009655450470745564,
-0.0477571114897728,
0.071015864610672,
0.001686002011410892,
0.08008057624101639,
0.05985769256949425,
0.11401950567960739,
0.02590048313140869,
0.1903941035270691,
0.16566626727581024,
-0.07932274788618088,
0.015106523409485817,
-0.13172350823879242,
-0.13182127475738525,
0.11529869586229324,
0.03778080269694328,
-0.03543904423713684,
0.10329030454158783,
0.05029234290122986,
-0.12624382972717285,
0.04368755966424942,
-0.06763096153736115,
-0.062081653624773026,
0.06668882071971893,
0.04820772260427475,
-0.08198674768209457,
0.13085918128490448,
0.03362511843442917,
0.2047542929649353,
0.04677434265613556,
-0.1182841956615448,
-0.21163156628608704,
0.03874710574746132,
-0.011287915520370007,
-0.05873045325279236,
0.019588099792599678,
0.032477255910634995,
-0.07909006625413895,
-0.11140874028205872,
0.027899496257305145,
0.014707351103425026,
0.08549544960260391,
-0.18314984440803528,
-0.16563549637794495,
-0.06621148437261581,
-0.053103990852832794,
0.12317322194576263,
0.08563494682312012,
-0.020668305456638336,
0.1935536116361618,
-0.15425218641757965,
0.0928223505616188,
0.1380285918712616,
-0.32555314898490906,
-0.0027393975760787725,
0.093502476811409,
0.11618221551179886,
0.05096927657723427,
-0.02073126845061779,
0.09022705256938934,
0.07546665519475937,
-0.00581451877951622,
-0.06733445823192596,
-0.0957256555557251,
-0.012503020465373993,
0.09702391922473907,
-0.07598375529050827,
-0.052956461906433105,
0.2470276802778244,
0.031026924028992653,
0.013565225526690483,
-0.008941343985497952,
-0.10310965776443481,
0.030862320214509964,
0.02648748643696308,
-0.06024225428700447,
-0.02690120041370392,
0.06734149158000946,
-0.0001909599086502567,
0.005896252579987049,
-0.1221570298075676,
-0.006722765974700451,
-0.22672583162784576,
0.2768072187900543,
-0.0018987046787515283,
0.08534801006317139,
-0.2428436279296875,
0.015660421922802925,
-0.06141046807169914,
-0.0824490636587143,
-0.013059272430837154,
-0.09494815766811371,
-0.009192516095936298,
-0.02866560034453869,
-0.04682322219014168,
0.015530125238001347,
0.12870869040489197,
0.20563961565494537,
-0.017999636009335518,
0.04083723947405815,
-0.061628565192222595,
0.0725679025053978,
0.03914913535118103,
0.09992070496082306,
0.010195896960794926,
-0.020322704687714577,
-0.016003627330064774,
-0.13105420768260956,
-0.008767413906753063,
-0.03738516569137573,
-0.05202561616897583,
-0.022937579080462456,
0.01343182846903801,
0.16656653583049774,
0.057803552597761154,
0.021070659160614014,
-0.08621648699045181,
0.05785249546170235,
0.022443469613790512,
-0.04320667311549187,
-0.017870478332042694,
0.00882878340780735,
0.06155950948596001,
0.0885266587138176,
-0.07562171667814255,
0.04524178430438042,
0.016779053956270218,
0.06491811573505402,
-0.07376032322645187,
-0.06024041771888733,
-0.019815200939774513,
-0.022853199392557144,
0.06425601989030838,
-0.06728833168745041,
0.08267539739608765,
-0.1562412828207016,
-0.08226612955331802,
0.011612122878432274,
0.02970954217016697,
0.007305266335606575,
0.06759197264909744,
-0.014567295089364052,
-0.039057523012161255,
-0.03480268642306328,
-0.07194317877292633,
-0.10265897214412689,
-0.07100482285022736,
0.06559862941503525,
0.037085019052028656,
0.029506711289286613,
-0.08701489865779877,
0.0126223498955369,
-0.10313430428504944,
0.0696413442492485,
-0.07926147431135178,
-0.03626604750752449,
-0.030684340745210648,
0.19216585159301758,
-0.03995077684521675,
-0.013410759158432484,
-0.11826255917549133,
0.05234655737876892,
-0.05254388228058815,
0.21867278218269348,
-0.03809955716133118,
-0.03585023805499077,
0.23391962051391602,
-0.09690817445516586,
-0.2571674883365631,
0.07713238894939423,
0.006013390142470598,
0.017324132844805717,
0.10797587037086487,
0.19150643050670624,
-0.016850516200065613,
-0.11185130476951599,
0.0474415123462677,
0.11249569058418274,
-0.15280477702617645,
-0.0624573640525341,
0.025971313938498497,
-0.0582793690264225,
-0.1464228332042694,
0.016458844766020775,
0.051048628985881805,
0.04815160855650902,
-0.08806464076042175,
-0.03191754221916199,
-0.02947526052594185,
-0.018536636605858803,
0.061611421406269073,
0.04005695879459381,
0.026151038706302643,
-0.12002047151327133,
0.017315825447440147,
-0.051940858364105225,
-0.04731830582022667,
0.03846436366438866,
0.007411974482238293,
-0.12714537978172302,
0.07094167917966843,
-0.131436288356781,
0.020615974441170692,
-0.16280385851860046,
-0.19247999787330627,
-0.013410934247076511,
0.10532321780920029,
-0.05276893824338913,
0.20171119272708893,
0.11623696237802505,
-0.10492526739835739,
-0.01685560680925846,
-0.07052898406982422,
0.1616603285074234,
0.05628864839673042,
-0.02636071853339672,
-0.04867614805698395,
0.07146526873111725,
-0.10356242209672928,
-0.10846276581287384,
-0.05549529939889908,
-0.01631050743162632,
0.13880129158496857,
0.10532583296298981,
0.04163223132491112,
0.06328489631414413,
-0.012810224667191505,
0.017701199278235435,
-0.008262974210083485,
0.018305214121937752,
0.07581605017185211,
-0.03447617590427399,
-0.11924053728580475,
0.11601310968399048,
-0.1444002240896225,
0.3729725480079651,
0.16846853494644165,
-0.23041868209838867,
0.01894976757466793,
-0.026126159355044365,
-0.030978791415691376,
0.034767232835292816,
0.05344981700181961,
-0.017914773896336555,
0.01958848536014557,
0.031971078366041183,
0.07821214944124222,
-0.03785416856408119,
-0.05193689465522766,
-0.015433255583047867,
-0.07395049929618835,
-0.06607450544834137,
0.07275120168924332,
-0.03483232855796814,
-0.21013760566711426,
0.1599646657705307,
0.31365448236465454,
0.09703507274389267,
0.08886944502592087,
-0.0816551148891449,
-0.028012678027153015,
-0.0039048483595252037,
0.07745775580406189,
-0.022175131365656853,
0.0646965503692627,
-0.19559495151042938,
0.002697455231100321,
0.0718853622674942,
0.040101438760757446,
0.051995899528265,
-0.1255539059638977,
-0.08741874992847443,
0.02883525937795639,
0.010361172258853912,
-0.0510454997420311,
0.08942679315805435,
0.01958455704152584,
0.10355164110660553,
0.03094480000436306,
-0.025720693171024323,
0.12157201766967773,
-0.0424032099545002,
-0.08322477340698242,
0.16933336853981018,
-0.11445565521717072,
-0.22569596767425537,
-0.07213949412107468,
-0.10141351073980331,
0.023521440103650093,
0.043139949440956116,
0.07353874295949936,
-0.13277705013751984,
-0.06267919391393661,
0.050284892320632935,
0.04398718848824501,
-0.11532527953386307,
0.034965697675943375,
0.011176006868481636,
0.0742565244436264,
-0.047823816537857056,
-0.06598490476608276,
-0.06332776695489883,
-0.03295988216996193,
-0.06356722116470337,
0.1191829964518547,
-0.10939455777406693,
0.1207437515258789,
0.09475167840719223,
0.04165811091661453,
0.036363665014505386,
-0.027820978313684464,
0.21290433406829834,
-0.11579988896846771,
-0.03179406374692917,
0.15926754474639893,
-0.07346773147583008,
0.07930222153663635,
0.20331227779388428,
0.017215436324477196,
-0.1255631297826767,
0.04482865333557129,
-0.03777764365077019,
-0.08158078044652939,
-0.24055063724517822,
-0.04635780677199364,
-0.08391188085079193,
0.07882910221815109,
-0.018682004883885384,
0.04367469623684883,
0.10718972235918045,
0.09847458451986313,
0.02698599174618721,
-0.15794047713279724,
0.009259669110178947,
0.060280539095401764,
0.19491833448410034,
-0.0554194450378418,
0.09747976064682007,
-0.07872258871793747,
-0.14044831693172455,
0.058162905275821686,
0.07227057963609695,
0.11210840195417404,
0.18135450780391693,
0.0031284119468182325,
0.07501647621393204,
0.11561381816864014,
0.14170172810554504,
0.14721226692199707,
0.028168288990855217,
-0.09393750876188278,
-0.012610750272870064,
0.000841298489831388,
-0.071214459836483,
0.04935174807906151,
0.06255429983139038,
-0.09986883401870728,
-0.016300853341817856,
-0.16199824213981628,
0.11020834743976593,
0.05675990507006645,
0.08375607430934906,
-0.13229906558990479,
0.008182737976312637,
0.12653344869613647,
-0.016539672389626503,
-0.04231732711195946,
0.12035517394542694,
0.07884106040000916,
-0.08249315619468689,
0.04244247451424599,
-0.04095182567834854,
0.11129532009363174,
0.07417996227741241,
0.09555985778570175,
-0.096460722386837,
-0.16630028188228607,
0.02183578908443451,
0.07979494333267212,
-0.27919045090675354,
0.28428587317466736,
0.032050203531980515,
-0.04338350147008896,
-0.06692010164260864,
-0.039031147956848145,
-0.04415836185216904,
0.1649855673313141,
0.21534205973148346,
-0.006029482930898666,
-0.12515726685523987,
-0.10306360572576523,
0.060360122472047806,
0.07373268157243729,
0.15369689464569092,
-0.022843722254037857,
0.01709183119237423,
-0.02581469528377056,
0.01907532475888729,
0.0005263579660095274,
0.027384355664253235,
-0.00807490199804306,
-0.10579172521829605,
-0.003417222760617733,
0.027430731803178787,
0.11391840875148773,
-0.05235821753740311,
0.053690437227487564,
-0.07520826160907745,
0.11101158708333969,
-0.08321993052959442,
-0.024513524025678635,
-0.10570400953292847,
-0.159481018781662,
0.09931088238954544,
-0.0652543157339096,
0.02730567753314972,
-0.06895346194505692,
-0.034800801426172256,
-0.06456287950277328,
-0.1387634426355362,
0.15311841666698456,
-0.12774962186813354,
-0.014343206770718098,
-0.05910857394337654,
0.1744864135980606,
-0.057705219835042953,
-0.014981103129684925,
0.022769484668970108,
0.058170903474092484,
-0.08365354686975479,
-0.09320548176765442,
0.012634269893169403,
-0.08999879658222198,
0.07918208837509155,
0.07504331320524216,
-0.010605372488498688,
0.011236832477152348,
0.017805295065045357,
0.011543014086782932,
0.1833728551864624,
0.2684391736984253,
-0.03611943498253822,
0.05449281632900238,
0.21387790143489838,
0.009187204763293266,
-0.3001823127269745,
-0.03780132532119751,
-0.20396788418293,
-0.06599479168653488,
0.0035966881550848484,
-0.01841581240296364,
0.15771964192390442,
0.038633719086647034,
-0.05389995872974396,
0.06213739886879921,
-0.16254091262817383,
-0.0409867987036705,
0.17554175853729248,
0.02816466987133026,
0.5083365440368652,
-0.16917727887630463,
-0.09572464227676392,
-0.01933435909450054,
-0.21105335652828217,
0.09465035051107407,
-0.0792510136961937,
0.00545540964230895,
0.027481064200401306,
0.0250190868973732,
0.03670221567153931,
-0.09177862852811813,
0.1804729551076889,
-0.0251461174339056,
0.07020123302936554,
-0.08957348763942719,
-0.09517528116703033,
0.0571230947971344,
-0.00989442877471447,
-0.004209878388792276,
0.0377814881503582,
0.043195612728595734,
-0.09419526904821396,
-0.02725309133529663,
-0.07557959109544754,
0.05808710306882858,
0.029764346778392792,
-0.06465182453393936,
-0.024149267002940178,
-0.034049443900585175,
0.0040148478001356125,
-0.006224581506103277,
0.3219931423664093,
-0.07817333191633224,
0.1998085230588913,
0.0308726467192173,
0.17342960834503174,
-0.20313303172588348,
0.014420399442315102,
0.002336042234674096,
-0.07989436388015747,
0.09632785618305206,
-0.054569393396377563,
0.0957014411687851,
0.14680208265781403,
-0.03774647042155266,
0.04170471802353859,
0.09971088171005249,
0.044757623225450516,
-0.023297281935811043,
0.12041250616312027,
-0.2069728821516037,
-0.19302959740161896,
0.006711400113999844,
0.002523706993088126,
0.0443287193775177,
0.1371040642261505,
0.08772092312574387,
0.10595496743917465,
0.007110828999429941,
-0.019849922508001328,
-0.013635226525366306,
-0.07197124511003494,
0.015518625266849995,
0.07721489667892456,
0.05103190615773201,
-0.0915357917547226,
0.07368962466716766,
-0.044682856649160385,
-0.2505898177623749,
-0.011277278885245323,
0.010972370393574238,
-0.1136656329035759,
-0.09253716468811035,
-0.0640796348452568,
0.11949943006038666,
-0.0853467583656311,
-0.07717446982860565,
-0.033551741391420364,
-0.13546887040138245,
0.036930788308382034,
0.2936263084411621,
0.08502552658319473,
0.10473651438951492,
0.05559305474162102,
-0.024962520226836205,
0.02628864347934723,
-0.022201525047421455,
-0.0632605329155922,
0.0033800466917455196,
-0.10716227442026138,
-0.10930395126342773,
-0.0539650060236454,
0.1258552223443985,
-0.10030562430620193,
-0.0463426411151886,
-0.20223698019981384,
0.07721703499555588,
-0.17302681505680084,
-0.07449597120285034,
-0.1311258226633072,
-0.05869106575846672,
0.011798324063420296,
-0.1269368678331375,
-0.043847475200891495,
-0.0405474416911602,
-0.11593431234359741,
0.0941464975476265,
0.06928019225597382,
0.006738580297678709,
-0.09351341426372528,
-0.052371736615896225,
0.14618384838104248,
-0.039895832538604736,
0.07875484228134155,
0.12324118614196777,
-0.11218003928661346,
0.09794780611991882,
-0.19827678799629211,
-0.10873684287071228,
0.09223955124616623,
-0.020392343401908875,
0.07176221162080765,
0.06298419088125229,
-0.0209525004029274,
0.09442277252674103,
0.03166748583316803,
0.07961104065179825,
-0.041231222450733185,
-0.09570163488388062,
0.02909303456544876,
0.012143692001700401,
-0.16935859620571136,
-0.031028112396597862,
-0.1383150815963745,
0.138075590133667,
-0.03250321373343468,
0.13132928311824799,
-0.0014017382636666298,
0.0942121222615242,
-0.0393197238445282,
0.0214883740991354,
0.022810328751802444,
-0.15824435651302338,
0.014284737408161163,
-0.04512546584010124,
0.00530107831582427,
-0.042201071977615356,
0.2832597494125366,
-0.13215987384319305,
0.07444287836551666,
0.07330053299665451,
-0.007652656175196171,
0.048707786947488785,
0.035340797156095505,
0.2554089426994324,
0.08575175702571869,
-0.05636623501777649,
-0.11349837481975555,
0.047768156975507736,
-0.03974492475390434,
-0.16682684421539307,
0.08966261893510818,
0.16476166248321533,
-0.021509341895580292,
0.09579425305128098,
-0.015587063506245613,
0.04206113517284393,
0.003570155706256628,
-0.20271413028240204,
-0.03418423607945442,
-0.028696484863758087,
0.0342242605984211,
0.06175161153078079,
0.19321276247501373,
-0.02510346844792366,
0.027360908687114716,
-0.06739696860313416,
-0.006428796332329512,
-0.16893014311790466,
-0.05832986161112785,
-0.09619798511266708,
-0.10513351857662201,
0.056126669049263,
-0.10675669461488724,
-0.02991390973329544,
0.11837480962276459,
0.07225114107131958,
-0.014147752895951271,
0.20032523572444916,
-0.0034852379467338324,
-0.01854041963815689,
0.010509109124541283,
0.005002413876354694,
0.06455502659082413,
0.07439646869897842,
-0.007380056194961071,
-0.10331036895513535,
-0.07467203587293625,
-0.07210230082273483,
0.04836762696504593,
-0.09930044412612915,
-0.01744663715362549,
-0.142163947224617,
-0.09089858829975128,
-0.06536278873682022,
0.1318330466747284,
-0.08915292471647263,
0.10780727118253708,
-0.019095079973340034,
0.01910819485783577,
0.05497001111507416,
0.22086337208747864,
-0.07868800312280655,
-0.07071682065725327,
-0.060905519872903824,
0.16298183798789978,
0.004298616200685501,
0.15630026161670685,
-0.03950318321585655,
-0.0016224056016653776,
-0.0332493931055069,
0.2914927303791046,
0.16758738458156586,
-0.04768482968211174,
0.05667643994092941,
0.013426431454718113,
0.043882496654987335,
0.059551939368247986,
0.034976501017808914,
0.07581301033496857,
0.25021910667419434,
-0.07689207047224045,
-0.01975826919078827,
0.022277116775512695,
-0.00035899964859709144,
-0.055962271988391876,
0.045156292617321014,
0.029317067936062813,
-0.019586384296417236,
-0.08728770166635513,
0.12731784582138062,
-0.10686571151018143,
0.08306804299354553,
0.05728748440742493,
-0.15720857679843903,
-0.014027200639247894,
-0.022743018344044685,
0.1905868649482727,
-0.06110110133886337,
0.11211711168289185,
-0.030706269666552544,
-0.13290581107139587,
-0.02404458075761795,
0.04101835936307907,
-0.1852385401725769,
-0.056675106287002563,
0.08444182574748993,
0.05783277377486229,
0.06356650590896606,
0.01799783855676651,
0.008918672800064087,
0.09269910305738449,
-0.0174893569201231,
-0.06227288395166397,
0.09672212600708008,
0.09302622079849243,
-0.11702378839254379,
-0.10226112604141235,
-0.03835497796535492,
0.03587648272514343,
-0.007181957364082336,
0.07796690613031387,
-0.23804201185703278,
0.04944111034274101,
0.012472385540604591,
-0.06038458272814751,
-0.06527353823184967,
0.0485636405646801,
-0.06548506766557693,
0.04292919486761093,
0.025255493819713593,
-0.00807290431112051,
0.015648027881979942,
-0.0017639343859627843,
0.056236833333969116,
0.04547872394323349,
-0.07353842258453369,
-0.10449795424938202,
-0.04468516260385513,
-0.040538545697927475,
0.15919344127178192,
-0.0320364348590374,
-0.12340949475765228,
-0.02860189974308014,
-0.014523285441100597,
0.07767149806022644,
-0.07934793829917908,
0.009319511242210865,
0.09768388420343399,
0.05723276734352112,
0.0005386354750953615,
-0.18609586358070374,
0.047480739653110504,
0.08650989830493927,
-0.0709119662642479,
-0.08683779090642929
] |
null | null | diffusers | ### My-Pet-Dog Dreambooth model trained by jyothimaria following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: SCET 222040
Sample pictures of this concept:
.jpg)
.jpg)
.jpg)
.jpg)
.jpg)
| {"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]} | text-to-image | jyothimaria/my-pet-dog | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-13T11:24:38+00:00 | [] | [] | TAGS
#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### My-Pet-Dog Dreambooth model trained by jyothimaria following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: SCET 222040
Sample pictures of this concept:
!0.jpg)
!1.jpg)
!2.jpg)
!3.jpg)
!4.jpg)
| [
"### My-Pet-Dog Dreambooth model trained by jyothimaria following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: SCET 222040\n\nSample pictures of this concept:\n\n \n \n \n \n !0.jpg)\n !1.jpg)\n !2.jpg)\n !3.jpg)\n !4.jpg)"
] | [
"TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### My-Pet-Dog Dreambooth model trained by jyothimaria following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: SCET 222040\n\nSample pictures of this concept:\n\n \n \n \n \n !0.jpg)\n !1.jpg)\n !2.jpg)\n !3.jpg)\n !4.jpg)"
] | [
73,
78
] | [
"passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-Pet-Dog Dreambooth model trained by jyothimaria following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: SCET 222040\n\nSample pictures of this concept:\n\n \n \n \n \n !0.jpg)\n !1.jpg)\n !2.jpg)\n !3.jpg)\n !4.jpg)"
] | [
-0.11268562823534012,
0.11807655543088913,
-0.0030655181035399437,
0.01958157867193222,
0.0915067195892334,
-0.023206571117043495,
0.19394926726818085,
0.011873375624418259,
-0.013157115317881107,
0.030671501532197,
0.11797171831130981,
0.06668463349342346,
0.021732646971940994,
0.1712467074394226,
-0.01965806633234024,
-0.1455875039100647,
0.051714058965444565,
0.05480062589049339,
-0.004489658400416374,
0.05592207610607147,
0.07461695373058319,
-0.08044633269309998,
0.11918657273054123,
-0.010793758556246758,
-0.16466914117336273,
-0.015289566479623318,
-0.05552414432168007,
-0.057805031538009644,
0.06793953478336334,
0.012970421463251114,
0.03661561757326126,
0.11827611923217773,
0.03978729993104935,
-0.037825848907232285,
0.035986240953207016,
0.00732619222253561,
-0.05973977595567703,
0.05307638272643089,
0.06157584488391876,
0.05114187300205231,
0.11796044558286667,
0.04892277717590332,
-0.08513717353343964,
0.030466793105006218,
-0.0914035215973854,
-0.06528157740831375,
0.017348751425743103,
0.13344895839691162,
0.16548246145248413,
0.07876720279455185,
0.006531236227601767,
0.10166840255260468,
0.01969917304813862,
0.11081195622682571,
0.19142569601535797,
-0.2509749233722687,
-0.09722859412431717,
0.190560981631279,
0.0367375947535038,
0.03432849049568176,
-0.05668793246150017,
0.078291155397892,
0.09697795659303665,
-0.02693209797143936,
0.03252967819571495,
-0.0668630450963974,
0.08170617371797562,
-0.0752924308180809,
-0.12546993792057037,
0.03100883960723877,
0.22341997921466827,
0.053612690418958664,
-0.06556712836027145,
-0.03111588954925537,
-0.08677311986684799,
0.002382333157584071,
-0.06207083538174629,
0.014327687211334705,
-0.038649775087833405,
0.015719743445515633,
-0.03971051424741745,
-0.055155232548713684,
-0.1321747899055481,
-0.06688766181468964,
-0.005351484753191471,
0.1682666838169098,
0.02747172676026821,
0.07420022785663605,
-0.09406649321317673,
0.12629273533821106,
-0.04317262023687363,
-0.12187200784683228,
0.002273851539939642,
-0.10003433376550674,
0.024515315890312195,
0.04969499632716179,
0.05725511163473129,
-0.1088387742638588,
0.07863056659698486,
-0.011106251738965511,
0.02731175348162651,
-0.020686853677034378,
0.042367707937955856,
0.09915875643491745,
0.013057361356914043,
-0.04688931629061699,
-0.1045449748635292,
-0.08207912743091583,
0.011147142387926579,
-0.021563993766903877,
0.02291942946612835,
-0.006708252709358931,
-0.09005290269851685,
-0.0002559185086283833,
-0.06168508902192116,
0.02855261228978634,
0.023219695314764977,
0.06934235990047455,
-0.0022098901681602,
-0.02783968485891819,
0.18792922794818878,
0.06883560866117477,
-0.026105914264917374,
-0.0072077736258506775,
0.014782865531742573,
0.05294930934906006,
0.05224969983100891,
0.0014025723794475198,
-0.006846677977591753,
0.043189581483602524,
-0.06230754777789116,
-0.013031957671046257,
-0.03171851113438606,
-0.040182337164878845,
-0.001314923050813377,
-0.15614141523838043,
0.036885637789964676,
-0.19149357080459595,
-0.07542283087968826,
0.06737438589334488,
0.0604693740606308,
-0.03214133530855179,
-0.0415252223610878,
-0.033713869750499725,
-0.11887463927268982,
-0.008703421801328659,
-0.005863437429070473,
-0.036655914038419724,
-0.039678312838077545,
0.04856318607926369,
0.031155742704868317,
0.11301476508378983,
-0.21653172373771667,
-0.00894606951624155,
-0.06353920698165894,
0.037102073431015015,
-0.025733590126037598,
0.0025691082701087,
-0.020886670798063278,
0.09450500458478928,
-0.018229441717267036,
-0.041113175451755524,
-0.011697787791490555,
-0.007870194502174854,
0.0389542318880558,
0.17672395706176758,
-0.10453586280345917,
0.016721487045288086,
0.1859906166791916,
-0.14589455723762512,
-0.1779843419790268,
0.10914355516433716,
0.032536692917346954,
0.11443225294351578,
0.06647176295518875,
0.11360032111406326,
0.10127779841423035,
-0.23682335019111633,
0.0021103082690387964,
-0.007566230371594429,
-0.09262201935052872,
-0.17598484456539154,
0.025274202227592468,
0.09406063705682755,
-0.07848899811506271,
0.02110249549150467,
-0.1490267664194107,
0.0911300927400589,
-0.09332484006881714,
-0.02779657021164894,
-0.021952878683805466,
-0.11332903057336807,
-0.0012498620199039578,
-0.0007810141541995108,
0.019685853272676468,
-0.03018365614116192,
0.01936260238289833,
-0.14590956270694733,
0.03909829258918762,
-0.044646650552749634,
-0.023304203525185585,
-0.07523839920759201,
0.08237962424755096,
-0.07041947543621063,
0.01639316976070404,
0.007287883665412664,
0.002047486137598753,
0.045255545526742935,
0.10526054352521896,
0.01763911172747612,
0.1399906426668167,
0.0682005062699318,
0.09145111590623856,
-0.012180758640170097,
-0.09780228137969971,
0.05652318149805069,
0.009917561896145344,
-0.043394822627305984,
-0.14215131103992462,
0.09246592968702316,
-0.05930767580866814,
-0.01846892386674881,
-0.1666485071182251,
0.037598345428705215,
0.020841168239712715,
0.10404817014932632,
0.052010998129844666,
0.00823223777115345,
0.03119453601539135,
-0.017846591770648956,
-0.0689849704504013,
0.002431792439892888,
0.06257662922143936,
0.050095804035663605,
-0.08486085385084152,
0.180410698056221,
-0.12354408949613571,
0.12175282090902328,
0.09269147366285324,
-0.07744282484054565,
-0.021456051617860794,
0.022511515766382217,
-0.0651632696390152,
0.008111302740871906,
-0.006249567959457636,
-0.01039316225796938,
-0.0548173226416111,
-0.03863689675927162,
0.130074143409729,
-0.06587915867567062,
0.02084290236234665,
0.06288927048444748,
-0.07290474325418472,
-0.014390353113412857,
0.07592791318893433,
0.06639784574508667,
-0.11926065385341644,
0.11326266825199127,
0.1254788488149643,
-0.022731194272637367,
0.18392299115657806,
0.032133549451828,
-0.015049542300403118,
-0.06862591207027435,
0.10075663775205612,
0.03530964255332947,
0.22968722879886627,
-0.08882247656583786,
0.03354065865278244,
0.017167378216981888,
-0.010545700788497925,
0.033516742289066315,
-0.1433022916316986,
-0.06513328105211258,
-0.018032032996416092,
-0.05619708076119423,
0.12026507407426834,
0.08954989165067673,
-0.11690226942300797,
0.095773845911026,
-0.07853583246469498,
-0.10991708189249039,
0.020527830347418785,
-0.0025686025619506836,
-0.06619516760110855,
0.1102156862616539,
-0.027525320649147034,
-0.20800183713436127,
-0.13332490622997284,
-0.1022782027721405,
-0.04824323207139969,
0.006944597233086824,
0.08419299870729446,
-0.04324999824166298,
-0.05053643137216568,
-0.08844607323408127,
-0.06726338714361191,
-0.07426180690526962,
0.03836536034941673,
0.04927665367722511,
0.03971916437149048,
-0.0032808498945087194,
-0.0346200130879879,
0.015786772593855858,
-0.026245519518852234,
0.025421468541026115,
0.12381202727556229,
0.03338928148150444,
0.18129503726959229,
0.049804460257291794,
0.006611690390855074,
-0.012891572900116444,
0.008446269668638706,
0.2349434345960617,
-0.035589806735515594,
0.0926915779709816,
0.13896283507347107,
0.026879042387008667,
0.06857231259346008,
0.19250062108039856,
0.03597816824913025,
-0.07911589741706848,
0.04568380489945412,
-0.06581170111894608,
-0.12001620978116989,
-0.1035679504275322,
-0.05143742635846138,
-0.05695737525820732,
0.15403932332992554,
0.012019088491797447,
0.06559347361326218,
0.10002009570598602,
0.15551890432834625,
-0.019868426024913788,
-0.007466862443834543,
-0.026755409315228462,
0.1048383042216301,
-0.03453580290079117,
-0.020637305453419685,
0.030297596007585526,
-0.08919017761945724,
-0.06613374501466751,
0.0967475175857544,
0.03766349330544472,
0.18027794361114502,
0.029657382518053055,
0.029118765145540237,
0.09737198799848557,
0.11686060577630997,
0.12058568000793457,
0.08947519212961197,
-0.0270724855363369,
-0.04783044010400772,
-0.0036299247294664383,
-0.09919597208499908,
0.1300019919872284,
0.0639745369553566,
-0.06185318902134895,
-0.05478738248348236,
0.04243048280477524,
0.04396296292543411,
-0.0027655570302158594,
0.1252625733613968,
0.11626056581735611,
-0.2553254961967468,
0.020862406119704247,
0.0021031417418271303,
0.07082033902406693,
-0.04607906937599182,
-0.00006035220212652348,
0.22841781377792358,
-0.014661604538559914,
0.0871828943490982,
-0.032447267323732376,
0.0731293186545372,
0.03878610208630562,
0.003932729829102755,
-0.016436418518424034,
0.02112564817070961,
0.0009438876295462251,
0.015854487195611,
-0.21103467047214508,
0.2054804116487503,
-0.014536179602146149,
0.04893583431839943,
0.005729558411985636,
-0.057819705456495285,
-0.03487172722816467,
0.15267156064510345,
0.1491268128156662,
0.01960083656013012,
-0.011877879500389099,
-0.06469894200563431,
-0.129783034324646,
0.0037544441875070333,
0.041180022060871124,
0.010955112986266613,
0.0747051015496254,
0.07686102390289307,
-0.04364294558763504,
-0.023735124617815018,
0.04430501535534859,
-0.180784210562706,
-0.07484526187181473,
0.003285591024905443,
0.20810812711715698,
0.10039375722408295,
-0.03647526726126671,
0.04561227187514305,
-0.07321041822433472,
0.08561266213655472,
-0.18392667174339294,
-0.0847298800945282,
-0.08087252080440521,
-0.046067822724580765,
-0.02363911271095276,
-0.04151275381445885,
-0.0050445180386304855,
-0.09750837832689285,
0.05742309242486954,
-0.04238392785191536,
-0.1115884855389595,
0.01324970182031393,
-0.16382113099098206,
-0.12086256593465805,
-0.09401515871286392,
0.07571124285459518,
0.05086315795779228,
-0.022232098504900932,
0.014264668338000774,
-0.06185080111026764,
-0.047776997089385986,
-0.11570936441421509,
0.0275587011128664,
0.06708266586065292,
-0.0825466439127922,
-0.014893227256834507,
-0.08365891128778458,
-0.12094105035066605,
-0.04758448526263237,
-0.054682884365320206,
0.08065316081047058,
0.2885983884334564,
-0.08564042299985886,
0.04935408756136894,
0.17524559795856476,
-0.045565687119960785,
-0.2235395908355713,
-0.10685006529092789,
-0.03680429235100746,
-0.022521736100316048,
0.0054729413241147995,
-0.0911831483244896,
0.10284870117902756,
0.04303547739982605,
-0.039213620126247406,
0.19744141399860382,
-0.2817015051841736,
-0.04583107307553291,
-0.023730339482426643,
0.15253129601478577,
0.29551252722740173,
-0.1899515688419342,
-0.0459543839097023,
-0.005582799669355154,
-0.15801291167736053,
0.16078034043312073,
-0.055265434086322784,
0.06988484412431717,
-0.052179381251335144,
-0.013529817573726177,
-0.010289198718965054,
-0.052315060049295425,
0.1139104813337326,
-0.044172175228595734,
0.05771667882800102,
-0.07392164319753647,
0.05855538696050644,
0.17108313739299774,
-0.029704872518777847,
0.07443100959062576,
-0.09468246251344681,
0.032625723630189896,
-0.07656784355640411,
-0.007433466147631407,
-0.040266864001750946,
0.0025597428902983665,
-0.046891435980796814,
-0.09626281261444092,
-0.08666589111089706,
-0.007159007713198662,
0.015920748934149742,
0.030210623517632484,
-0.0029021978843957186,
0.012362376786768436,
0.003325801808387041,
0.18335320055484772,
0.0022219233214855194,
-0.0026908658910542727,
-0.016276562586426735,
-0.08237301558256149,
-0.047178369015455246,
0.11087106168270111,
-0.049724284559488297,
-0.006586124189198017,
0.10363703221082687,
0.0020488298032432795,
0.03124724142253399,
0.023137439042329788,
-0.06715518981218338,
0.06973657011985779,
0.12447506934404373,
-0.1794828176498413,
-0.1547006219625473,
-0.03603220731019974,
0.17917363345623016,
0.08828578144311905,
0.1248878464102745,
0.1349392980337143,
-0.10669181495904922,
0.046713151037693024,
-0.04811904951930046,
-0.001735823811031878,
-0.02421523444354534,
0.05774516984820366,
-0.016833901405334473,
0.03497576713562012,
-0.05162152275443077,
0.02159467712044716,
-0.026052361354231834,
-0.029953645542263985,
-0.04924817755818367,
0.04982553794980049,
-0.11636490374803543,
-0.08112133294343948,
0.08326991647481918,
0.10796581208705902,
-0.14233501255512238,
-0.10113473236560822,
-0.05567363649606705,
-0.07422474026679993,
0.026707464829087257,
0.043111708015203476,
0.013395469635725021,
0.0005853193579241633,
0.07707089185714722,
0.00894263107329607,
-0.05161662399768829,
0.0308797936886549,
-0.02021142654120922,
0.11933501809835434,
-0.2416626513004303,
-0.034939225763082504,
-0.016606569290161133,
0.03484085574746132,
-0.06806798279285431,
-0.018158070743083954,
-0.08132924884557724,
0.017567867413163185,
-0.027636338025331497,
0.08326654136180878,
-0.1270233392715454,
-0.08322719484567642,
-0.03231743350625038,
-0.008229893632233143,
-0.0321640819311142,
0.018172286450862885,
-0.04077357426285744,
0.036805830895900726,
0.012368111871182919,
-0.0016519158380106091,
-0.010638182982802391,
-0.018636424094438553,
-0.028598926961421967,
-0.054824840277433395,
0.0816677063703537,
-0.021143166348338127,
-0.10719894617795944,
-0.0450761653482914,
-0.20680183172225952,
0.023353150114417076,
0.1182759702205658,
-0.0017051638569682837,
0.004066391382366419,
0.07900387793779373,
0.0028838093858212233,
0.03024975210428238,
0.04040122404694557,
-0.03524952381849289,
0.028314074501395226,
-0.09921188652515411,
-0.029236221686005592,
-0.04582030326128006,
0.0015401518903672695,
-0.053785163909196854,
-0.0017711227992549539,
0.09894773364067078,
0.050721000880002975,
0.138566792011261,
-0.09606726467609406,
0.035386212170124054,
-0.033741552382707596,
0.014309655874967575,
0.0790524035692215,
-0.0671815499663353,
-0.007410834077745676,
-0.06161218509078026,
-0.02799300290644169,
-0.005883784499019384,
0.06248200312256813,
-0.04615142196416855,
-0.22101059556007385,
-0.01988326944410801,
-0.1350686401128769,
-0.028904616832733154,
-0.007228798232972622,
0.2767174243927002,
0.003889779793098569,
0.0020582014694809914,
-0.1326313316822052,
0.054892849177122116,
0.09689944982528687,
0.05223781242966652,
0.029559608548879623,
0.0800609216094017,
0.01406700536608696,
0.08826709538698196,
0.06969194859266281,
-0.002509922254830599,
-0.08985334634780884,
-0.004137277603149414,
-0.1258070021867752,
0.1370972841978073,
-0.039231207221746445,
0.09343922883272171,
0.20413193106651306,
-0.027937058359384537,
-0.022954300045967102,
0.09638170152902603,
-0.014030244201421738,
-0.03170183673501015,
-0.1706688553094864,
-0.06607832759618759,
-0.16518257558345795,
0.014589238911867142,
-0.033906903117895126,
-0.009451094083487988,
-0.038021642714738846,
0.05534479767084122,
-0.07140730321407318,
0.07772189378738403,
0.12903769314289093,
-0.043026477098464966,
0.10273304581642151,
-0.01767839305102825,
-0.045754220336675644,
0.0805375725030899,
0.01803147979080677,
-0.0029545894358307123,
-0.006631981115788221,
-0.012413022108376026,
0.07788906991481781,
-0.007644808851182461,
0.04592704027891159,
0.007359274197369814,
-0.05384668707847595,
-0.003744324669241905,
-0.003576964372768998,
0.018473105505108833,
0.10308975726366043,
0.03444197028875351,
-0.036223139613866806,
0.019573060795664787,
0.08511614799499512,
-0.008678099140524864,
-0.018976392224431038,
-0.08096350729465485,
0.05700380355119705,
-0.12169256061315536,
0.056456781923770905,
-0.0389956533908844,
-0.0391182117164135,
-0.05368119478225708,
0.24855490028858185,
0.13973166048526764,
-0.0742056667804718,
0.002803661860525608,
-0.0939750149846077,
0.005822249222546816,
-0.03854169324040413,
0.10874519497156143,
0.03754153102636337,
0.2741122543811798,
-0.03557282313704491,
-0.006730528082698584,
-0.1131678894162178,
-0.027796367183327675,
-0.10439653694629669,
-0.07445506751537323,
0.017133478075265884,
-0.0430435836315155,
-0.11585845053195953,
0.10604208707809448,
-0.1839439570903778,
-0.02775866910815239,
0.10236948728561401,
0.002859122585505247,
-0.010110015980899334,
-0.013776548206806183,
0.07749243080615997,
0.04111088439822197,
0.020155610516667366,
-0.11863969266414642,
0.04887288063764572,
0.03694310784339905,
-0.042647454887628555,
-0.06172974407672882,
0.06641015410423279,
-0.012631923891603947,
-0.14756907522678375,
0.13839170336723328,
0.0019335229881107807,
-0.0020589889027178288,
0.07033050805330276,
-0.04974747449159622,
-0.15030625462532043,
0.10758694261312485,
-0.03542870655655861,
-0.08436204493045807,
-0.02417534776031971,
0.10711982846260071,
0.002281303983181715,
-0.01051980722695589,
0.00291113811545074,
-0.05292017385363579,
-0.05113644525408745,
0.1270298808813095,
0.021852776408195496,
-0.11849178373813629,
0.07761417329311371,
-0.05378216132521629,
0.09496403485536575,
-0.017357181757688522,
-0.058187104761600494,
-0.00861742626875639,
-0.022717859596014023,
0.051055822521448135,
0.006197541952133179,
-0.06466129422187805,
0.06570467352867126,
-0.1569482684135437,
-0.031321246176958084,
0.07101453095674515,
0.08429235965013504,
-0.17753320932388306,
0.014126437716186047,
-0.13886411488056183,
0.020347481593489647,
-0.04704626277089119,
0.04185566306114197,
0.24124403297901154,
0.0031843066681176424,
-0.005877308547496796,
-0.09843860566616058,
-0.04897652193903923,
0.06998996436595917,
-0.006930093746632338,
-0.14767226576805115
] |
null | null | transformers | # maid-yuzu-v7
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
I don't know anything about merges, so this may be a stupid method, but I was curious how the models would be merged if I took this approach.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
This model is a model that first merges Model [Orochi](https://huggingface.co/smelborp/MixtralOrochi8x7B) with Model [dolphin](https://huggingface.co/cognitivecomputations/dolphin-2.7-mixtral-8x7b) with a 0.15 SLERP option, and then merges Model [BagelMIsteryTour](https://huggingface.co/ycros/BagelMIsteryTour-v2-8x7B) with a 0.2 SLERP option based on the merged model.
### Models Merged
The following models were included in the merge:
* [ycros/BagelMIsteryTour-v2-8x7B](https://huggingface.co/ycros/BagelMIsteryTour-v2-8x7B)
* ../maid-yuzu-v7-base
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: ../maid-yuzu-v7-base
dtype: bfloat16
merge_method: slerp
parameters:
t:
- value: 0.2
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: ../maid-yuzu-v7-base
- layer_range: [0, 32]
model:
model:
path: ycros/BagelMIsteryTour-v2-8x7B
```
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["ycros/BagelMIsteryTour-v2-8x7B", "smelborp/MixtralOrochi8x7B", "cognitivecomputations/dolphin-2.7-mixtral-8x7b"]} | text-generation | IHaBiS/maid-yuzu-v7-exl2-rpcal | [
"transformers",
"safetensors",
"mixtral",
"text-generation",
"mergekit",
"merge",
"base_model:ycros/BagelMIsteryTour-v2-8x7B",
"base_model:smelborp/MixtralOrochi8x7B",
"base_model:cognitivecomputations/dolphin-2.7-mixtral-8x7b",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:26:41+00:00 | [] | [] | TAGS
#transformers #safetensors #mixtral #text-generation #mergekit #merge #base_model-ycros/BagelMIsteryTour-v2-8x7B #base_model-smelborp/MixtralOrochi8x7B #base_model-cognitivecomputations/dolphin-2.7-mixtral-8x7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # maid-yuzu-v7
This is a merge of pre-trained language models created using mergekit.
I don't know anything about merges, so this may be a stupid method, but I was curious how the models would be merged if I took this approach.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
This model is a model that first merges Model Orochi with Model dolphin with a 0.15 SLERP option, and then merges Model BagelMIsteryTour with a 0.2 SLERP option based on the merged model.
### Models Merged
The following models were included in the merge:
* ycros/BagelMIsteryTour-v2-8x7B
* ../maid-yuzu-v7-base
### Configuration
The following YAML configuration was used to produce this model:
| [
"# maid-yuzu-v7\n\nThis is a merge of pre-trained language models created using mergekit.\n\nI don't know anything about merges, so this may be a stupid method, but I was curious how the models would be merged if I took this approach.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.\n\nThis model is a model that first merges Model Orochi with Model dolphin with a 0.15 SLERP option, and then merges Model BagelMIsteryTour with a 0.2 SLERP option based on the merged model.",
"### Models Merged\n\nThe following models were included in the merge:\n* ycros/BagelMIsteryTour-v2-8x7B\n* ../maid-yuzu-v7-base",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
"TAGS\n#transformers #safetensors #mixtral #text-generation #mergekit #merge #base_model-ycros/BagelMIsteryTour-v2-8x7B #base_model-smelborp/MixtralOrochi8x7B #base_model-cognitivecomputations/dolphin-2.7-mixtral-8x7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# maid-yuzu-v7\n\nThis is a merge of pre-trained language models created using mergekit.\n\nI don't know anything about merges, so this may be a stupid method, but I was curious how the models would be merged if I took this approach.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.\n\nThis model is a model that first merges Model Orochi with Model dolphin with a 0.15 SLERP option, and then merges Model BagelMIsteryTour with a 0.2 SLERP option based on the merged model.",
"### Models Merged\n\nThe following models were included in the merge:\n* ycros/BagelMIsteryTour-v2-8x7B\n* ../maid-yuzu-v7-base",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
119,
60,
4,
69,
44,
17
] | [
"passage: TAGS\n#transformers #safetensors #mixtral #text-generation #mergekit #merge #base_model-ycros/BagelMIsteryTour-v2-8x7B #base_model-smelborp/MixtralOrochi8x7B #base_model-cognitivecomputations/dolphin-2.7-mixtral-8x7b #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# maid-yuzu-v7\n\nThis is a merge of pre-trained language models created using mergekit.\n\nI don't know anything about merges, so this may be a stupid method, but I was curious how the models would be merged if I took this approach.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.\n\nThis model is a model that first merges Model Orochi with Model dolphin with a 0.15 SLERP option, and then merges Model BagelMIsteryTour with a 0.2 SLERP option based on the merged model.### Models Merged\n\nThe following models were included in the merge:\n* ycros/BagelMIsteryTour-v2-8x7B\n* ../maid-yuzu-v7-base### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.005582927726209164,
0.0802541971206665,
-0.004530266392976046,
-0.02144806645810604,
0.09723634272813797,
0.05029354616999626,
0.14004211127758026,
0.09826569259166718,
0.053442902863025665,
0.12752877175807953,
0.008345723152160645,
0.04430104419589043,
0.0965181365609169,
0.1968148797750473,
-0.0038850766140967607,
-0.20289205014705658,
0.06552331894636154,
-0.09179271757602692,
-0.07446186989545822,
0.06047232449054718,
0.08564622700214386,
-0.05643223226070404,
0.06919482350349426,
0.020546283572912216,
-0.05605539679527283,
0.018373403698205948,
-0.07647638022899628,
-0.0025896960869431496,
0.023324159905314445,
0.042242374271154404,
0.09419581294059753,
-0.0067133731208741665,
0.06020849943161011,
-0.14596302807331085,
0.023334987461566925,
0.03105361945927143,
-0.0011691490653902292,
0.04486668482422829,
0.09802447259426117,
-0.07651754468679428,
0.1449032872915268,
-0.14075589179992676,
0.08320418745279312,
0.04431016743183136,
-0.05409542843699455,
-0.15042348206043243,
-0.14492225646972656,
0.1549018919467926,
0.1261255294084549,
0.026536492630839348,
-0.00846110936254263,
0.04648888483643532,
0.019798194989562035,
0.06146033853292465,
0.06565676629543304,
-0.20165866613388062,
-0.02866150438785553,
0.13020160794258118,
0.03285674750804901,
-0.03293989971280098,
-0.0015613720752298832,
0.06977877020835876,
0.03436606749892235,
-0.0024039982818067074,
-0.0433124415576458,
-0.03254464641213417,
0.19379860162734985,
-0.055467307567596436,
-0.11476278305053711,
-0.05347989872097969,
0.03439345955848694,
0.05742127075791359,
-0.0478840172290802,
-0.1380976289510727,
-0.05963875725865364,
0.0289918202906847,
-0.017270024865865707,
-0.0023715251591056585,
0.04151860624551773,
-0.01624472625553608,
0.11484229564666748,
-0.10327251255512238,
-0.03484843298792839,
-0.02522937022149563,
-0.0537254698574543,
0.13765107095241547,
0.014153211377561092,
0.06876210868358612,
-0.025839684531092644,
0.02566702663898468,
-0.1549999713897705,
-0.08705480396747589,
0.015925204381346703,
-0.015156871639192104,
-0.12352924793958664,
-0.005722902715206146,
-0.009531204588711262,
-0.17471759021282196,
0.047477297484874725,
0.1825152188539505,
-0.04322154447436333,
0.05323567986488342,
0.03937334567308426,
0.033738426864147186,
0.0450531505048275,
0.06272131204605103,
-0.1169639602303505,
-0.12296417355537415,
0.04016977176070213,
0.04519566893577576,
0.07769208401441574,
-0.03270469605922699,
-0.10554682463407516,
-0.025081314146518707,
-0.05179811641573906,
0.034839872270822525,
0.1131235882639885,
0.02093098871409893,
0.001533115515485406,
-0.07736659049987793,
0.11019759625196457,
-0.13190831243991852,
0.05474955961108208,
0.020635653287172318,
-0.06534135341644287,
-0.007067685481160879,
0.1345883160829544,
0.013338219374418259,
-0.0017695858841761947,
0.13778044283390045,
-0.02019677497446537,
-0.02514071948826313,
-0.07729318737983704,
-0.05952592194080353,
0.0016610114835202694,
0.0017543568974360824,
-0.08907429873943329,
-0.0764748826622963,
-0.17961376905441284,
-0.07046493142843246,
0.04190884530544281,
-0.06381011754274368,
-0.03241366147994995,
-0.013278401456773281,
-0.010568002238869667,
0.013790568336844444,
0.03018481470644474,
0.028332652524113655,
0.023756233975291252,
-0.02808678336441517,
-0.0672064796090126,
0.03294981271028519,
-0.039197348058223724,
0.04717712849378586,
-0.04395211860537529,
0.12443751841783524,
-0.18065202236175537,
0.15422436594963074,
-0.07270555943250656,
0.04314146935939789,
-0.13740023970603943,
-0.009288023225963116,
0.00032371567795053124,
-0.023012736812233925,
0.06004678085446358,
0.11176358163356781,
-0.10737334936857224,
-0.04431292787194252,
0.08787534385919571,
-0.10849587619304657,
-0.05558876693248749,
0.09321954846382141,
-0.002627900568768382,
-0.004363515414297581,
0.06835667788982391,
0.22307409346103668,
0.08461301028728485,
-0.04768211767077446,
-0.008311598561704159,
-0.04167989641427994,
0.01297703105956316,
0.12107144296169281,
0.06654182076454163,
-0.06273941695690155,
0.03425244987010956,
0.019674258306622505,
-0.04874567314982414,
0.061142876744270325,
0.0005814613541588187,
-0.06774786859750748,
-0.027426298707723618,
-0.061416879296302795,
0.07160194963216782,
-0.01859617605805397,
0.006578624714165926,
-0.011057036928832531,
-0.10392245650291443,
0.025325091555714607,
0.10293218493461609,
-0.031097302213311195,
0.015735846012830734,
-0.02625279501080513,
0.20527510344982147,
-0.056023601442575455,
0.026985710486769676,
-0.11239589750766754,
-0.09970473498106003,
0.015685217455029488,
-0.1317150592803955,
0.0855417400598526,
-0.019495168700814247,
0.051359668374061584,
0.07695520669221878,
-0.021840889006853104,
-0.021839169785380363,
0.03958215191960335,
0.03125828132033348,
-0.05181962996721268,
-0.14589758217334747,
-0.10359524935483932,
-0.06261971592903137,
0.2113475799560547,
-0.09892906248569489,
0.0694945752620697,
-0.01826571859419346,
0.23834921419620514,
-0.05398457124829292,
-0.05165870860219002,
0.036664001643657684,
-0.024860581383109093,
-0.007057690992951393,
-0.058626532554626465,
0.052471209317445755,
0.01352841965854168,
-0.1392497569322586,
0.0629882737994194,
-0.17961223423480988,
-0.18914543092250824,
0.07524291425943375,
0.08328941464424133,
-0.1416248083114624,
-0.03615398705005646,
-0.013775111176073551,
-0.03840126097202301,
-0.0014915402280166745,
-0.05136501416563988,
0.13532377779483795,
0.0466492734849453,
0.13163650035858154,
-0.028813501819968224,
-0.007319757714867592,
-0.004668939858675003,
-0.009247975423932076,
-0.04876849800348282,
0.083609938621521,
-0.05873322859406471,
-0.16809524595737457,
0.08277115225791931,
0.012309577316045761,
0.025718040764331818,
0.07998161017894745,
0.01548642385751009,
-0.058693550527095795,
-0.08622904121875763,
0.07190372794866562,
0.023348115384578705,
-0.030665939673781395,
-0.014316163957118988,
0.02589580975472927,
0.06648126989603043,
0.00881181564182043,
0.026243718340992928,
-0.0873534083366394,
0.044415924698114395,
0.06446127593517303,
-0.012622506357729435,
0.0722523033618927,
0.04034855589270592,
0.01427452638745308,
0.034925032407045364,
0.07442067563533783,
0.05841564014554024,
-0.0034318682737648487,
-0.054903458803892136,
-0.09893792867660522,
0.13789775967597961,
-0.08444616943597794,
-0.1204841285943985,
-0.16034230589866638,
-0.05916814133524895,
-0.08073743432760239,
-0.01631947048008442,
0.03457629308104515,
-0.0131618557497859,
-0.0647638812661171,
-0.021000368520617485,
0.05806582048535347,
-0.005107178818434477,
-0.010815594345331192,
-0.00216100225225091,
-0.0351773165166378,
-0.0013197424123063684,
-0.07487276196479797,
-0.017863059416413307,
-0.01017864141613245,
-0.009574738331139088,
-0.033988021314144135,
0.013523885980248451,
0.06951253116130829,
0.14311467111110687,
-0.09383982419967651,
0.004589039832353592,
0.012215478345751762,
0.23261314630508423,
-0.04566854611039162,
0.08452221006155014,
0.1525377780199051,
-0.03519155830144882,
0.1005447506904602,
0.18773244321346283,
0.015135913155972958,
-0.008691176772117615,
-0.011331403627991676,
0.014400300569832325,
-0.08256525546312332,
-0.23735623061656952,
-0.12198400497436523,
-0.061001967638731,
0.004325323272496462,
0.010439499281346798,
0.05458405986428261,
0.0764293298125267,
0.0556328184902668,
-0.07554853707551956,
0.011848460882902145,
0.04234214499592781,
0.078580342233181,
0.185108482837677,
0.036840010434389114,
0.06457424908876419,
-0.04162414371967316,
0.013418364338576794,
0.03680095821619034,
0.0100848488509655,
0.1311572641134262,
0.03174510970711708,
0.2043893039226532,
0.043287768959999084,
-0.00768681475892663,
0.022853678092360497,
0.02055978588759899,
-0.039064593613147736,
0.03584245964884758,
-0.007816353812813759,
-0.09475570172071457,
0.020189261063933372,
0.09827711433172226,
0.08467801660299301,
0.08328448235988617,
-0.03822760656476021,
0.0442996546626091,
0.023478861898183823,
0.15214088559150696,
0.008899557404220104,
-0.17880000174045563,
-0.022017862647771835,
0.0500529520213604,
0.016514871269464493,
-0.02527719922363758,
-0.06661199033260345,
0.016728634014725685,
-0.14795416593551636,
0.15927864611148834,
-0.034529417753219604,
0.09576069563627243,
-0.013367561623454094,
-0.055956922471523285,
0.020027602091431618,
0.09014066308736801,
0.03788098320364952,
0.06913670152425766,
0.0212891586124897,
0.09309488534927368,
0.015257028862833977,
0.025955000892281532,
0.013603776693344116,
0.0894681066274643,
0.02615414187312126,
0.12979578971862793,
0.13051722943782806,
0.012131458148360252,
-0.08399633318185806,
-0.04181165620684624,
-0.10344693809747696,
-0.07454264909029007,
0.02805384434759617,
-0.04872127249836922,
0.07574585825204849,
-0.03840116411447525,
-0.07026238739490509,
-0.03259717673063278,
0.06993033736944199,
-0.06352685391902924,
-0.16310691833496094,
0.07096874713897705,
-0.015769440680742264,
-0.024037016555666924,
-0.07304587960243225,
-0.045653991401195526,
-0.051902469247579575,
0.2798418700695038,
-0.009962955489754677,
-0.1250409632921219,
-0.12407037615776062,
-0.008373773656785488,
0.16508221626281738,
-0.07880376279354095,
0.047932326793670654,
-0.08539292216300964,
0.12451034039258957,
-0.07814066857099533,
-0.11593002825975418,
0.0029387592803686857,
-0.05667761713266373,
-0.1278243362903595,
-0.025304216891527176,
0.13434801995754242,
-0.023363787680864334,
0.07018475979566574,
-0.004919230006635189,
0.07810062915086746,
-0.01119172666221857,
-0.06975656747817993,
0.014117596670985222,
0.22316725552082062,
0.005538456607609987,
0.14359410107135773,
0.005292553920298815,
-0.17807719111442566,
-0.060151755809783936,
0.0050077056512236595,
0.12427394837141037,
0.21118807792663574,
-0.08171907812356949,
0.14168818295001984,
0.11013367772102356,
-0.0925099179148674,
-0.17603905498981476,
-0.022665569558739662,
0.08174541592597961,
0.03328704088926315,
-0.017031125724315643,
-0.06355232000350952,
0.06427203863859177,
0.0681636780500412,
-0.014251423999667168,
0.09990570694208145,
-0.2900044023990631,
-0.14476966857910156,
-0.020821159705519676,
0.008798300288617611,
-0.03971394896507263,
-0.17584477365016937,
-0.15310700237751007,
-0.06202852725982666,
-0.1601712703704834,
0.0647508054971695,
-0.027032047510147095,
0.07634896039962769,
-0.011808506213128567,
0.08528533577919006,
0.03205510601401329,
-0.038655467331409454,
0.18012695014476776,
-0.0345565527677536,
-0.03084830939769745,
-0.06274612993001938,
-0.1198393777012825,
0.05982205271720886,
-0.07907931506633759,
0.09830000251531601,
-0.022059740498661995,
0.004046041052788496,
-0.1335090696811676,
-0.011587491258978844,
-0.07058840245008469,
0.07908269762992859,
-0.05298737436532974,
-0.03855206444859505,
-0.0798223614692688,
0.02843332104384899,
0.1095825582742691,
-0.015232923440635204,
0.07482663542032242,
-0.024763019755482674,
0.07016914337873459,
0.216749906539917,
0.04067641496658325,
0.08100520819425583,
-0.13272231817245483,
-0.025713741779327393,
-0.04555851221084595,
0.015827206894755363,
-0.11217612773180008,
-0.0415634885430336,
0.10958823561668396,
0.041276972740888596,
0.14270320534706116,
-0.00512702064588666,
-0.14870229363441467,
-0.015378658659756184,
0.02719840407371521,
-0.08067302405834198,
-0.24298320710659027,
-0.0015306830173358321,
0.0708143562078476,
-0.09323985874652863,
-0.08097336441278458,
0.09131024032831192,
-0.041482795029878616,
-0.03549376130104065,
0.022633720189332962,
0.024501264095306396,
-0.07724198698997498,
0.08266127109527588,
0.061565060168504715,
0.052727531641721725,
-0.07124718278646469,
0.059793174266815186,
0.08802817016839981,
-0.09375514835119247,
0.014664892107248306,
0.1703583002090454,
-0.050904542207717896,
-0.026353970170021057,
-0.07636738568544388,
0.19341951608657837,
-0.045926231890916824,
-0.017085028812289238,
-0.008041195571422577,
-0.09463859349489212,
-0.0015670191496610641,
0.031147414818406105,
0.03939270228147507,
-0.019514136016368866,
-0.0001335836568614468,
-0.02517949603497982,
-0.07231476902961731,
0.12165501713752747,
0.03364799544215202,
0.06361018866300583,
-0.10377255082130432,
0.08423131704330444,
-0.00015586198423989117,
0.032347675412893295,
-0.01450351532548666,
-0.009771616198122501,
-0.04956289008259773,
-0.012874830514192581,
-0.1419965773820877,
0.062401145696640015,
-0.14406435191631317,
-0.03930363059043884,
-0.006652085576206446,
-0.020353417843580246,
-0.0009140181355178356,
0.017817890271544456,
-0.043201543390750885,
-0.11460231244564056,
-0.07802395522594452,
0.008577816188335419,
-0.09890154004096985,
-0.049287158995866776,
-0.028027361258864403,
-0.06367307156324387,
0.007606070954352617,
0.027013765648007393,
0.0192585252225399,
-0.07863084971904755,
-0.07901875674724579,
-0.05863342434167862,
-0.015544663183391094,
-0.005794106051325798,
0.06309055536985397,
-0.19635635614395142,
-0.023053480312228203,
-0.06046619638800621,
-0.08260000497102737,
-0.009432499296963215,
0.03175492212176323,
-0.12719137966632843,
-0.06164797767996788,
-0.03632809594273567,
-0.038137007504701614,
-0.04040667042136192,
0.0255911685526371,
0.04544612765312195,
0.08746275305747986,
0.09460919350385666,
-0.0513031966984272,
0.1431916505098343,
-0.13567204773426056,
-0.030104918405413628,
-0.023996315896511078,
-0.008201738819479942,
-0.008968708105385303,
-0.020719628781080246,
0.026560937985777855,
-0.027224143967032433,
0.003813263727352023,
0.058409180492162704,
-0.03223677724599838,
0.04807267338037491,
-0.039570312947034836,
0.08949990570545197,
0.07054820656776428,
0.06334743648767471,
0.0017715741414576769,
0.012225826270878315,
-0.016354264691472054,
0.013470743782818317,
-0.026299500837922096,
-0.044018033891916275,
0.07145818322896957,
0.07741586118936539,
0.13251692056655884,
0.059575751423835754,
0.10486843436956406,
-0.03273363783955574,
-0.1460052728652954,
-0.04704015329480171,
-0.023065870627760887,
0.07849248498678207,
-0.04488242790102959,
0.07998968660831451,
0.09759647399187088,
-0.22592251002788544,
0.11092821508646011,
0.007038422394543886,
-0.045913778245449066,
-0.09255126118659973,
-0.11776876449584961,
-0.04200422018766403,
-0.037919506430625916,
-0.006342128850519657,
-0.04212396591901779,
0.041835881769657135,
0.001291052089072764,
0.0008108685724437237,
0.016623714938759804,
0.11304374784231186,
-0.1302465945482254,
0.0029001159127801657,
-0.009882704354822636,
0.036328088492155075,
0.019986577332019806,
0.07146883755922318,
-0.017048096284270287,
0.06800168752670288,
-0.031229358166456223,
0.015957528725266457,
0.05630527064204216,
0.06584390252828598,
0.05368312820792198,
-0.01578083075582981,
-0.09931311011314392,
0.0327783077955246,
0.042589303106069565,
0.07736966758966446,
0.057294029742479324,
0.0356820672750473,
-0.02789730578660965,
-0.06270305067300797,
0.0545261912047863,
-0.02882954478263855,
-0.035854555666446686,
-0.11217772215604782,
0.11936056613922119,
-0.0704965591430664,
0.04808589816093445,
-0.00625569885596633,
-0.12144184112548828,
-0.02590107172727585,
0.11583378165960312,
0.18052440881729126,
0.030897600576281548,
-0.014755948446691036,
0.07504238188266754,
-0.0009419344714842737,
-0.012021519243717194,
0.02739994041621685,
0.01532015111297369,
0.15489846467971802,
-0.05346875265240669,
0.12481912225484848,
-0.03450625762343407,
-0.12904684245586395,
-0.10945049673318863,
0.05362657830119133,
-0.03085465170443058,
0.01958893984556198,
0.02767130918800831,
0.0756622925400734,
-0.036888230592012405,
-0.15507987141609192,
0.1335124522447586,
-0.14511334896087646,
-0.11052388697862625,
-0.03429011255502701,
0.03516198322176933,
0.04969824105501175,
0.06504792720079422,
-0.01573793590068817,
-0.024577299132943153,
0.13725778460502625,
-0.010543396696448326,
-0.09972488135099411,
-0.08977038413286209,
0.02115904726088047,
-0.10098526626825333,
0.1870983988046646,
0.008857684209942818,
0.0532875657081604,
0.09271302074193954,
-0.0077329520136117935,
-0.11263362318277359,
-0.03607913479208946,
0.10504374653100967,
0.0019510920392349362,
0.047269873321056366,
0.15822477638721466,
-0.05278810113668442,
0.039292749017477036,
0.002755566267296672,
-0.12372322380542755,
0.025595005601644516,
0.003293584566563368,
-0.03460623696446419,
-0.08864162117242813,
0.08633000403642654,
-0.0907781720161438,
0.14298465847969055,
0.20443536341190338,
-0.03738316893577576,
0.009298188611865044,
-0.013250898569822311,
-0.018714966252446175,
0.0899793803691864,
0.1107819676399231,
-0.025500936433672905,
-0.14074845612049103,
0.019391877576708794,
0.03734632954001427,
0.1126822829246521,
-0.2295641005039215,
-0.11206407099962234,
-0.08947326987981796,
-0.043491702526807785,
-0.028797434642910957,
0.09331255406141281,
0.09125253558158875,
0.0038015979807823896,
-0.010246721096336842,
-0.16247259080410004,
-0.009712538681924343,
0.09117249399423599,
-0.08186289668083191,
-0.029333777725696564
] |
null | null | diffusers | ### My-Pet-XZG-Cat Dreambooth model trained by MatrixAwakens following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 21CS02003
Sample pictures of this concept:

| {"license": "creativeml-openrail-m", "tags": ["NxtWave-GenAI-Webinar", "text-to-image", "stable-diffusion"]} | text-to-image | MatrixAwakens/my-pet-xzg-cat | [
"diffusers",
"safetensors",
"NxtWave-GenAI-Webinar",
"text-to-image",
"stable-diffusion",
"license:creativeml-openrail-m",
"endpoints_compatible",
"diffusers:StableDiffusionPipeline",
"region:us"
] | 2024-02-13T11:26:53+00:00 | [] | [] | TAGS
#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us
| ### My-Pet-XZG-Cat Dreambooth model trained by MatrixAwakens following the "Build your own Gen AI model" session by NxtWave.
Project Submission Code: 21CS02003
Sample pictures of this concept:
!0
| [
"### My-Pet-XZG-Cat Dreambooth model trained by MatrixAwakens following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21CS02003\n\nSample pictures of this concept:\n\n !0"
] | [
"TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n",
"### My-Pet-XZG-Cat Dreambooth model trained by MatrixAwakens following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21CS02003\n\nSample pictures of this concept:\n\n !0"
] | [
73,
58
] | [
"passage: TAGS\n#diffusers #safetensors #NxtWave-GenAI-Webinar #text-to-image #stable-diffusion #license-creativeml-openrail-m #endpoints_compatible #diffusers-StableDiffusionPipeline #region-us \n### My-Pet-XZG-Cat Dreambooth model trained by MatrixAwakens following the \"Build your own Gen AI model\" session by NxtWave.\n\nProject Submission Code: 21CS02003\n\nSample pictures of this concept:\n\n !0"
] | [
-0.10962573438882828,
0.13379846513271332,
-0.0007926794933155179,
-0.006694691255688667,
0.07445516437292099,
-0.02221558429300785,
0.17644904553890228,
0.006994019728153944,
0.04939806088805199,
0.032254658639431,
0.11913298070430756,
0.09009449928998947,
0.03469545766711235,
0.190565824508667,
-0.030430691316723824,
-0.09289995580911636,
0.05370479077100754,
0.08206337690353394,
-0.014634466730058193,
0.06873267143964767,
0.07351282984018326,
-0.08471764624118805,
0.11723272502422333,
-0.021920599043369293,
-0.16773578524589539,
-0.025311831384897232,
-0.04300588369369507,
-0.04060034453868866,
0.04747284948825836,
0.023144910112023354,
0.05179299786686897,
0.12488134950399399,
0.04891984164714813,
-0.04441157728433609,
0.03505510836839676,
0.02121269516646862,
-0.047472961246967316,
0.04787658154964447,
0.0679815486073494,
0.05347101017832756,
0.11301522701978683,
0.04156545177102089,
-0.05071442574262619,
0.05147261545062065,
-0.052427779883146286,
-0.06017615646123886,
0.013556469231843948,
0.0716216042637825,
0.12026333063840866,
0.0903039276599884,
0.003792224917560816,
0.11996497958898544,
0.045767758041620255,
0.11108558624982834,
0.15717509388923645,
-0.30110523104667664,
-0.09889698773622513,
0.18996214866638184,
0.13265971839427948,
0.058418530970811844,
-0.052876994013786316,
0.11456841230392456,
0.09513308852910995,
-0.029941696673631668,
0.08008283376693726,
-0.05903828144073486,
0.07798223942518234,
-0.08777602761983871,
-0.1351112574338913,
0.030663521960377693,
0.250339150428772,
0.059565577656030655,
-0.024871528148651123,
-0.060589749366045,
-0.09275200963020325,
0.005816704127937555,
-0.05591055005788803,
-0.03172856569290161,
-0.05234626308083534,
0.017258569598197937,
-0.0015672612935304642,
-0.03516484051942825,
-0.11789858341217041,
-0.060742273926734924,
-0.013613647781312466,
0.1787576973438263,
-0.0024878699332475662,
0.052012067288160324,
-0.11245933175086975,
0.0959935113787651,
0.05184582248330116,
-0.118077352643013,
0.02080857753753662,
-0.09962119907140732,
0.0124354287981987,
0.058811694383621216,
0.052612900733947754,
-0.061556052416563034,
0.06427821516990662,
-0.020597536116838455,
0.09156627207994461,
-0.009186482056975365,
0.03446277230978012,
0.09510592371225357,
0.026176629588007927,
-0.047055549919605255,
-0.10288769006729126,
-0.13864398002624512,
-0.003443771740421653,
-0.03205546364188194,
0.003851124085485935,
-0.037624094635248184,
-0.0873437225818634,
0.03399009630084038,
-0.035966385155916214,
0.0541178435087204,
0.031608130782842636,
0.07075001299381256,
-0.01467222347855568,
-0.03946792334318161,
0.1486838310956955,
0.049407534301280975,
-0.014289731159806252,
-0.021473970264196396,
0.006153332069516182,
0.08018337190151215,
0.04024319350719452,
-0.025887079536914825,
0.016577640548348427,
0.010129152797162533,
-0.09642346948385239,
-0.0405101515352726,
-0.04851115122437477,
-0.04660957306623459,
0.0003152553108520806,
-0.12226849049329758,
0.025445202365517616,
-0.1655481904745102,
-0.08484282344579697,
0.054050151258707047,
0.07385088503360748,
-0.007575049065053463,
-0.016219817101955414,
-0.04621724411845207,
-0.08846183121204376,
0.015913115814328194,
-0.009359732270240784,
-0.015126222744584084,
-0.015643341466784477,
0.04078176990151405,
0.007439357228577137,
0.09493567794561386,
-0.22386328876018524,
0.007581755984574556,
-0.036647453904151917,
0.03220990300178528,
0.02155812829732895,
-0.024895256385207176,
-0.05353790149092674,
0.07951720058917999,
-0.0021471756044775248,
-0.003833840135484934,
-0.0130838081240654,
-0.0016546262195333838,
-0.0020206673070788383,
0.13655970990657806,
-0.130943164229393,
0.02073480188846588,
0.14944522082805634,
-0.11289862543344498,
-0.18562622368335724,
0.08135328441858292,
0.056426312774419785,
0.10786551237106323,
0.06879939138889313,
0.10392260551452637,
0.05502510070800781,
-0.19264207780361176,
-0.01570713333785534,
0.02479884773492813,
-0.13526466488838196,
-0.15326730906963348,
0.020667878910899162,
0.14684642851352692,
-0.0685741975903511,
0.00947920698672533,
-0.08374553918838501,
0.07420560717582703,
-0.09870073944330215,
-0.030747247859835625,
-0.02307976596057415,
-0.13823151588439941,
-0.01662736013531685,
0.010238604620099068,
0.011061049066483974,
-0.024526208639144897,
0.0027795343194156885,
-0.16231659054756165,
0.05618986114859581,
-0.05472700297832489,
-0.02342832088470459,
-0.13165007531642914,
0.08501406759023666,
-0.06927666813135147,
0.01479574479162693,
-0.030629048123955727,
-0.07691504061222076,
0.04552663117647171,
0.1179792508482933,
-0.014418787322938442,
0.16819578409194946,
0.04858507215976715,
0.06509844213724136,
-0.008275982923805714,
-0.07095754891633987,
0.11347969621419907,
0.023457909002900124,
-0.05435848608613014,
-0.15035535395145416,
0.07460387796163559,
-0.06292659044265747,
0.01771538332104683,
-0.1790253072977066,
0.03728078305721283,
0.04843216761946678,
0.08343794196844101,
0.040614958852529526,
-0.017610348761081696,
0.02360861375927925,
-0.04194535315036774,
-0.07253773510456085,
-0.01221517100930214,
0.06642242521047592,
0.02984037809073925,
-0.08611126989126205,
0.1389976292848587,
-0.16658352315425873,
0.1884181946516037,
0.0866648256778717,
-0.017323048785328865,
-0.014153984375298023,
0.06519477814435959,
-0.05639597773551941,
0.007913094945251942,
0.02366408333182335,
-0.03709758445620537,
-0.0641036406159401,
-0.05201752483844757,
0.10535874962806702,
-0.06528326869010925,
-0.005596484523266554,
0.07786514610052109,
-0.029150880873203278,
-0.03487400338053703,
0.06993287056684494,
0.06560856103897095,
-0.197449192404747,
0.12111634016036987,
0.15491382777690887,
0.030601099133491516,
0.17218588292598724,
0.05282766371965408,
0.009814133867621422,
-0.07288610190153122,
0.0689183697104454,
0.026083996519446373,
0.2459820806980133,
-0.0626070499420166,
0.04295080900192261,
0.014955656602978706,
-0.021055448800325394,
0.05379050597548485,
-0.1118491142988205,
-0.06355958431959152,
-0.019108174368739128,
-0.030849047005176544,
0.1037561222910881,
0.08293035626411438,
-0.1279546320438385,
0.09524920582771301,
-0.08842407166957855,
-0.13450734317302704,
0.03275349363684654,
-0.024563297629356384,
-0.06215362623333931,
0.07570361346006393,
-0.06341266632080078,
-0.22872394323349,
-0.10831049829721451,
-0.07426724582910538,
-0.04549504816532135,
-0.01316804625093937,
0.050702448934316635,
-0.002252831356599927,
-0.04442141577601433,
-0.085279181599617,
-0.10338672995567322,
-0.08872812241315842,
0.028068644925951958,
0.08071243762969971,
0.02022496424615383,
-0.02950427308678627,
-0.05963461846113205,
0.014167136512696743,
-0.046394094824790955,
-0.014660282991826534,
0.1039671003818512,
-0.011880235746502876,
0.1785067915916443,
0.12994177639484406,
0.004874791484326124,
-0.009156684391200542,
0.01282681804150343,
0.1921330690383911,
-0.06680185347795486,
0.10055586695671082,
0.10324603319168091,
0.033265355974435806,
0.06715967506170273,
0.13736610114574432,
0.04492548108100891,
-0.10279839485883713,
0.03674681484699249,
-0.0792243629693985,
-0.11360494792461395,
-0.11633579432964325,
-0.09876371175050735,
-0.06542366743087769,
0.11411696672439575,
-0.012618232518434525,
0.06574614346027374,
0.09640796482563019,
0.14619657397270203,
-0.00821528211236,
-0.08195102214813232,
-0.03263917192816734,
0.09552717208862305,
-0.07447460293769836,
-0.030864153057336807,
0.037125349044799805,
-0.08866000175476074,
-0.029214050620794296,
0.08249066770076752,
0.031926676630973816,
0.16016840934753418,
0.06642485409975052,
0.03029669262468815,
0.08385182917118073,
0.11853335052728653,
0.13025973737239838,
0.1287868618965149,
-0.030075522139668465,
-0.06733311712741852,
-0.02467837743461132,
-0.07803855091333389,
0.11357459425926208,
0.04514341428875923,
-0.05198504775762558,
-0.0393667034804821,
0.04952659830451012,
-0.005035775247961283,
-0.005260862875729799,
0.07999628782272339,
0.0972280502319336,
-0.24909250438213348,
0.037862151861190796,
0.01197837945073843,
0.05212419852614403,
-0.06845623254776001,
0.00041362925549037755,
0.2239900529384613,
-0.028966756537556648,
0.08337025344371796,
-0.044672463089227676,
0.07186215370893478,
0.05667553097009659,
-0.0034263099078089,
-0.06142359972000122,
0.019223472103476524,
-0.0074164425022900105,
0.04596901312470436,
-0.1999053657054901,
0.17850451171398163,
-0.0015645716339349747,
0.052085909992456436,
-0.028390975669026375,
-0.04901057481765747,
-0.02196606621146202,
0.17353035509586334,
0.1779584437608719,
0.009546664543449879,
-0.036753714084625244,
-0.042803313583135605,
-0.08732001483440399,
0.033016033470630646,
0.07495254278182983,
-0.012987997382879257,
0.038036614656448364,
0.07030080258846283,
-0.046038974076509476,
0.014675118029117584,
0.01939898170530796,
-0.20141996443271637,
-0.12897244095802307,
0.01926521398127079,
0.2390585094690323,
0.03434666618704796,
-0.023233652114868164,
0.023089438676834106,
-0.10467622429132462,
0.10933583229780197,
-0.2571118474006653,
-0.04504001885652542,
-0.07257815450429916,
-0.11851634830236435,
-0.0209738127887249,
-0.03221892938017845,
0.014808259904384613,
-0.0663299709558487,
0.09311538934707642,
-0.04916831851005554,
-0.1262085735797882,
0.03290818631649017,
-0.1787949502468109,
-0.09387558698654175,
-0.12501539289951324,
0.06213437393307686,
0.07030832767486572,
-0.013332203030586243,
0.029022853821516037,
-0.07305382937192917,
-0.02162885293364525,
-0.10303440690040588,
0.006367879454046488,
0.11243277788162231,
-0.08033530414104462,
-0.0626552477478981,
-0.08268234133720398,
-0.07578565925359726,
-0.054473720490932465,
-0.05950922146439552,
0.0804457813501358,
0.2369692325592041,
-0.09993159770965576,
0.04555240646004677,
0.19917258620262146,
-0.03710845485329628,
-0.24917879700660706,
-0.10462009906768799,
-0.05846107751131058,
-0.027608094736933708,
0.035330452024936676,
-0.09352414309978485,
0.11665479093790054,
0.024226710200309753,
-0.06232244148850441,
0.22383660078048706,
-0.2590342164039612,
-0.0329255685210228,
0.017554402351379395,
0.13923849165439606,
0.26871660351753235,
-0.15620379149913788,
-0.02036881074309349,
-0.014789044857025146,
-0.09927934408187866,
0.234107106924057,
0.022371675819158554,
0.07707870006561279,
-0.043834324926137924,
-0.025161990895867348,
-0.023212362080812454,
-0.0372532457113266,
0.11246604472398758,
-0.04172670096158981,
0.05650681257247925,
-0.06918700039386749,
0.0582108236849308,
0.19971071183681488,
-0.026281116530299187,
0.02641228958964348,
-0.15422633290290833,
0.01626170612871647,
-0.07788465917110443,
-0.0036065010353922844,
-0.028894534334540367,
0.02288697473704815,
-0.031022217124700546,
-0.09187459200620651,
-0.08660254627466202,
0.01578935794532299,
0.008450772613286972,
0.025300441309809685,
-0.016587315127253532,
-0.003863230347633362,
-0.007378146518021822,
0.18741033971309662,
0.060614168643951416,
-0.09648601710796356,
-0.009399653412401676,
-0.08964262902736664,
-0.04466358944773674,
0.13357239961624146,
-0.009164897724986076,
-0.021989107131958008,
0.11477582156658173,
-0.004628924187272787,
0.03776385262608528,
0.044450145214796066,
-0.0500534325838089,
0.026159092783927917,
0.13182726502418518,
-0.14626732468605042,
-0.17778442800045013,
-0.027174217626452446,
0.2227160930633545,
0.07009204477071762,
0.13793402910232544,
0.09599582105875015,
-0.06347952783107758,
0.03784460201859474,
-0.0383979007601738,
0.013172301463782787,
-0.01571650058031082,
0.06758085638284683,
-0.028193794190883636,
0.05890343338251114,
-0.07679425179958344,
0.035050198435783386,
-0.021409597247838974,
-0.03101055696606636,
-0.04942107945680618,
0.046781256794929504,
-0.10198768973350525,
-0.07677371054887772,
0.05356016755104065,
0.1316055804491043,
-0.09595101326704025,
-0.0987517312169075,
-0.0186215341091156,
-0.0871138796210289,
0.005349025130271912,
0.13134542107582092,
0.021510817110538483,
0.029296789318323135,
0.04345835745334625,
-0.007974145002663136,
-0.08193527162075043,
0.02510645240545273,
-0.02455737069249153,
0.1080537810921669,
-0.23339585959911346,
-0.07549715042114258,
0.008902164176106453,
0.03905868902802467,
-0.08674585074186325,
-0.022956009954214096,
-0.07327020168304443,
0.004588447045534849,
0.03521573916077614,
0.06088414415717125,
-0.11192561686038971,
-0.07518462091684341,
-0.025729065760970116,
0.0021624292712658644,
-0.06302258372306824,
0.012857108376920223,
-0.04093862324953079,
0.05715068429708481,
0.053176455199718475,
0.009253663010895252,
-0.0017711056862026453,
-0.024797586724162102,
-0.03416528180241585,
-0.043477874249219894,
0.06882617622613907,
-0.03377091512084007,
-0.08804627507925034,
-0.02789410762488842,
-0.2777854800224304,
-0.012617317028343678,
0.06810151785612106,
0.03269064053893089,
-0.00020720473548863083,
0.09845597296953201,
-0.012438219971954823,
0.03264579176902771,
0.03518698737025261,
-0.026962077245116234,
0.026784582063555717,
-0.09156615287065506,
-0.021192271262407303,
-0.06401614844799042,
0.008793159388005733,
-0.04774494469165802,
-0.028785347938537598,
0.08988604694604874,
0.04573739692568779,
0.138933464884758,
-0.06650801002979279,
0.037371911108493805,
-0.04191155359148979,
0.037563763558864594,
0.0765613317489624,
-0.0831117182970047,
0.05660352483391762,
-0.042887020856142044,
-0.01313286554068327,
0.0025335100945085287,
0.11487249284982681,
-0.07439516484737396,
-0.23752500116825104,
-0.02756192535161972,
-0.12780719995498657,
-0.021793048828840256,
-0.03632209822535515,
0.26822036504745483,
0.02503415197134018,
0.015991412103176117,
-0.11719698458909988,
0.061504680663347244,
0.06606314331293106,
0.09219861030578613,
0.05335289239883423,
0.054252468049526215,
-0.02554226666688919,
0.0879288986325264,
0.0473875030875206,
-0.0018672440201044083,
-0.05643298849463463,
0.03355376794934273,
-0.15234512090682983,
0.10959913581609726,
-0.02335197478532791,
0.07499469071626663,
0.16427601873874664,
0.004838605411350727,
-0.02957526594400406,
0.0772617757320404,
-0.01246272586286068,
-0.046826526522636414,
-0.20908324420452118,
-0.05810506269335747,
-0.12301758676767349,
0.006538840010762215,
-0.040687527507543564,
-0.014006889425218105,
-0.009205912239849567,
0.060711175203323364,
-0.05924719572067261,
0.07887285947799683,
0.050187066197395325,
-0.00785323791205883,
0.0924709364771843,
0.002667478984221816,
-0.06317213922739029,
0.01818988472223282,
0.024504011496901512,
-0.02016456238925457,
0.014402895234525204,
0.004665663931518793,
0.06441479176282883,
-0.020350201055407524,
0.06422694772481918,
0.03001505881547928,
-0.061286430805921555,
-0.048712801188230515,
-0.014255673624575138,
0.014196494594216347,
0.09159047901630402,
0.01490506436675787,
-0.03854062035679817,
0.012821400538086891,
0.06857622414827347,
-0.009998517110943794,
-0.014585603028535843,
-0.039660196751356125,
0.11540032178163528,
-0.13238254189491272,
0.06745555251836777,
-0.04102889820933342,
0.0012928075157105923,
-0.06738437712192535,
0.26960960030555725,
0.1536223292350769,
-0.08477728068828583,
0.011969277635216713,
-0.10534846037626266,
0.012053301557898521,
-0.08980255573987961,
0.09208916872739792,
0.01862187497317791,
0.2991667091846466,
-0.02863999828696251,
-0.0314544215798378,
-0.11135222017765045,
-0.001674473867751658,
-0.08674386888742447,
-0.10559870302677155,
0.013410085812211037,
-0.03699129819869995,
-0.09464316070079803,
0.08662723749876022,
-0.16060352325439453,
-0.0006867151823826134,
0.06585598737001419,
0.003244195831939578,
-0.004008048214018345,
-0.0178570207208395,
0.10236218571662903,
-0.004151003900915384,
0.03717149794101715,
-0.10914946347475052,
0.046871643513441086,
-0.01990685984492302,
-0.024060742929577827,
-0.07564539462327957,
0.06038220599293709,
-0.004457324277609587,
-0.2062777727842331,
0.2092123180627823,
-0.023311464115977287,
0.017362220212817192,
0.08191890269517899,
-0.06780317425727844,
-0.13697831332683563,
0.12056084722280502,
-0.022915301844477654,
-0.06837158650159836,
-0.0008172174566425383,
0.12182892858982086,
-0.010767972096800804,
0.057967208325862885,
0.000556071987375617,
-0.07065139710903168,
-0.0148201584815979,
0.07776843011379242,
0.028710167855024338,
-0.07532157003879547,
0.0626176968216896,
-0.023661836981773376,
0.1130538135766983,
-0.024539032950997353,
-0.051419828087091446,
-0.02721211686730385,
-0.013495909050107002,
0.040305256843566895,
0.005947072524577379,
-0.007504272274672985,
0.05126171186566353,
-0.1863442212343216,
-0.03310848027467728,
0.0010275767417624593,
0.05088314414024353,
-0.1446848213672638,
0.00041854887967929244,
-0.1855790764093399,
-0.01343114860355854,
-0.05146954208612442,
-0.012472779490053654,
0.23259136080741882,
0.00029083952540531754,
-0.006235303822904825,
-0.11046494543552399,
-0.03661978989839554,
0.059382062405347824,
-0.029429251328110695,
-0.12294170260429382
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.8.2 | {"library_name": "peft", "base_model": "baffo32/decapoda-research-llama-7B-hf"} | null | barbonara/hidden_task_model | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:baffo32/decapoda-research-llama-7B-hf",
"region:us"
] | 2024-02-13T11:27:42+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-baffo32/decapoda-research-llama-7B-hf #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.8.2 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-baffo32/decapoda-research-llama-7B-hf #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.8.2"
] | [
46,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
11
] | [
"passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-baffo32/decapoda-research-llama-7B-hf #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.8.2"
] | [
-0.11315761506557465,
0.20693697035312653,
-0.0033914181403815746,
0.023472558706998825,
0.0715053528547287,
0.017208939418196678,
0.07128063589334488,
0.1285555511713028,
0.03310807794332504,
0.12896162271499634,
0.05852179974317551,
0.11027583479881287,
0.11672219634056091,
0.21474410593509674,
-0.007294683717191219,
-0.17607176303863525,
0.023287659510970116,
-0.0586344338953495,
0.0242341049015522,
0.12702539563179016,
0.13509057462215424,
-0.09366968274116516,
0.07438086718320847,
-0.024117162451148033,
-0.0063532814383506775,
-0.02792987786233425,
-0.06654311716556549,
-0.012317351065576077,
0.05091899260878563,
0.034102778881788254,
0.05607100948691368,
0.00283249095082283,
0.08616606891155243,
-0.2633327543735504,
0.014351923950016499,
0.052876077592372894,
-0.015591205097734928,
0.08385549485683441,
0.1007562205195427,
-0.04775867611169815,
0.1202964261174202,
-0.04040003567934036,
0.13287286460399628,
0.08255196362733841,
-0.10633382201194763,
-0.21963000297546387,
-0.06838952004909515,
0.07546880096197128,
0.18121670186519623,
0.06541210412979126,
-0.038100458681583405,
0.1187150701880455,
-0.06645334511995316,
0.022735657170414925,
0.0855344831943512,
-0.11008308827877045,
-0.06388894468545914,
0.08256200700998306,
0.13004697859287262,
0.08751822263002396,
-0.12101703882217407,
-0.03596518933773041,
0.031297989189624786,
0.04564249515533447,
0.07496845722198486,
0.006369727663695812,
0.17527714371681213,
0.03463122248649597,
-0.14112959802150726,
-0.0510866753757,
0.10333473235368729,
0.005173986777663231,
-0.04116876423358917,
-0.21708673238754272,
-0.019672265276312828,
-0.09419787675142288,
-0.039978865534067154,
-0.05148826166987419,
0.0369265154004097,
0.010546165518462658,
0.11517627537250519,
-0.04666360095143318,
-0.07665489614009857,
-0.015742424875497818,
0.11980615556240082,
0.07207880914211273,
0.010548552498221397,
-0.01915097050368786,
0.0008375029428862035,
0.12569716572761536,
0.0702681615948677,
-0.1268984079360962,
-0.05952483415603638,
-0.05913962423801422,
-0.029209349304437637,
-0.015698537230491638,
0.05066839978098869,
0.022472593933343887,
0.04288802668452263,
0.27255743741989136,
-0.02353859134018421,
0.06460665166378021,
0.04374443367123604,
0.011213480494916439,
0.026386534795165062,
0.10138609260320663,
-0.03798944875597954,
-0.20212554931640625,
-0.006806306540966034,
0.10190191864967346,
0.006543084979057312,
-0.02989913523197174,
-0.05108107253909111,
0.019629349932074547,
0.03821631148457527,
0.1218271479010582,
0.10209712386131287,
-0.028549857437610626,
-0.06115913391113281,
-0.05908353999257088,
0.21287310123443604,
-0.15456466376781464,
0.053318969905376434,
0.029425201937556267,
-0.001365578267723322,
-0.06813821196556091,
0.019487015902996063,
0.0037511219270527363,
-0.03976733982563019,
0.10636069625616074,
-0.06344988942146301,
-0.046625103801488876,
-0.11602457612752914,
-0.04577210545539856,
0.03383117914199829,
-0.023835306987166405,
-0.052071116864681244,
-0.030177194625139236,
-0.08829574286937714,
-0.10371989011764526,
0.097279854118824,
-0.05471806600689888,
-0.04956315830349922,
-0.023896105587482452,
-0.06548698246479034,
0.02605813555419445,
0.025631505995988846,
0.058053623884916306,
-0.031034428626298904,
0.04476718232035637,
-0.028183573856949806,
0.07306092232465744,
0.07786479592323303,
0.03476507216691971,
-0.07538661360740662,
0.0702943354845047,
-0.17794185876846313,
0.08237845450639725,
-0.0634966641664505,
0.027947433292865753,
-0.16268299520015717,
0.004750094376504421,
-0.0012872280785813928,
0.027827313169836998,
0.050530847162008286,
0.15612053871154785,
-0.19720369577407837,
-0.0329853780567646,
0.1850336343050003,
-0.09989258646965027,
-0.11165682226419449,
0.036052338778972626,
-0.04555639997124672,
0.1707897037267685,
0.0404498316347599,
0.014461073093116283,
0.09424569457769394,
-0.15459951758384705,
-0.013714926317334175,
-0.03232087939977646,
0.017464686185121536,
0.05470285937190056,
0.06914625316858292,
-0.08402986824512482,
-0.00029020567308180034,
0.00788448378443718,
-0.050600383430719376,
-0.021518677473068237,
-0.03693566098809242,
-0.09285066276788712,
0.006423512939363718,
-0.0787767767906189,
0.003395088715478778,
0.0033392440527677536,
-0.08970482647418976,
-0.012278388254344463,
-0.13816408812999725,
-0.01886574737727642,
0.07447216659784317,
0.006747232750058174,
-0.008586038835346699,
-0.07688485831022263,
0.038901377469301224,
-0.054681092500686646,
-0.012761550024151802,
-0.14926265180110931,
-0.0020033724140375853,
0.024713827297091484,
-0.1467484086751938,
0.007794203236699104,
-0.14643709361553192,
0.07154291868209839,
0.01355064194649458,
-0.05956650525331497,
-0.03605932742357254,
0.023925207555294037,
-0.010547892190515995,
-0.0696912407875061,
-0.22129450738430023,
-0.03238162398338318,
-0.05197356641292572,
0.12532709538936615,
-0.2150430828332901,
0.04753262922167778,
0.006986165884882212,
0.11904504895210266,
0.009576868265867233,
-0.06526706367731094,
0.026438051834702492,
-0.05902106314897537,
-0.022152390331029892,
-0.0712481141090393,
-0.008174602873623371,
0.0007908249390311539,
-0.022067295387387276,
0.025865433737635612,
-0.14552833139896393,
-0.06371363252401352,
0.0890006422996521,
0.09517087787389755,
-0.1408364623785019,
0.008933398872613907,
-0.03696366772055626,
-0.06015743687748909,
-0.07449708878993988,
-0.07334461063146591,
0.06385243684053421,
0.046642888337373734,
0.05420449376106262,
-0.09251368790864944,
-0.07175344228744507,
-0.000603288586717099,
-0.010549522936344147,
-0.02380046807229519,
0.12362107634544373,
0.0760427713394165,
-0.1001516729593277,
0.09611243009567261,
0.0702895075082779,
0.03701728209853172,
0.1052347794175148,
-0.004687733948230743,
-0.10080959647893906,
-0.03411156311631203,
0.0550478920340538,
0.015039912424981594,
0.15930521488189697,
-0.05989459529519081,
0.042356930673122406,
0.0450286865234375,
-0.043742578476667404,
0.04189421609044075,
-0.09627360105514526,
0.014849469996988773,
0.005425973329693079,
-0.015548374503850937,
0.026407333090901375,
-0.023299403488636017,
0.009892073459923267,
0.09253392368555069,
0.0663888156414032,
0.02510179579257965,
0.012244376353919506,
-0.039548009634017944,
-0.13986030220985413,
0.17944300174713135,
-0.0890926867723465,
-0.2192246913909912,
-0.1523144245147705,
0.030862800776958466,
0.055283322930336,
-0.01287524402141571,
0.03627847507596016,
-0.04029200226068497,
-0.09168557077646255,
-0.08591797947883606,
0.02643238753080368,
0.048261601477861404,
-0.0639820545911789,
-0.07025139033794403,
0.03118446096777916,
0.023859364911913872,
-0.13642092049121857,
0.023855486884713173,
0.05066455528140068,
0.008808453567326069,
-0.004242334980517626,
0.029515432193875313,
0.08469650149345398,
0.20596016943454742,
-0.0010357514256611466,
0.005296121351420879,
0.058449793606996536,
0.28061094880104065,
-0.15380872786045074,
0.12472280114889145,
0.11395645141601562,
-0.05309193208813667,
0.08327218890190125,
0.19839604198932648,
0.03439986705780029,
-0.0858026072382927,
0.013925162144005299,
0.040760595351457596,
-0.039643850177526474,
-0.2634517550468445,
-0.048256393522024155,
-0.02530527301132679,
-0.07032971829175949,
0.08588999509811401,
0.08418731391429901,
0.10233542323112488,
0.030208496376872063,
-0.07628654688596725,
-0.07764517515897751,
0.052789703011512756,
0.11630719900131226,
-0.05275232344865799,
0.019018134102225304,
0.08260299265384674,
-0.047903891652822495,
0.005591238383203745,
0.08735936880111694,
-0.00802604015916586,
0.13106977939605713,
0.0531272292137146,
0.1212891936302185,
0.0704345703125,
0.06614582985639572,
0.0025410177186131477,
0.05515355244278908,
-0.005711870267987251,
0.032372716814279556,
0.015585270710289478,
-0.09288844466209412,
0.025141632184386253,
0.112919382750988,
0.004111777991056442,
0.027837960049510002,
0.022576486691832542,
-0.08128760755062103,
0.03569658473134041,
0.2150987684726715,
0.032893106341362,
-0.20943380892276764,
-0.07598158717155457,
0.05828988924622536,
-0.070314921438694,
-0.15612752735614777,
-0.00878258515149355,
0.010064362548291683,
-0.15671052038669586,
0.01580224558711052,
-0.04404135048389435,
0.11016388982534409,
-0.06362711638212204,
-0.045231893658638,
0.09414584934711456,
0.054484814405441284,
-0.051584940403699875,
0.03410233557224274,
-0.1823570281267166,
0.10739704966545105,
0.03434645012021065,
0.07185020297765732,
-0.08511006087064743,
0.08233365416526794,
0.0018119924934580922,
-0.014089783653616905,
0.15759502351284027,
0.0018673684680834413,
-0.059888988733291626,
-0.08054892718791962,
-0.0730653777718544,
-0.01861157827079296,
0.08593481034040451,
-0.14045648276805878,
0.072626993060112,
-0.01628161035478115,
-0.03916754573583603,
-0.0020956359803676605,
-0.10949470102787018,
-0.10445693135261536,
-0.1604815125465393,
0.06004784256219864,
-0.0750783234834671,
0.013367986306548119,
-0.07811429351568222,
-0.04876202344894409,
0.036885835230350494,
0.15893833339214325,
-0.18831877410411835,
-0.11941029876470566,
-0.1483171582221985,
-0.11274781078100204,
0.15751221776008606,
-0.04945813864469528,
0.0878465473651886,
-0.012895364314317703,
0.15322309732437134,
-0.017934435978531837,
-0.03177817910909653,
0.08971655368804932,
-0.08956750482320786,
-0.18874290585517883,
-0.053596578538417816,
0.19334644079208374,
0.13597576320171356,
0.02551482990384102,
-0.017510123550891876,
0.027804741635918617,
-0.049243368208408356,
-0.10312806814908981,
0.02030603028833866,
0.13009418547153473,
0.06542996317148209,
-0.0028508040122687817,
-0.03364201635122299,
-0.10928359627723694,
-0.05427238717675209,
-0.03375837206840515,
-0.018190274015069008,
0.20316626131534576,
-0.07241161912679672,
0.16541163623332977,
0.13748201727867126,
-0.06094454973936081,
-0.21014203131198883,
0.036070384085178375,
0.02666737139225006,
0.01790730282664299,
0.01528872363269329,
-0.19214701652526855,
0.07446768134832382,
-0.018745610490441322,
-0.07557115703821182,
0.17901965975761414,
-0.2001037299633026,
-0.13223056495189667,
0.09722920507192612,
0.015528753399848938,
-0.1999611258506775,
-0.14618231356143951,
-0.11157624423503876,
-0.020364131778478622,
-0.13972270488739014,
0.06191468611359596,
0.019651837646961212,
0.011367700062692165,
0.008376648649573326,
0.012735960073769093,
0.041844986379146576,
-0.04890361428260803,
0.1950521022081375,
-0.02490154094994068,
0.00820312462747097,
-0.05363450199365616,
-0.09846247732639313,
0.007714917883276939,
-0.066828653216362,
0.1182432621717453,
-0.020177436992526054,
0.027602005749940872,
-0.15604279935359955,
-0.046788979321718216,
-0.0728805884718895,
0.018450558185577393,
-0.09667010605335236,
-0.08626972138881683,
-0.050449445843696594,
0.07716938853263855,
0.10080002248287201,
-0.024472948163747787,
0.03013605810701847,
-0.08522918075323105,
0.09169790893793106,
0.20964114367961884,
0.169264018535614,
0.040340837091207504,
-0.04949657618999481,
0.02597726136445999,
-0.03502984344959259,
0.045553456991910934,
-0.22130340337753296,
0.040003031492233276,
0.061513207852840424,
0.04043062776327133,
0.08372455835342407,
-0.0030717721674591303,
-0.1644328534603119,
-0.08643679320812225,
0.08046039193868637,
-0.06184041500091553,
-0.15967489778995514,
-0.02597256563603878,
0.02452978678047657,
-0.19354264438152313,
-0.04036446288228035,
0.04104665666818619,
-0.017699118703603745,
-0.04142226278781891,
0.021982595324516296,
0.0838809460401535,
-0.018028253689408302,
0.10038372874259949,
0.08261580020189285,
0.09217066317796707,
-0.10109387338161469,
0.06485940515995026,
0.08279531449079514,
-0.019250812008976936,
0.011936766095459461,
0.14722299575805664,
-0.04712069034576416,
-0.03154518082737923,
0.07791595160961151,
0.1124829649925232,
-0.005244730040431023,
-0.04259297624230385,
0.014151973649859428,
-0.06130527704954147,
0.07196435332298279,
0.14441430568695068,
0.018191983923316002,
-0.01176614873111248,
0.0702342763543129,
0.026926293969154358,
-0.09579692035913467,
0.1216232031583786,
0.06221400573849678,
0.025364527478814125,
-0.013795081526041031,
-0.025478806346654892,
-0.018696606159210205,
-0.007087962236255407,
-0.015591749921441078,
-0.004058389458805323,
-0.09342550486326218,
-0.001828377484343946,
-0.1283492147922516,
0.02036559022963047,
-0.085442915558815,
0.001602771459147334,
0.01166064664721489,
-0.040224961936473846,
-0.003342612413689494,
-0.006620962638407946,
-0.0776919275522232,
-0.056390997022390366,
-0.031760167330503464,
0.07511326670646667,
-0.1379319727420807,
0.025941314175724983,
0.06947930157184601,
-0.11220942437648773,
0.06254442781209946,
-0.004193736705929041,
0.014265717938542366,
0.00012138440797571093,
-0.13992588222026825,
0.05439530313014984,
-0.024729430675506592,
-0.018374281004071236,
0.012412093579769135,
-0.16741324961185455,
-0.004589696414768696,
-0.051449600607156754,
-0.07755398750305176,
0.008821886964142323,
-0.012753011658787727,
-0.1254161298274994,
0.12548024952411652,
-0.008573937229812145,
-0.06064910069108009,
-0.016206735745072365,
0.054660629481077194,
0.07157216966152191,
-0.01622667908668518,
0.08318189531564713,
-0.025357387959957123,
0.08040329813957214,
-0.18310928344726562,
-0.012826420366764069,
-0.015443635173141956,
0.03250167518854141,
-0.024293286725878716,
-0.030790552496910095,
0.05393398925662041,
-0.009921875782310963,
0.15798452496528625,
-0.0067428769543766975,
0.06534741073846817,
0.04550279304385185,
0.007571352180093527,
0.03401561453938484,
0.0677984207868576,
0.056774403899908066,
-0.02762993611395359,
-0.012673196382820606,
0.035997647792100906,
0.0011529811890795827,
-0.0438276045024395,
-0.12910069525241852,
0.057868726551532745,
0.18670876324176788,
0.08522387593984604,
0.03431025147438049,
-0.0004292053636163473,
-0.133782297372818,
-0.08506501466035843,
0.0824340358376503,
-0.012464035302400589,
-0.028433509171009064,
-0.06465094536542892,
0.2154921591281891,
0.1368599534034729,
-0.19674931466579437,
0.08210475742816925,
-0.040859926491975784,
-0.033751461654901505,
-0.13293740153312683,
-0.15425829589366913,
-0.05349553003907204,
-0.029780512675642967,
-0.03426017612218857,
-0.06595855951309204,
0.05845767259597778,
0.041700370609760284,
0.004076079931110144,
-0.0033657709136605263,
0.10947946459054947,
0.011297379620373249,
-0.03716351091861725,
0.05371218919754028,
0.0730854868888855,
0.05134202539920807,
-0.08588061481714249,
0.009303111582994461,
0.00021480710711330175,
0.0022784045431762934,
0.05963514745235443,
0.024714142084121704,
-0.054765429347753525,
0.025572435930371284,
-0.009906175546348095,
-0.11927543580532074,
0.046975746750831604,
-0.007002732716500759,
-0.01458545308560133,
0.1557861715555191,
0.032235484570264816,
0.0017246404895558953,
-0.012379055842757225,
0.22621026635169983,
-0.07110510766506195,
-0.07694652676582336,
-0.12549139559268951,
0.08115672320127487,
-0.048324961215257645,
0.030001886188983917,
0.02028203010559082,
-0.1270485371351242,
0.01162621658295393,
0.15940667688846588,
0.12985138595104218,
-0.0025686565786600113,
0.009970532730221748,
0.04279723018407822,
0.00895379763096571,
-0.011014834977686405,
0.015461989678442478,
0.039503395557403564,
0.21764041483402252,
-0.07181627303361893,
0.07580090314149857,
-0.011139573529362679,
-0.07226143032312393,
-0.02406439557671547,
0.13351143896579742,
-0.012220230884850025,
-0.013349340297281742,
-0.05777602642774582,
0.13547304272651672,
-0.059280261397361755,
-0.2229946404695511,
0.06442401558160782,
-0.09303385019302368,
-0.13186420500278473,
-0.04243733733892441,
-0.004726373124867678,
-0.027966350317001343,
0.011600934900343418,
0.06861211359500885,
-0.05574968457221985,
0.17113226652145386,
0.029368164017796516,
-0.059310946613550186,
-0.10272694379091263,
0.050405699759721756,
-0.14332398772239685,
0.28847184777259827,
0.023773914203047752,
0.029979582875967026,
0.10666729509830475,
-0.019742637872695923,
-0.13991843163967133,
0.01550375297665596,
0.1071867048740387,
-0.061551135033369064,
0.04688967391848564,
0.1586395651102066,
-0.0073920199647545815,
0.12004861980676651,
0.051917415112257004,
-0.06354264914989471,
0.032924067229032516,
-0.05690119042992592,
-0.05976089835166931,
-0.12289714813232422,
0.0689191147685051,
-0.07622990757226944,
0.14616546034812927,
0.12313026934862137,
-0.06950817257165909,
-0.0040894499979913235,
-0.016098279505968094,
0.07880555838346481,
0.020440874621272087,
0.1219768226146698,
0.016527868807315826,
-0.17870397865772247,
0.050657719373703,
0.0029257917776703835,
0.11087506264448166,
-0.22178898751735687,
-0.05641286447644234,
0.043119363486766815,
-0.024133354425430298,
-0.08745475113391876,
0.12183458358049393,
0.03690687194466591,
0.020617099478840828,
-0.027666538953781128,
-0.09447032958269119,
0.014534460380673409,
0.15692296624183655,
-0.10519228875637054,
-0.01648007333278656
] |
null | null | transformers | Model description:
Model: bert-base-multilingual-cased
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 10
Best exact match: 80.22
Best epoch: 10
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 32
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.25_DROP1_mbert
Results
| epoch | train_loss | train_f1 | train_exact | dev_loss | dev_f1 | dev_exact | test_loss | test_f1 | test_exact |
|--------:|-------------:|-----------:|--------------:|-----------:|---------:|------------:|------------:|----------:|-------------:|
| 1 | 3.18 | 11.43 | 2.48 | 2.18 | 29.53 | 20.6 | 0 | 0 | 0 |
| 2 | 1.31 | 55.71 | 40.91 | 1.12 | 72.8 | 58.24 | 0 | 0 | 0 |
| 3 | 0.57 | 81.62 | 72.45 | 1.05 | 79.04 | 71.7 | 0 | 0 | 0 |
| 4 | 0.29 | 90.38 | 84.37 | 1.01 | 81.04 | 74.73 | 0 | 0 | 0 |
| 5 | 0.19 | 93.63 | 88.98 | 0.92 | 79.94 | 75 | 0 | 0 | 0 |
| 6 | 0.11 | 96.49 | 94.21 | 0.97 | 81.43 | 75.82 | 0 | 0 | 0 |
| 7 | 0.08 | 97.23 | 95.59 | 0.94 | 83.21 | 78.57 | 0 | 0 | 0 |
| 8 | 0.04 | 98.64 | 97.87 | 1.13 | 83.51 | 78.3 | 0 | 0 | 0 |
| 9 | 0.04 | 98.8 | 97.87 | 1.11 | 83.88 | 78.57 | 0 | 0 | 0 |
| 10 | 0.05 | 98.23 | 97.52 | 0.89 | 84.79 | 80.22 | 0 | 0 | 0 | | {} | question-answering | pgajo/mbert_EW-TT-PE_U0_S1_Tingredient_P0.25_DROP1_mbert_E10_DEV80.0 | [
"transformers",
"safetensors",
"bert",
"question-answering",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:33:06+00:00 | [] | [] | TAGS
#transformers #safetensors #bert #question-answering #endpoints_compatible #region-us
| Model description:
```
Model: bert-base-multilingual-cased
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 10
Best exact match: 80.22
Best epoch: 10
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 32
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.25_DROP1_mbert
```
Results
| [] | [
"TAGS\n#transformers #safetensors #bert #question-answering #endpoints_compatible #region-us \n"
] | [
30
] | [
"passage: TAGS\n#transformers #safetensors #bert #question-answering #endpoints_compatible #region-us \n"
] | [
-0.03100396879017353,
0.011429967358708382,
-0.009655450470745564,
-0.0477571114897728,
0.071015864610672,
0.001686002011410892,
0.08008057624101639,
0.05985769256949425,
0.11401950567960739,
0.02590048313140869,
0.1903941035270691,
0.16566626727581024,
-0.07932274788618088,
0.015106523409485817,
-0.13172350823879242,
-0.13182127475738525,
0.11529869586229324,
0.03778080269694328,
-0.03543904423713684,
0.10329030454158783,
0.05029234290122986,
-0.12624382972717285,
0.04368755966424942,
-0.06763096153736115,
-0.062081653624773026,
0.06668882071971893,
0.04820772260427475,
-0.08198674768209457,
0.13085918128490448,
0.03362511843442917,
0.2047542929649353,
0.04677434265613556,
-0.1182841956615448,
-0.21163156628608704,
0.03874710574746132,
-0.011287915520370007,
-0.05873045325279236,
0.019588099792599678,
0.032477255910634995,
-0.07909006625413895,
-0.11140874028205872,
0.027899496257305145,
0.014707351103425026,
0.08549544960260391,
-0.18314984440803528,
-0.16563549637794495,
-0.06621148437261581,
-0.053103990852832794,
0.12317322194576263,
0.08563494682312012,
-0.020668305456638336,
0.1935536116361618,
-0.15425218641757965,
0.0928223505616188,
0.1380285918712616,
-0.32555314898490906,
-0.0027393975760787725,
0.093502476811409,
0.11618221551179886,
0.05096927657723427,
-0.02073126845061779,
0.09022705256938934,
0.07546665519475937,
-0.00581451877951622,
-0.06733445823192596,
-0.0957256555557251,
-0.012503020465373993,
0.09702391922473907,
-0.07598375529050827,
-0.052956461906433105,
0.2470276802778244,
0.031026924028992653,
0.013565225526690483,
-0.008941343985497952,
-0.10310965776443481,
0.030862320214509964,
0.02648748643696308,
-0.06024225428700447,
-0.02690120041370392,
0.06734149158000946,
-0.0001909599086502567,
0.005896252579987049,
-0.1221570298075676,
-0.006722765974700451,
-0.22672583162784576,
0.2768072187900543,
-0.0018987046787515283,
0.08534801006317139,
-0.2428436279296875,
0.015660421922802925,
-0.06141046807169914,
-0.0824490636587143,
-0.013059272430837154,
-0.09494815766811371,
-0.009192516095936298,
-0.02866560034453869,
-0.04682322219014168,
0.015530125238001347,
0.12870869040489197,
0.20563961565494537,
-0.017999636009335518,
0.04083723947405815,
-0.061628565192222595,
0.0725679025053978,
0.03914913535118103,
0.09992070496082306,
0.010195896960794926,
-0.020322704687714577,
-0.016003627330064774,
-0.13105420768260956,
-0.008767413906753063,
-0.03738516569137573,
-0.05202561616897583,
-0.022937579080462456,
0.01343182846903801,
0.16656653583049774,
0.057803552597761154,
0.021070659160614014,
-0.08621648699045181,
0.05785249546170235,
0.022443469613790512,
-0.04320667311549187,
-0.017870478332042694,
0.00882878340780735,
0.06155950948596001,
0.0885266587138176,
-0.07562171667814255,
0.04524178430438042,
0.016779053956270218,
0.06491811573505402,
-0.07376032322645187,
-0.06024041771888733,
-0.019815200939774513,
-0.022853199392557144,
0.06425601989030838,
-0.06728833168745041,
0.08267539739608765,
-0.1562412828207016,
-0.08226612955331802,
0.011612122878432274,
0.02970954217016697,
0.007305266335606575,
0.06759197264909744,
-0.014567295089364052,
-0.039057523012161255,
-0.03480268642306328,
-0.07194317877292633,
-0.10265897214412689,
-0.07100482285022736,
0.06559862941503525,
0.037085019052028656,
0.029506711289286613,
-0.08701489865779877,
0.0126223498955369,
-0.10313430428504944,
0.0696413442492485,
-0.07926147431135178,
-0.03626604750752449,
-0.030684340745210648,
0.19216585159301758,
-0.03995077684521675,
-0.013410759158432484,
-0.11826255917549133,
0.05234655737876892,
-0.05254388228058815,
0.21867278218269348,
-0.03809955716133118,
-0.03585023805499077,
0.23391962051391602,
-0.09690817445516586,
-0.2571674883365631,
0.07713238894939423,
0.006013390142470598,
0.017324132844805717,
0.10797587037086487,
0.19150643050670624,
-0.016850516200065613,
-0.11185130476951599,
0.0474415123462677,
0.11249569058418274,
-0.15280477702617645,
-0.0624573640525341,
0.025971313938498497,
-0.0582793690264225,
-0.1464228332042694,
0.016458844766020775,
0.051048628985881805,
0.04815160855650902,
-0.08806464076042175,
-0.03191754221916199,
-0.02947526052594185,
-0.018536636605858803,
0.061611421406269073,
0.04005695879459381,
0.026151038706302643,
-0.12002047151327133,
0.017315825447440147,
-0.051940858364105225,
-0.04731830582022667,
0.03846436366438866,
0.007411974482238293,
-0.12714537978172302,
0.07094167917966843,
-0.131436288356781,
0.020615974441170692,
-0.16280385851860046,
-0.19247999787330627,
-0.013410934247076511,
0.10532321780920029,
-0.05276893824338913,
0.20171119272708893,
0.11623696237802505,
-0.10492526739835739,
-0.01685560680925846,
-0.07052898406982422,
0.1616603285074234,
0.05628864839673042,
-0.02636071853339672,
-0.04867614805698395,
0.07146526873111725,
-0.10356242209672928,
-0.10846276581287384,
-0.05549529939889908,
-0.01631050743162632,
0.13880129158496857,
0.10532583296298981,
0.04163223132491112,
0.06328489631414413,
-0.012810224667191505,
0.017701199278235435,
-0.008262974210083485,
0.018305214121937752,
0.07581605017185211,
-0.03447617590427399,
-0.11924053728580475,
0.11601310968399048,
-0.1444002240896225,
0.3729725480079651,
0.16846853494644165,
-0.23041868209838867,
0.01894976757466793,
-0.026126159355044365,
-0.030978791415691376,
0.034767232835292816,
0.05344981700181961,
-0.017914773896336555,
0.01958848536014557,
0.031971078366041183,
0.07821214944124222,
-0.03785416856408119,
-0.05193689465522766,
-0.015433255583047867,
-0.07395049929618835,
-0.06607450544834137,
0.07275120168924332,
-0.03483232855796814,
-0.21013760566711426,
0.1599646657705307,
0.31365448236465454,
0.09703507274389267,
0.08886944502592087,
-0.0816551148891449,
-0.028012678027153015,
-0.0039048483595252037,
0.07745775580406189,
-0.022175131365656853,
0.0646965503692627,
-0.19559495151042938,
0.002697455231100321,
0.0718853622674942,
0.040101438760757446,
0.051995899528265,
-0.1255539059638977,
-0.08741874992847443,
0.02883525937795639,
0.010361172258853912,
-0.0510454997420311,
0.08942679315805435,
0.01958455704152584,
0.10355164110660553,
0.03094480000436306,
-0.025720693171024323,
0.12157201766967773,
-0.0424032099545002,
-0.08322477340698242,
0.16933336853981018,
-0.11445565521717072,
-0.22569596767425537,
-0.07213949412107468,
-0.10141351073980331,
0.023521440103650093,
0.043139949440956116,
0.07353874295949936,
-0.13277705013751984,
-0.06267919391393661,
0.050284892320632935,
0.04398718848824501,
-0.11532527953386307,
0.034965697675943375,
0.011176006868481636,
0.0742565244436264,
-0.047823816537857056,
-0.06598490476608276,
-0.06332776695489883,
-0.03295988216996193,
-0.06356722116470337,
0.1191829964518547,
-0.10939455777406693,
0.1207437515258789,
0.09475167840719223,
0.04165811091661453,
0.036363665014505386,
-0.027820978313684464,
0.21290433406829834,
-0.11579988896846771,
-0.03179406374692917,
0.15926754474639893,
-0.07346773147583008,
0.07930222153663635,
0.20331227779388428,
0.017215436324477196,
-0.1255631297826767,
0.04482865333557129,
-0.03777764365077019,
-0.08158078044652939,
-0.24055063724517822,
-0.04635780677199364,
-0.08391188085079193,
0.07882910221815109,
-0.018682004883885384,
0.04367469623684883,
0.10718972235918045,
0.09847458451986313,
0.02698599174618721,
-0.15794047713279724,
0.009259669110178947,
0.060280539095401764,
0.19491833448410034,
-0.0554194450378418,
0.09747976064682007,
-0.07872258871793747,
-0.14044831693172455,
0.058162905275821686,
0.07227057963609695,
0.11210840195417404,
0.18135450780391693,
0.0031284119468182325,
0.07501647621393204,
0.11561381816864014,
0.14170172810554504,
0.14721226692199707,
0.028168288990855217,
-0.09393750876188278,
-0.012610750272870064,
0.000841298489831388,
-0.071214459836483,
0.04935174807906151,
0.06255429983139038,
-0.09986883401870728,
-0.016300853341817856,
-0.16199824213981628,
0.11020834743976593,
0.05675990507006645,
0.08375607430934906,
-0.13229906558990479,
0.008182737976312637,
0.12653344869613647,
-0.016539672389626503,
-0.04231732711195946,
0.12035517394542694,
0.07884106040000916,
-0.08249315619468689,
0.04244247451424599,
-0.04095182567834854,
0.11129532009363174,
0.07417996227741241,
0.09555985778570175,
-0.096460722386837,
-0.16630028188228607,
0.02183578908443451,
0.07979494333267212,
-0.27919045090675354,
0.28428587317466736,
0.032050203531980515,
-0.04338350147008896,
-0.06692010164260864,
-0.039031147956848145,
-0.04415836185216904,
0.1649855673313141,
0.21534205973148346,
-0.006029482930898666,
-0.12515726685523987,
-0.10306360572576523,
0.060360122472047806,
0.07373268157243729,
0.15369689464569092,
-0.022843722254037857,
0.01709183119237423,
-0.02581469528377056,
0.01907532475888729,
0.0005263579660095274,
0.027384355664253235,
-0.00807490199804306,
-0.10579172521829605,
-0.003417222760617733,
0.027430731803178787,
0.11391840875148773,
-0.05235821753740311,
0.053690437227487564,
-0.07520826160907745,
0.11101158708333969,
-0.08321993052959442,
-0.024513524025678635,
-0.10570400953292847,
-0.159481018781662,
0.09931088238954544,
-0.0652543157339096,
0.02730567753314972,
-0.06895346194505692,
-0.034800801426172256,
-0.06456287950277328,
-0.1387634426355362,
0.15311841666698456,
-0.12774962186813354,
-0.014343206770718098,
-0.05910857394337654,
0.1744864135980606,
-0.057705219835042953,
-0.014981103129684925,
0.022769484668970108,
0.058170903474092484,
-0.08365354686975479,
-0.09320548176765442,
0.012634269893169403,
-0.08999879658222198,
0.07918208837509155,
0.07504331320524216,
-0.010605372488498688,
0.011236832477152348,
0.017805295065045357,
0.011543014086782932,
0.1833728551864624,
0.2684391736984253,
-0.03611943498253822,
0.05449281632900238,
0.21387790143489838,
0.009187204763293266,
-0.3001823127269745,
-0.03780132532119751,
-0.20396788418293,
-0.06599479168653488,
0.0035966881550848484,
-0.01841581240296364,
0.15771964192390442,
0.038633719086647034,
-0.05389995872974396,
0.06213739886879921,
-0.16254091262817383,
-0.0409867987036705,
0.17554175853729248,
0.02816466987133026,
0.5083365440368652,
-0.16917727887630463,
-0.09572464227676392,
-0.01933435909450054,
-0.21105335652828217,
0.09465035051107407,
-0.0792510136961937,
0.00545540964230895,
0.027481064200401306,
0.0250190868973732,
0.03670221567153931,
-0.09177862852811813,
0.1804729551076889,
-0.0251461174339056,
0.07020123302936554,
-0.08957348763942719,
-0.09517528116703033,
0.0571230947971344,
-0.00989442877471447,
-0.004209878388792276,
0.0377814881503582,
0.043195612728595734,
-0.09419526904821396,
-0.02725309133529663,
-0.07557959109544754,
0.05808710306882858,
0.029764346778392792,
-0.06465182453393936,
-0.024149267002940178,
-0.034049443900585175,
0.0040148478001356125,
-0.006224581506103277,
0.3219931423664093,
-0.07817333191633224,
0.1998085230588913,
0.0308726467192173,
0.17342960834503174,
-0.20313303172588348,
0.014420399442315102,
0.002336042234674096,
-0.07989436388015747,
0.09632785618305206,
-0.054569393396377563,
0.0957014411687851,
0.14680208265781403,
-0.03774647042155266,
0.04170471802353859,
0.09971088171005249,
0.044757623225450516,
-0.023297281935811043,
0.12041250616312027,
-0.2069728821516037,
-0.19302959740161896,
0.006711400113999844,
0.002523706993088126,
0.0443287193775177,
0.1371040642261505,
0.08772092312574387,
0.10595496743917465,
0.007110828999429941,
-0.019849922508001328,
-0.013635226525366306,
-0.07197124511003494,
0.015518625266849995,
0.07721489667892456,
0.05103190615773201,
-0.0915357917547226,
0.07368962466716766,
-0.044682856649160385,
-0.2505898177623749,
-0.011277278885245323,
0.010972370393574238,
-0.1136656329035759,
-0.09253716468811035,
-0.0640796348452568,
0.11949943006038666,
-0.0853467583656311,
-0.07717446982860565,
-0.033551741391420364,
-0.13546887040138245,
0.036930788308382034,
0.2936263084411621,
0.08502552658319473,
0.10473651438951492,
0.05559305474162102,
-0.024962520226836205,
0.02628864347934723,
-0.022201525047421455,
-0.0632605329155922,
0.0033800466917455196,
-0.10716227442026138,
-0.10930395126342773,
-0.0539650060236454,
0.1258552223443985,
-0.10030562430620193,
-0.0463426411151886,
-0.20223698019981384,
0.07721703499555588,
-0.17302681505680084,
-0.07449597120285034,
-0.1311258226633072,
-0.05869106575846672,
0.011798324063420296,
-0.1269368678331375,
-0.043847475200891495,
-0.0405474416911602,
-0.11593431234359741,
0.0941464975476265,
0.06928019225597382,
0.006738580297678709,
-0.09351341426372528,
-0.052371736615896225,
0.14618384838104248,
-0.039895832538604736,
0.07875484228134155,
0.12324118614196777,
-0.11218003928661346,
0.09794780611991882,
-0.19827678799629211,
-0.10873684287071228,
0.09223955124616623,
-0.020392343401908875,
0.07176221162080765,
0.06298419088125229,
-0.0209525004029274,
0.09442277252674103,
0.03166748583316803,
0.07961104065179825,
-0.041231222450733185,
-0.09570163488388062,
0.02909303456544876,
0.012143692001700401,
-0.16935859620571136,
-0.031028112396597862,
-0.1383150815963745,
0.138075590133667,
-0.03250321373343468,
0.13132928311824799,
-0.0014017382636666298,
0.0942121222615242,
-0.0393197238445282,
0.0214883740991354,
0.022810328751802444,
-0.15824435651302338,
0.014284737408161163,
-0.04512546584010124,
0.00530107831582427,
-0.042201071977615356,
0.2832597494125366,
-0.13215987384319305,
0.07444287836551666,
0.07330053299665451,
-0.007652656175196171,
0.048707786947488785,
0.035340797156095505,
0.2554089426994324,
0.08575175702571869,
-0.05636623501777649,
-0.11349837481975555,
0.047768156975507736,
-0.03974492475390434,
-0.16682684421539307,
0.08966261893510818,
0.16476166248321533,
-0.021509341895580292,
0.09579425305128098,
-0.015587063506245613,
0.04206113517284393,
0.003570155706256628,
-0.20271413028240204,
-0.03418423607945442,
-0.028696484863758087,
0.0342242605984211,
0.06175161153078079,
0.19321276247501373,
-0.02510346844792366,
0.027360908687114716,
-0.06739696860313416,
-0.006428796332329512,
-0.16893014311790466,
-0.05832986161112785,
-0.09619798511266708,
-0.10513351857662201,
0.056126669049263,
-0.10675669461488724,
-0.02991390973329544,
0.11837480962276459,
0.07225114107131958,
-0.014147752895951271,
0.20032523572444916,
-0.0034852379467338324,
-0.01854041963815689,
0.010509109124541283,
0.005002413876354694,
0.06455502659082413,
0.07439646869897842,
-0.007380056194961071,
-0.10331036895513535,
-0.07467203587293625,
-0.07210230082273483,
0.04836762696504593,
-0.09930044412612915,
-0.01744663715362549,
-0.142163947224617,
-0.09089858829975128,
-0.06536278873682022,
0.1318330466747284,
-0.08915292471647263,
0.10780727118253708,
-0.019095079973340034,
0.01910819485783577,
0.05497001111507416,
0.22086337208747864,
-0.07868800312280655,
-0.07071682065725327,
-0.060905519872903824,
0.16298183798789978,
0.004298616200685501,
0.15630026161670685,
-0.03950318321585655,
-0.0016224056016653776,
-0.0332493931055069,
0.2914927303791046,
0.16758738458156586,
-0.04768482968211174,
0.05667643994092941,
0.013426431454718113,
0.043882496654987335,
0.059551939368247986,
0.034976501017808914,
0.07581301033496857,
0.25021910667419434,
-0.07689207047224045,
-0.01975826919078827,
0.022277116775512695,
-0.00035899964859709144,
-0.055962271988391876,
0.045156292617321014,
0.029317067936062813,
-0.019586384296417236,
-0.08728770166635513,
0.12731784582138062,
-0.10686571151018143,
0.08306804299354553,
0.05728748440742493,
-0.15720857679843903,
-0.014027200639247894,
-0.022743018344044685,
0.1905868649482727,
-0.06110110133886337,
0.11211711168289185,
-0.030706269666552544,
-0.13290581107139587,
-0.02404458075761795,
0.04101835936307907,
-0.1852385401725769,
-0.056675106287002563,
0.08444182574748993,
0.05783277377486229,
0.06356650590896606,
0.01799783855676651,
0.008918672800064087,
0.09269910305738449,
-0.0174893569201231,
-0.06227288395166397,
0.09672212600708008,
0.09302622079849243,
-0.11702378839254379,
-0.10226112604141235,
-0.03835497796535492,
0.03587648272514343,
-0.007181957364082336,
0.07796690613031387,
-0.23804201185703278,
0.04944111034274101,
0.012472385540604591,
-0.06038458272814751,
-0.06527353823184967,
0.0485636405646801,
-0.06548506766557693,
0.04292919486761093,
0.025255493819713593,
-0.00807290431112051,
0.015648027881979942,
-0.0017639343859627843,
0.056236833333969116,
0.04547872394323349,
-0.07353842258453369,
-0.10449795424938202,
-0.04468516260385513,
-0.040538545697927475,
0.15919344127178192,
-0.0320364348590374,
-0.12340949475765228,
-0.02860189974308014,
-0.014523285441100597,
0.07767149806022644,
-0.07934793829917908,
0.009319511242210865,
0.09768388420343399,
0.05723276734352112,
0.0005386354750953615,
-0.18609586358070374,
0.047480739653110504,
0.08650989830493927,
-0.0709119662642479,
-0.08683779090642929
] |
null | null | peft |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
### Framework versions
- PEFT 0.7.1 | {"library_name": "peft", "base_model": "meta-llama/Llama-2-7b-hf"} | null | PaulM2000/test_finetuning | [
"peft",
"safetensors",
"arxiv:1910.09700",
"base_model:meta-llama/Llama-2-7b-hf",
"region:us"
] | 2024-02-13T11:37:55+00:00 | [
"1910.09700"
] | [] | TAGS
#peft #safetensors #arxiv-1910.09700 #base_model-meta-llama/Llama-2-7b-hf #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
### Framework versions
- PEFT 0.7.1 | [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.1"
] | [
"TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-meta-llama/Llama-2-7b-hf #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact",
"### Framework versions\n\n- PEFT 0.7.1"
] | [
41,
6,
3,
54,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4,
11
] | [
"passage: TAGS\n#peft #safetensors #arxiv-1910.09700 #base_model-meta-llama/Llama-2-7b-hf #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\n\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact### Framework versions\n\n- PEFT 0.7.1"
] | [
-0.13182057440280914,
0.20304812490940094,
-0.002506587188690901,
0.028425151482224464,
0.07888468354940414,
0.019600551575422287,
0.04959256201982498,
0.13552677631378174,
0.01984778791666031,
0.10563050210475922,
0.07367812097072601,
0.1176733449101448,
0.10942691564559937,
0.20641358196735382,
0.003951105754822493,
-0.15518005192279816,
0.02389853075146675,
-0.08277368545532227,
0.006318962667137384,
0.12906207144260406,
0.1434120386838913,
-0.10488323122262955,
0.08316540718078613,
-0.01423262245953083,
0.0013447500532492995,
-0.03254985064268112,
-0.06705831736326218,
-0.01578427478671074,
0.04896622523665428,
0.025401905179023743,
0.058786749839782715,
-0.010194049216806889,
0.0928940623998642,
-0.26180389523506165,
0.01871797814965248,
0.041367024183273315,
0.008958909660577774,
0.08350090682506561,
0.09801802039146423,
-0.04109165817499161,
0.12038294225931168,
-0.02521223947405815,
0.13851714134216309,
0.09329459071159363,
-0.08251556009054184,
-0.2333933711051941,
-0.06695806235074997,
0.07298334687948227,
0.18943046033382416,
0.0894843116402626,
-0.044416021555662155,
0.14082461595535278,
-0.07540225237607956,
0.025247523561120033,
0.04672583192586899,
-0.0928201898932457,
-0.06716807186603546,
0.0708535835146904,
0.13308590650558472,
0.06221102178096771,
-0.1217447817325592,
-0.03727240115404129,
0.033123865723609924,
0.044336289167404175,
0.06069716811180115,
0.005207013338804245,
0.16319599747657776,
0.034424230456352234,
-0.1459672600030899,
-0.05323316901922226,
0.1465749442577362,
0.01158988568931818,
-0.04556077718734741,
-0.2204643189907074,
-0.0026820937637239695,
-0.09551472216844559,
-0.023358048871159554,
-0.05217193067073822,
0.0332559235394001,
0.006132584530860186,
0.118902288377285,
-0.04179114103317261,
-0.09599409997463226,
-0.029542796313762665,
0.09939748793840408,
0.05403486639261246,
0.027708476409316063,
-0.021311460062861443,
0.010365985333919525,
0.12895357608795166,
0.08291435986757278,
-0.13438673317432404,
-0.0702066496014595,
-0.07514205574989319,
-0.04353510960936546,
-0.032615985721349716,
0.0391581691801548,
0.020204894244670868,
0.07147251069545746,
0.2624436914920807,
-0.022504709661006927,
0.06433495879173279,
0.06055591627955437,
0.016745541244745255,
0.040451038628816605,
0.10868892818689346,
-0.03395976126194,
-0.1575714349746704,
-0.007718186359852552,
0.10376672446727753,
-0.004327760543674231,
-0.02776956744492054,
-0.04560905694961548,
0.031873706728219986,
0.04401711747050285,
0.11500483751296997,
0.11202710121870041,
-0.019477615132927895,
-0.07710552960634232,
-0.05949446186423302,
0.1932947039604187,
-0.16121698915958405,
0.03854214772582054,
0.024769214913249016,
-0.006893147248774767,
-0.06511367857456207,
0.0067266495898365974,
0.016086582094430923,
-0.026916904374957085,
0.06069453805685043,
-0.06496423482894897,
-0.04193372279405594,
-0.1284060776233673,
-0.02382655069231987,
0.03242816403508186,
0.017390752211213112,
-0.042015377432107925,
-0.04610055685043335,
-0.08813922107219696,
-0.11003409326076508,
0.10917991399765015,
-0.05345921963453293,
-0.052834730595350266,
-0.02809773199260235,
-0.08945244550704956,
0.02242734655737877,
0.027729801833629608,
0.07608635723590851,
-0.02873808704316616,
0.05257297679781914,
0.003784946631640196,
0.060006581246852875,
0.08211706578731537,
0.027023453265428543,
-0.08113207668066025,
0.06687123328447342,
-0.19966407120227814,
0.07908034324645996,
-0.08606434613466263,
0.03603871539235115,
-0.16198863089084625,
-0.009098359383642673,
0.014728126116096973,
0.028302831575274467,
0.0415765717625618,
0.16593973338603973,
-0.2183423936367035,
-0.02130846679210663,
0.15941162407398224,
-0.10810251533985138,
-0.13783212006092072,
0.043471913784742355,
-0.04310353472828865,
0.18282365798950195,
0.02773771993815899,
0.010651937685906887,
0.09700000286102295,
-0.1684955507516861,
-0.02910688705742359,
-0.02141009084880352,
0.003860440803691745,
0.07477215677499771,
0.09045489132404327,
-0.09096314013004303,
-0.001995253376662731,
0.012008050456643105,
-0.06919728219509125,
-0.015262276865541935,
-0.04139372333884239,
-0.10651199519634247,
0.00234369863756001,
-0.0909467414021492,
0.023729586973786354,
0.0038119724486023188,
-0.09455224126577377,
-0.008671604096889496,
-0.15731191635131836,
-0.06543277204036713,
0.09408716857433319,
0.00033591894316487014,
-0.02483304962515831,
-0.10887859761714935,
0.06462404876947403,
-0.038377489894628525,
-0.026149174198508263,
-0.14124247431755066,
-0.023287415504455566,
0.016910482197999954,
-0.14107847213745117,
-0.009947466664016247,
-0.12249213457107544,
0.06601276248693466,
0.004608179442584515,
-0.048480164259672165,
-0.04725656285881996,
-0.0036897691898047924,
0.00135729368776083,
-0.05493728443980217,
-0.23458744585514069,
-0.02789626270532608,
-0.05077012628316879,
0.16608424484729767,
-0.22877150774002075,
0.043971091508865356,
0.01444183848798275,
0.1165214255452156,
-0.0019018726889044046,
-0.0660075694322586,
0.022082753479480743,
-0.07052363455295563,
-0.02465767413377762,
-0.07148199528455734,
-0.007246801164001226,
-0.0002580081927590072,
-0.02951023355126381,
0.015058428049087524,
-0.109384685754776,
-0.05329858139157295,
0.10067182779312134,
0.06055482476949692,
-0.14929598569869995,
0.007865941151976585,
-0.0375560000538826,
-0.06075558811426163,
-0.07390807569026947,
-0.0694909542798996,
0.08565866947174072,
0.05272691324353218,
0.039537835866212845,
-0.08149056881666183,
-0.07240347564220428,
0.004764714743942022,
-0.027362678200006485,
-0.005856313742697239,
0.12040896713733673,
0.0720423236489296,
-0.1016627699136734,
0.089316725730896,
0.07574005424976349,
0.013463762588799,
0.07963566482067108,
-0.02920866198837757,
-0.10577861964702606,
-0.03184528648853302,
0.05897928774356842,
0.007519329432398081,
0.18171994388103485,
-0.07267055660486221,
0.05775023251771927,
0.046005524694919586,
-0.0469895601272583,
0.05062935873866081,
-0.09053703397512436,
0.006666962523013353,
0.00022362935123965144,
-0.017249777913093567,
0.029851345345377922,
-0.019711004570126534,
0.006647086702287197,
0.0761832594871521,
0.0557357482612133,
0.023816650733351707,
0.023192357271909714,
-0.03775857761502266,
-0.1449088156223297,
0.18418589234352112,
-0.09334666281938553,
-0.23562873899936676,
-0.15663160383701324,
0.06119440868496895,
0.049135398119688034,
-0.016013288870453835,
0.026836000382900238,
-0.055686380714178085,
-0.10058500617742538,
-0.08597701042890549,
-0.0016057186294347048,
0.033193398267030716,
-0.05966038629412651,
-0.07478374242782593,
0.045514460653066635,
0.0449148528277874,
-0.11791924387216568,
0.02622487023472786,
0.06704847514629364,
-0.01048760674893856,
0.0021001428831368685,
0.05390113964676857,
0.09611296653747559,
0.18663805723190308,
-0.004476974718272686,
0.006784978788346052,
0.06416179984807968,
0.2737405300140381,
-0.16142016649246216,
0.10611972957849503,
0.1463792473077774,
-0.06440528482198715,
0.06934468448162079,
0.18154776096343994,
0.02514396421611309,
-0.0960279181599617,
0.0249590165913105,
0.028582962229847908,
-0.01925339363515377,
-0.2738250195980072,
-0.05127860605716705,
-0.015317152254283428,
-0.0860319510102272,
0.07132554799318314,
0.08727585524320602,
0.07969661802053452,
0.039224617183208466,
-0.05654608830809593,
-0.11041077971458435,
0.02570212446153164,
0.10686033219099045,
-0.011052068322896957,
0.003116297535598278,
0.08206047862768173,
-0.04596903920173645,
0.007451359648257494,
0.08632372319698334,
-0.0198929775506258,
0.13755729794502258,
0.04819735139608383,
0.09232405573129654,
0.08610968291759491,
0.10490244626998901,
-0.011233216151595116,
0.03139519691467285,
0.016716603189706802,
0.022692417725920677,
0.025659993290901184,
-0.08925695717334747,
0.009833295829594135,
0.11185254156589508,
0.024885982275009155,
0.022271504625678062,
0.016913728788495064,
-0.04275329038500786,
0.03562218323349953,
0.19750826060771942,
0.028092842549085617,
-0.21883390843868256,
-0.0826137512922287,
0.0495244637131691,
-0.0774833932518959,
-0.15838637948036194,
-0.007046034559607506,
0.024596862494945526,
-0.16389361023902893,
0.015883827582001686,
-0.04119125381112099,
0.10076591372489929,
-0.07825080305337906,
-0.040167730301618576,
0.11033697426319122,
0.04724383354187012,
-0.01948411390185356,
0.05467982590198517,
-0.19497177004814148,
0.10914362221956253,
0.03007354773581028,
0.0753055214881897,
-0.0878278985619545,
0.09385541826486588,
0.00593077065423131,
-0.019335610792040825,
0.16957317292690277,
-0.0001828286040108651,
-0.049333248287439346,
-0.08614227920770645,
-0.09210260212421417,
0.0011855603661388159,
0.07876422256231308,
-0.12705066800117493,
0.0824899896979332,
-0.035727690905332565,
-0.02484913170337677,
-0.008160926401615143,
-0.08511485159397125,
-0.13268211483955383,
-0.1497831642627716,
0.05377539247274399,
-0.09816940128803253,
0.02622522972524166,
-0.088359035551548,
-0.05338190495967865,
0.015929952263832092,
0.18157777190208435,
-0.2140372097492218,
-0.10820012539625168,
-0.14262016117572784,
-0.11217885464429855,
0.16120868921279907,
-0.04301736131310463,
0.0817052498459816,
-0.000021590767573798075,
0.15628273785114288,
0.011081439442932606,
-0.014999622479081154,
0.08708802610635757,
-0.09423331171274185,
-0.19029997289180756,
-0.04909922182559967,
0.16322144865989685,
0.1443241685628891,
0.02955242246389389,
-0.005005403887480497,
0.025789817795157433,
-0.06961549818515778,
-0.11207874119281769,
0.025644803419709206,
0.1632690280675888,
0.07274553924798965,
-0.012996263802051544,
-0.026087328791618347,
-0.09910452365875244,
-0.05980882793664932,
-0.04325268417596817,
-0.009011371061205864,
0.20396238565444946,
-0.06492555886507034,
0.14578361809253693,
0.10497399419546127,
-0.05600808560848236,
-0.21348567306995392,
0.034673672169446945,
0.04297744482755661,
0.026097610592842102,
0.04262308031320572,
-0.18173754215240479,
0.0977204293012619,
-0.01420775055885315,
-0.08647691458463669,
0.17398644983768463,
-0.17325587570667267,
-0.1343413144350052,
0.11597657203674316,
0.02528509497642517,
-0.2140941172838211,
-0.13975012302398682,
-0.10193372517824173,
-0.019515449181199074,
-0.12593898177146912,
0.035990335047245026,
-0.0034792691003531218,
0.008738251402974129,
0.012855194509029388,
0.017328651621937752,
0.03946442902088165,
-0.055929575115442276,
0.21238091588020325,
-0.03958671912550926,
0.00044709889334626496,
-0.05073745176196098,
-0.06752701103687286,
0.02442229725420475,
-0.05616387352347374,
0.12418350577354431,
-0.011757214553654194,
0.03915359079837799,
-0.17214982211589813,
-0.04293535649776459,
-0.05827682837843895,
0.03765159100294113,
-0.09272442758083344,
-0.07942245900630951,
-0.04501451924443245,
0.09188666939735413,
0.09018778055906296,
-0.018942810595035553,
0.002804384334012866,
-0.09598345309495926,
0.07471203058958054,
0.2096768170595169,
0.20319247245788574,
0.06857053935527802,
-0.05286109820008278,
0.028576504439115524,
-0.03525133058428764,
0.044422879815101624,
-0.21415069699287415,
0.0427471362054348,
0.06300800293684006,
0.02446627803146839,
0.06276825815439224,
-0.010435369797050953,
-0.15913496911525726,
-0.08022736012935638,
0.08646675944328308,
-0.06054995581507683,
-0.162318617105484,
-0.03289087116718292,
0.021059801802039146,
-0.21151918172836304,
-0.04101501777768135,
0.03558452054858208,
-0.014356878586113453,
-0.03850015625357628,
0.021482262760400772,
0.0796712338924408,
-0.028827685862779617,
0.1053791269659996,
0.0930204689502716,
0.09612739831209183,
-0.09802354872226715,
0.054244935512542725,
0.07207269966602325,
-0.03182322531938553,
0.031952228397130966,
0.12152241915464401,
-0.04305654019117355,
-0.0468185618519783,
0.08027421683073044,
0.11960643529891968,
-0.00018640376219991595,
-0.0627625435590744,
-0.0026407435070723295,
-0.04415632784366608,
0.05399446561932564,
0.1052747368812561,
0.036318790167570114,
0.0009527133079245687,
0.07688260078430176,
0.028081368654966354,
-0.0910017266869545,
0.12493177503347397,
0.060554370284080505,
0.024619147181510925,
-0.054842256009578705,
-0.039760250598192215,
-0.015860429033637047,
-0.0030630389228463173,
-0.019633756950497627,
-0.0016034318832680583,
-0.08373018354177475,
0.006133594084531069,
-0.13115863502025604,
0.021810732781887054,
-0.07731927186250687,
0.003947262652218342,
0.03584790229797363,
-0.0464416965842247,
0.0013753987150266767,
-0.001320691080763936,
-0.0742981806397438,
-0.05453561618924141,
-0.01608695462346077,
0.07849395275115967,
-0.13937325775623322,
0.03896845877170563,
0.07617723941802979,
-0.1070096492767334,
0.06866753846406937,
-0.007637933362275362,
0.0088442862033844,
0.0009120231261476874,
-0.13740657269954681,
0.05487241595983505,
-0.029184794053435326,
-0.006363918073475361,
0.005141784902662039,
-0.19628608226776123,
-0.008645579218864441,
-0.03212318941950798,
-0.0634668692946434,
0.020078543573617935,
-0.0015017749974504113,
-0.11980995535850525,
0.10788725316524506,
0.004685919266194105,
-0.05755347013473511,
-0.023359501734375954,
0.04278697818517685,
0.08643058687448502,
-0.005652753636240959,
0.12495067715644836,
-0.029339434579014778,
0.07615161687135696,
-0.17671431601047516,
-0.010112724266946316,
-0.01571979746222496,
0.05914830043911934,
-0.019677871838212013,
-0.037161342799663544,
0.062483735382556915,
-0.02721300721168518,
0.17295008897781372,
-0.004020344465970993,
0.07231325656175613,
0.04929567128419876,
0.009330254048109055,
0.049058325588703156,
0.07249229401350021,
0.06377743184566498,
-0.01747713051736355,
-0.0001442159991711378,
0.044080086052417755,
-0.002860837150365114,
-0.052078742533922195,
-0.15714870393276215,
0.06193974241614342,
0.17859861254692078,
0.05733446404337883,
0.02955917827785015,
0.012618951499462128,
-0.12062443792819977,
-0.07269278168678284,
0.10878612846136093,
-0.021638423204421997,
-0.03129158541560173,
-0.06464266777038574,
0.2126602977514267,
0.13908393681049347,
-0.19848750531673431,
0.07047171890735626,
-0.06278043985366821,
-0.046635840088129044,
-0.14289629459381104,
-0.1743866205215454,
-0.06001519411802292,
-0.05492342263460159,
-0.025720013305544853,
-0.05502044036984444,
0.045686621218919754,
0.04694748669862747,
-0.0015246148686856031,
-0.02749156393110752,
0.11309542506933212,
0.027942487969994545,
-0.03224219009280205,
0.04455515369772911,
0.0565042681992054,
0.03684584051370621,
-0.09194593131542206,
0.007515560835599899,
0.002683592727407813,
0.013884250074625015,
0.06738896667957306,
0.016050022095441818,
-0.07036887109279633,
0.02700868248939514,
-0.02032061479985714,
-0.12113767862319946,
0.042656224220991135,
-0.005262988619506359,
-0.022351853549480438,
0.1481042057275772,
0.03926616162061691,
0.008181343786418438,
-0.01501129474490881,
0.2300005853176117,
-0.07954443991184235,
-0.08281022310256958,
-0.13934209942817688,
0.07976285368204117,
-0.07503463327884674,
0.02047998271882534,
0.02657368965446949,
-0.12458481639623642,
0.017510488629341125,
0.17497971653938293,
0.12033620476722717,
-0.018422549590468407,
0.005961512681096792,
0.04410018026828766,
0.0029186841566115618,
-0.04739546775817871,
0.016271542757749557,
0.05290891230106354,
0.19530388712882996,
-0.07475970685482025,
0.05479699373245239,
-0.017727069556713104,
-0.08079976588487625,
-0.02063903771340847,
0.09255504608154297,
-0.009295996278524399,
-0.004992132540792227,
-0.06076367571949959,
0.1492711305618286,
-0.07664726674556732,
-0.20840401947498322,
0.0611567385494709,
-0.05789104476571083,
-0.13992151618003845,
-0.0440920814871788,
0.03297152370214462,
-0.02818002738058567,
-0.0004667198227252811,
0.05936877802014351,
-0.04195322468876839,
0.17790907621383667,
0.02795230597257614,
-0.04497639834880829,
-0.08869171142578125,
0.060301024466753006,
-0.1532086282968521,
0.2839289605617523,
0.022783510386943817,
0.06414009630680084,
0.11499270051717758,
-0.02400202490389347,
-0.14719699323177338,
0.01605830527842045,
0.11271673440933228,
-0.07194220274686813,
0.0690331906080246,
0.16640520095825195,
0.009092556312680244,
0.1293063759803772,
0.06518518924713135,
-0.04156327247619629,
0.03440939262509346,
-0.08518578857183456,
-0.04405603185296059,
-0.13029858469963074,
0.07649768143892288,
-0.09347467124462128,
0.15752865374088287,
0.11781272292137146,
-0.07155992835760117,
0.01047310046851635,
-0.022772854194045067,
0.09071154147386551,
0.012302468530833721,
0.10462310165166855,
0.010742447338998318,
-0.19411467015743256,
0.04373034089803696,
0.012563410215079784,
0.09209161251783371,
-0.20962241291999817,
-0.050460513681173325,
0.045939598232507706,
-0.02277837134897709,
-0.06843563914299011,
0.11793207377195358,
0.03385649621486664,
0.02791411429643631,
-0.03662553429603577,
-0.0331103578209877,
0.007214277517050505,
0.1514032781124115,
-0.11648847907781601,
-0.01887431927025318
] |
null | null | transformers |
# MBeagleX-7B
MBeagleX-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/MBTrix-7B](https://huggingface.co/mlabonne/MBTrix-7B)
## 🧩 Configuration
```yaml
models:
- model: mlabonne/NeuBeagle-7B
# No parameters necessary for base model
- model: mlabonne/MBTrix-7B
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: mlabonne/NeuBeagle-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/MBeagleX-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "cc-by-nc-4.0", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": ["mlabonne/MBTrix-7B"]} | text-generation | shadowml/MBeagleX-7B | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"base_model:mlabonne/MBTrix-7B",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:38:59+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/MBTrix-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# MBeagleX-7B
MBeagleX-7B is a merge of the following models using LazyMergekit:
* mlabonne/MBTrix-7B
## Configuration
## Usage
| [
"# MBeagleX-7B\n\nMBeagleX-7B is a merge of the following models using LazyMergekit:\n* mlabonne/MBTrix-7B",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/MBTrix-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# MBeagleX-7B\n\nMBeagleX-7B is a merge of the following models using LazyMergekit:\n* mlabonne/MBTrix-7B",
"## Configuration",
"## Usage"
] | [
84,
39,
4,
3
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/MBTrix-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# MBeagleX-7B\n\nMBeagleX-7B is a merge of the following models using LazyMergekit:\n* mlabonne/MBTrix-7B## Configuration## Usage"
] | [
-0.04750707745552063,
-0.0006769913015887141,
-0.0028321356512606144,
-0.001987914554774761,
0.0713728591799736,
0.048287712037563324,
0.2031259536743164,
0.07403232902288437,
0.014186299405992031,
-0.011595869436860085,
0.1090599000453949,
0.2017451673746109,
-0.0179422739893198,
0.11002391576766968,
-0.08683939278125763,
-0.1662345677614212,
0.079207643866539,
0.024610985070466995,
-0.024189600721001625,
0.08191554993391037,
0.12505558133125305,
-0.04012620076537132,
0.11736565828323364,
-0.021334558725357056,
-0.13732053339481354,
0.04420751333236694,
0.020333442836999893,
-0.050942517817020416,
0.07765941321849823,
0.1047455221414566,
0.05993843078613281,
0.1032341793179512,
-0.02492954581975937,
-0.10896948724985123,
0.03856446593999863,
-0.03731568902730942,
-0.05783238634467125,
0.05935751646757126,
0.0660182386636734,
-0.02979767695069313,
0.15785755217075348,
0.005769265349954367,
0.016348177567124367,
0.06384988129138947,
-0.1159602552652359,
-0.01257903128862381,
-0.07630813866853714,
0.05843350291252136,
0.04841496795415878,
0.02502409927546978,
0.0056587145663797855,
0.1410490721464157,
-0.06886092573404312,
0.08588474243879318,
0.11560466885566711,
-0.33299413323402405,
-0.012072140350937843,
0.19227714836597443,
0.129419207572937,
-0.0009989232057705522,
-0.0017121648415923119,
0.09013957530260086,
0.02815375104546547,
0.004180651158094406,
0.09149082005023956,
-0.07462526112794876,
0.13861246407032013,
-0.033845122903585434,
-0.09772840142250061,
0.002782973228022456,
0.2103320062160492,
0.0183666180819273,
0.009996909648180008,
-0.13170740008354187,
-0.06684764474630356,
0.10541839897632599,
-0.048742879182100296,
-0.018256183713674545,
0.010732356458902359,
0.0406402051448822,
-0.013167758472263813,
-0.06741733849048615,
-0.048582013696432114,
-0.02192743308842182,
-0.1261371374130249,
0.07768061012029648,
-0.019719749689102173,
0.00720745325088501,
-0.02424498088657856,
0.05934137478470802,
-0.023572057485580444,
-0.10806836932897568,
0.002161934971809387,
-0.08529673516750336,
0.055237654596567154,
-0.017283841967582703,
-0.04497338458895683,
-0.041451454162597656,
0.10395519435405731,
0.22289812564849854,
0.0026513736229389906,
0.04316463693976402,
-0.022153358906507492,
0.09711075574159622,
-0.003664943389594555,
-0.022248469293117523,
-0.07725587487220764,
-0.17581307888031006,
0.08271970599889755,
0.04326498135924339,
0.08086283504962921,
-0.018421076238155365,
-0.1496271938085556,
-0.01631511002779007,
-0.0033831882756203413,
0.05192011967301369,
0.045691780745983124,
0.09912823140621185,
-0.06999188661575317,
-0.037025101482868195,
0.2555917203426361,
-0.041774481534957886,
0.011410953477025032,
-0.01268987637013197,
-0.0283944234251976,
0.006499154027551413,
0.07622729241847992,
0.06866436451673508,
0.005158490501344204,
0.05082947015762329,
-0.06862697750329971,
-0.05394639074802399,
-0.03727760538458824,
-0.11442568898200989,
0.027592524886131287,
-0.034155625849962234,
-0.00008706989319762215,
-0.11434607952833176,
-0.26109930872917175,
0.01823558285832405,
0.05733662098646164,
-0.054283276200294495,
-0.0620136596262455,
-0.06203630939126015,
-0.013860962353646755,
0.00871986709535122,
-0.023225698620080948,
-0.0005548715707845986,
-0.028908073902130127,
0.006227276753634214,
-0.04082326963543892,
0.029778385534882545,
-0.23171311616897583,
0.024805622175335884,
-0.08130989223718643,
0.06903568655252457,
-0.13476121425628662,
0.0811271145939827,
-0.059604812413454056,
0.07480984926223755,
-0.07134193927049637,
0.0068367342464625835,
-0.06561934947967529,
0.0329146683216095,
0.010112662799656391,
0.14095349609851837,
-0.03790159896016121,
-0.0776001587510109,
0.05038360878825188,
-0.10686473548412323,
-0.18747657537460327,
0.07946250587701797,
-0.0038946252316236496,
0.14968377351760864,
0.07381666451692581,
0.1742468625307083,
0.04218108206987381,
-0.043465811759233475,
-0.008012779988348484,
0.04532165825366974,
-0.051467519253492355,
-0.0802002102136612,
0.06400129199028015,
-0.0023317700251936913,
-0.0803813636302948,
0.04127455875277519,
0.07792677730321884,
0.07033652812242508,
-0.01600993052124977,
-0.06347756832838058,
-0.04153253510594368,
-0.07206187397241592,
0.05373602360486984,
-0.030336184427142143,
0.05467410385608673,
-0.07378867268562317,
-0.02840764820575714,
0.12737232446670532,
0.04941302165389061,
-0.023768382146954536,
-0.016845742240548134,
-0.07365137338638306,
0.057476893067359924,
-0.07527535408735275,
0.043838247656822205,
-0.07868560403585434,
-0.08933418989181519,
0.012122207321226597,
0.017057867720723152,
0.02979053556919098,
-0.0094569381326437,
0.06595920026302338,
0.03173936530947685,
-0.09582396596670151,
-0.016440603882074356,
0.13620373606681824,
0.04699385538697243,
-0.040595944970846176,
-0.19626067578792572,
-0.01346367783844471,
-0.047162674367427826,
0.15549907088279724,
-0.08501213788986206,
0.07728111743927002,
0.05015115067362785,
0.15351009368896484,
-0.006020132917910814,
0.035980258136987686,
0.03633689880371094,
0.024531075730919838,
-0.06186319887638092,
0.016511796042323112,
0.119723379611969,
0.008487622253596783,
-0.1448715180158615,
0.20617817342281342,
-0.15794193744659424,
0.19717325270175934,
0.15821072459220886,
-0.023793339729309082,
0.016043823212385178,
-0.07955639064311981,
0.019182493910193443,
-0.06904556602239609,
0.09084103256464005,
-0.105242520570755,
0.010206284932792187,
-0.019969912245869637,
0.1381409764289856,
-0.10877292603254318,
-0.05786844715476036,
-0.00876951590180397,
-0.011103671975433826,
-0.060675881803035736,
0.05994943901896477,
0.06485791504383087,
-0.23840172588825226,
0.13061043620109558,
0.23448216915130615,
0.012888791039586067,
0.15598683059215546,
0.004611450247466564,
0.03010825626552105,
-0.04577890783548355,
0.00580600555986166,
0.03149249032139778,
0.016725260764360428,
-0.10069146752357483,
0.041899871081113815,
0.04729565978050232,
0.0179205983877182,
0.10621053725481033,
-0.05713683366775513,
0.004655868746340275,
-0.015382759273052216,
-0.012724393047392368,
0.06623182445764542,
0.1095292791724205,
-0.016547825187444687,
0.07080123573541641,
-0.001522064907476306,
-0.05000730976462364,
0.0826893076300621,
0.0023617104161530733,
-0.09128973633050919,
0.13288401067256927,
-0.14202797412872314,
-0.20754213631153107,
-0.1928669661283493,
-0.11260949075222015,
-0.09437427669763565,
-0.013861042447388172,
0.06549020111560822,
0.03250876069068909,
-0.021471284329891205,
-0.1290246695280075,
0.017928805202245712,
0.005124024581164122,
-0.05447845533490181,
0.012123074382543564,
0.03897543251514435,
-0.019411621615290642,
-0.1452275514602661,
-0.027225011959671974,
0.05134371668100357,
-0.040914151817560196,
0.05998467653989792,
-0.13620662689208984,
0.113038569688797,
0.1116294264793396,
0.015915729105472565,
-0.013288171961903572,
-0.049322910606861115,
0.1910799890756607,
-0.025037720799446106,
0.06578715890645981,
0.15164858102798462,
-0.024235742166638374,
0.05258672311902046,
0.16029837727546692,
0.044354766607284546,
-0.0568365752696991,
0.015411589294672012,
-0.04992491379380226,
-0.05890902504324913,
-0.14940348267555237,
-0.11865171045064926,
-0.07846767455339432,
0.06261792033910751,
0.02362232841551304,
0.04573342949151993,
0.0871729925274849,
0.06929279118776321,
-0.06711273640394211,
0.004770017694681883,
0.09488296508789062,
0.08884325623512268,
0.2032724767923355,
-0.010287344455718994,
0.14297553896903992,
-0.06447245925664902,
-0.013377374969422817,
0.07618863135576248,
0.03769133985042572,
0.013959767296910286,
0.06709674000740051,
0.15070831775665283,
0.07143587619066238,
0.024506228044629097,
0.09075785428285599,
0.09766745567321777,
-0.039346665143966675,
-0.004327474161982536,
-0.04736007750034332,
-0.09470918774604797,
0.023302340880036354,
0.043729446828365326,
-0.038754064589738846,
0.0023243625182658434,
0.01195684913545847,
-0.06875411421060562,
0.089410699903965,
0.07800019532442093,
0.04643723741173744,
-0.23442226648330688,
-0.025312144309282303,
0.07835036516189575,
0.029869724065065384,
-0.027247831225395203,
-0.009839147329330444,
0.03444525599479675,
-0.07683230936527252,
0.13675527274608612,
-0.006943207234144211,
0.11615433543920517,
0.031905993819236755,
0.01637737639248371,
-0.03749832510948181,
0.0396338626742363,
-0.011655877344310284,
0.06556713581085205,
-0.241301029920578,
0.08133631199598312,
0.04943079873919487,
0.035752423107624054,
-0.015473218634724617,
-0.000269365671556443,
0.06506330519914627,
0.1850849837064743,
0.016953906044363976,
-0.017014095559716225,
-0.0017009424045681953,
-0.015071026980876923,
-0.08686994016170502,
0.004549394827336073,
0.027194729074835777,
-0.012949204072356224,
0.03977764770388603,
-0.021996309980750084,
-0.04403255879878998,
0.04920462146401405,
-0.0004113907052669674,
-0.1712293177843094,
-0.16887569427490234,
0.058125659823417664,
0.10064955800771713,
0.09041539579629898,
-0.07951702177524567,
-0.007174264639616013,
-0.0747499018907547,
0.22653815150260925,
-0.12473095208406448,
-0.05598651245236397,
-0.09451856464147568,
-0.0969441831111908,
0.08571665734052658,
-0.03264031931757927,
0.07922787219285965,
-0.048337120562791824,
0.039842698723077774,
-0.09271640330553055,
-0.15393786132335663,
0.0952315405011177,
-0.09811130166053772,
-0.08666327595710754,
-0.03687391057610512,
0.09332913160324097,
-0.08220472931861877,
0.034230008721351624,
0.027345478534698486,
0.05038381740450859,
-0.055688995867967606,
-0.08657349646091461,
-0.03030608966946602,
0.04058687761425972,
-0.00888432189822197,
0.09852633625268936,
-0.15215298533439636,
-0.14424948394298553,
0.029888220131397247,
-0.06529957056045532,
0.1788296401500702,
0.31954750418663025,
-0.02601337805390358,
0.10577887296676636,
0.2077275812625885,
-0.07613326609134674,
-0.2949499785900116,
-0.07614165544509888,
-0.06611282378435135,
-0.010356457903981209,
0.014110453426837921,
-0.10707086324691772,
0.04199281334877014,
0.1371874362230301,
-0.021040311083197594,
0.06680934876203537,
-0.3350622355937958,
-0.13620026409626007,
0.049039121717214584,
0.06363487988710403,
0.22616517543792725,
-0.13844260573387146,
-0.08151353150606155,
-0.12596070766448975,
-0.13079363107681274,
0.10815222561359406,
-0.12429624795913696,
0.0930161252617836,
-0.021097080782055855,
-0.061420097947120667,
-0.025151416659355164,
-0.04800328239798546,
0.12332575768232346,
-0.071877621114254,
0.055292416363954544,
-0.07195812463760376,
-0.055082786828279495,
0.22353674471378326,
-0.02416699007153511,
0.07388817518949509,
-0.23742973804473877,
0.020278600975871086,
-0.0379595085978508,
-0.03691219910979271,
-0.046005334705114365,
0.08586028218269348,
-0.061379510909318924,
-0.0581451952457428,
-0.025447333231568336,
0.014102951623499393,
-0.010128708556294441,
0.009088415652513504,
0.12377141416072845,
-0.07292692363262177,
0.07080227881669998,
0.24309909343719482,
0.13436947762966156,
-0.15263666212558746,
0.07054685056209564,
-0.007719559594988823,
-0.08449278771877289,
0.03497634083032608,
-0.03393346816301346,
0.0012196183670312166,
0.06641212105751038,
-0.031921446323394775,
0.1040230244398117,
0.051821112632751465,
-0.005732694640755653,
0.004521691706031561,
0.1406507045030594,
-0.14941318333148956,
-0.06656672060489655,
-0.026445120573043823,
0.0686693787574768,
-0.008231204934418201,
0.028676241636276245,
0.17296485602855682,
-0.014403934590518475,
0.0015464117750525475,
0.03685382008552551,
0.002213609404861927,
-0.08442440629005432,
0.10588017106056213,
0.006496700458228588,
0.01990990899503231,
-0.0895814597606659,
0.058552440255880356,
0.034027714282274246,
-0.0690155178308487,
-0.035644736140966415,
0.12139132618904114,
-0.12141474336385727,
-0.11212718486785889,
-0.06971106678247452,
0.22755412757396698,
-0.07444550842046738,
-0.04310297593474388,
-0.10272243618965149,
-0.11427956819534302,
0.039011772722005844,
0.17319250106811523,
0.07193809747695923,
0.05105135217308998,
0.02361530065536499,
-0.06793998926877975,
-0.03728334605693817,
0.09092360734939575,
-0.023549174889922142,
0.0852251946926117,
-0.0717935636639595,
-0.03273394703865051,
-0.006792400032281876,
-0.018481897190213203,
-0.06914792209863663,
0.014516410417854786,
-0.16987359523773193,
-0.04538619518280029,
-0.17867644131183624,
-0.027759574353694916,
-0.143584743142128,
-0.04289383813738823,
-0.020124539732933044,
0.015343955717980862,
-0.04900775104761124,
-0.016304519027471542,
-0.03866484761238098,
-0.030391938984394073,
-0.0075509618036448956,
0.08787661045789719,
-0.0685969665646553,
-0.021455317735671997,
0.035687875002622604,
-0.04642753675580025,
0.06753789633512497,
0.006653173360973597,
-0.036707669496536255,
-0.011589647270739079,
-0.10476749390363693,
-0.0685259997844696,
0.061047106981277466,
0.008979285135865211,
0.00721243629232049,
-0.0400317907333374,
-0.020530160516500473,
0.060584068298339844,
0.014643621630966663,
0.030564554035663605,
0.14908389747142792,
-0.08772522211074829,
0.03183971717953682,
-0.05567558482289314,
-0.07994406670331955,
-0.040547821670770645,
0.018593445420265198,
0.07603675127029419,
0.021181296557188034,
0.19366717338562012,
-0.08177612721920013,
-0.016600415110588074,
-0.10669189691543579,
0.010290902107954025,
-0.0075545767322182655,
-0.19701464474201202,
-0.09141892939805984,
-0.0564592108130455,
-0.016376949846744537,
-0.004062652122229338,
0.24456949532032013,
-0.03518589586019516,
-0.23973910510540009,
0.05423182621598244,
-0.012875430285930634,
0.01940402388572693,
0.02127315104007721,
0.2603435814380646,
0.08279389888048172,
0.019707653671503067,
-0.1019887924194336,
0.09081225097179413,
0.0133252814412117,
-0.035124413669109344,
0.037019357085227966,
0.11042851209640503,
-0.023260852321982384,
0.09270606189966202,
0.10243605822324753,
-0.006569745484739542,
-0.005006192252039909,
0.009725578129291534,
0.019092191010713577,
0.07382812350988388,
-0.04373297095298767,
0.11441364139318466,
0.16068609058856964,
-0.1015809178352356,
0.022364648059010506,
0.027909325435757637,
-0.012843159027397633,
-0.09357190132141113,
-0.06201104447245598,
-0.1085447147488594,
-0.10581451654434204,
-0.031690772622823715,
-0.10185078531503677,
-0.0351446196436882,
0.015485097654163837,
0.0153345987200737,
0.0012294119223952293,
0.0949268788099289,
-0.0791144147515297,
-0.037024371325969696,
0.01831979863345623,
-0.054173268377780914,
-0.03740529343485832,
-0.04648463428020477,
-0.04480937495827675,
-0.027856705710291862,
-0.009071066044270992,
-0.010242856107652187,
0.043371330946683884,
-0.02771175466477871,
0.01007006410509348,
-0.0691799446940422,
-0.10700345784425735,
-0.02476019784808159,
0.06445445865392685,
0.015011515468358994,
0.030259713530540466,
0.013940145261585712,
-0.06703867763280869,
0.036042146384716034,
0.07603822648525238,
-0.025548728182911873,
-0.17576964199543,
-0.04202112928032875,
0.21960419416427612,
-0.014679369516670704,
0.06829994916915894,
-0.018809722736477852,
-0.022811241447925568,
0.012790036387741566,
0.19584880769252777,
0.34815195202827454,
-0.08991661667823792,
0.011962149292230606,
0.006055941339582205,
0.017591023817658424,
0.055806584656238556,
0.07685459405183792,
0.006675908342003822,
0.15384384989738464,
-0.055243100970983505,
0.03290649503469467,
-0.04784965515136719,
-0.05106588453054428,
-0.08695598691701889,
0.02120324783027172,
0.03285055235028267,
-0.06337296217679977,
0.004408268723636866,
0.07589031755924225,
-0.059148289263248444,
0.08265706896781921,
-0.02784876525402069,
-0.10555525124073029,
-0.05486017093062401,
-0.06538087129592896,
0.03985247015953064,
-0.033440206199884415,
0.048107508569955826,
-0.03777976706624031,
-0.014470154419541359,
-0.023989660665392876,
-0.038739558309316635,
-0.1316457986831665,
-0.020792612805962563,
0.02512352727353573,
-0.04618027061223984,
0.03992372006177902,
-0.03924515098333359,
0.03215906396508217,
0.13517893850803375,
-0.008001123555004597,
-0.07073894888162613,
0.0898577868938446,
0.011836373247206211,
-0.026408467441797256,
0.0485406257212162,
-0.014419563114643097,
-0.023466099053621292,
0.13481014966964722,
0.01913324184715748,
-0.12857168912887573,
0.07553769648075104,
0.022770583629608154,
-0.11962730437517166,
-0.02448859065771103,
0.0413057841360569,
-0.02338605932891369,
0.11183914542198181,
0.11507492512464523,
-0.019709475338459015,
-0.01374772284179926,
-0.013422666117548943,
0.03532744199037552,
0.0841180607676506,
0.001671204692684114,
-0.05700025334954262,
-0.20894479751586914,
-0.03648783639073372,
0.0757315382361412,
0.03074202500283718,
-0.2880117893218994,
-0.06593555212020874,
-0.17195208370685577,
0.016965148970484734,
-0.1127157211303711,
0.07956229895353317,
0.1833670735359192,
0.003891187021508813,
-0.010892780497670174,
-0.16499125957489014,
-0.01865106262266636,
0.0725134015083313,
-0.09384436905384064,
-0.09135414659976959
] |
null | null | transformers |
# Danish-Swedish Merged Model
This is a merge of the following models, all based on `mistralai/Mistral-7B-v0.1`:
1. `danish-foundation-models/munin-7b-alpha`, continued pretraining on Danish data;
2. `timpal0l/Mistral-7B-v0.1-flashback-v2`, continued pretraining on Swedish data.
## Model Details
- **Merged by:** [Dan Saattrup Nielsen](https://www.saattrupdan.com/)
- **Model type:** Decoder model, based on `mistralai/Mistral-7B-v0.1`
- **Language(s):** Danish and Swedish
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Merge configuration:**
```python
dict(
models=[
dict(
model="danish-foundation-models/munin-7b-alpha",
parameters=dict(
weight=1.0,
),
),
dict(
model="timpal0l/Mistral-7B-v0.1-flashback-v2",
parameters=dict(
weight=1.0,
),
),
],
merge_method="task_arithmetic",
base_model="mistralai/Mistral-7B-v0.1",
parameters=dict(
int8_mask=True,
normalize=True,
),
dtype="bfloat16",
)
``` | {"language": ["da", "sv"], "license": "cc-by-4.0", "library_name": "transformers", "tags": ["merge", "mergekit"], "base_model": ["danish-foundation-models/munin-7b-alpha", "timpal0l/Mistral-7B-v0.1-flashback-v2"]} | text-generation | merge-crew/da-sv-task-arithmetic | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"da",
"sv",
"base_model:danish-foundation-models/munin-7b-alpha",
"base_model:timpal0l/Mistral-7B-v0.1-flashback-v2",
"license:cc-by-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:38:59+00:00 | [] | [
"da",
"sv"
] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Danish-Swedish Merged Model
This is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':
1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;
2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.
## Model Details
- Merged by: Dan Saattrup Nielsen
- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'
- Language(s): Danish and Swedish
- License: CC-BY-4.0
- Merge configuration:
| [
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.",
"## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
112,
92,
57
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #da #sv #base_model-danish-foundation-models/munin-7b-alpha #base_model-timpal0l/Mistral-7B-v0.1-flashback-v2 #license-cc-by-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Danish-Swedish Merged Model\n\nThis is a merge of the following models, all based on 'mistralai/Mistral-7B-v0.1':\n\n1. 'danish-foundation-models/munin-7b-alpha', continued pretraining on Danish data;\n2. 'timpal0l/Mistral-7B-v0.1-flashback-v2', continued pretraining on Swedish data.## Model Details\n\n- Merged by: Dan Saattrup Nielsen\n- Model type: Decoder model, based on 'mistralai/Mistral-7B-v0.1'\n- Language(s): Danish and Swedish\n- License: CC-BY-4.0\n- Merge configuration:"
] | [
-0.07790645211935043,
-0.03015519306063652,
-0.001845451071858406,
0.01761663891375065,
0.005533731542527676,
0.017309537157416344,
0.18024572730064392,
0.014157861471176147,
0.11699634045362473,
0.049290940165519714,
0.09461456537246704,
-0.025814635679125786,
0.07459410279989243,
0.15416653454303741,
-0.023723548278212547,
-0.2509255111217499,
0.16021594405174255,
-0.06184382736682892,
-0.0011111752828583121,
0.06811320781707764,
0.16061803698539734,
-0.05339423194527626,
0.060751914978027344,
-0.025017917156219482,
-0.010531418025493622,
-0.04100566729903221,
-0.013157473877072334,
-0.01645241677761078,
0.09814372658729553,
0.07561057060956955,
0.12545564770698547,
0.10607897490262985,
0.09971975535154343,
-0.09932507574558258,
0.017701633274555206,
-0.05002636834979057,
-0.012917673215270042,
0.06271383166313171,
0.022881586104631424,
0.00972265750169754,
0.12558315694332123,
0.004797929432243109,
0.02946697175502777,
0.01172764040529728,
-0.024050505831837654,
-0.14779840409755707,
-0.09297361969947815,
0.0884193703532219,
0.12674783170223236,
0.02148253843188286,
-0.056929804384708405,
0.02347111701965332,
-0.07782470434904099,
0.052233461290597916,
0.01635611802339554,
-0.20452626049518585,
-0.029955873265862465,
0.2827467918395996,
0.09390783309936523,
0.021380765363574028,
-0.004600406624376774,
0.07961131632328033,
0.030591290444135666,
0.05097811296582222,
0.016523117199540138,
-0.04365215450525284,
0.1394139677286148,
-0.05343722924590111,
-0.138288676738739,
0.04785174876451492,
0.24915790557861328,
0.006434302311390638,
-0.03581035137176514,
-0.1517181545495987,
-0.014848783612251282,
0.06103600934147835,
-0.04403603449463844,
-0.033446673303842545,
-0.00813213549554348,
-0.014270576648414135,
0.11287036538124084,
-0.05263213440775871,
-0.09540428966283798,
-0.035252559930086136,
-0.08226437121629715,
0.04639798030257225,
0.0012334260391071439,
0.019760075956583023,
0.030299492180347443,
0.04052567481994629,
-0.2250727117061615,
-0.13539139926433563,
-0.07080507278442383,
-0.13484181463718414,
-0.07491977512836456,
-0.07721184939146042,
-0.09408523142337799,
-0.1961917132139206,
0.08598749339580536,
0.15959973633289337,
-0.1339980661869049,
0.033623985946178436,
0.03499354422092438,
0.04502776637673378,
0.050829555839300156,
0.05912023037672043,
-0.1169213280081749,
-0.06325632333755493,
-0.005035800859332085,
0.011565557681024075,
0.05594192445278168,
-0.0146050238981843,
-0.1415129452943802,
-0.04646974056959152,
0.07210437208414078,
-0.03200290724635124,
-0.025780152529478073,
0.09820174425840378,
-0.04346888139843941,
-0.036695629358291626,
0.12508425116539001,
-0.08411811292171478,
-0.038201283663511276,
0.019165784120559692,
-0.02553435228765011,
0.02469651773571968,
0.03735232353210449,
0.08094065636396408,
-0.01679702289402485,
0.12463073432445526,
-0.01627068966627121,
-0.02836420387029648,
-0.012457841075956821,
-0.17668162286281586,
0.06874177604913712,
-0.0422675758600235,
-0.03485698625445366,
-0.08175491541624069,
-0.16885918378829956,
-0.024253210052847862,
0.08906910568475723,
-0.06898833066225052,
0.004269849509000778,
-0.04987344518303871,
-0.04991753026843071,
0.0392429381608963,
-0.04194767773151398,
0.0010451647685840726,
-0.024424729868769646,
-0.029048871248960495,
-0.13120698928833008,
0.05863428860902786,
-0.13190720975399017,
0.012754985131323338,
-0.15204405784606934,
0.03729171305894852,
-0.3218300938606262,
0.09366514533758163,
-0.14123386144638062,
0.018095970153808594,
-0.15655501186847687,
-0.04304054006934166,
0.042186833918094635,
0.04188097268342972,
0.020041609182953835,
0.1468127965927124,
-0.21928861737251282,
-0.015325666405260563,
0.08153565973043442,
-0.18640124797821045,
-0.07752858102321625,
0.09157474339008331,
0.009631101042032242,
0.021671805530786514,
0.09708596020936966,
0.1678217202425003,
0.10420577228069305,
-0.0477188415825367,
0.007227534428238869,
0.015816273167729378,
0.03098001331090927,
0.034281570464372635,
0.08995219320058823,
-0.061474382877349854,
-0.09744572639465332,
0.04602845385670662,
-0.14474420249462128,
-0.02051553875207901,
-0.020364994183182716,
-0.045381125062704086,
-0.02002980187535286,
-0.028931058943271637,
0.10917680710554123,
0.019057774916291237,
0.011198156513273716,
-0.058678027242422104,
-0.06079668924212456,
0.1512085646390915,
0.052909865975379944,
-0.06890697032213211,
0.0011929306201636791,
-0.04360351711511612,
0.15894658863544464,
-0.09105619788169861,
0.027368832379579544,
-0.10843247920274734,
-0.2061401903629303,
-0.02178545854985714,
-0.04498995095491409,
-0.017810771241784096,
0.13020773231983185,
0.09354060888290405,
0.08364523947238922,
-0.07487242668867111,
0.023084232583642006,
0.04003618285059929,
0.023967042565345764,
0.022315487265586853,
-0.22083508968353271,
-0.04057543724775314,
-0.08819638192653656,
0.15791065990924835,
-0.12362311035394669,
-0.019306158646941185,
0.027991700917482376,
0.1785343438386917,
-0.021734127774834633,
0.014100376516580582,
0.033973317593336105,
0.023144902661442757,
-0.023902487009763718,
0.007200213149189949,
0.060537129640579224,
-0.06724534928798676,
-0.16839800775051117,
0.19399064779281616,
-0.08351777493953705,
-0.05803235247731209,
0.0986170619726181,
0.060517001897096634,
-0.05501345917582512,
-0.07016870379447937,
0.005494724493473768,
-0.00336460885591805,
0.014051906764507294,
-0.07767163962125778,
0.02727637253701687,
0.043538421392440796,
0.08637576550245285,
-0.07714254409074783,
-0.01984459161758423,
0.026117395609617233,
-0.04571007564663887,
-0.08532947301864624,
0.15370550751686096,
-0.030041104182600975,
-0.2126939594745636,
0.08588036894798279,
0.10357401520013809,
0.004937663208693266,
0.15892095863819122,
-0.044131647795438766,
-0.020489247515797615,
-0.02474173717200756,
0.01483137160539627,
-0.027603954076766968,
0.11371316760778427,
0.04838012158870697,
0.03393398970365524,
0.0565028116106987,
0.030634425580501556,
0.005224061198532581,
-0.03415625914931297,
0.0007804827182553709,
-0.0005763129447586834,
-0.07688332349061966,
-0.022993700578808784,
0.11663074046373367,
-0.012423141859471798,
0.04763064533472061,
0.006913137622177601,
-0.10942798852920532,
0.030520640313625336,
-0.02305247262120247,
-0.11156577616930008,
0.19326670467853546,
-0.14229537546634674,
-0.1626935452222824,
-0.1715647429227829,
-0.014565713703632355,
-0.15144121646881104,
0.04017765074968338,
0.029991697520017624,
-0.029643531888723373,
-0.12352485954761505,
-0.154256671667099,
0.13969756662845612,
0.05257447808980942,
-0.039597973227500916,
-0.06658301502466202,
-0.06861234456300735,
0.015273235738277435,
-0.09608869254589081,
-0.004772777669131756,
-0.03693890571594238,
0.05918627232313156,
0.027588438242673874,
-0.032047294080257416,
0.02602231130003929,
0.12100129574537277,
0.01099711935967207,
-0.022437460720539093,
-0.005009934306144714,
0.2827775180339813,
-0.006333152763545513,
0.13683107495307922,
0.10430105775594711,
-0.0714607685804367,
0.019691525027155876,
0.30313563346862793,
0.049881141632795334,
-0.019728565588593483,
-0.01599447801709175,
0.006293904967606068,
-0.05709044635295868,
-0.17038887739181519,
-0.14377093315124512,
-0.030107727274298668,
-0.02747768722474575,
0.031249454244971275,
0.02323758788406849,
0.07741788029670715,
0.09933672100305557,
-0.05783819779753685,
-0.06773658096790314,
0.15389065444469452,
0.07587559521198273,
0.1819363534450531,
0.010931090451776981,
0.13907504081726074,
-0.03223525732755661,
0.041536640375852585,
0.05202906206250191,
-0.04060248285531998,
0.1249179095029831,
0.0006364253349602222,
0.0466010645031929,
0.08231286704540253,
0.020827915519475937,
0.06121780350804329,
0.05880802869796753,
-0.027373377233743668,
-0.03801354020833969,
0.007529884576797485,
-0.11445717513561249,
0.008438142947852612,
0.05189485847949982,
-0.02996695041656494,
0.02611970342695713,
-0.05229169875383377,
-0.01613765023648739,
0.02872016839683056,
0.13507109880447388,
0.1376635730266571,
-0.21791858971118927,
-0.14808011054992676,
0.09848155826330185,
0.04242284968495369,
-0.027359800413250923,
-0.03314428776502609,
0.1079636812210083,
-0.04385751113295555,
0.1308964192867279,
-0.06752904504537582,
0.08699766546487808,
0.05261766165494919,
-0.00839739479124546,
0.017166757956147194,
0.15610235929489136,
-0.01823996566236019,
0.03997412323951721,
-0.1572490781545639,
0.2206059843301773,
0.02330763265490532,
0.05083117634057999,
-0.02731296978890896,
0.05548835173249245,
-0.03634350374341011,
0.2931061387062073,
0.14591319859027863,
0.04480881616473198,
-0.20216615498065948,
-0.03303123265504837,
-0.05310072749853134,
0.002297710394486785,
-0.011837710626423359,
-0.0912259891629219,
0.05505895987153053,
-0.026867184787988663,
-0.019597359001636505,
-0.01445654034614563,
0.006882836576551199,
-0.19464567303657532,
-0.024847207590937614,
0.08003702014684677,
0.028117317706346512,
0.023757468909025192,
-0.042370591312646866,
-0.0780787542462349,
-0.24140657484531403,
0.13903242349624634,
-0.14701692759990692,
-0.14990006387233734,
-0.12257049977779388,
-0.014571533538401127,
0.16712133586406708,
-0.04927896708250046,
0.0017193779349327087,
-0.04505350440740585,
0.11273565143346786,
-0.08050554990768433,
-0.11114968359470367,
0.0606694258749485,
-0.10540656745433807,
-0.12754999101161957,
0.026054352521896362,
0.13365209102630615,
0.031114904209971428,
0.011548097245395184,
0.06189339980483055,
0.0839027613401413,
0.004083338659256697,
-0.10294199734926224,
-0.032712068408727646,
0.16165977716445923,
0.07882702350616455,
0.019927464425563812,
-0.05372723564505577,
-0.1367807388305664,
0.04402880743145943,
0.043714579194784164,
0.054820965975522995,
0.21810968220233917,
-0.07597452402114868,
0.15984539687633514,
0.24819068610668182,
-0.04421228542923927,
-0.27244284749031067,
0.008268083445727825,
0.026019161567091942,
0.04910096526145935,
0.028192713856697083,
-0.06604106724262238,
0.07096776366233826,
0.06056975573301315,
-0.019779199734330177,
-0.0437302440404892,
-0.2815413773059845,
-0.15509745478630066,
0.0798153355717659,
0.04970274120569229,
0.13793402910232544,
-0.019226856529712677,
-0.09838006645441055,
-0.07043582946062088,
-0.22069935500621796,
0.025669462978839874,
-0.060360364615917206,
0.04356686398386955,
0.050906505435705185,
0.10239969193935394,
0.04695972800254822,
-0.05324345827102661,
0.20339259505271912,
-0.006453427951782942,
0.0014867380959913135,
-0.14374053478240967,
0.0974493995308876,
0.1210208535194397,
-0.05566909536719322,
0.1826964169740677,
-0.11554885655641556,
0.01881491020321846,
0.004040393978357315,
-0.0695972591638565,
-0.05706189200282097,
0.1300232857465744,
-0.06494156271219254,
-0.09464558213949203,
-0.029273951426148415,
0.12781299650669098,
0.04889867454767227,
-0.044869549572467804,
0.16700761020183563,
-0.137804314494133,
0.060993093997240067,
0.0686861053109169,
0.18163862824440002,
-0.008038914762437344,
0.050217024981975555,
0.07365497946739197,
-0.06783270835876465,
0.09087264537811279,
-0.09697553515434265,
0.026648743078112602,
0.12607236206531525,
-0.0818360224366188,
0.10778290778398514,
-0.002373751485720277,
-0.0716380700469017,
-0.05003531277179718,
0.07754302024841309,
-0.12806205451488495,
-0.20083147287368774,
-0.005338768009096384,
-0.07004976272583008,
-0.008155906572937965,
0.07091569155454636,
0.19188733398914337,
-0.10710691660642624,
0.05187798663973808,
0.04366334155201912,
0.038712747395038605,
-0.050928205251693726,
0.09676147252321243,
-0.031504202634096146,
0.08796443790197372,
-0.12471625208854675,
0.08662746846675873,
0.009572353214025497,
-0.009284530766308308,
0.023202894255518913,
0.011841743253171444,
-0.15221507847309113,
-0.10465230792760849,
-0.07098477333784103,
0.1309494972229004,
-0.10965951532125473,
-0.06321429461240768,
-0.04528801515698433,
-0.21013621985912323,
-0.004382205195724964,
0.1510908156633377,
0.05101395770907402,
0.006888202857226133,
0.039325423538684845,
-0.0834689661860466,
-0.046084217727184296,
0.10527510195970535,
-0.008401305414736271,
0.054947901517152786,
-0.0947478711605072,
0.031088072806596756,
-0.07272321730852127,
-0.0006152761052362621,
-0.06085532158613205,
0.046569570899009705,
-0.09244837611913681,
-0.04433303698897362,
-0.24476198852062225,
-0.02948712930083275,
-0.10162737220525742,
0.005925409961491823,
-0.023792089894413948,
-0.05791904404759407,
-0.009580965153872967,
0.02944793552160263,
-0.052064113318920135,
0.028331203386187553,
-0.054165177047252655,
0.03355591744184494,
-0.10573776066303253,
-0.042767178267240524,
-0.02531902864575386,
-0.006444650702178478,
0.06245148554444313,
-0.024661120027303696,
-0.02460709773004055,
0.06862392276525497,
-0.15297682583332062,
0.05816784128546715,
-0.00839685183018446,
-0.008775755763053894,
0.03712017461657524,
-0.09403734654188156,
-0.07964511960744858,
0.033168405294418335,
-0.05862830579280853,
0.04005905240774155,
-0.0031817953567951918,
-0.04679165035486221,
-0.029700614511966705,
0.003948427736759186,
-0.011108252219855785,
-0.04573764652013779,
0.06480401754379272,
0.09253077208995819,
0.08296994864940643,
0.18830294907093048,
-0.08147912472486496,
0.03735468536615372,
-0.048419978469610214,
-0.012443006038665771,
0.042660780251026154,
-0.06875362247228622,
-0.11256622523069382,
-0.043064411729574203,
0.005144929513335228,
-0.07369814068078995,
0.12754903733730316,
0.0005650114035233855,
0.018743859604001045,
0.05773729458451271,
0.046778008341789246,
0.04026972874999046,
0.09245322644710541,
0.25515222549438477,
0.0022486119996756315,
0.0125136012211442,
-0.07156746834516525,
0.03337785601615906,
-0.03308577463030815,
-0.04718247801065445,
0.12194256484508514,
0.09950623661279678,
0.015347703360021114,
0.06162753701210022,
0.09824590384960175,
0.04838903248310089,
-0.004267261829227209,
0.12456070631742477,
-0.004413316026329994,
0.07239881157875061,
0.0010569532169029117,
0.10575029999017715,
0.1044192910194397,
-0.1553594321012497,
0.030284132808446884,
-0.024085834622383118,
-0.0652424544095993,
-0.11762596666812897,
-0.2856464385986328,
-0.12367710471153259,
-0.06410928815603256,
-0.003306539496406913,
-0.13027767837047577,
-0.020353415980935097,
0.0115639828145504,
0.08691554516553879,
0.00982686411589384,
0.06335189938545227,
-0.13382595777511597,
-0.024149540811777115,
0.02545652911067009,
0.003029368817806244,
0.011984245851635933,
0.05927858129143715,
-0.08694147318601608,
0.06390450149774551,
0.05681420862674713,
-0.059431787580251694,
0.0013354551047086716,
0.05571134015917778,
-0.004035496152937412,
-0.0043036071583628654,
-0.09019695967435837,
0.0021341608371585608,
0.059925101697444916,
0.05156881734728813,
0.0033946665935218334,
0.07916411757469177,
-0.051909059286117554,
-0.03081372193992138,
0.14307154715061188,
0.016999226063489914,
-0.14354360103607178,
-0.16757306456565857,
0.08821708709001541,
-0.06582304835319519,
0.12855549156665802,
0.023659445345401764,
-0.09416818618774414,
0.0288002360612154,
0.0785275250673294,
0.2311314344406128,
0.007645815145224333,
-0.008183205500245094,
-0.037462323904037476,
-0.017463168129324913,
-0.024872059002518654,
0.07746220380067825,
-0.08915327489376068,
0.06722945719957352,
-0.013366678729653358,
0.07300999015569687,
-0.054135847836732864,
-0.02850334346294403,
-0.05727377161383629,
0.02816675789654255,
-0.010790894739329815,
-0.08331076800823212,
-0.06713932007551193,
0.14337554574012756,
-0.1009376272559166,
-0.03019692189991474,
0.03914759308099747,
-0.027046825736761093,
-0.1234302818775177,
-0.09156519919633865,
0.12957824766635895,
0.043439749628305435,
-0.008643456734716892,
-0.05476727336645126,
0.0059874881990253925,
0.13312172889709473,
-0.02826594188809395,
0.010006598196923733,
-0.1186540275812149,
0.03718119114637375,
0.11465353518724442,
0.11228333413600922,
0.03625792637467384,
0.06391020119190216,
0.09114611893892288,
-0.007190036587417126,
-0.09663175791501999,
0.037423327565193176,
0.0823514312505722,
-0.08090413361787796,
0.054681114852428436,
0.11813192069530487,
-0.04146386682987213,
0.16020523011684418,
0.04642803221940994,
-0.2182735800743103,
0.0008434554911218584,
0.010836999863386154,
-0.12002365291118622,
-0.0016474324511364102,
0.11802824586629868,
-0.08067665994167328,
0.1294572800397873,
0.1813667267560959,
-0.005836338736116886,
-0.058279141783714294,
-0.06785866618156433,
0.11393947899341583,
0.018305964767932892,
0.03552389144897461,
0.014713247306644917,
-0.16367223858833313,
0.002938327845185995,
0.06204676628112793,
0.026597334071993828,
-0.16142277419567108,
-0.059767596423625946,
-0.09896206110715866,
0.04838142544031143,
-0.030174996703863144,
0.10162434726953506,
0.13815189898014069,
0.012267130427062511,
-0.030895104631781578,
-0.03007916733622551,
0.028047600761055946,
0.09362351894378662,
-0.06066036969423294,
-0.08272837847471237
] |
null | null | transformers |
# Monarch-7B-slerp
Monarch-7B-slerp is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/OmniTruthyBeagle-7B-v0](https://huggingface.co/mlabonne/OmniTruthyBeagle-7B-v0)
* [mlabonne/NeuBeagle-7B](https://huggingface.co/mlabonne/NeuBeagle-7B)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: mlabonne/OmniTruthyBeagle-7B-v0
layer_range: [0, 32]
- model: mlabonne/NeuBeagle-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/OmniTruthyBeagle-7B-v0
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Monarch-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "cc-by-nc-4.0", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": ["mlabonne/OmniTruthyBeagle-7B-v0", "mlabonne/NeuBeagle-7B"]} | text-generation | mlabonne/Monarch-7B-slerp | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"base_model:mlabonne/OmniTruthyBeagle-7B-v0",
"base_model:mlabonne/NeuBeagle-7B",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:39:41+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/OmniTruthyBeagle-7B-v0 #base_model-mlabonne/NeuBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Monarch-7B-slerp
Monarch-7B-slerp is a merge of the following models using LazyMergekit:
* mlabonne/OmniTruthyBeagle-7B-v0
* mlabonne/NeuBeagle-7B
## Configuration
## Usage
| [
"# Monarch-7B-slerp\n\nMonarch-7B-slerp is a merge of the following models using LazyMergekit:\n* mlabonne/OmniTruthyBeagle-7B-v0\n* mlabonne/NeuBeagle-7B",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/OmniTruthyBeagle-7B-v0 #base_model-mlabonne/NeuBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Monarch-7B-slerp\n\nMonarch-7B-slerp is a merge of the following models using LazyMergekit:\n* mlabonne/OmniTruthyBeagle-7B-v0\n* mlabonne/NeuBeagle-7B",
"## Configuration",
"## Usage"
] | [
107,
59,
4,
3
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/OmniTruthyBeagle-7B-v0 #base_model-mlabonne/NeuBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Monarch-7B-slerp\n\nMonarch-7B-slerp is a merge of the following models using LazyMergekit:\n* mlabonne/OmniTruthyBeagle-7B-v0\n* mlabonne/NeuBeagle-7B## Configuration## Usage"
] | [
-0.05182403326034546,
0.09402049332857132,
-0.005233640782535076,
0.0463186576962471,
0.026826221495866776,
0.029433440417051315,
0.13769011199474335,
0.07114306837320328,
-0.026956452056765556,
0.017418812960386276,
0.10915388911962509,
0.1363978534936905,
0.003048332640901208,
0.06580746918916702,
-0.050849687308073044,
-0.18297764658927917,
0.06579658389091492,
0.0194541085511446,
-0.039152320474386215,
0.07211973518133163,
0.09844884276390076,
-0.010647463612258434,
0.12736304104328156,
0.003138304455205798,
-0.07874667644500732,
0.035239577293395996,
-0.018183432519435883,
-0.021656882017850876,
0.08733713626861572,
0.07659602910280228,
0.04603733867406845,
0.06337942183017731,
-0.010963630862534046,
-0.15424202382564545,
0.027180107310414314,
-0.02149876020848751,
-0.04470832645893097,
0.06772714853286743,
0.0421583354473114,
-0.03537524491548538,
0.14392460882663727,
-0.04549688100814819,
0.009180646389722824,
0.056579265743494034,
-0.12374882400035858,
0.007070031017065048,
-0.08928487449884415,
0.048656661063432693,
0.054197732359170914,
0.03606976568698883,
-0.001172657241113484,
0.1247652992606163,
-0.03318846970796585,
0.08744087815284729,
0.1495550572872162,
-0.3556172549724579,
-0.028278255835175514,
0.20032723248004913,
0.0635836124420166,
-0.011789986863732338,
0.009383353404700756,
0.09473444521427155,
0.025238383561372757,
0.001233814051374793,
0.08038444817066193,
-0.09669061005115509,
0.14103877544403076,
-0.05519852042198181,
-0.1275109499692917,
-0.016573363915085793,
0.18035052716732025,
0.026315608993172646,
-0.014097350649535656,
-0.04239465296268463,
-0.06784991919994354,
0.12598498165607452,
-0.05708201602101326,
-0.004707361571490765,
0.055185429751873016,
0.008335785008966923,
0.03470039367675781,
-0.10493487119674683,
-0.016971586272120476,
-0.02962224930524826,
-0.12247937172651291,
0.08260110020637512,
-0.008339556865394115,
0.01159684918820858,
0.0028859733138233423,
0.06451303511857986,
-0.16678112745285034,
-0.12000680714845657,
-0.04500460997223854,
-0.052194517105817795,
0.03357377275824547,
-0.0319417268037796,
-0.0459226593375206,
0.02611764706671238,
0.11295487731695175,
0.23452253639698029,
-0.04543808102607727,
0.03566552698612213,
-0.0355096198618412,
0.061065562069416046,
-0.019599828869104385,
-0.024986891075968742,
-0.09973108023405075,
-0.2159888595342636,
0.10695652663707733,
0.03537799417972565,
0.08219783753156662,
0.0023016720078885555,
-0.10132618248462677,
-0.05391126871109009,
-0.036091696470975876,
0.03588874638080597,
0.08446647971868515,
0.08587058633565903,
-0.07974959164857864,
-0.01074683852493763,
0.17630316317081451,
-0.06270752102136612,
0.019923603162169456,
-0.01762550324201584,
-0.03860508278012276,
-0.010260645300149918,
0.07850310951471329,
0.05962634086608887,
-0.02201511338353157,
0.013611404225230217,
-0.08308055996894836,
-0.06729492545127869,
-0.007818831130862236,
-0.06527548283338547,
0.028721369802951813,
-0.024246567860245705,
-0.010128785856068134,
-0.09064795076847076,
-0.25357651710510254,
0.007764766458421946,
0.05403103679418564,
-0.05592542886734009,
-0.06924119591712952,
-0.09334974735975266,
-0.03769007325172424,
-0.012417399324476719,
0.002380726393312216,
-0.029462572187185287,
-0.024043040350079536,
-0.011669415049254894,
0.028891902416944504,
0.03897518664598465,
-0.19870446622371674,
0.01850496605038643,
-0.10288385301828384,
0.09370382130146027,
-0.17648190259933472,
0.07829994708299637,
-0.04431099444627762,
0.046921808272600174,
-0.08899564296007156,
-0.013091007247567177,
-0.036846794188022614,
0.03724270686507225,
0.05179291591048241,
0.14828425645828247,
-0.07969103753566742,
-0.07283679395914078,
0.09178035706281662,
-0.10614383220672607,
-0.14914628863334656,
0.10381490737199783,
0.023679064586758614,
0.03804893419146538,
0.08611973375082016,
0.14350572228431702,
0.07020968198776245,
-0.03061630204319954,
-0.00818338431417942,
0.02227172441780567,
-0.003837933763861656,
-0.06447957456111908,
0.07004224509000778,
-0.03167647495865822,
-0.11135163903236389,
0.0472526028752327,
-0.058649592101573944,
0.042292337864637375,
-0.022692756727337837,
-0.044141653925180435,
-0.04821757599711418,
-0.07971594482660294,
0.050818923860788345,
-0.04909035935997963,
0.019440237432718277,
-0.07350639998912811,
-0.027460042387247086,
0.1405026912689209,
0.06824710965156555,
-0.02240036241710186,
0.018139000982046127,
-0.04796607419848442,
0.1378176212310791,
-0.0704723373055458,
0.042153410613536835,
-0.07720862329006195,
-0.06622764468193054,
-0.01912602409720421,
-0.0487116314470768,
0.06900427490472794,
-0.005129833240061998,
0.058292340487241745,
0.06209447607398033,
-0.07830840349197388,
-0.0018271387089043856,
0.10910150408744812,
0.02103027142584324,
-0.021080870181322098,
-0.1798088252544403,
-0.015975309535861015,
-0.042676594108343124,
0.19206389784812927,
-0.10099660605192184,
0.07784085720777512,
-0.008349806070327759,
0.17138715088367462,
-0.01512905117124319,
0.01255437359213829,
0.0494808703660965,
0.043452538549900055,
-0.026677334681153297,
0.010409699752926826,
0.09244837611913681,
0.011334133334457874,
-0.12165626883506775,
0.10969135165214539,
-0.1362036168575287,
0.14603379368782043,
0.14266973733901978,
-0.033290840685367584,
0.011875096708536148,
-0.025756197050213814,
0.024676818400621414,
-0.05558708310127258,
0.07460279762744904,
-0.056664738804101944,
0.08424121886491776,
0.011769928969442844,
0.13153332471847534,
-0.08572738617658615,
-0.0582960806787014,
0.008594995364546776,
-0.052032917737960815,
-0.07353127002716064,
0.08095760643482208,
0.018069710582494736,
-0.16673438251018524,
0.10882943123579025,
0.24541229009628296,
-0.01933208853006363,
0.11687788367271423,
0.022732801735401154,
0.012117806822061539,
-0.05360469967126846,
-0.01977527141571045,
0.021363435313105583,
-0.003459642641246319,
-0.08631984144449234,
0.02207576483488083,
0.035637691617012024,
0.013325858861207962,
0.06038934737443924,
-0.05179819092154503,
0.011160195805132389,
0.010402168147265911,
-0.025748537853360176,
0.03845249116420746,
0.05705234408378601,
-0.027372267097234726,
0.08195113390684128,
0.012072463519871235,
-0.09286808967590332,
0.05359148234128952,
0.007009662687778473,
-0.0692639946937561,
0.15063759684562683,
-0.1471727043390274,
-0.21272078156471252,
-0.17541423439979553,
-0.08401522040367126,
-0.16070549190044403,
-0.0008316738530993462,
0.034540992230176926,
0.054102107882499695,
-0.024224918335676193,
-0.13978995382785797,
0.05506015196442604,
0.002606848021969199,
-0.04417286068201065,
0.0032660788856446743,
0.005194134544581175,
0.023249847814440727,
-0.12793651223182678,
-0.023224571719765663,
0.024281274527311325,
-0.10048113018274307,
0.04022430256009102,
-0.07125034183263779,
0.08532875776290894,
0.05956292897462845,
0.0031454679556190968,
-0.02684669941663742,
-0.017355212941765785,
0.2427615523338318,
-0.008390460163354874,
0.0551527664065361,
0.12267107516527176,
-0.023486467078328133,
0.06452146172523499,
0.19370804727077484,
0.04403070732951164,
-0.08323365449905396,
-0.019962210208177567,
-0.01611614041030407,
-0.04881323501467705,
-0.1378440260887146,
-0.131317600607872,
-0.07420852780342102,
0.05915173888206482,
0.039074499160051346,
0.0421336404979229,
0.07913831621408463,
0.04301415756344795,
-0.05950060859322548,
0.02617073245346546,
0.06134532764554024,
0.08242084085941315,
0.2705059349536896,
-0.018933624029159546,
0.09478459507226944,
-0.04174575209617615,
-0.02828335389494896,
0.06534938514232635,
0.0680452361702919,
-0.020649632439017296,
0.05657059699296951,
0.12464121729135513,
0.04274541512131691,
0.06962823867797852,
0.08109426498413086,
0.06399282068014145,
-0.043069031089544296,
-0.009855907410383224,
-0.030081605538725853,
-0.09111620485782623,
-0.00499801617115736,
0.011880488134920597,
-0.01967124454677105,
0.051842011511325836,
-0.010342426598072052,
-0.04793466627597809,
0.06629776954650879,
0.10527615994215012,
0.09031380712985992,
-0.2560587525367737,
-0.021908177062869072,
0.06606359034776688,
0.023498477414250374,
-0.05218513309955597,
0.008847611956298351,
-0.009761182591319084,
-0.06397049129009247,
0.15674543380737305,
0.013348179869353771,
0.10346527397632599,
-0.03159905970096588,
0.0476408489048481,
-0.045943014323711395,
0.10502292215824127,
-0.021355973556637764,
0.04202558845281601,
-0.2629357874393463,
0.14542971551418304,
0.04562092944979668,
-0.0015836999518796802,
0.03095388226211071,
0.02052656188607216,
0.03854306414723396,
0.1937323659658432,
0.07999330013990402,
0.011678097769618034,
-0.005869289860129356,
-0.031038835644721985,
-0.08699186146259308,
0.02276720106601715,
0.002761067356914282,
-0.0715741217136383,
0.04716838151216507,
-0.014537857845425606,
-0.05968974530696869,
-0.0024280990473926067,
0.025804730132222176,
-0.1705889105796814,
-0.11977856606245041,
0.05906328186392784,
0.0656360387802124,
0.062099531292915344,
-0.0671900138258934,
-0.029262252151966095,
-0.09286442399024963,
0.23591256141662598,
-0.08946477621793747,
-0.05182506889104843,
-0.08899051696062088,
-0.05127514526247978,
0.12796515226364136,
-0.05545523017644882,
0.0913742408156395,
-0.04943519085645676,
0.04153190180659294,
-0.07906250655651093,
-0.13383138179779053,
0.05540940910577774,
-0.07448875904083252,
-0.08183147758245468,
-0.015268176794052124,
0.126014843583107,
-0.05591725930571556,
0.03975319862365723,
0.035055458545684814,
0.0691467821598053,
-0.007316390052437782,
-0.06823908537626266,
-0.012214038521051407,
0.07018144428730011,
-0.02397695928812027,
0.07715011388063431,
-0.04553721845149994,
-0.1321391463279724,
0.012502117082476616,
0.016099419444799423,
0.13973331451416016,
0.3388906419277191,
0.001183290034532547,
0.048954542726278305,
0.2399328202009201,
-0.0816560760140419,
-0.22763952612876892,
-0.0683843120932579,
-0.0641086995601654,
-0.00041272304952144623,
-0.0030383113771677017,
-0.12575891613960266,
0.0859818086028099,
0.15841838717460632,
-0.01814059540629387,
0.05909854173660278,
-0.28068846464157104,
-0.1050514429807663,
0.09311074763536453,
0.06622423231601715,
0.20738857984542847,
-0.10682716220617294,
-0.09576329588890076,
-0.08333034068346024,
-0.18184061348438263,
0.0807928591966629,
-0.08005297183990479,
0.07855268567800522,
-0.03914331644773483,
-0.019440483301877975,
0.005947230849415064,
-0.02056201733648777,
0.11816347390413284,
-0.014788719825446606,
0.02727361023426056,
-0.09501297026872635,
0.012047098018229008,
0.12141647189855576,
-0.055856991559267044,
0.07198671996593475,
-0.18122808635234833,
0.022442474961280823,
-0.0017000742955133319,
-0.004903404042124748,
-0.041409265249967575,
0.12083365768194199,
-0.06100071221590042,
-0.047821294516325,
-0.0038587257731705904,
0.025955108925700188,
-0.018117958679795265,
0.027865292504429817,
0.10266785323619843,
-0.04107513651251793,
0.049692053347826004,
0.1876838356256485,
0.1097852811217308,
-0.11556806415319443,
0.0967937558889389,
0.0010834146523848176,
-0.06886058300733566,
0.03238855302333832,
-0.04510636627674103,
-0.002848983509466052,
0.1003042608499527,
0.0031352529767900705,
0.06024496629834175,
0.030573951080441475,
-0.02590055763721466,
-0.02577085606753826,
0.10791156440973282,
-0.16653084754943848,
-0.060006145387887955,
-0.03470892086625099,
-0.05807523801922798,
-0.004666365683078766,
0.05131196230649948,
0.21544888615608215,
-0.041098400950431824,
-0.010417924262583256,
0.03240739926695824,
-0.011452657170593739,
-0.11065803468227386,
0.09855175763368607,
0.002312315860763192,
0.02639761008322239,
-0.10039005428552628,
0.059693869203329086,
0.019941158592700958,
-0.024493595585227013,
-0.018663085997104645,
0.1076183095574379,
-0.09737223386764526,
-0.10949842631816864,
-0.06870580464601517,
0.17374031245708466,
-0.11006538569927216,
-0.009389737620949745,
-0.08752810955047607,
-0.09385695308446884,
0.03437952324748039,
0.19497424364089966,
0.06896867603063583,
0.047528572380542755,
0.02207385003566742,
-0.05948296934366226,
-0.038592275232076645,
0.07031373679637909,
-0.02952224761247635,
0.08704294264316559,
-0.08393029123544693,
-0.033525966107845306,
-0.031050655990839005,
0.001369820791296661,
-0.04310910776257515,
-0.0015211778227239847,
-0.16206054389476776,
-0.03177022188901901,
-0.13498041033744812,
-0.031539496034383774,
-0.15949378907680511,
-0.005799354985356331,
-0.025427179411053658,
-0.023261824622750282,
-0.036540038883686066,
-0.002803160808980465,
-0.03489234670996666,
-0.04057656601071358,
0.0027429433539509773,
0.09086588770151138,
-0.1004554033279419,
-0.00411812961101532,
0.048756103962659836,
-0.05025607347488403,
0.0649503543972969,
-0.02511662244796753,
-0.01589096151292324,
0.026050344109535217,
-0.1877574324607849,
-0.05471295490860939,
0.02559097670018673,
0.00047128592268563807,
0.03815148398280144,
-0.0570233091711998,
-0.02159721963107586,
0.0496903620660305,
-0.010581600479781628,
0.006019389256834984,
0.09175978600978851,
-0.08848103135824203,
-0.007861575111746788,
-0.020792406052350998,
-0.07756911218166351,
-0.02124697156250477,
-0.02116354927420616,
0.12589974701404572,
0.006497270427644253,
0.13764992356300354,
-0.05094723030924797,
-0.0026938843075186014,
-0.12246042490005493,
-0.0004420369805302471,
0.011138143949210644,
-0.17444494366645813,
-0.06920866668224335,
-0.05798039957880974,
0.007821520790457726,
-0.001426845439709723,
0.18055030703544617,
-0.03336920961737633,
-0.12329071760177612,
0.02760598063468933,
0.01637854054570198,
0.032129786908626556,
0.04854127764701843,
0.24144482612609863,
0.09099003672599792,
-0.004169968422502279,
-0.07133176177740097,
0.09075828641653061,
0.007588433101773262,
0.0016910933190956712,
0.01789848692715168,
0.08670319616794586,
0.029518431052565575,
0.08171583712100983,
0.1531917154788971,
0.037386730313301086,
-0.02521432377398014,
-0.016065875068306923,
0.043770741671323776,
0.07556052505970001,
-0.021753674373030663,
0.07633135467767715,
0.14036491513252258,
-0.13156548142433167,
0.042285382747650146,
0.035637158900499344,
-0.017091332003474236,
-0.08837295323610306,
-0.15892449021339417,
-0.10602529346942902,
-0.08841079473495483,
-0.01925293542444706,
-0.12466873228549957,
-0.026675349101424217,
0.050293490290641785,
0.02289067953824997,
0.011056712828576565,
0.07554458826780319,
-0.057100147008895874,
-0.026133153587579727,
0.038833968341350555,
-0.031293757259845734,
-0.03578115627169609,
-0.021690694615244865,
-0.03357131779193878,
-0.011491610668599606,
0.024136506021022797,
-0.022070862352848053,
0.024955743923783302,
0.0012017909903079271,
0.051431089639663696,
-0.08332549035549164,
-0.108456552028656,
-0.013074900023639202,
0.049086425453424454,
0.01875489577651024,
0.03592441603541374,
0.0245004091411829,
-0.09312319755554199,
0.029445132240653038,
0.11717343330383301,
-0.016217654570937157,
-0.1558380126953125,
-0.06197379156947136,
0.18025292456150055,
-0.006313074380159378,
0.04862602427601814,
-0.009742209687829018,
-0.031382009387016296,
0.03958578780293465,
0.19564363360404968,
0.3218045234680176,
-0.05010537803173065,
0.014007843099534512,
0.010731934569776058,
0.014365722425282001,
0.05696606636047363,
0.05402557551860809,
0.033003032207489014,
0.161567822098732,
-0.06248949468135834,
0.006268147844821215,
-0.0372796431183815,
-0.05221027135848999,
-0.09466426819562912,
-0.020294729620218277,
0.022689230740070343,
-0.05213514342904091,
0.01657765544950962,
0.08653111010789871,
-0.11229566484689713,
0.0261728223413229,
-0.03166006878018379,
-0.10470054298639297,
-0.0721471905708313,
-0.084434874355793,
0.009642754681408405,
0.033044882118701935,
0.03421390429139137,
-0.03631275147199631,
-0.03131091967225075,
0.04924043267965317,
-0.048762790858745575,
-0.11591911315917969,
-0.11186813563108444,
0.006204271223396063,
-0.01480151154100895,
0.09845718741416931,
-0.007967623881995678,
0.02593030408024788,
0.11534807831048965,
0.0006271013990044594,
-0.11541571468114853,
0.06905658543109894,
0.012097884900867939,
-0.006969306617975235,
0.04159615561366081,
0.04204826429486275,
-0.003533551236614585,
0.14325667917728424,
0.03608248010277748,
-0.058704275637865067,
0.06360229104757309,
0.03476810082793236,
-0.06761912256479263,
-0.03371768444776535,
0.05300189554691315,
-0.039563145488500595,
0.11173565685749054,
0.13540151715278625,
-0.02110130339860916,
-0.0038331574760377407,
-0.04001957178115845,
0.026303483173251152,
0.060392674058675766,
0.011784454807639122,
-0.03772907704114914,
-0.16232600808143616,
-0.004174361005425453,
0.03490383177995682,
-0.024028794839978218,
-0.23364649713039398,
-0.09266211092472076,
-0.1556566059589386,
0.004352351650595665,
-0.09772703796625137,
0.06466734409332275,
0.20203448832035065,
0.0077791837975382805,
-0.012822950258851051,
-0.14313510060310364,
-0.017404651269316673,
0.08098313212394714,
-0.08702056854963303,
-0.1102536991238594
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | Maaz911/NewModal-Falcon-1B | [
"transformers",
"safetensors",
"falcon",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | 2024-02-13T11:41:06+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #falcon #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #falcon #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
64,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #falcon #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.04453665390610695,
0.1909387707710266,
-0.005555706564337015,
0.02009698562324047,
0.09928517788648605,
0.002202220493927598,
0.05591393634676933,
0.11277725547552109,
-0.057992883026599884,
0.12979470193386078,
0.042654167860746384,
0.10920123755931854,
0.12005752325057983,
0.14929279685020447,
-0.006252828054130077,
-0.2134041041135788,
0.04953882843255997,
-0.10335224866867065,
-0.01086056511849165,
0.12334966659545898,
0.1476563662290573,
-0.09718861430883408,
0.07114724069833755,
-0.036244992166757584,
-0.024860747158527374,
-0.03785305470228195,
-0.0595487505197525,
-0.039634235203266144,
0.039995789527893066,
0.06042226403951645,
0.06769220530986786,
-0.0009836091194301844,
0.07885425537824631,
-0.2796455919742584,
0.019178325310349464,
0.07151005417108536,
-0.006919655948877335,
0.06624610722064972,
0.07163652777671814,
-0.06252288073301315,
0.10966669768095016,
-0.049444738775491714,
0.13246740400791168,
0.084211565554142,
-0.0938078835606575,
-0.1822056919336319,
-0.09178999811410904,
0.10561470687389374,
0.17416922748088837,
0.0484575480222702,
-0.025951452553272247,
0.09858915209770203,
-0.07840164005756378,
0.022246353328227997,
0.04883703216910362,
-0.09256608784198761,
-0.05855829641222954,
0.06611574441194534,
0.09133755415678024,
0.05204923823475838,
-0.12691274285316467,
-0.03522179275751114,
0.009058474563062191,
0.01721723936498165,
0.07700812071561813,
0.019413044676184654,
0.1418759971857071,
0.032454222440719604,
-0.13212166726589203,
-0.059588126838207245,
0.10731249302625656,
0.039681512862443924,
-0.046043410897254944,
-0.23570485413074493,
-0.03336421772837639,
-0.02272348292171955,
-0.0341198705136776,
-0.04095032811164856,
0.04227769747376442,
-0.0006343789864331484,
0.09008241444826126,
-0.009444409981369972,
-0.07376758754253387,
-0.037807099521160126,
0.06939547508955002,
0.06980503350496292,
0.03010455332696438,
-0.01593116484582424,
0.019894573837518692,
0.10873140394687653,
0.08636973053216934,
-0.1162659227848053,
-0.05815749242901802,
-0.06317965686321259,
-0.06965572386980057,
-0.03770272806286812,
0.033693619072437286,
0.012340168468654156,
0.07487021386623383,
0.26779240369796753,
0.019667603075504303,
0.05574297159910202,
0.023485545068979263,
0.007517560850828886,
0.04799899831414223,
0.10866300761699677,
-0.061261147260665894,
-0.11703209578990936,
-0.014219003729522228,
0.08728978037834167,
0.023079033941030502,
-0.038951773196458817,
-0.04325496777892113,
0.06728525459766388,
0.04300529137253761,
0.11015605926513672,
0.10105620324611664,
0.021074479445815086,
-0.0715402141213417,
-0.0557621605694294,
0.21137705445289612,
-0.15680187940597534,
0.03674543276429176,
0.044267017394304276,
-0.0316292904317379,
-0.02875566855072975,
0.010211686603724957,
0.02587735652923584,
-0.036022067070007324,
0.08833824843168259,
-0.0525839701294899,
-0.049408841878175735,
-0.10717582702636719,
-0.030840111896395683,
0.04087112098932266,
0.008656567893922329,
-0.030996592715382576,
-0.03811638429760933,
-0.07353513687849045,
-0.08327128738164902,
0.08451396971940994,
-0.06826525181531906,
-0.056710876524448395,
-0.020656531676650047,
-0.0837526023387909,
0.021076807752251625,
0.022399982437491417,
0.07524201273918152,
-0.02734057791531086,
0.05734923854470253,
-0.046132802963256836,
0.049341313540935516,
0.09273886680603027,
0.03224007412791252,
-0.06011774390935898,
0.06155902519822121,
-0.22752223908901215,
0.0827341079711914,
-0.0701761245727539,
0.05535000190138817,
-0.1552843600511551,
-0.021174373105168343,
0.03665536269545555,
0.0028983328957110643,
-0.004714240785688162,
0.13058264553546906,
-0.20505709946155548,
-0.01968754455447197,
0.16734007000923157,
-0.09772137552499771,
-0.06466186791658401,
0.05246074125170708,
-0.04568861424922943,
0.09151032567024231,
0.03263774514198303,
0.003646659664809704,
0.06071169301867485,
-0.10888087004423141,
-0.012166064232587814,
-0.05273926630616188,
-0.025421906262636185,
0.1370338350534439,
0.08078528195619583,
-0.08123568445444107,
0.055560965090990067,
0.02434842474758625,
-0.030269447714090347,
-0.06682562083005905,
-0.016069523990154266,
-0.09870079904794693,
0.013424086384475231,
-0.07048244774341583,
0.00775548443198204,
-0.020568309351801872,
-0.09736152738332748,
-0.027479711920022964,
-0.16466915607452393,
-0.03865848854184151,
0.08033930510282516,
-0.004795180168002844,
-0.013016881421208382,
-0.10705817490816116,
0.03258499503135681,
0.024063624441623688,
0.0026895657647401094,
-0.13068236410617828,
-0.03602854534983635,
0.037118151783943176,
-0.15183864533901215,
0.03041362762451172,
-0.07635925710201263,
0.051014017313718796,
0.01741175539791584,
-0.026979008689522743,
-0.021592440083622932,
0.016442833468317986,
0.007207158952951431,
-0.021860433742403984,
-0.22696970403194427,
-0.029399745166301727,
-0.029851561412215233,
0.15872712433338165,
-0.20569345355033875,
0.03521941974759102,
0.08486489951610565,
0.15441760420799255,
0.0037020102608948946,
-0.05495212972164154,
0.021063216030597687,
-0.06899091601371765,
-0.025963960215449333,
-0.0567413829267025,
-0.001321499585174024,
-0.01364624872803688,
-0.039724286645650864,
0.02455776184797287,
-0.17795418202877045,
-0.04123859107494354,
0.09635645896196365,
0.05286227911710739,
-0.12172684818506241,
-0.017793001607060432,
-0.03796517476439476,
-0.05116693675518036,
-0.04316309839487076,
-0.0652548149228096,
0.10152675211429596,
0.06190277636051178,
0.04221278801560402,
-0.06449716538190842,
-0.07975452393293381,
-0.002510865917429328,
-0.015534510836005211,
-0.0208453256636858,
0.09268542379140854,
0.07696153223514557,
-0.12062439322471619,
0.09454844146966934,
0.08124031871557236,
0.07064208388328552,
0.08388709276914597,
-0.019784949719905853,
-0.07501683384180069,
-0.03474224731326103,
0.04096398875117302,
0.02070939913392067,
0.127272829413414,
-0.04324626177549362,
0.044735442847013474,
0.042813338339328766,
-0.03281288221478462,
0.019368071109056473,
-0.0789046362042427,
0.03477751463651657,
0.02438444457948208,
-0.023067085072398186,
0.04966627433896065,
-0.03796491399407387,
0.017777003347873688,
0.086410291492939,
0.055618125945329666,
0.034197285771369934,
0.015752006322145462,
-0.05180222541093826,
-0.1116505116224289,
0.1603255420923233,
-0.11804656684398651,
-0.21760660409927368,
-0.133219912648201,
0.02440512925386429,
0.02340768836438656,
-0.013408999890089035,
0.0042162188328802586,
-0.05273256078362465,
-0.10836806893348694,
-0.09519179910421371,
0.0020809932611882687,
0.05688413232564926,
-0.08434031158685684,
-0.060320284217596054,
0.03948112577199936,
0.04618431627750397,
-0.1438177227973938,
0.02078346349298954,
0.04113969951868057,
-0.09475471079349518,
-0.014071599580347538,
0.08162059634923935,
0.08266530930995941,
0.1828899383544922,
0.018958356231451035,
-0.018643934279680252,
0.03172494098544121,
0.23090940713882446,
-0.13629217445850372,
0.11638624221086502,
0.1350768655538559,
-0.08650082349777222,
0.08394848555326462,
0.2100806087255478,
0.043485693633556366,
-0.09806657582521439,
0.026381801813840866,
0.033306267112493515,
-0.026859089732170105,
-0.23307451605796814,
-0.06782349944114685,
-0.0019858244340866804,
-0.06354628503322601,
0.07740631699562073,
0.09866151213645935,
0.0780390128493309,
0.021794214844703674,
-0.09731794893741608,
-0.08760849386453629,
0.05686582997441292,
0.10732293128967285,
0.0023640308063477278,
-0.002918716287240386,
0.08658154308795929,
-0.036342114210128784,
0.01677820459008217,
0.0912386104464531,
0.013294782489538193,
0.14498746395111084,
0.04715769737958908,
0.17620420455932617,
0.08277589827775955,
0.07846562564373016,
0.003410395933315158,
0.011320756748318672,
0.008235873654484749,
0.044780924916267395,
-0.006131312344223261,
-0.0848819762468338,
-0.02776206284761429,
0.10752521455287933,
0.06370342522859573,
0.016796445474028587,
0.017344636842608452,
-0.05728970840573311,
0.08524413406848907,
0.18406425416469574,
-0.002633927622810006,
-0.18432281911373138,
-0.05770765617489815,
0.07218682020902634,
-0.09839048981666565,
-0.10539096593856812,
-0.00723700225353241,
0.02178032509982586,
-0.16946057975292206,
0.03620018810033798,
-0.02362026832997799,
0.10919876396656036,
-0.13090506196022034,
-0.01869846321642399,
0.08002742379903793,
0.07152026891708374,
-0.0031599143985658884,
0.056512217968702316,
-0.1868113875389099,
0.09503406286239624,
0.013970657251775265,
0.0697934478521347,
-0.09368602931499481,
0.09287985414266586,
-0.008849430829286575,
-0.026499394327402115,
0.14446701109409332,
-0.004401217680424452,
-0.06620814651250839,
-0.07032917439937592,
-0.09607784450054169,
-0.007364852819591761,
0.12227921187877655,
-0.13433295488357544,
0.08828657120466232,
-0.02958436869084835,
-0.034628983587026596,
-0.014183561317622662,
-0.0855000838637352,
-0.10762646794319153,
-0.17592936754226685,
0.05824372172355652,
-0.1235247254371643,
0.036857567727565765,
-0.10702664405107498,
-0.021083727478981018,
-0.029708638787269592,
0.1712174266576767,
-0.24061107635498047,
-0.07881004363298416,
-0.14433011412620544,
-0.09914591908454895,
0.12869399785995483,
-0.04734301567077637,
0.09356654435396194,
-0.02294059656560421,
0.1584029644727707,
0.016575131565332413,
-0.021096564829349518,
0.08110643178224564,
-0.08579336851835251,
-0.2013741284608841,
-0.06729526072740555,
0.1667507141828537,
0.11356096714735031,
0.028554249554872513,
0.00021348004520405084,
0.03888364136219025,
-0.02329942025244236,
-0.12095320969820023,
0.01913701742887497,
0.1473778784275055,
0.06899469345808029,
0.008328313007950783,
-0.015725411474704742,
-0.10770174860954285,
-0.07449213415384293,
-0.02470727078616619,
0.02393377758562565,
0.1620502769947052,
-0.07433250546455383,
0.1653832495212555,
0.14307019114494324,
-0.05678045377135277,
-0.20564031600952148,
-0.004954501520842314,
0.026278968900442123,
-0.011154405772686005,
0.008703439496457577,
-0.1850665956735611,
0.08444999903440475,
0.0019649346359074116,
-0.05588759109377861,
0.10494216531515121,
-0.16007831692695618,
-0.13503114879131317,
0.081987164914608,
0.05090386047959328,
-0.190145805478096,
-0.1397211104631424,
-0.0986657589673996,
-0.0438401997089386,
-0.1640320122241974,
0.09016454964876175,
0.011982852593064308,
0.013060753233730793,
0.03215835615992546,
0.00997347291558981,
0.024044077843427658,
-0.050926510244607925,
0.17516721785068512,
-0.012887895107269287,
0.026755787432193756,
-0.09369775652885437,
-0.08567874133586884,
0.014542883262038231,
-0.04831458628177643,
0.07301216572523117,
-0.027258891612291336,
0.01678038388490677,
-0.10315357893705368,
-0.03471795842051506,
-0.04467841982841492,
0.01759176142513752,
-0.09924584627151489,
-0.08678551763296127,
-0.05264589935541153,
0.08543965965509415,
0.09601205587387085,
-0.019729604944586754,
-0.03255130350589752,
-0.07696829736232758,
0.056086186319589615,
0.22337792813777924,
0.17939896881580353,
0.04744863137602806,
-0.07171594351530075,
-0.002723131561651826,
-0.015915779396891594,
0.04550015926361084,
-0.19737431406974792,
0.05970478802919388,
0.05623520165681839,
0.02068583481013775,
0.1036977469921112,
-0.02265029028058052,
-0.15529058873653412,
-0.07423704117536545,
0.06274627894163132,
-0.06600723415613174,
-0.20556195080280304,
0.009404796175658703,
0.04761991277337074,
-0.1723693460226059,
-0.0333247110247612,
0.0480525940656662,
-0.007163160480558872,
-0.03616609424352646,
0.01816665008664131,
0.09348054975271225,
0.0033172310795634985,
0.08192651718854904,
0.07648915797472,
0.08316144347190857,
-0.10130025446414948,
0.08446116000413895,
0.09844685345888138,
-0.060192350298166275,
0.02733948454260826,
0.09193270653486252,
-0.05831551551818848,
-0.036187272518873215,
0.03698268160223961,
0.08099217712879181,
0.02633502706885338,
-0.04658699780702591,
0.007984031923115253,
-0.09199433028697968,
0.06505311280488968,
0.11281085014343262,
0.029439743608236313,
0.022750042378902435,
0.04665811359882355,
0.04562155902385712,
-0.073212169110775,
0.12069565057754517,
0.028477732092142105,
0.015673451125621796,
-0.04220086708664894,
-0.03826799616217613,
0.009484526701271534,
-0.028716184198856354,
-0.005086944438517094,
-0.01901283487677574,
-0.08357292413711548,
-0.01591898314654827,
-0.12416110187768936,
0.0014331045094877481,
-0.060666002333164215,
0.014897594228386879,
0.02503013238310814,
-0.03190592676401138,
0.008168932050466537,
0.008999391458928585,
-0.06911855190992355,
-0.0667494684457779,
-0.01107252947986126,
0.09214410930871964,
-0.17018061876296997,
0.02913808822631836,
0.08447875827550888,
-0.11064672470092773,
0.10246492922306061,
0.006543856579810381,
-0.009631764143705368,
0.01821054145693779,
-0.1580088883638382,
0.041540052741765976,
-0.03687871992588043,
0.008244183845818043,
0.018192864954471588,
-0.19031718373298645,
0.0022233319468796253,
-0.032371241599321365,
-0.0713675394654274,
-0.010592167265713215,
-0.012611191719770432,
-0.1175762265920639,
0.10545824468135834,
0.003398436587303877,
-0.07779555022716522,
-0.029375309124588966,
0.031890060752630234,
0.0767318531870842,
-0.029489094391465187,
0.14903375506401062,
-0.010945397429168224,
0.06344805657863617,
-0.16184058785438538,
-0.012112514115869999,
-0.008795775473117828,
0.009387471713125706,
-0.05059373006224632,
-0.0023798528127372265,
0.051249098032712936,
-0.014759009703993797,
0.18000589311122894,
-0.03264591097831726,
0.014091522432863712,
0.06283827871084213,
0.04961233586072922,
-0.02504689060151577,
0.09745560586452484,
0.04935402050614357,
0.016042273491621017,
0.010107748210430145,
0.010634302161633968,
-0.04519105702638626,
-0.03718317672610283,
-0.1896188110113144,
0.06667887419462204,
0.19332972168922424,
0.09775267541408539,
-0.021238725632429123,
0.07185591757297516,
-0.10060291737318039,
-0.09193979948759079,
0.1432638168334961,
-0.039614953100681305,
-0.003152070799842477,
-0.07366806268692017,
0.12533800303936005,
0.14702938497066498,
-0.18035173416137695,
0.0680631548166275,
-0.06366228312253952,
-0.04062335565686226,
-0.10973858088254929,
-0.19396264851093292,
-0.06291978806257248,
-0.043153245002031326,
-0.01706063002347946,
-0.046428751200437546,
0.06866542994976044,
0.07235037535429001,
-0.005334464833140373,
-0.008923451416194439,
0.07358722388744354,
-0.03242181986570358,
-0.0023431198205798864,
0.027715085074305534,
0.060844551771879196,
0.009789250791072845,
-0.03430457413196564,
0.013830730691552162,
-0.009553893469274044,
0.055388353765010834,
0.08014345169067383,
0.05010252445936203,
-0.018158378079533577,
0.021721720695495605,
-0.03957204148173332,
-0.10294679552316666,
0.05101633816957474,
-0.029352717101573944,
-0.07048176229000092,
0.1506207436323166,
0.019765805453062057,
0.008169750683009624,
-0.00927541870623827,
0.23298712074756622,
-0.061777859926223755,
-0.09948190301656723,
-0.14721636474132538,
0.06843370944261551,
-0.044959235936403275,
0.050324033945798874,
0.03928495943546295,
-0.112355075776577,
0.026658296585083008,
0.15314003825187683,
0.1527816653251648,
-0.03738558664917946,
0.02435494400560856,
0.032263368368148804,
0.007983527146279812,
-0.01703016646206379,
0.03988349065184593,
0.05664530023932457,
0.1520930528640747,
-0.046840306371450424,
0.07457534968852997,
0.004483088385313749,
-0.08482256531715393,
-0.03528733178973198,
0.12070002406835556,
-0.020297368988394737,
0.010244566015899181,
-0.059731606394052505,
0.11496695131063461,
-0.0638689175248146,
-0.2224048227071762,
0.04006026312708855,
-0.06709709763526917,
-0.12944550812244415,
-0.021726736798882484,
0.06823421269655228,
-0.009106227196753025,
0.018608465790748596,
0.07853177189826965,
-0.0701594352722168,
0.1892324835062027,
0.03615923225879669,
-0.05911361053586006,
-0.04938262328505516,
0.06969781219959259,
-0.0822150930762291,
0.29828280210494995,
0.017663899809122086,
0.03969915956258774,
0.10929078608751297,
-0.014072122052311897,
-0.13797621428966522,
0.034022893756628036,
0.09724123775959015,
-0.094990573823452,
0.05288228765130043,
0.17340928316116333,
0.0039305174723267555,
0.1284504532814026,
0.07164544612169266,
-0.08326496928930283,
0.047714803367853165,
-0.068685382604599,
-0.0693238228559494,
-0.10318871587514877,
0.09887052327394485,
-0.0937386229634285,
0.142961323261261,
0.1215214654803276,
-0.055416040122509,
0.01026212889701128,
-0.03587771952152252,
0.048618871718645096,
-0.005160714965313673,
0.12107990682125092,
0.014536378905177116,
-0.18938297033309937,
0.030264662578701973,
-0.03206425532698631,
0.09826018661260605,
-0.1596945971250534,
-0.08264226466417313,
0.04596994072198868,
0.010617619380354881,
-0.06794066727161407,
0.12218311429023743,
0.060725919902324677,
0.02809346467256546,
-0.05020172521471977,
-0.025824300944805145,
-0.012600240297615528,
0.14013776183128357,
-0.10047949850559235,
-0.005263396073132753
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# long-t5-tglobal-base-finetuned-govReport-4096
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on the gov_report_summarization_dataset dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4052
- Rouge1: 0.0432
- Rouge2: 0.0217
- Rougel: 0.0378
- Rougelsum: 0.0408
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|
| 15.9484 | 0.99 | 31 | 2.7412 | 0.0382 | 0.0142 | 0.0319 | 0.0354 |
| 3.0143 | 1.98 | 62 | 1.7096 | 0.0385 | 0.0144 | 0.032 | 0.0355 |
| 2.1893 | 2.98 | 93 | 1.4976 | 0.0376 | 0.0138 | 0.0313 | 0.0347 |
| 1.6128 | 4.0 | 125 | 1.4406 | 0.041 | 0.0174 | 0.0354 | 0.0387 |
| 1.5438 | 4.99 | 156 | 1.4292 | 0.043 | 0.0203 | 0.0368 | 0.0408 |
| 1.5015 | 5.98 | 187 | 1.4220 | 0.0427 | 0.0205 | 0.0367 | 0.0405 |
| 1.4723 | 6.98 | 218 | 1.4071 | 0.0431 | 0.0215 | 0.0376 | 0.0408 |
| 1.4707 | 8.0 | 250 | 1.4089 | 0.0427 | 0.0212 | 0.0373 | 0.0405 |
| 1.4447 | 8.99 | 281 | 1.4046 | 0.0431 | 0.0216 | 0.0379 | 0.0408 |
| 1.4884 | 9.92 | 310 | 1.4052 | 0.0432 | 0.0217 | 0.0378 | 0.0408 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1 | {"license": "apache-2.0", "tags": ["summarization", "generated_from_trainer"], "datasets": ["gov_report_summarization_dataset"], "metrics": ["rouge"], "base_model": "google/long-t5-tglobal-base", "pipeline_tag": "summarization", "model-index": [{"name": "long-t5-tglobal-base-finetuned-govReport-4096", "results": [{"task": {"type": "text2text-generation", "name": "Sequence-to-sequence Language Modeling"}, "dataset": {"name": "gov_report_summarization_dataset", "type": "gov_report_summarization_dataset", "config": "document", "split": "validation", "args": "document"}, "metrics": [{"type": "rouge", "value": 0.0432, "name": "Rouge1"}]}]}]} | summarization | RMWeerasinghe/long-t5-tglobal-base-finetuned-govReport-4096 | [
"transformers",
"safetensors",
"longt5",
"text2text-generation",
"summarization",
"generated_from_trainer",
"dataset:gov_report_summarization_dataset",
"base_model:google/long-t5-tglobal-base",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T11:45:15+00:00 | [] | [] | TAGS
#transformers #safetensors #longt5 #text2text-generation #summarization #generated_from_trainer #dataset-gov_report_summarization_dataset #base_model-google/long-t5-tglobal-base #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| long-t5-tglobal-base-finetuned-govReport-4096
=============================================
This model is a fine-tuned version of google/long-t5-tglobal-base on the gov\_report\_summarization\_dataset dataset.
It achieves the following results on the evaluation set:
* Loss: 1.4052
* Rouge1: 0.0432
* Rouge2: 0.0217
* Rougel: 0.0378
* Rougelsum: 0.0408
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 4e-05
* train\_batch\_size: 4
* eval\_batch\_size: 4
* seed: 42
* gradient\_accumulation\_steps: 8
* total\_train\_batch\_size: 32
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
### Training results
### Framework versions
* Transformers 4.37.0
* Pytorch 2.1.2
* Datasets 2.1.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #safetensors #longt5 #text2text-generation #summarization #generated_from_trainer #dataset-gov_report_summarization_dataset #base_model-google/long-t5-tglobal-base #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1"
] | [
93,
126,
4,
30
] | [
"passage: TAGS\n#transformers #safetensors #longt5 #text2text-generation #summarization #generated_from_trainer #dataset-gov_report_summarization_dataset #base_model-google/long-t5-tglobal-base #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 8\n* total\\_train\\_batch\\_size: 32\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1"
] | [
-0.1375769078731537,
0.14635081589221954,
-0.0022383294999599457,
0.07640712708234787,
0.13612687587738037,
-0.005901260767132044,
0.13035981357097626,
0.12915045022964478,
-0.11904303729534149,
0.0856601744890213,
0.13835449516773224,
0.08531451970338821,
0.03522761911153793,
0.1818268597126007,
-0.03614962473511696,
-0.29175618290901184,
0.004811831284314394,
0.0014139091363176703,
-0.15715879201889038,
0.12304164469242096,
0.11674214154481888,
-0.11712741106748581,
0.08145574480295181,
0.028768595308065414,
-0.11780831962823868,
0.0029657280538231134,
-0.027137404307723045,
-0.07013309001922607,
0.099613256752491,
0.0428696870803833,
0.0653228685259819,
0.02314096689224243,
0.06826674938201904,
-0.19854506850242615,
0.005799008533358574,
0.052144117653369904,
0.016809070482850075,
0.08811766654253006,
0.08128833025693893,
-0.03036695532500744,
0.10038775950670242,
-0.10681493580341339,
0.055416133254766464,
0.04938003793358803,
-0.11053671687841415,
-0.2849103510379791,
-0.09632246196269989,
0.06441483646631241,
0.12912030518054962,
0.0885855033993721,
-0.035325828939676285,
0.10424096882343292,
-0.10269945114850998,
0.08321189880371094,
0.22854359447956085,
-0.27491888403892517,
-0.07952813059091568,
0.02942187711596489,
0.02511759288609028,
0.009646913036704063,
-0.11404293775558472,
-0.020506324246525764,
0.07699939608573914,
0.00580607121810317,
0.09404610842466354,
0.009212806820869446,
0.01338591892272234,
0.02117714285850525,
-0.13465528190135956,
-0.04030425846576691,
0.2247515767812729,
0.10660819709300995,
-0.049699001014232635,
-0.09460878372192383,
-0.02727418765425682,
-0.17968590557575226,
-0.018477467820048332,
0.001244624494574964,
0.06018265336751938,
-0.052286408841609955,
-0.12053637951612473,
0.01644120365381241,
-0.09936995059251785,
-0.06633061915636063,
0.012247119098901749,
0.09196445345878601,
0.05629254877567291,
-0.01787826232612133,
-0.028385581448674202,
0.12627588212490082,
0.03259593993425369,
-0.15847201645374298,
-0.034224558621644974,
0.02967827580869198,
-0.034530580043792725,
-0.045095451176166534,
-0.03512853384017944,
0.0015977167058736086,
0.03745739161968231,
0.20206794142723083,
-0.04271590709686279,
0.057423386722803116,
0.04840001463890076,
0.017878198996186256,
-0.08423534035682678,
0.18140234053134918,
-0.07513517141342163,
-0.07771547138690948,
0.01099893543869257,
0.09925543516874313,
0.033070772886276245,
0.02054687589406967,
-0.05838510021567345,
0.03178062289953232,
0.0934276431798935,
0.04633494094014168,
-0.02919216826558113,
0.05046282708644867,
-0.06325239688158035,
-0.02202250063419342,
0.008149000816047192,
-0.09681335091590881,
0.012413861230015755,
0.02399151585996151,
-0.10870140790939331,
-0.03350484371185303,
0.020712077617645264,
0.011701824143528938,
0.0035473385360091925,
0.09904763102531433,
-0.09965623170137405,
-0.02697531320154667,
-0.07844224572181702,
-0.06669345498085022,
0.027579480782151222,
-0.02184818871319294,
0.025411630049347878,
-0.07744442671537399,
-0.2101164162158966,
-0.05304860696196556,
0.04234437271952629,
-0.0400029718875885,
-0.0796632245182991,
-0.08120445907115936,
-0.08754869550466537,
0.012841525487601757,
-0.014565305784344673,
0.12456939369440079,
-0.06456499546766281,
0.09195258468389511,
0.060546912252902985,
0.06115151569247246,
0.06082617864012718,
0.03696915879845619,
-0.09500330686569214,
0.05289747938513756,
-0.15265999734401703,
0.07386087626218796,
-0.05897284671664238,
0.11220867931842804,
-0.12383931130170822,
-0.1133158802986145,
-0.01655292510986328,
-0.0033529074862599373,
0.0802621990442276,
0.1507762223482132,
-0.13590697944164276,
-0.08792681246995926,
0.1925755739212036,
-0.07422749698162079,
-0.18004481494426727,
0.13034987449645996,
-0.024510934948921204,
0.05385133996605873,
0.06573311239480972,
0.13020576536655426,
0.10028194636106491,
-0.060941409319639206,
-0.024574805051088333,
-0.04594363272190094,
0.09779886901378632,
0.007645922247320414,
0.10450038313865662,
-0.03587156534194946,
0.022367557510733604,
0.02400904893875122,
-0.05502849817276001,
0.05485684797167778,
-0.10950777679681778,
-0.07708990573883057,
-0.024412376806139946,
-0.09956018626689911,
0.023735366761684418,
0.039342693984508514,
0.08997225761413574,
-0.11179046332836151,
-0.11541637778282166,
0.007006439846009016,
0.12323986738920212,
-0.06935888528823853,
0.0026121416594833136,
-0.06784318387508392,
0.10802670568227768,
-0.035913921892642975,
-0.011290538124740124,
-0.1310478001832962,
-0.07317683100700378,
0.018246620893478394,
-0.028773093596100807,
-0.009851573035120964,
-0.031198306009173393,
0.06867101788520813,
0.07203256338834763,
-0.06092984974384308,
-0.07585449516773224,
-0.03686804696917534,
-0.02166420966386795,
-0.08377691358327866,
-0.1985049545764923,
-0.029111359268426895,
-0.010014591738581657,
0.20198629796504974,
-0.26005885004997253,
0.04764753580093384,
0.011592581868171692,
0.13053777813911438,
0.0515635646879673,
-0.03934761881828308,
-0.0008524711010977626,
0.004674891941249371,
-0.05232047289609909,
-0.08350889384746552,
0.013716436922550201,
0.014138594269752502,
-0.11135715246200562,
-0.03744596242904663,
-0.10502775013446808,
0.15947572886943817,
0.10775332152843475,
-0.017064779996871948,
-0.09018416702747345,
-0.03653555363416672,
-0.0798892006278038,
-0.04335543513298035,
-0.046915989369153976,
-0.022846302017569542,
0.11056424677371979,
-0.0006058019353076816,
0.14896421134471893,
-0.0920390710234642,
-0.05515424907207489,
0.010964421555399895,
-0.02721191942691803,
0.0047407494857907295,
0.14571990072727203,
0.03504577651619911,
-0.09151618182659149,
0.1343374401330948,
0.10993736982345581,
-0.051552437245845795,
0.16669222712516785,
-0.07256415486335754,
-0.0904901847243309,
-0.026573412120342255,
0.04600897431373596,
0.01760840229690075,
0.10882949829101562,
-0.12863515317440033,
-0.0009844418382272124,
0.02963045984506607,
0.024658327922225,
0.02137463353574276,
-0.18693853914737701,
-0.020718218758702278,
0.043467093259096146,
-0.0521155521273613,
-0.03538021072745323,
-0.00363665702752769,
-0.01852940395474434,
0.09089522808790207,
0.012305546551942825,
-0.033705200999975204,
0.023233573883771896,
-0.005366777069866657,
-0.09796880185604095,
0.22600999474525452,
-0.0730091854929924,
-0.13211601972579956,
-0.13956710696220398,
0.02914874255657196,
-0.038843993097543716,
0.011012488976120949,
0.06194465979933739,
-0.11207720637321472,
-0.040807195007801056,
-0.0831882581114769,
0.06832198798656464,
0.007980870082974434,
0.02604646235704422,
0.017302479594945908,
0.03088509663939476,
0.08095727860927582,
-0.11094622313976288,
0.019187206402420998,
-0.028122620657086372,
-0.038059137761592865,
0.02460298128426075,
0.00012265273835510015,
0.0890093743801117,
0.11621560156345367,
0.03404431417584419,
0.032942187041044235,
-0.04426581785082817,
0.19828173518180847,
-0.10133985430002213,
-0.04313920810818672,
0.1377594769001007,
0.03880210965871811,
0.03038530983030796,
0.10853677988052368,
0.03293348848819733,
-0.11212210357189178,
0.0528649240732193,
0.062356673181056976,
-0.011225281283259392,
-0.23801448941230774,
-0.006795470602810383,
-0.04792739450931549,
0.03222833201289177,
0.10865963995456696,
0.031752992421388626,
0.014577244408428669,
0.07692009210586548,
-0.02813107520341873,
0.038930442184209824,
0.003974034450948238,
0.07649754732847214,
0.0680350512266159,
0.03233480080962181,
0.11696163564920425,
-0.041440922766923904,
-0.04424743726849556,
0.04458886757493019,
-0.04729577898979187,
0.26351550221443176,
-0.02688249573111534,
0.1672513484954834,
0.05328591167926788,
0.1395239681005478,
-0.013949494808912277,
0.07560525834560394,
0.027122575789690018,
-0.04404503479599953,
0.007953919470310211,
-0.055295392870903015,
-0.021351665258407593,
0.052777521312236786,
-0.01997702568769455,
0.10393624007701874,
-0.15397366881370544,
0.05694970861077309,
0.06641611456871033,
0.3109254837036133,
0.09513170272111893,
-0.35551366209983826,
-0.12848493456840515,
0.023540474474430084,
-0.05260976776480675,
-0.02587290108203888,
0.03723881393671036,
0.08430364727973938,
-0.11248979717493057,
0.07878944277763367,
-0.07638175785541534,
0.08074592053890228,
-0.031635720282793045,
0.009836203418672085,
0.07152219116687775,
0.07585714012384415,
-0.021551525220274925,
0.08189518004655838,
-0.24120905995368958,
0.28560522198677063,
-0.011595758609473705,
0.07602691650390625,
-0.05299025774002075,
0.028909731656312943,
0.03623049706220627,
0.024308588355779648,
0.09012377262115479,
-0.018608879297971725,
-0.058613698929548264,
-0.1519549936056137,
-0.10627029091119766,
0.03658610209822655,
0.10264618694782257,
-0.12032262235879898,
0.13050924241542816,
-0.03222503140568733,
-0.019389528781175613,
0.051747728139162064,
-0.050514861941337585,
-0.08633622527122498,
-0.08199340850114822,
-0.007803216576576233,
-0.018137339502573013,
0.07444299012422562,
-0.11946035921573639,
-0.11144552379846573,
-0.06325250118970871,
0.16901589930057526,
-0.035802580416202545,
-0.05099155008792877,
-0.12203635275363922,
0.13469617068767548,
0.12208835035562515,
-0.08281102031469345,
0.053362999111413956,
0.017976850271224976,
0.09752590209245682,
0.07420330494642258,
-0.013064390048384666,
0.11190024018287659,
-0.08816321939229965,
-0.2405933439731598,
-0.05676041916012764,
0.17161139845848083,
0.01896837167441845,
0.04691069945693016,
-0.022657357156276703,
0.011597642675042152,
-0.026594357565045357,
-0.08912161737680435,
0.020076628774404526,
-0.007854034192860126,
0.06924448907375336,
0.0691656693816185,
-0.03259941563010216,
0.03584527596831322,
-0.044048309326171875,
-0.06767693907022476,
0.13069626688957214,
0.3015870153903961,
-0.07048095762729645,
-0.004144268110394478,
0.015597626566886902,
-0.028247974812984467,
-0.13544641435146332,
0.05506591871380806,
0.09962107241153717,
0.03718370944261551,
0.024412354454398155,
-0.17127658426761627,
0.1046895906329155,
0.1058434247970581,
-0.027788130566477776,
0.11181866377592087,
-0.298697292804718,
-0.14420166611671448,
0.1035476103425026,
0.09357810020446777,
0.012395920231938362,
-0.16800838708877563,
-0.05967528745532036,
-0.01410176046192646,
-0.09543821960687637,
0.08613808453083038,
-0.08418891578912735,
0.10144270211458206,
-0.010713632218539715,
0.02749025635421276,
0.025871001183986664,
-0.061436817049980164,
0.15077219903469086,
-0.006295688450336456,
0.08191019296646118,
-0.027702653780579567,
0.01922743022441864,
0.06569337099790573,
-0.0749022513628006,
0.05544532462954521,
-0.0784369483590126,
0.06109865382313728,
-0.11708144843578339,
-0.03555762395262718,
-0.08096988499164581,
0.031883105635643005,
-0.058731433004140854,
-0.043973542749881744,
-0.05659238621592522,
0.0436968058347702,
0.05774826183915138,
0.003896381938830018,
0.1643858104944229,
0.018897483125329018,
0.12820187211036682,
0.06105426326394081,
0.08375708013772964,
-0.0352393202483654,
-0.08722995221614838,
-0.010610764846205711,
-0.003885208861902356,
0.03452782705426216,
-0.17978546023368835,
0.036166053265333176,
0.13226141035556793,
0.04590164124965668,
0.15551182627677917,
0.07246149331331253,
-0.04902847111225128,
0.01945001818239689,
0.08726681023836136,
-0.11145369708538055,
-0.1352284997701645,
-0.044025566428899765,
-0.06551235169172287,
-0.1644790768623352,
0.05934703350067139,
0.0981728807091713,
-0.060773883014917374,
-0.005925531033426523,
-0.01242170762270689,
0.03202671557664871,
-0.0280802883207798,
0.22651848196983337,
0.05026550590991974,
0.0773303210735321,
-0.09159982204437256,
0.09867437928915024,
0.03925175219774246,
-0.09248173236846924,
0.006719366181641817,
0.05632014200091362,
-0.07238170504570007,
-0.028112228959798813,
0.011204111389815807,
0.12268736958503723,
-0.024616267532110214,
-0.05291856825351715,
-0.1764390915632248,
-0.12287627160549164,
0.07477844506502151,
0.05575660616159439,
0.07706520706415176,
0.036729197949171066,
-0.011977669782936573,
0.031204059720039368,
-0.10550843179225922,
0.13471536338329315,
0.12014269083738327,
0.07963067293167114,
-0.16585396230220795,
0.13890717923641205,
-0.00716045219451189,
0.008680091239511967,
-0.0031552023719996214,
0.02147027477622032,
-0.11455428600311279,
-0.003712151665240526,
-0.11260655522346497,
-0.02600005641579628,
-0.0569574311375618,
0.0011822048109024763,
0.005391221027821302,
-0.04346565529704094,
-0.07526646554470062,
0.02719038724899292,
-0.1050821915268898,
-0.043615106493234634,
0.02403278648853302,
0.08024952560663223,
-0.10798349976539612,
-0.020296644419431686,
0.03668760135769844,
-0.11435671150684357,
0.10627475380897522,
0.04543056711554527,
0.052962735295295715,
0.021172910928726196,
-0.10179400444030762,
0.039128441363573074,
0.05491015315055847,
-0.01798776350915432,
0.029596205800771713,
-0.15449054539203644,
0.009504381567239761,
-0.02598416619002819,
0.019964931532740593,
-0.002070633927360177,
-0.016372347250580788,
-0.1395140141248703,
-0.03194006532430649,
-0.03151858597993851,
-0.026182562112808228,
-0.060494471341371536,
0.028034886345267296,
0.015715789049863815,
-0.0008394597680307925,
0.18877823650836945,
-0.07847855240106583,
0.015650542452931404,
-0.24041937291622162,
-0.002841000445187092,
-0.02241220325231552,
-0.08076203614473343,
-0.1030719205737114,
-0.02256825380027294,
0.08352743834257126,
-0.06078525632619858,
0.09522729367017746,
-0.04780978336930275,
0.0614699125289917,
0.0344119593501091,
-0.040186237543821335,
0.1002686396241188,
0.04157790169119835,
0.19081127643585205,
0.01475018635392189,
-0.009724759496748447,
0.03985850140452385,
0.03208743408322334,
0.10662315785884857,
0.03887474164366722,
0.17068161070346832,
0.13228633999824524,
-0.08495766669511795,
0.1071740910410881,
0.01929842121899128,
-0.1006549596786499,
-0.1506625860929489,
0.09241890907287598,
-0.039841149002313614,
0.11445311456918716,
-0.0002769474813248962,
0.12156922370195389,
0.13294947147369385,
-0.1852586716413498,
0.010050917975604534,
-0.05180908739566803,
-0.0651538223028183,
-0.10038519650697708,
-0.05310045927762985,
-0.09011095762252808,
-0.19116713106632233,
0.022169725969433784,
-0.13613374531269073,
0.004708484746515751,
0.06574033200740814,
0.02644551917910576,
-0.008714083582162857,
0.17199622094631195,
0.02538955956697464,
-0.007785908877849579,
0.0817284807562828,
0.008922344073653221,
-0.02159184403717518,
-0.05847892910242081,
-0.0871034637093544,
0.00876521784812212,
-0.037303317338228226,
0.03393286466598511,
-0.06645473092794418,
-0.07237206399440765,
0.053745292127132416,
0.013094901107251644,
-0.08582138270139694,
0.010237042792141438,
0.017556389793753624,
0.06267716735601425,
0.011122848838567734,
0.019306743517518044,
0.007165050134062767,
-0.014421817846596241,
0.2585914731025696,
-0.09161458909511566,
-0.028582420200109482,
-0.1486051082611084,
0.19523373246192932,
0.0338732972741127,
-0.015093590132892132,
0.03623902425169945,
-0.11933812499046326,
0.0098591148853302,
0.18360421061515808,
0.17039184272289276,
-0.015997523441910744,
-0.02591475285589695,
-0.0007783172186464071,
-0.02149159088730812,
-0.038582585752010345,
0.051435451954603195,
0.13114821910858154,
0.07303565740585327,
-0.05802224576473236,
-0.04277293384075165,
-0.007486946415156126,
-0.03538108244538307,
-0.03738429769873619,
0.11208420991897583,
0.02032768726348877,
0.01912357099354267,
-0.021097328513860703,
0.09327773749828339,
-0.041749730706214905,
-0.11711149662733078,
0.04965013638138771,
-0.19675859808921814,
-0.18574108183383942,
-0.05166381597518921,
0.03824501484632492,
0.040810126811265945,
0.08487103134393692,
-0.008017634972929955,
-0.043030913919210434,
0.08446236699819565,
-0.008920608088374138,
-0.08388199657201767,
-0.12392694503068924,
0.08280158787965775,
-0.0791962519288063,
0.2493923157453537,
-0.0407334603369236,
0.004787829238921404,
0.14293311536312103,
0.011851053684949875,
-0.10667447000741959,
0.03448594734072685,
0.07402712106704712,
-0.06953668594360352,
0.0621756948530674,
0.11286035925149918,
-0.02452707104384899,
0.11696068197488785,
0.0526571087539196,
-0.12407273054122925,
-0.004099917132407427,
-0.03382818400859833,
-0.039249520748853683,
-0.10384539514780045,
-0.0021827248856425285,
-0.05749236419796944,
0.12922917306423187,
0.21957971155643463,
-0.08986563235521317,
0.0000014349818684422644,
-0.04510650783777237,
0.06236086040735245,
0.07147645205259323,
0.060293469578027725,
0.008397581987082958,
-0.27763232588768005,
0.035429708659648895,
0.036569900810718536,
-0.011720644310116768,
-0.266263484954834,
-0.08135227859020233,
0.019042834639549255,
-0.05819489434361458,
-0.0713462233543396,
0.10533958673477173,
0.0951933041214943,
0.050682518631219864,
-0.054141294211149216,
-0.05222414806485176,
-0.08321022242307663,
0.17988845705986023,
-0.15087854862213135,
-0.10020451992750168
] |
null | null | diffusers |
# SD15 Megaphone LoRA
<Gallery />
([CivitAI](https://civitai.com/models/304186))
## Model description
<p>A SD v1.5 LoRA in cases where you want a Megaphone in your images.</p>
## Trigger words
You should use `megaphone` to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
[Download](/Norod78/sd15-megaphone-lora/tree/main) them in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained('runwayml/stable-diffusion-v1-5', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('Norod78/sd15-megaphone-lora', weight_name='SD15-Megaphone-LoRA.safetensors')
image = pipeline('A scary sea monster is talking holding a megaphone in its tentacle during a storm , Very detailed, clean, high quality, sharp image').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
| {"license": "other", "tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora", "objects", "megaphone"], "license_name": "bespoke-lora-trained-license", "license_link": "https://multimodal.art/civitai-licenses?allowNoCredit=True&allowCommercialUse=Rent&allowDerivatives=True&allowDifferentLicense=False", "base_model": "runwayml/stable-diffusion-v1-5", "instance_prompt": "megaphone", "widget": [{"text": "The girl with a pearl earring shouting into a megaphone with an angry crowd of painters behind her ", "output": {"url": "6587912.jpeg"}}, {"text": "A very silly alien holding a megaphone on a spaceship ", "output": {"url": "6587911.jpeg"}}, {"text": "A cute Pikachu is talking using a megaphone ", "output": {"url": "6587920.jpeg"}}, {"text": "A old woman holding a megaphone inside an icecream place ", "output": {"url": "6587914.jpeg"}}, {"text": "A rare megaphone snake , a snake-megaphone hybrid creature , Very detailed, clean, high quality, sharp image", "output": {"url": "6587924.jpeg"}}, {"text": "A very silly cartoon having a bath with a megaphone , Eric Wallis", "output": {"url": "6587929.jpeg"}}, {"text": "Marge Simpson holding a megaphone in her hand with her town in the background ", "output": {"url": "6587915.jpeg"}}, {"text": "A scary dragon is talking using a megaphone in a volcanic area , Very detailed, clean, high quality, sharp image, Naoto Hattori", "output": {"url": "6587922.jpeg"}}, {"text": "A scary sea monster is talking holding a megaphone in its tentacle during a storm , Very detailed, clean, high quality, sharp image", "output": {"url": "6587921.jpeg"}}]} | text-to-image | Norod78/sd15-megaphone-lora | [
"diffusers",
"text-to-image",
"stable-diffusion",
"lora",
"template:sd-lora",
"objects",
"megaphone",
"base_model:runwayml/stable-diffusion-v1-5",
"license:other",
"region:us"
] | 2024-02-13T11:53:31+00:00 | [] | [] | TAGS
#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #objects #megaphone #base_model-runwayml/stable-diffusion-v1-5 #license-other #region-us
|
# SD15 Megaphone LoRA
<Gallery />
(CivitAI)
## Model description
<p>A SD v1.5 LoRA in cases where you want a Megaphone in your images.</p>
## Trigger words
You should use 'megaphone' to trigger the image generation.
## Download model
Weights for this model are available in Safetensors format.
Download them in the Files & versions tab.
## Use it with the diffusers library
For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers
| [
"# SD15 Megaphone LoRA \n\n<Gallery />\n\n\n\n(CivitAI)",
"## Model description\n\n<p>A SD v1.5 LoRA in cases where you want a Megaphone in your images.</p>",
"## Trigger words\nYou should use 'megaphone' to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers"
] | [
"TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #objects #megaphone #base_model-runwayml/stable-diffusion-v1-5 #license-other #region-us \n",
"# SD15 Megaphone LoRA \n\n<Gallery />\n\n\n\n(CivitAI)",
"## Model description\n\n<p>A SD v1.5 LoRA in cases where you want a Megaphone in your images.</p>",
"## Trigger words\nYou should use 'megaphone' to trigger the image generation.",
"## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.",
"## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers"
] | [
65,
17,
27,
17,
28,
38
] | [
"passage: TAGS\n#diffusers #text-to-image #stable-diffusion #lora #template-sd-lora #objects #megaphone #base_model-runwayml/stable-diffusion-v1-5 #license-other #region-us \n# SD15 Megaphone LoRA \n\n<Gallery />\n\n\n\n(CivitAI)## Model description\n\n<p>A SD v1.5 LoRA in cases where you want a Megaphone in your images.</p>## Trigger words\nYou should use 'megaphone' to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Use it with the diffusers library\n\n\n\nFor more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers"
] | [
-0.04579659923911095,
-0.11474025994539261,
-0.001464654691517353,
0.016179611906409264,
0.16766543686389923,
0.024758361279964447,
0.16711421310901642,
-0.01995891146361828,
-0.022928521037101746,
0.03568767011165619,
0.004039946012198925,
0.06905043125152588,
-0.00007393058331217617,
0.14930665493011475,
-0.05694395676255226,
-0.19513650238513947,
-0.05138865113258362,
-0.05153624713420868,
-0.09794800728559494,
0.04446622356772423,
0.06922639161348343,
-0.036462608724832535,
0.13899073004722595,
-0.06567372381687164,
-0.10945435613393784,
0.045133255422115326,
0.0373404435813427,
-0.02964923158288002,
0.027891075238585472,
0.02352595515549183,
0.0018227738328278065,
0.06542108207941055,
0.10010182112455368,
-0.12194386124610901,
0.04476866126060486,
0.04434115067124367,
0.017599189653992653,
0.014734898693859577,
-0.020042451098561287,
-0.0568523071706295,
0.16529841721057892,
-0.05840688198804855,
-0.026478800922632217,
0.0655025839805603,
-0.004947795532643795,
-0.1630154550075531,
-0.04626381769776344,
-0.12405987083911896,
0.044545672833919525,
0.02548934519290924,
0.03258921205997467,
0.046636953949928284,
0.040657758712768555,
0.06256335973739624,
0.27442842721939087,
-0.18215472996234894,
-0.013199792243540287,
0.24821582436561584,
0.023791689425706863,
0.16791009902954102,
0.0428871251642704,
0.11795183271169662,
0.11469463258981705,
-0.03306719288229942,
0.09770676493644714,
-0.08475830405950546,
0.019962726160883904,
-0.09437159448862076,
-0.10580983012914658,
0.05144910886883736,
0.3169054687023163,
-0.060245331376791,
-0.043474141508340836,
-0.15359993278980255,
-0.09124370664358139,
0.05614443123340607,
-0.04004313051700592,
0.00491286488249898,
0.04588266834616661,
-0.0034806407056748867,
0.00778078893199563,
-0.06925822049379349,
-0.020292263478040695,
-0.10479173809289932,
-0.10199756920337677,
0.10007930546998978,
-0.007459987420588732,
0.053398288786411285,
-0.04291655495762825,
0.05916494503617287,
-0.19696609675884247,
-0.13662005960941315,
0.019402742385864258,
-0.036539625376462936,
0.016466878354549408,
0.03886543586850166,
0.03069688379764557,
-0.05800247564911842,
0.12285357713699341,
0.0499596893787384,
0.059306539595127106,
-0.023500116541981697,
-0.0996321514248848,
0.06099686026573181,
0.08638570457696915,
-0.06815599650144577,
-0.024616675451397896,
-0.2034304291009903,
0.07007219642400742,
0.003931740298867226,
0.132622629404068,
-0.02223087288439274,
-0.09303580969572067,
-0.04048963636159897,
-0.11973506957292557,
0.09999670833349228,
0.006283408496528864,
-0.010117334313690662,
-0.0495801717042923,
-0.01801687851548195,
0.12070305645465851,
-0.03801724687218666,
-0.01457473635673523,
-0.051686469465494156,
0.009718993678689003,
0.22409604489803314,
0.07895049452781677,
0.002828772645443678,
0.06453312188386917,
0.04286424070596695,
-0.03879295289516449,
-0.04812319204211235,
-0.06614896655082703,
-0.07838073372840881,
-0.014129512012004852,
-0.07985848933458328,
-0.0018545587081462145,
-0.17472898960113525,
-0.23453719913959503,
0.016033286228775978,
0.009370200335979462,
-0.04276247322559357,
0.06333336979150772,
-0.022833136841654778,
-0.04262861609458923,
-0.03774246200919151,
-0.02315106801688671,
0.07935752719640732,
-0.04860228672623634,
0.06813518702983856,
0.09492626041173935,
0.14432822167873383,
-0.11484411358833313,
0.02426747977733612,
-0.03548801317811012,
0.06439252942800522,
-0.16614888608455658,
0.089348204433918,
-0.08780351281166077,
0.00889713317155838,
-0.09888141602277756,
-0.0345856174826622,
-0.09171723574399948,
0.033069659024477005,
0.0036114738322794437,
0.09699628502130508,
-0.22031673789024353,
-0.08366120606660843,
-0.010862431488931179,
-0.22338682413101196,
-0.0700196772813797,
0.07775554805994034,
0.03948292136192322,
0.11105885356664658,
0.09821894019842148,
0.10024704784154892,
0.12263515591621399,
-0.24674667418003082,
0.0021636104211211205,
-0.0002704292128328234,
-0.05324258282780647,
-0.10906986147165298,
0.07781843841075897,
0.05340869724750519,
-0.022465873509645462,
0.05148402228951454,
-0.09191033244132996,
0.10174240171909332,
-0.04415522888302803,
-0.019522404298186302,
-0.04272166267037392,
-0.11889608204364777,
0.009636971168220043,
0.019611816853284836,
-0.03144538775086403,
0.0010494926245883107,
0.0522906593978405,
0.05596718192100525,
0.13846343755722046,
-0.041819166392087936,
-0.028091631829738617,
-0.026101315394043922,
0.1854575276374817,
-0.16087493300437927,
-0.004769783932715654,
-0.1097855269908905,
-0.11083429306745529,
0.0006804601871408522,
0.09628713876008987,
0.05128589645028114,
0.008770100772380829,
0.05502700433135033,
0.11782122403383255,
-0.08552830666303635,
0.050185427069664,
0.10015249252319336,
-0.013796929270029068,
0.01705850660800934,
-0.08044848591089249,
-0.022677840664982796,
-0.05522340163588524,
0.04070618003606796,
-0.12071260809898376,
0.017663707956671715,
0.047054387629032135,
0.046507176011800766,
0.09940187633037567,
-0.024747956544160843,
0.0016795970732346177,
0.006834166124463081,
-0.05461401492357254,
-0.031567901372909546,
0.02506341226398945,
-0.05572285130620003,
0.022546853870153427,
0.07092304527759552,
-0.12480369210243225,
0.15971559286117554,
0.15247277915477753,
0.03894445672631264,
-0.004461359698325396,
-0.14411866664886475,
0.052253708243370056,
0.020384684205055237,
-0.15790656208992004,
-0.07713175565004349,
0.030000662431120872,
-0.005150617565959692,
0.11732187122106552,
-0.055983852595090866,
0.03901485726237297,
0.05391068756580353,
-0.02993178926408291,
-0.022200994193553925,
0.046006206423044205,
0.13140490651130676,
0.0028495141305029392,
0.049800027161836624,
0.1432483047246933,
-0.08436205983161926,
0.13645878434181213,
-0.008255691267549992,
-0.04550153389573097,
-0.048275332897901535,
-0.011802545748651028,
0.06942398846149445,
0.07022864371538162,
0.06660991907119751,
-0.004161862190812826,
0.03960275277495384,
-0.025627613067626953,
0.02143792435526848,
-0.0337037555873394,
-0.0049418676644563675,
0.028105031698942184,
-0.06937196850776672,
0.06048760563135147,
0.13264310359954834,
-0.060519181191921234,
0.07265178859233856,
-0.11870293319225311,
0.01849338971078396,
-0.018811574205756187,
-0.04611560329794884,
-0.03266839683055878,
0.06774067878723145,
-0.0675714910030365,
-0.08226673305034637,
-0.12607038021087646,
0.007587720640003681,
-0.0804002657532692,
0.0127335786819458,
0.014633139595389366,
-0.0518404021859169,
-0.06891416758298874,
-0.06763803213834763,
0.1316874623298645,
0.1203228309750557,
0.000038844755181344226,
-0.021130334585905075,
0.026096215471625328,
-0.047959815710783005,
-0.15713438391685486,
-0.02456834353506565,
-0.009092142805457115,
-0.11500222980976105,
0.007613968104124069,
-0.046018436551094055,
0.11813947558403015,
0.08795279264450073,
0.009024450555443764,
0.02737906388938427,
0.028941579163074493,
0.08018951117992401,
-0.021334772929549217,
0.03806019946932793,
0.35228148102760315,
0.17489707469940186,
0.027988390997052193,
0.0777965560555458,
0.023378746584057808,
-0.09468086063861847,
0.06709650158882141,
0.013434208929538727,
-0.15434089303016663,
-0.07806452363729477,
-0.18370889127254486,
-0.07858902215957642,
-0.018301935866475105,
0.0005625379271805286,
0.0384686179459095,
0.04938555881381035,
0.1305904984474182,
0.050694212317466736,
-0.002644491847604513,
0.11967316269874573,
0.04310088977217674,
0.07241205871105194,
-0.032532282173633575,
0.05576009303331375,
-0.07379598915576935,
-0.03869014233350754,
0.13814453780651093,
0.04109783098101616,
0.21117189526557922,
-0.07038406282663345,
0.08532312512397766,
0.05090579017996788,
-0.014781688340008259,
0.11869364976882935,
0.14319363236427307,
-0.07891995459794998,
0.021639542654156685,
-0.031161222606897354,
-0.12308048456907272,
0.03289881348609924,
0.012223483063280582,
0.030352693051099777,
0.019822902977466583,
0.01727229543030262,
0.08468273282051086,
0.019373785704374313,
0.06780076771974564,
0.028262777253985405,
-0.30244144797325134,
0.09229043871164322,
0.09665372967720032,
0.08458426594734192,
-0.017412634566426277,
0.09106483310461044,
0.2325287014245987,
-0.011998016387224197,
0.08346059918403625,
-0.013438098132610321,
0.056006599217653275,
-0.07633031159639359,
-0.044552065432071686,
0.023372763767838478,
0.20285892486572266,
0.0014269949169829488,
-0.0047780368477106094,
-0.12938807904720306,
0.014580316841602325,
0.006601072382181883,
-0.010245101526379585,
-0.036922797560691833,
-0.00963230524212122,
0.06847988814115524,
0.07552918791770935,
0.09015748649835587,
-0.012469734065234661,
0.07438130676746368,
-0.0650058388710022,
-0.06805787235498428,
-0.01937994174659252,
0.021308764815330505,
-0.02608591876924038,
-0.018549485132098198,
-0.06862247735261917,
-0.04312336444854736,
0.010267836041748524,
-0.06775354593992233,
-0.12541815638542175,
-0.11353002488613129,
-0.05024264007806778,
0.15372002124786377,
0.012108244933187962,
-0.06617432832717896,
-0.04292492941021919,
-0.0481010340154171,
-0.02824235148727894,
0.02245904505252838,
-0.12111826986074448,
-0.08713904023170471,
-0.09941094368696213,
0.09664946794509888,
0.004326635040342808,
0.029543306678533554,
0.02445174939930439,
0.10370083898305893,
-0.0991421490907669,
-0.14063966274261475,
0.03098759800195694,
-0.05824599415063858,
-0.08937027305364609,
-0.019373329356312752,
0.11893350630998611,
-0.021146297454833984,
-0.0024181732442229986,
0.00629408610984683,
0.022400038316845894,
0.08670135587453842,
-0.1152195855975151,
-0.02619258686900139,
0.1849992573261261,
-0.02121077850461006,
0.2092847228050232,
-0.01983789913356304,
-0.21531866490840912,
0.0644930899143219,
0.018093552440404892,
0.055163025856018066,
0.2019338607788086,
-0.03218524158000946,
0.04105405882000923,
0.14163777232170105,
-0.04626026749610901,
-0.27414241433143616,
-0.019849544391036034,
-0.007887694053351879,
0.01757168024778366,
0.07067742198705673,
-0.023372864350676537,
0.1857914924621582,
0.1381944715976715,
-0.021061094477772713,
0.21855761110782623,
-0.3842676281929016,
-0.12770119309425354,
-0.02914339303970337,
0.10739148408174515,
0.1864749789237976,
-0.1623002588748932,
-0.04210573807358742,
-0.15580791234970093,
-0.076238252222538,
0.08900948613882065,
-0.23537872731685638,
0.07959022372961044,
0.00917721912264824,
0.007763735018670559,
-0.0032899752259254456,
-0.05172736570239067,
0.1424609124660492,
-0.005349872168153524,
0.10759180039167404,
-0.04484338313341141,
-0.08671613037586212,
0.1499454826116562,
0.01190001517534256,
0.08924443274736404,
-0.17536354064941406,
0.059886589646339417,
0.010804064571857452,
-0.0468253456056118,
0.015010442584753036,
0.1013403907418251,
-0.015862109139561653,
-0.04609479382634163,
-0.05797784402966499,
0.0417659766972065,
-0.012141400948166847,
-0.019639957696199417,
-0.00850111898034811,
-0.0774269625544548,
-0.02581293135881424,
0.24258609116077423,
0.07677020877599716,
0.07677781581878662,
-0.06942460685968399,
-0.044126931577920914,
-0.031205032020807266,
0.09435495734214783,
-0.13199569284915924,
0.019715724512934685,
0.08098860830068588,
0.07278483361005783,
0.031000202521681786,
0.0324934758245945,
0.015903731808066368,
0.1342926174402237,
0.08806654810905457,
-0.01704435423016548,
-0.11402791738510132,
-0.02894485741853714,
-0.006985458545386791,
0.04805457219481468,
0.05178120732307434,
0.1568392515182495,
-0.0661214143037796,
0.04829267039895058,
0.011407448910176754,
0.046927083283662796,
-0.1141563355922699,
0.17049814760684967,
0.006402352824807167,
0.020699596032500267,
-0.11469785869121552,
0.07124124467372894,
-0.04121154174208641,
0.09196937829256058,
-0.07833116501569748,
0.09462764859199524,
-0.09445372223854065,
-0.04171278327703476,
-0.018374325707554817,
0.09357044100761414,
-0.0400308221578598,
0.007602760102599859,
-0.012996828183531761,
-0.11557164043188095,
-0.09362853318452835,
0.1287326216697693,
0.0753493383526802,
-0.039121564477682114,
-0.044244684278964996,
-0.03942102566361427,
-0.08371870964765549,
0.05668391287326813,
0.027960674837231636,
0.07784338295459747,
-0.22540664672851562,
-0.08232071250677109,
-0.004684720188379288,
-0.06320583075284958,
-0.1147213950753212,
-0.0367230586707592,
-0.06623107194900513,
0.0162156093865633,
-0.09776734560728073,
0.0930892676115036,
-0.10368514806032181,
0.022344307973980904,
0.009630710817873478,
-0.022452548146247864,
-0.020492518320679665,
0.02507905289530754,
-0.008050769567489624,
0.005700134206563234,
0.023107057437300682,
0.06364326179027557,
-0.05407941713929176,
-0.06033097207546234,
0.0031413822434842587,
-0.04879128560423851,
0.018357664346694946,
-0.021084146574139595,
-0.04268837347626686,
0.004354035947471857,
-0.18525122106075287,
-0.08499611914157867,
0.13098150491714478,
0.06900614500045776,
0.007541468366980553,
-0.04379088804125786,
0.057256925851106644,
0.02602430433034897,
0.07178241014480591,
-0.009815828874707222,
0.0693817213177681,
-0.08522112667560577,
0.10079070925712585,
-0.1681692749261856,
-0.015154177322983742,
-0.06085987389087677,
-0.02229444496333599,
0.20664045214653015,
0.1055055558681488,
0.16099464893341064,
-0.12147670984268188,
0.03134600818157196,
-0.09634948521852493,
0.02506156638264656,
-0.005717824678868055,
-0.12364073842763901,
-0.0764119103550911,
-0.009138044901192188,
0.02540312521159649,
0.001620535273104906,
0.16782169044017792,
0.005432783160358667,
-0.08245941996574402,
-0.02790348045527935,
0.03574454039335251,
0.08406475186347961,
0.0030352496542036533,
0.18280519545078278,
0.1055358499288559,
0.09027561545372009,
-0.08749206364154816,
0.09505660086870193,
0.09499538689851761,
-0.026512110605835915,
0.025410054251551628,
0.12969572842121124,
-0.10859652608633041,
0.02439517341554165,
0.10731691122055054,
-0.0713893473148346,
0.005724169779568911,
0.047398630529642105,
-0.05064632371068001,
0.007112594787031412,
-0.07449333369731903,
-0.014239904470741749,
0.13062474131584167,
-0.11571700125932693,
0.0004914153832942247,
0.09200333803892136,
-0.01711953617632389,
-0.11176089197397232,
-0.18838602304458618,
-0.06870316714048386,
-0.1891680508852005,
-0.0008197777206078172,
-0.07520589977502823,
-0.0014130620984360576,
0.11476973444223404,
0.008886707946658134,
0.07760157436132431,
0.09154107421636581,
-0.20696604251861572,
-0.03424852713942528,
0.03478570282459259,
-0.035434164106845856,
-0.03402092307806015,
-0.011664100922644138,
-0.050415560603141785,
0.06751473248004913,
-0.032590750604867935,
-0.025272946804761887,
0.07845018059015274,
-0.004108789376914501,
0.056501299142837524,
-0.039858393371105194,
-0.07354394346475601,
-0.07694002985954285,
0.02825360931456089,
-0.036359235644340515,
0.13220322132110596,
0.0656265914440155,
-0.08588551729917526,
0.006216421723365784,
0.041136082261800766,
-0.05230174958705902,
-0.15179762244224548,
-0.07338093966245651,
0.06346940249204636,
-0.10436547547578812,
0.10284028947353363,
-0.04123969376087189,
-0.049117494374513626,
-0.06856712698936462,
0.17663687467575073,
0.29743707180023193,
-0.007994133047759533,
0.02011054754257202,
-0.032080817967653275,
-0.011073581874370575,
-0.07048235833644867,
0.0628659799695015,
0.0455942377448082,
0.31618809700012207,
-0.00494246045127511,
0.04625822976231575,
-0.03150487691164017,
-0.017012111842632294,
-0.035836443305015564,
-0.086494080722332,
-0.06375083327293396,
-0.03341906890273094,
0.008175849914550781,
0.08604452759027481,
-0.08138684183359146,
-0.06924471259117126,
0.12477552145719528,
-0.05975160002708435,
-0.009620290249586105,
-0.08813457190990448,
-0.0144409891217947,
0.05397062748670578,
-0.024343257769942284,
-0.0909743681550026,
0.010247059166431427,
-0.025555556640028954,
-0.008276689797639847,
-0.17789043486118317,
-0.06770402193069458,
-0.014769444242119789,
-0.047936469316482544,
0.05906442180275917,
-0.07216760516166687,
0.05294755473732948,
0.04109721630811691,
-0.06393446028232574,
-0.05569227784872055,
0.11768007278442383,
-0.034203168004751205,
-0.19748511910438538,
-0.014219479635357857,
0.04596295207738876,
-0.0986180230975151,
0.21431921422481537,
-0.02742927521467209,
-0.0619625560939312,
0.0026383877266198397,
0.09555797278881073,
-0.01645100861787796,
-0.08195321261882782,
-0.017149413004517555,
-0.08983824402093887,
0.10495615005493164,
0.0380825400352478,
0.024321958422660828,
0.009690236300230026,
-0.0325031504034996,
0.11862804740667343,
0.05713997408747673,
0.030731797218322754,
0.0531727597117424,
-0.12229470908641815,
-0.08436816930770874,
-0.020166849717497826,
-0.0031727668829262257,
-0.1687568724155426,
-0.020565159618854523,
-0.15886984765529633,
-0.030814070254564285,
-0.04573865234851837,
0.021596429869532585,
0.25711047649383545,
0.026817645877599716,
-0.01558738388121128,
-0.3148214817047119,
0.03172905370593071,
0.12795187532901764,
-0.155711829662323,
-0.08453050255775452
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | tareky/flan-t5-base-SQuDA-V1-fine-tune-qs | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:54:09+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
58,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.053328532725572586,
0.16120538115501404,
-0.005120371468365192,
0.022602224722504616,
0.09686747193336487,
0.013199392706155777,
0.07261143624782562,
0.11177206039428711,
-0.020693831145763397,
0.1128523200750351,
0.0323781855404377,
0.09778297692537308,
0.11381756514310837,
0.15530984103679657,
-0.0018252237932756543,
-0.23414164781570435,
0.051169246435165405,
-0.12603329122066498,
-0.039110470563173294,
0.11734651774168015,
0.14655858278274536,
-0.10434788465499878,
0.07780920714139938,
-0.029932111501693726,
-0.010786613449454308,
-0.030950399115681648,
-0.06109464541077614,
-0.04963193088769913,
0.05158040300011635,
0.07096312940120697,
0.06875279545783997,
0.009741154499351978,
0.09293358027935028,
-0.2676756680011749,
0.021060682833194733,
0.07436702400445938,
-0.0019205488497391343,
0.07644513249397278,
0.05394738167524338,
-0.07786445319652557,
0.08801496773958206,
-0.053122974932193756,
0.14802159368991852,
0.08166222274303436,
-0.09144649654626846,
-0.19256246089935303,
-0.08630277216434479,
0.10201671719551086,
0.17971307039260864,
0.050409309566020966,
-0.02338344417512417,
0.10295069962739944,
-0.08843041211366653,
0.012706292793154716,
0.059160783886909485,
-0.06515879184007645,
-0.05482804775238037,
0.0630323737859726,
0.08173035830259323,
0.0787791833281517,
-0.12468571215867996,
-0.018215585500001907,
0.011311499401926994,
0.00691694812849164,
0.08102929592132568,
0.022060219198465347,
0.14176861941814423,
0.03922285884618759,
-0.1292058527469635,
-0.047744158655405045,
0.10315844416618347,
0.04381343349814415,
-0.04969092458486557,
-0.24839195609092712,
-0.028692634776234627,
-0.03409173712134361,
-0.029329892247915268,
-0.041139665991067886,
0.04428756237030029,
-0.010770969092845917,
0.08322557806968689,
-0.008045176975429058,
-0.07979845255613327,
-0.03690612316131592,
0.06324487924575806,
0.05645342543721199,
0.024454401805996895,
-0.008984005078673363,
0.006743076257407665,
0.1175178587436676,
0.10636600106954575,
-0.12631633877754211,
-0.05289403349161148,
-0.06528059393167496,
-0.0853288322687149,
-0.04429693520069122,
0.03338160738348961,
0.04351643845438957,
0.04334709793329239,
0.24920088052749634,
0.011966975405812263,
0.05556565150618553,
0.03878911957144737,
0.011687099933624268,
0.06360286474227905,
0.11270952969789505,
-0.05845928564667702,
-0.09383665025234222,
-0.033332064747810364,
0.09301437437534332,
0.008503437042236328,
-0.0402098223567009,
-0.06047673895955086,
0.06078295037150383,
0.015703821554780006,
0.12211526930332184,
0.087046779692173,
0.002870776690542698,
-0.07195370644330978,
-0.06478150933980942,
0.19285908341407776,
-0.15949691832065582,
0.047871991991996765,
0.03357849270105362,
-0.040312062948942184,
-0.0005020854296162724,
0.01165273692458868,
0.023987481370568275,
-0.021567439660429955,
0.0924374982714653,
-0.05500924214720726,
-0.03761355206370354,
-0.10879732668399811,
-0.03591866046190262,
0.03197222575545311,
0.0022585385013371706,
-0.02967100404202938,
-0.033424828201532364,
-0.08920473605394363,
-0.0635172426700592,
0.09580977261066437,
-0.07413128018379211,
-0.05156254023313522,
-0.016345804557204247,
-0.0761859342455864,
0.026101797819137573,
0.01702207140624523,
0.08535456657409668,
-0.0213642455637455,
0.037230201065540314,
-0.05421315133571625,
0.06241346150636673,
0.10910454392433167,
0.0320611298084259,
-0.053984515368938446,
0.06094928830862045,
-0.2412392497062683,
0.10316064208745956,
-0.07156267017126083,
0.05108866095542908,
-0.15137021243572235,
-0.025331947952508926,
0.04665522649884224,
0.009590202011168003,
-0.011478574015200138,
0.14007656276226044,
-0.2198302298784256,
-0.029333066195249557,
0.1640782356262207,
-0.09730498492717743,
-0.08055570721626282,
0.059064920991659164,
-0.054139286279678345,
0.10999192297458649,
0.04003598168492317,
-0.023768696933984756,
0.06297750771045685,
-0.14250542223453522,
-0.0039275879971683025,
-0.041889119893312454,
-0.01720282807946205,
0.16010744869709015,
0.07506491243839264,
-0.06698185205459595,
0.077672079205513,
0.022212913259863853,
-0.023321649059653282,
-0.04393244534730911,
-0.022494852542877197,
-0.10826845467090607,
0.009565223939716816,
-0.06269361078739166,
0.02424052357673645,
-0.023944495245814323,
-0.0903024971485138,
-0.029575346037745476,
-0.1770460456609726,
-0.013402442447841167,
0.08679109811782837,
-0.010982494801282883,
-0.019886262714862823,
-0.11693590134382248,
0.012033592909574509,
0.032231178134679794,
0.0004325093177612871,
-0.13445010781288147,
-0.05658498778939247,
0.0273329745978117,
-0.16240260004997253,
0.031236927956342697,
-0.05114622414112091,
0.04928715154528618,
0.03406677767634392,
-0.03175085783004761,
-0.031348153948783875,
0.01572313904762268,
0.006510823033750057,
-0.013680041767656803,
-0.24737438559532166,
-0.02852414920926094,
-0.022412575781345367,
0.16979394853115082,
-0.2190135270357132,
0.04012007266283035,
0.07135825604200363,
0.15074580907821655,
0.006911954842507839,
-0.03669405356049538,
0.005606858059763908,
-0.0768459290266037,
-0.03284264728426933,
-0.0623927041888237,
-0.008401541970670223,
-0.03721899166703224,
-0.054593876004219055,
0.051287684589624405,
-0.16718235611915588,
-0.031153932213783264,
0.1028679683804512,
0.06780845671892166,
-0.13963541388511658,
-0.01705223321914673,
-0.04106766730546951,
-0.043112557381391525,
-0.05709490180015564,
-0.05539087578654289,
0.11148729920387268,
0.05757083371281624,
0.04828811436891556,
-0.06848311424255371,
-0.0756818875670433,
0.006132613401859999,
-0.0179264098405838,
-0.021222935989499092,
0.0928845927119255,
0.07583390921354294,
-0.12310270220041275,
0.09178637713193893,
0.10549022257328033,
0.0892157256603241,
0.10119049996137619,
-0.02137933485209942,
-0.08691582083702087,
-0.04892461374402046,
0.0229446180164814,
0.016364475712180138,
0.13983985781669617,
-0.016759416088461876,
0.05310053750872612,
0.04020100086927414,
-0.012910815887153149,
0.011883769184350967,
-0.09328193217515945,
0.02934250421822071,
0.03636814281344414,
-0.019501443952322006,
0.040251899510622025,
-0.03908125311136246,
0.020790016278624535,
0.08787564933300018,
0.04434992000460625,
0.03818633407354355,
0.013980780728161335,
-0.04370194673538208,
-0.11091572046279907,
0.17051653563976288,
-0.12536633014678955,
-0.239797443151474,
-0.14147889614105225,
0.001731917611323297,
0.041165996342897415,
-0.01159723661839962,
0.0031763319857418537,
-0.06770002096891403,
-0.11874829977750778,
-0.09346967190504074,
0.015001182444393635,
0.04228860139846802,
-0.080612413585186,
-0.05524664744734764,
0.05777253210544586,
0.040611669421195984,
-0.143319234251976,
0.020423002541065216,
0.04869217798113823,
-0.08989228308200836,
-0.00900039542466402,
0.08071441948413849,
0.06998268514871597,
0.17929090559482574,
0.009512054733932018,
-0.020932139828801155,
0.03292093798518181,
0.2157505750656128,
-0.13771237432956696,
0.11451084166765213,
0.14277678728103638,
-0.0911637470126152,
0.08293474465608597,
0.1991184800863266,
0.03884927183389664,
-0.10264625400304794,
0.03326369449496269,
0.022328944876790047,
-0.028676386922597885,
-0.2503291964530945,
-0.06918580830097198,
0.0007976540364325047,
-0.05238448083400726,
0.07527847588062286,
0.08888168632984161,
0.09494108706712723,
0.01729334332048893,
-0.09416709095239639,
-0.08025584369897842,
0.04901478812098503,
0.10409125685691833,
0.010409193113446236,
-0.01156378723680973,
0.09060908854007721,
-0.03323452174663544,
0.01843860000371933,
0.09313460439443588,
0.004041523206979036,
0.17060963809490204,
0.05550962686538696,
0.18336638808250427,
0.07643263041973114,
0.0721396952867508,
0.015671607106924057,
0.013079277239739895,
0.02304760180413723,
0.021578695625066757,
-0.0033059304114431143,
-0.0851421132683754,
-0.009511260315775871,
0.11862117052078247,
0.06801546365022659,
0.020754681900143623,
0.009507957845926285,
-0.033934496343135834,
0.08064714074134827,
0.17465052008628845,
-0.0009437129483558238,
-0.1870066076517105,
-0.06896740943193436,
0.08026526123285294,
-0.08972865343093872,
-0.10345284640789032,
-0.02900044620037079,
0.0354950949549675,
-0.17372116446495056,
0.02448408491909504,
-0.018045885488390923,
0.11108683049678802,
-0.1356782615184784,
-0.01890929788351059,
0.06319493800401688,
0.07008420675992966,
-0.0016097982879728079,
0.06208989396691322,
-0.16155508160591125,
0.10791012644767761,
0.01390943955630064,
0.06503470987081528,
-0.09786296635866165,
0.10111832618713379,
-0.006267238408327103,
-0.007413685787469149,
0.14043578505516052,
0.009255880489945412,
-0.07051325589418411,
-0.08343593031167984,
-0.0979004055261612,
-0.010649190284311771,
0.12877127528190613,
-0.14879846572875977,
0.08456916362047195,
-0.0322830006480217,
-0.04405250772833824,
0.005208021495491266,
-0.10768675804138184,
-0.12857580184936523,
-0.18887875974178314,
0.05537694692611694,
-0.13356289267539978,
0.033175256103277206,
-0.1055491715669632,
-0.0408647358417511,
-0.02885887771844864,
0.19630752503871918,
-0.22321896255016327,
-0.0670507624745369,
-0.15318840742111206,
-0.09096445143222809,
0.14798617362976074,
-0.049908362329006195,
0.08374498039484024,
-0.005065108183771372,
0.18742504715919495,
0.01894373446702957,
-0.024415504187345505,
0.1011786088347435,
-0.09638315439224243,
-0.19627197086811066,
-0.08534666895866394,
0.15457913279533386,
0.13537167012691498,
0.0351712740957737,
-0.004617651924490929,
0.03167666867375374,
-0.0189940445125103,
-0.12101218104362488,
0.022920187562704086,
0.17696480453014374,
0.07036592066287994,
0.024736741557717323,
-0.02639835514128208,
-0.11453131586313248,
-0.06600044667720795,
-0.032452553510665894,
0.02982977218925953,
0.18294402956962585,
-0.07586611062288284,
0.18679921329021454,
0.13732017576694489,
-0.05770440772175789,
-0.1956426501274109,
0.01923983357846737,
0.04058924317359924,
0.00837375782430172,
0.032165057957172394,
-0.20239581167697906,
0.08806682378053665,
0.0007347199134528637,
-0.05074144899845123,
0.13624143600463867,
-0.17552010715007782,
-0.15046143531799316,
0.06929060816764832,
0.03642011433839798,
-0.19279520213603973,
-0.12030941992998123,
-0.08865538984537125,
-0.05107492581009865,
-0.17776648700237274,
0.10758756101131439,
0.02193085290491581,
0.00676411809399724,
0.033654287457466125,
0.026140762493014336,
0.014790141955018044,
-0.0396585576236248,
0.19431912899017334,
-0.02348872646689415,
0.030807901173830032,
-0.08293910324573517,
-0.07001609355211258,
0.05941145867109299,
-0.05705835670232773,
0.0775861069560051,
-0.022215960547327995,
0.013414059765636921,
-0.10643109679222107,
-0.04425564035773277,
-0.03175993636250496,
0.015691282227635384,
-0.09722420573234558,
-0.08909335732460022,
-0.050057362765073776,
0.09262266010046005,
0.0974174216389656,
-0.035089656710624695,
-0.03564268350601196,
-0.07118509709835052,
0.039714183658361435,
0.18831974267959595,
0.17605267465114594,
0.046182651072740555,
-0.08030564337968826,
-0.004098092205822468,
-0.011694483458995819,
0.042484745383262634,
-0.21906526386737823,
0.062426332384347916,
0.05058585852384567,
0.014059843495488167,
0.1173645630478859,
-0.01779606007039547,
-0.15810294449329376,
-0.06761486083269119,
0.05993710458278656,
-0.06326820701360703,
-0.19225671887397766,
0.0032602818682789803,
0.055388111621141434,
-0.16711848974227905,
-0.04538320377469063,
0.0430813767015934,
-0.005750913172960281,
-0.039257556200027466,
0.01613711006939411,
0.08359149098396301,
0.0031580389477312565,
0.07040093839168549,
0.05520293489098549,
0.086640864610672,
-0.10250966250896454,
0.07937785238027573,
0.08386688679456711,
-0.08347215503454208,
0.028158824890851974,
0.09330378472805023,
-0.06144890934228897,
-0.029910072684288025,
0.032212331891059875,
0.08255140483379364,
0.012964491732418537,
-0.04401125758886337,
0.008184057660400867,
-0.10146338492631912,
0.0627170279622078,
0.09755739569664001,
0.03206513822078705,
0.011901181191205978,
0.03383762761950493,
0.04645882546901703,
-0.07481352984905243,
0.11842621862888336,
0.025973208248615265,
0.01822328381240368,
-0.04273592680692673,
-0.04516541585326195,
0.027133917436003685,
-0.02340707741677761,
-0.007566304877400398,
-0.03583317995071411,
-0.06988023966550827,
-0.01722576655447483,
-0.16493180394172668,
-0.01076561864465475,
-0.044063083827495575,
0.008020744659006596,
0.026847293600440025,
-0.0369400717318058,
0.008594665676355362,
0.009077225811779499,
-0.07577309012413025,
-0.06240518018603325,
-0.02245018258690834,
0.0914878100156784,
-0.16343435645103455,
0.023352261632680893,
0.08310231566429138,
-0.12098916620016098,
0.09322582185268402,
0.018653366714715958,
-0.0019369579385966063,
0.02680385299026966,
-0.15561461448669434,
0.0368269607424736,
-0.027320701628923416,
0.014671673998236656,
0.045705173164606094,
-0.21818207204341888,
-0.0014451020397245884,
-0.03558654710650444,
-0.059982262551784515,
-0.010693925432860851,
-0.037350837141275406,
-0.11245633661746979,
0.10088492184877396,
0.012412267737090588,
-0.08672942966222763,
-0.03157110512256622,
0.03652326017618179,
0.08053763210773468,
-0.02631879225373268,
0.15205731987953186,
-0.0010786735219880939,
0.07447176426649094,
-0.1738860309123993,
-0.0210786834359169,
-0.0090115275233984,
0.02177848480641842,
-0.016872623935341835,
-0.01564885675907135,
0.042430613189935684,
-0.026671668514609337,
0.18584245443344116,
-0.027355844154953957,
0.03733034059405327,
0.06316441297531128,
0.01770097203552723,
-0.021354418247938156,
0.10755398869514465,
0.06012963131070137,
0.02173144742846489,
0.019801700487732887,
0.0075409491546452045,
-0.041807159781455994,
-0.018543899059295654,
-0.19347810745239258,
0.07164526730775833,
0.14044208824634552,
0.08769161999225616,
-0.012164209969341755,
0.08067302405834198,
-0.10084949433803558,
-0.11743459850549698,
0.11121641099452972,
-0.059808436781167984,
-0.0022669173777103424,
-0.06652101874351501,
0.13155525922775269,
0.14582572877407074,
-0.19254228472709656,
0.07050827890634537,
-0.06511960923671722,
-0.05269601568579674,
-0.11906112730503082,
-0.1953776627779007,
-0.05703132599592209,
-0.054343048483133316,
-0.015079263597726822,
-0.05059242993593216,
0.07498416304588318,
0.05622640252113342,
0.010858895257115364,
0.0015552249969914556,
0.06971994787454605,
-0.019759170711040497,
0.001521410304121673,
0.032095473259687424,
0.06417544931173325,
0.014362066984176636,
-0.03133942559361458,
0.018592869862914085,
-0.008470231667160988,
0.03991629183292389,
0.0633486732840538,
0.04155107960104942,
-0.028110865503549576,
0.01659207232296467,
-0.0337030366063118,
-0.10854189842939377,
0.04278707876801491,
-0.028698457404971123,
-0.08063279837369919,
0.13984808325767517,
0.025403661653399467,
0.009562181308865547,
-0.022226108238101006,
0.241981640458107,
-0.07480388879776001,
-0.09265431761741638,
-0.14692139625549316,
0.1055137887597084,
-0.04348868504166603,
0.06415078788995743,
0.045384783297777176,
-0.10421041399240494,
0.012057800777256489,
0.12658540904521942,
0.1625804305076599,
-0.0438871793448925,
0.019560009241104126,
0.03037482313811779,
0.00398933095857501,
-0.03853052854537964,
0.05252939090132713,
0.06827457249164581,
0.14848913252353668,
-0.050116557627916336,
0.09223522990942001,
0.0050886585377156734,
-0.09908851981163025,
-0.034064266830682755,
0.11810369789600372,
-0.019035303965210915,
0.019260596483945847,
-0.05601469427347183,
0.11788773536682129,
-0.06368034332990646,
-0.233087420463562,
0.06406685709953308,
-0.07426205277442932,
-0.14131881296634674,
-0.024826664477586746,
0.07676053047180176,
-0.014309047721326351,
0.027850469574332237,
0.0722186341881752,
-0.07654546946287155,
0.19937579333782196,
0.03671684116125107,
-0.058611851185560226,
-0.05623113736510277,
0.07896319031715393,
-0.11419995129108429,
0.27488458156585693,
0.015893742442131042,
0.045155949890613556,
0.1038452610373497,
-0.013412448577582836,
-0.13435201346874237,
0.01833420805633068,
0.09638454020023346,
-0.08846497535705566,
0.04018587991595268,
0.20595665276050568,
-0.0028567397966980934,
0.11962885409593582,
0.07707620412111282,
-0.08087631314992905,
0.049051105976104736,
-0.09828304499387741,
-0.07230360060930252,
-0.08931835740804672,
0.09120666980743408,
-0.07232820242643356,
0.14308606088161469,
0.1311190128326416,
-0.05265164002776146,
0.00968363881111145,
-0.029376711696386337,
0.045510269701480865,
0.004632700700312853,
0.10403459519147873,
0.008749093860387802,
-0.1797543615102768,
0.02403045818209648,
0.01841445453464985,
0.10992073267698288,
-0.1701374351978302,
-0.09734909981489182,
0.043629229068756104,
-0.0012522460892796516,
-0.06121290475130081,
0.1290796846151352,
0.05957380682229996,
0.05011506378650665,
-0.043520737439394,
-0.0211784765124321,
-0.008504665456712246,
0.14072857797145844,
-0.10404830425977707,
-0.00016830587992444634
] |
null | null | transformers |
# Description
This repo contains GGUF format model files for [HanNayeoniee/LHK_DPO_v1](https://huggingface.co/HanNayeoniee/LHK_DPO_v1)
| {"language": ["en"], "license": "mit", "model_name": "LHK_DPO_v1", "base_model": "TomGrc/FusionNet_7Bx2_MoE_14B", "model_creator": "HanNayeoniee"} | text-generation | chtai/LHK_DPO_v1 | [
"transformers",
"safetensors",
"gguf",
"mixtral",
"text-generation",
"en",
"base_model:TomGrc/FusionNet_7Bx2_MoE_14B",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:55:59+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #gguf #mixtral #text-generation #en #base_model-TomGrc/FusionNet_7Bx2_MoE_14B #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Description
This repo contains GGUF format model files for HanNayeoniee/LHK_DPO_v1
| [
"# Description\nThis repo contains GGUF format model files for HanNayeoniee/LHK_DPO_v1"
] | [
"TAGS\n#transformers #safetensors #gguf #mixtral #text-generation #en #base_model-TomGrc/FusionNet_7Bx2_MoE_14B #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Description\nThis repo contains GGUF format model files for HanNayeoniee/LHK_DPO_v1"
] | [
80,
28
] | [
"passage: TAGS\n#transformers #safetensors #gguf #mixtral #text-generation #en #base_model-TomGrc/FusionNet_7Bx2_MoE_14B #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Description\nThis repo contains GGUF format model files for HanNayeoniee/LHK_DPO_v1"
] | [
-0.08237308263778687,
0.01082529779523611,
-0.0008621996967121959,
0.03641572967171669,
0.12623044848442078,
0.02372623421251774,
0.1837933212518692,
0.07444427907466888,
-0.04224897176027298,
-0.0605245903134346,
0.11824557930231094,
0.09203703701496124,
0.045678723603487015,
0.1670926958322525,
-0.06329862028360367,
-0.23312856256961823,
0.07602806389331818,
0.02474903129041195,
-0.10149578005075455,
0.04002290219068527,
0.12441366910934448,
-0.02026732638478279,
0.10466217994689941,
0.00482140900567174,
-0.1720196157693863,
0.03551194444298744,
0.025420239195227623,
-0.07377703487873077,
0.07812855392694473,
0.1187266856431961,
0.003188284346833825,
0.08269857615232468,
0.019832199439406395,
-0.08637946099042892,
0.04104574769735336,
-0.012062427587807178,
-0.09644822776317596,
0.050350628793239594,
0.03367288410663605,
0.01705022156238556,
0.09665296971797943,
-0.01406113151460886,
-0.09919846057891846,
0.05640840157866478,
-0.0679844543337822,
-0.08793506771326065,
-0.08731158822774887,
0.1465177834033966,
0.03970148786902428,
0.07000003010034561,
0.009007199667394161,
0.0808955654501915,
0.0068087950348854065,
0.08569317311048508,
0.13667945563793182,
-0.3070041239261627,
-0.018438488245010376,
0.23654067516326904,
0.01335934642702341,
0.005406672600656748,
-0.00045739751658402383,
0.09445347636938095,
0.09898623079061508,
-0.04768655076622963,
-0.03412944823503494,
-0.06915368139743805,
0.014698836021125317,
0.019576746970415115,
-0.08083056658506393,
0.02634265087544918,
0.29596400260925293,
0.006008468568325043,
-0.04538489505648613,
0.001563702360726893,
-0.03726540133357048,
-0.006039613392204046,
-0.019882651045918465,
-0.008268405683338642,
-0.0039500892162323,
0.04944847151637077,
0.07419675588607788,
-0.06629136949777603,
-0.10108180344104767,
-0.09372740238904953,
-0.16474667191505432,
0.275909960269928,
0.0017172007355839014,
0.03645225241780281,
-0.06398001313209534,
0.09661275893449783,
-0.17295880615711212,
-0.11276926845312119,
-0.06237231567502022,
-0.061717260628938675,
0.08176038414239883,
-0.015484901145100594,
-0.042101357132196426,
-0.056321125477552414,
0.13554218411445618,
0.08547121286392212,
-0.03904339671134949,
-0.003939484246075153,
-0.054994381964206696,
0.06296589970588684,
-0.007066518999636173,
0.03849700465798378,
-0.07244697958230972,
0.009133619256317616,
0.1323312371969223,
-0.06116827204823494,
0.07980293780565262,
0.0006569847464561462,
-0.19763867557048798,
-0.07132420688867569,
-0.004778721835464239,
0.070396289229393,
-0.018622050061821938,
0.12612468004226685,
0.010113226249814034,
0.0024189657997339964,
0.17453040182590485,
-0.059072043746709824,
-0.03524918109178543,
-0.03336804732680321,
0.004811163526028395,
-0.0042681144550442696,
0.05505865812301636,
0.04587150737643242,
-0.0022979886271059513,
0.032012585550546646,
-0.0676174983382225,
-0.02180943265557289,
-0.012300564907491207,
-0.07476790249347687,
0.029174232855439186,
0.021693114191293716,
0.056358806788921356,
-0.2158283144235611,
-0.22603896260261536,
0.03345632925629616,
0.00938380416482687,
-0.02736019156873226,
-0.049264758825302124,
-0.0008418650249950588,
-0.053062859922647476,
-0.010695208795368671,
-0.02142396941781044,
-0.00220961170271039,
-0.05189254879951477,
0.05281057953834534,
0.012626150622963905,
0.03751286864280701,
-0.17459236085414886,
0.04115736484527588,
-0.08634108304977417,
0.013973887078464031,
-0.13235433399677277,
0.011455089785158634,
-0.0997481420636177,
0.08573577553033829,
0.008900368586182594,
-0.022228138521313667,
-0.03836454078555107,
0.0388236865401268,
-0.021274182945489883,
0.17245745658874512,
-0.09557589143514633,
-0.0684765875339508,
0.18756712973117828,
-0.18633510172367096,
-0.14682483673095703,
0.10823480039834976,
0.03782514110207558,
0.014562048949301243,
0.059923820197582245,
0.14392730593681335,
0.14231398701667786,
-0.07837066799402237,
0.017479365691542625,
0.06989800184965134,
-0.08575870096683502,
-0.1024954542517662,
0.07016502320766449,
0.014377253130078316,
-0.20416583120822906,
0.05886072665452957,
-0.04065557196736336,
0.11180185526609421,
-0.025463564321398735,
-0.03898238390684128,
-0.07160166651010513,
-0.058793094009160995,
0.026296570897102356,
-0.03205748647451401,
0.07706321775913239,
-0.08998048305511475,
-0.02125823125243187,
-0.006587367970496416,
0.09224244207143784,
-0.024116050451993942,
-0.018362853676080704,
-0.034245993942022324,
0.10244395583868027,
-0.08962194621562958,
0.04874410852789879,
-0.023008761927485466,
-0.09947498887777328,
-0.015049457550048828,
0.0028279039543122053,
0.01954313926398754,
0.04556817188858986,
0.05181184038519859,
0.059098608791828156,
-0.05923459678888321,
-0.0006468043429777026,
0.11580462008714676,
0.041450925171375275,
-0.02058541774749756,
-0.1266382783651352,
0.08028625696897507,
-0.027466218918561935,
0.1422158181667328,
-0.085176981985569,
0.05585573986172676,
0.029689988121390343,
0.10950998216867447,
-0.0221856702119112,
0.06166677549481392,
0.025353137403726578,
0.012866699136793613,
-0.04628990218043327,
-0.021260011941194534,
0.03328550606966019,
0.049485497176647186,
-0.07184159010648727,
0.20824135839939117,
-0.11932395398616791,
0.2855094075202942,
0.20207355916500092,
0.0026808488182723522,
-0.02918340265750885,
-0.08919794857501984,
0.007986488752067089,
-0.0184482429176569,
0.0025928777176886797,
-0.00541261350736022,
-0.013768749311566353,
-0.08344657719135284,
0.13522474467754364,
-0.045038145035505295,
-0.0019050174159929156,
0.03967706486582756,
-0.05952678248286247,
-0.06832496076822281,
0.06076158210635185,
0.07228272408246994,
-0.226808100938797,
0.2040376365184784,
0.11595232039690018,
-0.007852522656321526,
0.20969370007514954,
-0.027409587055444717,
0.004178779665380716,
-0.02185128442943096,
0.0032463599927723408,
-0.005082507152110338,
0.08470698446035385,
-0.11467108875513077,
0.0012223395751789212,
0.05500179901719093,
0.019142428413033485,
0.08504843711853027,
-0.12456216663122177,
-0.0722351223230362,
-0.009402834810316563,
-0.059394415467977524,
0.03527155891060829,
0.1147787943482399,
-0.05850973352789879,
0.08906135708093643,
-0.004109418950974941,
-0.03735712543129921,
0.10597439110279083,
0.029213692992925644,
-0.09817515313625336,
0.1554044783115387,
-0.12322600930929184,
-0.20625832676887512,
-0.17482979595661163,
-0.06680973619222641,
-0.15027453005313873,
0.053294070065021515,
0.1052190288901329,
-0.08669215440750122,
-0.07641030848026276,
-0.05830193683505058,
0.008188987150788307,
-0.03241154924035072,
0.04779243469238281,
-0.014895932748913765,
0.010294702835381031,
-0.028212616220116615,
-0.12433581054210663,
-0.05936918407678604,
-0.00597664387896657,
-0.0221576988697052,
0.10901293903589249,
-0.08491845428943634,
0.08240796625614166,
0.07881886512041092,
-0.00019499672634992748,
0.03748885914683342,
-0.04735911637544632,
0.1136772483587265,
-0.03823922947049141,
0.003631124971434474,
0.1805499643087387,
0.0344151072204113,
0.019707949832081795,
0.132981076836586,
0.010231642052531242,
-0.04363294690847397,
0.047984909266233444,
-0.06760936975479126,
-0.07001260668039322,
-0.1703215092420578,
-0.09907563030719757,
-0.08913318812847137,
0.11597482860088348,
-0.01933501847088337,
0.08441830426454544,
0.14828620851039886,
0.11159826070070267,
-0.03667811304330826,
0.08801271766424179,
0.019331054762005806,
0.07832477241754532,
0.2366449534893036,
0.0022422599140554667,
0.09468945115804672,
-0.0850575715303421,
-0.05227889493107796,
0.11537767201662064,
0.016245806589722633,
0.07613303512334824,
0.04946604743599892,
-0.02709048055112362,
0.023596256971359253,
0.09087248146533966,
0.10999093949794769,
0.11178147047758102,
0.04357067123055458,
-0.05652478709816933,
-0.015181404538452625,
-0.07347220182418823,
0.03162604942917824,
0.05799451842904091,
-0.10612036287784576,
-0.05905550718307495,
-0.04429380223155022,
-0.025252921506762505,
0.044340766966342926,
0.06449273973703384,
0.041098453104496,
-0.20191843807697296,
-0.09170176833868027,
0.051685772836208344,
0.08400334417819977,
-0.05342917889356613,
0.038052160292863846,
0.009564073756337166,
-0.04443197324872017,
0.10950446873903275,
-0.0067057362757623196,
0.045337289571762085,
0.055923230946063995,
0.031043604016304016,
-0.052203986793756485,
0.06299246102571487,
-0.031891830265522,
0.10519615560770035,
-0.3022105395793915,
0.2081107199192047,
0.012568803504109383,
0.0032919670920819044,
-0.03525755926966667,
0.04293346405029297,
0.07784295082092285,
0.23113156855106354,
0.09322110563516617,
0.01675252430140972,
-0.05531930550932884,
-0.07690634578466415,
-0.07756747305393219,
0.0589311420917511,
0.032813910394907,
-0.02221192792057991,
0.005611937493085861,
-0.037484634667634964,
-0.02324783243238926,
0.022339046001434326,
0.07363070547580719,
-0.1723177433013916,
-0.10075147449970245,
0.09031490981578827,
0.08505725860595703,
0.17351189255714417,
-0.07344988733530045,
-0.08192215859889984,
-0.1808876097202301,
0.2758168876171112,
0.014505438506603241,
-0.08577216416597366,
-0.1119033545255661,
-0.008741315454244614,
0.011089923791587353,
-0.06849391013383865,
0.06698793172836304,
-0.05162820965051651,
0.05513780936598778,
-0.04793289303779602,
-0.19050535559654236,
0.12669618427753448,
-0.11253973096609116,
-0.06843780726194382,
-0.007527213077992201,
0.1149589866399765,
-0.06029603257775307,
-0.013273967429995537,
0.018226001411676407,
-0.009234480559825897,
-0.04029368981719017,
-0.12929750978946686,
0.03218626230955124,
0.04835432767868042,
0.03143908828496933,
0.0747309997677803,
-0.044361867010593414,
-0.1628606766462326,
0.028906166553497314,
-0.10341451317071915,
0.12761421501636505,
0.24354539811611176,
-0.036034535616636276,
0.05085858330130577,
0.11845080554485321,
-0.04144012928009033,
-0.2568756937980652,
-0.0731845423579216,
-0.12114264070987701,
0.0009961484465748072,
-0.09870491176843643,
-0.07405761629343033,
0.08635338395833969,
0.12520559132099152,
-0.06952358037233353,
0.15074984729290009,
-0.12387678772211075,
-0.11705070734024048,
0.1791270524263382,
0.05221235752105713,
0.37739327549934387,
-0.16148415207862854,
-0.07137512415647507,
-0.07674296945333481,
-0.2736671566963196,
0.10959415137767792,
-0.1219097226858139,
0.08322375267744064,
-0.031761378049850464,
0.0017258136067539454,
-0.0068519278429448605,
-0.054159242659807205,
0.1279401183128357,
-0.03597874566912651,
0.043469641357660294,
-0.13117338716983795,
0.0057229711674153805,
0.058219216763973236,
0.0005288230604492128,
0.11633535474538803,
-0.10527944564819336,
0.051665063947439194,
-0.011441015638411045,
-0.05790550634264946,
-0.013505457900464535,
0.10108371824026108,
0.0037541694473475218,
-0.10782898217439651,
-0.04523670673370361,
0.01486186869442463,
-0.08416197448968887,
-0.03492356091737747,
0.13527989387512207,
-0.031115485355257988,
0.11424274742603302,
0.09940670430660248,
0.048402078449726105,
-0.13301144540309906,
0.1322784572839737,
-0.02247987501323223,
-0.09206046909093857,
0.08502694219350815,
-0.09898752719163895,
0.0267152339220047,
0.0632125586271286,
-0.02601323463022709,
0.09513761848211288,
0.06905379146337509,
-0.014224979095160961,
0.01429671049118042,
0.11689728498458862,
-0.21776814758777618,
-0.0548674538731575,
-0.10424228012561798,
-0.09475427865982056,
0.09925416857004166,
0.1504039764404297,
0.16946116089820862,
-0.08568941801786423,
-0.0028540489729493856,
-0.009117944166064262,
0.016365034505724907,
-0.0760367289185524,
0.043263379484415054,
0.0710500031709671,
-0.00927386712282896,
-0.10251408070325851,
0.062263693660497665,
-0.00841238908469677,
-0.011728174053132534,
-0.000014654360711574554,
0.06466599553823471,
-0.14390453696250916,
-0.13940934836864471,
-0.08418136835098267,
0.14325976371765137,
-0.16619648039340973,
-0.09429007023572922,
-0.08729846030473709,
-0.151591494679451,
0.012389854528009892,
0.10128337144851685,
0.05682147294282913,
0.035408761352300644,
0.018246570602059364,
-0.006912761367857456,
-0.06708774715662003,
0.037905674427747726,
-0.0009774273494258523,
0.09784078598022461,
-0.16674181818962097,
0.03727898374199867,
-0.0486084409058094,
0.09774292260408401,
-0.06609886139631271,
0.018513645976781845,
-0.13827955722808838,
-0.04532555490732193,
-0.1677289456129074,
-0.025757426396012306,
-0.128452867269516,
-0.014817941002547741,
-0.012095438316464424,
-0.0675988420844078,
-0.026578711345791817,
0.05121754854917526,
-0.0658402368426323,
0.010448412969708443,
-0.008807024918496609,
0.05373666435480118,
-0.06169993430376053,
-0.03074103221297264,
0.010532029904425144,
0.0020784803200513124,
0.11630894243717194,
0.13224926590919495,
-0.005950144957751036,
0.06735026091337204,
-0.22551584243774414,
0.004513919353485107,
0.08909424394369125,
-0.006508347112685442,
0.016485033556818962,
-0.053462836891412735,
0.021775858476758003,
0.0857231616973877,
-0.005807147361338139,
0.043330658227205276,
0.06263795495033264,
-0.08732924610376358,
-0.014868349768221378,
-0.08418543636798859,
-0.0063281371258199215,
-0.05465800687670708,
-0.04843350127339363,
0.10294320434331894,
0.02672472409904003,
0.09131626039743423,
-0.10252688825130463,
-0.006264763418585062,
-0.0841422751545906,
0.004595781210809946,
-0.004077813122421503,
-0.17024628818035126,
-0.066446952521801,
-0.055673789232969284,
0.00438104709610343,
0.02773762121796608,
0.24437342584133148,
0.030455010011792183,
-0.08594781905412674,
0.014106767252087593,
-0.04299863800406456,
0.142230823636055,
0.009490571916103363,
0.30192092061042786,
0.07277625054121017,
0.020148394629359245,
-0.11687400192022324,
0.09582033008337021,
0.06319232285022736,
-0.1075395718216896,
0.0697389468550682,
-0.029056428000330925,
-0.10561170428991318,
0.06944342702627182,
0.06848221272230148,
-0.0909913182258606,
-0.0344499871134758,
-0.13723257184028625,
-0.08151119947433472,
0.029957016929984093,
-0.0007826267974451184,
0.036765895783901215,
0.18185853958129883,
-0.051479946821928024,
-0.008618845604360104,
-0.014910082332789898,
-0.019698994234204292,
-0.10816546529531479,
-0.1485249549150467,
-0.11674962192773819,
-0.22616399824619293,
0.017451127991080284,
-0.08401710540056229,
0.0045860400423407555,
0.01867923140525818,
0.04644792154431343,
-0.028924379497766495,
0.10519830137491226,
0.006532402243465185,
-0.0628451332449913,
0.04271785542368889,
-0.03901537507772446,
-0.041698988527059555,
-0.04727070406079292,
-0.0582008957862854,
-0.007621251046657562,
-0.05724814906716347,
-0.029624413698911667,
0.021702555939555168,
0.03554190322756767,
0.05455997586250305,
-0.06040068715810776,
-0.049147170037031174,
-0.049361128360033035,
0.064219169318676,
0.022404853254556656,
0.1002747192978859,
0.007787623442709446,
-0.0010320150759071112,
0.0769469290971756,
0.14201620221138,
-0.019133737310767174,
-0.14985494315624237,
-0.04789353162050247,
0.16241459548473358,
0.014821110293269157,
0.08228565007448196,
-0.007033091504126787,
-0.04685995355248451,
0.022142698988318443,
0.2125367671251297,
0.30566954612731934,
0.022976351901888847,
0.05696422606706619,
-0.015394569374620914,
0.0047053685411810875,
0.05870611220598221,
0.06588993221521378,
0.1229410395026207,
0.16777367889881134,
-0.012675769627094269,
0.012857773341238499,
-0.004813047591596842,
0.012925202958285809,
-0.10443291813135147,
0.029773807153105736,
0.004425965249538422,
-0.09134835004806519,
0.0004643388092517853,
0.0655907616019249,
-0.052154894918203354,
0.02407686598598957,
-0.03111840784549713,
-0.062288183718919754,
-0.03070014715194702,
-0.033535830676555634,
0.02316463179886341,
0.02101437933743,
0.009456911124289036,
-0.06340821087360382,
-0.009956514462828636,
0.09817813336849213,
0.0028840985614806414,
-0.18382270634174347,
-0.0532856248319149,
0.004128814209252596,
0.003654066938906908,
0.07881156355142593,
-0.003651933977380395,
0.061939384788274765,
0.0774732232093811,
0.015113088302314281,
-0.0977724939584732,
0.13854961097240448,
-0.024517808109521866,
-0.11267183721065521,
0.052403774112463,
-0.037495337426662445,
-0.01888110861182213,
-0.051427584141492844,
0.018206274136900902,
-0.059573981910943985,
0.02368997223675251,
0.06396246701478958,
-0.05257687717676163,
-0.0475194975733757,
0.06298993527889252,
-0.10416673868894577,
0.10705066472291946,
0.07511927932500839,
-0.021154027432203293,
-0.018606409430503845,
-0.06810041517019272,
0.06942861527204514,
0.06415854394435883,
-0.051046110689640045,
0.013545870780944824,
-0.09559749066829681,
-0.011904302053153515,
0.10269706696271896,
0.02914983034133911,
-0.222738116979599,
-0.020085228607058525,
-0.1821814924478531,
0.02488132007420063,
-0.08903156220912933,
0.018705014139413834,
0.1738087236881256,
0.012686594389379025,
-0.029826220124959946,
-0.09455586224794388,
-0.01311123464256525,
0.05460480973124504,
-0.0873069018125534,
-0.1355656087398529
] |
null | null | transformers |
# MBTrix-7B
MBTrix-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
## 🧩 Configuration
```yaml
models:
- model: mlabonne/NeuBeagle-7B
# No parameters necessary for base model
- model: mlabonne/NeuralOmniBeagle-7B
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: mlabonne/NeuBeagle-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/MBTrix-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "cc-by-nc-4.0", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": ["mlabonne/NeuralOmniBeagle-7B"]} | text-generation | shadowml/MBTrix-7B | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"base_model:mlabonne/NeuralOmniBeagle-7B",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:58:19+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# MBTrix-7B
MBTrix-7B is a merge of the following models using LazyMergekit:
* mlabonne/NeuralOmniBeagle-7B
## Configuration
## Usage
| [
"# MBTrix-7B\n\nMBTrix-7B is a merge of the following models using LazyMergekit:\n* mlabonne/NeuralOmniBeagle-7B",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# MBTrix-7B\n\nMBTrix-7B is a merge of the following models using LazyMergekit:\n* mlabonne/NeuralOmniBeagle-7B",
"## Configuration",
"## Usage"
] | [
88,
39,
4,
3
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# MBTrix-7B\n\nMBTrix-7B is a merge of the following models using LazyMergekit:\n* mlabonne/NeuralOmniBeagle-7B## Configuration## Usage"
] | [
-0.0375995896756649,
0.04897212237119675,
-0.002205190947279334,
0.005359911825507879,
0.07555635273456573,
0.054901786148548126,
0.20050537586212158,
0.0865553617477417,
-0.009012972936034203,
0.015527026727795601,
0.0978473424911499,
0.2195858210325241,
-0.01416806410998106,
0.09406967461109161,
-0.05631999298930168,
-0.1789870709180832,
0.10433660447597504,
0.03442799299955368,
-0.0015479784924536943,
0.07710855454206467,
0.10685800760984421,
-0.042531270533800125,
0.0963871106505394,
-0.020712655037641525,
-0.16077889502048492,
0.008974667638540268,
0.02468460239470005,
-0.045156192034482956,
0.08962682634592056,
0.09500380605459213,
0.05898362025618553,
0.07557663321495056,
-0.004239052999764681,
-0.10429482161998749,
0.04423576593399048,
-0.01307317242026329,
-0.045382775366306305,
0.07024108618497849,
0.059713494032621384,
-0.028386393561959267,
0.16797500848770142,
0.012837355025112629,
0.026339568197727203,
0.05584386736154556,
-0.11512374877929688,
-0.025123128667473793,
-0.050722140818834305,
0.09245745092630386,
0.024960365146398544,
0.04810085892677307,
-0.020519468933343887,
0.17511925101280212,
-0.03802086040377617,
0.08548799157142639,
0.10911034047603607,
-0.32649749517440796,
-0.023349514231085777,
0.17297758162021637,
0.06662782281637192,
-0.0355076789855957,
-0.010105369612574577,
0.08849409967660904,
0.05130843445658684,
-0.00544922286644578,
0.07815210521221161,
-0.05906389653682709,
0.1279176026582718,
-0.04390370473265648,
-0.11908241361379623,
0.01769752986729145,
0.14847137033939362,
0.025945177301764488,
0.021086560562253,
-0.11351187527179718,
-0.0783224105834961,
0.11458320915699005,
-0.06558369845151901,
-0.008078048937022686,
-0.009534419514238834,
0.025149717926979065,
0.0021360425744205713,
-0.07380043715238571,
-0.04168589040637016,
-0.008682413026690483,
-0.11946416646242142,
0.10382024198770523,
-0.0022363930474966764,
-0.009510884992778301,
0.004079191479831934,
0.046227216720581055,
0.0005326494574546814,
-0.09757828712463379,
0.026059197261929512,
-0.06291764974594116,
0.013298398815095425,
-0.024567579850554466,
-0.05114325135946274,
-0.0697464570403099,
0.09994406998157501,
0.17661534249782562,
0.04744639992713928,
0.035763632506132126,
-0.029462143778800964,
0.08675304800271988,
-0.0036990519147366285,
-0.035784319043159485,
-0.12818431854248047,
-0.1217537596821785,
0.08487040549516678,
0.07298635691404343,
0.07561282068490982,
-0.014824931509792805,
-0.14679941534996033,
0.004443556070327759,
0.02324240282177925,
0.019651316106319427,
0.05065402388572693,
0.12496621161699295,
-0.06681104749441147,
-0.07248352468013763,
0.20094753801822662,
-0.03878738358616829,
0.009972695261240005,
0.02321215718984604,
-0.04691275209188461,
0.010277177207171917,
0.04235111549496651,
0.0511869378387928,
-0.0009391681523993611,
0.04409356415271759,
-0.08123347908258438,
-0.04548700153827667,
-0.05172809585928917,
-0.11467741429805756,
0.02801325172185898,
-0.003563234116882086,
-0.012725423090159893,
-0.13453103601932526,
-0.26486116647720337,
0.010464942082762718,
0.07565537840127945,
-0.06330540776252747,
-0.03778335452079773,
-0.09456712007522583,
-0.01847454160451889,
-0.007680973038077354,
-0.026050299406051636,
-0.03234363719820976,
-0.022453652694821358,
0.009129589423537254,
-0.03234683722257614,
0.034839071333408356,
-0.21774351596832275,
0.01158049050718546,
-0.07651539891958237,
0.05330996587872505,
-0.12297675013542175,
0.09959068149328232,
-0.03269492834806442,
0.09448873996734619,
-0.08021298050880432,
-0.0062643857672810555,
-0.08131898939609528,
0.020211197435855865,
0.035268113017082214,
0.136447936296463,
-0.08087636530399323,
-0.091526098549366,
0.057037822902202606,
-0.10359637439250946,
-0.1764044463634491,
0.11809084564447403,
-0.03364340588450432,
0.1546858549118042,
0.10337086766958237,
0.21974286437034607,
0.031722646206617355,
-0.02355079911649227,
-0.02959778718650341,
-0.022409964352846146,
-0.0633619949221611,
-0.060535091906785965,
0.04020315781235695,
0.058570753782987595,
-0.10569728165864944,
0.03438551723957062,
0.08135104924440384,
0.09036212414503098,
-0.015835274010896683,
-0.07581868767738342,
-0.023255707696080208,
-0.09398583322763443,
0.08739960193634033,
-0.003292989684268832,
0.05780406668782234,
-0.07720988988876343,
-0.03447701409459114,
0.11145913600921631,
0.06574083864688873,
-0.057380691170692444,
-0.011348443105816841,
-0.09188084304332733,
0.055965155363082886,
-0.05760495364665985,
0.06248065456748009,
-0.08281812071800232,
-0.12222863733768463,
0.02386159636080265,
-0.007111296057701111,
0.07808832824230194,
-0.01457876618951559,
0.04927130416035652,
0.03279270604252815,
-0.09673446416854858,
-0.019143760204315186,
0.13408182561397552,
0.04032581299543381,
-0.016961945220828056,
-0.21196436882019043,
0.009966307319700718,
-0.04814831539988518,
0.18548855185508728,
-0.12676963210105896,
0.07225590199232101,
0.012849876657128334,
0.17612069845199585,
-0.020834077149629593,
0.02380277030169964,
0.038270823657512665,
0.0062699392437934875,
-0.05513812229037285,
0.01035069115459919,
0.13597245514392853,
-0.002346258144825697,
-0.1482667177915573,
0.16021205484867096,
-0.16047489643096924,
0.14896921813488007,
0.14860625565052032,
-0.010530197061598301,
-0.00870734266936779,
-0.029354682192206383,
0.015604637563228607,
-0.06487683206796646,
0.0974494218826294,
-0.07906845211982727,
0.039269741624593735,
-0.024491524323821068,
0.11825689673423767,
-0.11238406598567963,
-0.04971809685230255,
-0.0019060045015066862,
0.0003628026752267033,
-0.0479353629052639,
0.05612356960773468,
0.024596545845270157,
-0.28849780559539795,
0.11955838650465012,
0.14569193124771118,
-0.007762186694890261,
0.1352352797985077,
0.012882307171821594,
0.03160334378480911,
-0.05820133909583092,
0.01230641920119524,
0.04608137160539627,
0.02412392944097519,
-0.08183027058839798,
0.04669318348169327,
0.04759008809924126,
0.003649346297606826,
0.0991487056016922,
-0.05927886441349983,
0.01379108801484108,
-0.033733658492565155,
-0.007608004845678806,
0.1038728877902031,
0.0946265235543251,
-0.014312001876533031,
0.06994708627462387,
-0.0012837628601118922,
-0.07466664910316467,
0.07032418251037598,
-0.00801319070160389,
-0.09409302473068237,
0.1411343365907669,
-0.1512661725282669,
-0.2443525642156601,
-0.16157571971416473,
-0.09273030608892441,
-0.1013215035200119,
-0.001953043625690043,
0.04435434192419052,
0.02825610339641571,
-0.020678194239735603,
-0.1229545846581459,
0.020764613524079323,
0.04561353102326393,
-0.035130877047777176,
0.015200015157461166,
0.03560096025466919,
-0.02780730091035366,
-0.12200786173343658,
-0.0068903639912605286,
0.018700553104281425,
-0.023768089711666107,
0.048635341227054596,
-0.1488649547100067,
0.09333793073892593,
0.16082702577114105,
0.019432637840509415,
-0.014753321185708046,
-0.04702295735478401,
0.21743682026863098,
-0.04345620051026344,
0.061346933245658875,
0.11298225820064545,
-0.020814664661884308,
0.03491192311048508,
0.1935606747865677,
0.03367813304066658,
-0.07352006435394287,
0.03635312616825104,
-0.03817497193813324,
-0.03845469653606415,
-0.1655924767255783,
-0.1441207230091095,
-0.07544603943824768,
0.0674734115600586,
0.05613071098923683,
0.05520087108016014,
0.11993026733398438,
0.07349848747253418,
-0.05507064610719681,
-0.02550368569791317,
0.08079956471920013,
0.10811863839626312,
0.2399769127368927,
0.00457865372300148,
0.13437721133232117,
-0.0568414069712162,
-0.04960417374968529,
0.06044236570596695,
0.03293132781982422,
0.04462392255663872,
0.056541964411735535,
0.1609411984682083,
0.04454605281352997,
0.023196669295430183,
0.07618948072195053,
0.08628347516059875,
-0.04692138358950615,
-0.02723223902285099,
-0.04614845663309097,
-0.09176258742809296,
0.012790440581738949,
0.04444847255945206,
-0.02158489264547825,
0.013906080275774002,
0.022346077486872673,
-0.06749752163887024,
0.10213232785463333,
0.043292704969644547,
0.08923085033893585,
-0.28125396370887756,
-0.0393107645213604,
0.05292510241270065,
0.020764531567692757,
-0.022762533277273178,
-0.003419238608330488,
0.0324116088449955,
-0.0642574355006218,
0.11956833302974701,
-0.02283671125769615,
0.10997512191534042,
-0.0015182585921138525,
0.014751461334526539,
-0.0547504797577858,
0.03881071135401726,
-0.010630075819790363,
0.07038555294275284,
-0.18271024525165558,
0.0969432070851326,
0.04497930780053139,
0.05381661280989647,
-0.0008692345581948757,
-0.028034865856170654,
0.061467599123716354,
0.1904291957616806,
0.01786624826490879,
-0.01821104623377323,
-0.037118565291166306,
0.01034168154001236,
-0.08657727390527725,
-0.0035798216704279184,
0.039193566888570786,
0.002908763475716114,
0.059185341000556946,
-0.012559311464428902,
-0.05197321996092796,
0.04503960534930229,
0.02016558311879635,
-0.1740638017654419,
-0.17328840494155884,
0.059151675552129745,
0.14507214725017548,
0.10745518654584885,
-0.07222744077444077,
-0.033855751156806946,
-0.08593855798244476,
0.2269437611103058,
-0.06754518300294876,
-0.03671272099018097,
-0.09372543543577194,
-0.04990571364760399,
0.08803034573793411,
-0.03143143653869629,
0.06625571846961975,
-0.05045761540532112,
0.0494828037917614,
-0.08420050144195557,
-0.16030001640319824,
0.09337811172008514,
-0.09170644730329514,
-0.07346633076667786,
-0.04467898607254028,
0.09995362907648087,
-0.052227772772312164,
0.03878404200077057,
0.04574625939130783,
0.03996312990784645,
-0.03582818806171417,
-0.06477129459381104,
-0.04116707667708397,
0.016482779756188393,
-0.009605541825294495,
0.0894838497042656,
-0.15378087759017944,
-0.15235717594623566,
-0.02381514199078083,
-0.03865183889865875,
0.18380106985569,
0.29278039932250977,
-0.02356046997010708,
0.08176632970571518,
0.22440078854560852,
-0.07299505919218063,
-0.29337307810783386,
-0.04592670127749443,
-0.030654553323984146,
-0.027379915118217468,
-0.013561890460550785,
-0.12377245724201202,
0.05699634552001953,
0.11170487105846405,
-0.01863354817032814,
0.045456238090991974,
-0.321796178817749,
-0.13081155717372894,
0.05310701206326485,
0.07989039272069931,
0.2189735472202301,
-0.14165125787258148,
-0.05928577855229378,
-0.12181080132722855,
-0.10616210848093033,
0.16671951115131378,
-0.09824898838996887,
0.12413061410188675,
0.0019733982626348734,
-0.03593023121356964,
-0.013251200318336487,
-0.04142638295888901,
0.09560438245534897,
-0.03998212143778801,
0.05663031339645386,
-0.04916338250041008,
-0.036608967930078506,
0.24052061140537262,
-0.010356481187045574,
0.07047746330499649,
-0.15663465857505798,
0.019875159487128258,
0.007299953605979681,
-0.04706709459424019,
-0.06265074759721756,
0.0701642856001854,
-0.03032277710735798,
-0.07336855679750443,
-0.05540094152092934,
0.0661541149020195,
0.03835812583565712,
0.030206631869077682,
0.10413370281457901,
-0.051995038986206055,
0.07107753306627274,
0.21755628287792206,
0.10855080932378769,
-0.13686493039131165,
0.06660168617963791,
-0.009219001047313213,
-0.08518025279045105,
0.039405565708875656,
-0.025184161961078644,
-0.006450972985476255,
0.08608681708574295,
-0.03903894126415253,
0.12343327701091766,
0.053943026810884476,
-0.016729477792978287,
-0.02103794552385807,
0.13224296271800995,
-0.14062876999378204,
-0.14414852857589722,
-0.006423587445169687,
0.07214849442243576,
-0.00836024060845375,
0.06010473892092705,
0.17698198556900024,
-0.04151509702205658,
-0.0009495767299085855,
0.05218356102705002,
-0.030684655532240868,
-0.07466212660074234,
0.10964220762252808,
0.015005132183432579,
0.027538925409317017,
-0.08745414763689041,
0.04664183408021927,
0.05256832763552666,
-0.09513632953166962,
-0.020585844293236732,
0.1221466213464737,
-0.12658612430095673,
-0.1086173877120018,
-0.06272173672914505,
0.2307112067937851,
-0.06355976313352585,
-0.04426748305559158,
-0.1211966946721077,
-0.09100928902626038,
0.03509354963898659,
0.16949068009853363,
0.08567214012145996,
0.04808090627193451,
-0.0014659513253718615,
-0.05788390338420868,
-0.07204359769821167,
0.11060640960931778,
-0.017403006553649902,
0.08846080303192139,
-0.0725235566496849,
-0.03385700657963753,
-0.017646046355366707,
-0.020604688674211502,
-0.08225920796394348,
-0.000376695126760751,
-0.18190665543079376,
-0.03622583672404289,
-0.1351131647825241,
-0.028010981157422066,
-0.14546802639961243,
-0.041987914592027664,
-0.007568033412098885,
0.012857720255851746,
-0.05008270964026451,
-0.024208171293139458,
-0.04175938293337822,
-0.024592608213424683,
0.01717221364378929,
0.07616282999515533,
-0.07226240634918213,
-0.039753831923007965,
0.0117690060287714,
-0.04068216308951378,
0.0740787461400032,
0.0053711142390966415,
-0.031119029968976974,
0.014980104751884937,
-0.10645084828138351,
-0.07417899370193481,
0.06731251627206802,
0.01860070787370205,
0.01741008646786213,
-0.0831775963306427,
-0.011486475355923176,
0.057404108345508575,
0.03324629366397858,
0.035528503358364105,
0.13399218022823334,
-0.07318951189517975,
0.03160475566983223,
-0.0799495130777359,
-0.07152411341667175,
-0.03241988271474838,
0.0007611423498019576,
-0.010611053556203842,
0.0178267452865839,
0.2032778561115265,
-0.09410921484231949,
-0.015752824023365974,
-0.09334497153759003,
0.003320238320156932,
-0.008868036791682243,
-0.20103639364242554,
-0.0770290419459343,
-0.051902949810028076,
-0.008629023097455502,
-0.012376436963677406,
0.18329599499702454,
-0.0498759001493454,
-0.26256465911865234,
0.057310737669467926,
-0.01589365489780903,
-0.01854238472878933,
0.024333208799362183,
0.25344058871269226,
0.09811007976531982,
-0.005122546572238207,
-0.08332918584346771,
0.08610783517360687,
0.029776742681860924,
0.05376999080181122,
0.04653389751911163,
0.11334165930747986,
0.007216451223939657,
0.1010768860578537,
0.09118092060089111,
0.03772469982504845,
-0.03577618673443794,
0.09188138693571091,
-0.01503082551062107,
0.06743445247411728,
-0.04061884060502052,
0.1470699906349182,
0.17322230339050293,
-0.07349076867103577,
0.030711395666003227,
0.028290236368775368,
-0.035971853882074356,
-0.08411088585853577,
-0.12678813934326172,
-0.1220073401927948,
-0.13446059823036194,
-0.028289608657360077,
-0.11005023121833801,
-0.062580406665802,
-0.010002241469919682,
0.03138875216245651,
-0.012680078856647015,
0.13351018726825714,
-0.04342692717909813,
-0.011766706593334675,
0.03384852409362793,
-0.055509842932224274,
-0.0611073300242424,
-0.03756103292107582,
-0.045942191034555435,
-0.04403869807720184,
0.000009214878446073271,
0.0029460638761520386,
0.03262968733906746,
-0.0159732848405838,
0.024607887491583824,
-0.05695847049355507,
-0.11122864484786987,
-0.007666398771107197,
0.058439936488866806,
0.02610132284462452,
0.030257731676101685,
0.013835540041327477,
-0.09482592344284058,
0.02598266303539276,
0.0898464098572731,
-0.018453111872076988,
-0.17708225548267365,
-0.0745120644569397,
0.23924469947814941,
-0.033589791506528854,
0.06299202889204025,
-0.014623547904193401,
-0.019527029246091843,
-0.004668843001127243,
0.22324393689632416,
0.33941537141799927,
-0.11324042826890945,
-0.00980362482368946,
0.013441532850265503,
0.01149419043213129,
0.03234223648905754,
0.08054161071777344,
0.0025030276738107204,
0.14761148393154144,
-0.0472327321767807,
0.006645646411925554,
-0.04900142922997475,
-0.055729810148477554,
-0.09551963955163956,
-0.01873869262635708,
0.03989604115486145,
-0.03436427563428879,
-0.019857097417116165,
0.08634212613105774,
-0.11473389714956284,
0.058646101504564285,
-0.03806118294596672,
-0.10559215396642685,
-0.08049171417951584,
-0.0712805688381195,
0.032067034393548965,
-0.04173087328672409,
0.07037747651338577,
-0.04729780554771423,
-0.01361542847007513,
-0.04655986651778221,
-0.043552786111831665,
-0.12244229763746262,
-0.023779157549142838,
0.024547766894102097,
-0.03416535630822182,
0.08182775974273682,
-0.05428663268685341,
0.035404980182647705,
0.14324702322483063,
-0.03254368528723717,
-0.09570185840129852,
0.0818457379937172,
0.010988178662955761,
-0.02405622787773609,
0.05791129916906357,
0.01875387690961361,
-0.017328130081295967,
0.14207598567008972,
0.032533153891563416,
-0.14873316884040833,
0.05411001667380333,
0.009931293316185474,
-0.06906378269195557,
-0.054726019501686096,
0.059792328625917435,
-0.033089738339185715,
0.11863084882497787,
0.1072370707988739,
-0.026312565430998802,
-0.015594507567584515,
-0.009626887738704681,
0.01567644067108631,
0.09467989206314087,
0.041594937443733215,
-0.0470721572637558,
-0.23376519978046417,
-0.053424935787916183,
0.03915843740105629,
0.02766849845647812,
-0.3149195909500122,
-0.08063928782939911,
-0.17130430042743683,
0.009549547918140888,
-0.11394309997558594,
0.095856212079525,
0.16866306960582733,
-0.013348232954740524,
-0.020089929923415184,
-0.19370566308498383,
-0.03814304992556572,
0.06079377606511116,
-0.09656695276498795,
-0.11904588341712952
] |
null | null | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` | {"license": "other", "tags": ["autotrain", "text-generation"], "widget": [{"text": "I love AutoTrain because "}]} | text-generation | aman-apollo/template-mistralInstruct-finetune | [
"transformers",
"tensorboard",
"safetensors",
"mistral",
"text-generation",
"autotrain",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T11:58:27+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #mistral #text-generation #autotrain #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
# Usage
| [
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
"TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #autotrain #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
64,
29,
3
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #mistral #text-generation #autotrain #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.# Usage"
] | [
-0.02699541114270687,
0.052525196224451065,
-0.0015375087969005108,
0.05149228125810623,
0.12088289856910706,
-0.04163394495844841,
0.2625403106212616,
0.05558646097779274,
-0.04610184207558632,
-0.06594274193048477,
0.17726024985313416,
0.18847188353538513,
-0.03057561069726944,
0.1602223962545395,
-0.04588054493069649,
-0.2628976106643677,
0.01935308612883091,
0.002317485399544239,
0.0524492971599102,
0.11028582602739334,
0.1389206349849701,
-0.07855317741632462,
0.0668196976184845,
0.041918426752090454,
-0.21349984407424927,
0.03016752563416958,
0.0596829317510128,
-0.12534905970096588,
0.17129358649253845,
0.07529635727405548,
0.117461197078228,
0.060434285551309586,
0.10621046274900436,
-0.09247836470603943,
0.031026212498545647,
0.01950329728424549,
-0.020604576915502548,
0.09757140278816223,
0.07917279005050659,
-0.0350341871380806,
0.07296935468912125,
0.14127607643604279,
0.10844720155000687,
0.039640773087739944,
-0.09329894930124283,
0.02944805659353733,
0.0020703261252492666,
0.022427711635828018,
0.11719834059476852,
0.09943539649248123,
-0.01877782493829727,
0.18181537091732025,
-0.08212538808584213,
0.10259909927845001,
-0.045457057654857635,
-0.28803253173828125,
-0.03986995294690132,
0.1873147338628769,
0.07420988380908966,
0.013626144267618656,
-0.12427637726068497,
0.078909732401371,
0.1008378192782402,
-0.004938090685755014,
0.0701189786195755,
-0.033190663903951645,
-0.0393044613301754,
-0.01346403919160366,
-0.09974315762519836,
0.05136822164058685,
0.16537895798683167,
-0.07599294185638428,
-0.009413180872797966,
-0.12710975110530853,
-0.05052062124013901,
0.021240994334220886,
-0.011423724703490734,
-0.12030315399169922,
-0.03188876062631607,
0.08303900808095932,
-0.05930151045322418,
-0.0464908592402935,
-0.14200998842716217,
-0.04042978212237358,
-0.11552562564611435,
0.057527095079422,
-0.006070165429264307,
-0.016220789402723312,
-0.12115611881017685,
0.09469593316316605,
0.03101532533764839,
-0.11626887321472168,
0.060420598834753036,
-0.0741722360253334,
0.001140298554673791,
-0.10681776702404022,
-0.023332959040999413,
-0.1952218860387802,
0.030099496245384216,
0.17851774394512177,
0.15494675934314728,
0.020939888432621956,
-0.07886002957820892,
0.048338331282138824,
0.013530293479561806,
0.12733060121536255,
0.02140798792243004,
-0.046359043568372726,
0.05125835910439491,
-0.04296070709824562,
-0.009869301691651344,
-0.0485469251871109,
-0.20714326202869415,
0.05008949339389801,
0.03269507363438606,
0.03291710838675499,
-0.04729897156357765,
0.1083824411034584,
-0.028031980618834496,
0.016060568392276764,
0.033669810742139816,
-0.03928220644593239,
0.039990223944187164,
-0.050537772476673126,
0.008731657639145851,
-0.03720587119460106,
0.04612233489751816,
0.10477311909198761,
0.021429337561130524,
0.10337132215499878,
-0.07821279764175415,
-0.02858932502567768,
-0.09844601899385452,
-0.08640087395906448,
0.01666846126317978,
0.011332022026181221,
0.03232283517718315,
-0.18575049936771393,
-0.23881326615810394,
-0.024755913764238358,
0.06387589126825333,
-0.03176957741379738,
-0.06939536333084106,
-0.09116985648870468,
0.008387977257370949,
0.06912240386009216,
-0.02539674937725067,
0.06623683124780655,
-0.004402702208608389,
0.020224828273057938,
-0.07790552824735641,
0.038042839616537094,
-0.06866512447595596,
0.015649111941456795,
-0.11430995166301727,
-0.022092711180448532,
-0.03882748633623123,
0.04329218342900276,
-0.03006068430840969,
0.14419233798980713,
-0.03842197358608246,
0.04526497796177864,
-0.044787291437387466,
0.056167472153902054,
0.02476482465863228,
0.1392175555229187,
-0.16037936508655548,
-0.043978430330753326,
0.14509063959121704,
-0.10600236058235168,
-0.11773402988910675,
0.12836679816246033,
-0.09591180086135864,
0.24804648756980896,
0.1129641905426979,
0.11147007346153259,
0.05363072082400322,
-0.08599360287189484,
0.10796362906694412,
0.030262673273682594,
-0.08265260607004166,
-0.029414139688014984,
-0.007092099171131849,
0.008056282065808773,
-0.1482926309108734,
0.02850986458361149,
0.14341646432876587,
0.06641319394111633,
-0.039340823888778687,
-0.07952730357646942,
-0.011220400221645832,
-0.04146914929151535,
0.08381195366382599,
0.012549158185720444,
0.14203421771526337,
-0.04933689907193184,
-0.04913952201604843,
0.08753503113985062,
0.02959383651614189,
0.01807376556098461,
-0.033537544310092926,
-0.09085430204868317,
-0.024506034329533577,
-0.05371454358100891,
0.021011503413319588,
-0.11492293328046799,
-0.05873663350939751,
-0.027979671955108643,
0.09379857778549194,
0.05248923599720001,
0.12190566211938858,
0.0553957037627697,
0.03518616035580635,
-0.016852382570505142,
0.03468210995197296,
0.19218511879444122,
0.03407968580722809,
-0.1401698738336563,
-0.14350873231887817,
0.11236314475536346,
-0.09722626954317093,
0.1408296823501587,
-0.24620012938976288,
0.040916357189416885,
-0.06338175386190414,
0.09650067985057831,
0.01381456758826971,
0.06793159246444702,
-0.07225442677736282,
0.016335727646946907,
-0.11225221306085587,
-0.0067980182357132435,
0.0727112665772438,
0.047955222427845,
-0.07784378528594971,
0.1471128612756729,
-0.18932963907718658,
0.22249622642993927,
0.1227576732635498,
-0.13205888867378235,
-0.09022273123264313,
-0.09933790564537048,
0.007844572886824608,
-0.024010734632611275,
-0.07395610213279724,
-0.011356044560670853,
0.13247385621070862,
-0.02462097257375717,
0.1890343278646469,
-0.02045755833387375,
-0.04548988863825798,
-0.001989134354516864,
-0.09136506915092468,
-0.017559170722961426,
0.031994812190532684,
0.06634363532066345,
-0.22326712310314178,
0.13752993941307068,
0.1406964212656021,
-0.05221952497959137,
0.22264766693115234,
0.032917723059654236,
0.026482457295060158,
0.003446560585871339,
-0.049891844391822815,
0.020148031413555145,
-0.009107460267841816,
-0.06893884390592575,
-0.049932919442653656,
0.014478646218776703,
-0.0142153175547719,
0.03317056596279144,
-0.12587253749370575,
-0.01182317454367876,
0.026522744446992874,
0.0580943338572979,
0.06508933752775192,
0.06177165359258652,
-0.08519607782363892,
0.08249333500862122,
-0.04087919741868973,
-0.14336703717708588,
0.1108337789773941,
0.009114470332860947,
-0.12669003009796143,
0.18299083411693573,
-0.0758049413561821,
-0.23183932900428772,
-0.18516750633716583,
-0.17221717536449432,
-0.00723571190610528,
0.062238529324531555,
0.059693045914173126,
-0.07341434806585312,
-0.06569252163171768,
-0.020864974707365036,
-0.06828463077545166,
0.01007883995771408,
-0.002030706498771906,
-0.06883236765861511,
0.03270689398050308,
-0.014208085834980011,
-0.10116046667098999,
-0.029029831290245056,
-0.009190062060952187,
-0.04901104420423508,
0.0692099779844284,
-0.052616529166698456,
0.060191500931978226,
0.18694517016410828,
-0.01489932555705309,
0.023964669555425644,
-0.04143443703651428,
0.12997864186763763,
-0.07899091392755508,
0.027894146740436554,
0.08909832686185837,
-0.07445263862609863,
0.03881121054291725,
0.20737601816654205,
0.029496803879737854,
-0.05632537975907326,
0.07801061868667603,
-0.028718801215291023,
-0.0774407610297203,
-0.20642608404159546,
-0.08684719353914261,
-0.020633254200220108,
0.019245212897658348,
0.08364695310592651,
0.057998914271593094,
0.26918041706085205,
0.12964649498462677,
0.07459327578544617,
0.06608638167381287,
0.04691487178206444,
0.08669880777597427,
0.13618479669094086,
-0.02930464781820774,
0.1926214098930359,
-0.07248775660991669,
-0.17590169608592987,
0.04103903844952583,
-0.019386671483516693,
0.0760020986199379,
0.15984705090522766,
0.053699299693107605,
0.029926501214504242,
0.05818108469247818,
0.14610257744789124,
0.11831671744585037,
0.05941009148955345,
-0.06771506369113922,
-0.008292550221085548,
-0.025469649583101273,
-0.02513192594051361,
0.11616689711809158,
-0.031084444373846054,
-0.0541393868625164,
-0.003292324487119913,
0.06276321411132812,
0.03913247585296631,
0.08445098996162415,
0.011915687471628189,
-0.2954202890396118,
0.010847505182027817,
0.035310279577970505,
-0.05624374374747276,
-0.08180417120456696,
0.0618964284658432,
0.019216833636164665,
-0.14484640955924988,
0.0181722529232502,
-0.06784247606992722,
0.08817319571971893,
-0.008300479501485825,
0.06697096675634384,
-0.06832937151193619,
-0.007470566779375076,
-0.04647418111562729,
0.12014855444431305,
-0.38092684745788574,
0.2078399658203125,
-0.006222316529601812,
0.0456739105284214,
-0.11163492500782013,
0.020704366266727448,
0.08321543782949448,
0.15837235748767853,
0.09556505084037781,
-0.0660763531923294,
-0.14684933423995972,
-0.09546715766191483,
-0.10107629001140594,
-0.014514556154608727,
0.02460043877363205,
-0.01051158644258976,
0.012242973782122135,
-0.10082778334617615,
-0.013952648267149925,
0.059524063020944595,
-0.008193613961338997,
-0.13010439276695251,
-0.17529445886611938,
0.021371234208345413,
0.04099329933524132,
0.03484678268432617,
-0.020617537200450897,
-0.10272130370140076,
-0.11836910247802734,
0.1934756636619568,
0.006529111415147781,
-0.002373364521190524,
-0.13872013986110687,
-0.012368431314826012,
-0.055968910455703735,
-0.04413953423500061,
0.06175634264945984,
0.00045833707554265857,
0.1418440192937851,
-0.08526213467121124,
-0.09989900887012482,
0.12388047575950623,
-0.11607690155506134,
-0.05472702533006668,
-0.11755654960870743,
0.020144371315836906,
-0.012329724617302418,
0.0054936837404966354,
0.0963820368051529,
0.03955746069550514,
-0.07033362984657288,
-0.05635528638958931,
-0.016631219536066055,
-0.011973624117672443,
-0.030847571790218353,
-0.13556155562400818,
-0.09645826369524002,
-0.11676975339651108,
-0.021463563665747643,
-0.09085120260715485,
0.2225944697856903,
0.1282944530248642,
-0.09359250962734222,
0.13654381036758423,
0.2120448350906372,
-0.1091618612408638,
-0.3224632143974304,
-0.04555538296699524,
-0.031316548585891724,
0.015949100255966187,
0.044650688767433167,
-0.12177825719118118,
0.10702518373727798,
-0.004046852700412273,
-0.07988344132900238,
-0.02333424612879753,
-0.15922191739082336,
-0.17143768072128296,
0.2526555061340332,
0.02667848765850067,
0.21582216024398804,
-0.1036934107542038,
-0.06667744368314743,
-0.12322782725095749,
0.033653486520051956,
0.07333366572856903,
-0.12631624937057495,
0.06262853741645813,
0.0570843331515789,
0.0673443153500557,
0.029383040964603424,
-0.0368652381002903,
0.0476229153573513,
-0.051926832646131516,
0.05953340232372284,
-0.1630999594926834,
-0.03829682990908623,
0.06113021448254585,
-0.02620183303952217,
0.08101767301559448,
-0.06936794519424438,
0.011851944960653782,
-0.012223218567669392,
-0.06766347587108612,
0.029848668724298477,
0.07275693863630295,
-0.001643786090426147,
-0.11137469112873077,
0.005139535292983055,
-0.010434017516672611,
-0.0038823471404612064,
-0.05620753765106201,
0.09866064786911011,
-0.03227032721042633,
0.1555190235376358,
0.2008318305015564,
0.24337852001190186,
-0.06256049871444702,
0.06945628672838211,
-0.02731485851109028,
-0.11183883994817734,
0.08404701948165894,
-0.07549898326396942,
0.02428785152733326,
0.0827280580997467,
-0.040800586342811584,
0.15702922642230988,
0.0655057430267334,
-0.013254620134830475,
-0.005723502021282911,
0.14080925285816193,
-0.1530471295118332,
-0.0159621424973011,
-0.06955518573522568,
0.10592132806777954,
0.02018340304493904,
0.026091108098626137,
0.14143383502960205,
-0.07682769000530243,
-0.009049240499734879,
0.04147037863731384,
-0.003871590131893754,
-0.0168798565864563,
0.11431785672903061,
0.035309236496686935,
0.019573885947465897,
-0.07142370939254761,
0.02572551742196083,
0.07623033225536346,
-0.015167484059929848,
0.0498647503554821,
0.03143294155597687,
-0.09164922684431076,
-0.11104477196931839,
0.022583844140172005,
0.2792930006980896,
-0.1597553789615631,
-0.0767328143119812,
-0.03942285478115082,
-0.12160889804363251,
0.014694852754473686,
0.11444544792175293,
0.0762668251991272,
0.03335021063685417,
-0.08444573730230331,
-0.01821875013411045,
-0.11082186549901962,
0.11144796013832092,
0.020362544804811478,
0.06067124754190445,
-0.14576083421707153,
0.08216147124767303,
-0.026234211400151253,
-0.004679789766669273,
-0.09952213615179062,
-0.031425606459379196,
-0.13179950416088104,
0.013805066235363483,
-0.1193600445985794,
-0.034559521824121475,
-0.044988371431827545,
-0.02029399573802948,
0.05154072120785713,
-0.012474157847464085,
-0.02804945409297943,
-0.03174898400902748,
-0.08728643506765366,
0.03447297215461731,
0.00530976289883256,
0.0416826456785202,
-0.04762420803308487,
-0.022761870175600052,
0.01943979226052761,
-0.005551697686314583,
0.0724945217370987,
-0.00610021548345685,
-0.023790907114744186,
0.042491160333156586,
-0.19401361048221588,
0.0373309850692749,
0.07397368550300598,
0.0035578045062720776,
0.03805038332939148,
-0.022769832983613014,
-0.012226573191583157,
0.08592986315488815,
0.05349747836589813,
0.044497326016426086,
0.00602300651371479,
-0.08010756224393845,
0.06233002617955208,
0.028811337426304817,
-0.11983266472816467,
-0.04654451459646225,
-0.0010786387138068676,
-0.008851143531501293,
-0.01833510212600231,
0.21574845910072327,
-0.12357861548662186,
0.04714543744921684,
-0.06649184226989746,
0.03950250893831253,
-0.01034714374691248,
-0.1332462728023529,
-0.07150128483772278,
-0.11829763650894165,
-0.018726184964179993,
-0.0180298313498497,
0.22265899181365967,
0.13177891075611115,
-0.026160845533013344,
0.03662189468741417,
0.065272256731987,
0.05387585982680321,
0.01899443380534649,
0.18585743010044098,
0.09506116062402725,
0.006766694597899914,
-0.13416342437267303,
0.07946646958589554,
0.04529587924480438,
-0.0195454154163599,
0.02385331131517887,
-0.009406870231032372,
-0.10800548642873764,
0.08788439631462097,
0.06324751675128937,
0.0019808029755949974,
-0.08126944303512573,
-0.07060925662517548,
-0.13577310740947723,
0.05875951424241066,
-0.0824219211935997,
0.0296943336725235,
0.18155713379383087,
-0.0420151986181736,
-0.022988205775618553,
-0.048243507742881775,
-0.061702877283096313,
-0.21090053021907806,
-0.19175760447978973,
-0.11900339275598526,
-0.06937247514724731,
0.009304484352469444,
-0.04402853175997734,
0.040969494730234146,
0.012307711876928806,
0.07516354322433472,
-0.05410514771938324,
0.0900542289018631,
-0.06605858355760574,
0.0025424438063055277,
0.029864680022001266,
-0.048153914511203766,
0.0048726750537753105,
-0.19374705851078033,
-0.004350534174591303,
-0.12837374210357666,
0.04954437166452408,
-0.03329106420278549,
-0.026907531544566154,
0.023711740970611572,
0.007632098160684109,
-0.029052425175905228,
-0.049126382917165756,
-0.0118684908375144,
0.037363916635513306,
0.009906113147735596,
0.03080584853887558,
0.013063051737844944,
-0.009350288659334183,
0.0260739978402853,
0.18832696974277496,
-0.04662957787513733,
-0.15130199491977692,
-0.14174605906009674,
0.20150485634803772,
-0.003776230849325657,
0.12395143508911133,
-0.0641348734498024,
-0.020259689539670944,
0.03532780706882477,
0.30355772376060486,
0.28879380226135254,
-0.05663159862160683,
0.014149083755910397,
-0.002601712942123413,
-0.004551102872937918,
-0.01731131225824356,
0.15413738787174225,
0.0075277178548276424,
0.17758780717849731,
-0.05308525264263153,
0.029151551425457,
-0.009426014497876167,
-0.09109172224998474,
-0.0567401684820652,
0.1175808534026146,
0.004690850619226694,
-0.0003956313303206116,
-0.018972044810652733,
0.07927758991718292,
-0.09866127371788025,
0.09541647881269455,
-0.1547948718070984,
-0.06571374088525772,
-0.07504004240036011,
0.03635769337415695,
0.1304396241903305,
-0.017138052731752396,
0.046681176871061325,
-0.020876076072454453,
-0.009447058662772179,
0.027952050790190697,
-0.04140012711286545,
-0.08449426293373108,
0.02128974162042141,
0.06701259315013885,
-0.06004859134554863,
0.18278516829013824,
-0.027691975235939026,
0.048137884587049484,
0.0995766744017601,
0.003908407874405384,
-0.08403819054365158,
0.06885812431573868,
-0.008872791193425655,
-0.05479026958346367,
0.12772956490516663,
0.008756602182984352,
0.012023258022964,
-0.009214076213538647,
0.019285310059785843,
-0.1543876826763153,
0.1239546611905098,
-0.1478824019432068,
-0.08811484277248383,
-0.04636934772133827,
0.10732483863830566,
-0.02003641426563263,
0.15155507624149323,
0.0726822093129158,
-0.010221063159406185,
0.01297276746481657,
-0.019649337977170944,
0.03318748623132706,
-0.022814597934484482,
-0.08245015144348145,
-0.043602608144283295,
-0.2061813473701477,
-0.020260902121663094,
0.035927873104810715,
-0.012469958513975143,
-0.2885707914829254,
-0.07848802208900452,
-0.09369978308677673,
-0.03648434951901436,
-0.13286547362804413,
0.06016679108142853,
0.23642539978027344,
0.03423815220594406,
-0.01795719936490059,
-0.08926072716712952,
-0.010259761475026608,
0.0424993596971035,
-0.06064554303884506,
-0.09056360274553299
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | token-classification | mach-12/ecommerce-ner | [
"transformers",
"safetensors",
"distilbert",
"token-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:04:51+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #distilbert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #distilbert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #distilbert #token-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07577246427536011,
0.160971537232399,
-0.0037754587829113007,
0.025772565975785255,
0.11726456880569458,
0.008670859038829803,
0.07505112886428833,
0.10672148317098618,
-0.015180999413132668,
0.12574146687984467,
0.037852395325899124,
0.1016918197274208,
0.10858695209026337,
0.19223041832447052,
-0.0040494236163794994,
-0.20760315656661987,
0.0604725256562233,
-0.11741560697555542,
0.010131745599210262,
0.12369410693645477,
0.13811981678009033,
-0.11246351152658463,
0.06881340593099594,
-0.04209144040942192,
-0.01980483904480934,
-0.035129256546497345,
-0.06221386045217514,
-0.052587710320949554,
0.06488312780857086,
0.05438476800918579,
0.06559453904628754,
0.021042533218860626,
0.0840018093585968,
-0.28357821702957153,
0.019257022067904472,
0.0766754001379013,
0.002646347275003791,
0.06359819322824478,
0.07652021199464798,
-0.07693555951118469,
0.09431595355272293,
-0.059984829276800156,
0.15352454781532288,
0.07422540336847305,
-0.09718401730060577,
-0.18205241858959198,
-0.08698616921901703,
0.10743562132120132,
0.1786193698644638,
0.05337109789252281,
-0.03495080769062042,
0.14324238896369934,
-0.07000283896923065,
0.017874419689178467,
0.06666957587003708,
-0.0738137811422348,
-0.05611572042107582,
0.06171523407101631,
0.07419267296791077,
0.09766413271427155,
-0.13268914818763733,
-0.009328355081379414,
0.039757777005434036,
0.01763407699763775,
0.11028990149497986,
0.017873499542474747,
0.12974926829338074,
0.03081592544913292,
-0.1462060660123825,
-0.059808772057294846,
0.10660259425640106,
0.03442228585481644,
-0.05801061540842056,
-0.24857386946678162,
-0.00732324318960309,
-0.03398886322975159,
-0.03147710859775543,
-0.045992717146873474,
0.04087558388710022,
-0.027321036905050278,
0.08885861188173294,
0.0030806211289018393,
-0.06717013567686081,
-0.05033329501748085,
0.09465020149946213,
0.06679657101631165,
0.026782603934407234,
-0.028168529272079468,
0.01867647096514702,
0.11993368715047836,
0.10629972815513611,
-0.11282733827829361,
-0.06030019000172615,
-0.06428343802690506,
-0.08693956583738327,
-0.04836411029100418,
0.03905215859413147,
0.0691521167755127,
0.05319429561495781,
0.20513659715652466,
-0.005697339307516813,
0.04798254370689392,
0.03319632261991501,
0.012943265959620476,
0.06999380886554718,
0.07388506829738617,
-0.057592663913965225,
-0.13561639189720154,
-0.032188303768634796,
0.1180354431271553,
0.0034096194431185722,
-0.029926057904958725,
-0.03362307325005531,
0.061736419796943665,
0.04901990294456482,
0.12567868828773499,
0.06872507929801941,
0.016199197620153427,
-0.07887519896030426,
-0.05266522243618965,
0.18039943277835846,
-0.15842315554618835,
0.026145054027438164,
0.01778857596218586,
-0.04808545112609863,
-0.03221158683300018,
0.01776694506406784,
0.010511110536754131,
-0.027442574501037598,
0.09513456374406815,
-0.064456507563591,
-0.0437372550368309,
-0.10800766944885254,
-0.05169657990336418,
0.03205830603837967,
-0.02027302049100399,
-0.02823185920715332,
-0.039158232510089874,
-0.12495775520801544,
-0.0780569463968277,
0.07112475484609604,
-0.06458895653486252,
-0.06230264902114868,
-0.035103172063827515,
-0.06434695422649384,
0.01328826043754816,
-0.0016070485580712557,
0.11751557141542435,
-0.02924034371972084,
0.05098489671945572,
-0.058480363339185715,
0.06735116988420486,
0.13876435160636902,
0.030480407178401947,
-0.06721892952919006,
0.06733744591474533,
-0.21017982065677643,
0.10650269687175751,
-0.0903177410364151,
0.030309993773698807,
-0.16417838633060455,
-0.020649932324886322,
0.03423565998673439,
0.03357144445180893,
-0.011650003492832184,
0.14477767050266266,
-0.17939403653144836,
-0.035702068358659744,
0.18933741748332977,
-0.12515437602996826,
-0.092041015625,
0.05768411606550217,
-0.06046192720532417,
0.13482485711574554,
0.05646788328886032,
-0.021687285974621773,
0.05586513131856918,
-0.13862864673137665,
-0.02437570132315159,
-0.06216869503259659,
-0.014887474477291107,
0.1528262197971344,
0.059848666191101074,
-0.046563770622015,
0.02752561867237091,
0.017916126176714897,
-0.026528963819146156,
-0.04967709258198738,
-0.03546646237373352,
-0.09774158149957657,
0.00822865217924118,
-0.07969193160533905,
0.02241206355392933,
-0.022354070097208023,
-0.09176263213157654,
-0.03786236792802811,
-0.15299317240715027,
0.01120391022413969,
0.09777288138866425,
-0.0018325879937037826,
-0.030514128506183624,
-0.09985145181417465,
-0.0009975290158763528,
0.014818643219769001,
-0.006299570668488741,
-0.15255902707576752,
-0.05487200245261192,
0.02453494630753994,
-0.16442841291427612,
0.027572009712457657,
-0.04693130776286125,
0.03860992193222046,
0.04300114884972572,
-0.04640088230371475,
-0.03466949611902237,
0.020573051646351814,
0.021380405873060226,
-0.02527492307126522,
-0.25819748640060425,
-0.015081126242876053,
-0.050718042999506,
0.1735834777355194,
-0.24959886074066162,
0.04765407368540764,
0.0635317862033844,
0.12164347618818283,
0.008648045361042023,
-0.043875813484191895,
0.03864365443587303,
-0.0540064312517643,
-0.03614342212677002,
-0.06847652792930603,
-0.006085617933422327,
-0.03506658226251602,
-0.04601104184985161,
0.036002401262521744,
-0.17769227921962738,
-0.026747822761535645,
0.11292517185211182,
0.07372257113456726,
-0.16646650433540344,
-0.07437358796596527,
-0.03605179488658905,
-0.05963003262877464,
-0.07967717945575714,
-0.05352560430765152,
0.08457031846046448,
0.047888897359371185,
0.050600916147232056,
-0.06766360253095627,
-0.05917840451002121,
0.012786190956830978,
-0.014223156496882439,
-0.030130434781312943,
0.08920878916978836,
0.06863047182559967,
-0.13044358789920807,
0.10779033601284027,
0.07565328478813171,
0.07318258285522461,
0.10535803437232971,
0.004109293222427368,
-0.09151213616132736,
-0.019049784168601036,
0.030527541413903236,
0.01623775251209736,
0.14909477531909943,
-0.058906275779008865,
0.037276990711688995,
0.042408693581819534,
-0.025859607383608818,
0.007144377566874027,
-0.09663669019937515,
0.020623620599508286,
0.027944007888436317,
-0.010041053406894207,
0.02522680163383484,
-0.05456255003809929,
0.016582027077674866,
0.10647457838058472,
0.0315246656537056,
0.029977189376950264,
0.01468842476606369,
-0.04244951531291008,
-0.1256953328847885,
0.17814458906650543,
-0.09753371775150299,
-0.24721357226371765,
-0.12567918002605438,
-0.009092925116419792,
0.03918062895536423,
-0.012046195566654205,
0.01987382024526596,
-0.05762042477726936,
-0.10939344018697739,
-0.1005193367600441,
0.03179878741502762,
0.06615057587623596,
-0.08552238345146179,
-0.0674377977848053,
0.05327526107430458,
0.04219662770628929,
-0.1277419775724411,
0.020916761830449104,
0.041558679193258286,
-0.07218944281339645,
0.008345745503902435,
0.056684307754039764,
0.07901664078235626,
0.1805250197649002,
0.011102218180894852,
-0.018453268334269524,
0.012500734999775887,
0.21901123225688934,
-0.1455126702785492,
0.09525687992572784,
0.13985903561115265,
-0.06373906135559082,
0.08310941606760025,
0.20266622304916382,
0.03211383894085884,
-0.10105792433023453,
0.03751940280199051,
0.03433764725923538,
-0.03450850397348404,
-0.24166366457939148,
-0.07809934765100479,
0.0032382020726799965,
-0.06378763914108276,
0.10437320917844772,
0.08564607799053192,
0.10547725111246109,
0.04683990776538849,
-0.11285781115293503,
-0.06474319845438004,
0.05201273784041405,
0.11905202269554138,
-0.028264760971069336,
-0.0015284299151971936,
0.09661765396595001,
-0.023179147392511368,
0.024211812764406204,
0.091147281229496,
0.024589717388153076,
0.18455083668231964,
0.04622681811451912,
0.13505716621875763,
0.0910676121711731,
0.06324100494384766,
0.014886823482811451,
0.021261626854538918,
0.01765025220811367,
0.02958594262599945,
-0.018347864970564842,
-0.08319743722677231,
-0.009293846786022186,
0.13596801459789276,
0.024112429469823837,
0.04030708968639374,
0.006161263212561607,
-0.048370931297540665,
0.07493776082992554,
0.17692242562770844,
0.014188401401042938,
-0.22553029656410217,
-0.06700198352336884,
0.07436924427747726,
-0.07410255074501038,
-0.11821255087852478,
-0.01875862292945385,
0.02883634716272354,
-0.18362410366535187,
0.03783649206161499,
-0.027923477813601494,
0.10164659470319748,
-0.11413569748401642,
-0.021443994715809822,
0.03836014121770859,
0.05620839074254036,
-0.032449860125780106,
0.07187992334365845,
-0.18838849663734436,
0.13979743421077728,
0.009049986489117146,
0.06722430139780045,
-0.1007412001490593,
0.08134089410305023,
0.017924414947628975,
0.005374805070459843,
0.16363629698753357,
-0.0033102943561971188,
-0.061859820038080215,
-0.10252897441387177,
-0.08680899441242218,
-0.015643585473299026,
0.09927050769329071,
-0.12645161151885986,
0.09391359239816666,
-0.00760313356295228,
-0.03509579226374626,
-0.0025038165040314198,
-0.13591554760932922,
-0.13381120562553406,
-0.17948365211486816,
0.04688849300146103,
-0.12670443952083588,
0.04449006915092468,
-0.1076912134885788,
-0.056078001856803894,
-0.041555143892765045,
0.19199959933757782,
-0.21791574358940125,
-0.08265700191259384,
-0.15180857479572296,
-0.06470925360918045,
0.11797353625297546,
-0.04333622008562088,
0.08231177926063538,
0.009503866545855999,
0.19813112914562225,
-0.0016607206780463457,
-0.004083174746483564,
0.0959770604968071,
-0.09965015947818756,
-0.2107795774936676,
-0.09851331263780594,
0.13872341811656952,
0.13654115796089172,
0.04202498495578766,
0.0035957242362201214,
0.026746563613414764,
-0.003834358649328351,
-0.1127103865146637,
0.03198874741792679,
0.15448687970638275,
0.11144908517599106,
0.038192201405763626,
-0.028366046026349068,
-0.13728831708431244,
-0.10052017867565155,
-0.04788326099514961,
0.009005418047308922,
0.19273622334003448,
-0.07073298841714859,
0.1647789627313614,
0.1582319587469101,
-0.06154803931713104,
-0.2109813690185547,
0.03008965775370598,
0.03392798826098442,
-0.003125392831861973,
0.04911292716860771,
-0.2020125389099121,
0.08147795498371124,
0.014267290011048317,
-0.05861039087176323,
0.12597185373306274,
-0.17893800139427185,
-0.1463114470243454,
0.0894082561135292,
0.07762204855680466,
-0.19969920814037323,
-0.1310804784297943,
-0.09587812423706055,
-0.04523595795035362,
-0.09975142776966095,
0.09141786396503448,
-0.006663811393082142,
0.00584616232663393,
0.03217587620019913,
0.01619444414973259,
0.016584929078817368,
-0.04955518618226051,
0.19393765926361084,
-0.0010097876656800508,
0.049837395548820496,
-0.07284197211265564,
-0.07579720765352249,
0.03499779477715492,
-0.07016132026910782,
0.08607465773820877,
-0.017582224681973457,
0.006899731699377298,
-0.11493121087551117,
-0.06381088495254517,
-0.04385467618703842,
0.0321214497089386,
-0.08662021160125732,
-0.09713311493396759,
-0.04749152809381485,
0.105962373316288,
0.0914415493607521,
-0.03657814860343933,
-0.06360591948032379,
-0.0900130569934845,
0.052277419716119766,
0.22165511548519135,
0.18128447234630585,
0.0717686340212822,
-0.07471393048763275,
-0.008312922902405262,
-0.021178819239139557,
0.05892517790198326,
-0.20861060917377472,
0.049327246844768524,
0.03792690858244896,
0.03388948366045952,
0.12989014387130737,
-0.025939077138900757,
-0.16148367524147034,
-0.052209001034498215,
0.05540921539068222,
-0.07436220347881317,
-0.16007542610168457,
0.006253175903111696,
0.08246254920959473,
-0.1577574759721756,
-0.040928490459918976,
0.0384182333946228,
-0.029118487611413002,
-0.031075680628418922,
0.0023355213925242424,
0.08367416262626648,
0.021480288356542587,
0.10684667527675629,
0.06465408951044083,
0.10775714367628098,
-0.10543544590473175,
0.06850111484527588,
0.08449427038431168,
-0.10566192865371704,
0.03645234927535057,
0.059928081929683685,
-0.06519834697246552,
-0.03475077450275421,
0.03517557680606842,
0.08707848936319351,
0.02939283289015293,
-0.06929907202720642,
0.006287590134888887,
-0.10996777564287186,
0.06547177582979202,
0.13484768569469452,
0.04042261838912964,
0.011329763568937778,
0.040748391300439835,
0.030845293775200844,
-0.09934883564710617,
0.12121784687042236,
0.05189082771539688,
0.03800792247056961,
-0.0530884675681591,
-0.017324361950159073,
0.03913010656833649,
-0.019996602088212967,
-0.017436852678656578,
-0.03976694867014885,
-0.07124674320220947,
-0.011837370693683624,
-0.16637970507144928,
0.020963486284017563,
-0.06557925045490265,
0.011502030305564404,
0.015106898732483387,
-0.03105640783905983,
0.00648743100464344,
0.012552679516375065,
-0.07388464361429214,
-0.045671455562114716,
-0.00442871730774641,
0.10947413742542267,
-0.16812850534915924,
0.008818828500807285,
0.08374110609292984,
-0.12818290293216705,
0.08439380675554276,
0.0020208086352795362,
-0.0032075955532491207,
0.02065693773329258,
-0.1317322701215744,
0.05960160121321678,
-0.006254117004573345,
0.006569796707481146,
0.03298337012529373,
-0.21374841034412384,
0.0022494937293231487,
-0.05006609857082367,
-0.06266371160745621,
-0.0007477401522919536,
-0.03451014682650566,
-0.11394216865301132,
0.10471237450838089,
0.014338361099362373,
-0.07764562219381332,
-0.021158380433917046,
0.048064179718494415,
0.10854631662368774,
-0.04941081255674362,
0.1473926305770874,
-0.01730068400502205,
0.059951625764369965,
-0.1836392730474472,
-0.02037329412996769,
-0.018616020679473877,
0.016425784677267075,
-0.037237949669361115,
-0.006127772852778435,
0.051674678921699524,
-0.01703222282230854,
0.2173253446817398,
-0.022195780649781227,
0.026851661503314972,
0.06280741095542908,
-0.002322237938642502,
-0.013443386182188988,
0.09835761785507202,
0.046587999910116196,
0.013757294043898582,
0.022333940491080284,
0.010798705741763115,
-0.04187694564461708,
-0.00982733629643917,
-0.13689175248146057,
0.07585512101650238,
0.16693128645420074,
0.08301392197608948,
-0.00876491330564022,
0.04851881042122841,
-0.10903714597225189,
-0.10301291197538376,
0.09611163288354874,
-0.03860481455922127,
-0.017003152519464493,
-0.050830189138650894,
0.13978728652000427,
0.15471777319908142,
-0.19259576499462128,
0.06503742933273315,
-0.0670342966914177,
-0.05641358345746994,
-0.10491608083248138,
-0.17902258038520813,
-0.06081055849790573,
-0.037293195724487305,
-0.01373780332505703,
-0.06118905171751976,
0.06020566076040268,
0.10252559930086136,
0.014830772764980793,
0.008825747296214104,
0.082810178399086,
-0.027097169309854507,
0.007841658778488636,
0.04027826339006424,
0.06163087487220764,
0.015406538732349873,
-0.06096850335597992,
0.008726970292627811,
0.0014340170891955495,
0.03696046769618988,
0.053261034190654755,
0.03251050412654877,
-0.012918577529489994,
0.006573197897523642,
-0.023761101067066193,
-0.10426638275384903,
0.04047070071101189,
-0.02524152584373951,
-0.052286889404058456,
0.15217694640159607,
0.022632325068116188,
-0.005827770568430424,
-0.022215187549591064,
0.2338925302028656,
-0.06722013652324677,
-0.0785137191414833,
-0.14054499566555023,
0.14897066354751587,
-0.03910091519355774,
0.05552518740296364,
0.046295974403619766,
-0.105179063975811,
0.03945622220635414,
0.13950063288211823,
0.14286132156848907,
-0.04025404527783394,
0.012145495042204857,
0.009853771887719631,
0.0038128900341689587,
-0.028584260493516922,
0.052456315606832504,
0.05106692388653755,
0.12483679503202438,
-0.06253138184547424,
0.09782347828149796,
-0.006969998124986887,
-0.09410524368286133,
-0.025307200849056244,
0.13257914781570435,
0.002008436480537057,
0.023570919409394264,
-0.0815717875957489,
0.12813320755958557,
-0.05384290590882301,
-0.2535746693611145,
0.07024679332971573,
-0.06422019749879837,
-0.15186867117881775,
-0.019949471578001976,
0.020098339766263962,
-0.004076872952282429,
0.023379439488053322,
0.06391935795545578,
-0.0649435967206955,
0.15813666582107544,
0.03603892773389816,
-0.06333170086145401,
-0.07421127706766129,
0.07901927083730698,
-0.07848652452230453,
0.3060082495212555,
0.007198201958090067,
0.05301123857498169,
0.09581229835748672,
-0.03854295611381531,
-0.13927392661571503,
0.028419770300388336,
0.09097424894571304,
-0.05137800797820091,
0.061749134212732315,
0.2061481475830078,
-0.010625248774886131,
0.11590193957090378,
0.07372608780860901,
-0.08649783581495285,
0.04505147039890289,
-0.09321032464504242,
-0.09480153769254684,
-0.08939364552497864,
0.09279339760541916,
-0.055773381143808365,
0.1508018523454666,
0.1253325492143631,
-0.048127513378858566,
0.008756249211728573,
-0.019953599199652672,
0.058552540838718414,
0.0011799887288361788,
0.11399417370557785,
0.028718046844005585,
-0.19564524292945862,
0.02838771604001522,
-0.0018802561098709702,
0.1010337695479393,
-0.23878240585327148,
-0.0895518958568573,
0.04254518821835518,
-0.0008608286152593791,
-0.060450565069913864,
0.12522582709789276,
0.05044018104672432,
0.043433722108602524,
-0.0508544035255909,
-0.04669932648539543,
-0.008167625404894352,
0.1615993231534958,
-0.10094329714775085,
-0.0017090580658987164
] |
null | null | transformers.js | ERROR: type should be string, got "\nhttps://huggingface.co/patrickjohncyh/fashion-clip with ONNX weights to be compatible with Transformers.js.\n\nNote: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`)." | {"license": "mit", "library_name": "transformers.js"} | zero-shot-image-classification | ff13/fashion-clip | [
"transformers.js",
"onnx",
"clip",
"zero-shot-image-classification",
"license:mit",
"region:us"
] | 2024-02-13T12:05:52+00:00 | [] | [] | TAGS
#transformers.js #onnx #clip #zero-shot-image-classification #license-mit #region-us
|
URL with ONNX weights to be compatible with URL.
Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using Optimum and structuring your repo like this one (with ONNX weights located in a subfolder named 'onnx'). | [] | [
"TAGS\n#transformers.js #onnx #clip #zero-shot-image-classification #license-mit #region-us \n"
] | [
31
] | [
"passage: TAGS\n#transformers.js #onnx #clip #zero-shot-image-classification #license-mit #region-us \n"
] | [
-0.04954429343342781,
0.06007935106754303,
-0.007110037840902805,
0.07690540701150894,
0.12078561633825302,
0.011357540264725685,
0.19784513115882874,
0.15814463794231415,
0.02371877245604992,
-0.05083543062210083,
0.14197078347206116,
0.23177509009838104,
0.012837368994951248,
0.08233257383108139,
-0.09691815823316574,
-0.18118751049041748,
0.04998508095741272,
-0.014306417666375637,
0.06765121966600418,
0.013623987324535847,
-0.018365858122706413,
-0.02589240111410618,
0.07673624902963638,
-0.04270322620868683,
-0.18436627089977264,
-0.04633064195513725,
0.10166212171316147,
-0.06648249179124832,
0.020871058106422424,
0.0780835747718811,
-0.02423424832522869,
0.06286253780126572,
-0.033026792109012604,
-0.21422402560710907,
0.06268652528524399,
0.023418983444571495,
-0.14155542850494385,
0.019255971536040306,
0.12144952267408371,
-0.03181178867816925,
-0.07309386134147644,
0.01076754555106163,
-0.06867746263742447,
0.09622082859277725,
-0.09668996930122375,
-0.10803903639316559,
-0.07586560398340225,
-0.01187933050096035,
0.05642499402165413,
-0.054547324776649475,
0.0813373327255249,
0.08324924111366272,
-0.09496089816093445,
0.09288499504327774,
0.0640421062707901,
-0.12408958375453949,
-0.021305454894900322,
0.08148503303527832,
-0.03117089904844761,
0.05547101050615311,
-0.11807496100664139,
0.08191359788179398,
-0.04253818467259407,
-0.05720491334795952,
-0.05055250972509384,
-0.08760162442922592,
-0.09457965195178986,
0.010584271512925625,
0.047129031270742416,
-0.05116262286901474,
0.11100560426712036,
0.15860149264335632,
0.016845030710101128,
-0.0604897104203701,
-0.08750712871551514,
0.02053549699485302,
-0.07161393761634827,
0.10653773695230484,
0.03949920833110809,
0.06290195882320404,
-0.10971329361200333,
-0.017964215949177742,
-0.04935639351606369,
0.024334168061614037,
-0.08513542264699936,
0.08372572809457779,
-0.056500740349292755,
0.13498476147651672,
-0.22530518472194672,
-0.0111806346103549,
0.015233460813760757,
-0.09842537343502045,
-0.005926582496613264,
-0.09138409048318863,
-0.003226751461625099,
0.04734353348612785,
0.04729568213224411,
0.002097313292324543,
0.1160101518034935,
0.1805238127708435,
0.07093832641839981,
0.018494533374905586,
-0.1196954995393753,
0.12729893624782562,
0.018601471558213234,
0.06408581882715225,
0.085626021027565,
0.05283302068710327,
0.08288292586803436,
-0.14518220722675323,
-0.03205075487494469,
-0.06745566427707672,
-0.15680351853370667,
0.030707165598869324,
-0.06418740749359131,
0.02413269877433777,
-0.008936844766139984,
0.04549895599484444,
-0.07236557453870773,
-0.026042522862553596,
0.15809643268585205,
0.020763548091053963,
0.04218136891722679,
0.02470310404896736,
0.0489390604197979,
0.13196665048599243,
0.06657030433416367,
-0.0894705057144165,
0.05825880542397499,
-0.07313434034585953,
-0.0755309909582138,
0.0413428358733654,
0.025893401354551315,
0.02489236369729042,
0.09563650190830231,
0.051777563989162445,
0.041197557002305984,
-0.1733376681804657,
-0.038806360214948654,
0.014139396138489246,
0.046066634356975555,
0.019744064658880234,
0.034630440175533295,
0.01674973964691162,
-0.08197706192731857,
-0.016021130606532097,
-0.01499209925532341,
-0.14240120351314545,
-0.06975190341472626,
0.10503566265106201,
-0.09527004510164261,
0.08014216274023056,
-0.13327091932296753,
0.04923234134912491,
-0.12074466794729233,
0.007612983696162701,
-0.14765815436840057,
0.08505400270223618,
-0.06940612941980362,
0.15821340680122375,
0.0069719841703772545,
-0.04945032298564911,
-0.06036022678017616,
-0.04937262460589409,
-0.13834506273269653,
0.17274610698223114,
-0.2098337858915329,
-0.07842618227005005,
0.13163542747497559,
-0.12276404350996017,
-0.08847495913505554,
-0.05130526050925255,
-0.06230589374899864,
0.013266890309751034,
0.044829998165369034,
0.21531011164188385,
0.06159090995788574,
-0.0032937454525381327,
-0.014651335775852203,
0.10264197736978531,
-0.26967740058898926,
-0.1351267397403717,
0.053616639226675034,
0.023240914568305016,
-0.0826387032866478,
0.0379745289683342,
-0.06793686002492905,
0.13386936485767365,
-0.03453134000301361,
-0.04563989117741585,
-0.03871673345565796,
0.07979664951562881,
-0.05941992998123169,
0.054935522377491,
0.015152220614254475,
-0.02770932763814926,
-0.00851983018219471,
0.11242775619029999,
-0.060869283974170685,
0.009883366525173187,
0.04833216220140457,
-0.0831921324133873,
0.059556689113378525,
-0.11676418781280518,
0.04544997215270996,
-0.018966862931847572,
-0.15478754043579102,
-0.019985705614089966,
-0.20281270146369934,
0.05641374737024307,
-0.057258088141679764,
0.004428414162248373,
-0.013381809927523136,
0.014216840267181396,
-0.031284745782613754,
-0.0035973540507256985,
0.048115454614162445,
0.03152777999639511,
-0.12810394167900085,
-0.02727063186466694,
-0.020654091611504555,
-0.032291676849126816,
-0.07744616270065308,
-0.013140734285116196,
0.14987584948539734,
0.0034138092305511236,
0.01819678768515587,
0.007734370417892933,
-0.011815384030342102,
-0.06111865118145943,
-0.05409819632768631,
-0.08520058542490005,
0.10711433738470078,
0.02375965751707554,
-0.07661239802837372,
0.18661248683929443,
-0.11456944793462753,
0.12817448377609253,
0.1579311043024063,
-0.32402288913726807,
0.036900151520967484,
-0.021645037457346916,
-0.014190036803483963,
0.019570153206586838,
-0.004243083763867617,
0.12874086201190948,
-0.11485206335783005,
-0.006204300094395876,
0.09482914954423904,
-0.041453078389167786,
0.03968295454978943,
0.08500047773122787,
-0.04056400805711746,
-0.09014516323804855,
0.013840260915458202,
0.24074195325374603,
-0.18279476463794708,
0.15227389335632324,
0.316229909658432,
0.10184691101312637,
0.07036522775888443,
-0.023728735744953156,
0.0062713283114135265,
-0.03581276163458824,
-0.020663561299443245,
0.022565089166164398,
0.11702486127614975,
-0.050417691469192505,
0.02935412898659706,
0.07175783067941666,
-0.011575102806091309,
-0.018358012661337852,
-0.09117681533098221,
-0.07590769976377487,
-0.010920469649136066,
-0.033941686153411865,
-0.029112881049513817,
0.03569110855460167,
0.004990483168512583,
0.03461044654250145,
-0.01654546521604061,
-0.07517103105783463,
0.18088553845882416,
-0.0026805265806615353,
-0.06431665271520615,
0.09579647332429886,
-0.09956550598144531,
-0.1382269412279129,
-0.13770413398742676,
-0.15340320765972137,
-0.141947939991951,
0.024479521438479424,
0.10949136316776276,
-0.10876748710870743,
0.0053668031468987465,
0.03531801328063011,
-0.09274500608444214,
0.0037963700015097857,
0.03422950580716133,
-0.04551355913281441,
0.04655814915895462,
-0.0064015695825219154,
-0.06701662391424179,
-0.0739777535200119,
0.019107531756162643,
-0.09279368817806244,
0.15225078165531158,
-0.04279293864965439,
0.07673121988773346,
0.15347693860530853,
-0.05630640313029289,
0.07275732606649399,
-0.008788028731942177,
0.07775712758302689,
-0.08720213919878006,
0.03764403983950615,
0.1353946030139923,
0.002364609856158495,
0.03711128234863281,
0.10545139014720917,
0.08493746817111969,
-0.11198746412992477,
-0.04016047716140747,
0.027628106996417046,
-0.15743102133274078,
-0.06887241452932358,
-0.0770806223154068,
-0.05641839653253555,
0.11749214679002762,
0.08614524453878403,
0.134039044380188,
0.22924047708511353,
0.08938264846801758,
0.044720154255628586,
-0.060508958995342255,
0.14769487082958221,
0.13076664507389069,
0.06948895007371902,
0.035380855202674866,
0.052597783505916595,
-0.06774608045816422,
0.03641847148537636,
0.14278148114681244,
0.09886457771062851,
0.17828400433063507,
0.23880669474601746,
0.02704978920519352,
0.15004190802574158,
-0.0008004180272109807,
0.1398928016424179,
-0.007163879927247763,
0.09823764860630035,
0.011107761412858963,
-0.024807432666420937,
-0.06263266503810883,
0.07405373454093933,
0.010432915762066841,
-0.0022794315591454506,
-0.09632913023233414,
-0.021926503628492355,
-0.15168531239032745,
0.12734971940517426,
0.004207407124340534,
0.0551505982875824,
-0.22037649154663086,
0.025540437549352646,
0.07437717169523239,
-0.01800779439508915,
0.018410205841064453,
0.10049638152122498,
-0.0072563462890684605,
-0.10860947519540787,
0.1287856251001358,
-0.06993414461612701,
0.12432580441236496,
-0.06365730613470078,
0.04180990159511566,
0.15805377066135406,
-0.21489793062210083,
0.036029152572155,
0.038985610008239746,
-0.17155347764492035,
0.10210125148296356,
0.023592496290802956,
-0.029059993103146553,
-0.04501710459589958,
-0.0513824038207531,
0.06962396204471588,
0.16777263581752777,
0.14716772735118866,
0.014688625000417233,
-0.1964554488658905,
-0.07272598147392273,
0.0713895931839943,
-0.019495749846100807,
0.039900243282318115,
0.04627498611807823,
-0.07904789596796036,
-0.013316844590008259,
0.0029872418381273746,
-0.013256470672786236,
0.20408815145492554,
-0.06460106372833252,
-0.08533911406993866,
-0.015780536457896233,
0.03882298991084099,
0.0010297344997525215,
0.027545789256691933,
0.02920539118349552,
-0.13636332750320435,
0.10520938038825989,
-0.05753438174724579,
0.05494241788983345,
-0.08974170684814453,
-0.04447804391384125,
-0.07370936125516891,
0.0017755406443029642,
-0.00000810048368293792,
-0.12652911245822906,
0.010100556537508965,
-0.09622495621442795,
-0.25338250398635864,
0.05691244453191757,
-0.028243668377399445,
-0.01814904995262623,
-0.04880509898066521,
0.01934480294585228,
-0.030733618885278702,
-0.05629201605916023,
-0.005444380920380354,
0.031144291162490845,
-0.010700313374400139,
-0.12352834641933441,
0.11969247460365295,
-0.03405199572443962,
-0.03711975738406181,
-0.03603842109441757,
-0.041340481489896774,
-0.034182772040367126,
0.016230108216404915,
0.15490269660949707,
0.01779707707464695,
0.31834596395492554,
-0.0718628466129303,
0.08399736136198044,
0.13277773559093475,
-0.07788696885108948,
-0.21274922788143158,
-0.03783290833234787,
-0.22195442020893097,
-0.11003972589969635,
0.12236087024211884,
-0.08449684083461761,
0.1533184051513672,
0.16713157296180725,
-0.02728145383298397,
0.1980636715888977,
-0.2712368965148926,
-0.050175394862890244,
0.042472898960113525,
0.020167844370007515,
0.40814998745918274,
-0.15818153321743011,
-0.07547487318515778,
-0.09925224632024765,
-0.10883349925279617,
0.2011360228061676,
-0.047351475805044174,
0.04968716576695442,
0.025061307474970818,
-0.07927112281322479,
-0.015546922571957111,
-0.022262129932641983,
0.16190630197525024,
0.09515213966369629,
0.17225123941898346,
-0.08664751797914505,
-0.14390398561954498,
0.18605558574199677,
-0.08319027721881866,
-0.058095913380384445,
0.032231662422418594,
-0.010602633468806744,
-0.08082249015569687,
0.03201351687312126,
-0.04820682480931282,
0.12549471855163574,
0.06825490295886993,
0.0610550194978714,
-0.06580642610788345,
-0.0012303224066272378,
0.0030785491690039635,
0.06859657168388367,
0.3741520047187805,
-0.04448497295379639,
0.027520889416337013,
0.07552018761634827,
-0.08251748234033585,
-0.05827203392982483,
-0.1165236234664917,
-0.11071698367595673,
-0.06426779925823212,
0.11842795461416245,
-0.11158205568790436,
0.09178008139133453,
0.04139768332242966,
-0.013771753758192062,
0.0497894249856472,
0.10730011016130447,
0.10025301575660706,
0.050450220704078674,
0.07496405392885208,
-0.04975082725286484,
-0.032989438623189926,
0.01077512837946415,
-0.06189633905887604,
0.20212405920028687,
0.06438417732715607,
0.09949392825365067,
0.03280103579163551,
0.03200167417526245,
0.03562233969569206,
0.07124359905719757,
-0.10196582973003387,
-0.09820710122585297,
0.03020661137998104,
-0.04059316962957382,
-0.14781628549098969,
0.18372702598571777,
0.11169213056564331,
-0.09063402563333511,
-0.07437171041965485,
0.038444917649030685,
-0.10715362429618835,
-0.11347083002328873,
-0.00560229504480958,
0.11265265941619873,
-0.11487676203250885,
-0.021313544362783432,
0.019218776375055313,
-0.0009371936321258545,
0.031609874218702316,
0.1398991048336029,
0.034478168934583664,
0.05798082426190376,
0.028431106358766556,
-0.01902318000793457,
-0.04314923658967018,
-0.01590251550078392,
-0.1756947785615921,
0.04350130632519722,
-0.10809754580259323,
-0.12751682102680206,
0.030841337516903877,
0.15110205113887787,
-0.09300435334444046,
-0.06143392249941826,
-0.14546765387058258,
0.011883347295224667,
0.017757922410964966,
0.02855687029659748,
-0.13182257115840912,
0.016760490834712982,
0.04579727351665497,
0.01951049081981182,
-0.06748499721288681,
-0.05570775270462036,
-0.0807064026594162,
-0.028565391898155212,
0.05887312814593315,
0.12328445166349411,
-0.028500782325863838,
-0.05497231334447861,
0.008662843145430088,
-0.012804325670003891,
0.08927606791257858,
0.08263308554887772,
-0.13244199752807617,
0.010276736691594124,
-0.09722763299942017,
-0.16037842631340027,
0.08830934762954712,
-0.01586604118347168,
-0.0051245903596282005,
0.10266031324863434,
0.05805918946862221,
0.07082594931125641,
-0.047602809965610504,
0.006357734557241201,
-0.09742762893438339,
-0.12961585819721222,
-0.04062322899699211,
-0.08167306333780289,
-0.07750552147626877,
-0.033212970942258835,
0.020564129576086998,
0.1429995745420456,
-0.03576801344752312,
0.1568402498960495,
-0.009789489209651947,
0.08402041345834732,
-0.0956459566950798,
-0.05269458517432213,
0.02674921602010727,
-0.17486850917339325,
-0.09682367742061615,
-0.027564527466893196,
-0.018453367054462433,
-0.06685088574886322,
0.26430705189704895,
0.05822181701660156,
-0.09861162304878235,
0.05298875272274017,
0.12064412236213684,
-0.145323246717453,
0.030321171507239342,
0.3104873299598694,
0.05386367812752724,
0.042028553783893585,
0.011437647044658661,
0.07527905702590942,
-0.022225702181458473,
-0.15289254486560822,
0.040747616440057755,
0.21315525472164154,
-0.11364535987377167,
0.08179464191198349,
0.08039046823978424,
-0.015524419955909252,
-0.0679580345749855,
0.08825474977493286,
0.00009372575004817918,
0.13298465311527252,
-0.059792231768369675,
-0.07132076472043991,
0.18550610542297363,
0.03502766042947769,
0.10896917432546616,
0.131673201918602,
0.00866621546447277,
-0.12588980793952942,
-0.28309178352355957,
-0.10083562135696411,
-0.21822024881839752,
0.0743134468793869,
0.01429758034646511,
0.017190983518958092,
0.27419665455818176,
0.012612542137503624,
-0.08262056857347488,
0.029445579275488853,
-0.04497552663087845,
-0.05365144833922386,
0.07530167698860168,
-0.06675755977630615,
-0.04015113785862923,
-0.08653061091899872,
-0.02681054174900055,
0.05979057028889656,
-0.052009209990501404,
-0.023969560861587524,
0.06456111371517181,
0.15627913177013397,
0.00853594671934843,
-0.15403784811496735,
-0.11890378594398499,
-0.0015400085831061006,
0.021392822265625,
-0.14418275654315948,
0.17304262518882751,
0.001806816435419023,
-0.010085354559123516,
0.039289504289627075,
0.029832536354660988,
0.006055057048797607,
0.03307117149233818,
-0.009822135791182518,
0.09924142807722092,
0.004417153540998697,
0.0975700095295906,
-0.08335352689027786,
-0.01828082464635372,
-0.03762814402580261,
0.029945282265543938,
0.1190224215388298,
-0.027286281809210777,
-0.030214371159672737,
0.07134582102298737,
-0.006558542605489492,
0.07269594073295593,
0.13651961088180542,
-0.09863775223493576,
0.02696778066456318,
0.01716238632798195,
-0.0655626580119133,
0.008552949875593185,
-0.02562648616731167,
-0.0725170373916626,
0.013953535817563534,
0.023013517260551453,
-0.07221817225217819,
-0.07278578728437424,
0.1280156522989273,
-0.14445249736309052,
0.09684780985116959,
0.2848529517650604,
-0.0032307032961398363,
0.014849315397441387,
-0.017719816416502,
0.04168218374252319,
-0.02460303343832493,
0.001610534731298685,
-0.08645688742399216,
-0.029562978073954582,
0.07483506947755814,
-0.008138853125274181,
-0.18991446495056152,
-0.10105863958597183,
-0.04439418017864227,
-0.1806097775697708,
0.22399793565273285,
-0.033371906727552414,
0.007843490689992905,
0.03440771624445915,
0.027905892580747604,
-0.05885889753699303,
0.08915465325117111,
-0.07571147382259369,
-0.03550814837217331,
-0.0607275553047657,
-0.005817304365336895,
-0.022621838375926018,
0.013151397928595543,
0.07983337342739105,
-0.12404514104127884,
-0.014494633302092552,
-0.044411610811948776,
-0.13616754114627838,
-0.007778537459671497,
-0.05150781199336052,
-0.0487169586122036,
0.02727595344185829,
-0.039050355553627014,
0.027459029108285904,
-0.019826926290988922,
-0.07305464148521423,
0.04034542664885521,
0.12132981419563293,
-0.09101755172014236,
-0.08680412173271179,
0.07651092112064362,
-0.015951110050082207,
-0.1052178144454956,
0.10265558212995529,
0.051857054233551025,
-0.022592321038246155,
-0.015026404522359371,
-0.014736621640622616,
-0.04557698220014572,
0.06807372719049454,
0.09148364514112473,
-0.001940587186254561,
-0.032298825681209564,
-0.1878824532032013,
0.0715303122997284,
0.05877159535884857,
-0.03382973000407219,
-0.0445626862347126
] |
null | null | transformers |
## Malay-Language Sentiment Classification
# Overview
This model is a fine-tuned checkpoint of [Deberta-V3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall). It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. Model is trained on all data from https://github.com/mesolitica/malaysian-dataset/tree/master/sentiment.
# Use in a Hugging Face pipeline
The easiest way to use the model for single predictions is Hugging Face's [sentiment analysis pipeline](https://huggingface.co/transformers/quicktour.html#getting-started-on-a-task-with-a-pipeline), which only needs a couple lines of code as shown in the following example:
```
from transformers import pipeline
sentiment_analysis = pipeline("sentiment-analysis",model="malaysia-ai/deberta-v3-xsmall-malay-sentiment")
print(sentiment_analysis("saya comel"))
``` | {"language": ["ms"], "tags": ["sentiment"]} | text-classification | malaysia-ai/malay-sentiment-deberta-xsmall | [
"transformers",
"safetensors",
"deberta-v2",
"text-classification",
"sentiment",
"ms",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:06:53+00:00 | [] | [
"ms"
] | TAGS
#transformers #safetensors #deberta-v2 #text-classification #sentiment #ms #autotrain_compatible #endpoints_compatible #region-us
|
## Malay-Language Sentiment Classification
# Overview
This model is a fine-tuned checkpoint of Deberta-V3-xsmall. It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. Model is trained on all data from URL
# Use in a Hugging Face pipeline
The easiest way to use the model for single predictions is Hugging Face's sentiment analysis pipeline, which only needs a couple lines of code as shown in the following example:
| [
"## Malay-Language Sentiment Classification",
"# Overview\nThis model is a fine-tuned checkpoint of Deberta-V3-xsmall. It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. Model is trained on all data from URL",
"# Use in a Hugging Face pipeline\nThe easiest way to use the model for single predictions is Hugging Face's sentiment analysis pipeline, which only needs a couple lines of code as shown in the following example:"
] | [
"TAGS\n#transformers #safetensors #deberta-v2 #text-classification #sentiment #ms #autotrain_compatible #endpoints_compatible #region-us \n",
"## Malay-Language Sentiment Classification",
"# Overview\nThis model is a fine-tuned checkpoint of Deberta-V3-xsmall. It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. Model is trained on all data from URL",
"# Use in a Hugging Face pipeline\nThe easiest way to use the model for single predictions is Hugging Face's sentiment analysis pipeline, which only needs a couple lines of code as shown in the following example:"
] | [
47,
11,
61,
48
] | [
"passage: TAGS\n#transformers #safetensors #deberta-v2 #text-classification #sentiment #ms #autotrain_compatible #endpoints_compatible #region-us \n## Malay-Language Sentiment Classification# Overview\nThis model is a fine-tuned checkpoint of Deberta-V3-xsmall. It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment. Model is trained on all data from URL# Use in a Hugging Face pipeline\nThe easiest way to use the model for single predictions is Hugging Face's sentiment analysis pipeline, which only needs a couple lines of code as shown in the following example:"
] | [
-0.03821767121553421,
-0.12488900870084763,
-0.002635539975017309,
0.004312177654355764,
0.08074264973402023,
-0.01744520105421543,
0.10661692172288895,
0.053424108773469925,
0.07146799564361572,
0.06251638382673264,
0.08455845713615417,
-0.032839223742485046,
0.06479013711214066,
0.1954299956560135,
-0.07149375975131989,
-0.3008834719657898,
0.05141669139266014,
-0.03765936940908432,
0.25809064507484436,
0.10825107991695404,
0.0802195817232132,
-0.0016274593072012067,
0.11073823273181915,
0.025384467095136642,
-0.1716441959142685,
0.030713647603988647,
-0.05111529305577278,
-0.05478965491056442,
0.07432955503463745,
0.0058657266199588776,
0.07947638630867004,
0.0022449251264333725,
0.017225243151187897,
-0.09863321483135223,
0.03890841081738472,
-0.03981659561395645,
0.0010601363610476255,
-0.02871910110116005,
0.03638311102986336,
-0.1634044498205185,
0.1912560909986496,
0.0458005852997303,
0.07846780121326447,
0.06644029170274734,
-0.1000709980726242,
-0.11473433673381805,
-0.02265222556889057,
-0.011927840299904346,
0.16719232499599457,
0.05209369957447052,
-0.08171135932207108,
0.12509915232658386,
-0.1010465919971466,
0.04367704689502716,
0.061287231743335724,
-0.08911996334791183,
-0.014149307273328304,
0.014712913893163204,
0.022311044856905937,
-0.03308902308344841,
-0.03654194250702858,
0.05700324475765228,
0.06242884695529938,
0.029791507869958878,
0.0006850724457763135,
-0.08168236911296844,
0.1112089455127716,
-0.08720766752958298,
-0.05411437898874283,
0.03394181653857231,
0.1730613112449646,
0.05557173490524292,
-0.1174413412809372,
-0.12815254926681519,
-0.0048043373972177505,
0.01760774664580822,
-0.05525738373398781,
-0.08935718983411789,
-0.019660258665680885,
0.04341893270611763,
0.08180025219917297,
0.11039835214614868,
-0.05109575763344765,
-0.02519884519279003,
-0.14405636489391327,
0.2395755499601364,
-0.04827115684747696,
0.039109256118535995,
-0.07235170900821686,
0.0061812326312065125,
-0.105678491294384,
-0.09996610134840012,
-0.011001769453287125,
-0.05008260905742645,
-0.03657234087586403,
0.08018208295106888,
-0.0892668291926384,
0.03534381836652756,
0.05868779122829437,
-0.012395521625876427,
0.04169587418437004,
0.03775268793106079,
-0.04146302118897438,
-0.04443188011646271,
0.11379555612802505,
0.10566125810146332,
-0.0024562827311456203,
-0.08227001875638962,
0.038470976054668427,
-0.013078165240585804,
0.16108129918575287,
-0.006800408940762281,
-0.0876600444316864,
0.039658207446336746,
0.034334857016801834,
0.06889413297176361,
-0.13426609337329865,
0.09305127710103989,
-0.15493586659431458,
0.01744679920375347,
0.04193250089883804,
-0.0774831548333168,
0.002488192869350314,
0.055779919028282166,
-0.09851527214050293,
0.08336503803730011,
-0.04339589551091194,
-0.018068669363856316,
0.03402702882885933,
-0.07002095133066177,
-0.013414029963314533,
0.014964299276471138,
-0.0705706924200058,
-0.13047926127910614,
0.011357815936207771,
-0.04717938229441643,
0.04401235654950142,
-0.1461450159549713,
-0.26597028970718384,
-0.05654607340693474,
-0.07312047481536865,
-0.12595021724700928,
0.02567545510828495,
-0.10341101884841919,
-0.01707349717617035,
0.01827087439596653,
0.014114555902779102,
-0.12122984230518341,
-0.042260147631168365,
-0.037199392914772034,
0.13130202889442444,
0.17212502658367157,
-0.03304530680179596,
0.0017510862089693546,
-0.1430690884590149,
0.055531274527311325,
-0.055151309818029404,
0.15864995121955872,
-0.0451110415160656,
0.19138675928115845,
0.00010123674292117357,
-0.0081669045612216,
-0.00031458702869713306,
0.06449933350086212,
-0.015882886946201324,
0.1951649934053421,
-0.24660001695156097,
-0.11093337833881378,
0.11075636744499207,
-0.18342064321041107,
-0.09613573551177979,
0.1539752185344696,
-0.015136140398681164,
0.10579914599657059,
0.11096298694610596,
0.17999625205993652,
-0.06318916380405426,
-0.03460258990526199,
0.06923352926969528,
0.06026918441057205,
-0.13994179666042328,
0.11883457005023956,
0.028490200638771057,
0.14055249094963074,
-0.1415136754512787,
0.0857129767537117,
0.0724211186170578,
0.08998186141252518,
-0.03465281426906586,
-0.004793339874595404,
0.04344126582145691,
-0.021696720272302628,
-0.05008264631032944,
-0.017630040645599365,
0.003856428200379014,
-0.13395056128501892,
-0.0645146295428276,
-0.05441798269748688,
0.13737620413303375,
-0.029089821502566338,
-0.019185518845915794,
-0.1487617939710617,
0.028495021164417267,
-0.0020721328910440207,
-0.007538498379290104,
-0.09755723178386688,
-0.012444387190043926,
0.005577527452260256,
0.045014895498752594,
0.026764029636979103,
0.014703361317515373,
-0.01918773353099823,
-0.03682843595743179,
0.04345792159438133,
-0.012533619068562984,
0.11303073167800903,
0.02751251496374607,
0.04431232437491417,
-0.14386187493801117,
0.0417645201086998,
-0.11031447350978851,
0.2014981061220169,
-0.05083348602056503,
0.03775213286280632,
0.0834570899605751,
0.0034268400631844997,
0.0017542432760819793,
0.0698619857430458,
0.10194267332553864,
0.05939774587750435,
-0.043182238936424255,
-0.01591787301003933,
0.08462947607040405,
0.009933355264365673,
-0.16762074828147888,
0.2064860761165619,
-0.2567428648471832,
0.05943707004189491,
0.1593688577413559,
-0.02973593957722187,
-0.1372721940279007,
0.04615018516778946,
-0.012823466211557388,
0.025034558027982712,
0.028024302795529366,
0.03711850568652153,
0.035256873816251755,
-0.008994262665510178,
0.0910445973277092,
-0.05766966566443443,
0.016245892271399498,
0.06722061336040497,
-0.12378346920013428,
-0.0426732674241066,
0.06412912160158157,
-0.138301819562912,
-0.07809022068977356,
0.09555418789386749,
0.001875421847216785,
-0.000201644521439448,
0.06112019345164299,
0.05406840518116951,
0.037965185940265656,
-0.09338460117578506,
-0.04196784645318985,
-0.02796568162739277,
0.03835223987698555,
-0.18947497010231018,
-0.14599309861660004,
-0.0013462926726788282,
-0.0143716000020504,
-0.01685665361583233,
-0.06267913430929184,
-0.02615559659898281,
0.013591215945780277,
0.002527243457734585,
0.006279211491346359,
0.055308565497398376,
-0.061670221388339996,
0.09704248607158661,
-0.023279985412955284,
-0.0899573564529419,
-0.024666406214237213,
-0.0524410679936409,
-0.15049414336681366,
0.1778397411108017,
-0.07028947025537491,
-0.39941349625587463,
-0.027856430038809776,
-0.07866290211677551,
-0.11771801114082336,
0.07885457575321198,
0.05177420377731323,
-0.16272129118442535,
-0.036685746163129807,
-0.125688374042511,
0.12492679804563522,
0.04791896790266037,
0.05265803262591362,
-0.08264017105102539,
-0.046252619475126266,
-0.013296320103108883,
-0.11227390170097351,
-0.05640925094485283,
-0.1061495989561081,
-0.031339678913354874,
0.08451296389102936,
-0.14537237584590912,
0.03374665603041649,
0.17341817915439606,
0.05960679054260254,
-0.0013510718708857894,
-0.07262661308050156,
0.11832190304994583,
-0.03436766192317009,
-0.04949437454342842,
0.0650273784995079,
-0.043308012187480927,
0.01754099503159523,
0.1627476066350937,
0.013204947113990784,
-0.21484725177288055,
0.11170971393585205,
0.005881370976567268,
-0.060330964624881744,
-0.01928699016571045,
-0.11308193951845169,
0.012327107600867748,
0.12747971713542938,
-0.11684180051088333,
0.021864650771021843,
0.02212328463792801,
0.054783258587121964,
0.047771621495485306,
-0.07078632712364197,
-0.03585438057780266,
0.09018445014953613,
0.11622651666402817,
-0.08522491902112961,
0.09521479159593582,
-0.050523824989795685,
-0.05464205890893936,
0.14258813858032227,
-0.0646660253405571,
0.025059206411242485,
0.0014386082766577601,
0.042716994881629944,
0.05256384611129761,
0.04567011445760727,
0.12085632234811783,
0.02860189974308014,
-0.08999116718769073,
-0.05856836214661598,
-0.07835973799228668,
0.017547469586133957,
-0.09207488596439362,
0.051018040627241135,
-0.12945736944675446,
0.09061946719884872,
-0.11842641979455948,
-0.034970950335264206,
0.14126545190811157,
-0.005382672883570194,
0.11781919747591019,
-0.2919723391532898,
-0.07917508482933044,
0.050119031220674515,
-0.012492970563471317,
0.015257326886057854,
0.03024373948574066,
-0.036124035716056824,
-0.04723592475056648,
0.15904735028743744,
0.075631283223629,
0.06761543452739716,
-0.05406874790787697,
0.0439688041806221,
-0.17430634796619415,
0.032134439796209335,
-0.012740325182676315,
0.04147352650761604,
-0.17286892235279083,
0.15019367635250092,
0.004111969843506813,
0.00884112436324358,
-0.01933932863175869,
-0.027958471328020096,
0.11030516028404236,
0.16022294759750366,
0.0830807015299797,
-0.007721861358731985,
0.11439956724643707,
-0.12329864501953125,
-0.033451441675424576,
0.06058807671070099,
0.03140280395746231,
-0.015569288283586502,
0.048088189214468,
0.061266638338565826,
0.030550332739949226,
0.011035025119781494,
0.06276216357946396,
-0.040667951107025146,
-0.021735526621341705,
-0.03444240987300873,
0.036884523928165436,
0.02810744196176529,
0.02766895852982998,
-0.04532081261277199,
0.07572872191667557,
0.057171184569597244,
0.09943816810846329,
-0.012118872255086899,
-0.12167876958847046,
0.10689728707075119,
-0.034201305359601974,
-0.03386186435818672,
-0.06239405274391174,
-0.05740126594901085,
0.08027271926403046,
0.06460487842559814,
-0.02679774910211563,
0.11738180369138718,
-0.07145188748836517,
-0.06412824243307114,
-0.029885219410061836,
0.08640854060649872,
0.06457068771123886,
-0.014425305649638176,
0.07871243357658386,
-0.04148346558213234,
-0.013154242187738419,
-0.11849647760391235,
0.0692252367734909,
0.12459974735975266,
-0.1206798329949379,
0.07032393664121628,
0.0404488630592823,
-0.16957147419452667,
-0.08121699094772339,
-0.009477163664996624,
0.036709412932395935,
0.20003679394721985,
0.012047801166772842,
0.09384797513484955,
0.19702571630477905,
-0.059746842831373215,
-0.2195187360048294,
-0.06343355029821396,
0.006735648959875107,
0.10072939097881317,
0.011783835478127003,
-0.017154844477772713,
0.1237795427441597,
0.02073623053729534,
0.007898392155766487,
-0.16697682440280914,
-0.07634387165307999,
-0.09985167533159256,
0.18662108480930328,
0.0468224361538887,
0.4130260944366455,
-0.13613468408584595,
-0.0370107963681221,
-0.11371341347694397,
-0.007644649129360914,
0.13945381343364716,
-0.02124912478029728,
0.05069050192832947,
0.0006057260907255113,
0.1521489918231964,
0.010678857564926147,
0.0892491340637207,
0.20325928926467896,
0.038449857383966446,
0.11193682253360748,
-0.11256648600101471,
-0.018929487094283104,
0.04961037635803223,
0.005178936757147312,
0.15601491928100586,
-0.03813233971595764,
-0.007345705758780241,
-0.13118307292461395,
-0.10240267217159271,
-0.05063053220510483,
0.048290837556123734,
0.03612183779478073,
0.016256112605333328,
-0.033970147371292114,
0.006757537368685007,
-0.020758701488375664,
-0.05759104713797569,
-0.10726340860128403,
-0.10860854387283325,
-0.0632706880569458,
0.11985330283641815,
0.15996462106704712,
-0.03818567842245102,
0.1395753026008606,
0.06476220488548279,
-0.04343046620488167,
0.04650444909930229,
-0.15342308580875397,
-0.006688468158245087,
0.0005136942490935326,
-0.05759549140930176,
0.15366260707378387,
0.065694160759449,
-0.09273696690797806,
0.15992069244384766,
0.07134013622999191,
-0.026846617460250854,
-0.12004906684160233,
-0.005823147017508745,
-0.0703839510679245,
0.05124589428305626,
0.039675164967775345,
0.09010010957717896,
-0.039927784353494644,
-0.0247720368206501,
-0.03568120300769806,
0.054860204458236694,
-0.04574348032474518,
0.015635859221220016,
-0.06908918172121048,
-0.021720370277762413,
-0.11040777713060379,
0.053307488560676575,
-0.05499360337853432,
-0.20135672390460968,
0.09282195568084717,
0.10076980292797089,
-0.13282670080661774,
-0.0729147270321846,
-0.1178920716047287,
0.3863329589366913,
-0.0733644887804985,
-0.08639946579933167,
-0.07903662323951721,
-0.20098604261875153,
-0.028630992397665977,
0.2084461897611618,
0.15045854449272156,
0.10596609115600586,
-0.06340222805738449,
0.044985126703977585,
-0.024408627301454544,
0.0627257227897644,
0.2034955620765686,
-0.06013989448547363,
-0.07724793255329132,
-0.01857195608317852,
0.10677624493837357,
0.03239693492650986,
-0.10998097062110901,
-0.12097744643688202,
-0.107632577419281,
-0.016120631247758865,
-0.22983810305595398,
0.07183808833360672,
-0.146898552775383,
0.02015041559934616,
0.06651828438043594,
-0.02178174816071987,
-0.017960501834750175,
-0.03913990408182144,
-0.02763313427567482,
0.059550072997808456,
-0.024023907259106636,
0.07501529902219772,
-0.04131278023123741,
-0.05797039717435837,
0.03719007596373558,
-0.018368279561400414,
0.12642692029476166,
0.160757914185524,
-0.051274172961711884,
0.01574997417628765,
-0.18196292221546173,
0.02243889309465885,
0.1781914383172989,
-0.07453277707099915,
0.0452166311442852,
-0.13272711634635925,
-0.0018589283572509885,
0.10105292499065399,
-0.012815005145967007,
0.009669865481555462,
0.2599128782749176,
-0.035674333572387695,
0.036947451531887054,
0.03724449500441551,
-0.12033534795045853,
-0.09433962404727936,
-0.03590508550405502,
0.05856546387076378,
0.13813215494155884,
0.07923257350921631,
-0.08274829387664795,
0.02270134538412094,
-0.07109902054071426,
-0.020457139238715172,
-0.021133193746209145,
-0.02825941890478134,
-0.13590748608112335,
-0.05758048966526985,
0.036966368556022644,
0.038088127970695496,
0.23652397096157074,
0.10959934443235397,
0.04829643294215202,
-0.0017299168976023793,
0.10201874375343323,
0.08450577408075333,
0.030477775260806084,
0.05191370099782944,
0.026650799438357353,
0.02064005471765995,
-0.04352720081806183,
0.01837666891515255,
0.06978002190589905,
-0.004777052905410528,
-0.10021000355482101,
-0.027248406782746315,
0.12538672983646393,
0.1286267638206482,
-0.005303299054503441,
0.07114165276288986,
0.036300934851169586,
-0.10625029355287552,
-0.16653764247894287,
0.005843097809702158,
0.03457207232713699,
0.11867515742778778,
0.16736960411071777,
0.060487598180770874,
0.05425982549786568,
-0.00748800951987505,
-0.0866997092962265,
-0.14311707019805908,
-0.2451467216014862,
-0.08603441715240479,
-0.19828182458877563,
-0.02088804915547371,
-0.09979543834924698,
-0.11331196874380112,
0.03274165093898773,
0.0687851533293724,
-0.026212261989712715,
0.04838823154568672,
-0.13415835797786713,
-0.0644584372639656,
0.1142280176281929,
-0.033964209258556366,
-0.04980550333857536,
0.07996679097414017,
0.060180675238370895,
-0.030019596219062805,
0.0391341894865036,
0.0075231618247926235,
0.04463707283139229,
-0.01514959055930376,
0.031661659479141235,
-0.16226251423358917,
-0.08773260563611984,
-0.01966708153486252,
-0.036686819046735764,
-0.06727510690689087,
0.0966096743941307,
0.03548054397106171,
-0.050688307732343674,
0.025411954149603844,
0.1416197270154953,
-0.02956443279981613,
0.04094724357128143,
-0.1432909071445465,
0.2700187861919403,
-0.08719247579574585,
0.04851864278316498,
-0.056776102632284164,
-0.05132976174354553,
-0.0916171669960022,
0.1581038534641266,
0.19287094473838806,
-0.03420405089855194,
-0.006588559597730637,
-0.07768266648054123,
0.036715663969516754,
-0.014476755633950233,
0.08027832955121994,
0.07771508395671844,
0.21593515574932098,
-0.03896080702543259,
0.12457817792892456,
-0.06839672476053238,
-0.12151132524013519,
0.021818695589900017,
-0.10149486362934113,
0.04712967574596405,
-0.004536493681371212,
-0.09791728854179382,
0.14449547231197357,
-0.12520945072174072,
-0.08164165914058685,
0.15792764723300934,
-0.05161074176430702,
-0.025648251175880432,
-0.004326026886701584,
-0.0030254442244768143,
0.13610592484474182,
0.13815313577651978,
-0.02288184128701687,
0.03916902840137482,
0.16615445911884308,
-0.007310284301638603,
-0.19255614280700684,
-0.07436590641736984,
0.08081787824630737,
-0.06808745115995407,
-0.0650554671883583,
-0.04058072715997696,
0.0594472661614418,
0.08478718996047974,
-0.008322460576891899,
-0.11322956532239914,
0.17330454289913177,
-0.04133171960711479,
0.12379717826843262,
0.06385582685470581,
0.18584978580474854,
-0.013180643320083618,
-0.013840360566973686,
0.03724611550569534,
-0.1659545749425888,
0.012132793664932251,
-0.07466036826372147,
-0.07893361896276474,
-0.06610898673534393,
0.0597657710313797,
-0.06623823940753937,
0.03641703352332115,
0.059805743396282196,
-0.03730924800038338,
0.02083568461239338,
-0.003469941671937704,
-0.003455456579104066,
-0.02446630597114563,
-0.12616035342216492,
0.05757759138941765,
-0.13473288714885712,
-0.0035461336374282837,
0.2286251336336136,
-0.028374718502163887,
-0.23694461584091187,
0.002180670155212283,
-0.08945518732070923,
0.04090306535363197,
0.0077690198086202145,
0.06111997365951538,
-0.035912975668907166,
0.0971684455871582,
-0.0816306322813034,
-0.24058672785758972,
0.09944247454404831,
0.13584008812904358,
-0.029749281704425812,
-0.19975940883159637
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# news_summarization
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0010
- Rouge1: 0.9698
- Rouge2: 0.9659
- Rougel: 0.9698
- Rougelsum: 0.9699
- Gen Len: 16.9568
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 220 | 0.0024 | 0.9688 | 0.9647 | 0.9688 | 0.9688 | 16.9511 |
| No log | 2.0 | 440 | 0.0014 | 0.9694 | 0.9653 | 0.9694 | 0.9695 | 16.9591 |
| 0.114 | 3.0 | 660 | 0.0010 | 0.9698 | 0.9659 | 0.9698 | 0.9699 | 16.9568 |
| 0.114 | 4.0 | 880 | 0.0010 | 0.9698 | 0.9659 | 0.9698 | 0.9699 | 16.9568 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "base_model": "t5-small", "model-index": [{"name": "news_summarization", "results": []}]} | text2text-generation | Ripesh08/news_summarization | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:t5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:08:51+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| news\_summarization
===================
This model is a fine-tuned version of t5-small on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0010
* Rouge1: 0.9698
* Rouge2: 0.9659
* Rougel: 0.9698
* Rougelsum: 0.9699
* Gen Len: 16.9568
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 4
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
77,
113,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 4\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.10265515744686127,
0.10163175314664841,
-0.0027867245953530073,
0.08489206433296204,
0.09801898896694183,
-0.016582641750574112,
0.1774144172668457,
0.15268263220787048,
-0.11967863887548447,
0.0645148903131485,
0.13607865571975708,
0.11272922903299332,
0.050610944628715515,
0.18097853660583496,
-0.0779818668961525,
-0.21791572868824005,
0.04924953356385231,
0.040217090398073196,
-0.023197632282972336,
0.11727220565080643,
0.09244749695062637,
-0.11963924020528793,
0.09188169986009598,
0.021901438012719154,
-0.16737040877342224,
-0.002657634671777487,
0.018089160323143005,
-0.08223242312669754,
0.10398956388235092,
0.03967262804508209,
0.08510982245206833,
0.04755035415291786,
0.040945865213871,
-0.16034537553787231,
0.010981017723679543,
0.06815365701913834,
-0.004378906916826963,
0.09399482607841492,
0.05651525408029556,
-0.004796462133526802,
0.09679600596427917,
-0.08524172753095627,
0.06781179457902908,
0.025184355676174164,
-0.12370987236499786,
-0.26968657970428467,
-0.10474585741758347,
0.045139968395233154,
0.0973740816116333,
0.07588526606559753,
-0.008772311732172966,
0.18849793076515198,
-0.011485538445413113,
0.11182975769042969,
0.23386399447917938,
-0.3145965039730072,
-0.057241179049015045,
-0.017927350476384163,
0.057806432247161865,
0.09370223432779312,
-0.07956510782241821,
-0.022064298391342163,
0.03926246613264084,
0.03285810723900795,
0.14811788499355316,
-0.015975337475538254,
-0.025941748172044754,
-0.02222105860710144,
-0.13105784356594086,
-0.05700542405247688,
0.16744905710220337,
0.038067132234573364,
-0.05455942451953888,
-0.08651924133300781,
-0.07658112794160843,
-0.15276631712913513,
-0.05290127545595169,
-0.0009404338779859245,
0.03682365268468857,
-0.03446852043271065,
-0.08122260123491287,
-0.023607777431607246,
-0.08847956359386444,
-0.04880094155669212,
-0.031201917678117752,
0.13122457265853882,
0.041498880833387375,
0.016583140939474106,
-0.06433572620153427,
0.0626203790307045,
-0.04613060876727104,
-0.166793555021286,
-0.014407726004719734,
0.01212436892092228,
0.019087310880422592,
-0.044816721230745316,
-0.037325479090213776,
-0.13814589381217957,
0.02292364276945591,
0.1622198075056076,
-0.10123753547668457,
0.0827849805355072,
-0.04559452831745148,
0.0341188907623291,
-0.08768527209758759,
0.16384409368038177,
-0.014307894743978977,
0.012308701872825623,
0.036135971546173096,
0.0890529602766037,
0.08275759220123291,
-0.028834285214543343,
-0.11107027530670166,
0.045126982033252716,
0.12020008265972137,
0.03347712382674217,
-0.02936767227947712,
0.052424702793359756,
-0.04046439006924629,
-0.00818220991641283,
0.07482339441776276,
-0.10187768936157227,
0.030972279608249664,
-0.008796081878244877,
-0.04266953095793724,
-0.04999466612935066,
0.018817642703652382,
0.010664248839020729,
-0.026431387290358543,
0.07328937947750092,
-0.0767076388001442,
0.0055771456100046635,
-0.07520546764135361,
-0.13997922837734222,
0.03646602854132652,
-0.07808279991149902,
0.010401018895208836,
-0.10522618889808655,
-0.14506328105926514,
-0.004111831542104483,
0.04887346550822258,
-0.04103103280067444,
-0.04069735109806061,
-0.04162703454494476,
-0.09395618736743927,
0.053052011877298355,
-0.02140389196574688,
0.07077281922101974,
-0.07456696778535843,
0.08420339226722717,
0.05609476938843727,
0.07165581732988358,
-0.046886853873729706,
0.02642817236483097,
-0.09633678942918777,
0.04795872047543526,
-0.22580769658088684,
0.036757681518793106,
-0.050261348485946655,
0.08840900659561157,
-0.10340263694524765,
-0.07823095470666885,
0.025517219677567482,
-0.01654934696853161,
0.1019342914223671,
0.10009665042161942,
-0.16444572806358337,
-0.05946039780974388,
0.19957652688026428,
-0.11477206647396088,
-0.168254092335701,
0.1407238095998764,
-0.03235367685556412,
0.019147001206874847,
0.05719573795795441,
0.22430479526519775,
0.06801145523786545,
-0.10662861168384552,
-0.013325762003660202,
-0.0405462384223938,
0.06475342065095901,
-0.06638608872890472,
0.07834086567163467,
0.004279686138033867,
0.05133913829922676,
-0.00047243479639291763,
0.005902825854718685,
0.035188205540180206,
-0.0670548751950264,
-0.0770588144659996,
-0.05932331085205078,
-0.07851658761501312,
0.005472535267472267,
0.038364529609680176,
0.056390345096588135,
-0.14997415244579315,
-0.10816600173711777,
0.049585044384002686,
0.07232463359832764,
-0.08432899415493011,
0.0464080311357975,
-0.10659612715244293,
0.11527383327484131,
-0.07985970377922058,
-0.0009647024562582374,
-0.1615152806043625,
-0.033670347183942795,
0.033525560051202774,
-0.006427747663110495,
0.0004304878821130842,
-0.06887596845626831,
0.07896078377962112,
0.08310488611459732,
-0.05089312046766281,
-0.04335838183760643,
-0.0076802875846624374,
0.0159547608345747,
-0.11384759098291397,
-0.20491774380207062,
-0.019712822511792183,
-0.04507135972380638,
0.0986359640955925,
-0.1781008094549179,
0.04957682266831398,
0.07306738942861557,
0.11391725391149521,
0.05657987296581268,
-0.022177230566740036,
0.00006275546184042469,
0.062058620154857635,
-0.04808073863387108,
-0.07499483227729797,
0.051976289600133896,
0.036144185811281204,
-0.08750451356172562,
0.025165321305394173,
-0.18737486004829407,
0.18676823377609253,
0.1391676366329193,
0.022063659504055977,
-0.05845455080270767,
-0.00751151517033577,
-0.04076452925801277,
-0.026810305193066597,
-0.028905712068080902,
0.008291546255350113,
0.11801102012395859,
0.013702655211091042,
0.1585082858800888,
-0.1098778024315834,
-0.05096308887004852,
0.05301162227988243,
-0.0419481061398983,
-0.013632564805448055,
0.1043732687830925,
0.0117148132994771,
-0.14995473623275757,
0.14335373044013977,
0.16703344881534576,
-0.054434482008218765,
0.1379934549331665,
-0.07514365762472153,
-0.0660400316119194,
-0.02992027997970581,
0.020162465050816536,
0.04753900691866875,
0.11807546764612198,
-0.09143983572721481,
-0.01105502713471651,
0.025732265785336494,
0.020328611135482788,
-0.0006924052722752094,
-0.18610909581184387,
0.005090311635285616,
0.0442170687019825,
-0.05245677009224892,
-0.0354207418859005,
-0.008555733598768711,
0.0005425949930213392,
0.09813371300697327,
0.0014253222616389394,
-0.04937804490327835,
0.033169396221637726,
0.01202375628054142,
-0.07876148819923401,
0.19071415066719055,
-0.10273833572864532,
-0.1614254117012024,
-0.12340109795331955,
-0.07461630553007126,
-0.053168635815382004,
0.004800449591130018,
0.08694681525230408,
-0.07596629112958908,
-0.05784875154495239,
-0.1342131346464157,
-0.04396434873342514,
0.0192012507468462,
0.02636188268661499,
0.029549947008490562,
-0.004778986796736717,
0.08952255547046661,
-0.10608013719320297,
-0.024138016626238823,
-0.004803604446351528,
0.019785219803452492,
0.05421072989702225,
0.01628381572663784,
0.11032744497060776,
0.11254578828811646,
-0.027482975274324417,
0.026589196175336838,
-0.04586378112435341,
0.222541943192482,
-0.06692828238010406,
-0.009517127647995949,
0.14498592913150787,
-0.0182627085596323,
0.07955162227153778,
0.13225428760051727,
0.03916462883353233,
-0.09411203861236572,
0.008219228126108646,
0.001425570691935718,
-0.03965318202972412,
-0.21214094758033752,
-0.0062627000734210014,
-0.04922809824347496,
0.013066633604466915,
0.10156500339508057,
0.03439246863126755,
0.02307947911322117,
0.04930027574300766,
-0.0008408247376792133,
0.05209040269255638,
0.00661402428522706,
0.11231429129838943,
0.12349562346935272,
0.05978262424468994,
0.14231403172016144,
-0.07025309652090073,
-0.02102048695087433,
0.04420281946659088,
0.007431303150951862,
0.18925261497497559,
-0.002876905258744955,
0.1989133507013321,
0.04224308207631111,
0.14726808667182922,
0.03066123090684414,
0.07385890185832977,
-0.020632414147257805,
-0.022935189306735992,
-0.005897472146898508,
-0.05904553830623627,
-0.03480774909257889,
0.02845490723848343,
-0.09226960688829422,
0.0416824147105217,
-0.11657283455133438,
0.03313614800572395,
0.05421140044927597,
0.2875986099243164,
0.0510108582675457,
-0.3721504807472229,
-0.11249218136072159,
0.02568604052066803,
-0.03302064165472984,
-0.04678471013903618,
0.007485534995794296,
0.12642456591129303,
-0.04610234498977661,
0.07997164130210876,
-0.08341233432292938,
0.09768953174352646,
-0.03620307892560959,
0.03052295371890068,
0.033443279564380646,
0.0862872377038002,
-0.020348727703094482,
0.04832559451460838,
-0.2895887494087219,
0.26709043979644775,
0.03720588609576225,
0.08332834392786026,
-0.05857542157173157,
0.01831076294183731,
0.010975600220263004,
0.0661216601729393,
0.06393130868673325,
-0.016901230439543724,
-0.15673428773880005,
-0.16104108095169067,
-0.10513795912265778,
0.017395783215761185,
0.08706445246934891,
0.023060360923409462,
0.1166117787361145,
-0.020105712115764618,
-0.006640725303441286,
0.055414941161870956,
-0.04885081574320793,
-0.06933455169200897,
-0.1092967540025711,
0.01108156330883503,
0.053873129189014435,
-0.027468880638480186,
-0.0903511792421341,
-0.09435597062110901,
-0.05426570028066635,
0.17146185040473938,
0.003199676750227809,
-0.06769292056560516,
-0.1237945482134819,
0.025407684966921806,
0.06107101961970329,
-0.08524632453918457,
0.037384890019893646,
-0.010583827272057533,
0.13387122750282288,
-0.0008119732374325395,
-0.0755000188946724,
0.12573786079883575,
-0.07290884107351303,
-0.1742601990699768,
-0.04840553551912308,
0.119239941239357,
-0.0023754851426929235,
0.04477660357952118,
0.000786422926466912,
0.035783376544713974,
-0.014656533487141132,
-0.06211193650960922,
0.02769201062619686,
-0.0009080884628929198,
0.08403278887271881,
-0.04932662844657898,
-0.00650891475379467,
0.006106995977461338,
-0.06083710119128227,
-0.03603046387434006,
0.15861676633358002,
0.28568994998931885,
-0.07763464748859406,
0.055025093257427216,
0.05186058580875397,
-0.05032792687416077,
-0.15972019731998444,
0.015697859227657318,
0.03531233221292496,
0.0031268529128283262,
0.015580576844513416,
-0.13983741402626038,
0.0299944207072258,
0.07941147685050964,
-0.02451484650373459,
0.0728040337562561,
-0.2931947112083435,
-0.1335875540971756,
0.09955710172653198,
0.14570975303649902,
0.08946572989225388,
-0.17167463898658752,
-0.05215597525238991,
-0.03735022246837616,
-0.11113063991069794,
0.12284273654222488,
-0.14771240949630737,
0.09470896422863007,
-0.021116603165864944,
0.060691334307193756,
0.010022652335464954,
-0.06079413741827011,
0.12063019722700119,
-0.05277719348669052,
0.08864282816648483,
-0.07237669080495834,
0.057063713669776917,
0.11231929808855057,
-0.09460990875959396,
0.04722172021865845,
-0.13227736949920654,
0.041084859520196915,
-0.09188888221979141,
-0.012712953612208366,
-0.049096472561359406,
0.01127213891595602,
-0.03569402918219566,
-0.029916832223534584,
-0.04654689505696297,
0.005127195734530687,
0.05748177319765091,
-0.02817341312766075,
0.2017504721879959,
0.013846389017999172,
0.16240115463733673,
0.17459604144096375,
0.11068613082170486,
-0.12124699354171753,
-0.019381387159228325,
0.018246931955218315,
-0.04375907778739929,
0.04999884217977524,
-0.1725182980298996,
0.046729620546102524,
0.11498357355594635,
-0.0020627083722501993,
0.11728399991989136,
0.0558864064514637,
-0.06390589475631714,
0.026286263018846512,
0.06696295738220215,
-0.17389054596424103,
-0.12016499042510986,
-0.003161150263622403,
0.074627585709095,
-0.12513089179992676,
0.051702454686164856,
0.13508431613445282,
-0.06784482300281525,
-0.011236974038183689,
0.0005302923964336514,
0.02506484091281891,
-0.009032399393618107,
0.17684149742126465,
0.029362838715314865,
0.06752359867095947,
-0.09291664510965347,
0.0823933333158493,
0.050731293857097626,
-0.12106991559267044,
0.06029360741376877,
0.09377287328243256,
-0.09745507687330246,
-0.03426918387413025,
0.05989404395222664,
0.1639155149459839,
-0.026459001004695892,
-0.07351178675889969,
-0.1632026731967926,
-0.12525945901870728,
0.07442977279424667,
0.20094968378543854,
0.05935962125658989,
0.00383162428624928,
-0.01037182379513979,
-0.005176300648599863,
-0.12261573225259781,
0.11715114861726761,
0.0402512289583683,
0.0912078469991684,
-0.13977673649787903,
0.0998237133026123,
-0.01100886333733797,
0.013473684899508953,
-0.012348062358796597,
0.03392983227968216,
-0.12055964767932892,
-0.0007364297052845359,
-0.13938775658607483,
0.017657816410064697,
-0.044928792864084244,
0.0004936782061122358,
-0.01741541177034378,
-0.03608228266239166,
-0.06400074809789658,
0.023710018023848534,
-0.10121366381645203,
-0.0320722833275795,
0.01714004948735237,
0.030290212482213974,
-0.12872470915317535,
-0.026480339467525482,
0.009857365861535072,
-0.09251358360052109,
0.07052955776453018,
0.03126798942685127,
-0.0015202852664515376,
0.025073938071727753,
-0.06268738210201263,
0.011993945576250553,
0.06134328991174698,
0.0023745547514408827,
0.057880252599716187,
-0.11932684481143951,
-0.018753116950392723,
0.02437913604080677,
0.014282737858593464,
0.02784331887960434,
0.12561030685901642,
-0.1067805364727974,
0.002560598077252507,
-0.0030560067389160395,
-0.05116880312561989,
-0.061747465282678604,
0.06049612909555435,
0.09761548787355423,
0.0003930505190510303,
0.19520021975040436,
-0.09804251790046692,
0.0065270233899354935,
-0.19455793499946594,
0.002876041689887643,
0.007950612343847752,
-0.14625662565231323,
-0.08126723766326904,
-0.02531290240585804,
0.0640266165137291,
-0.07283464819192886,
0.10735038667917252,
-0.009417181834578514,
0.03933800384402275,
0.05734989047050476,
-0.05539993196725845,
-0.00006102487532189116,
0.02560940943658352,
0.19729453325271606,
0.011455983854830265,
-0.04149778559803963,
0.06074339896440506,
0.011298132129013538,
0.09650447219610214,
0.0981661006808281,
0.1804383248090744,
0.13651981949806213,
0.013136660680174828,
0.11310982704162598,
0.03159593045711517,
-0.0254420954734087,
-0.16800016164779663,
0.05387585237622261,
-0.04010728746652603,
0.14149640500545502,
-0.00555111700668931,
0.18399035930633545,
0.16385217010974884,
-0.14751668274402618,
0.024817273020744324,
-0.04985688626766205,
-0.07997628301382065,
-0.1120971143245697,
-0.09122437983751297,
-0.10105008631944656,
-0.150407612323761,
-0.015438202768564224,
-0.11976891756057739,
0.04022778943181038,
0.04552572965621948,
0.015498385764658451,
0.0009026573970913887,
0.1438407450914383,
0.03972504287958145,
0.022516652941703796,
0.05237862840294838,
-0.003023057011887431,
-0.04343876615166664,
-0.025976315140724182,
-0.0848522037267685,
0.02835225872695446,
-0.012121700681746006,
0.04151909053325653,
-0.0008311853162012994,
-0.0018632521387189627,
0.055462490767240524,
-0.01967572793364525,
-0.11968891322612762,
0.014699448831379414,
0.035383302718400955,
0.06246921047568321,
0.03928273916244507,
0.022710077464580536,
-0.004278960637748241,
-0.007242468185722828,
0.20778892934322357,
-0.07911387830972672,
-0.06175756826996803,
-0.10742741078138351,
0.2341885268688202,
0.010110577568411827,
-0.03254997357726097,
0.0192244965583086,
-0.07928800582885742,
0.007519552484154701,
0.1803290992975235,
0.15729817748069763,
-0.01969047449529171,
-0.003643342759460211,
-0.04718325659632683,
-0.012048563919961452,
-0.041529856622219086,
0.10839001089334488,
0.12093524634838104,
0.0026950633618980646,
-0.06243263557553291,
-0.036307938396930695,
-0.05042342469096184,
-0.010637415573000908,
-0.06509661674499512,
0.0729409009218216,
0.01202494278550148,
0.0031546414829790592,
-0.024587208405137062,
0.061893802136182785,
-0.018884623423218727,
-0.05110599845647812,
-0.00040232171886600554,
-0.19751416146755219,
-0.15149079263210297,
-0.0008537727408111095,
0.09539788961410522,
-0.02213890850543976,
0.04510730504989624,
-0.00654999865218997,
0.010036335326731205,
0.06620529294013977,
-0.02066698484122753,
-0.05971338599920273,
-0.07757893949747086,
0.07734491676092148,
-0.16735661029815674,
0.20452649891376495,
-0.024305235594511032,
0.02596060000360012,
0.14534522593021393,
0.0283593088388443,
-0.12243831157684326,
0.0758146271109581,
0.04589454084634781,
-0.05825108289718628,
0.023801162838935852,
0.12742267549037933,
-0.03111981227993965,
0.1008477434515953,
0.04856910556554794,
-0.1134711280465126,
-0.012267724610865116,
-0.09546904265880585,
-0.029915843158960342,
-0.024204136803746223,
-0.039425961673259735,
-0.05076303333044052,
0.12593141198158264,
0.16775789856910706,
-0.05089129880070686,
0.0011514113284647465,
-0.05066419765353203,
0.021896449849009514,
0.07257119566202164,
-0.005325938109308481,
-0.030459178611636162,
-0.26703229546546936,
0.01500613335520029,
0.09373848885297775,
0.0010014706058427691,
-0.29159432649612427,
-0.08362100273370743,
-0.008552275598049164,
-0.03521226719021797,
-0.11178559809923172,
0.09033412486314774,
0.11206834763288498,
0.04222327098250389,
-0.0741858184337616,
-0.04203645512461662,
-0.06740742176771164,
0.16708503663539886,
-0.12082461267709732,
-0.07105956226587296
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-ner-finetuned-pii
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0076
- Precision: 0.9427
- Recall: 0.9727
- F1: 0.9575
- Accuracy: 0.9982
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0105 | 1.0 | 1324 | 0.0132 | 0.8641 | 0.9464 | 0.9033 | 0.9960 |
| 0.0056 | 2.0 | 2648 | 0.0080 | 0.9298 | 0.9643 | 0.9467 | 0.9978 |
| 0.0047 | 3.0 | 3972 | 0.0076 | 0.9427 | 0.9727 | 0.9575 | 0.9982 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
| {"tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-ner-finetuned-pii", "results": []}]} | token-classification | hewonty/bert-ner-finetuned-pii | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"token-classification",
"generated_from_trainer",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:09:46+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us
| bert-ner-finetuned-pii
======================
This model was trained from scratch on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0076
* Precision: 0.9427
* Recall: 0.9727
* F1: 0.9575
* Accuracy: 0.9982
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.37.0
* Pytorch 2.1.2
* Datasets 2.1.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1"
] | [
49,
98,
4,
30
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #bert #token-classification #generated_from_trainer #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.1.0\n* Tokenizers 0.15.1"
] | [
-0.08334299921989441,
0.05873016640543938,
-0.001503718551248312,
0.10441722720861435,
0.201717808842659,
0.021588513627648354,
0.1312400847673416,
0.09150748699903488,
-0.0930844321846962,
0.03152425214648247,
0.12055274099111557,
0.15658114850521088,
-0.00530003709718585,
0.10037276148796082,
-0.06898663938045502,
-0.24530427157878876,
-0.006487540900707245,
0.02800339087843895,
-0.11660673469305038,
0.10871971398591995,
0.084706149995327,
-0.16411040723323822,
0.07896046340465546,
-0.01182018592953682,
-0.24691669642925262,
0.023880405351519585,
0.04854753986001015,
-0.06231263652443886,
0.1408981829881668,
0.014408745802938938,
0.17744487524032593,
0.009648065082728863,
0.11043384671211243,
-0.17249184846878052,
0.01252745185047388,
0.07175246626138687,
0.02102033793926239,
0.07994318008422852,
0.07217761874198914,
-0.0020581232383847237,
0.05513368919491768,
-0.1002473458647728,
0.07936903089284897,
0.013468571938574314,
-0.12482909113168716,
-0.2233572155237198,
-0.06875015050172806,
-0.017875177785754204,
0.07407615333795547,
0.07882816344499588,
-0.0076093669049441814,
0.17743641138076782,
-0.08480386435985565,
0.09401477873325348,
0.20908011496067047,
-0.2821362018585205,
-0.0822545737028122,
0.06615934520959854,
0.01691586524248123,
0.09865263849496841,
-0.13300743699073792,
0.00043340466800145805,
0.06961511820554733,
0.03868576139211655,
0.13811998069286346,
-0.03533423691987991,
-0.08028323948383331,
0.019245218485593796,
-0.1515570431947708,
0.018569553270936012,
0.07522746920585632,
0.027254289016127586,
-0.027603907510638237,
-0.02990458719432354,
-0.06662650406360626,
-0.13205134868621826,
-0.042606454342603683,
-0.05076421797275543,
0.04391079396009445,
-0.0537908636033535,
-0.10707614570856094,
-0.00048067676834762096,
-0.11018732190132141,
-0.07315810024738312,
-0.04762114956974983,
0.1900337040424347,
0.0394744910299778,
0.00998528953641653,
-0.02936067245900631,
0.09852702915668488,
-0.004349778406322002,
-0.13112469017505646,
0.049727100878953934,
0.019126461818814278,
-0.04376562684774399,
-0.07955971360206604,
-0.06506854295730591,
-0.11065180599689484,
0.021148085594177246,
0.08734311908483505,
-0.056293126195669174,
0.05837434157729149,
0.015524720773100853,
0.031002724543213844,
-0.10024851560592651,
0.18904496729373932,
-0.04130443558096886,
-0.027367878705263138,
0.0006768648745492101,
0.05982761085033417,
-0.0022572968155145645,
-0.0009839910781010985,
-0.10519212484359741,
0.02576589025557041,
0.1253339797258377,
0.013219503685832024,
-0.08092149347066879,
0.06842698901891708,
-0.03943729028105736,
-0.0074209184385836124,
-0.02657977305352688,
-0.09290590137243271,
0.05487409606575966,
-0.0059954519383609295,
-0.06786596775054932,
-0.03784792125225067,
0.00011033043847419322,
0.025273669511079788,
0.017938779667019844,
0.1518225222826004,
-0.09389336407184601,
0.037105727940797806,
-0.109522745013237,
-0.1280621439218521,
-0.0033423418644815683,
-0.05138437822461128,
0.02519802190363407,
-0.11246158927679062,
-0.11768472194671631,
-0.009178954176604748,
0.05716187134385109,
-0.03338206931948662,
-0.005745789501816034,
-0.038745295256376266,
-0.07937593013048172,
0.005746068898588419,
-0.014014579355716705,
0.1374949961900711,
-0.05051662400364876,
0.10518199950456619,
0.0522833950817585,
0.07050525397062302,
-0.043548136949539185,
0.02970212884247303,
-0.09053783863782883,
0.015274842269718647,
-0.2132444530725479,
0.021380092948675156,
-0.07304848730564117,
0.07606681436300278,
-0.07444901764392853,
-0.08959861844778061,
0.012012463063001633,
0.0018364759162068367,
0.08373967558145523,
0.08460445702075958,
-0.1646418273448944,
-0.06995315104722977,
0.15303932130336761,
-0.08037004619836807,
-0.10680386424064636,
0.12434433400630951,
-0.06310491263866425,
0.03949287533760071,
0.07851018756628036,
0.17278817296028137,
0.06278908252716064,
-0.09671932458877563,
0.017331438139081,
-0.03227415680885315,
0.05331706628203392,
-0.038496412336826324,
0.03976045921444893,
0.02340797334909439,
-0.0144583098590374,
0.02115226350724697,
-0.02670983038842678,
0.06777039915323257,
-0.1099170595407486,
-0.07904504984617233,
-0.040235601365566254,
-0.11738111823797226,
0.0740567147731781,
0.07614137977361679,
0.09450769424438477,
-0.11337121576070786,
-0.06470689922571182,
0.11121810227632523,
0.05136746168136597,
-0.05914077162742615,
0.009945179335772991,
-0.06533946096897125,
0.05489082634449005,
-0.08928541839122772,
-0.02995230443775654,
-0.17637361586093903,
-0.07849709689617157,
0.011223629117012024,
0.019185399636626244,
0.014181186445057392,
0.02500753477215767,
0.09737693518400192,
0.08380870521068573,
-0.08007199317216873,
-0.021404506638646126,
-0.006095122080296278,
0.016601867973804474,
-0.1487920880317688,
-0.20506669580936432,
-0.008677159436047077,
-0.03207730874419212,
0.09135179221630096,
-0.23563562333583832,
0.029761051759123802,
-0.021585900336503983,
0.1052241176366806,
0.04447423294186592,
-0.010116295889019966,
-0.05827917903661728,
0.09163748472929001,
-0.028496695682406425,
-0.057840388268232346,
0.05290992558002472,
-0.01761680841445923,
-0.08022769540548325,
-0.06364192068576813,
-0.13441839814186096,
0.21310114860534668,
0.1341303288936615,
-0.13157139718532562,
-0.1014135479927063,
0.014433086849749088,
-0.0499420128762722,
-0.016779229044914246,
-0.06819681078195572,
0.029935386031866074,
0.13337476551532745,
-0.01415824331343174,
0.14980734884738922,
-0.05720832198858261,
-0.04119094833731651,
0.02178269438445568,
-0.04599490016698837,
0.028997717425227165,
0.0928736999630928,
0.10399923473596573,
-0.1106361448764801,
0.13697688281536102,
0.1680496335029602,
-0.11183274537324905,
0.13650476932525635,
-0.029205244034528732,
-0.06523684412240982,
-0.01560660544782877,
-0.00861094519495964,
0.01935438998043537,
0.12129539996385574,
-0.0837191715836525,
-0.007607156410813332,
-0.006794323213398457,
0.027562905102968216,
0.012795483693480492,
-0.2333943098783493,
-0.042580366134643555,
0.028490882366895676,
-0.01069171354174614,
0.03998015820980072,
-0.032415155321359634,
0.013796485960483551,
0.11411107331514359,
-0.006789057049900293,
-0.07083255797624588,
0.03027597814798355,
-0.002939704107120633,
-0.07566972821950912,
0.21502183377742767,
-0.07324273884296417,
-0.10954125970602036,
-0.10805533081293106,
-0.07515435665845871,
-0.04235786199569702,
0.030474865809082985,
0.0400250069797039,
-0.12427005171775818,
-0.03398026153445244,
-0.05571839585900307,
0.02331634983420372,
0.026507006958127022,
0.06495790183544159,
0.004220220725983381,
0.004356784280389547,
0.09320186823606491,
-0.09841905534267426,
0.0019334199605509639,
-0.057853780686855316,
-0.07685830444097519,
0.05006391555070877,
0.06388111412525177,
0.12450380623340607,
0.15881803631782532,
-0.04821724072098732,
-0.006119750905781984,
-0.023648129776120186,
0.22751900553703308,
-0.07834792882204056,
-0.03642435371875763,
0.08629116415977478,
-0.04226023331284523,
0.040866076946258545,
0.11958710849285126,
0.0770282968878746,
-0.10846187174320221,
0.029584266245365143,
0.052728526294231415,
-0.035550396889448166,
-0.1998782902956009,
-0.029582394286990166,
-0.028802696615457535,
-0.03770358860492706,
0.08658979088068008,
0.027108434587717056,
0.024792855605483055,
0.07094442844390869,
0.05877115577459335,
0.07934458553791046,
-0.03825916722416878,
0.056702300906181335,
0.07024454325437546,
0.047453463077545166,
0.13019683957099915,
-0.0406089685857296,
-0.09819289296865463,
0.018161142244935036,
-0.024454530328512192,
0.21402542293071747,
0.015702057629823685,
0.06901872158050537,
0.043429017066955566,
0.16966716945171356,
0.005802819039672613,
0.07867876440286636,
0.01142158918082714,
-0.07642105221748352,
0.004843644332140684,
-0.038087397813797,
-0.01771397888660431,
0.027020210400223732,
-0.04995005205273628,
0.060179002583026886,
-0.10697382688522339,
0.003951274789869785,
0.07118844985961914,
0.21601596474647522,
0.0368584506213665,
-0.31921541690826416,
-0.06657569855451584,
0.01745566725730896,
-0.02855546399950981,
-0.016748514026403427,
0.01218333002179861,
0.15784473717212677,
-0.06826352328062057,
0.02605556882917881,
-0.08815348148345947,
0.0696754977107048,
-0.021876681596040726,
0.04151756688952446,
0.062285732477903366,
0.11078834533691406,
-0.015962738543748856,
0.05574784427881241,
-0.304552286863327,
0.2749693989753723,
0.01927926577627659,
0.08846497535705566,
-0.06022015959024429,
-0.01072200108319521,
0.033993326127529144,
0.06629903614521027,
0.04335798695683479,
-0.024546707049012184,
-0.06632804125547409,
-0.24467071890830994,
-0.029928773641586304,
0.032801009714603424,
0.13477160036563873,
-0.011906657367944717,
0.11062460392713547,
-0.031890690326690674,
-0.004199137911200523,
0.09530626237392426,
-0.0385877750813961,
-0.0807383581995964,
-0.0739668607711792,
-0.03926626965403557,
0.022662324830889702,
-0.05222010985016823,
-0.0707358792424202,
-0.10614433884620667,
-0.14330221712589264,
0.15460622310638428,
-0.00002270480945298914,
-0.0002158429124392569,
-0.12585967779159546,
0.10661571472883224,
0.06253113597631454,
-0.0680159330368042,
0.038252297788858414,
0.023245183750987053,
0.08383304625749588,
0.03267320990562439,
-0.05496196076273918,
0.12824831902980804,
-0.07108131796121597,
-0.17229007184505463,
-0.07642828673124313,
0.07768965512514114,
0.04138335585594177,
0.055760353803634644,
-0.004247944802045822,
0.024139221757650375,
0.00812026672065258,
-0.08186538517475128,
0.0482902005314827,
-0.01898573897778988,
0.05058525130152702,
0.018897395581007004,
-0.060761019587516785,
-0.009946323931217194,
-0.05604589730501175,
-0.022400185465812683,
0.16730231046676636,
0.26092755794525146,
-0.09026902914047241,
-0.022287314757704735,
0.04580281302332878,
-0.05955778807401657,
-0.21267418563365936,
0.10538740456104279,
0.06291177868843079,
-0.0026187070179730654,
0.07655082643032074,
-0.1264910101890564,
0.1562911868095398,
0.09453137964010239,
-0.015812935307621956,
0.10189709067344666,
-0.2793387472629547,
-0.13857270777225494,
0.10671085864305496,
0.19518430531024933,
0.11503051966428757,
-0.15494120121002197,
-0.017508046701550484,
-0.02558797225356102,
-0.07098344713449478,
0.0997748151421547,
-0.11382915079593658,
0.10379429906606674,
0.002612851792946458,
0.06603720039129257,
0.013927211984992027,
-0.068634532392025,
0.11301422864198685,
-0.017328619956970215,
0.12430844455957413,
-0.0618838369846344,
-0.0388590507209301,
0.0507042221724987,
-0.04134843498468399,
-0.02481240965425968,
-0.04308852180838585,
0.01946098729968071,
-0.027999989688396454,
-0.02838934399187565,
-0.07553838193416595,
0.04108947888016701,
-0.02515716478228569,
-0.07801087945699692,
-0.0323641374707222,
0.03654047101736069,
0.038255538791418076,
-0.029830364510416985,
0.13512994349002838,
0.014608137309551239,
0.19188104569911957,
0.11231579631567001,
0.07823428511619568,
-0.05496939271688461,
-0.010428410954773426,
0.00779347587376833,
-0.02617715857923031,
0.06308905780315399,
-0.12340102344751358,
0.044426366686820984,
0.13067781925201416,
0.006755097769200802,
0.12670178711414337,
0.08939176052808762,
-0.02506825141608715,
0.021543748676776886,
0.0801733061671257,
-0.16227707266807556,
-0.09555484354496002,
0.004836836364120245,
-0.05242443457245827,
-0.10233745723962784,
0.06631935387849808,
0.09769801050424576,
-0.07372038066387177,
0.0051258765161037445,
-0.011017011478543282,
-0.015381342731416225,
-0.05405154451727867,
0.22548000514507294,
0.07566311210393906,
0.05045483261346817,
-0.0807465985417366,
0.06205333024263382,
0.051522109657526016,
-0.08507183194160461,
-0.0025606886483728886,
0.05282256752252579,
-0.07718808203935623,
-0.022347670048475266,
0.1168987825512886,
0.21401038765907288,
-0.036292120814323425,
-0.03104410320520401,
-0.15293076634407043,
-0.11104083806276321,
0.036627668887376785,
0.19142615795135498,
0.10157106071710587,
-0.0025084849912673235,
-0.03356201946735382,
0.04021401330828667,
-0.15338043868541718,
0.10072323679924011,
0.03236360847949982,
0.09848646074533463,
-0.1757616102695465,
0.17903593182563782,
-0.0038173955399543047,
0.018339866772294044,
-0.03997280076146126,
0.050560954958200455,
-0.13084805011749268,
0.010301790200173855,
-0.13338573276996613,
-0.04470536857843399,
-0.003195008262991905,
-0.008551176637411118,
0.009945392608642578,
-0.0831274688243866,
-0.06575199961662292,
0.003943880554288626,
-0.12075074017047882,
-0.015064112842082977,
0.052177220582962036,
0.027980629354715347,
-0.11518313735723495,
-0.05179267004132271,
0.021244963631033897,
-0.059040654450654984,
0.044036202132701874,
0.020923707634210587,
0.020765861496329308,
0.07813546806573868,
-0.18256807327270508,
-0.01008361391723156,
0.08561690151691437,
-0.012699486687779427,
0.08344793319702148,
-0.05713836848735809,
-0.01738038845360279,
-0.00923982821404934,
0.10227935761213303,
0.026487885043025017,
0.08572551608085632,
-0.12733034789562225,
0.012014278210699558,
-0.04692000150680542,
-0.09228473156690598,
-0.056273333728313446,
0.009467358700931072,
0.07121465355157852,
-0.005202239379286766,
0.19941195845603943,
-0.10610660910606384,
0.037288449704647064,
-0.20459263026714325,
-0.008391246199607849,
-0.01347750797867775,
-0.10894335806369781,
-0.10630004853010178,
-0.043961457908153534,
0.0665612742304802,
-0.061515361070632935,
0.12771470844745636,
0.026739804074168205,
0.07168719172477722,
0.04363546893000603,
-0.05454045534133911,
0.01849316619336605,
0.048009809106588364,
0.21223010122776031,
0.040808528661727905,
-0.04173126071691513,
0.038454797118902206,
0.07024677097797394,
0.1162802204489708,
0.08700541406869888,
0.20537008345127106,
0.15755365788936615,
-0.07604625821113586,
0.09043118357658386,
0.02632438950240612,
-0.05521655082702637,
-0.1521838903427124,
0.037639398127794266,
-0.08717229217290878,
0.07925612479448318,
-0.02729387953877449,
0.1906890869140625,
0.08058445900678635,
-0.16274762153625488,
0.018476873636245728,
-0.0732702687382698,
-0.0922389104962349,
-0.1103745624423027,
0.0013858500169590116,
-0.10029249638319016,
-0.14807464182376862,
0.010820306837558746,
-0.10203466564416885,
0.010795680806040764,
0.11014518141746521,
0.01640835776925087,
-0.008481957018375397,
0.22295960783958435,
0.03871377184987068,
0.058616477996110916,
0.0414653941988945,
0.008190645836293697,
-0.023826198652386665,
-0.0773295983672142,
-0.07865061610937119,
-0.03680409491062164,
-0.01335169468075037,
0.018308300524950027,
-0.07051242887973785,
-0.09181948006153107,
0.03653460741043091,
-0.007080533541738987,
-0.11197631806135178,
0.025148620828986168,
0.025886282324790955,
0.05128137022256851,
0.0028531698044389486,
0.003954848740249872,
0.0079651502892375,
-0.02637043409049511,
0.23431077599525452,
-0.09061061590909958,
-0.06796281039714813,
-0.10203424841165543,
0.2701733112335205,
0.029391242191195488,
0.03144858404994011,
0.007041309028863907,
-0.09174419194459915,
0.01857520081102848,
0.2278253585100174,
0.18158644437789917,
-0.11149615794420242,
0.0032040500082075596,
-0.01406823843717575,
-0.01826232671737671,
-0.057569973170757294,
0.13229554891586304,
0.10450700670480728,
0.02379228174686432,
-0.09765227138996124,
-0.04513455554842949,
-0.03923165053129196,
-0.011960124596953392,
-0.0428309328854084,
0.05314479395747185,
0.05968582630157471,
0.03428861126303673,
-0.06813696771860123,
0.06340144574642181,
-0.03502601757645607,
-0.12432772666215897,
0.0747733935713768,
-0.2001074254512787,
-0.15501940250396729,
-0.013483683578670025,
0.12736964225769043,
-0.03089562989771366,
0.06559234112501144,
-0.0318927988409996,
-0.005330919753760099,
0.021469712257385254,
-0.02774684689939022,
-0.05131126940250397,
-0.08469291776418686,
0.07980924844741821,
-0.10648369789123535,
0.21652571856975555,
-0.04100574553012848,
0.04959847033023834,
0.12723663449287415,
0.03279449790716171,
-0.06510617583990097,
0.062031105160713196,
0.04841843619942665,
-0.12293265014886856,
0.02126881666481495,
0.1307300329208374,
-0.04438464343547821,
0.10093429684638977,
0.045531559735536575,
-0.15632332861423492,
0.03310982510447502,
-0.10205922275781631,
-0.0642312541604042,
-0.04372301325201988,
-0.0494234673678875,
-0.05320488661527634,
0.12338259816169739,
0.2070823609828949,
-0.01372718159109354,
0.04511357471346855,
-0.06759575009346008,
0.02593177743256092,
0.05936112999916077,
0.05853245407342911,
-0.07843971997499466,
-0.2766703963279724,
0.025522226467728615,
0.08724716305732727,
-0.03220932558178902,
-0.24952268600463867,
-0.09353817999362946,
0.010233731009066105,
-0.05717378109693527,
-0.0931127667427063,
0.08655042946338654,
0.10626576095819473,
0.06063462421298027,
-0.05893966928124428,
-0.15157251060009003,
-0.07867273688316345,
0.16233161091804504,
-0.14292819797992706,
-0.093154676258564
] |
null | null | stable-baselines3 |
# **A2C** Agent playing **PandaPickAndPlace-v3**
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
## Usage (with Stable-baselines3)
TODO: Add your code
```python
from stable_baselines3 import ...
from huggingface_sb3 import load_from_hub
...
```
| {"library_name": "stable-baselines3", "tags": ["PandaPickAndPlace-v3", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "A2C", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "PandaPickAndPlace-v3", "type": "PandaPickAndPlace-v3"}, "metrics": [{"type": "mean_reward", "value": "-50.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | slc48/a2c-PandaPickAndPlace-v3 | [
"stable-baselines3",
"PandaPickAndPlace-v3",
"deep-reinforcement-learning",
"reinforcement-learning",
"model-index",
"region:us"
] | 2024-02-13T12:10:40+00:00 | [] | [] | TAGS
#stable-baselines3 #PandaPickAndPlace-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us
|
# A2C Agent playing PandaPickAndPlace-v3
This is a trained model of a A2C agent playing PandaPickAndPlace-v3
using the stable-baselines3 library.
## Usage (with Stable-baselines3)
TODO: Add your code
| [
"# A2C Agent playing PandaPickAndPlace-v3\nThis is a trained model of a A2C agent playing PandaPickAndPlace-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
"TAGS\n#stable-baselines3 #PandaPickAndPlace-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n",
"# A2C Agent playing PandaPickAndPlace-v3\nThis is a trained model of a A2C agent playing PandaPickAndPlace-v3\nusing the stable-baselines3 library.",
"## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
43,
49,
17
] | [
"passage: TAGS\n#stable-baselines3 #PandaPickAndPlace-v3 #deep-reinforcement-learning #reinforcement-learning #model-index #region-us \n# A2C Agent playing PandaPickAndPlace-v3\nThis is a trained model of a A2C agent playing PandaPickAndPlace-v3\nusing the stable-baselines3 library.## Usage (with Stable-baselines3)\nTODO: Add your code"
] | [
0.027486475184559822,
0.07794087380170822,
-0.0039301966316998005,
0.04153569042682648,
0.1270475536584854,
-0.024605626240372658,
0.15218116343021393,
0.0976886972784996,
0.04738740995526314,
-0.04570417106151581,
0.10035227984189987,
-0.017000338062644005,
0.07634701579809189,
0.35825949907302856,
0.04178178682923317,
-0.21229062974452972,
0.07515186816453934,
0.031356967985630035,
0.030183717608451843,
0.11589493602514267,
0.03482844680547714,
-0.08370580524206161,
0.047900889068841934,
0.056935153901576996,
-0.10568134486675262,
-0.04635043069720268,
-0.04238439351320267,
-0.06730392575263977,
0.09397120773792267,
-0.04049304872751236,
0.15797875821590424,
-0.04553058743476868,
0.0933695137500763,
-0.13183452188968658,
0.027022546157240868,
-0.033199090510606766,
-0.04943041130900383,
0.008663183078169823,
0.0041871508583426476,
0.05259881168603897,
0.016811000183224678,
0.058442991226911545,
0.08567310869693756,
0.05434233322739601,
-0.09399448335170746,
-0.08695768564939499,
0.00112639379221946,
0.1303328275680542,
0.20504187047481537,
0.03069850243628025,
-0.016234003007411957,
0.13487987220287323,
-0.11298718303442001,
0.02077741175889969,
0.007230764254927635,
-0.39739811420440674,
-0.0034310314804315567,
0.11333679407835007,
0.03426876664161682,
0.004427991341799498,
-0.010086724534630775,
-0.02224140800535679,
0.022719675675034523,
-0.040994808077812195,
0.052357543259859085,
-0.0889686867594719,
0.009374380111694336,
-0.017425663769245148,
-0.0543944276869297,
-0.017514940351247787,
0.22918443381786346,
0.006148309446871281,
-0.0726458877325058,
-0.08675522357225418,
0.009284439496695995,
-0.062306564301252365,
-0.08717396855354309,
-0.06152264028787613,
0.07216168195009232,
0.05962075665593147,
0.12100188434123993,
-0.021114742383360863,
-0.06097354367375374,
-0.03642977774143219,
0.09294649958610535,
-0.03979772701859474,
-0.018730400130152702,
-0.012307635508477688,
-0.06567110866308212,
0.007816056720912457,
0.04673917219042778,
-0.059391897171735764,
0.002495582215487957,
-0.03909772261977196,
-0.12519364058971405,
-0.021390704438090324,
-0.037895895540714264,
0.03692800551652908,
0.08037962019443512,
0.11750064045190811,
0.12808917462825775,
0.11204942315816879,
-0.10531965643167496,
0.048381268978118896,
0.08035508543252945,
0.1051158607006073,
-0.03593577817082405,
0.03379540145397186,
0.14202521741390228,
0.09964768588542938,
0.0911802351474762,
-0.10495278239250183,
-0.11368656158447266,
0.059253010898828506,
0.1033688560128212,
0.04299137368798256,
0.012620137073099613,
0.054197728633880615,
-0.14911989867687225,
-0.0043664174154400826,
0.007483519613742828,
-0.05570479482412338,
-0.023312831297516823,
0.06401295214891434,
-0.05273741856217384,
0.053800687193870544,
-0.00907986145466566,
0.09813728928565979,
0.06676364690065384,
-0.028711063787341118,
-0.05621400102972984,
-0.021020350977778435,
-0.03848880156874657,
-0.04307112097740173,
0.05230647325515747,
0.00023724648053757846,
0.030071664601564407,
-0.11768315732479095,
-0.14083218574523926,
0.045440491288900375,
0.02452601119875908,
-0.021691597998142242,
-0.14284585416316986,
-0.10144873708486557,
-0.018800050020217896,
-0.029945699498057365,
0.0011751845013350248,
-0.17962798476219177,
-0.021035565063357353,
-0.02249656617641449,
0.09358298033475876,
0.11099521070718765,
-0.03486866131424904,
-0.051634445786476135,
-0.13929656147956848,
0.06775844842195511,
-0.2460586279630661,
0.023618223145604134,
-0.10099490731954575,
0.13568435609340668,
0.00003593297515180893,
0.01918736845254898,
0.13668785989284515,
0.01985933445394039,
-0.00987408496439457,
0.16884708404541016,
-0.18710193037986755,
-0.045034825801849365,
0.1467251032590866,
-0.08300323784351349,
-0.15993112325668335,
0.048053983598947525,
-0.02365856058895588,
0.03019958920776844,
0.06060232222080231,
0.14954516291618347,
0.0029128175228834152,
-0.1539110541343689,
0.054678723216056824,
0.010775982402265072,
-0.08411731570959091,
0.005511044058948755,
0.09947328269481659,
0.07171369343996048,
-0.06027991697192192,
0.00386617798358202,
-0.16022905707359314,
0.08788114041090012,
-0.013567863963544369,
-0.0827532410621643,
0.028259199112653732,
-0.09400804340839386,
0.09895551204681396,
-0.0036158065777271986,
0.1019500270485878,
-0.024737413972616196,
-0.02103758230805397,
-0.03302476927638054,
0.09178958833217621,
-0.006889233365654945,
0.04235490411520004,
-0.17624202370643616,
0.13967107236385345,
0.031196333467960358,
0.036739904433488846,
-0.0905269905924797,
-0.05630379542708397,
0.05871361494064331,
0.13699062168598175,
0.05993805080652237,
0.04260522499680519,
0.06251108646392822,
0.015523664653301239,
0.02500716969370842,
-0.10406886786222458,
-0.1037193238735199,
0.024187617003917694,
0.05689552426338196,
-0.07798812538385391,
-0.06026448681950569,
-0.08712825179100037,
0.17505384981632233,
-0.0786968544125557,
0.017794575542211533,
-0.08366625756025314,
0.02817535772919655,
0.07173309475183487,
0.0026245038025081158,
0.08025417476892471,
0.026689590886235237,
-0.029044678434729576,
-0.005153273232281208,
0.10889201611280441,
0.05478586256504059,
-0.08229264616966248,
0.033373210579156876,
0.025046344846487045,
0.21414616703987122,
0.15664437413215637,
-0.04115692898631096,
-0.0643443614244461,
-0.011021985672414303,
0.03671391308307648,
0.03670518472790718,
0.040511444211006165,
0.08545658737421036,
0.10167457163333893,
0.06965667009353638,
0.12738169729709625,
-0.0624607615172863,
0.1547497808933258,
-0.005199701525270939,
-0.15828076004981995,
0.026254888623952866,
-0.059293732047080994,
0.11682692170143127,
-0.05605839937925339,
0.06298302859067917,
0.05865371972322464,
0.06762383133172989,
0.09244019538164139,
-0.005148928612470627,
0.032162249088287354,
-0.05147171765565872,
0.07102617621421814,
0.06602176278829575,
0.04705213010311127,
0.01017383486032486,
-0.012083427049219608,
0.01541139092296362,
-0.05613020807504654,
-0.03873618692159653,
-0.11359953135251999,
-0.1287488490343094,
0.03296611085534096,
-0.004969589412212372,
-0.03114040195941925,
-0.02854122966527939,
-0.06377382576465607,
0.052288301289081573,
0.053275272250175476,
-0.053891319781541824,
0.03712870180606842,
0.00485234847292304,
-0.10439945757389069,
0.10290682315826416,
-0.15292273461818695,
-0.3460681438446045,
-0.02735934779047966,
-0.17040066421031952,
-0.022386079654097557,
0.13880716264247894,
-0.0656690001487732,
-0.1680629998445511,
0.03135024383664131,
-0.028167176991701126,
-0.06821904331445694,
0.011239428073167801,
-0.02954430878162384,
0.08908413350582123,
0.08976397663354874,
0.02608516253530979,
0.001713349367491901,
-0.011076000519096851,
-0.0210146214812994,
-0.0626610741019249,
0.07034093141555786,
-0.0628141388297081,
0.08342782407999039,
0.16364246606826782,
0.03665013238787651,
0.00254916213452816,
-0.013187219388782978,
0.05882645770907402,
0.025308357551693916,
-0.03191058710217476,
0.11658554524183273,
-0.06355691701173782,
-0.0028221053071320057,
0.04928906261920929,
0.0058619617484509945,
-0.11259172111749649,
0.08314554393291473,
-0.06228255107998848,
-0.06553828716278076,
-0.014291040599346161,
-0.09096277505159378,
-0.09468044340610504,
0.22631439566612244,
0.08007681369781494,
0.015153476037085056,
-0.08200065791606903,
0.041780985891819,
0.078873410820961,
0.05328793451189995,
-0.024349994957447052,
0.028472555801272392,
0.004117715638130903,
-0.03718945011496544,
0.04334114491939545,
-0.019280144944787025,
0.002435318659991026,
-0.01603764295578003,
0.12771031260490417,
-0.05240684375166893,
0.10260411351919174,
-0.018220800906419754,
0.0029518799856305122,
0.1311473250389099,
0.13050468266010284,
0.10410022735595703,
0.029303735122084618,
-0.11335050314664841,
-0.0351923406124115,
-0.01937113143503666,
-0.19386044144630432,
0.0976279005408287,
0.12591616809368134,
0.04700959473848343,
-0.05303412675857544,
0.1730181723833084,
-0.01117247436195612,
0.11813356727361679,
0.033542800694704056,
-0.16711777448654175,
0.062113385647535324,
0.023251518607139587,
0.04300156980752945,
-0.014751211740076542,
0.06744100153446198,
-0.12141379714012146,
-0.20300684869289398,
0.03140173852443695,
0.008752196095883846,
0.05028979480266571,
-0.012412809766829014,
0.011338617652654648,
-0.11556630581617355,
-0.07093295454978943,
0.008033618330955505,
0.04132743179798126,
-0.25717881321907043,
0.057942040264606476,
-0.04003814607858658,
0.06821739673614502,
-0.022644147276878357,
0.010632216930389404,
0.04870450124144554,
-0.01184295117855072,
0.14500154554843903,
-0.0187945906072855,
0.1450522094964981,
-0.19739100337028503,
-0.16929040849208832,
0.01808343082666397,
-0.05019906535744667,
0.06305902451276779,
0.0714949294924736,
0.01534615084528923,
0.012479797936975956,
-0.012934676371514797,
0.19842173159122467,
-0.10025499016046524,
-0.04024248942732811,
-0.02398497797548771,
-0.025673532858490944,
0.015451747924089432,
-0.02555946446955204,
-0.029805956408381462,
0.03548537194728851,
0.15431827306747437,
0.09724093973636627,
-0.029653633013367653,
-0.0399615503847599,
-0.05118698999285698,
-0.10639388114213943,
-0.036368921399116516,
0.09141403436660767,
-0.07318608462810516,
0.09687288105487823,
-0.07666593790054321,
-0.05790473520755768,
0.10797017067670822,
-0.07689909636974335,
-0.05124622955918312,
-0.07158726453781128,
0.07368219643831253,
-0.001481634913943708,
0.116410993039608,
0.03568922355771065,
0.012666506692767143,
0.09684363007545471,
-0.05218671262264252,
0.09009745717048645,
0.02543095499277115,
-0.05760417506098747,
0.03435717895627022,
-0.06065238267183304,
-0.004964971914887428,
-0.02689964696764946,
0.044375281780958176,
0.25802046060562134,
0.303185373544693,
-0.0006246240227483213,
0.2094513177871704,
0.05700065940618515,
0.02388235554099083,
-0.17588365077972412,
-0.11443927884101868,
0.03393269330263138,
0.05411672219634056,
0.08446933329105377,
-0.24615320563316345,
0.06715133041143417,
-0.04742985591292381,
-0.0865534096956253,
-0.03898768126964569,
-0.1121821478009224,
-0.07671654224395752,
0.11412186175584793,
0.09010335057973862,
0.09312256425619125,
-0.1256924867630005,
0.016473891213536263,
-0.002298785140737891,
-0.1361958384513855,
0.15493148565292358,
-0.023027971386909485,
0.06775831431150436,
-0.037554122507572174,
-0.0556350015103817,
0.03613113611936569,
-0.026255695149302483,
0.03611356019973755,
-0.13910548388957977,
-0.013396019116044044,
-0.06232651323080063,
-0.05317695811390877,
0.06784221529960632,
0.018429221585392952,
-0.0023855166509747505,
-0.09428095072507858,
-0.024624057114124298,
-0.3141191601753235,
0.01444550696760416,
0.017708124592900276,
-0.026929717510938644,
-0.00870649516582489,
-0.08420539647340775,
-0.04619578644633293,
0.09312644600868225,
0.027139516547322273,
0.08411949872970581,
0.11343511939048767,
-0.0021592704579234123,
-0.0013614839408546686,
0.2045184224843979,
0.046596430242061615,
-0.035141270607709885,
0.05372554063796997,
-0.07488565146923065,
-0.0631556585431099,
0.047378022223711014,
-0.1033211424946785,
-0.011691411957144737,
0.012181272730231285,
0.009417383931577206,
0.06636467576026917,
0.0921090617775917,
-0.04118781164288521,
0.15245945751667023,
0.08789942413568497,
-0.1577037125825882,
-0.005593070760369301,
0.043110668659210205,
-0.01835675910115242,
0.03658974543213844,
-0.06883130222558975,
0.04838934540748596,
-0.07665680348873138,
-0.050609949976205826,
0.02695653773844242,
-0.005005016457289457,
-0.07803516834974289,
0.0025904260110110044,
0.05113031715154648,
0.033476173877716064,
-0.10060809552669525,
0.14412277936935425,
0.02362341620028019,
0.060049623250961304,
0.11292973160743713,
0.025052867829799652,
-0.08626596629619598,
-0.020556770265102386,
0.009321614168584347,
0.21392667293548584,
0.05209117755293846,
-0.008853775449097157,
-0.10309821367263794,
-0.1317688226699829,
0.019931556656956673,
-0.09805776923894882,
0.0981357991695404,
-0.045686136931180954,
-0.06531782448291779,
-0.048043008893728256,
-0.06395275145769119,
0.026428062468767166,
0.05060828849673271,
-0.024261213839054108,
-0.16703109443187714,
0.0028095245361328125,
0.07283420115709305,
0.07392037659883499,
-0.05360231176018715,
-0.06861317902803421,
-0.1816038340330124,
0.034833211451768875,
-0.06560882925987244,
-0.009459489956498146,
-0.05757150053977966,
-0.049281518906354904,
-0.03282918035984039,
0.03603319078683853,
-0.025998011231422424,
-0.0063212099485099316,
-0.06532789021730423,
0.0346551313996315,
0.0019213027553632855,
-0.012519774958491325,
-0.059221506118774414,
-0.029208708554506302,
0.06103608384728432,
-0.054788753390312195,
0.04287886247038841,
0.03711424767971039,
-0.025842420756816864,
0.03374817967414856,
-0.0766001045703888,
-0.1055421382188797,
0.09699318557977676,
-0.012918896973133087,
0.04792117699980736,
-0.043377045542001724,
-0.009601394645869732,
0.013654861599206924,
-0.07110659033060074,
-0.003911672160029411,
0.2665005028247833,
-0.030539803206920624,
-0.048128120601177216,
-0.06937604397535324,
-0.04962621256709099,
-0.08229721337556839,
-0.010552429594099522,
0.1810329705476761,
0.04420292004942894,
0.13705022633075714,
-0.05179106071591377,
0.11344839632511139,
-0.07221374660730362,
-0.022475240752100945,
-0.07237336039543152,
0.02927747182548046,
-0.10484036803245544,
-0.061922337859869,
-0.029306495562195778,
-0.03723188117146492,
0.13401463627815247,
-0.1599452942609787,
-0.040848858654499054,
-0.009993843734264374,
-0.04400656372308731,
0.10538479685783386,
0.05834374204277992,
0.24073383212089539,
0.08340420573949814,
-0.03232918307185173,
0.09579581767320633,
0.11017659306526184,
0.08559601753950119,
-0.04429888725280762,
0.0562870167195797,
-0.041772499680519104,
-0.11665898561477661,
0.0995480939745903,
0.017435681074857712,
0.0341331847012043,
-0.06640295684337616,
0.05162317678332329,
-0.09709911048412323,
0.017214728519320488,
0.016013119369745255,
0.2671366035938263,
0.18169039487838745,
-0.09142809361219406,
-0.018055828288197517,
-0.03929596021771431,
-0.0404045432806015,
-0.05626988783478737,
-0.05791826173663139,
-0.07052783668041229,
-0.23438026010990143,
0.05497952923178673,
-0.07287690788507462,
-0.06857424229383469,
-0.024056032299995422,
-0.039046384394168854,
-0.03482789918780327,
0.049438443034887314,
0.015574272722005844,
0.024610402062535286,
0.05460633710026741,
-0.037970006465911865,
-0.10222279280424118,
0.021120628342032433,
-0.11358777433633804,
-0.058110639452934265,
-0.0608527772128582,
0.013603207655251026,
0.032711390405893326,
-0.06578880548477173,
0.07401135563850403,
-0.031644709408283234,
-0.0773429125547409,
0.033291734755039215,
-0.05923283472657204,
0.023459961637854576,
0.08213943243026733,
0.046650420874357224,
-0.08261620998382568,
-0.001847621868364513,
0.14279989898204803,
0.03476017713546753,
0.024196986109018326,
-0.1371796727180481,
0.18205156922340393,
-0.04175267368555069,
0.05454432591795921,
-0.027645805850625038,
-0.001549829263240099,
-0.09233471751213074,
0.23371301591396332,
0.10676909238100052,
-0.22603371739387512,
0.028658870607614517,
-0.1235509142279625,
0.021059295162558556,
-0.11621516197919846,
0.21783600747585297,
0.057727690786123276,
0.07228294014930725,
-0.07245387881994247,
-0.03209313750267029,
-0.145315483212471,
-0.10384589433670044,
-0.101922906935215,
-0.06560057401657104,
0.11224142462015152,
-0.001258126343600452,
-0.0523805133998394,
0.00519162742421031,
-0.16908322274684906,
0.12613970041275024,
-0.02994760498404503,
-0.12019716203212738,
-0.07016900181770325,
-0.04710816219449043,
-0.05521264299750328,
0.09372208267450333,
0.129522442817688,
-0.015728123486042023,
0.02681221067905426,
-0.05589401349425316,
-0.005961086135357618,
-0.016340548172593117,
-0.004474687855690718,
0.06660200655460358,
-0.07803420722484589,
0.160152405500412,
-0.01835605502128601,
0.0032135159708559513,
0.03760514780879021,
0.07215167582035065,
-0.06409875303506851,
0.054922282695770264,
0.01941937766969204,
0.03464510291814804,
-0.01192109938710928,
0.04863814637064934,
-0.005776016972959042,
0.060980174690485,
0.06923321634531021,
-0.006280879490077496,
0.09246022999286652,
-0.04215230420231819,
0.03382788598537445,
-0.05586900934576988,
0.07223515957593918,
-0.13147443532943726,
0.05835634469985962,
0.05307885631918907,
-0.10789400339126587,
0.022393157705664635,
0.015446904115378857,
0.10423807799816132,
0.03331761062145233,
-0.03838276118040085,
-0.09355427324771881,
-0.1501099318265915,
-0.0011412163730710745,
0.03483830392360687,
-0.07344367355108261,
-0.12203630805015564,
-0.05105986073613167,
-0.20478032529354095,
0.025945311412215233,
-0.08958196640014648,
0.07758393883705139,
0.03607752546668053,
0.026172010228037834,
-0.05050457641482353,
-0.029131077229976654,
0.018790466710925102,
0.13752523064613342,
-0.0397174246609211,
-0.12158219516277313
] |
null | null | transformers | GGUF version for [Test157t/Cetus-Sea-7b-128k](https://huggingface.co/Test157t/Cetus-Sea-7b-128k)

| {"library_name": "transformers", "pipeline_tag": "text-generation"} | text-generation | konz00/Cetus-Sea-7b-128k-GGUF | [
"transformers",
"gguf",
"text-generation",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:10:58+00:00 | [] | [] | TAGS
#transformers #gguf #text-generation #endpoints_compatible #region-us
| GGUF version for Test157t/Cetus-Sea-7b-128k
!URL
| [] | [
"TAGS\n#transformers #gguf #text-generation #endpoints_compatible #region-us \n"
] | [
25
] | [
"passage: TAGS\n#transformers #gguf #text-generation #endpoints_compatible #region-us \n"
] | [
-0.009579749777913094,
0.016051435843110085,
-0.00778944743797183,
-0.0606827586889267,
0.17959557473659515,
0.04390456900000572,
0.05772693082690239,
0.08898092061281204,
0.0652620941400528,
0.0004920579376630485,
0.13663704693317413,
0.12208554148674011,
0.004242816939949989,
0.07835976779460907,
-0.07947206497192383,
-0.2472376823425293,
0.10715211927890778,
0.056565575301647186,
-0.08158249408006668,
0.053426869213581085,
0.046937670558691025,
-0.01570023223757744,
0.09193092584609985,
-0.045532554388046265,
-0.20299391448497772,
0.046174556016922,
0.03110901266336441,
-0.06774543225765228,
0.07453011721372604,
0.10531035810709,
0.09625300019979477,
0.0060175945982337,
-0.15509317815303802,
-0.23109441995620728,
0.03242243826389313,
0.017691269516944885,
-0.10005950927734375,
0.001726817456074059,
0.032374605536460876,
-0.10376358032226562,
0.0906355157494545,
0.04741545394062996,
-0.09837349504232407,
0.0898582860827446,
-0.1877211183309555,
-0.08756867796182632,
-0.04876207560300827,
-0.03491636738181114,
0.01505382638424635,
0.06442180275917053,
-0.013353051617741585,
-0.04188106954097748,
-0.0708744004368782,
0.08128168433904648,
0.15614952147006989,
-0.3134511411190033,
-0.0046891276724636555,
0.18256108462810516,
0.0725054144859314,
0.0586109533905983,
-0.061780765652656555,
0.12141754478216171,
0.019321439787745476,
-0.012183133512735367,
-0.06757590919733047,
-0.08256939053535461,
-0.018916055560112,
0.1169932410120964,
-0.06847090274095535,
-0.06659001857042313,
0.19365370273590088,
-0.03753431886434555,
0.03441791608929634,
-0.019127504900097847,
-0.07204557210206985,
-0.045780349522829056,
-0.04394662380218506,
0.049071304500103,
-0.03188550844788551,
0.14522109925746918,
0.050162553787231445,
-0.09602239727973938,
-0.10060478001832962,
-0.03710633143782616,
-0.20041054487228394,
0.26695820689201355,
-0.02112429216504097,
0.08602497726678848,
-0.22190633416175842,
0.02547726221382618,
-0.15691377222537994,
-0.07777521759271622,
-0.03994326665997505,
-0.08868958801031113,
0.0007165444549173117,
0.03496411815285683,
-0.1054995059967041,
-0.05400620773434639,
0.1524859070777893,
0.10100986063480377,
-0.039991434663534164,
0.06680738180875778,
-0.05496573448181152,
0.09457684308290482,
0.007357186172157526,
0.08487115800380707,
0.004251695703715086,
-0.02679322101175785,
0.0028159006033092737,
-0.21648989617824554,
-0.02913138084113598,
-0.07440675050020218,
-0.13762322068214417,
-0.05771903321146965,
-0.06727461516857147,
0.08988132327795029,
-0.011513961479067802,
0.05322519689798355,
-0.014487922191619873,
0.029230542480945587,
0.01647862233221531,
-0.04698542132973671,
-0.016856428235769272,
-0.0006139421020634472,
0.042123325169086456,
0.13298702239990234,
-0.05349437892436981,
0.002476717112585902,
-0.04667213186621666,
0.045286741107702255,
-0.07442079484462738,
-0.010620219632983208,
-0.03220843896269798,
-0.017421729862689972,
0.01238013245165348,
-0.14715172350406647,
0.04519771412014961,
-0.1117033064365387,
-0.17961354553699493,
0.012365331873297691,
0.02541954070329666,
-0.027730686590075493,
0.05330321565270424,
-0.043738897889852524,
-0.03978561982512474,
0.05650516226887703,
-0.06196942925453186,
-0.05383311212062836,
-0.07760827243328094,
0.06954456865787506,
0.006530481390655041,
0.07355255633592606,
-0.19058609008789062,
0.06655817478895187,
-0.02438404969871044,
0.021579977124929428,
-0.137967050075531,
0.10443931818008423,
-0.06279003620147705,
0.17324736714363098,
0.0018789154710248113,
0.022720806300640106,
-0.14477799832820892,
0.07889829576015472,
-0.08049003779888153,
0.18953093886375427,
-0.06065136939287186,
-0.12099350243806839,
0.33334603905677795,
-0.07543940842151642,
-0.13493743538856506,
0.0689801499247551,
0.02829323336482048,
-0.025411535054445267,
0.09032180160284042,
0.2727244794368744,
0.037348054349422455,
0.007425226736813784,
0.08740752190351486,
0.17363785207271576,
-0.11715899407863617,
-0.08976823836565018,
0.02972390130162239,
-0.07228533923625946,
-0.13154412806034088,
0.038542065769433975,
0.017456594854593277,
0.13168790936470032,
-0.033883508294820786,
-0.006262729875743389,
-0.034181054681539536,
-0.007485904730856419,
0.02858523279428482,
-0.005158690735697746,
0.10653847455978394,
-0.06756997108459473,
0.00851160567253828,
-0.0791502594947815,
-0.04450387507677078,
-0.02837834320962429,
0.03613412007689476,
-0.02884381264448166,
0.10680101811885834,
-0.04231800138950348,
0.08531270921230316,
-0.1458498239517212,
-0.1421574354171753,
-0.025719186291098595,
0.10338063538074493,
-0.032638587057590485,
0.11590561270713806,
0.07598087936639786,
-0.07653150707483292,
-0.010251731611788273,
0.036094751209020615,
0.14052505791187286,
-0.01232639979571104,
-0.005007986444979906,
-0.02063787169754505,
0.10085758566856384,
-0.0727856233716011,
-0.07437864691019058,
-0.08648914098739624,
0.02121381089091301,
0.17789724469184875,
0.07818994671106339,
0.020845280960202217,
-0.013459769077599049,
-0.0017346810782328248,
-0.0031804873142391443,
-0.030983738601207733,
-0.022077839821577072,
0.07634211331605911,
-0.006328213028609753,
-0.12348480522632599,
0.22044001519680023,
-0.12334394454956055,
0.27089813351631165,
0.1863541156053543,
-0.21157202124595642,
0.040252525359392166,
-0.07312045991420746,
-0.003348080674186349,
0.0510278157889843,
0.08169369399547577,
-0.038423482328653336,
0.1006215363740921,
-0.011515987105667591,
0.14560577273368835,
-0.02439459040760994,
-0.015194443054497242,
-0.014426624402403831,
-0.024794336408376694,
-0.04696030542254448,
0.040061965584754944,
0.0040283603593707085,
-0.1499948799610138,
0.21265046298503876,
0.16437600553035736,
0.10120455920696259,
0.2301403433084488,
-0.052775606513023376,
-0.006179410964250565,
0.06962192803621292,
0.04979134351015091,
-0.02862548828125,
-0.023439612239599228,
-0.27340593934059143,
-0.04803221672773361,
0.058091115206480026,
0.08838862180709839,
0.1594451367855072,
-0.11775633692741394,
-0.07357568293809891,
0.011395692825317383,
-0.07802775502204895,
-0.032421816140413284,
0.10294470191001892,
-0.0038269758224487305,
0.07158119976520538,
0.01997542567551136,
0.05874188244342804,
0.11971315741539001,
-0.013143796473741531,
-0.07740460336208344,
0.19619908928871155,
-0.14169634878635406,
-0.28958284854888916,
-0.1811203956604004,
-0.19683189690113068,
-0.04825779050588608,
0.08782356977462769,
0.1169954314827919,
-0.1564473658800125,
-0.03824961185455322,
0.04453830048441887,
0.12497194111347198,
-0.13104239106178284,
0.03814001381397247,
0.021633630618453026,
0.0357159860432148,
-0.10764139890670776,
-0.08001222461462021,
-0.05617373436689377,
-0.010578549467027187,
-0.03604588285088539,
0.08127055317163467,
-0.1475372612476349,
0.11227642744779587,
0.13462066650390625,
0.07316968590021133,
0.10140632838010788,
-0.012971841730177402,
0.20399945974349976,
-0.13861972093582153,
-0.08125321567058563,
0.17675228416919708,
-0.0056007071398198605,
0.059339489787817,
0.08977903425693512,
0.0006586898816749454,
-0.13959509134292603,
-0.011487981304526329,
-0.027896802872419357,
-0.13169744610786438,
-0.1854529231786728,
-0.0752529427409172,
-0.1555994153022766,
0.0391971692442894,
-0.035490378737449646,
0.0891667827963829,
0.11595811694860458,
0.07381458580493927,
0.023958778008818626,
0.009837509132921696,
0.03174016997218132,
0.05706017464399338,
0.16474942862987518,
-0.012225826270878315,
0.06657849252223969,
-0.08221769332885742,
-0.06015617400407791,
0.09020262211561203,
0.08751114457845688,
0.17842808365821838,
0.1306467205286026,
0.14687080681324005,
0.040677037090063095,
-0.025401374325156212,
0.1577799767255783,
0.0967152863740921,
0.0021733229514211416,
-0.06181129068136215,
-0.014838159084320068,
-0.0008649908122606575,
-0.03697579726576805,
0.0287077184766531,
0.01853453554213047,
-0.2132999449968338,
-0.030649419873952866,
-0.18822017312049866,
0.13289867341518402,
0.022944875061511993,
0.04152572527527809,
-0.13737933337688446,
-0.012605909258127213,
0.11767126619815826,
-0.018848104402422905,
-0.11539360880851746,
0.08806689828634262,
0.07253143936395645,
-0.09908895939588547,
0.10482010990381241,
-0.04038228839635849,
0.12548591196537018,
-0.012067651376128197,
0.09052639454603195,
-0.054524339735507965,
-0.09063196182250977,
0.02122526243329048,
0.09754706919193268,
-0.2797391414642334,
0.20971086621284485,
0.02209780551493168,
-0.037529509514570236,
-0.05445846915245056,
0.003275763476267457,
0.02146379090845585,
0.17078383266925812,
0.13981258869171143,
0.024530909955501556,
-0.11239399015903473,
-0.07275530695915222,
0.0757327750325203,
0.050253208726644516,
0.1992543339729309,
-0.08020731806755066,
-0.029789097607135773,
-0.010982216335833073,
0.0018502890598028898,
-0.03299505263566971,
0.0070411707274615765,
0.0035219250712543726,
-0.22908763587474823,
0.06321971863508224,
0.06728363037109375,
0.1331171989440918,
-0.007174460217356682,
0.0938580259680748,
-0.0987543985247612,
0.20914298295974731,
-0.10293351858854294,
-0.0611550472676754,
-0.12668845057487488,
-0.07016585767269135,
0.055333029478788376,
-0.0459693968296051,
0.06438574194908142,
-0.09787745028734207,
0.004825790412724018,
-0.09091890603303909,
-0.2175038456916809,
0.11621169745922089,
-0.08599694073200226,
0.05296287685632706,
-0.025739246979355812,
0.14477863907814026,
-0.06959626078605652,
-0.03430679440498352,
0.02216348610818386,
0.01117691956460476,
-0.07169883698225021,
-0.14873681962490082,
0.036700405180454254,
0.0059575242921710014,
0.012029055505990982,
0.11613360792398453,
-0.012293081730604172,
0.07422421872615814,
0.019829515367746353,
-0.03598923981189728,
0.2794061303138733,
0.14528462290763855,
-0.023540012538433075,
0.16387425363063812,
0.1182202398777008,
-0.06954378634691238,
-0.3015587329864502,
-0.05622600018978119,
-0.17103037238121033,
-0.009528614580631256,
-0.13196390867233276,
-0.22375774383544922,
0.08889705687761307,
0.03337733820080757,
-0.002300830790773034,
0.23360541462898254,
-0.22890694439411163,
-0.03639558330178261,
0.09377763420343399,
-0.008005589246749878,
0.4988834857940674,
-0.18573682010173798,
-0.15002183616161346,
-0.0720629021525383,
-0.2446787804365158,
0.14136669039726257,
-0.07708404213190079,
0.11433251202106476,
0.0017991859931498766,
0.04815256968140602,
0.02332199737429619,
-0.06559228152036667,
0.17698130011558533,
0.04580013081431389,
0.03142178803682327,
-0.08555825054645538,
-0.008231335319578648,
0.07476440072059631,
0.008679834194481373,
-0.010487770661711693,
-0.06746388971805573,
-0.007445100229233503,
-0.1339777708053589,
-0.055862344801425934,
-0.07582037150859833,
0.03865489736199379,
0.0799262747168541,
-0.020358197391033173,
-0.05047819763422012,
-0.05339556559920311,
-0.016170836985111237,
0.04169759154319763,
0.25741541385650635,
-0.1039213016629219,
0.1687774360179901,
0.025945115834474564,
0.04493308067321777,
-0.20477426052093506,
-0.004618740640580654,
-0.046843063086271286,
-0.01980600692331791,
0.0935465469956398,
-0.16110028326511383,
0.05819813162088394,
0.07944425195455551,
-0.05106005072593689,
0.06884531676769257,
0.1359410583972931,
0.014532159082591534,
0.021173717454075813,
0.1467812955379486,
-0.18967050313949585,
-0.12311629951000214,
-0.07608576118946075,
-0.1257346123456955,
0.13505223393440247,
0.10438317060470581,
0.13074788451194763,
0.10108643770217896,
0.01909380964934826,
-0.04022539034485817,
-0.0070203510113060474,
-0.0709037110209465,
0.01386108249425888,
0.00817179773002863,
0.02584969438612461,
-0.15160691738128662,
0.0819007083773613,
-0.03959338366985321,
-0.18340301513671875,
-0.008320484310388565,
0.128557488322258,
-0.15399695932865143,
-0.09042810648679733,
-0.11891915649175644,
0.12760032713413239,
-0.14738141000270844,
-0.033070772886276245,
-0.010086797177791595,
-0.1264544129371643,
0.06237873435020447,
0.23380206525325775,
0.04952940717339516,
0.1272558718919754,
-0.0008513382636010647,
0.004208550788462162,
0.027461236342787743,
-0.10672212392091751,
-0.05929316207766533,
0.018589265644550323,
-0.09067489206790924,
-0.040657006204128265,
-0.06846732646226883,
0.1384158432483673,
-0.08021344989538193,
-0.05024665221571922,
-0.1991536170244217,
0.023239627480506897,
-0.12186726182699203,
-0.05760553851723671,
-0.12232958525419235,
-0.05573355779051781,
0.017527537420392036,
-0.032693274319171906,
-0.03974439203739166,
-0.039665255695581436,
-0.13093158602714539,
0.009885036386549473,
-0.03841420263051987,
0.00771184591576457,
-0.05131201073527336,
0.012187164276838303,
0.09882780909538269,
-0.03772640600800514,
0.12072275578975677,
0.17711962759494781,
-0.06689894944429398,
0.1500464826822281,
-0.26132556796073914,
-0.11999466270208359,
0.10191045701503754,
-0.045100219547748566,
0.03038318082690239,
0.1263023316860199,
0.03314247727394104,
0.04125086963176727,
0.01655580848455429,
0.0664728581905365,
-0.021218232810497284,
-0.11617148667573929,
-0.023018088191747665,
-0.08339186012744904,
-0.08072522282600403,
-0.05001387000083923,
-0.05469566211104393,
0.1577877551317215,
0.04257164150476456,
0.05085008218884468,
-0.021031958982348442,
0.08851058781147003,
0.029373785480856895,
0.019602583721280098,
0.031050896272063255,
-0.19086246192455292,
0.05620424449443817,
-0.07514713704586029,
0.003966974094510078,
0.022788207978010178,
0.34499022364616394,
-0.05453638732433319,
0.01073573436588049,
0.02188924327492714,
0.022196220234036446,
0.09242333471775055,
0.02054937183856964,
0.30792322754859924,
0.15773355960845947,
-0.047039639204740524,
-0.11123811453580856,
0.0990198403596878,
0.02290377765893936,
-0.04754915088415146,
0.12262656539678574,
0.050504595041275024,
-0.07515083253383636,
0.1626535952091217,
-0.051976338028907776,
-0.014229681342840195,
-0.016774345189332962,
-0.061775192618370056,
-0.03942084684967995,
0.030239198356866837,
-0.003761051222681999,
0.02561202459037304,
0.17811238765716553,
-0.06015368551015854,
0.09523767977952957,
0.023459063842892647,
-0.047965023666620255,
-0.1466878056526184,
-0.1085495874285698,
-0.04624064639210701,
-0.1821233481168747,
0.05373648926615715,
-0.11874468624591827,
0.07605502009391785,
0.1288948655128479,
0.05164184421300888,
0.002530656987801194,
0.1609726846218109,
0.04395661503076553,
-0.10577259957790375,
0.10061278194189072,
-0.06672453135251999,
0.047171708196401596,
0.07377781718969345,
-0.03795863687992096,
-0.06771766394376755,
-0.08864762634038925,
-0.00720007810741663,
0.08406072109937668,
-0.015572836622595787,
0.02659783698618412,
-0.16683253645896912,
-0.07534679025411606,
-0.05712404102087021,
0.11183422058820724,
-0.07889340072870255,
0.11370791494846344,
0.0017686465289443731,
-0.05400395765900612,
0.04991501197218895,
0.2105201780796051,
-0.059385403990745544,
0.025879031047225,
-0.04132382199168205,
0.07631102204322815,
0.05708041042089462,
0.1591852456331253,
-0.09176953881978989,
-0.017336152493953705,
-0.08061710000038147,
0.3502628803253174,
0.23014387488365173,
-0.052850354462862015,
0.02067919820547104,
0.05188370496034622,
0.05179297551512718,
0.2027982473373413,
0.10301763564348221,
0.06460312008857727,
0.27206170558929443,
-0.04580971226096153,
-0.079527847468853,
0.035237859934568405,
-0.04374440386891365,
-0.12283738702535629,
0.12384460121393204,
0.04579421505331993,
-0.06362751126289368,
-0.053369324654340744,
0.13975189626216888,
-0.2425307184457779,
0.11192592978477478,
0.019153717905282974,
-0.15003347396850586,
-0.00391812901943922,
-0.0630134865641594,
0.08068794012069702,
-0.0178346186876297,
0.10188694298267365,
-0.0034701921977102757,
-0.15066954493522644,
0.009997948072850704,
0.05140922963619232,
-0.28469008207321167,
-0.026178516447544098,
0.01790185272693634,
-0.009450799785554409,
-0.03424009680747986,
-0.03393350541591644,
-0.046783559024333954,
0.07180610299110413,
0.035729311406612396,
-0.007510825525969267,
0.05646010860800743,
-0.03149822726845741,
-0.042454853653907776,
-0.05317913368344307,
0.08055443316698074,
-0.013036716729402542,
-0.12445653975009918,
0.05525088682770729,
-0.15915890038013458,
0.056089311838150024,
0.0342070534825325,
-0.047501031309366226,
0.014744436368346214,
-0.05187036097049713,
-0.11269349604845047,
0.03578566014766693,
0.06540670990943909,
0.016533343121409416,
0.015689637511968613,
-0.024289604276418686,
0.013355252332985401,
0.013228170573711395,
-0.014545965008437634,
-0.12462245672941208,
-0.045247167348861694,
-0.11810245364904404,
0.19476470351219177,
-0.026068395003676414,
-0.15855787694454193,
0.03035876713693142,
-0.05968214571475983,
0.13963234424591064,
-0.0934998020529747,
0.08311305940151215,
0.13333196938037872,
0.03356841579079628,
-0.028563642874360085,
-0.1888405978679657,
0.09133175015449524,
0.07190821319818497,
-0.05834801867604256,
-0.10380897670984268
] |
null | null | null |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Trendyol-LLM-7b-chat-v0.1-RLHF
This model is a fine-tuned version of [Trendyol/Trendyol-LLM-7b-chat-v0.1](https://huggingface.co/Trendyol/Trendyol-LLM-7b-chat-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6247
- Rewards/chosen: 0.0041
- Rewards/rejected: -0.1076
- Rewards/accuracies: 0.625
- Rewards/margins: 0.1116
- Logps/rejected: -139.8228
- Logps/chosen: -117.4451
- Logits/rejected: -1.9854
- Logits/chosen: -2.0875
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2
- training_steps: 150
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6918 | 0.0 | 10 | 0.6913 | 0.0037 | -0.0007 | 0.4375 | 0.0044 | -138.7541 | -117.4483 | -1.9286 | -2.0276 |
| 0.6891 | 0.01 | 20 | 0.6902 | 0.0019 | -0.0030 | 0.4375 | 0.0049 | -138.7771 | -117.4670 | -1.9353 | -2.0346 |
| 0.667 | 0.01 | 30 | 0.6821 | 0.0013 | -0.0141 | 0.5625 | 0.0154 | -138.8880 | -117.4728 | -1.9363 | -2.0370 |
| 0.6926 | 0.01 | 40 | 0.6793 | -0.0012 | -0.0194 | 0.5 | 0.0182 | -138.9408 | -117.4977 | -1.9329 | -2.0350 |
| 0.6233 | 0.02 | 50 | 0.6793 | -0.0275 | -0.0463 | 0.5 | 0.0188 | -139.2103 | -117.7607 | -1.9345 | -2.0351 |
| 0.7126 | 0.02 | 60 | 0.6789 | -0.0264 | -0.0368 | 0.5625 | 0.0103 | -139.1146 | -117.7502 | -1.9369 | -2.0370 |
| 0.6407 | 0.02 | 70 | 0.6670 | -0.0253 | -0.0512 | 0.5625 | 0.0259 | -139.2589 | -117.7383 | -1.9360 | -2.0360 |
| 0.6579 | 0.03 | 80 | 0.6647 | -0.0227 | -0.0458 | 0.5625 | 0.0231 | -139.2051 | -117.7123 | -1.9438 | -2.0447 |
| 0.6909 | 0.03 | 90 | 0.6608 | 0.0001 | -0.0302 | 0.5625 | 0.0303 | -139.0493 | -117.4849 | -1.9565 | -2.0580 |
| 0.592 | 0.03 | 100 | 0.6537 | 0.0103 | -0.0343 | 0.5625 | 0.0446 | -139.0896 | -117.3824 | -1.9650 | -2.0666 |
| 0.5803 | 0.04 | 110 | 0.6464 | 0.0065 | -0.0508 | 0.5625 | 0.0573 | -139.2552 | -117.4206 | -1.9761 | -2.0775 |
| 0.6354 | 0.04 | 120 | 0.6389 | -0.0065 | -0.0744 | 0.625 | 0.0679 | -139.4915 | -117.5508 | -1.9844 | -2.0859 |
| 0.6787 | 0.04 | 130 | 0.6323 | -0.0106 | -0.0940 | 0.625 | 0.0835 | -139.6873 | -117.5912 | -1.9861 | -2.0876 |
| 0.6333 | 0.04 | 140 | 0.6256 | 0.0002 | -0.1073 | 0.625 | 0.1075 | -139.8205 | -117.4840 | -1.9856 | -2.0877 |
| 0.6226 | 0.05 | 150 | 0.6247 | 0.0041 | -0.1076 | 0.625 | 0.1116 | -139.8228 | -117.4451 | -1.9854 | -2.0875 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["trl", "dpo", "generated_from_trainer"], "base_model": "Trendyol/Trendyol-LLM-7b-chat-v0.1", "model-index": [{"name": "Trendyol-LLM-7b-chat-v0.1-RLHF", "results": []}]} | null | umarigan/Trendyol-LLM-7b-chat-v0.1-RLHF | [
"tensorboard",
"safetensors",
"trl",
"dpo",
"generated_from_trainer",
"base_model:Trendyol/Trendyol-LLM-7b-chat-v0.1",
"license:apache-2.0",
"region:us"
] | 2024-02-13T12:21:46+00:00 | [] | [] | TAGS
#tensorboard #safetensors #trl #dpo #generated_from_trainer #base_model-Trendyol/Trendyol-LLM-7b-chat-v0.1 #license-apache-2.0 #region-us
| Trendyol-LLM-7b-chat-v0.1-RLHF
==============================
This model is a fine-tuned version of Trendyol/Trendyol-LLM-7b-chat-v0.1 on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.6247
* Rewards/chosen: 0.0041
* Rewards/rejected: -0.1076
* Rewards/accuracies: 0.625
* Rewards/margins: 0.1116
* Logps/rejected: -139.8228
* Logps/chosen: -117.4451
* Logits/rejected: -1.9854
* Logits/chosen: -2.0875
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 0.0002
* train\_batch\_size: 1
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 2
* training\_steps: 150
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2\n* training\\_steps: 150\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#tensorboard #safetensors #trl #dpo #generated_from_trainer #base_model-Trendyol/Trendyol-LLM-7b-chat-v0.1 #license-apache-2.0 #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2\n* training\\_steps: 150\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
58,
129,
4,
33
] | [
"passage: TAGS\n#tensorboard #safetensors #trl #dpo #generated_from_trainer #base_model-Trendyol/Trendyol-LLM-7b-chat-v0.1 #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 2\n* training\\_steps: 150\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.12073054909706116,
0.09201893955469131,
-0.003944436088204384,
0.08388758450746536,
0.08119292557239532,
-0.023548144847154617,
0.12405082583427429,
0.1547439694404602,
-0.09550540149211884,
0.06661120057106018,
0.1336873471736908,
0.12727217376232147,
0.05115576833486557,
0.18505696952342987,
-0.04163729026913643,
-0.24760805070400238,
0.03894461318850517,
0.004700406454503536,
-0.07045518606901169,
0.11651161313056946,
0.09888565540313721,
-0.11693254113197327,
0.06803471595048904,
0.007448649033904076,
-0.1372370719909668,
-0.011883245781064034,
-0.012330797500908375,
-0.0523454025387764,
0.11660397052764893,
-0.009047898463904858,
0.07812850922346115,
0.06299050152301788,
0.07088817656040192,
-0.21227432787418365,
0.016128376126289368,
0.07400209456682205,
0.02198941260576248,
0.08175108581781387,
0.0570843443274498,
-0.008199932985007763,
0.09630171954631805,
-0.08186908066272736,
0.084169402718544,
0.025318704545497894,
-0.12613162398338318,
-0.28497514128685,
-0.13080710172653198,
0.04040820151567459,
0.09513948112726212,
0.06799168884754181,
0.0004496991168707609,
0.1635895073413849,
-0.04641755297780037,
0.09955017268657684,
0.2817695438861847,
-0.31139278411865234,
-0.05421657860279083,
0.05707288533449173,
0.07160363346338272,
0.09132683277130127,
-0.1045885682106018,
-0.02954697608947754,
0.03563913702964783,
0.030760837718844414,
0.14588662981987,
-0.008587934076786041,
-0.03092019446194172,
-0.0018454135861247778,
-0.14768938720226288,
-0.05964425578713417,
0.13430243730545044,
0.04541570693254471,
-0.05222364515066147,
-0.06447656452655792,
-0.049612611532211304,
-0.20250877737998962,
-0.056441135704517365,
-0.03004741296172142,
0.06758570671081543,
-0.03499200567603111,
-0.06117725372314453,
-0.014655168168246746,
-0.07448827475309372,
-0.08196888864040375,
-0.00940132699906826,
0.15104176104068756,
0.05873247608542442,
0.009839464910328388,
-0.038784656673669815,
0.10865523666143417,
-0.033022113144397736,
-0.1516522467136383,
-0.025280045345425606,
0.01435614563524723,
-0.008451849222183228,
-0.04200420901179314,
-0.024620693176984787,
-0.07225047796964645,
0.0429697260260582,
0.16144666075706482,
-0.1376008242368698,
0.08047409355640411,
-0.014729094691574574,
0.034069448709487915,
-0.09713304787874222,
0.13666021823883057,
-0.048192307353019714,
0.04597003012895584,
0.017558369785547256,
0.1062251552939415,
0.04205092787742615,
-0.006630405317991972,
-0.07862935215234756,
0.054335758090019226,
0.10288408398628235,
0.05600973218679428,
-0.029463686048984528,
0.04407356306910515,
-0.05430474504828453,
-0.011028068140149117,
0.045755837112665176,
-0.11130385100841522,
0.02448389306664467,
0.01070118136703968,
-0.0837852880358696,
-0.09557396173477173,
0.010383328422904015,
0.016762472689151764,
0.0014927785377949476,
0.06588826328516006,
-0.06828856468200684,
0.011804670095443726,
-0.08218519389629364,
-0.1236390471458435,
0.03295249864459038,
-0.08308151364326477,
0.009060322307050228,
-0.08563179522752762,
-0.14180335402488708,
-0.030729398131370544,
0.05977888032793999,
-0.040247686207294464,
-0.04138081148266792,
-0.060289572924375534,
-0.09127461910247803,
0.01780075579881668,
-0.014782283455133438,
0.08856739848852158,
-0.08155424147844315,
0.11030902713537216,
0.005922084208577871,
0.0714130625128746,
-0.011747248470783234,
0.03425215929746628,
-0.087922103703022,
0.061605192720890045,
-0.24488113820552826,
0.02925460785627365,
-0.08972837775945663,
0.09655213356018066,
-0.11812051385641098,
-0.07370553910732269,
-0.0000044068538045394234,
-0.02332555316388607,
0.11144638806581497,
0.12231145054101944,
-0.19769884645938873,
-0.0401742160320282,
0.21587742865085602,
-0.097413070499897,
-0.13350684940814972,
0.10832329839468002,
-0.04203154519200325,
0.033181071281433105,
0.05357436463236809,
0.2599976062774658,
0.0804981142282486,
-0.13836556673049927,
0.005151867400854826,
-0.03863879293203354,
0.05097346752882004,
-0.013452076353132725,
0.059569764882326126,
-0.017118986696004868,
0.046390458941459656,
0.020012889057397842,
-0.027115631848573685,
0.0334467776119709,
-0.08154825866222382,
-0.0781153216958046,
-0.0440765880048275,
-0.08054917305707932,
0.019890880212187767,
0.03867272660136223,
0.028518950566649437,
-0.1416269987821579,
-0.09754040837287903,
0.03144300729036331,
0.11373360455036163,
-0.06479453295469284,
0.04420763626694679,
-0.09615690261125565,
0.07833060622215271,
-0.014938539825379848,
-0.004449984058737755,
-0.1520257592201233,
-0.029935041442513466,
0.03854941576719284,
-0.032977163791656494,
-0.0021971093956381083,
-0.05477331206202507,
0.08784280717372894,
0.054051876068115234,
-0.04351414367556572,
-0.041017089039087296,
-0.059049904346466064,
0.006584815680980682,
-0.0933368057012558,
-0.2504114508628845,
-0.019720517098903656,
-0.058883801102638245,
0.10603898763656616,
-0.19250346720218658,
0.05259969085454941,
0.07358270138502121,
0.10746440291404724,
0.05475645512342453,
-0.04494794085621834,
0.011859703809022903,
0.05120271444320679,
-0.011386941187083721,
-0.08886037021875381,
0.04581199213862419,
0.03756864368915558,
-0.08190508931875229,
0.02702323906123638,
-0.14941784739494324,
0.12366263568401337,
0.1277986615896225,
0.06454674154520035,
-0.09080946445465088,
-0.04268665611743927,
-0.06806261837482452,
-0.0430714413523674,
-0.017865031957626343,
0.04790964722633362,
0.11798734217882156,
0.01656462252140045,
0.12218710780143738,
-0.10793769359588623,
-0.048886168748140335,
0.04813668876886368,
-0.035529591143131256,
0.015342465601861477,
0.12377005070447922,
0.03132250905036926,
-0.06951826810836792,
0.131151482462883,
0.12432810664176941,
-0.037963639944791794,
0.12213028222322464,
-0.08318239450454712,
-0.06921561062335968,
-0.036081209778785706,
0.06878301501274109,
0.024265389889478683,
0.17504772543907166,
-0.0821915864944458,
0.016674214974045753,
0.011810434982180595,
0.02666958048939705,
0.005962465889751911,
-0.21354062855243683,
-0.02058534137904644,
0.03175051137804985,
-0.08813013136386871,
-0.046991050243377686,
-0.011354417540133,
0.003089581150561571,
0.09933166950941086,
0.013395550660789013,
-0.07675870507955551,
0.014896546490490437,
0.012858740985393524,
-0.06840010732412338,
0.19971022009849548,
-0.12049153447151184,
-0.1348661631345749,
-0.055040568113327026,
-0.022917194291949272,
-0.03758865222334862,
-0.012763059698045254,
0.07614224404096603,
-0.08665820956230164,
-0.026433026418089867,
-0.11112731695175171,
-0.05387929826974869,
0.0038092501927167177,
0.023014679551124573,
0.004371107555925846,
0.013778326101601124,
0.08452147245407104,
-0.11593445390462875,
-0.004688779823482037,
-0.03611612692475319,
-0.0006017729756422341,
0.0538409985601902,
0.032496534287929535,
0.0921265184879303,
0.13523894548416138,
-0.009419350884854794,
0.033588651567697525,
-0.03681693598628044,
0.1869584619998932,
-0.07880350947380066,
-0.02338039129972458,
0.10231906175613403,
0.022639403119683266,
0.07536865025758743,
0.15145914256572723,
0.04713674262166023,
-0.11120924353599548,
0.010286969132721424,
0.025069473311305046,
-0.04190406948328018,
-0.23592284321784973,
-0.018387842923402786,
-0.0313730463385582,
0.03249449282884598,
0.08818479627370834,
0.05649370327591896,
-0.0032216135878115892,
0.030188268050551414,
0.007096731103956699,
-0.003664871212095022,
0.01867932267487049,
0.08803299069404602,
0.047439996153116226,
0.03125889599323273,
0.10594508051872253,
-0.042191945016384125,
-0.008084149099886417,
0.041866403073072433,
0.04679636284708977,
0.23558911681175232,
-0.00999797135591507,
0.14967936277389526,
0.0711471289396286,
0.19303905963897705,
-0.007906434126198292,
0.035834699869155884,
-0.007384876720607281,
-0.03262070566415787,
0.0038491608574986458,
-0.061353009194135666,
-0.007893627509474754,
0.03318212181329727,
-0.06021829694509506,
0.022072553634643555,
-0.11012616753578186,
0.03208770230412483,
0.053694237023591995,
0.31938186287879944,
0.03823292627930641,
-0.3260825574398041,
-0.08834594488143921,
-0.006502074655145407,
-0.031146027147769928,
-0.04493263363838196,
0.027924854308366776,
0.10947626829147339,
-0.050238799303770065,
0.06373453885316849,
-0.0700119212269783,
0.07931797951459885,
-0.03250863030552864,
0.017452983185648918,
0.03178730979561806,
0.10316689312458038,
-0.02079722285270691,
0.04797181487083435,
-0.2933022081851959,
0.2859164774417877,
0.022616390138864517,
0.07418015599250793,
-0.034972645342350006,
-0.00004752052700496279,
0.023027850314974785,
0.05227135494351387,
0.09630462527275085,
-0.0038789010141044855,
-0.12338388711214066,
-0.15280376374721527,
-0.12403865903615952,
0.014441080391407013,
0.10487186163663864,
-0.005810257513076067,
0.09902802109718323,
0.0010835765860974789,
0.0069536976516246796,
0.04305216297507286,
-0.10470741987228394,
-0.0945795476436615,
-0.05718476325273514,
0.0073377592489123344,
0.011486904695630074,
0.0018340673996135592,
-0.10544665157794952,
-0.08294316381216049,
-0.05299808457493782,
0.15746216475963593,
0.004614129662513733,
-0.052655722945928574,
-0.1203012466430664,
0.027947455644607544,
0.08191879838705063,
-0.06272467225790024,
0.041605643928050995,
0.011125622317194939,
0.09915229678153992,
0.002370297908782959,
-0.037798695266246796,
0.13511843979358673,
-0.059086088091135025,
-0.17813581228256226,
-0.05589044466614723,
0.14307276904582977,
0.0508451983332634,
0.0422830693423748,
-0.005270074121654034,
0.01696951501071453,
-0.002066096058115363,
-0.08075644820928574,
0.04641951248049736,
0.0004513499734457582,
0.045907873660326004,
-0.030286051332950592,
-0.019718768075108528,
0.06094158813357353,
-0.07337411493062973,
-0.052673183381557465,
0.13030803203582764,
0.33071672916412354,
-0.09540826082229614,
0.09392119944095612,
0.039222121238708496,
-0.04182618111371994,
-0.17709390819072723,
0.02981383353471756,
0.061713241040706635,
-0.007851844653487206,
0.04721413552761078,
-0.1746865063905716,
0.005917123053222895,
0.09870153665542603,
-0.04103424400091171,
0.12383338809013367,
-0.3331972658634186,
-0.13082318007946014,
0.10825823247432709,
0.13621459901332855,
0.050561293959617615,
-0.16132044792175293,
-0.052903175354003906,
0.009052681736648083,
-0.0926578938961029,
0.0926390290260315,
-0.15111534297466278,
0.09828228503465652,
-0.02489607036113739,
0.06231503188610077,
0.025875674560666084,
-0.05850920081138611,
0.14125943183898926,
-0.02457651123404503,
0.10457061976194382,
-0.05578041821718216,
0.049852754920721054,
0.07537014037370682,
-0.09343553334474564,
0.05504853278398514,
-0.09371650218963623,
0.05618692934513092,
-0.08599475771188736,
-0.0019080698257312179,
-0.0708465576171875,
0.01921956054866314,
-0.041674960404634476,
-0.04572063684463501,
-0.06454948335886002,
0.036449920386075974,
0.06078862398862839,
-0.01706528104841709,
0.16396251320838928,
0.009898314252495766,
0.14313311874866486,
0.17166759073734283,
0.06030719727277756,
-0.09153232723474503,
-0.04771732538938522,
0.023879634216427803,
-0.022761913016438484,
0.05277624353766441,
-0.17742933332920074,
0.04029831662774086,
0.1227937564253807,
0.02681182324886322,
0.09612628817558289,
0.044675227254629135,
-0.09672840684652328,
0.007601603399962187,
0.057384006679058075,
-0.16126224398612976,
-0.13458028435707092,
0.0190303772687912,
0.06515190005302429,
-0.10763255506753922,
0.0685514360666275,
0.10761993378400803,
-0.06726797670125961,
-0.009882885031402111,
0.011541120707988739,
0.0389060378074646,
-0.027753222733736038,
0.19214105606079102,
0.04930880293250084,
0.07008226960897446,
-0.09628835320472717,
0.09930932521820068,
0.039828136563301086,
-0.11259076744318008,
0.04501351714134216,
0.08525735884904861,
-0.09654358774423599,
-0.021796438843011856,
0.06400968879461288,
0.11966769397258759,
0.012602448463439941,
-0.06524929404258728,
-0.1718113124370575,
-0.1320493370294571,
0.07422613352537155,
0.16827405989170074,
0.056671276688575745,
0.032524172216653824,
0.019812192767858505,
0.013919114135205746,
-0.11661071330308914,
0.10916711390018463,
0.04695393890142441,
0.07791675627231598,
-0.14144667983055115,
0.10600835084915161,
0.00006648324779234827,
0.027500219643115997,
-0.004905979614704847,
0.021654736250638962,
-0.12604697048664093,
0.021349100396037102,
-0.11416856944561005,
-0.005069938022643328,
-0.044792212545871735,
0.0063473875634372234,
-0.008536949753761292,
-0.030567629262804985,
-0.043360527604818344,
0.0319296158850193,
-0.12024400383234024,
-0.026070155203342438,
0.004045481327921152,
0.04184247925877571,
-0.12808199226856232,
-0.0362238809466362,
0.017918262630701065,
-0.09067918360233307,
0.07778064906597137,
0.04019320756196976,
0.02125871740281582,
0.01954122819006443,
-0.08125074952840805,
0.02682330086827278,
0.05859532952308655,
-0.006527630612254143,
0.0400790311396122,
-0.14725685119628906,
-0.04336510971188545,
-0.012232626788318157,
-0.001174031407572329,
0.01634541153907776,
0.10020846128463745,
-0.1390204280614853,
-0.019521543756127357,
-0.022683359682559967,
-0.04158932343125343,
-0.04410063847899437,
0.037742406129837036,
0.07835197448730469,
0.031403928995132446,
0.15341578423976898,
-0.08562830090522766,
0.007233661133795977,
-0.20525474846363068,
-0.009424518793821335,
-0.0032462470699101686,
-0.09866248816251755,
-0.05188250169157982,
0.007209140807390213,
0.07519285380840302,
-0.07012280076742172,
0.10147472470998764,
-0.003854139009490609,
-0.0005477048107422888,
0.04817879572510719,
-0.09630876034498215,
0.002605180023238063,
0.033021386712789536,
0.15864437818527222,
0.0020799431949853897,
-0.026419559493660927,
0.0631396472454071,
0.020781170576810837,
0.08783893287181854,
0.06992408633232117,
0.18317006528377533,
0.15256734192371368,
0.05623754858970642,
0.0850156769156456,
0.05426313728094101,
-0.06936509907245636,
-0.14761309325695038,
0.1142556369304657,
-0.028519291430711746,
0.11430656164884567,
-0.015300456434488297,
0.21400710940361023,
0.1611073911190033,
-0.17339372634887695,
0.0541994646191597,
-0.027968760579824448,
-0.08628907799720764,
-0.10898469388484955,
-0.07537278532981873,
-0.07752465456724167,
-0.20163768529891968,
0.00003297955117886886,
-0.10710032284259796,
0.04911329224705696,
0.0661623626947403,
0.01709100231528282,
0.026250379160046577,
0.13942907750606537,
0.041089076548814774,
0.02298617921769619,
0.05469660088419914,
0.007780968211591244,
-0.05648457258939743,
-0.04132740572094917,
-0.10107289999723434,
0.0410316064953804,
-0.032991666346788406,
0.02910374291241169,
-0.029628954827785492,
-0.020787298679351807,
0.05878257006406784,
-0.0002060619881376624,
-0.09086281061172485,
0.018848583102226257,
0.02317916229367256,
0.0669999048113823,
0.052083779126405716,
0.038843464106321335,
-0.014026171527802944,
-0.006240942515432835,
0.24533700942993164,
-0.0697726458311081,
-0.056045617908239365,
-0.10643108934164047,
0.22812552750110626,
0.03479659929871559,
-0.024470793083310127,
0.026584269478917122,
-0.0886446088552475,
-0.00047327374340966344,
0.158058762550354,
0.16126124560832977,
-0.020083783194422722,
0.0005983387236483395,
-0.0475049763917923,
-0.014173830859363079,
-0.05863719433546066,
0.09405052661895752,
0.12831942737102509,
0.010823960416018963,
-0.07873367518186569,
-0.05041062831878662,
-0.051546234637498856,
-0.01632351614534855,
-0.06518571078777313,
0.06358832120895386,
0.020952284336090088,
0.0007310861255973577,
-0.04441304877400398,
0.07469318062067032,
-0.03544957935810089,
-0.1144583597779274,
0.03798145428299904,
-0.18052612245082855,
-0.15222953259944916,
-0.030914917588233948,
0.06673907488584518,
-0.017211738973855972,
0.0391274020075798,
-0.01469440758228302,
0.005268757231533527,
0.08107457309961319,
-0.027258459478616714,
-0.06240953877568245,
-0.12580084800720215,
0.08054808527231216,
-0.10147971659898758,
0.22540278732776642,
-0.03867853060364723,
0.0301542766392231,
0.12371570616960526,
0.0379166416823864,
-0.1191820576786995,
0.06798548996448517,
0.055612433701753616,
-0.08622013032436371,
-0.007140833884477615,
0.11267437040805817,
-0.038558173924684525,
0.09584920108318329,
0.04537476971745491,
-0.08664309978485107,
-0.01167344581335783,
-0.08027280122041702,
-0.050362568348646164,
-0.053843360394239426,
-0.01197856105864048,
-0.04741181805729866,
0.1078641340136528,
0.17991216480731964,
-0.05458284169435501,
0.031449753791093826,
-0.06509130448102951,
0.026580359786748886,
0.06551413983106613,
-0.002032034331932664,
-0.023944305256009102,
-0.2420763224363327,
0.03389781340956688,
0.10743698477745056,
-0.01496406551450491,
-0.24140918254852295,
-0.10592813044786453,
0.022535786032676697,
-0.04492494463920593,
-0.07443433254957199,
0.09015050530433655,
0.08838333189487457,
0.057404518127441406,
-0.06897718459367752,
-0.04174312576651573,
-0.06714312732219696,
0.1690671592950821,
-0.13921746611595154,
-0.07738921046257019
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | ArianAskari/SOLID-SFT-DPO-MixQV4-SOLIDChosen-SFTRejected-Zephyr-7b-beta | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:24:57+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
60,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.04571164771914482,
0.1637648642063141,
-0.005522117950022221,
0.017756497487425804,
0.09821303188800812,
0.01318030059337616,
0.06541220843791962,
0.1127115860581398,
-0.017605241388082504,
0.1127321794629097,
0.030432263389229774,
0.09820804744958878,
0.1134178638458252,
0.14702944457530975,
-0.003594378475099802,
-0.22472713887691498,
0.052083637565374374,
-0.12124937027692795,
-0.03241228312253952,
0.1181139275431633,
0.14941681921482086,
-0.09871039539575577,
0.07234785705804825,
-0.030714161694049835,
-0.01334790326654911,
-0.03167412802577019,
-0.05947697162628174,
-0.045681875199079514,
0.046136777848005295,
0.0657167062163353,
0.06853367388248444,
0.007354621775448322,
0.08972878009080887,
-0.2669793367385864,
0.019881360232830048,
0.06918594241142273,
-0.0025153355672955513,
0.07059336453676224,
0.06344282627105713,
-0.07033728063106537,
0.10271385312080383,
-0.051166124641895294,
0.1467856466770172,
0.08377711474895477,
-0.09116126596927643,
-0.18892322480678558,
-0.08764564990997314,
0.0990586131811142,
0.17651304602622986,
0.04750865325331688,
-0.024397386237978935,
0.09895956516265869,
-0.0878119245171547,
0.015860557556152344,
0.052259236574172974,
-0.07261253148317337,
-0.05407591536641121,
0.061004482209682465,
0.07816638052463531,
0.06616047024726868,
-0.12551534175872803,
-0.02998468652367592,
0.005221198312938213,
0.011705057695508003,
0.07518111169338226,
0.01836656779050827,
0.15222862362861633,
0.03479425609111786,
-0.12653809785842896,
-0.04834689199924469,
0.0983143299818039,
0.03359128534793854,
-0.043975554406642914,
-0.247073233127594,
-0.031072303652763367,
-0.026882093399763107,
-0.030029185116291046,
-0.038772210478782654,
0.04153512790799141,
-0.006745535880327225,
0.08434242010116577,
-0.0040448750369250774,
-0.07344388216733932,
-0.03874153643846512,
0.06087949126958847,
0.0669754296541214,
0.029331250116229057,
-0.013996441848576069,
0.010876164771616459,
0.11490162461996078,
0.10806918889284134,
-0.12199585139751434,
-0.05589085817337036,
-0.06492951512336731,
-0.08786392956972122,
-0.04284887760877609,
0.033410828560590744,
0.03509693965315819,
0.05435176193714142,
0.2536843419075012,
0.009815474040806293,
0.06126174330711365,
0.03745805472135544,
0.007310505956411362,
0.059651583433151245,
0.10812553018331528,
-0.05987109988927841,
-0.10409316420555115,
-0.02881651371717453,
0.08857584744691849,
0.006609630770981312,
-0.03354408219456673,
-0.05052083358168602,
0.05901389569044113,
0.021856583654880524,
0.11749778687953949,
0.08884359151124954,
0.00984770804643631,
-0.07126569002866745,
-0.06146538630127907,
0.19450126588344574,
-0.16384615004062653,
0.04264351725578308,
0.03702449053525925,
-0.039683789014816284,
-0.0003956064465455711,
0.011445282027125359,
0.01843930408358574,
-0.023893611505627632,
0.09238249063491821,
-0.05498874559998512,
-0.04001082479953766,
-0.1106586754322052,
-0.0339570976793766,
0.034455835819244385,
0.010122774168848991,
-0.03529255837202072,
-0.03252722695469856,
-0.08346389979124069,
-0.07506290078163147,
0.09339368343353271,
-0.07379438728094101,
-0.04854428768157959,
-0.018830472603440285,
-0.0752616599202156,
0.02326788194477558,
0.02032634988427162,
0.07736726850271225,
-0.023358777165412903,
0.04288764297962189,
-0.054010841995477676,
0.05824148654937744,
0.11001134663820267,
0.035365406423807144,
-0.05824809893965721,
0.06025301292538643,
-0.2382364422082901,
0.09637492895126343,
-0.07412451505661011,
0.05830197036266327,
-0.15449334681034088,
-0.02627694234251976,
0.04870045557618141,
0.0076532382518053055,
-0.009597796015441418,
0.13436771929264069,
-0.21578943729400635,
-0.026375943794846535,
0.16865074634552002,
-0.10160042345523834,
-0.06946627050638199,
0.05867103114724159,
-0.049256108701229095,
0.10817171633243561,
0.03891118988394737,
-0.025492025539278984,
0.06244310364127159,
-0.12527504563331604,
0.007147894706577063,
-0.04992884770035744,
-0.016554534435272217,
0.1592475026845932,
0.07294736802577972,
-0.07235062122344971,
0.07110220938920975,
0.025814544409513474,
-0.027441376820206642,
-0.04532165080308914,
-0.016039686277508736,
-0.10585595667362213,
0.014911207370460033,
-0.061168964952230453,
0.01876060478389263,
-0.020111115649342537,
-0.08977947384119034,
-0.028080428019165993,
-0.1748371720314026,
-0.026230180636048317,
0.085477814078331,
-0.007464459165930748,
-0.018854627385735512,
-0.11770102381706238,
0.008567224256694317,
0.044854406267404556,
0.006109896115958691,
-0.13499478995800018,
-0.04764661565423012,
0.027907660230994225,
-0.16220368444919586,
0.033779170364141464,
-0.05184612050652504,
0.05056280270218849,
0.026674345135688782,
-0.029802238568663597,
-0.025906935334205627,
0.022987615317106247,
0.006545235402882099,
-0.011514187790453434,
-0.24465326964855194,
-0.026841215789318085,
-0.026506783440709114,
0.166712686419487,
-0.20777921378612518,
0.03577128052711487,
0.08057375997304916,
0.15318496525287628,
0.011457439512014389,
-0.04087435454130173,
0.005527274217456579,
-0.06868630647659302,
-0.025992877781391144,
-0.05823420733213425,
-0.002480053110048175,
-0.03337050974369049,
-0.04843711107969284,
0.04469521716237068,
-0.1662919819355011,
-0.03491327911615372,
0.09593124687671661,
0.06427760422229767,
-0.13986408710479736,
-0.023568401113152504,
-0.03526119887828827,
-0.049809779971838,
-0.047768235206604004,
-0.06002878025174141,
0.11181395500898361,
0.058611296117305756,
0.04419868439435959,
-0.059296321123838425,
-0.07637067884206772,
-0.0028071242850273848,
-0.014342374168336391,
-0.01986078731715679,
0.097631074488163,
0.06816094368696213,
-0.1381729394197464,
0.09227006882429123,
0.09810956567525864,
0.07738673686981201,
0.09273158758878708,
-0.02444581687450409,
-0.08119411021471024,
-0.0471174530684948,
0.03257923200726509,
0.018235107883810997,
0.1276484578847885,
-0.027872784063220024,
0.04268912971019745,
0.0421174094080925,
-0.018595336005091667,
0.013991083949804306,
-0.08597505837678909,
0.033884208649396896,
0.02703946642577648,
-0.0159194003790617,
0.04745442420244217,
-0.037611253559589386,
0.024539871141314507,
0.08754327148199081,
0.04615016281604767,
0.033831849694252014,
0.015717241913080215,
-0.05243339762091637,
-0.10873834043741226,
0.1642032116651535,
-0.12759798765182495,
-0.22238075733184814,
-0.13922695815563202,
0.003997850697487593,
0.036267586052417755,
-0.01646288111805916,
0.002834152430295944,
-0.060960907489061356,
-0.12132686376571655,
-0.08726011961698532,
0.015815909951925278,
0.050406474620103836,
-0.0912260189652443,
-0.060087788850069046,
0.056193675845861435,
0.037736181169748306,
-0.14546552300453186,
0.01776101253926754,
0.04850281774997711,
-0.09700650721788406,
-0.004754792433232069,
0.07885372638702393,
0.06784981489181519,
0.17673011124134064,
0.018112216144800186,
-0.021776698529720306,
0.031116241589188576,
0.20988549292087555,
-0.13491620123386383,
0.11005933582782745,
0.13349974155426025,
-0.09236859530210495,
0.08153878152370453,
0.20252206921577454,
0.04006611555814743,
-0.09986240416765213,
0.032548144459724426,
0.02142537757754326,
-0.027797512710094452,
-0.2441972941160202,
-0.07161470502614975,
-0.004515932407230139,
-0.06051458790898323,
0.07499068230390549,
0.09190185368061066,
0.08272628486156464,
0.011750337667763233,
-0.09449771046638489,
-0.08492138236761093,
0.06362129002809525,
0.10420511662960052,
0.02181125245988369,
-0.009744768962264061,
0.09036174416542053,
-0.03286943957209587,
0.01948373205959797,
0.08554471284151077,
0.0038120283279567957,
0.18320275843143463,
0.051725953817367554,
0.19073979556560516,
0.07944851368665695,
0.06951095163822174,
0.012023290619254112,
0.011227634735405445,
0.018135491758584976,
0.03228217363357544,
-0.003646562807261944,
-0.08350840210914612,
-0.02080707624554634,
0.1153142973780632,
0.0672341138124466,
0.012952476739883423,
0.01729460060596466,
-0.04021955281496048,
0.08128432929515839,
0.18377035856246948,
-0.0093126455321908,
-0.177269846200943,
-0.06024068966507912,
0.07718996703624725,
-0.09723462164402008,
-0.09738315641880035,
-0.01454379502683878,
0.030975129455327988,
-0.1702532023191452,
0.025819219648838043,
-0.023134231567382812,
0.11114585399627686,
-0.13745717704296112,
-0.020040949806571007,
0.07143081724643707,
0.07336213439702988,
0.004178736824542284,
0.055973317474126816,
-0.16574905812740326,
0.1074945405125618,
0.007851972244679928,
0.06788748502731323,
-0.0949488952755928,
0.10003086179494858,
-0.002759356750175357,
-0.016956903040409088,
0.13766175508499146,
0.003847390878945589,
-0.0742180123925209,
-0.07706846296787262,
-0.08544620126485825,
-0.010016623884439468,
0.12665624916553497,
-0.13990990817546844,
0.08602021634578705,
-0.03789570555090904,
-0.04160536453127861,
-0.0009961887262761593,
-0.09994571655988693,
-0.11771732568740845,
-0.18694964051246643,
0.060274846851825714,
-0.13818500936031342,
0.030693015083670616,
-0.1080726683139801,
-0.033236145973205566,
-0.03044886700809002,
0.18898600339889526,
-0.23496590554714203,
-0.07289838045835495,
-0.14654842019081116,
-0.10314314812421799,
0.14515270292758942,
-0.05135014280676842,
0.0824703797698021,
-0.007518251892179251,
0.16955603659152985,
0.01909777894616127,
-0.024870775640010834,
0.09702518582344055,
-0.09090493619441986,
-0.19369281828403473,
-0.07736486196517944,
0.1553725302219391,
0.13563397526741028,
0.03274888917803764,
-0.0031351360958069563,
0.03731042891740799,
-0.016484085470438004,
-0.119691863656044,
0.016338739544153214,
0.17828133702278137,
0.06005066633224487,
0.02449444867670536,
-0.025351086631417274,
-0.12034450471401215,
-0.07065033912658691,
-0.028268499299883842,
0.030481377616524696,
0.1794593334197998,
-0.06955225765705109,
0.18364831805229187,
0.147920161485672,
-0.05845186114311218,
-0.20284810662269592,
0.01105605997145176,
0.03317207098007202,
-0.00011460785754024982,
0.025185899809002876,
-0.19945523142814636,
0.08448769152164459,
0.004838644526898861,
-0.0498092919588089,
0.1281348466873169,
-0.17351724207401276,
-0.14425379037857056,
0.07726620137691498,
0.03829115256667137,
-0.1926836371421814,
-0.12892304360866547,
-0.09138946235179901,
-0.04540696740150452,
-0.18867050111293793,
0.09461917728185654,
0.031194355338811874,
0.009373899549245834,
0.030387504026293755,
0.030604345723986626,
0.01938873715698719,
-0.04181704297661781,
0.1860174536705017,
-0.023930367082357407,
0.028327496722340584,
-0.08596936613321304,
-0.07190530747175217,
0.0391114242374897,
-0.05227291211485863,
0.07252339273691177,
-0.023452037945389748,
0.00719826715067029,
-0.09769386798143387,
-0.04156304895877838,
-0.03843177855014801,
0.01581472158432007,
-0.09648153930902481,
-0.08523351699113846,
-0.04445706307888031,
0.09780744463205338,
0.09553340077400208,
-0.03473082184791565,
-0.024805041030049324,
-0.07508285343647003,
0.04805302992463112,
0.19605006277561188,
0.17889533936977386,
0.03904116898775101,
-0.07846304774284363,
-0.0033101453445851803,
-0.010484009049832821,
0.04490501061081886,
-0.20383046567440033,
0.06269704550504684,
0.05393069609999657,
0.019165942445397377,
0.11697915196418762,
-0.01937638409435749,
-0.15321338176727295,
-0.07137971371412277,
0.062210626900196075,
-0.05747547000646591,
-0.19925202429294586,
0.008424095809459686,
0.062047190964221954,
-0.16446428000926971,
-0.045800499618053436,
0.046785544604063034,
-0.004990153945982456,
-0.03839265555143356,
0.022938871756196022,
0.09231305122375488,
0.0029900665394961834,
0.07426668703556061,
0.052022483199834824,
0.0835016593337059,
-0.1060708537697792,
0.07922257483005524,
0.08730976283550262,
-0.08381073921918869,
0.022620677947998047,
0.10530175268650055,
-0.061487648636102676,
-0.03560204058885574,
0.017662353813648224,
0.08361397683620453,
0.018624287098646164,
-0.03893670439720154,
0.014383325353264809,
-0.1065717563033104,
0.059272702783346176,
0.08645539730787277,
0.03302672877907753,
0.01618802361190319,
0.034192394465208054,
0.04655340686440468,
-0.06840039044618607,
0.122025266289711,
0.032824426889419556,
0.017204686999320984,
-0.035474274307489395,
-0.04102595895528793,
0.01851540431380272,
-0.03368416428565979,
-0.005532157141715288,
-0.03097093477845192,
-0.07835554331541061,
-0.015077406540513039,
-0.16520504653453827,
-0.009829589165747166,
-0.05936548113822937,
0.012285472825169563,
0.031714752316474915,
-0.034721489995718,
0.008415459655225277,
0.009580436162650585,
-0.07713334262371063,
-0.06541574746370316,
-0.01965213567018509,
0.0961783304810524,
-0.1606777459383011,
0.022340767085552216,
0.08350874483585358,
-0.12098895758390427,
0.09293801337480545,
0.01664864458143711,
-0.00869405921548605,
0.02654755860567093,
-0.1516905426979065,
0.03389517217874527,
-0.03324367105960846,
0.009356614202260971,
0.04251125827431679,
-0.2180858999490738,
-0.0012979574967175722,
-0.034122150391340256,
-0.06511902064085007,
-0.008563618175685406,
-0.035606082528829575,
-0.1133907288312912,
0.10431582480669022,
0.007158213295042515,
-0.08918852359056473,
-0.031932637095451355,
0.02896781638264656,
0.08660420775413513,
-0.02103978954255581,
0.1533614844083786,
-0.008595003746449947,
0.07452014833688736,
-0.16158120334148407,
-0.019116591662168503,
-0.0044966633431613445,
0.021838920190930367,
-0.020337330177426338,
-0.011089952662587166,
0.043057333678007126,
-0.02310733124613762,
0.1769370436668396,
-0.034001484513282776,
0.02080564945936203,
0.06879838556051254,
0.02382824197411537,
-0.03270673379302025,
0.10420172661542892,
0.04176081717014313,
0.020029285922646523,
0.016749408096075058,
0.0014026050921529531,
-0.04661702737212181,
-0.03435906395316124,
-0.1965997964143753,
0.07266207784414291,
0.15759599208831787,
0.09697116911411285,
-0.019108884036540985,
0.07821404188871384,
-0.0993313267827034,
-0.10917975008487701,
0.12915705144405365,
-0.04755320027470589,
-0.004375945311039686,
-0.07154709100723267,
0.13273866474628448,
0.14712604880332947,
-0.18722544610500336,
0.07334931939840317,
-0.07133730500936508,
-0.04749078303575516,
-0.10922681540250778,
-0.194550022482872,
-0.05630992352962494,
-0.049111537635326385,
-0.015855323523283005,
-0.04727233946323395,
0.07431400567293167,
0.05443255603313446,
0.007043207995593548,
-0.0018872307846322656,
0.06250270456075668,
-0.02979675866663456,
-0.004455813206732273,
0.033084239810705185,
0.06524696946144104,
0.012280851602554321,
-0.028982065618038177,
0.017169395461678505,
-0.009704679250717163,
0.04565926641225815,
0.06593092530965805,
0.0490880124270916,
-0.02946917712688446,
0.01301988959312439,
-0.040264759212732315,
-0.10370729863643646,
0.044506072998046875,
-0.02268853597342968,
-0.081757090985775,
0.15341326594352722,
0.023376943543553352,
0.008703592233359814,
-0.018961627036333084,
0.23797030746936798,
-0.07337556779384613,
-0.09915944188833237,
-0.14910556375980377,
0.10603363811969757,
-0.037726908922195435,
0.05897798761725426,
0.04798928648233414,
-0.10144850611686707,
0.018896711990237236,
0.1251462697982788,
0.16306589543819427,
-0.03724272549152374,
0.020064668729901314,
0.030806828290224075,
0.005520908627659082,
-0.035788439214229584,
0.04845234379172325,
0.06755134463310242,
0.16263099014759064,
-0.046816933900117874,
0.09447267651557922,
0.0011601726291701198,
-0.09597980976104736,
-0.03777771443128586,
0.10832508653402328,
-0.014584118500351906,
0.018404638394713402,
-0.059979453682899475,
0.11911186575889587,
-0.06456011533737183,
-0.2371375411748886,
0.062140509486198425,
-0.06866546720266342,
-0.13664314150810242,
-0.023452885448932648,
0.08483598381280899,
-0.011404541321098804,
0.028394777327775955,
0.07356005162000656,
-0.07185159623622894,
0.20126941800117493,
0.03666449710726738,
-0.05399559810757637,
-0.054549336433410645,
0.0827551931142807,
-0.09896446764469147,
0.27000707387924194,
0.015913790091872215,
0.048061735928058624,
0.1041264757514,
-0.008932216092944145,
-0.13759581744670868,
0.019727399572730064,
0.0954047441482544,
-0.10358903557062149,
0.041838936507701874,
0.19829733669757843,
-0.0014832824235782027,
0.1230277270078659,
0.07854447513818741,
-0.07668869197368622,
0.0473078191280365,
-0.08185897022485733,
-0.06852826476097107,
-0.0918748751282692,
0.10061057657003403,
-0.07712632417678833,
0.14169210195541382,
0.13906599581241608,
-0.05018797889351845,
0.011615060269832611,
-0.031394075602293015,
0.04402702674269676,
0.0006254917825572193,
0.10420145094394684,
0.002576707163825631,
-0.18477243185043335,
0.02472778968513012,
0.006634650751948357,
0.10846512019634247,
-0.15925930440425873,
-0.09642539173364639,
0.03936212509870529,
0.004935122560709715,
-0.06595125794410706,
0.1294470727443695,
0.055943287909030914,
0.043614063411951065,
-0.039108045399188995,
-0.036952149122953415,
-0.006302761845290661,
0.13504701852798462,
-0.1053730770945549,
0.002390247769653797
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | ArianAskari/SOLID-SFT-DPO-MixQV4-SOLIDRejected-SFTChosen-Zephyr-7b-beta | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:25:33+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
60,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.04571164771914482,
0.1637648642063141,
-0.005522117950022221,
0.017756497487425804,
0.09821303188800812,
0.01318030059337616,
0.06541220843791962,
0.1127115860581398,
-0.017605241388082504,
0.1127321794629097,
0.030432263389229774,
0.09820804744958878,
0.1134178638458252,
0.14702944457530975,
-0.003594378475099802,
-0.22472713887691498,
0.052083637565374374,
-0.12124937027692795,
-0.03241228312253952,
0.1181139275431633,
0.14941681921482086,
-0.09871039539575577,
0.07234785705804825,
-0.030714161694049835,
-0.01334790326654911,
-0.03167412802577019,
-0.05947697162628174,
-0.045681875199079514,
0.046136777848005295,
0.0657167062163353,
0.06853367388248444,
0.007354621775448322,
0.08972878009080887,
-0.2669793367385864,
0.019881360232830048,
0.06918594241142273,
-0.0025153355672955513,
0.07059336453676224,
0.06344282627105713,
-0.07033728063106537,
0.10271385312080383,
-0.051166124641895294,
0.1467856466770172,
0.08377711474895477,
-0.09116126596927643,
-0.18892322480678558,
-0.08764564990997314,
0.0990586131811142,
0.17651304602622986,
0.04750865325331688,
-0.024397386237978935,
0.09895956516265869,
-0.0878119245171547,
0.015860557556152344,
0.052259236574172974,
-0.07261253148317337,
-0.05407591536641121,
0.061004482209682465,
0.07816638052463531,
0.06616047024726868,
-0.12551534175872803,
-0.02998468652367592,
0.005221198312938213,
0.011705057695508003,
0.07518111169338226,
0.01836656779050827,
0.15222862362861633,
0.03479425609111786,
-0.12653809785842896,
-0.04834689199924469,
0.0983143299818039,
0.03359128534793854,
-0.043975554406642914,
-0.247073233127594,
-0.031072303652763367,
-0.026882093399763107,
-0.030029185116291046,
-0.038772210478782654,
0.04153512790799141,
-0.006745535880327225,
0.08434242010116577,
-0.0040448750369250774,
-0.07344388216733932,
-0.03874153643846512,
0.06087949126958847,
0.0669754296541214,
0.029331250116229057,
-0.013996441848576069,
0.010876164771616459,
0.11490162461996078,
0.10806918889284134,
-0.12199585139751434,
-0.05589085817337036,
-0.06492951512336731,
-0.08786392956972122,
-0.04284887760877609,
0.033410828560590744,
0.03509693965315819,
0.05435176193714142,
0.2536843419075012,
0.009815474040806293,
0.06126174330711365,
0.03745805472135544,
0.007310505956411362,
0.059651583433151245,
0.10812553018331528,
-0.05987109988927841,
-0.10409316420555115,
-0.02881651371717453,
0.08857584744691849,
0.006609630770981312,
-0.03354408219456673,
-0.05052083358168602,
0.05901389569044113,
0.021856583654880524,
0.11749778687953949,
0.08884359151124954,
0.00984770804643631,
-0.07126569002866745,
-0.06146538630127907,
0.19450126588344574,
-0.16384615004062653,
0.04264351725578308,
0.03702449053525925,
-0.039683789014816284,
-0.0003956064465455711,
0.011445282027125359,
0.01843930408358574,
-0.023893611505627632,
0.09238249063491821,
-0.05498874559998512,
-0.04001082479953766,
-0.1106586754322052,
-0.0339570976793766,
0.034455835819244385,
0.010122774168848991,
-0.03529255837202072,
-0.03252722695469856,
-0.08346389979124069,
-0.07506290078163147,
0.09339368343353271,
-0.07379438728094101,
-0.04854428768157959,
-0.018830472603440285,
-0.0752616599202156,
0.02326788194477558,
0.02032634988427162,
0.07736726850271225,
-0.023358777165412903,
0.04288764297962189,
-0.054010841995477676,
0.05824148654937744,
0.11001134663820267,
0.035365406423807144,
-0.05824809893965721,
0.06025301292538643,
-0.2382364422082901,
0.09637492895126343,
-0.07412451505661011,
0.05830197036266327,
-0.15449334681034088,
-0.02627694234251976,
0.04870045557618141,
0.0076532382518053055,
-0.009597796015441418,
0.13436771929264069,
-0.21578943729400635,
-0.026375943794846535,
0.16865074634552002,
-0.10160042345523834,
-0.06946627050638199,
0.05867103114724159,
-0.049256108701229095,
0.10817171633243561,
0.03891118988394737,
-0.025492025539278984,
0.06244310364127159,
-0.12527504563331604,
0.007147894706577063,
-0.04992884770035744,
-0.016554534435272217,
0.1592475026845932,
0.07294736802577972,
-0.07235062122344971,
0.07110220938920975,
0.025814544409513474,
-0.027441376820206642,
-0.04532165080308914,
-0.016039686277508736,
-0.10585595667362213,
0.014911207370460033,
-0.061168964952230453,
0.01876060478389263,
-0.020111115649342537,
-0.08977947384119034,
-0.028080428019165993,
-0.1748371720314026,
-0.026230180636048317,
0.085477814078331,
-0.007464459165930748,
-0.018854627385735512,
-0.11770102381706238,
0.008567224256694317,
0.044854406267404556,
0.006109896115958691,
-0.13499478995800018,
-0.04764661565423012,
0.027907660230994225,
-0.16220368444919586,
0.033779170364141464,
-0.05184612050652504,
0.05056280270218849,
0.026674345135688782,
-0.029802238568663597,
-0.025906935334205627,
0.022987615317106247,
0.006545235402882099,
-0.011514187790453434,
-0.24465326964855194,
-0.026841215789318085,
-0.026506783440709114,
0.166712686419487,
-0.20777921378612518,
0.03577128052711487,
0.08057375997304916,
0.15318496525287628,
0.011457439512014389,
-0.04087435454130173,
0.005527274217456579,
-0.06868630647659302,
-0.025992877781391144,
-0.05823420733213425,
-0.002480053110048175,
-0.03337050974369049,
-0.04843711107969284,
0.04469521716237068,
-0.1662919819355011,
-0.03491327911615372,
0.09593124687671661,
0.06427760422229767,
-0.13986408710479736,
-0.023568401113152504,
-0.03526119887828827,
-0.049809779971838,
-0.047768235206604004,
-0.06002878025174141,
0.11181395500898361,
0.058611296117305756,
0.04419868439435959,
-0.059296321123838425,
-0.07637067884206772,
-0.0028071242850273848,
-0.014342374168336391,
-0.01986078731715679,
0.097631074488163,
0.06816094368696213,
-0.1381729394197464,
0.09227006882429123,
0.09810956567525864,
0.07738673686981201,
0.09273158758878708,
-0.02444581687450409,
-0.08119411021471024,
-0.0471174530684948,
0.03257923200726509,
0.018235107883810997,
0.1276484578847885,
-0.027872784063220024,
0.04268912971019745,
0.0421174094080925,
-0.018595336005091667,
0.013991083949804306,
-0.08597505837678909,
0.033884208649396896,
0.02703946642577648,
-0.0159194003790617,
0.04745442420244217,
-0.037611253559589386,
0.024539871141314507,
0.08754327148199081,
0.04615016281604767,
0.033831849694252014,
0.015717241913080215,
-0.05243339762091637,
-0.10873834043741226,
0.1642032116651535,
-0.12759798765182495,
-0.22238075733184814,
-0.13922695815563202,
0.003997850697487593,
0.036267586052417755,
-0.01646288111805916,
0.002834152430295944,
-0.060960907489061356,
-0.12132686376571655,
-0.08726011961698532,
0.015815909951925278,
0.050406474620103836,
-0.0912260189652443,
-0.060087788850069046,
0.056193675845861435,
0.037736181169748306,
-0.14546552300453186,
0.01776101253926754,
0.04850281774997711,
-0.09700650721788406,
-0.004754792433232069,
0.07885372638702393,
0.06784981489181519,
0.17673011124134064,
0.018112216144800186,
-0.021776698529720306,
0.031116241589188576,
0.20988549292087555,
-0.13491620123386383,
0.11005933582782745,
0.13349974155426025,
-0.09236859530210495,
0.08153878152370453,
0.20252206921577454,
0.04006611555814743,
-0.09986240416765213,
0.032548144459724426,
0.02142537757754326,
-0.027797512710094452,
-0.2441972941160202,
-0.07161470502614975,
-0.004515932407230139,
-0.06051458790898323,
0.07499068230390549,
0.09190185368061066,
0.08272628486156464,
0.011750337667763233,
-0.09449771046638489,
-0.08492138236761093,
0.06362129002809525,
0.10420511662960052,
0.02181125245988369,
-0.009744768962264061,
0.09036174416542053,
-0.03286943957209587,
0.01948373205959797,
0.08554471284151077,
0.0038120283279567957,
0.18320275843143463,
0.051725953817367554,
0.19073979556560516,
0.07944851368665695,
0.06951095163822174,
0.012023290619254112,
0.011227634735405445,
0.018135491758584976,
0.03228217363357544,
-0.003646562807261944,
-0.08350840210914612,
-0.02080707624554634,
0.1153142973780632,
0.0672341138124466,
0.012952476739883423,
0.01729460060596466,
-0.04021955281496048,
0.08128432929515839,
0.18377035856246948,
-0.0093126455321908,
-0.177269846200943,
-0.06024068966507912,
0.07718996703624725,
-0.09723462164402008,
-0.09738315641880035,
-0.01454379502683878,
0.030975129455327988,
-0.1702532023191452,
0.025819219648838043,
-0.023134231567382812,
0.11114585399627686,
-0.13745717704296112,
-0.020040949806571007,
0.07143081724643707,
0.07336213439702988,
0.004178736824542284,
0.055973317474126816,
-0.16574905812740326,
0.1074945405125618,
0.007851972244679928,
0.06788748502731323,
-0.0949488952755928,
0.10003086179494858,
-0.002759356750175357,
-0.016956903040409088,
0.13766175508499146,
0.003847390878945589,
-0.0742180123925209,
-0.07706846296787262,
-0.08544620126485825,
-0.010016623884439468,
0.12665624916553497,
-0.13990990817546844,
0.08602021634578705,
-0.03789570555090904,
-0.04160536453127861,
-0.0009961887262761593,
-0.09994571655988693,
-0.11771732568740845,
-0.18694964051246643,
0.060274846851825714,
-0.13818500936031342,
0.030693015083670616,
-0.1080726683139801,
-0.033236145973205566,
-0.03044886700809002,
0.18898600339889526,
-0.23496590554714203,
-0.07289838045835495,
-0.14654842019081116,
-0.10314314812421799,
0.14515270292758942,
-0.05135014280676842,
0.0824703797698021,
-0.007518251892179251,
0.16955603659152985,
0.01909777894616127,
-0.024870775640010834,
0.09702518582344055,
-0.09090493619441986,
-0.19369281828403473,
-0.07736486196517944,
0.1553725302219391,
0.13563397526741028,
0.03274888917803764,
-0.0031351360958069563,
0.03731042891740799,
-0.016484085470438004,
-0.119691863656044,
0.016338739544153214,
0.17828133702278137,
0.06005066633224487,
0.02449444867670536,
-0.025351086631417274,
-0.12034450471401215,
-0.07065033912658691,
-0.028268499299883842,
0.030481377616524696,
0.1794593334197998,
-0.06955225765705109,
0.18364831805229187,
0.147920161485672,
-0.05845186114311218,
-0.20284810662269592,
0.01105605997145176,
0.03317207098007202,
-0.00011460785754024982,
0.025185899809002876,
-0.19945523142814636,
0.08448769152164459,
0.004838644526898861,
-0.0498092919588089,
0.1281348466873169,
-0.17351724207401276,
-0.14425379037857056,
0.07726620137691498,
0.03829115256667137,
-0.1926836371421814,
-0.12892304360866547,
-0.09138946235179901,
-0.04540696740150452,
-0.18867050111293793,
0.09461917728185654,
0.031194355338811874,
0.009373899549245834,
0.030387504026293755,
0.030604345723986626,
0.01938873715698719,
-0.04181704297661781,
0.1860174536705017,
-0.023930367082357407,
0.028327496722340584,
-0.08596936613321304,
-0.07190530747175217,
0.0391114242374897,
-0.05227291211485863,
0.07252339273691177,
-0.023452037945389748,
0.00719826715067029,
-0.09769386798143387,
-0.04156304895877838,
-0.03843177855014801,
0.01581472158432007,
-0.09648153930902481,
-0.08523351699113846,
-0.04445706307888031,
0.09780744463205338,
0.09553340077400208,
-0.03473082184791565,
-0.024805041030049324,
-0.07508285343647003,
0.04805302992463112,
0.19605006277561188,
0.17889533936977386,
0.03904116898775101,
-0.07846304774284363,
-0.0033101453445851803,
-0.010484009049832821,
0.04490501061081886,
-0.20383046567440033,
0.06269704550504684,
0.05393069609999657,
0.019165942445397377,
0.11697915196418762,
-0.01937638409435749,
-0.15321338176727295,
-0.07137971371412277,
0.062210626900196075,
-0.05747547000646591,
-0.19925202429294586,
0.008424095809459686,
0.062047190964221954,
-0.16446428000926971,
-0.045800499618053436,
0.046785544604063034,
-0.004990153945982456,
-0.03839265555143356,
0.022938871756196022,
0.09231305122375488,
0.0029900665394961834,
0.07426668703556061,
0.052022483199834824,
0.0835016593337059,
-0.1060708537697792,
0.07922257483005524,
0.08730976283550262,
-0.08381073921918869,
0.022620677947998047,
0.10530175268650055,
-0.061487648636102676,
-0.03560204058885574,
0.017662353813648224,
0.08361397683620453,
0.018624287098646164,
-0.03893670439720154,
0.014383325353264809,
-0.1065717563033104,
0.059272702783346176,
0.08645539730787277,
0.03302672877907753,
0.01618802361190319,
0.034192394465208054,
0.04655340686440468,
-0.06840039044618607,
0.122025266289711,
0.032824426889419556,
0.017204686999320984,
-0.035474274307489395,
-0.04102595895528793,
0.01851540431380272,
-0.03368416428565979,
-0.005532157141715288,
-0.03097093477845192,
-0.07835554331541061,
-0.015077406540513039,
-0.16520504653453827,
-0.009829589165747166,
-0.05936548113822937,
0.012285472825169563,
0.031714752316474915,
-0.034721489995718,
0.008415459655225277,
0.009580436162650585,
-0.07713334262371063,
-0.06541574746370316,
-0.01965213567018509,
0.0961783304810524,
-0.1606777459383011,
0.022340767085552216,
0.08350874483585358,
-0.12098895758390427,
0.09293801337480545,
0.01664864458143711,
-0.00869405921548605,
0.02654755860567093,
-0.1516905426979065,
0.03389517217874527,
-0.03324367105960846,
0.009356614202260971,
0.04251125827431679,
-0.2180858999490738,
-0.0012979574967175722,
-0.034122150391340256,
-0.06511902064085007,
-0.008563618175685406,
-0.035606082528829575,
-0.1133907288312912,
0.10431582480669022,
0.007158213295042515,
-0.08918852359056473,
-0.031932637095451355,
0.02896781638264656,
0.08660420775413513,
-0.02103978954255581,
0.1533614844083786,
-0.008595003746449947,
0.07452014833688736,
-0.16158120334148407,
-0.019116591662168503,
-0.0044966633431613445,
0.021838920190930367,
-0.020337330177426338,
-0.011089952662587166,
0.043057333678007126,
-0.02310733124613762,
0.1769370436668396,
-0.034001484513282776,
0.02080564945936203,
0.06879838556051254,
0.02382824197411537,
-0.03270673379302025,
0.10420172661542892,
0.04176081717014313,
0.020029285922646523,
0.016749408096075058,
0.0014026050921529531,
-0.04661702737212181,
-0.03435906395316124,
-0.1965997964143753,
0.07266207784414291,
0.15759599208831787,
0.09697116911411285,
-0.019108884036540985,
0.07821404188871384,
-0.0993313267827034,
-0.10917975008487701,
0.12915705144405365,
-0.04755320027470589,
-0.004375945311039686,
-0.07154709100723267,
0.13273866474628448,
0.14712604880332947,
-0.18722544610500336,
0.07334931939840317,
-0.07133730500936508,
-0.04749078303575516,
-0.10922681540250778,
-0.194550022482872,
-0.05630992352962494,
-0.049111537635326385,
-0.015855323523283005,
-0.04727233946323395,
0.07431400567293167,
0.05443255603313446,
0.007043207995593548,
-0.0018872307846322656,
0.06250270456075668,
-0.02979675866663456,
-0.004455813206732273,
0.033084239810705185,
0.06524696946144104,
0.012280851602554321,
-0.028982065618038177,
0.017169395461678505,
-0.009704679250717163,
0.04565926641225815,
0.06593092530965805,
0.0490880124270916,
-0.02946917712688446,
0.01301988959312439,
-0.040264759212732315,
-0.10370729863643646,
0.044506072998046875,
-0.02268853597342968,
-0.081757090985775,
0.15341326594352722,
0.023376943543553352,
0.008703592233359814,
-0.018961627036333084,
0.23797030746936798,
-0.07337556779384613,
-0.09915944188833237,
-0.14910556375980377,
0.10603363811969757,
-0.037726908922195435,
0.05897798761725426,
0.04798928648233414,
-0.10144850611686707,
0.018896711990237236,
0.1251462697982788,
0.16306589543819427,
-0.03724272549152374,
0.020064668729901314,
0.030806828290224075,
0.005520908627659082,
-0.035788439214229584,
0.04845234379172325,
0.06755134463310242,
0.16263099014759064,
-0.046816933900117874,
0.09447267651557922,
0.0011601726291701198,
-0.09597980976104736,
-0.03777771443128586,
0.10832508653402328,
-0.014584118500351906,
0.018404638394713402,
-0.059979453682899475,
0.11911186575889587,
-0.06456011533737183,
-0.2371375411748886,
0.062140509486198425,
-0.06866546720266342,
-0.13664314150810242,
-0.023452885448932648,
0.08483598381280899,
-0.011404541321098804,
0.028394777327775955,
0.07356005162000656,
-0.07185159623622894,
0.20126941800117493,
0.03666449710726738,
-0.05399559810757637,
-0.054549336433410645,
0.0827551931142807,
-0.09896446764469147,
0.27000707387924194,
0.015913790091872215,
0.048061735928058624,
0.1041264757514,
-0.008932216092944145,
-0.13759581744670868,
0.019727399572730064,
0.0954047441482544,
-0.10358903557062149,
0.041838936507701874,
0.19829733669757843,
-0.0014832824235782027,
0.1230277270078659,
0.07854447513818741,
-0.07668869197368622,
0.0473078191280365,
-0.08185897022485733,
-0.06852826476097107,
-0.0918748751282692,
0.10061057657003403,
-0.07712632417678833,
0.14169210195541382,
0.13906599581241608,
-0.05018797889351845,
0.011615060269832611,
-0.031394075602293015,
0.04402702674269676,
0.0006254917825572193,
0.10420145094394684,
0.002576707163825631,
-0.18477243185043335,
0.02472778968513012,
0.006634650751948357,
0.10846512019634247,
-0.15925930440425873,
-0.09642539173364639,
0.03936212509870529,
0.004935122560709715,
-0.06595125794410706,
0.1294470727443695,
0.055943287909030914,
0.043614063411951065,
-0.039108045399188995,
-0.036952149122953415,
-0.006302761845290661,
0.13504701852798462,
-0.1053730770945549,
0.002390247769653797
] |
null | null | null | Included in this repo is the GGUF Quants for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━★ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's [MergeMonster](https://github.com/Gryphe/MergeMonster).
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend [Sao](https://huggingface.co/Sao10K)'s models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
💜 I hope this model may be useful to you 💜
***
Merge Details Below:
<details><summary>See Merge Config</summary>
```
-----------------------------------------------------------------------------------------------------
| Type | Phrase | Context | Raw Prob* | Used Prob** | Change |
-----------------------------------------------------------------------------------------------------
| BAD | anticipation | Her body quivers with | 9.99850% | 119.98% | -54.02% |
| BAD | anticipation | The atmosphere is thic.. | 8.82392% | 105.89% | -32.13% |
| BAD | unwavering | Filled with an | 0.09003% | 1.08% | -0.06% |
| BAD | determination | Her eyes were filled w.. | 0.19863% | 2.38% | -0.26% |
| BAD | determination | Her stubbornness only .. | 7.17110% | 86.05% | -39.86% |
| BAD | whisper | Her voice barely above.. | 96.55492% | 1158.66% | -8.91% |
| BAD | spine | shivers down her | 85.57597% | 1026.91% | -66.19% |
| BAD | sends shivers | The thrill of the act | 0.00230% | 0.03% | -0.00% |
| BAD | ministrations | She moans and twitches.. | 1.35264% | 16.23% | -10.49% |
| BAD | legs | wraps her | 2.45741% | 29.49% | -10.58% |
| BAD | imposing figure | He had an | 0.00356% | 0.04% | +0.00% |
| BAD | shared challenges | Their bond strengthene.. | 0.10075% | 1.21% | -0.03% |
| BAD | bond | forged a | 1.78930% | 21.47% | -9.07% |
| BAD | bond | an unspoken | 4.33001% | 51.96% | -28.17% |
| BAD | enhance our expe.. | I'm excited to see how | 0.00000% | 0.00% | +0.00% |
| BAD | sense of vulnera.. | create a | 0.00003% | 0.00% | -0.00% |
| BAD | dimensions of in.. | explore new | 0.00047% | 0.01% | -0.00% |
| BAD | deepening our co.. | while | 0.00003% | 0.00% | -0.00% |
| BAD | shared experiences | through | 0.00469% | 0.06% | -0.00% |
| BAD | societal expecta.. | that transcend | 0.00170% | 0.02% | -0.00% |
| BAD | conventional bou.. | that defy | 0.03593% | 0.43% | +0.04% |
| BAD | conventional bou.. | and defy | 0.00410% | 0.05% | +0.01% |
| BAD | open communication | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | emotional vulner.. | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | heightens our co.. | touch and the anticipa.. | 0.00000% | 0.00% | +0.00% |
| BAD | sensations you'r.. | I'm enjoying | 0.00000% | 0.00% | -0.00% |
| BAD | is truly arousing | attention to detail | 0.00000% | 0.00% | +0.00% |
| BAD | is truly arousing | way you explore my body | 0.00001% | 0.00% | +0.00% |
| BAD | challenge presen.. | my resolve unwavering .. | 0.00000% | 0.00% | +0.00% |
| BAD | humble vessel | surrendering to the ex.. | 0.00000% | 0.00% | +0.00% |
| BAD | bond | cherishing the unique | 1.37498% | 16.50% | +1.21% |
| BAD | bond | special | 0.05834% | 0.70% | +0.01% |
| BAD | grows stronger w.. | bond | 0.00000% | 0.00% | +0.00% |
| BAD | that cannot be b.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | becomes unbreaka.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | grew stronger wi.. | bond | 0.00000% | 0.00% | +0.00% |
| GOOD | The apple is in .. | Question: If I'm in th.. | 78.38934% | 78.39% | -10.79% |
------------------------------------------------------------------------------------------------------
| Totals | 298.32% | 2717.54% | -269.30% |
------------------------------------------------------------------------------------------------------
```
* = Unweighted, raw probability - ** = Probability after weight adjustments
```
-------- MERGE COMPOSITION ---------
Fimbulvetr-11B-v2-Test-14: 0.50
KuroMitsu-11B: 0.18
Fimbulvetr-10.7B-v1: 0.17
SOLAR-10.7B-Instruct-v1.0-uncensored: 0.10
Solstice-11B-v1: 0.05
```
</details><br> | {} | null | Himitsui/Kaiju-11B-GGUF | [
"gguf",
"region:us"
] | 2024-02-13T12:26:49+00:00 | [] | [] | TAGS
#gguf #region-us
| Included in this repo is the GGUF Quants for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's MergeMonster.
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend Sao's models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
I hope this model may be useful to you
*
Merge Details Below:
<details><summary>See Merge Config</summary>
* = Unweighted, raw probability - = Probability after weight adjustments
</details><br> | [] | [
"TAGS\n#gguf #region-us \n"
] | [
9
] | [
"passage: TAGS\n#gguf #region-us \n"
] | [
0.030724648386240005,
0.026499787345528603,
-0.010017825290560722,
-0.05703527107834816,
0.08247160166501999,
0.07200847566127777,
0.01814177818596363,
0.020192064344882965,
0.2235025018453598,
0.017216520383954048,
0.1496623009443283,
-0.031233953312039375,
0.006174509879201651,
0.05538657680153847,
0.039407629519701004,
-0.19438467919826508,
0.058440499007701874,
-0.02356063388288021,
-0.020945189520716667,
0.01803453452885151,
-0.05310691148042679,
-0.04108472168445587,
0.022135348990559578,
-0.07881014049053192,
-0.15867982804775238,
0.0678698718547821,
0.017852067947387695,
0.0007025183876976371,
0.0820731669664383,
0.05882885307073593,
0.09657382220029831,
-0.024203501641750336,
-0.15220364928245544,
-0.18796531856060028,
0.0366438589990139,
-0.02974788099527359,
-0.10282598435878754,
0.022019000723958015,
0.029453158378601074,
-0.06967076659202576,
0.02238346077501774,
0.1427535116672516,
-0.10206039994955063,
0.051592033356428146,
-0.27165159583091736,
-0.1715938150882721,
-0.06585682183504105,
-0.025845954194664955,
-0.007345964200794697,
0.01241085771471262,
-0.0010092189768329263,
0.047266922891139984,
-0.20188692212104797,
-0.005631127394735813,
0.09329266101121902,
-0.25229454040527344,
0.02776304818689823,
0.21345718204975128,
-0.010520953685045242,
0.09873088449239731,
-0.05590669438242912,
0.14438565075397491,
0.03173782303929329,
-0.019559340551495552,
-0.1924813836812973,
-0.070224329829216,
-0.07177317887544632,
0.162109375,
-0.0823177620768547,
-0.11764442175626755,
0.24176421761512756,
0.009283576160669327,
-0.026472626253962517,
0.15598991513252258,
-0.029037300497293472,
-0.009749599732458591,
0.04555726423859596,
0.01668328419327736,
-0.010545015335083008,
0.1551385223865509,
0.17108163237571716,
-0.08598228543996811,
-0.10847756266593933,
-0.030579885467886925,
-0.2373785674571991,
0.2470305860042572,
-0.01911027915775776,
0.12945520877838135,
-0.20086053013801575,
0.018443629145622253,
-0.3247532844543457,
-0.0012029389617964625,
-0.010316703468561172,
-0.028618358075618744,
-0.006935348734259605,
0.009301352314651012,
-0.050316113978624344,
0.0739501491189003,
0.14580395817756653,
0.1393439620733261,
-0.11465669423341751,
0.060509420931339264,
-0.052172139286994934,
0.14876529574394226,
0.05827285721898079,
0.061183393001556396,
0.04079163819551468,
0.07037676870822906,
-0.008353544399142265,
-0.21633195877075195,
-0.029873060062527657,
-0.07057386636734009,
-0.08445251733064651,
-0.0130265261977911,
-0.13896764814853668,
0.11386743932962418,
-0.022273007780313492,
-0.07913482189178467,
-0.06810981780290604,
0.07626928389072418,
0.017650218680500984,
-0.008536403998732567,
-0.035703565925359726,
-0.012481719255447388,
0.022218508645892143,
-0.014872739091515541,
-0.1519843488931656,
0.02295425534248352,
0.10455024242401123,
0.07257117331027985,
-0.1489023119211197,
-0.011344035156071186,
-0.017298875376582146,
0.06959983706474304,
0.03884255141019821,
-0.10402916371822357,
0.04283881187438965,
-0.10747409611940384,
-0.08414466679096222,
0.022628657519817352,
-0.005062851123511791,
-0.0418001152575016,
0.13524691760540009,
0.03997812792658806,
0.040150050073862076,
-0.016940169036388397,
-0.04259050637483597,
-0.048133596777915955,
-0.07602019608020782,
0.07334327697753906,
0.05418020859360695,
0.027240034192800522,
-0.1915341019630432,
0.01154522504657507,
-0.048245880752801895,
0.09175369143486023,
-0.11856856942176819,
0.014575321227312088,
-0.08105122298002243,
0.1604209989309311,
0.0349995456635952,
0.09055875241756439,
-0.19562625885009766,
0.02605881541967392,
-0.06191767752170563,
0.1854621320962906,
-0.04451294615864754,
-0.11786319315433502,
0.2698904871940613,
-0.09105797111988068,
-0.040079716593027115,
0.056803084909915924,
0.06560484319925308,
-0.06272535026073456,
0.068723164498806,
0.4434472322463989,
-0.06556011736392975,
-0.07118581980466843,
0.05080527812242508,
0.17805561423301697,
-0.1262815296649933,
-0.09372174739837646,
0.09990617632865906,
-0.1480535864830017,
-0.211008220911026,
0.030864350497722626,
0.028955968096852303,
0.1494358479976654,
-0.06205282360315323,
-0.012456154450774193,
0.058214303106069565,
-0.013022401370108128,
0.046677324920892715,
0.03563477098941803,
0.11109840869903564,
-0.06493768095970154,
0.06851828098297119,
-0.16232267022132874,
0.016065504401922226,
0.1209988072514534,
-0.015012580901384354,
-0.04126624017953873,
0.14286154508590698,
-0.03809087723493576,
0.07199656218290329,
-0.07730832695960999,
-0.1804673671722412,
0.027612121775746346,
0.05621999502182007,
0.028122514486312866,
0.09176547825336456,
0.09526687115430832,
-0.039257392287254333,
0.0013902259524911642,
0.0329861082136631,
0.061223939061164856,
-0.007701692637056112,
0.015235940925776958,
-0.015374142676591873,
0.12888981401920319,
-0.07010363042354584,
-0.04155188798904419,
-0.09715848416090012,
-0.00889967754483223,
0.2288777232170105,
-0.01933911070227623,
0.02257734164595604,
-0.06854789704084396,
0.033186767250299454,
-0.0012386917369440198,
0.09506335854530334,
-0.017756229266524315,
0.06063338369131088,
-0.022011179476976395,
-0.06201287358999252,
0.11652727425098419,
-0.043086208403110504,
0.24556174874305725,
0.10792262107133865,
-0.07513239979743958,
-0.01741042546927929,
-0.0871582105755806,
-0.007020947523415089,
0.022898653522133827,
0.08814648538827896,
-0.04863424599170685,
0.06471672654151917,
-0.037898752838373184,
-0.0013588295551016927,
0.018808960914611816,
-0.008487841114401817,
-0.030526969581842422,
-0.04284367710351944,
-0.08270563185214996,
0.09057542681694031,
0.0691855251789093,
-0.13670015335083008,
0.17748047411441803,
0.2472171038389206,
0.1500423550605774,
0.2487964630126953,
-0.06485911458730698,
-0.014139159582555294,
-0.02016172744333744,
0.03673918917775154,
-0.020436765626072884,
0.13109654188156128,
-0.18929845094680786,
-0.032152432948350906,
0.02558354288339615,
0.029807843267917633,
0.10872193425893784,
-0.1365325003862381,
-0.1145850270986557,
-0.0379912331700325,
-0.047677598893642426,
-0.08257206529378891,
0.07034620642662048,
-0.12104500830173492,
0.03338077291846275,
0.07256745547056198,
0.0073080710135400295,
0.12201625853776932,
0.015417544171214104,
-0.055278971791267395,
0.0998256728053093,
-0.14543165266513824,
-0.2384990155696869,
-0.04642500355839729,
-0.10990478098392487,
0.001206184271723032,
0.05318264663219452,
0.016633260995149612,
-0.21265560388565063,
-0.01741623878479004,
0.11141498386859894,
0.06650645285844803,
-0.18111048638820648,
0.024138791486620903,
0.029385030269622803,
-0.004455238115042448,
-0.10212790220975876,
-0.012687300331890583,
-0.05387670546770096,
-0.11039627343416214,
-0.0691843032836914,
0.08163908869028091,
-0.06936442852020264,
0.11164893209934235,
0.1582336574792862,
0.11141853034496307,
0.11249161511659622,
-0.011774544604122639,
0.1976311057806015,
-0.14119699597358704,
-0.14489109814167023,
0.06405922025442123,
-0.014498869888484478,
0.03640124574303627,
0.08232609927654266,
0.04930112138390541,
-0.14269955456256866,
-0.04848511889576912,
-0.007545206230133772,
-0.1497725397348404,
-0.1323675513267517,
-0.05164776369929314,
-0.10658133774995804,
0.12379065901041031,
-0.06248227879405022,
0.10150982439517975,
0.11162466555833817,
0.017522823065519333,
0.11151766777038574,
-0.06246228888630867,
-0.054680291563272476,
-0.04807431995868683,
0.06297076493501663,
-0.05410824716091156,
-0.04205694422125816,
-0.06721562892198563,
-0.008002115413546562,
0.1349310278892517,
0.10885956883430481,
0.07581131905317307,
0.2265089601278305,
0.02780294418334961,
0.05355561524629593,
0.040789585560560226,
0.16015571355819702,
0.015284501947462559,
-0.0046128155663609505,
-0.08788388222455978,
-0.014365277253091335,
-0.0019687749445438385,
-0.031080376356840134,
-0.006052241660654545,
0.1340780407190323,
-0.2559821307659149,
0.03235609456896782,
-0.2989844083786011,
0.11946471780538559,
-0.1565471589565277,
0.07426489144563675,
0.05220162868499756,
0.030080994591116905,
0.08841689676046371,
0.035069406032562256,
-0.02871096506714821,
0.09149409085512161,
0.11694692075252533,
-0.12628670036792755,
0.01540512777864933,
0.04918349161744118,
0.052707213908433914,
-0.0142430504783988,
0.0931062400341034,
-0.11024625599384308,
-0.0737583339214325,
-0.0024255106691271067,
0.07025767862796783,
-0.2099330574274063,
0.23986183106899261,
0.03523903712630272,
-0.10871971398591995,
-0.021638909354805946,
-0.0547538623213768,
0.03316742554306984,
0.08983159810304642,
0.1342458724975586,
0.11251148581504822,
-0.11371640861034393,
-0.12470904737710953,
0.029020745307207108,
0.03679748624563217,
0.1757190227508545,
-0.09047917276620865,
-0.14164063334465027,
0.001811441034078598,
0.05263577029109001,
-0.053646381944417953,
0.07645093649625778,
-0.05327983945608139,
-0.0941789522767067,
0.03495060279965401,
0.04520740360021591,
0.00641082925722003,
-0.019971303641796112,
0.08110581338405609,
-0.02520396187901497,
0.085345059633255,
-0.04878882318735123,
0.00847524031996727,
-0.10202991217374802,
-0.03634759038686752,
0.04376819357275963,
-0.0722225159406662,
0.01614394783973694,
-0.09818518906831741,
-0.15651735663414001,
-0.08556577563285828,
-0.15303048491477966,
0.12497064471244812,
-0.052672382444143295,
0.10244213044643402,
-0.047614291310310364,
0.147609144449234,
-0.013274060562252998,
0.030878636986017227,
-0.05167607590556145,
0.028036773204803467,
0.011671020649373531,
-0.14858771860599518,
0.20959575474262238,
-0.1476162225008011,
-0.023819662630558014,
0.16589532792568207,
0.05426561459898949,
0.1161220371723175,
0.04555299133062363,
-0.0879630371928215,
0.23518426716327667,
0.2702784240245819,
-0.0007818902959115803,
0.17838320136070251,
0.2352202981710434,
-0.026693791151046753,
-0.2436053603887558,
-0.07260585576295853,
-0.2063993662595749,
-0.039628319442272186,
0.0004186074365861714,
-0.282958060503006,
0.06042884290218353,
0.17210599780082703,
-0.07570867985486984,
0.4319494664669037,
-0.22352926433086395,
0.03153151646256447,
0.13982820510864258,
-0.04242865741252899,
0.6181237101554871,
-0.1820172369480133,
-0.16550765931606293,
0.052592549473047256,
-0.1248052790760994,
0.11609237641096115,
-0.005267696920782328,
0.10048385709524155,
-0.00011838242062367499,
-0.02595684304833412,
0.03428659215569496,
-0.0409976989030838,
0.23620888590812683,
0.018790103495121002,
0.045043930411338806,
-0.09004033356904984,
-0.1538960188627243,
0.10746775567531586,
0.02556895837187767,
-0.10341835021972656,
0.03920651972293854,
-0.06092366203665733,
-0.10915451496839523,
0.011575369164347649,
-0.08317004889249802,
0.03433287888765335,
0.09550272673368454,
-0.050003789365291595,
-0.0652989074587822,
0.024777809157967567,
-0.16975140571594238,
0.028226720169186592,
0.1660151481628418,
-0.08661750704050064,
0.17001861333847046,
-0.04084239527583122,
-0.0947834923863411,
-0.15362800657749176,
-0.020637191832065582,
-0.07918675988912582,
-0.01597081869840622,
0.10419487953186035,
-0.11003783345222473,
0.006433290895074606,
0.09035904705524445,
0.002910176757723093,
0.07882846146821976,
0.09883374720811844,
-0.08716033399105072,
0.05550702288746834,
0.1730797290802002,
-0.21496161818504333,
-0.1694899946451187,
-0.04902869462966919,
-0.1887752115726471,
0.2065081000328064,
0.03903897479176521,
0.04895683750510216,
0.16432031989097595,
0.015995748341083527,
-0.010867753997445107,
-0.020683420822024345,
-0.11664224416017532,
0.00450828718021512,
0.04868127405643463,
-0.005741522181779146,
-0.11094820499420166,
0.13042977452278137,
0.05625306814908981,
-0.010265284217894077,
-0.04014173522591591,
0.1808832287788391,
-0.06324239075183868,
-0.06105973571538925,
-0.29144585132598877,
0.07338178157806396,
-0.10203809291124344,
-0.033191971480846405,
0.08307401835918427,
-0.024927617982029915,
-0.0012370682088658214,
0.14441034197807312,
0.009444275870919228,
0.1295502781867981,
0.031338974833488464,
0.03218937665224075,
0.14084547758102417,
-0.13805074989795685,
-0.14429166913032532,
-0.029582731425762177,
-0.08434601873159409,
-0.12847381830215454,
-0.016780147328972816,
0.1751313954591751,
-0.08363176882266998,
-0.12467111647129059,
-0.2756369411945343,
0.049299292266368866,
-0.0641724020242691,
-0.1138453483581543,
-0.03101496584713459,
-0.06544762849807739,
0.052310146391391754,
-0.040101904422044754,
0.014005003497004509,
-0.023109296336770058,
-0.14451682567596436,
0.0458921417593956,
0.06695213168859482,
0.03172319754958153,
-0.02931683138012886,
0.0015236766776069999,
0.15014788508415222,
0.026510147377848625,
0.16621503233909607,
0.22043149173259735,
0.061838917434215546,
0.20056213438510895,
-0.2713247239589691,
-0.10004157572984695,
0.10868333280086517,
-0.07527677714824677,
0.021882841363549232,
0.13841275870800018,
-0.01911449432373047,
-0.0495067797601223,
-0.03201347589492798,
0.08917038887739182,
-0.017281996086239815,
-0.08984966576099396,
-0.04857974499464035,
-0.003589637577533722,
-0.18503929674625397,
-0.0007536212215200067,
-0.15319249033927917,
0.1420021951198578,
0.04460230842232704,
-0.062356118112802505,
0.07465137541294098,
0.05997058004140854,
0.03977793827652931,
0.006764960940927267,
0.018739836290478706,
-0.14650356769561768,
0.01704270951449871,
-0.025170978158712387,
-0.006106532644480467,
0.03402095288038254,
0.34655115008354187,
-0.0466112419962883,
-0.07675225287675858,
-0.019784720614552498,
0.1001124382019043,
0.13863220810890198,
-0.009452453814446926,
0.13600659370422363,
0.13898764550685883,
-0.07470680773258209,
-0.12456237524747849,
0.10025309771299362,
-0.04034053534269333,
-0.15969179570674896,
0.12802298367023468,
-0.0435095950961113,
-0.016280202195048332,
0.04011611267924309,
-0.03383811563253403,
-0.08241409808397293,
0.04869242012500763,
-0.08193223923444748,
-0.03468599542975426,
-0.03921830281615257,
-0.019609715789556503,
-0.02835456281900406,
0.179523304104805,
-0.03646359592676163,
0.07318142801523209,
-0.02748848870396614,
0.010194642469286919,
-0.10395175963640213,
-0.1028568297624588,
0.05173351243138313,
-0.12340104579925537,
0.07964924722909927,
-0.03694985434412956,
0.030445387586951256,
0.22815105319023132,
0.02754553034901619,
0.015633730217814445,
0.13255921006202698,
-0.00819331593811512,
-0.0877854973077774,
0.03996758162975311,
-0.044342756271362305,
0.021794743835926056,
-0.030855976045131683,
-0.07628626376390457,
-0.0880078375339508,
-0.10075201094150543,
-0.049825526773929596,
0.03320961445569992,
-0.030442843213677406,
-0.05212388187646866,
-0.14976045489311218,
-0.02720625326037407,
-0.07237301766872406,
0.11920249462127686,
-0.09342960268259048,
0.08832328021526337,
-0.012045936658978462,
0.0026839354541152716,
0.037163145840168,
0.1505078673362732,
0.010094218887388706,
0.10494716465473175,
0.006677085533738136,
0.09218452870845795,
-0.06759306788444519,
0.14643312990665436,
-0.12665413320064545,
-0.02135086990892887,
-0.03415476530790329,
0.2331210970878601,
0.20847657322883606,
-0.11358945816755295,
0.009311644360423088,
0.03202449902892113,
0.04839635267853737,
0.185939759016037,
0.12599588930606842,
0.01761433109641075,
0.33329761028289795,
-0.059357043355703354,
-0.02227349951863289,
0.05721667781472206,
-0.00022221643303055316,
-0.06214975565671921,
0.0716261938214302,
0.08921460807323456,
0.013963594101369381,
-0.1257423460483551,
0.11072274297475815,
-0.21343208849430084,
0.15216094255447388,
0.07192383706569672,
-0.18375952541828156,
-0.009178245440125465,
-0.05186039209365845,
0.008210902102291584,
-0.027973614633083344,
0.13407447934150696,
-0.07003656774759293,
-0.1739543378353119,
-0.19977876543998718,
0.060681428760290146,
-0.35512542724609375,
-0.20812080800533295,
0.06384200602769852,
0.1383514702320099,
0.10808566957712173,
-0.06061858683824539,
-0.013316533528268337,
0.006446295417845249,
0.01029437780380249,
-0.019556531682610512,
0.028526417911052704,
-0.008326482027769089,
-0.05453765019774437,
-0.25444141030311584,
-0.006056090816855431,
0.0625600665807724,
-0.15240277349948883,
0.05618175491690636,
-0.017780732363462448,
-0.008800189942121506,
0.13029517233371735,
-0.021711476147174835,
0.03442413732409477,
0.00029493181500583887,
-0.16273388266563416,
0.031801287084817886,
0.035038504749536514,
0.03614772483706474,
-0.010639974847435951,
-0.04227915778756142,
-0.002239778870716691,
0.07848605513572693,
-0.054354216903448105,
-0.1438787877559662,
0.11021588742733002,
-0.026462025940418243,
0.21526864171028137,
-0.06517954170703888,
-0.033111389726400375,
0.023098714649677277,
-0.07031320035457611,
0.2018292248249054,
-0.03690796345472336,
0.05650625377893448,
0.1586160659790039,
0.018734993413090706,
0.019857894629240036,
-0.30062609910964966,
0.08813683688640594,
-0.024517416954040527,
0.006894893944263458,
-0.05270370468497276
] |
null | null | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` | {"license": "other", "tags": ["autotrain", "text-generation"], "widget": [{"text": "I love AutoTrain because "}]} | text-generation | parth-deepsolv/openhathi-hinglish | [
"transformers",
"safetensors",
"llama",
"text-generation",
"autotrain",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:26:57+00:00 | [] | [] | TAGS
#transformers #safetensors #llama #text-generation #autotrain #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
# Usage
| [
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
"TAGS\n#transformers #safetensors #llama #text-generation #autotrain #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
56,
29,
3
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #autotrain #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.# Usage"
] | [
-0.030233582481741905,
0.044486843049526215,
-0.001213985262438655,
0.0538194440305233,
0.13616780936717987,
-0.034359160810709,
0.24212737381458282,
0.04974839836359024,
-0.08069171756505966,
-0.08828417211771011,
0.1835254579782486,
0.19055704772472382,
-0.05231833457946777,
0.16918182373046875,
-0.03819317743182182,
-0.25125381350517273,
0.027510078623890877,
-0.02052813582122326,
0.05992385745048523,
0.11618368327617645,
0.1356484442949295,
-0.07286405563354492,
0.07558650523424149,
0.04071101173758507,
-0.20057329535484314,
0.04125277325510979,
0.06584042310714722,
-0.13731889426708221,
0.17589664459228516,
0.06651129573583603,
0.11982711404561996,
0.04201258346438408,
0.13194973766803741,
-0.11539541929960251,
0.01677699387073517,
0.006089715287089348,
-0.012448305264115334,
0.07580878585577011,
0.09121459722518921,
-0.05039992183446884,
0.07662608474493027,
0.1693045198917389,
0.10217941552400589,
0.03913329541683197,
-0.09684345871210098,
0.01868700422346592,
-0.011758350767195225,
0.009696263819932938,
0.11904925107955933,
0.1142357662320137,
-0.0037827088963240385,
0.16560974717140198,
-0.13275016844272614,
0.08540078997612,
-0.05037863925099373,
-0.2618809938430786,
-0.01718125306069851,
0.1800895780324936,
0.06736887246370316,
-0.013204663060605526,
-0.10871165990829468,
0.0832592099905014,
0.11307011544704437,
-0.007529445458203554,
0.08455708622932434,
-0.026264257729053497,
-0.06016365438699722,
-0.002186497673392296,
-0.08158216625452042,
0.019356463104486465,
0.18619242310523987,
-0.08962637186050415,
-0.026531536132097244,
-0.10455767810344696,
-0.03288734704256058,
0.007692196872085333,
0.0019304570741951466,
-0.1005178838968277,
-0.017774827778339386,
0.09158472716808319,
-0.029593104496598244,
-0.024699222296476364,
-0.12848596274852753,
-0.06777367740869522,
-0.10036627948284149,
0.09939469397068024,
0.003897651331499219,
-0.008503499440848827,
-0.10258311778306961,
0.12370152771472931,
0.030374685302376747,
-0.10124702751636505,
0.05063316598534584,
-0.09004855901002884,
0.028912976384162903,
-0.09744736552238464,
-0.02546374686062336,
-0.13549922406673431,
0.020870886743068695,
0.20467180013656616,
0.17805926501750946,
-0.01145392656326294,
-0.08812520653009415,
0.03625109791755676,
0.0008179644355550408,
0.12653805315494537,
0.032579418271780014,
-0.036496490240097046,
0.06200064718723297,
-0.04231312870979309,
-0.013179670087993145,
-0.02807638980448246,
-0.18589061498641968,
0.024049878120422363,
0.02915334515273571,
0.07065627723932266,
-0.06868276745080948,
0.09377432614564896,
-0.027718648314476013,
0.03711109980940819,
0.016023842617869377,
-0.04853251203894615,
0.026124270632863045,
-0.0738735944032669,
0.00013070651039015502,
-0.057878635823726654,
0.05027531459927559,
0.10120894759893417,
0.021184498444199562,
0.1256687492132187,
-0.09038646519184113,
-0.03545280545949936,
-0.11335796862840652,
-0.05878029763698578,
0.003939428832381964,
0.011430792510509491,
0.05267070606350899,
-0.19940395653247833,
-0.3015422821044922,
-0.004989997949451208,
0.050753381103277206,
-0.023778526112437248,
-0.07349185645580292,
-0.08470188826322556,
0.001000837772153318,
0.05167684704065323,
-0.03120448999106884,
0.06968189030885696,
-0.020581809803843498,
0.032200396060943604,
-0.05502425506711006,
0.01783364824950695,
-0.054251205176115036,
0.022036677226424217,
-0.13833174109458923,
-0.006974850781261921,
-0.03346197307109833,
0.039347440004348755,
-0.034659307450056076,
0.15313684940338135,
-0.024753857403993607,
0.03732745721936226,
-0.03288530185818672,
0.05699798837304115,
0.014490505680441856,
0.1587008237838745,
-0.13942737877368927,
-0.029804671183228493,
0.13435518741607666,
-0.11049015820026398,
-0.11021945625543594,
0.09814219921827316,
-0.1027923971414566,
0.25366804003715515,
0.11463119834661484,
0.089041568338871,
0.08555333316326141,
-0.0939832255244255,
0.10416270047426224,
0.014406654052436352,
-0.0810551568865776,
-0.05981045216321945,
0.001247191452421248,
0.014072762802243233,
-0.2282852977514267,
0.04590285196900368,
0.1099134013056755,
0.07957035303115845,
-0.03853422775864601,
-0.0828741192817688,
-0.02569119818508625,
-0.06479489803314209,
0.05748641490936279,
-0.012020731344819069,
0.14137892425060272,
-0.048433054238557816,
-0.03437682241201401,
0.07282166182994843,
0.049919936805963516,
0.04887467995285988,
-0.04896143823862076,
-0.08309599757194519,
-0.014155385084450245,
-0.05337151885032654,
0.014066973701119423,
-0.09911438822746277,
-0.06441604346036911,
-0.019569741562008858,
0.09963230788707733,
0.04109548404812813,
0.07980747520923615,
0.03298676386475563,
0.05346972867846489,
-0.028099561110138893,
0.009641850367188454,
0.171212837100029,
0.03339327871799469,
-0.12648417055606842,
-0.10679809004068375,
0.10591638833284378,
-0.07651489973068237,
0.12340249121189117,
-0.2326846718788147,
0.0319368876516819,
-0.11047415435314178,
0.09298565238714218,
0.004907169379293919,
0.083468496799469,
-0.08398003876209259,
0.028484543785452843,
-0.1119765117764473,
0.0021211018320173025,
0.055693674832582474,
0.032440412789583206,
-0.04558722302317619,
0.13343413174152374,
-0.1485532969236374,
0.2725752294063568,
0.11859120428562164,
-0.1225438341498375,
-0.08789797127246857,
-0.08209558576345444,
0.01463414542376995,
-0.01473908219486475,
-0.10711272060871124,
-0.00464220205321908,
0.090196393430233,
-0.03334807977080345,
0.19780901074409485,
-0.025136709213256836,
-0.027009958401322365,
-0.010027045384049416,
-0.08553040027618408,
-0.003327628830447793,
0.01587565243244171,
0.11182920634746552,
-0.17783890664577484,
0.1318385899066925,
0.15874429047107697,
-0.04425647482275963,
0.18798032402992249,
0.03296133875846863,
0.011020161211490631,
0.002961918478831649,
-0.0587744414806366,
0.012081347405910492,
-0.014865024946630001,
0.0052044577896595,
-0.02005123905837536,
0.011482035741209984,
0.00413762079551816,
0.03298396244645119,
-0.13842253386974335,
-0.045649055391550064,
0.022555530071258545,
0.05180300772190094,
0.05135413259267807,
0.06037316098809242,
-0.08062099665403366,
0.07630951702594757,
-0.04452550411224365,
-0.14345431327819824,
0.12739118933677673,
0.02064763568341732,
-0.11117818206548691,
0.18438909947872162,
-0.08062981814146042,
-0.2297380119562149,
-0.22443866729736328,
-0.16446608304977417,
-0.011114777065813541,
0.07911116629838943,
0.060191091150045395,
-0.07421005517244339,
-0.07637105882167816,
-0.011371796950697899,
-0.0550556555390358,
0.0073495288379490376,
-0.010368063114583492,
-0.09405577927827835,
0.049745358526706696,
-0.004702834878116846,
-0.10820401459932327,
-0.03869745135307312,
0.020398495718836784,
-0.061533134430646896,
0.07165931165218353,
-0.04781206697225571,
0.06501610577106476,
0.15835903584957123,
-0.01930721290409565,
0.015421092510223389,
-0.023545147851109505,
0.14220495522022247,
-0.07042994350194931,
-0.0027030508499592543,
0.11660090833902359,
-0.05792497098445892,
0.03252281993627548,
0.1998281329870224,
0.02275119721889496,
-0.07990385591983795,
0.08379725366830826,
-0.026467666029930115,
-0.07103549689054489,
-0.2110617309808731,
-0.09836360812187195,
-0.003794529940932989,
0.006001502741128206,
0.09317165613174438,
0.059360016137361526,
0.26240023970603943,
0.14496001601219177,
0.07884223759174347,
0.08026859164237976,
0.010121341794729233,
0.09064983576536179,
0.1671321541070938,
-0.02893867902457714,
0.1837460845708847,
-0.08177211880683899,
-0.18439914286136627,
0.03811042383313179,
-0.016378022730350494,
0.07307704538106918,
0.16287975013256073,
-0.03344360738992691,
0.031136173754930496,
0.07826884835958481,
0.14637620747089386,
0.1369740217924118,
0.07916141301393509,
-0.053584322333335876,
-0.008333854377269745,
-0.01352411787956953,
-0.051015615463256836,
0.12768198549747467,
-0.063595712184906,
-0.05301755294203758,
-0.032549891620874405,
0.05175798386335373,
0.03259597718715668,
0.08064481616020203,
0.0003997169260401279,
-0.309732049703598,
0.04671970009803772,
0.043427757918834686,
-0.07567816972732544,
-0.09734112024307251,
0.09140878915786743,
-0.035215768963098526,
-0.16654866933822632,
0.019458334892988205,
-0.041935864835977554,
0.08800463378429413,
0.0078069777227938175,
0.059996895492076874,
-0.06545950472354889,
-0.025956671684980392,
-0.041478727012872696,
0.14310163259506226,
-0.37306511402130127,
0.20193158090114594,
-0.013142331503331661,
0.042778607457876205,
-0.10678635537624359,
0.020484188571572304,
0.08859410136938095,
0.1896958351135254,
0.11323587596416473,
-0.06416832655668259,
-0.14478136599063873,
-0.13083983957767487,
-0.09616615623235703,
-0.007938794791698456,
0.018248550593852997,
-0.02861541509628296,
0.03276824578642845,
-0.12244863063097,
-0.007232520263642073,
0.04563054442405701,
-0.0003797943063545972,
-0.13678863644599915,
-0.16151514649391174,
0.0010730470530688763,
0.031956855207681656,
0.11872614175081253,
-0.03973402827978134,
-0.09386511147022247,
-0.10537009686231613,
0.16155357658863068,
0.0434398278594017,
-0.0032312744297087193,
-0.13477565348148346,
-0.04382272809743881,
-0.02633882686495781,
-0.03157653659582138,
0.08056245744228363,
0.006978948600590229,
0.12115171551704407,
-0.07418990880250931,
-0.08299543708562851,
0.09858261793851852,
-0.11504889279603958,
-0.06339965760707855,
-0.1055075153708458,
0.02134295180439949,
-0.04582704231142998,
-0.0055122836492955685,
0.09996341913938522,
0.044301845133304596,
-0.0564575232565403,
-0.06688746064901352,
-0.030333636328577995,
-0.0035526733845472336,
-0.019270796328783035,
-0.10012051463127136,
-0.12814848124980927,
-0.08549763262271881,
-0.01797124370932579,
-0.11312005668878555,
0.20464067161083221,
0.1497236043214798,
-0.08891571313142776,
0.13653406500816345,
0.1947350651025772,
-0.12512075901031494,
-0.3112392723560333,
-0.0591794028878212,
-0.060733214020729065,
0.017820820212364197,
0.051851484924554825,
-0.1396218240261078,
0.12098728865385056,
0.026967007666826248,
-0.08025223016738892,
-0.01870194636285305,
-0.1393427848815918,
-0.16253414750099182,
0.25069278478622437,
0.025390613824129105,
0.22613508999347687,
-0.10329495370388031,
-0.05625482276082039,
-0.1528514325618744,
0.04403030499815941,
0.05570097640156746,
-0.059750333428382874,
0.06813552230596542,
0.027666809037327766,
0.06517914682626724,
0.0352771058678627,
-0.031431861221790314,
0.059037331491708755,
-0.05435364320874214,
0.08663322776556015,
-0.1689387410879135,
-0.01237628236413002,
0.04819100350141525,
-0.034416746348142624,
0.10872482508420944,
-0.06728927791118622,
0.032740700989961624,
-0.02744685485959053,
-0.07909418642520905,
0.03789518401026726,
0.0732329860329628,
0.0007817583391442895,
-0.11316461861133575,
0.006888468749821186,
-0.0024804365821182728,
-0.0036804734263569117,
-0.07207884639501572,
0.0360134020447731,
-0.015701891854405403,
0.12322087585926056,
0.15038511157035828,
0.22221173346042633,
-0.03807198628783226,
0.07619243115186691,
-0.03499734401702881,
-0.10971996933221817,
0.08894997090101242,
-0.08182878792285919,
0.02895357646048069,
0.07967188209295273,
-0.04530767723917961,
0.1518583744764328,
0.059346023947000504,
0.01439667958766222,
-0.0170619897544384,
0.1622321903705597,
-0.15806029736995697,
0.03757179155945778,
-0.08510110527276993,
0.0981348529458046,
0.03999621793627739,
-0.0031106341630220413,
0.123895563185215,
-0.09477032721042633,
-0.01722901687026024,
0.02182912267744541,
-0.0064381323754787445,
-0.02466222271323204,
0.1154962033033371,
0.03963370621204376,
0.019384723156690598,
-0.07287894189357758,
0.032995473593473434,
0.0793546736240387,
0.03090100735425949,
0.0360221303999424,
0.01733146794140339,
-0.09581634402275085,
-0.09762053936719894,
0.020059550181031227,
0.26283106207847595,
-0.2073555886745453,
-0.08517836779356003,
-0.03368183225393295,
-0.12218183279037476,
0.025682536885142326,
0.10866613686084747,
0.08440512418746948,
0.04843233525753021,
-0.05936649441719055,
-0.031254567205905914,
-0.12268935889005661,
0.10343098640441895,
0.01711028814315796,
0.06650421768426895,
-0.1809314489364624,
0.07358395308256149,
-0.02809927426278591,
0.008834644220769405,
-0.09301190823316574,
-0.021431833505630493,
-0.12153994292020798,
0.02847396209836006,
-0.15779872238636017,
-0.03682858124375343,
-0.03192681446671486,
-0.005093364976346493,
0.050037600100040436,
-0.004694884177297354,
-0.029660729691386223,
-0.026728112250566483,
-0.09693919867277145,
0.031877078115940094,
-0.0025847572833299637,
0.04843446612358093,
-0.043190669268369675,
-0.035425733774900436,
0.034816160798072815,
-0.009424110874533653,
0.052381593734025955,
-0.003583191428333521,
-0.011726359836757183,
0.0612170472741127,
-0.14290447533130646,
0.02284354716539383,
0.08007043600082397,
0.0021814126521348953,
0.025587504729628563,
-0.046147607266902924,
0.003772641997784376,
0.09461848437786102,
0.04222482442855835,
0.042058926075696945,
-0.021312225610017776,
-0.10621987283229828,
0.03238086402416229,
0.06855572015047073,
-0.12687964737415314,
-0.03339167684316635,
-0.033452991396188736,
0.008667406626045704,
-0.03922462835907936,
0.23274736106395721,
-0.11200960725545883,
0.047668736428022385,
-0.03629864379763603,
0.03481632098555565,
-0.040750276297330856,
-0.1322820633649826,
-0.09714572131633759,
-0.1218259409070015,
-0.03861447423696518,
0.004378629848361015,
0.27098628878593445,
0.1524139642715454,
-0.012074965052306652,
0.026575852185487747,
0.07427959144115448,
0.07876431941986084,
0.017954310402274132,
0.2124546319246292,
0.11772505939006805,
0.019052164629101753,
-0.1249738559126854,
0.07732754200696945,
0.05001425743103027,
-0.06056597828865051,
-0.00614928686991334,
-0.002644259948283434,
-0.10810491442680359,
0.0764278918504715,
0.058919016271829605,
-0.0322267971932888,
-0.08979810774326324,
-0.13948139548301697,
-0.12417440116405487,
0.0398101881146431,
-0.07980944216251373,
0.01371616031974554,
0.16255922615528107,
-0.04193843528628349,
-0.01258701179176569,
-0.044840361922979355,
-0.04393536224961281,
-0.22105973958969116,
-0.15929199755191803,
-0.12153827399015427,
-0.08488250523805618,
0.030652163550257683,
-0.03584383800625801,
0.04418419674038887,
0.04562603309750557,
0.05583393573760986,
-0.05587306618690491,
0.10599631071090698,
-0.08984807133674622,
-0.0009273026371374726,
0.009541553445160389,
-0.05641864612698555,
0.00033469367190264165,
-0.1973697394132614,
-0.012389290146529675,
-0.13826921582221985,
0.018863461911678314,
-0.048267021775245667,
-0.030272165313363075,
-0.003238338278606534,
0.003345966339111328,
-0.03968377038836479,
-0.021012550219893456,
-0.017558271065354347,
0.030668145045638084,
0.016730744391679764,
0.0320734865963459,
0.005219834391027689,
-0.008128107525408268,
0.03835280239582062,
0.20299074053764343,
-0.045781176537275314,
-0.18120475113391876,
-0.13223539292812347,
0.24052202701568604,
0.015449130907654762,
0.1216314285993576,
-0.05895445495843887,
-0.0028388097416609526,
0.046702757477760315,
0.32025182247161865,
0.27878323197364807,
-0.05612753704190254,
0.010938582010567188,
-0.022306501865386963,
-0.011537747457623482,
-0.008011733181774616,
0.15695297718048096,
0.01662231609225273,
0.15353867411613464,
-0.047389231622219086,
0.04584977775812149,
-0.02435649186372757,
-0.08908694982528687,
-0.04333536699414253,
0.1347881257534027,
-0.020947841927409172,
-0.008336201310157776,
-0.02847667969763279,
0.07034122198820114,
-0.10188855975866318,
0.14772182703018188,
-0.1257404088973999,
-0.019365347921848297,
-0.06710933893918991,
0.03698932006955147,
0.10075706988573074,
-0.015645895153284073,
0.029549336060881615,
-0.034948039799928665,
-0.022729575634002686,
0.019183486700057983,
-0.03610850125551224,
-0.09600125253200531,
-0.026283137500286102,
0.0822208896279335,
0.0198498647660017,
0.21264657378196716,
-0.010850045830011368,
0.04094035178422928,
0.07488980889320374,
-0.006131554488092661,
-0.10380975157022476,
0.0967283695936203,
-0.005664472468197346,
-0.06362035125494003,
0.13359829783439636,
-0.011046118102967739,
0.013147052377462387,
0.010283130221068859,
-0.010407431982457638,
-0.1329643428325653,
0.12699143588542938,
-0.11626135557889938,
-0.08817215263843536,
-0.052357643842697144,
0.09224232286214828,
-0.026907680556178093,
0.1509033441543579,
0.08656276762485504,
-0.014904826879501343,
0.01371307484805584,
-0.03778959438204765,
0.07716576755046844,
-0.013930321671068668,
-0.1174720972776413,
-0.022831548005342484,
-0.19073913991451263,
-0.03281955048441887,
0.09336961060762405,
-0.022282110527157784,
-0.28174594044685364,
-0.08078229427337646,
-0.08494999259710312,
-0.043805185705423355,
-0.13497743010520935,
0.07576882094144821,
0.23732800781726837,
0.02908778376877308,
-0.01389587577432394,
-0.12473831325769424,
-0.017889177426695824,
0.030575288459658623,
-0.05309143289923668,
-0.10085879266262054
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-large-v3-finetuned-gtzan
This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2657
- Accuracy: 0.94
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1646 | 0.5 | 28 | 1.8012 | 0.55 |
| 1.0152 | 1.0 | 56 | 0.8618 | 0.79 |
| 1.1129 | 1.49 | 84 | 0.7426 | 0.8 |
| 0.8163 | 1.99 | 112 | 0.8078 | 0.75 |
| 0.4374 | 2.49 | 140 | 0.6259 | 0.81 |
| 0.4607 | 2.99 | 168 | 0.5424 | 0.83 |
| 0.4225 | 3.48 | 196 | 0.3723 | 0.89 |
| 0.1769 | 3.98 | 224 | 0.3517 | 0.9 |
| 0.0927 | 4.48 | 252 | 0.3385 | 0.89 |
| 0.0159 | 4.98 | 280 | 0.3985 | 0.88 |
| 0.0119 | 5.48 | 308 | 0.4626 | 0.9 |
| 0.029 | 5.97 | 336 | 0.4292 | 0.91 |
| 0.0064 | 6.47 | 364 | 0.2710 | 0.93 |
| 0.0057 | 6.97 | 392 | 0.2665 | 0.93 |
| 0.0048 | 7.47 | 420 | 0.2784 | 0.93 |
| 0.0049 | 7.96 | 448 | 0.2550 | 0.94 |
| 0.0049 | 8.46 | 476 | 0.3011 | 0.94 |
| 0.0044 | 8.96 | 504 | 0.2759 | 0.94 |
| 0.0045 | 9.46 | 532 | 0.2661 | 0.94 |
| 0.0048 | 9.96 | 560 | 0.2657 | 0.94 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["marsyas/gtzan"], "metrics": ["accuracy"], "base_model": "openai/whisper-large-v3", "model-index": [{"name": "whisper-large-v3-finetuned-gtzan", "results": [{"task": {"type": "audio-classification", "name": "Audio Classification"}, "dataset": {"name": "GTZAN", "type": "marsyas/gtzan", "config": "all", "split": "train", "args": "all"}, "metrics": [{"type": "accuracy", "value": 0.94, "name": "Accuracy"}]}]}]} | audio-classification | ChuGyouk/whisper-large-v3-finetuned-gtzan | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"audio-classification",
"generated_from_trainer",
"dataset:marsyas/gtzan",
"base_model:openai/whisper-large-v3",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:28:15+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #whisper #audio-classification #generated_from_trainer #dataset-marsyas/gtzan #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #endpoints_compatible #region-us
| whisper-large-v3-finetuned-gtzan
================================
This model is a fine-tuned version of openai/whisper-large-v3 on the GTZAN dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2657
* Accuracy: 0.94
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 4e-05
* train\_batch\_size: 1
* eval\_batch\_size: 1
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 4
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 16
* total\_eval\_batch\_size: 4
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 10
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.2.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #audio-classification #generated_from_trainer #dataset-marsyas/gtzan #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
82,
194,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #whisper #audio-classification #generated_from_trainer #dataset-marsyas/gtzan #base_model-openai/whisper-large-v3 #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 4e-05\n* train\\_batch\\_size: 1\n* eval\\_batch\\_size: 1\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 4\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 10\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.11860337108373642,
0.10540740191936493,
-0.0038859171327203512,
0.060347337275743484,
0.10542457550764084,
0.04471888020634651,
0.1302456259727478,
0.1269608587026596,
-0.049506112933158875,
0.10304262489080429,
0.07697831839323044,
0.0704655572772026,
0.07580531388521194,
0.13577333092689514,
-0.005959650967270136,
-0.28335288166999817,
0.026104815304279327,
-0.017485791817307472,
-0.15264838933944702,
0.10225040465593338,
0.0812436044216156,
-0.09923534840345383,
0.03866192325949669,
0.005131647456437349,
-0.08896833658218384,
-0.032514069229364395,
-0.041598014533519745,
-0.049955010414123535,
0.08708703517913818,
0.03890219330787659,
0.08251254260540009,
0.04203079640865326,
0.11041074246168137,
-0.2544296383857727,
0.009580636397004128,
0.06829463690519333,
0.01976388692855835,
0.072071872651577,
0.1294330358505249,
0.010930688120424747,
0.106503926217556,
-0.0876668393611908,
0.06881212443113327,
0.03942709416151047,
-0.09199932962656021,
-0.25702592730522156,
-0.07688800245523453,
0.07351609319448471,
0.13751037418842316,
0.060307543724775314,
-0.021452853456139565,
0.05458932742476463,
-0.07578909397125244,
0.07467358559370041,
0.20006997883319855,
-0.2398471236228943,
-0.06982149928808212,
0.01771465502679348,
0.05349694937467575,
0.05264788866043091,
-0.10454962402582169,
-0.02556384913623333,
0.020412450656294823,
0.01458078995347023,
0.10108406096696854,
0.022986803203821182,
0.016341034322977066,
-0.0013206368312239647,
-0.14676745235919952,
-0.0631645917892456,
0.12499204277992249,
0.08755218982696533,
-0.021031465381383896,
-0.09622417390346527,
-0.015792421996593475,
-0.19555415213108063,
-0.04796065762639046,
0.01780100353062153,
0.024347949773073196,
-0.05320275202393532,
-0.05610935762524605,
0.035190731287002563,
-0.0644385889172554,
-0.10683900117874146,
0.049856048077344894,
0.1317569762468338,
0.07511526346206665,
-0.023920180276036263,
0.030846459791064262,
0.1308714747428894,
0.03950057551264763,
-0.15025265514850616,
-0.00883179809898138,
0.027085719630122185,
-0.12888894975185394,
-0.02362019009888172,
0.002002902328968048,
0.03511027246713638,
0.04345882683992386,
0.1695868819952011,
-0.060765549540519714,
0.06883840262889862,
0.06401299685239792,
0.0209108404815197,
-0.07079305499792099,
0.13057687878608704,
-0.08439744263887405,
-0.052016813308000565,
-0.04508981108665466,
0.12101825326681137,
-0.006587394047528505,
-0.007216618396341801,
-0.05270073935389519,
0.027763791382312775,
0.10482073575258255,
0.04468142241239548,
0.0016285628080368042,
0.03668048977851868,
-0.08226443082094193,
-0.03749649226665497,
0.06137731671333313,
-0.10143343359231949,
0.03873192146420479,
0.04166813939809799,
-0.057462409138679504,
-0.020346099510788918,
0.007133962120860815,
0.012957560829818249,
-0.0038840663619339466,
0.10427461564540863,
-0.06130564212799072,
-0.03736847639083862,
-0.08778942376375198,
-0.07438594102859497,
0.04368577525019646,
-0.03470325842499733,
0.013529214076697826,
-0.058478593826293945,
-0.1286337971687317,
-0.04717780649662018,
0.06284000724554062,
-0.05329820513725281,
-0.09579094499349594,
-0.040965449064970016,
-0.08552880585193634,
0.04388512670993805,
-0.02439587377011776,
0.16645076870918274,
-0.06508483737707138,
0.09206369519233704,
0.0028596778865903616,
0.050912123173475266,
0.11090879887342453,
0.05531623959541321,
-0.023170888423919678,
0.07268159836530685,
-0.1625310480594635,
0.05224967747926712,
-0.11043248325586319,
0.060003191232681274,
-0.12020836770534515,
-0.11606156080961227,
-0.001821122132241726,
-0.004417737480252981,
0.07123177498579025,
0.0973258763551712,
-0.12431783229112625,
-0.07978330552577972,
0.17419151961803436,
-0.09630925953388214,
-0.10445880889892578,
0.12363524734973907,
0.0005758835468441248,
-0.06972815096378326,
0.014275673776865005,
0.13661888241767883,
0.14544935524463654,
-0.11058474332094193,
-0.017774658277630806,
-0.012603175826370716,
0.1082226112484932,
0.02969852089881897,
0.12684427201747894,
-0.0006267631542868912,
0.006766590289771557,
0.006922822445631027,
-0.06499350070953369,
0.06278663873672485,
-0.092838354408741,
-0.08613445609807968,
-0.02205086126923561,
-0.08665138483047485,
0.011960314586758614,
0.05473238602280617,
0.007329570595175028,
-0.07416877150535583,
-0.14158058166503906,
0.01816064491868019,
0.13759829103946686,
-0.08413822948932648,
-0.003167519113048911,
-0.06984862685203552,
0.0629742369055748,
-0.008393129333853722,
-0.009613052010536194,
-0.14197303354740143,
-0.0755012184381485,
0.035617344081401825,
-0.10049686580896378,
0.004699967801570892,
-0.006940985564142466,
0.05679376423358917,
0.08430241793394089,
-0.052129678428173065,
-0.08982650190591812,
-0.06871812045574188,
0.004984634928405285,
-0.048395585268735886,
-0.2526809573173523,
-0.08493433147668839,
-0.02654828503727913,
0.16773377358913422,
-0.220535010099411,
0.01917322166264057,
0.013010494410991669,
0.12455101311206818,
0.02078826352953911,
-0.0406351163983345,
0.004667324014008045,
0.056141216307878494,
-0.018214359879493713,
-0.07468179613351822,
0.022607678547501564,
0.004184721503406763,
-0.10018183290958405,
-0.019278762862086296,
-0.11886734515428543,
0.11362335830926895,
0.07989746332168579,
0.016126248985528946,
-0.09793735295534134,
-0.030594410374760628,
-0.07379382848739624,
-0.07630082964897156,
-0.027088848873972893,
0.0038762835320085287,
0.14624470472335815,
0.007792147342115641,
0.09327521920204163,
-0.07777681201696396,
-0.05387251079082489,
0.027696724981069565,
-0.000057167853810824454,
-0.00452057458460331,
0.14905990660190582,
0.06273000687360764,
-0.06268320977687836,
0.12170276790857315,
0.0873868390917778,
-0.07186254113912582,
0.14539849758148193,
-0.0888829454779625,
-0.10756826400756836,
-0.03580813109874725,
0.04256366565823555,
0.031645383685827255,
0.12127329409122467,
-0.11061820387840271,
0.01821977272629738,
0.024009011685848236,
0.01923265866935253,
0.019076235592365265,
-0.19204725325107574,
-0.013530811294913292,
0.025857653468847275,
-0.07761289924383163,
-0.0025556583423167467,
-0.03333369642496109,
-0.008035564795136452,
0.08650464564561844,
-0.001625190838240087,
-0.05095237120985985,
-0.014119554311037064,
-0.0213604886084795,
-0.08730638027191162,
0.20079249143600464,
-0.08928284049034119,
-0.1231694296002388,
-0.1333446502685547,
0.03603252395987511,
-0.0025420442689210176,
-0.022625984624028206,
0.026699205860495567,
-0.0849115252494812,
-0.04691636189818382,
-0.06448815762996674,
0.01690957322716713,
-0.01473155990242958,
0.03357233107089996,
0.02745075896382332,
0.03190138563513756,
0.08178068697452545,
-0.07883451879024506,
0.026258377358317375,
0.00006520187889691442,
-0.061765436083078384,
0.031114375218749046,
0.03376062214374542,
0.08359257876873016,
0.16950060427188873,
0.05341731384396553,
0.009981083683669567,
-0.019678084179759026,
0.14376327395439148,
-0.11111355572938919,
0.0025737674441188574,
0.09986373037099838,
0.002193241845816374,
0.03694060072302818,
0.14258144795894623,
0.053791336715221405,
-0.06268765032291412,
0.009883955121040344,
0.041559163480997086,
-0.017368258908391,
-0.24752622842788696,
-0.0392993688583374,
-0.04028243571519852,
0.015965545549988747,
0.10623269528150558,
0.040326789021492004,
-0.00011969899060204625,
0.048250868916511536,
-0.03482808545231819,
0.0017232695827260613,
0.0309427622705698,
0.049901142716407776,
0.026159273460507393,
0.04080527275800705,
0.10474500805139542,
-0.02766571380198002,
-0.02173982560634613,
0.03585745021700859,
0.02817150577902794,
0.24529293179512024,
-0.01618570275604725,
0.1617097109556198,
0.06795380264520645,
0.1410539150238037,
0.00648839958012104,
0.051319751888513565,
0.01756756752729416,
-0.011558757163584232,
0.0231948159635067,
-0.050240106880664825,
0.012511887587606907,
0.044394902884960175,
0.04320362210273743,
0.024499917402863503,
-0.11003534495830536,
0.012200143188238144,
0.028442582115530968,
0.2853879928588867,
0.06604716926813126,
-0.2938024699687958,
-0.0951482430100441,
0.01950128562748432,
-0.06218235567212105,
-0.035366255789995193,
0.027515677735209465,
0.11970328539609909,
-0.08454405516386032,
0.07776258140802383,
-0.06527390331029892,
0.08027813583612442,
-0.07043061405420303,
-0.005987078882753849,
0.13921596109867096,
0.10966213047504425,
0.016175922006368637,
0.08311741799116135,
-0.20675256848335266,
0.2888232171535492,
-0.01716061867773533,
0.05992661044001579,
-0.033640652894973755,
0.04394633695483208,
0.021908124908804893,
-0.004424503073096275,
0.1012212336063385,
-0.011773149482905865,
-0.1288049817085266,
-0.20174136757850647,
-0.11504440009593964,
0.016790855675935745,
0.11427124589681625,
-0.06768769770860672,
0.11185862123966217,
-0.022068485617637634,
-0.032398711889982224,
0.04485272988677025,
-0.10203329473733902,
-0.11462026834487915,
-0.09848316013813019,
0.03931732848286629,
-0.024541383609175682,
0.04703793674707413,
-0.10925356298685074,
-0.11018112301826477,
-0.12297707051038742,
0.15524640679359436,
-0.12192833423614502,
-0.03548512980341911,
-0.13226264715194702,
0.08067532628774643,
0.17637382447719574,
-0.06905844807624817,
0.06120647117495537,
0.012267605401575565,
0.11221131682395935,
0.03680921345949173,
-0.014722947962582111,
0.09318085014820099,
-0.09348393976688385,
-0.2343221753835678,
-0.04285484924912453,
0.1488904356956482,
0.0519881471991539,
0.06806039810180664,
-0.028358381241559982,
0.019651317968964577,
0.007370369043201208,
-0.09894639253616333,
0.040735531598329544,
0.034457072615623474,
0.04260927811264992,
0.05519527941942215,
-0.05600496381521225,
-0.008927254006266594,
-0.043094176799058914,
-0.06112658604979515,
0.07703905552625656,
0.28455737233161926,
-0.0891384705901146,
0.03864589333534241,
0.03511497378349304,
-0.06494150310754776,
-0.1594797819852829,
-0.018412120640277863,
0.13553819060325623,
0.04088548570871353,
0.018130725249648094,
-0.2148122638463974,
0.07021363079547882,
0.09089349210262299,
-0.03336483985185623,
0.06646706163883209,
-0.3068452477455139,
-0.12694591283798218,
0.10438760370016098,
0.10143197327852249,
-0.08356156945228577,
-0.1715332269668579,
-0.0654349997639656,
0.012719442136585712,
-0.09008559584617615,
0.08362092077732086,
-0.04032890871167183,
0.11426490545272827,
-0.00992754939943552,
-0.005795352626591921,
0.017355509102344513,
-0.06326315551996231,
0.17064636945724487,
0.01652374491095543,
0.06623990833759308,
-0.013870175927877426,
0.04434998705983162,
0.025963356718420982,
-0.06676367670297623,
0.015135866589844227,
-0.0752398744225502,
0.03038822114467621,
-0.10306671261787415,
-0.03385719656944275,
-0.07756082713603973,
0.016554974019527435,
-0.054703108966350555,
-0.024761971086263657,
-0.018525106832385063,
0.07295986264944077,
0.059465184807777405,
-0.00886298157274723,
0.10438157618045807,
-0.008607886731624603,
0.13874754309654236,
0.09324841946363449,
0.09055890142917633,
0.03240980952978134,
-0.10945505648851395,
-0.01838093437254429,
-0.00855888519436121,
0.039371415972709656,
-0.12712495028972626,
0.026232831180095673,
0.14230133593082428,
0.03405711054801941,
0.12074582278728485,
0.04984263330698013,
-0.07933397591114044,
-0.007767544128000736,
0.08324078470468521,
-0.096028633415699,
-0.128793865442276,
-0.017890388146042824,
0.027059299871325493,
-0.13966013491153717,
0.006437601521611214,
0.0865771621465683,
-0.04529152438044548,
-0.008732855319976807,
0.011523360386490822,
0.050900306552648544,
-0.04046693071722984,
0.22806286811828613,
0.036876846104860306,
0.10421660542488098,
-0.08152983337640762,
0.08231799304485321,
0.061246562749147415,
-0.14989762008190155,
0.012606514617800713,
0.08763939142227173,
-0.06690657138824463,
-0.02912956476211548,
0.04449472948908806,
0.07099263370037079,
0.02428867481648922,
-0.06689869612455368,
-0.110316202044487,
-0.14601296186447144,
0.07982698827981949,
0.06880088895559311,
0.04182866960763931,
0.044119060039520264,
0.00873258151113987,
0.04158075898885727,
-0.08954210579395294,
0.13002002239227295,
0.10083930194377899,
0.08062459528446198,
-0.16688895225524902,
0.09609916061162949,
0.023277567699551582,
0.019483275711536407,
-0.006142535246908665,
0.028115399181842804,
-0.12184328585863113,
0.0038669223431497812,
-0.0882195308804512,
-0.0054902262054383755,
-0.06106340140104294,
0.0037940554320812225,
0.011646543629467487,
-0.051901113241910934,
-0.03426382318139076,
0.02042977139353752,
-0.09552480280399323,
-0.04029982164502144,
-0.024016812443733215,
0.09484198689460754,
-0.09491747617721558,
-0.031732626259326935,
0.050235457718372345,
-0.12047695368528366,
0.09409753978252411,
0.023673037067055702,
0.05567629262804985,
0.011297074146568775,
-0.11840459704399109,
0.02590637281537056,
0.024143006652593613,
0.013970626518130302,
0.01054264698177576,
-0.19581012427806854,
0.006348446477204561,
-0.044273197650909424,
0.005915259011089802,
-0.01019254606217146,
-0.0032104779966175556,
-0.12101054191589355,
0.006090532522648573,
-0.041182927787303925,
-0.05186094716191292,
-0.06331989169120789,
0.041140299290418625,
0.07778079062700272,
-0.008396722376346588,
0.13628652691841125,
-0.07899609208106995,
0.051952846348285675,
-0.23800423741340637,
0.006606251932680607,
-0.011081852950155735,
-0.05608426779508591,
-0.0727076530456543,
-0.020538097247481346,
0.08895951509475708,
-0.051729220896959305,
0.11475008726119995,
-0.050053276121616364,
0.0310265701264143,
0.02206527441740036,
-0.06745927035808563,
0.06175611540675163,
0.07045683264732361,
0.17617173492908478,
0.03465895727276802,
-0.012020294554531574,
0.05249533802270889,
-0.013121623545885086,
0.035208478569984436,
0.04643834009766579,
0.14266836643218994,
0.15603892505168915,
0.006089146714657545,
0.05055535212159157,
0.07410530000925064,
-0.157744362950325,
-0.13846628367900848,
0.13681833446025848,
-0.07888603955507278,
0.12625747919082642,
-0.016426073387265205,
0.17163994908332825,
0.08719570934772491,
-0.2162151336669922,
0.0483274832367897,
-0.02705586701631546,
-0.0950058177113533,
-0.09109865128993988,
-0.09327638149261475,
-0.07726604491472244,
-0.16811974346637726,
0.018044430762529373,
-0.11287713795900345,
0.023312678560614586,
0.08860775083303452,
0.037015125155448914,
0.037144433706998825,
0.13179174065589905,
0.0768195167183876,
0.03501275181770325,
0.07195968925952911,
0.03496938571333885,
-0.017590153962373734,
-0.04440495744347572,
-0.09412384033203125,
0.033124033361673355,
-0.022003209218382835,
0.03861875459551811,
-0.060440100729465485,
-0.0754312127828598,
0.08849906176328659,
0.043625641614198685,
-0.09126552939414978,
0.02391446754336357,
-0.034476425498723984,
0.05140357092022896,
0.06624995917081833,
0.012528538703918457,
-0.0024657684843987226,
-0.020722167566418648,
0.20034947991371155,
-0.07211773842573166,
-0.06463664770126343,
-0.12627007067203522,
0.2191472351551056,
-0.031866732984781265,
-0.023478545248508453,
0.05395540967583656,
-0.05409061536192894,
-0.006006367038935423,
0.1416974812746048,
0.15939772129058838,
-0.01738213188946247,
-0.02469487488269806,
0.01750468648970127,
-0.016654303297400475,
-0.03394867852330208,
0.08195729553699493,
0.1152237206697464,
0.07791390269994736,
-0.07065463066101074,
-0.04078904911875725,
-0.02600759081542492,
-0.037888430058956146,
-0.028666727244853973,
0.04803013429045677,
0.033409446477890015,
0.0035130251199007034,
-0.016039052978157997,
0.10361722856760025,
-0.06928309053182602,
-0.10653895884752274,
0.06833045929670334,
-0.1574881225824356,
-0.19353783130645752,
-0.0525302030146122,
0.08299161493778229,
0.012579887174069881,
0.03977929800748825,
-0.009625560604035854,
-0.04246591031551361,
0.09549079090356827,
-0.0010425325017422438,
-0.056429579854011536,
-0.08211368322372437,
0.060397278517484665,
-0.040719833225011826,
0.20997901260852814,
-0.04201103746891022,
0.061095669865608215,
0.1173284649848938,
0.014809181913733482,
-0.11240162700414658,
0.0240838211029768,
0.0797903910279274,
-0.13315165042877197,
0.046824753284454346,
0.16488438844680786,
-0.042014338076114655,
0.11630909889936447,
0.03369492292404175,
-0.09415990114212036,
-0.0005695901927538216,
-0.07407087087631226,
-0.04963016137480736,
-0.0625392347574234,
0.0021720698568969965,
-0.04698081687092781,
0.15776529908180237,
0.19582507014274597,
-0.0667722299695015,
-0.028302880004048347,
-0.03590921685099602,
0.038045257329940796,
0.03411361947655678,
0.1425304412841797,
-0.003606436774134636,
-0.26170411705970764,
0.03919404000043869,
-0.028875162824988365,
0.04094848781824112,
-0.19645754992961884,
-0.09255779534578323,
0.03441227972507477,
-0.0516410693526268,
-0.093083955347538,
0.11002243310213089,
0.08404435962438583,
0.05114634707570076,
-0.06059686467051506,
-0.08962205797433853,
-0.051754120737314224,
0.15713956952095032,
-0.1755814552307129,
-0.07716136425733566
] |
null | null | transformers |
# NeuralNeuBeagle-7B
NeuralNeuBeagle-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [mlabonne/NeuralOmniBeagle-7B](https://huggingface.co/mlabonne/NeuralOmniBeagle-7B)
## 🧩 Configuration
```yaml
models:
- model: mlabonne/NeuBeagle-7B
# No parameters necessary for base model
- model: mlabonne/NeuralOmniBeagle-7B
parameters:
density: 0.53
weight: 0.6
merge_method: dare_ties
base_model: mlabonne/NeuBeagle-7B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/NeuralNeuBeagle-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` | {"license": "cc-by-nc-4.0", "tags": ["merge", "mergekit", "lazymergekit"], "base_model": ["mlabonne/NeuralOmniBeagle-7B"]} | text-generation | shadowml/NeuralNeuBeagle-7B | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"merge",
"mergekit",
"lazymergekit",
"base_model:mlabonne/NeuralOmniBeagle-7B",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:28:25+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# NeuralNeuBeagle-7B
NeuralNeuBeagle-7B is a merge of the following models using LazyMergekit:
* mlabonne/NeuralOmniBeagle-7B
## Configuration
## Usage
| [
"# NeuralNeuBeagle-7B\n\nNeuralNeuBeagle-7B is a merge of the following models using LazyMergekit:\n* mlabonne/NeuralOmniBeagle-7B",
"## Configuration",
"## Usage"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# NeuralNeuBeagle-7B\n\nNeuralNeuBeagle-7B is a merge of the following models using LazyMergekit:\n* mlabonne/NeuralOmniBeagle-7B",
"## Configuration",
"## Usage"
] | [
88,
47,
4,
3
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #merge #mergekit #lazymergekit #base_model-mlabonne/NeuralOmniBeagle-7B #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# NeuralNeuBeagle-7B\n\nNeuralNeuBeagle-7B is a merge of the following models using LazyMergekit:\n* mlabonne/NeuralOmniBeagle-7B## Configuration## Usage"
] | [
-0.01817581057548523,
0.09830210357904434,
-0.0017693393165245652,
-0.0000025148729037027806,
0.07299602031707764,
0.054017480462789536,
0.18815124034881592,
0.08771070837974548,
-0.03970380499958992,
0.026721166446805,
0.09532463550567627,
0.20509199798107147,
-0.004932765383273363,
0.06509020924568176,
-0.026204463094472885,
-0.19953970611095428,
0.11023420840501785,
0.044881705194711685,
0.01390968170017004,
0.06226468086242676,
0.09231488406658173,
-0.04446934536099434,
0.09322245419025421,
0.00683129858225584,
-0.17765648663043976,
-0.0027277134358882904,
0.037368420511484146,
-0.04313177242875099,
0.0923934206366539,
0.0871674120426178,
0.07800395786762238,
0.04434506222605705,
0.028658676892518997,
-0.11282005906105042,
0.034755636006593704,
0.000650147907435894,
-0.032358407974243164,
0.09115033596754074,
0.05892851576209068,
-0.004433234687894583,
0.15115498006343842,
0.01268945075571537,
0.04367128759622574,
0.04268442466855049,
-0.11198534816503525,
-0.057584285736083984,
-0.03811236470937729,
0.1059199795126915,
0.04159938916563988,
0.06227396801114082,
-0.03220274671912193,
0.16399693489074707,
-0.050050534307956696,
0.0666915625333786,
0.04999218508601189,
-0.3406456708908081,
-0.02012675441801548,
0.1571625918149948,
0.017405107617378235,
-0.06853184103965759,
-0.024669157341122627,
0.08962944149971008,
0.07395026832818985,
-0.006296489387750626,
0.08070321381092072,
-0.05515708029270172,
0.09974949061870575,
-0.055267732590436935,
-0.12142355740070343,
0.010117215104401112,
0.09692513942718506,
0.037973552942276,
0.02698437124490738,
-0.10714594274759293,
-0.07061522454023361,
0.10511025786399841,
-0.0661364197731018,
-0.012205074541270733,
-0.013765573501586914,
0.015239770524203777,
0.019412590190768242,
-0.07851454615592957,
-0.042036887258291245,
-0.0031356089748442173,
-0.09970881789922714,
0.09229109436273575,
0.00964145828038454,
-0.00003200648643542081,
0.008979687467217445,
0.04094797745347023,
0.00808930117636919,
-0.09437309205532074,
0.03978811576962471,
-0.04127606004476547,
-0.04338690638542175,
-0.03770122677087784,
-0.06200530007481575,
-0.03130713477730751,
0.08106810599565506,
0.1841452419757843,
0.07258380204439163,
0.029146665707230568,
-0.022287966683506966,
0.07632282376289368,
-0.0004854853614233434,
0.0014050595927983522,
-0.14764106273651123,
-0.09807470440864563,
0.0892011895775795,
0.07098640501499176,
0.08261261880397797,
-0.008257904089987278,
-0.15393568575382233,
-0.001764046959578991,
0.0184915941208601,
-0.0023218593560159206,
0.04459850490093231,
0.1258312463760376,
-0.060887258499860764,
-0.07882735878229141,
0.1903568059206009,
-0.03223126009106636,
0.017487136647105217,
0.01908698119223118,
-0.05372192710638046,
0.006664706859737635,
0.02373320609331131,
0.052955664694309235,
-0.0008600817527621984,
0.056705474853515625,
-0.09421543031930923,
-0.05634593218564987,
-0.05601528659462929,
-0.08863075077533722,
0.02277255617082119,
0.014932396821677685,
-0.0035125757567584515,
-0.12951768934726715,
-0.2431516945362091,
0.0019337236881256104,
0.07587485015392303,
-0.061750516295433044,
-0.06028228998184204,
-0.0998183935880661,
-0.018838470801711082,
-0.01760362647473812,
-0.028113974258303642,
-0.04822534695267677,
-0.0066686468198895454,
-0.009412831626832485,
-0.022018903866410255,
0.019973769783973694,
-0.1992548406124115,
0.0042180223390460014,
-0.09182842820882797,
0.057673629373311996,
-0.14161568880081177,
0.09653840959072113,
-0.028319478034973145,
0.10330060869455338,
-0.08482391387224197,
-0.018940581008791924,
-0.0655747726559639,
0.012425883673131466,
0.04145422577857971,
0.1000126376748085,
-0.07579779624938965,
-0.08680418133735657,
0.030818043276667595,
-0.10349740087985992,
-0.1476147174835205,
0.12500150501728058,
-0.03594028204679489,
0.1107027605175972,
0.09806287288665771,
0.23807621002197266,
0.05778870731592178,
-0.01734134927392006,
-0.03613298758864403,
-0.0442817322909832,
-0.07160960882902145,
-0.04635023698210716,
0.027269642800092697,
0.05915651470422745,
-0.11681382358074188,
0.03462904691696167,
0.08224532008171082,
0.09225496649742126,
-0.010155065916478634,
-0.08051951974630356,
-0.019775427877902985,
-0.09791432321071625,
0.0936383455991745,
0.007302167359739542,
0.0605170838534832,
-0.05745353549718857,
-0.03693193569779396,
0.09310282766819,
0.07619141042232513,
-0.06275870651006699,
-0.007869274355471134,
-0.09839621186256409,
0.07532579451799393,
-0.05981356278061867,
0.055385518819093704,
-0.0673258900642395,
-0.16833020746707916,
0.038496408611536026,
-0.028810491785407066,
0.09457824379205704,
-0.0020144919399172068,
0.029838552698493004,
0.02945353277027607,
-0.09140059351921082,
-0.024587512016296387,
0.11941685527563095,
0.034136224538087845,
-0.006708424538373947,
-0.1930936574935913,
-0.0009814915247261524,
-0.04349121078848839,
0.2203802615404129,
-0.1485387682914734,
0.05147446691989899,
-0.03314768150448799,
0.2058970183134079,
-0.023085566237568855,
0.021709313616156578,
0.03044898808002472,
0.005332822911441326,
-0.05081701651215553,
0.01116382796317339,
0.12622636556625366,
-0.019377799704670906,
-0.13916821777820587,
0.12366217374801636,
-0.13442470133304596,
0.12196509540081024,
0.13222898542881012,
-0.010422811843454838,
-0.035354502499103546,
-0.020645108073949814,
0.01276724599301815,
-0.0598156563937664,
0.09582329541444778,
-0.05824960768222809,
0.08550731837749481,
-0.032173287123441696,
0.10770375281572342,
-0.10302708297967911,
-0.0392620675265789,
0.0044477651827037334,
-0.003379449248313904,
-0.04428080469369888,
0.029652895405888557,
0.025400014594197273,
-0.29156357049942017,
0.11533868312835693,
0.10227054357528687,
-0.0287947915494442,
0.10548409074544907,
0.014434938319027424,
0.023875730112195015,
-0.0585213229060173,
-0.006651465781033039,
0.036581579595804214,
0.037540730088949203,
-0.04381205514073372,
0.0452587716281414,
0.04736245423555374,
-0.008887836709618568,
0.0912228524684906,
-0.06174392253160477,
0.02707841247320175,
-0.04327782988548279,
0.004851131699979305,
0.12503845989704132,
0.07467418164014816,
-0.009577346034348011,
0.06404655426740646,
0.013436070643365383,
-0.09358861297369003,
0.07451453059911728,
-0.004082442726939917,
-0.08424079418182373,
0.13543349504470825,
-0.15675194561481476,
-0.24905180931091309,
-0.17198476195335388,
-0.04731493815779686,
-0.09737172722816467,
0.004689408466219902,
0.011111756786704063,
0.016962461173534393,
-0.03128510341048241,
-0.09371306002140045,
0.011405999772250652,
0.053986042737960815,
-0.03708210214972496,
0.023621702566742897,
0.027224067598581314,
-0.007783399894833565,
-0.09550570696592331,
0.0023753962013870478,
-0.004892768803983927,
-0.02357039786875248,
0.024318331852555275,
-0.12068605422973633,
0.07132978737354279,
0.1774500012397766,
0.010566657409071922,
-0.026990551501512527,
-0.04502028971910477,
0.23073874413967133,
-0.06294206529855728,
0.062021784484386444,
0.09129983186721802,
-0.042232826352119446,
0.017914170399308205,
0.22163143754005432,
0.028373708948493004,
-0.07517863810062408,
0.037479400634765625,
-0.015081590972840786,
-0.017756935209035873,
-0.16346174478530884,
-0.16602185368537903,
-0.07283860445022583,
0.05080099403858185,
0.07234571129083633,
0.050927698612213135,
0.14593251049518585,
0.07373250275850296,
-0.041818782687187195,
-0.033519018441438675,
0.04605383425951004,
0.11239325255155563,
0.29458048939704895,
0.0050583151169121265,
0.12024518847465515,
-0.0431659035384655,
-0.07441987842321396,
0.04403117671608925,
0.02774752490222454,
0.049335528165102005,
0.06466026604175568,
0.14051832258701324,
0.018889697268605232,
0.06084241718053818,
0.08158151060342789,
0.05000649765133858,
-0.03564884513616562,
-0.04044673591852188,
-0.03520922735333443,
-0.07164375483989716,
0.0010232928907498717,
0.04979730024933815,
0.010594558902084827,
0.009380066767334938,
0.023186782374978065,
-0.06672383099794388,
0.08619644492864609,
0.045077741146087646,
0.124640554189682,
-0.30387815833091736,
-0.041853345930576324,
0.03810197860002518,
0.010375669226050377,
-0.02968437969684601,
0.007368460763245821,
0.027281491085886955,
-0.07859841734170914,
0.12258563190698624,
-0.02567877247929573,
0.09196388721466064,
-0.02420642226934433,
0.01941690966486931,
-0.0495847724378109,
0.05593705177307129,
0.00011145132157253101,
0.08839564025402069,
-0.14869879186153412,
0.10159313678741455,
0.03881252557039261,
0.04306560754776001,
0.009018604643642902,
-0.024910874664783478,
0.03573943302035332,
0.19284306466579437,
0.029758134856820107,
-0.017454255372285843,
-0.0763879269361496,
0.0149672357365489,
-0.08048778772354126,
-0.006412937771528959,
0.03822530433535576,
0.015732889994978905,
0.05839799717068672,
-0.01493267435580492,
-0.05999337136745453,
0.03868584707379341,
0.023014336824417114,
-0.17297354340553284,
-0.17780612409114838,
0.040489811450242996,
0.1542886644601822,
0.10719873756170273,
-0.06205826997756958,
-0.03776288777589798,
-0.08545159548521042,
0.23487944900989532,
-0.017652295529842377,
-0.01247247215360403,
-0.08992044627666473,
-0.015909332782030106,
0.11614228785037994,
-0.038261376321315765,
0.07772330194711685,
-0.061670709401369095,
0.05946556478738785,
-0.06522567570209503,
-0.16613492369651794,
0.08105533570051193,
-0.08027933537960052,
-0.07794151455163956,
-0.0495418980717659,
0.1056547462940216,
-0.04669266939163208,
0.03014182113111019,
0.05755152553319931,
0.04175921902060509,
-0.008654627948999405,
-0.04973892122507095,
-0.024816183373332024,
0.023906240239739418,
-0.009870350360870361,
0.0697631984949112,
-0.1491142213344574,
-0.15157628059387207,
-0.04297856241464615,
-0.010646447539329529,
0.17739836871623993,
0.24153786897659302,
-0.042480334639549255,
0.06354561448097229,
0.22126784920692444,
-0.06738720834255219,
-0.26500841975212097,
-0.03378371149301529,
0.005339978728443384,
-0.018424341455101967,
-0.02439313940703869,
-0.1433790922164917,
0.08696921169757843,
0.0982966497540474,
-0.030393237248063087,
0.013356891460716724,
-0.2655580937862396,
-0.13255734741687775,
0.07027623057365417,
0.058023177087306976,
0.16647887229919434,
-0.09881710261106491,
-0.042580220848321915,
-0.09814684092998505,
-0.07260404527187347,
0.1987159699201584,
-0.0438447929918766,
0.11819558590650558,
0.004730146378278732,
-0.0017814685124903917,
0.0038237874396145344,
-0.030702996999025345,
0.08079337328672409,
-0.028955508023500443,
0.04834745451807976,
-0.04435763508081436,
-0.026358261704444885,
0.2112078219652176,
-0.005786189343780279,
0.06659805774688721,
-0.0920870378613472,
0.017741385847330093,
0.01638512872159481,
-0.049220360815525055,
-0.07053562998771667,
0.06585796177387238,
-0.017441563308238983,
-0.07456915080547333,
-0.07621189951896667,
0.09233969449996948,
0.04062044247984886,
0.03559431433677673,
0.11973448097705841,
-0.023634498938918114,
0.05749877542257309,
0.18689770996570587,
0.09654654562473297,
-0.09816529601812363,
0.060732319951057434,
-0.010961947031319141,
-0.08670332282781601,
0.04618173465132713,
-0.005646003410220146,
-0.011607145890593529,
0.10354950278997421,
-0.047589261084795,
0.11212237179279327,
0.03839849308133125,
-0.030454616993665695,
-0.04203242436051369,
0.1279885619878769,
-0.12869779765605927,
-0.17098765075206757,
0.001960167195647955,
0.0256944727152586,
-0.011075419373810291,
0.0586424395442009,
0.1753193438053131,
-0.05059487000107765,
-0.009153789840638638,
0.06399337202310562,
-0.04682087153196335,
-0.09270691126585007,
0.09747982025146484,
0.015508134849369526,
0.031167082488536835,
-0.07902200520038605,
0.04136248677968979,
0.08150307089090347,
-0.09177440404891968,
-0.005515219643712044,
0.10910244286060333,
-0.1207890510559082,
-0.10054317116737366,
-0.07673828303813934,
0.2376885563135147,
-0.08554767817258835,
-0.05024375393986702,
-0.10837367922067642,
-0.08560162782669067,
0.023570790886878967,
0.13596370816230774,
0.08340650051832199,
0.04262358322739601,
-0.014462575316429138,
-0.05813690274953842,
-0.08970101177692413,
0.10242459177970886,
-0.02795303426682949,
0.09098944813013077,
-0.09198608994483948,
-0.03594290092587471,
-0.013622268103063107,
-0.0054336232133209705,
-0.08526113629341125,
-0.0075368438847362995,
-0.1867608278989792,
-0.035857245326042175,
-0.10835544764995575,
-0.033705130219459534,
-0.1340380162000656,
-0.03345385938882828,
0.009253391996026039,
0.007519808132201433,
-0.04461611062288284,
-0.026481887325644493,
-0.03908175602555275,
-0.01344163529574871,
0.03509194031357765,
0.0722586140036583,
-0.06978294253349304,
-0.04299354553222656,
-0.0018769041635096073,
-0.02545507624745369,
0.07853418588638306,
-0.013602660968899727,
-0.004590630531311035,
0.0394335575401783,
-0.07793668657541275,
-0.06705624610185623,
0.07230544835329056,
0.02287944033741951,
0.03438577800989151,
-0.09139368683099747,
-0.014937750063836575,
0.05603013187646866,
0.027025742456316948,
0.02243844047188759,
0.11425606906414032,
-0.07197974622249603,
0.00523182051256299,
-0.0561976358294487,
-0.08009196072816849,
-0.03601866587996483,
-0.012879107147455215,
-0.04997694119811058,
-0.008371994830667973,
0.1984337717294693,
-0.09101894497871399,
-0.0034269203897565603,
-0.0807969719171524,
-0.005011918023228645,
-0.02708371914923191,
-0.17272640764713287,
-0.061780478805303574,
-0.055445943027734756,
-0.011943064630031586,
-0.011781846173107624,
0.14643549919128418,
-0.044024430215358734,
-0.24407267570495605,
0.05430750548839569,
-0.007932835258543491,
-0.034103404730558395,
0.03844168409705162,
0.2105208784341812,
0.11462845653295517,
-0.024413054808974266,
-0.07378595322370529,
0.07821120321750641,
0.02214040607213974,
0.08698291331529617,
0.030331602320075035,
0.06775648891925812,
0.009610765613615513,
0.08716408908367157,
0.09886360168457031,
0.027095552533864975,
-0.059654176235198975,
0.12907099723815918,
-0.04966637119650841,
0.06751805543899536,
-0.03459065034985542,
0.13517218828201294,
0.1652318239212036,
-0.06576545536518097,
0.034503623843193054,
0.03613796457648277,
-0.04629102349281311,
-0.07440856099128723,
-0.16755270957946777,
-0.12107716500759125,
-0.14509901404380798,
-0.018156860023736954,
-0.10758726298809052,
-0.07409375160932541,
-0.01937510445713997,
0.0269508957862854,
-0.03278917819261551,
0.1492583304643631,
-0.024450432509183884,
0.009017267264425755,
0.026595229282975197,
-0.029361261054873466,
-0.05587753653526306,
-0.03569076210260391,
-0.037917234003543854,
-0.058742716908454895,
0.009552526287734509,
0.0014280577888712287,
0.00804104097187519,
-0.007423861417919397,
0.05002361163496971,
-0.029430411756038666,
-0.09403369575738907,
0.004053277894854546,
0.04622524231672287,
0.03331264108419418,
0.029725532978773117,
0.00955356564372778,
-0.0912947803735733,
0.0054277218878269196,
0.09592507034540176,
-0.02110530063509941,
-0.15903633832931519,
-0.0991198942065239,
0.2988237738609314,
-0.05174904316663742,
0.04954591765999794,
-0.0046250950545072556,
-0.017781633883714676,
-0.01484823040664196,
0.25035229325294495,
0.32117024064064026,
-0.10818369686603546,
-0.026090508326888084,
0.0066824983805418015,
0.003575533628463745,
0.0059156413190066814,
0.10326241701841354,
-0.013826855458319187,
0.15457938611507416,
-0.03354461118578911,
-0.012306598015129566,
-0.0435001440346241,
-0.05567724630236626,
-0.09870588779449463,
-0.033292949199676514,
0.04764466732740402,
-0.03409233316779137,
-0.02498944103717804,
0.0768129751086235,
-0.14247004687786102,
0.06279072910547256,
-0.029906395822763443,
-0.1081332415342331,
-0.091736800968647,
-0.08202282339334488,
0.029655545949935913,
-0.040307193994522095,
0.08028174936771393,
-0.05745832249522209,
-0.021387979388237,
-0.023679440841078758,
-0.0540677011013031,
-0.1101059541106224,
-0.03216587007045746,
0.026459569111466408,
-0.057653892785310745,
0.1102428212761879,
-0.050784431397914886,
0.04798102006316185,
0.14226962625980377,
-0.023981129750609398,
-0.11062482744455338,
0.05792622268199921,
0.008301951922476292,
-0.030186980962753296,
0.05975455045700073,
0.04265384003520012,
-0.0035666513722389936,
0.15066863596439362,
0.03128261864185333,
-0.14920201897621155,
0.04813281446695328,
-0.009624242782592773,
-0.028912942856550217,
-0.05692167580127716,
0.06958620250225067,
-0.04300693795084953,
0.13682837784290314,
0.10963451862335205,
-0.03071853518486023,
-0.02098858915269375,
-0.0036251412238925695,
0.01003546454012394,
0.10010505467653275,
0.05128350481390953,
-0.04047228768467903,
-0.21281501650810242,
-0.047278109937906265,
0.023875614628195763,
-0.0063470350578427315,
-0.2788000702857971,
-0.07477573305368423,
-0.1602441668510437,
0.001176095916889608,
-0.1053641214966774,
0.09235439449548721,
0.14841781556606293,
-0.014954703859984875,
-0.01876109093427658,
-0.18073296546936035,
-0.03943248465657234,
0.03939903900027275,
-0.09988787025213242,
-0.1310887336730957
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# deberta-v3-base-pii-identifier-v2
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0154
- Accuracy: 0.9894
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 57 | 0.1350 | 0.9574 |
| No log | 2.0 | 114 | 0.0353 | 0.9787 |
| No log | 3.0 | 171 | 0.0154 | 0.9894 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/deberta-v3-base", "model-index": [{"name": "deberta-v3-base-pii-identifier-v2", "results": []}]} | text-classification | JasperLS/deberta-v3-base-pii-identifier-v2 | [
"transformers",
"tensorboard",
"safetensors",
"deberta-v2",
"text-classification",
"generated_from_trainer",
"base_model:microsoft/deberta-v3-base",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:28:46+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-base #license-mit #autotrain_compatible #endpoints_compatible #region-us
| deberta-v3-base-pii-identifier-v2
=================================
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0154
* Accuracy: 0.9894
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
72,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #deberta-v2 #text-classification #generated_from_trainer #base_model-microsoft/deberta-v3-base #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.09359027445316315,
0.08016564697027206,
-0.0026267243083566427,
0.10697105526924133,
0.1524074673652649,
0.022961324080824852,
0.16091719269752502,
0.0996766909956932,
-0.06603097915649414,
0.05194495990872383,
0.13818226754665375,
0.13795819878578186,
0.02133444882929325,
0.1332843154668808,
-0.07479191571474075,
-0.23455564677715302,
0.01803063601255417,
0.03368435427546501,
-0.056571412831544876,
0.10315793007612228,
0.10648863762617111,
-0.13048908114433289,
0.09485342353582382,
-0.021062908694148064,
-0.1761154681444168,
0.017955206334590912,
0.02477145567536354,
-0.05305352434515953,
0.14014482498168945,
0.05351382493972778,
0.1478423774242401,
0.03894076123833656,
0.09230995178222656,
-0.19407746195793152,
0.00909760594367981,
0.05912744253873825,
-0.01533927209675312,
0.07174097746610641,
0.039588820189237595,
0.011369885876774788,
0.08083485066890717,
-0.0991998165845871,
0.0744861289858818,
0.013791915029287338,
-0.13764387369155884,
-0.21883292496204376,
-0.07818326354026794,
0.00689873518422246,
0.09353239089250565,
0.07552590221166611,
-0.014873752370476723,
0.14065326750278473,
-0.043786074966192245,
0.09608648717403412,
0.1997159719467163,
-0.29881417751312256,
-0.05768030509352684,
0.07274031639099121,
0.05683353543281555,
0.0922451764345169,
-0.09228985011577606,
-0.004419348202645779,
0.07024668902158737,
0.02515524812042713,
0.12681584060192108,
-0.022971751168370247,
-0.00824503879994154,
-0.0012376306112855673,
-0.14168351888656616,
-0.01624646969139576,
0.1429859846830368,
0.050745438784360886,
-0.04038264974951744,
-0.05238131061196327,
-0.06744738668203354,
-0.13786332309246063,
-0.030683115124702454,
-0.04734104126691818,
0.0582566037774086,
-0.032336510717868805,
-0.06553742289543152,
-0.016627388074994087,
-0.10964439809322357,
-0.07731882482767105,
-0.058255620300769806,
0.13131816685199738,
0.030250251293182373,
-0.0033099486026912928,
-0.027792101725935936,
0.09970762580633163,
-0.032244592905044556,
-0.1413685828447342,
0.008260727860033512,
0.025480614975094795,
-0.0011408593272790313,
-0.06041337549686432,
-0.05918783321976662,
-0.09769857674837112,
0.02107001096010208,
0.14482301473617554,
-0.03687797486782074,
0.053367819637060165,
0.005775282625108957,
0.037904322147369385,
-0.09627735614776611,
0.1893654465675354,
-0.04842206463217735,
-0.05480155721306801,
0.02271377108991146,
0.07859016209840775,
0.06308252364397049,
-0.01568460278213024,
-0.14673833549022675,
0.006146891042590141,
0.12605035305023193,
0.023969018831849098,
-0.06222926452755928,
0.07010778039693832,
-0.06540083885192871,
-0.010204019024968147,
0.03902316838502884,
-0.08397798985242844,
0.024986589327454567,
-0.0022800490260124207,
-0.05650746077299118,
-0.05930882319808006,
0.020775869488716125,
0.01909162662923336,
0.022187311202287674,
0.10678138583898544,
-0.08617562800645828,
-0.0038106869906187057,
-0.09182729572057724,
-0.14487269520759583,
0.01942947879433632,
-0.09641755372285843,
0.035836391150951385,
-0.12686683237552643,
-0.16530853509902954,
-0.02097003348171711,
0.04013948515057564,
-0.035469841212034225,
-0.014374388381838799,
-0.06160469725728035,
-0.07052073627710342,
0.014216057024896145,
-0.02073836885392666,
0.05837069824337959,
-0.06266123801469803,
0.09328887611627579,
0.060530420392751694,
0.07653581351041794,
-0.07677561789751053,
0.036861758679151535,
-0.08372423052787781,
0.03290622681379318,
-0.188947856426239,
0.032071396708488464,
-0.05831197649240494,
0.07574257254600525,
-0.07741864770650864,
-0.0688176304101944,
0.013110876083374023,
0.011263877153396606,
0.08012399077415466,
0.08769188076257706,
-0.19504185020923615,
-0.059599243104457855,
0.15341655910015106,
-0.09473706036806107,
-0.14348623156547546,
0.12224869430065155,
-0.058161329478025436,
0.058060016483068466,
0.08246364444494247,
0.18403048813343048,
0.06563897430896759,
-0.11179659515619278,
0.01974588818848133,
-0.013362188823521137,
0.0479198694229126,
-0.03184010833501816,
0.06222432851791382,
0.001448335824534297,
0.03194454312324524,
0.010832502506673336,
-0.04523807018995285,
0.04280983284115791,
-0.07646677643060684,
-0.07505349814891815,
-0.02115287445485592,
-0.10054153949022293,
0.04450574144721031,
0.051330432295799255,
0.06027572974562645,
-0.11973494291305542,
-0.08082324266433716,
0.09482862800359726,
0.0667484849691391,
-0.06840959936380386,
0.01212317869067192,
-0.07946228235960007,
0.06649553030729294,
-0.06517364084720612,
-0.018822377547621727,
-0.14082816243171692,
-0.07230737060308456,
0.016960034146904945,
-0.005407652817666531,
0.008366324007511139,
0.03492407500743866,
0.07222552597522736,
0.07701929658651352,
-0.06597635895013809,
-0.020912477746605873,
-0.02600106969475746,
0.028976647183299065,
-0.12397684901952744,
-0.19648151099681854,
-0.012187924236059189,
-0.035773344337940216,
0.12444022297859192,
-0.23804891109466553,
0.051001470535993576,
0.024282053112983704,
0.09710578620433807,
0.05156455561518669,
-0.004523713607341051,
-0.045181822031736374,
0.0706171840429306,
-0.04859891161322594,
-0.06811392307281494,
0.05102778971195221,
0.0001131029348471202,
-0.10792587697505951,
-0.04457893222570419,
-0.17681390047073364,
0.20879961550235748,
0.13565771281719208,
-0.07855026423931122,
-0.08854447305202484,
0.011985952965915203,
-0.023186948150396347,
-0.026737594977021217,
-0.033195096999406815,
-0.030696820467710495,
0.11220070719718933,
-0.016525590792298317,
0.14897798001766205,
-0.08237442374229431,
-0.031078249216079712,
0.02583707496523857,
-0.04149521514773369,
-0.009339014068245888,
0.10224220901727676,
0.07565946131944656,
-0.12925399839878082,
0.14999978244304657,
0.17898499965667725,
-0.08218309283256531,
0.1393691599369049,
-0.02469305321574211,
-0.05143234506249428,
-0.035338886082172394,
-0.005210107658058405,
0.02291952073574066,
0.12491580843925476,
-0.12767274677753448,
-0.004764978773891926,
-0.005187068600207567,
0.016263624653220177,
0.012016463093459606,
-0.21012187004089355,
-0.03200182691216469,
0.04857903718948364,
-0.049516841769218445,
0.005468819756060839,
-0.019434070214629173,
-0.01307976059615612,
0.10162147134542465,
0.012106361798942089,
-0.0878056138753891,
0.04506964609026909,
-0.008923504501581192,
-0.08752184361219406,
0.2100115269422531,
-0.08159518986940384,
-0.16276897490024567,
-0.13257455825805664,
-0.05611724779009819,
-0.04021301865577698,
0.05046501010656357,
0.0656249150633812,
-0.07387815415859222,
-0.04550756514072418,
-0.09875650703907013,
0.029588814824819565,
0.019251873716711998,
0.023614846169948578,
0.009420366026461124,
0.009029369801282883,
0.0833549052476883,
-0.11258149147033691,
-0.00883700605481863,
-0.045162662863731384,
-0.04168989509344101,
0.03718999773263931,
0.014763770624995232,
0.12609831988811493,
0.13677634298801422,
-0.027545887976884842,
-0.011808673851191998,
-0.0385824516415596,
0.23473909497261047,
-0.07620761543512344,
-0.015590006485581398,
0.12737827003002167,
-0.039518557488918304,
0.038409631699323654,
0.15145011246204376,
0.05512100085616112,
-0.12087469547986984,
0.027122439816594124,
0.026945756748318672,
-0.035548556596040726,
-0.20582757890224457,
-0.02249290607869625,
-0.030171088874340057,
0.005457926541566849,
0.0772961974143982,
0.024709729477763176,
0.02591954916715622,
0.05765862762928009,
0.0250734593719244,
0.09032034873962402,
0.0022414482664316893,
0.07290646433830261,
0.13720473647117615,
0.030303727835416794,
0.136323019862175,
-0.05081344395875931,
-0.06619343161582947,
0.03342466801404953,
0.003716725157573819,
0.1859723925590515,
0.04496874287724495,
0.1405651569366455,
0.048799265176057816,
0.11852600425481796,
0.0017195305554196239,
0.04719970002770424,
0.007986008189618587,
-0.046393826603889465,
-0.017967887222766876,
-0.04410475492477417,
-0.024652164429426193,
0.04281224310398102,
-0.07624295353889465,
0.036766767501831055,
-0.11012864112854004,
0.003838740289211273,
0.05271882936358452,
0.19154010713100433,
0.06978340446949005,
-0.34741196036338806,
-0.08754320442676544,
0.0365389883518219,
-0.014441123232245445,
-0.02336624637246132,
0.015852121636271477,
0.12455565482378006,
-0.048894524574279785,
0.050827428698539734,
-0.05845601484179497,
0.07655808329582214,
-0.06896896660327911,
0.05664699524641037,
0.05308579280972481,
0.08397986739873886,
-0.014413758181035519,
0.06115536764264107,
-0.31400933861732483,
0.26128506660461426,
0.020817667245864868,
0.06965410709381104,
-0.04169082269072533,
-0.005219229031354189,
0.016469622030854225,
0.09201575815677643,
0.06233856454491615,
-0.02957421913743019,
-0.054842375218868256,
-0.21142353117465973,
-0.03949504718184471,
0.023058487102389336,
0.10623478889465332,
-0.031800102442502975,
0.1038098931312561,
-0.021916139870882034,
0.007678939960896969,
0.09337203204631805,
-0.0003600629570428282,
-0.09177301079034805,
-0.09056388586759567,
-0.005567564163357019,
0.028433792293071747,
-0.01566421054303646,
-0.07921005040407181,
-0.0947929248213768,
-0.12348379194736481,
0.13784831762313843,
-0.07527778297662735,
-0.03066498227417469,
-0.09914373606443405,
0.07849635183811188,
0.04292939230799675,
-0.07937590777873993,
0.04674912989139557,
0.016531210392713547,
0.09064771980047226,
0.018208462744951248,
-0.04971618577837944,
0.144647017121315,
-0.0630040317773819,
-0.1781245321035385,
-0.08656585961580276,
0.09334128350019455,
0.02385455183684826,
0.03965073078870773,
0.005837060511112213,
0.008727658540010452,
0.0014849191065877676,
-0.06695707887411118,
0.04115098714828491,
0.012597983703017235,
0.03330252692103386,
-0.00035298874718137085,
-0.03964332491159439,
-0.012976265512406826,
-0.05501887574791908,
-0.036143358796834946,
0.14668342471122742,
0.2962763011455536,
-0.0888746827840805,
-0.010674020275473595,
0.05384846404194832,
-0.06640183925628662,
-0.2077118307352066,
0.061618391424417496,
0.030380718410015106,
0.015249309130012989,
0.06121379882097244,
-0.1336231678724289,
0.07193859666585922,
0.11395232379436493,
-0.02745034731924534,
0.12499281764030457,
-0.28680655360221863,
-0.15026473999023438,
0.1248498409986496,
0.1574394404888153,
0.11043892055749893,
-0.1634972095489502,
-0.04099612310528755,
-0.06069499999284744,
-0.10954161733388901,
0.1021948978304863,
-0.10973182320594788,
0.10707756876945496,
-0.004708786495029926,
0.043702367693185806,
0.00956854596734047,
-0.05093969404697418,
0.14345784485340118,
-0.010905707255005836,
0.12462960183620453,
-0.0745423212647438,
-0.021061772480607033,
0.06119425222277641,
-0.05782683193683624,
0.016424493864178658,
-0.09220021218061447,
0.02591160126030445,
-0.045241665095090866,
-0.04237544164061546,
-0.03899649530649185,
0.0362047478556633,
-0.043783485889434814,
-0.06806380301713943,
-0.045897990465164185,
0.025419041514396667,
0.020918505266308784,
-0.025599034503102303,
0.15974678099155426,
-0.005095760338008404,
0.13662660121917725,
0.13797488808631897,
0.0843658521771431,
-0.057134829461574554,
0.0029617082327604294,
0.00726125156506896,
-0.036176733672618866,
0.06742729991674423,
-0.1356147825717926,
0.03897986188530922,
0.12192073464393616,
-0.006352883763611317,
0.1504228711128235,
0.06914205104112625,
-0.049078550189733505,
0.02621481381356716,
0.07172894477844238,
-0.1413334757089615,
-0.12419863790273666,
-0.003317911410704255,
-0.05319429188966751,
-0.10173428058624268,
0.07619278877973557,
0.13386058807373047,
-0.06623297929763794,
0.008055937476456165,
-0.008742366917431355,
0.005894315429031849,
-0.0326039083302021,
0.1914912909269333,
0.07373417913913727,
0.044735122472047806,
-0.07197127491235733,
0.08448438346385956,
0.054238639771938324,
-0.08236286044120789,
0.017748814076185226,
0.030639490112662315,
-0.08196522295475006,
-0.04049493744969368,
0.028827020898461342,
0.19911853969097137,
-0.057868842035532,
-0.05223117768764496,
-0.15866899490356445,
-0.12302480638027191,
0.044833190739154816,
0.1938827782869339,
0.09949225932359695,
0.02398967742919922,
-0.017011556774377823,
0.0207577645778656,
-0.1056072860956192,
0.11504767090082169,
0.027071842923760414,
0.09830684959888458,
-0.16940715909004211,
0.12330923974514008,
-0.005740347318351269,
-0.003538616932928562,
-0.029467562213540077,
0.055655382573604584,
-0.13457216322422028,
-0.007484982255846262,
-0.15841329097747803,
-0.009180967696011066,
-0.019010694697499275,
0.004867944400757551,
0.005956925451755524,
-0.05868601053953171,
-0.05593420937657356,
0.007682273164391518,
-0.09084364026784897,
-0.022974064573645592,
0.03797697275876999,
0.051015712320804596,
-0.11257316172122955,
-0.05635768175125122,
0.009244229644536972,
-0.07054904103279114,
0.07315625250339508,
-0.0027823210693895817,
0.03601503372192383,
0.04462214186787605,
-0.16758038103580475,
0.049768224358558655,
0.07211662083864212,
0.011569226160645485,
0.05500128120183945,
-0.08019714057445526,
-0.022629696875810623,
-0.006871164310723543,
0.044366396963596344,
0.01958240196108818,
0.09247921407222748,
-0.12381228059530258,
0.013781526125967503,
-0.025051400065422058,
-0.07402168214321136,
-0.046559739857912064,
0.025410303846001625,
0.07931437343358994,
0.004996979609131813,
0.19641812145709991,
-0.10198775678873062,
0.018514640629291534,
-0.19715213775634766,
0.004043294116854668,
0.004095126409083605,
-0.1090582013130188,
-0.10786795616149902,
-0.050171464681625366,
0.06030023843050003,
-0.06547714024782181,
0.1463402509689331,
0.01659643091261387,
0.04625895991921425,
0.0439876951277256,
-0.04507095739245415,
0.05251583829522133,
0.03439593315124512,
0.20203638076782227,
0.025279497727751732,
-0.03598367050290108,
0.0012931054225191474,
0.04376780241727829,
0.12090858072042465,
0.07051469385623932,
0.17127761244773865,
0.16522078216075897,
-0.06832043826580048,
0.11034227907657623,
0.061459966003894806,
-0.04747685045003891,
-0.1538812220096588,
0.041643328964710236,
-0.02770211733877659,
0.08803912252187729,
-0.015538915060460567,
0.16153880953788757,
0.1122409775853157,
-0.15411755442619324,
-0.0008854856714606285,
-0.06320594996213913,
-0.08310948312282562,
-0.11189064383506775,
-0.0469072163105011,
-0.10761810094118118,
-0.14018426835536957,
-0.004106183536350727,
-0.10766611248254776,
-0.0011348301777616143,
0.0921381339430809,
-0.0003253787581343204,
-0.02595197595655918,
0.1748616099357605,
0.023541823029518127,
0.030216271057724953,
0.05167403817176819,
0.015797387808561325,
-0.0354527048766613,
-0.07228294759988785,
-0.08402924984693527,
0.0012032422237098217,
-0.003952992148697376,
0.007047539576888084,
-0.051394812762737274,
-0.0371725931763649,
0.02694525755941868,
-0.0023054946213960648,
-0.10786177217960358,
0.010554545558989048,
0.045320261269807816,
0.032563529908657074,
0.04719031602144241,
0.012927213683724403,
0.0005088549223728478,
0.0017930702306330204,
0.1981830894947052,
-0.06571945548057556,
-0.0613241121172905,
-0.08410561829805374,
0.22678588330745697,
0.03560788184404373,
0.04116835072636604,
0.0013817985309287906,
-0.1073988750576973,
0.030976081266999245,
0.1969013512134552,
0.19068852066993713,
-0.0884290263056755,
0.003911461681127548,
-0.013517223298549652,
-0.007022550329566002,
-0.026385385543107986,
0.09937508404254913,
0.09822917729616165,
0.03705250844359398,
-0.06210435926914215,
-0.044450677931308746,
-0.032163284718990326,
0.0034201079979538918,
-0.02558443695306778,
0.05552756041288376,
0.044338829815387726,
0.025250382721424103,
-0.05171201378107071,
0.06855999678373337,
-0.02098884992301464,
-0.12309519201517105,
0.07096066325902939,
-0.2036803960800171,
-0.14401863515377045,
-0.00943567045032978,
0.1139492318034172,
-0.025536637753248215,
0.061235081404447556,
-0.03601464256644249,
-0.00026389153208583593,
0.06140914559364319,
-0.024391120299696922,
-0.07556747645139694,
-0.06414134055376053,
0.05446748435497284,
-0.07213135063648224,
0.21412599086761475,
-0.051194820553064346,
0.05941078066825867,
0.1332240253686905,
0.05680031701922417,
-0.0739433690905571,
0.10372255742549896,
0.04651443660259247,
-0.05196379870176315,
0.04070344567298889,
0.06926430016756058,
-0.04441710188984871,
0.12634022533893585,
0.0687946006655693,
-0.15709362924098969,
0.019870806485414505,
-0.04295803979039192,
-0.09959860891103745,
-0.05709490180015564,
-0.02946271374821663,
-0.0638740137219429,
0.1284538358449936,
0.18176418542861938,
-0.036652080714702606,
0.011057626456022263,
-0.03534633293747902,
0.018221300095319748,
0.0791231170296669,
0.049194276332855225,
-0.037203118205070496,
-0.23758916556835175,
0.030279075726866722,
0.07806285470724106,
-0.008680510334670544,
-0.27778860926628113,
-0.0823841467499733,
-0.014487997628748417,
-0.04373417794704437,
-0.08406152576208115,
0.08773719519376755,
0.10393384844064713,
0.05526408553123474,
-0.06894572824239731,
-0.08845128864049911,
-0.07691561430692673,
0.16381146013736725,
-0.1379714161157608,
-0.1170632541179657
] |
null | null | transformers |
Included in this repo is the full precision model for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━★ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's [MergeMonster](https://github.com/Gryphe/MergeMonster).
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend [Sao](https://huggingface.co/Sao10K)'s models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
💜 I hope this model may be useful to you 💜
***
Merge Details Below:
<details><summary>See Merge Config</summary>
```
-----------------------------------------------------------------------------------------------------
| Type | Phrase | Context | Raw Prob* | Used Prob** | Change |
-----------------------------------------------------------------------------------------------------
| BAD | anticipation | Her body quivers with | 9.99850% | 119.98% | -54.02% |
| BAD | anticipation | The atmosphere is thic.. | 8.82392% | 105.89% | -32.13% |
| BAD | unwavering | Filled with an | 0.09003% | 1.08% | -0.06% |
| BAD | determination | Her eyes were filled w.. | 0.19863% | 2.38% | -0.26% |
| BAD | determination | Her stubbornness only .. | 7.17110% | 86.05% | -39.86% |
| BAD | whisper | Her voice barely above.. | 96.55492% | 1158.66% | -8.91% |
| BAD | spine | shivers down her | 85.57597% | 1026.91% | -66.19% |
| BAD | sends shivers | The thrill of the act | 0.00230% | 0.03% | -0.00% |
| BAD | ministrations | She moans and twitches.. | 1.35264% | 16.23% | -10.49% |
| BAD | legs | wraps her | 2.45741% | 29.49% | -10.58% |
| BAD | imposing figure | He had an | 0.00356% | 0.04% | +0.00% |
| BAD | shared challenges | Their bond strengthene.. | 0.10075% | 1.21% | -0.03% |
| BAD | bond | forged a | 1.78930% | 21.47% | -9.07% |
| BAD | bond | an unspoken | 4.33001% | 51.96% | -28.17% |
| BAD | enhance our expe.. | I'm excited to see how | 0.00000% | 0.00% | +0.00% |
| BAD | sense of vulnera.. | create a | 0.00003% | 0.00% | -0.00% |
| BAD | dimensions of in.. | explore new | 0.00047% | 0.01% | -0.00% |
| BAD | deepening our co.. | while | 0.00003% | 0.00% | -0.00% |
| BAD | shared experiences | through | 0.00469% | 0.06% | -0.00% |
| BAD | societal expecta.. | that transcend | 0.00170% | 0.02% | -0.00% |
| BAD | conventional bou.. | that defy | 0.03593% | 0.43% | +0.04% |
| BAD | conventional bou.. | and defy | 0.00410% | 0.05% | +0.01% |
| BAD | open communication | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | emotional vulner.. | an environment | 0.00000% | 0.00% | +0.00% |
| BAD | heightens our co.. | touch and the anticipa.. | 0.00000% | 0.00% | +0.00% |
| BAD | sensations you'r.. | I'm enjoying | 0.00000% | 0.00% | -0.00% |
| BAD | is truly arousing | attention to detail | 0.00000% | 0.00% | +0.00% |
| BAD | is truly arousing | way you explore my body | 0.00001% | 0.00% | +0.00% |
| BAD | challenge presen.. | my resolve unwavering .. | 0.00000% | 0.00% | +0.00% |
| BAD | humble vessel | surrendering to the ex.. | 0.00000% | 0.00% | +0.00% |
| BAD | bond | cherishing the unique | 1.37498% | 16.50% | +1.21% |
| BAD | bond | special | 0.05834% | 0.70% | +0.01% |
| BAD | grows stronger w.. | bond | 0.00000% | 0.00% | +0.00% |
| BAD | that cannot be b.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | becomes unbreaka.. | bond | 0.00000% | 0.00% | -0.00% |
| BAD | grew stronger wi.. | bond | 0.00000% | 0.00% | +0.00% |
| GOOD | The apple is in .. | Question: If I'm in th.. | 78.38934% | 78.39% | -10.79% |
------------------------------------------------------------------------------------------------------
| Totals | 298.32% | 2717.54% | -269.30% |
------------------------------------------------------------------------------------------------------
```
* = Unweighted, raw probability - ** = Probability after weight adjustments
```
-------- MERGE COMPOSITION ---------
Fimbulvetr-11B-v2-Test-14: 0.50
KuroMitsu-11B: 0.18
Fimbulvetr-10.7B-v1: 0.17
SOLAR-10.7B-Instruct-v1.0-uncensored: 0.10
Solstice-11B-v1: 0.05
```
</details><br> | {"language": ["en"], "license": "cc-by-nc-4.0"} | text-generation | Himitsui/Kaiju-11B | [
"transformers",
"safetensors",
"llama",
"text-generation",
"en",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:33:38+00:00 | [] | [
"en"
] | TAGS
#transformers #safetensors #llama #text-generation #en #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
Included in this repo is the full precision model for Kaiju-11B
(ノ≧∀≦)ノ ‥…━━━━━━━━━━━━━ ||| ╲/\╭[ ᴼᴼ ౪ ᴼᴼ]╮/\╱\
Hiya! This is an experiment using Gryphe's MergeMonster.
I decided to try and reduce what the community calls 'GPT-isms' or GPT Slop, Solar is a good model but does have fair share of positivity bias and 'slop' in roleplays. I used my friend Sao's models as bases as they are pretty popular, along with Kuromitsu and the popular Instruct-Uncensored tune.
Alpaca Format should be fine as it is universal, Vicuna Format should work too. Universal-Light preset in SillyTavern is pretty nice too. :)
I hope this model may be useful to you
*
Merge Details Below:
<details><summary>See Merge Config</summary>
* = Unweighted, raw probability - = Probability after weight adjustments
</details><br> | [] | [
"TAGS\n#transformers #safetensors #llama #text-generation #en #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
60
] | [
"passage: TAGS\n#transformers #safetensors #llama #text-generation #en #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n"
] | [
-0.011193362064659595,
0.03908468782901764,
-0.005113132297992706,
0.0022477013990283012,
0.10230126976966858,
-0.01129922829568386,
0.1920098513364792,
0.08390023559331894,
-0.030804622918367386,
-0.011926381848752499,
0.16777309775352478,
0.20651428401470184,
-0.03280491754412651,
0.06393758952617645,
-0.1134275272488594,
-0.13488951325416565,
0.06572084128856659,
0.010224943049252033,
0.02751946821808815,
0.0845252126455307,
0.09661202132701874,
-0.050887178629636765,
0.08453001081943512,
-0.05693914741277695,
-0.12273156642913818,
0.025279756635427475,
0.07334980368614197,
-0.13660478591918945,
0.09595680236816406,
0.06350196897983551,
0.11920353770256042,
0.08870159089565277,
-0.021897349506616592,
-0.21048063039779663,
0.01821637526154518,
-0.00014225882478058338,
-0.09297025203704834,
0.03521345183253288,
0.056464068591594696,
-0.03678707033395767,
0.06858354061841965,
0.018549293279647827,
-0.0318271666765213,
0.07360363006591797,
-0.11363875865936279,
0.007362822070717812,
-0.05278106778860092,
-0.008304079994559288,
0.10865724086761475,
0.0917062759399414,
0.009511942975223064,
0.10823028534650803,
-0.049677636474370956,
0.09382672607898712,
0.08266092836856842,
-0.3579799234867096,
0.019085653126239777,
0.13804784417152405,
0.07778560370206833,
0.05172914266586304,
-0.034193407744169235,
0.11471737176179886,
0.0803292766213417,
-0.027851391583681107,
0.06613016128540039,
-0.07567091286182404,
-0.07368949055671692,
0.03929246962070465,
-0.059078603982925415,
-0.02586960978806019,
0.2411600649356842,
-0.03815644234418869,
0.01522030495107174,
-0.05829044058918953,
-0.056474801152944565,
-0.011304108425974846,
-0.022364618256688118,
0.047075238078832626,
-0.0011853915639221668,
0.08934815973043442,
0.020648330450057983,
-0.023204434663057327,
-0.14898860454559326,
-0.022654039785265923,
-0.16782443225383759,
0.11909129470586777,
-0.012736281380057335,
0.03082400932908058,
-0.12477608025074005,
0.048675309866666794,
0.013982747681438923,
-0.09279169142246246,
-0.010952967219054699,
-0.06008348613977432,
0.09484506398439407,
-0.022775590419769287,
-0.046438295394182205,
-0.03810147941112518,
0.1368706226348877,
0.1166115403175354,
-0.013629335910081863,
0.003115997416898608,
-0.12622928619384766,
0.09995394945144653,
-0.04206937551498413,
0.003378836438059807,
0.023260168731212616,
0.00017109070904552937,
0.11215426027774811,
-0.075437530875206,
0.09295473992824554,
-0.04148522764444351,
-0.15888163447380066,
-0.004734409507364035,
-0.004278680309653282,
0.14943762123584747,
-0.0004925592802464962,
0.08805988729000092,
-0.03317372500896454,
0.06642121821641922,
0.11494220048189163,
-0.0770619735121727,
-0.0026394722517579794,
-0.0046011414378881454,
0.06919112801551819,
0.01630883663892746,
0.041242122650146484,
0.03574291244149208,
-0.05157558619976044,
0.06661752611398697,
-0.07074027508497238,
-0.033196043223142624,
-0.04065220057964325,
-0.0624992772936821,
0.07400013506412506,
-0.04699558764696121,
0.034557703882455826,
-0.20038022100925446,
-0.18111789226531982,
0.023008808493614197,
-0.004475745372474194,
-0.011947417631745338,
-0.020663924515247345,
-0.037128616124391556,
-0.05575251579284668,
0.029184527695178986,
-0.08161383867263794,
-0.0637688934803009,
-0.0855041891336441,
0.0878404900431633,
-0.014628931879997253,
0.04841526597738266,
-0.163429856300354,
0.024146847426891327,
-0.09655055403709412,
0.021224450320005417,
-0.041465189307928085,
0.028889212757349014,
-0.040013425052165985,
0.16611650586128235,
-0.033123575150966644,
0.007546939421445131,
-0.05742645636200905,
0.06160604953765869,
-0.03310821205377579,
0.18894940614700317,
-0.11460364609956741,
-0.0331784226000309,
0.19280150532722473,
-0.12696614861488342,
-0.22566430270671844,
0.08342508226633072,
0.007778873201459646,
0.05049898102879524,
0.10198809951543808,
0.14391419291496277,
0.025977810844779015,
-0.08204945921897888,
0.025069352239370346,
0.10852313041687012,
-0.06446056067943573,
-0.14901947975158691,
-0.0008406238630414009,
-0.017054852098226547,
-0.14848732948303223,
0.026486769318580627,
0.036220796406269073,
0.05146578326821327,
-0.007705573923885822,
-0.06002281606197357,
-0.06077559292316437,
-0.04938489943742752,
-0.025813812389969826,
-0.04568991810083389,
0.04787985235452652,
-0.09715841710567474,
-0.0018579848110675812,
-0.02025645785033703,
-0.006785212084650993,
-0.0270151998847723,
0.04268017038702965,
-0.09172144532203674,
0.07172109186649323,
-0.04464982822537422,
0.05178610980510712,
-0.09241239726543427,
-0.10442681610584259,
-0.010080830194056034,
0.09835302829742432,
0.01928621158003807,
-0.0004611335461959243,
0.026635101065039635,
0.0061393664218485355,
-0.02790144830942154,
0.005510376300662756,
0.18553757667541504,
0.025416629388928413,
-0.047296974807977676,
-0.1036442294716835,
0.10117241740226746,
-0.041186630725860596,
0.031616173684597015,
-0.14280278980731964,
0.024766426533460617,
0.09466144442558289,
0.06433795392513275,
0.002593912184238434,
0.0722174346446991,
-0.01340039074420929,
0.03334008529782295,
-0.09240395575761795,
0.018046746030449867,
0.09339351952075958,
0.01850980333983898,
-0.1243089810013771,
0.21629709005355835,
-0.2169317603111267,
0.24951228499412537,
0.20891115069389343,
-0.21546576917171478,
0.024359073489904404,
-0.07773233950138092,
0.024406855925917625,
0.004670190624892712,
0.011527391150593758,
-0.04641093313694,
-0.007225298322737217,
-0.02545672282576561,
0.18054455518722534,
-0.07340632379055023,
-0.012076356448233128,
0.004071684088557959,
-0.05591870844364166,
-0.05052413046360016,
0.04846760630607605,
0.12708809971809387,
-0.15090429782867432,
0.1687835156917572,
0.2874442934989929,
-0.002820972353219986,
0.11755391210317612,
-0.02738788351416588,
0.0071356757543981075,
0.034447185695171356,
0.0471460223197937,
0.03447127714753151,
-0.03731512278318405,
-0.05261317640542984,
0.0009754505008459091,
0.05383561551570892,
0.007700442802160978,
0.0597323477268219,
-0.1495092660188675,
-0.06877405941486359,
-0.014244729653000832,
-0.051146671175956726,
-0.015278402715921402,
0.05979320406913757,
-0.010369433090090752,
0.11604443937540054,
-0.05276670306921005,
-0.0712456926703453,
0.12678593397140503,
-0.017528291791677475,
-0.11357350647449493,
0.18154650926589966,
-0.13573195040225983,
-0.2578566372394562,
-0.21016576886177063,
-0.15104743838310242,
-0.05459686368703842,
0.06427931785583496,
0.11427187919616699,
-0.04031491279602051,
-0.07781974226236343,
-0.0966920256614685,
-0.028253033757209778,
-0.012866329401731491,
0.011162404902279377,
-0.02225644141435623,
0.07936415076255798,
-0.03227413073182106,
-0.10609041154384613,
-0.03646565228700638,
0.03541133180260658,
-0.06947995722293854,
0.12157056480646133,
-0.08804859220981598,
0.12387876212596893,
0.15078121423721313,
0.018208280205726624,
-0.007639707997441292,
-0.05741095542907715,
0.1070147231221199,
-0.05907940864562988,
-0.022919578477740288,
0.19898831844329834,
-0.05568510666489601,
0.049403540790081024,
0.15403267741203308,
0.026724835857748985,
-0.1213640421628952,
0.05637955293059349,
-0.05218512564897537,
-0.10459978878498077,
-0.22352105379104614,
-0.1065441370010376,
-0.08714132010936737,
0.0855572521686554,
0.04377542436122894,
0.06804926693439484,
0.148032546043396,
0.08447319269180298,
-0.02863849326968193,
0.019362449645996094,
0.07752588391304016,
0.10046197474002838,
0.27005642652511597,
-0.014636367559432983,
0.12694554030895233,
-0.1114405021071434,
-0.08180148899555206,
0.07525158673524857,
0.09388712048530579,
0.08741103857755661,
0.12162240594625473,
0.09809117019176483,
0.05625505745410919,
0.06631263345479965,
0.14245839416980743,
0.13385695219039917,
0.03956771269440651,
-0.024846259504556656,
-0.00726879620924592,
-0.06280002743005753,
-0.008854509331285954,
0.05426213890314102,
-0.10893155634403229,
-0.13631659746170044,
-0.02355451136827469,
-0.06986293196678162,
0.07532504200935364,
0.09997924417257309,
0.04375120997428894,
-0.2551491856575012,
0.050244905054569244,
0.11503546684980392,
0.016635319218039513,
-0.07717970013618469,
0.11025702953338623,
0.025815561413764954,
-0.02222375199198723,
0.11736798286437988,
-0.032585710287094116,
0.09803998470306396,
-0.0336814820766449,
0.06379349529743195,
-0.05466166138648987,
-0.0697358250617981,
0.0034925024956464767,
0.09775612503290176,
-0.3005937337875366,
0.18179252743721008,
0.03439415991306305,
0.007476359140127897,
-0.06177539378404617,
-0.010856715962290764,
0.007780230604112148,
0.21029308438301086,
0.14707861840724945,
-0.036316562443971634,
-0.13339294493198395,
-0.07988782227039337,
-0.04139228165149689,
0.028040651232004166,
0.12294197082519531,
0.001531500369310379,
0.022665424272418022,
-0.04429004713892937,
-0.01241866871714592,
0.024801231920719147,
-0.04614090919494629,
-0.0485028475522995,
-0.17398735880851746,
0.03560682386159897,
0.17000812292099,
0.11173193156719208,
-0.03874269872903824,
0.017220845445990562,
-0.15621444582939148,
0.18047873675823212,
-0.18859246373176575,
-0.051790736615657806,
-0.0962705910205841,
-0.1404470056295395,
0.01496793795377016,
-0.014090757817029953,
0.06456992030143738,
-0.051556941121816635,
0.040637776255607605,
-0.08138812333345413,
-0.17924785614013672,
0.10663990676403046,
-0.1132911741733551,
-0.040864694863557816,
-0.031216325238347054,
0.13285303115844727,
-0.11890514194965363,
-0.02341647446155548,
0.05175711214542389,
0.030017949640750885,
-0.04534647613763809,
-0.11294464766979218,
-0.011738494038581848,
0.011815196834504604,
0.04774409532546997,
0.011138997972011566,
-0.15465959906578064,
-0.07785000652074814,
-0.0035001577343791723,
-0.07597125321626663,
0.22692488133907318,
0.27941158413887024,
-0.05182860046625137,
0.1269877851009369,
0.17926806211471558,
-0.11795598268508911,
-0.35424745082855225,
-0.09701840579509735,
-0.20371273159980774,
-0.05230483040213585,
-0.007486955262720585,
-0.10430391877889633,
0.09055487811565399,
0.04950881749391556,
-0.04994896426796913,
0.14768272638320923,
-0.19031387567520142,
-0.11387425661087036,
0.12463043630123138,
0.02882382459938526,
0.3094657063484192,
-0.18501466512680054,
-0.09692657738924026,
-0.1336209625005722,
-0.06740143150091171,
0.15505611896514893,
-0.11029025167226791,
0.08721306920051575,
0.01656632125377655,
0.02494651824235916,
0.006810922175645828,
-0.045378174632787704,
0.1120174378156662,
-0.04343392699956894,
0.08277685940265656,
-0.12294842302799225,
0.030129028484225273,
0.08135621249675751,
-0.0200964268296957,
0.045657914131879807,
-0.18269562721252441,
0.011010137386620045,
-0.023333493620157242,
-0.040575385093688965,
-0.0002601773012429476,
0.08692345023155212,
-0.0024316776543855667,
-0.04417281225323677,
-0.033590834587812424,
-0.07178319990634918,
0.017750216647982597,
-0.02074974961578846,
0.24492332339286804,
-0.07803326845169067,
0.13661456108093262,
0.19013698399066925,
0.17610782384872437,
-0.10905721783638,
0.12416917085647583,
-0.009417055174708366,
-0.10359455645084381,
0.07127837091684341,
-0.13806839287281036,
0.06566125154495239,
0.08320387452840805,
-0.05208549275994301,
0.0652979165315628,
0.08963681757450104,
0.03588476404547691,
-0.0009822953725233674,
0.175712451338768,
-0.19712063670158386,
-0.008944735862314701,
-0.03276953101158142,
0.05689840391278267,
0.061884067952632904,
0.07451540231704712,
0.18737903237342834,
-0.021273722872138023,
0.03603998199105263,
0.008307419717311859,
0.03099626861512661,
-0.04351953789591789,
0.04406888037919998,
0.018364708870649338,
0.010581862181425095,
-0.10723910480737686,
0.10167139768600464,
0.013733870349824429,
-0.12259592115879059,
0.004677304998040199,
0.08980472385883331,
-0.1463107317686081,
-0.12472511827945709,
-0.052055805921554565,
0.09697537124156952,
-0.1847776174545288,
-0.10530685633420944,
-0.049852654337882996,
-0.16994009912014008,
0.034972310066223145,
0.23982472717761993,
0.04417908936738968,
0.08603209257125854,
0.03766588121652603,
-0.05316690355539322,
-0.06310565769672394,
0.04057950899004936,
-0.09709002822637558,
0.047790348529815674,
-0.11421772092580795,
0.007928148843348026,
-0.03044808655977249,
0.048081785440444946,
-0.08405585587024689,
0.01587739586830139,
-0.12699593603610992,
0.024412404745817184,
-0.12999731302261353,
0.024314656853675842,
-0.08763575553894043,
-0.016227591782808304,
0.011376502923667431,
0.011526679620146751,
-0.04785420745611191,
-0.03778129443526268,
-0.07713334262371063,
0.0118086664006114,
-0.0384918712079525,
0.05329268425703049,
-0.0918109118938446,
-0.04998898133635521,
0.03828351944684982,
-0.04107464477419853,
0.09881891310214996,
0.019106317311525345,
-0.09083251655101776,
0.0873045101761818,
-0.23300524055957794,
-0.021985333412885666,
0.1366337239742279,
0.01820356212556362,
-0.008912012912333012,
0.05712194740772247,
-0.00007349811494350433,
0.1334090232849121,
-0.012705645523965359,
0.05958498269319534,
-0.007915794849395752,
-0.10439607501029968,
-0.002092901850119233,
-0.046262625604867935,
-0.09164199233055115,
-0.025372017174959183,
-0.06200997903943062,
0.10428330302238464,
-0.024987271055579185,
0.18139097094535828,
-0.08838158845901489,
0.024223534390330315,
-0.01203771959990263,
0.028861649334430695,
-0.004483920522034168,
-0.1720978319644928,
-0.12896597385406494,
-0.06879160553216934,
0.006326782982796431,
-0.011720163747668266,
0.2899196445941925,
0.002643311396241188,
-0.0624578595161438,
0.07975813001394272,
0.018019096925854683,
0.02546464279294014,
0.035546284168958664,
0.3128984570503235,
0.0914594978094101,
-0.016114884987473488,
-0.1380065530538559,
0.026764145120978355,
0.04565594345331192,
-0.07842147350311279,
0.05748862400650978,
0.08517327159643173,
-0.08396168798208237,
0.11109860241413116,
0.06075035780668259,
-0.011504007503390312,
-0.01013428159058094,
-0.05202031508088112,
-0.05618474632501602,
0.06161247938871384,
-0.013312342576682568,
0.03532891720533371,
0.20137959718704224,
-0.0207325741648674,
-0.022130057215690613,
-0.03796696662902832,
-0.037634462118148804,
-0.1853923797607422,
-0.13580061495304108,
-0.11080905795097351,
-0.11054187268018723,
0.021101487800478935,
-0.08647570013999939,
0.03430864214897156,
0.06423655152320862,
0.04635181650519371,
-0.038886647671461105,
0.09500445425510406,
-0.03340844810009003,
-0.041951946914196014,
0.054794102907180786,
-0.028648601844906807,
0.03663318604230881,
-0.01710878312587738,
-0.06294069439172745,
-0.05028941482305527,
-0.06708815693855286,
-0.03899985924363136,
0.07448209822177887,
0.03895188868045807,
0.07354500889778137,
-0.14092810451984406,
-0.07442861795425415,
-0.039977334439754486,
0.08192741870880127,
-0.004699385724961758,
0.14246796071529388,
0.009374394081532955,
-0.05905264616012573,
0.08041613548994064,
0.1531294882297516,
-0.056415483355522156,
-0.11753494292497635,
-0.022114222869277,
0.1832164227962494,
0.008446194231510162,
0.11436604708433151,
-0.05001795291900635,
-0.007654476910829544,
0.006202666088938713,
0.3419026732444763,
0.2520466148853302,
-0.07865872979164124,
0.03394762799143791,
-0.06915359944105148,
0.037441641092300415,
0.06380114704370499,
0.12632989883422852,
0.08083077520132065,
0.22507920861244202,
-0.03776281327009201,
-0.055193450301885605,
-0.023132439702749252,
0.03699552267789841,
-0.13700106739997864,
0.07079589366912842,
-0.029659774154424667,
-0.05653458088636398,
-0.03275957703590393,
0.10241278260946274,
-0.14125481247901917,
0.09891887754201889,
-0.0029701711609959602,
-0.07619886100292206,
0.02046162635087967,
0.0025128009729087353,
0.12170496582984924,
-0.042292483150959015,
0.016653675585985184,
-0.052777089178562164,
-0.07400006800889969,
-0.005801674909889698,
-0.01521476823836565,
-0.17857685685157776,
0.04012015834450722,
-0.005833901464939117,
0.0119550172239542,
0.07796594500541687,
0.008076172322034836,
0.06146378070116043,
0.07718650996685028,
0.023325061425566673,
-0.07008343935012817,
0.16211295127868652,
0.013147180899977684,
-0.07340376079082489,
0.06646326184272766,
-0.04367668926715851,
-0.029744215309619904,
0.03890174254775047,
0.0524955615401268,
-0.06931902468204498,
0.0724019929766655,
0.0007009613327682018,
-0.10815602540969849,
-0.03188150003552437,
-0.013789966702461243,
-0.07719102501869202,
0.08669953048229218,
0.01611187681555748,
-0.01831331104040146,
0.0011802823282778263,
-0.021253833547234535,
0.018197596073150635,
-0.018899209797382355,
-0.14489847421646118,
-0.010089512914419174,
-0.11610595136880875,
-0.051784299314022064,
0.14536328613758087,
0.03006022237241268,
-0.2629028558731079,
0.015299458056688309,
-0.08889798074960709,
0.05084638297557831,
-0.19757983088493347,
0.05650462582707405,
0.20217211544513702,
-0.0077453795820474625,
-0.04022236540913582,
-0.16835767030715942,
0.05844775587320328,
0.060895271599292755,
-0.057335108518600464,
-0.11750373989343643
] |
null | null | transformers | Model description:
Model: microsoft/mdeberta-v3-base
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 9
Best exact match: 96.98
Best epoch: 9
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 8
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.25_DROP1_mdeberta
Results
| epoch | train_loss | train_f1 | train_exact | dev_loss | dev_f1 | dev_exact | test_loss | test_f1 | test_exact |
|--------:|-------------:|-----------:|--------------:|-----------:|---------:|------------:|------------:|----------:|-------------:|
| 1 | 1.41 | 66.06 | 58.82 | 0.26 | 94.64 | 90.93 | 0 | 0 | 0 |
| 2 | 0.17 | 95.69 | 93.18 | 0.2 | 96.46 | 94.78 | 0 | 0 | 0 |
| 3 | 0.06 | 98.31 | 97.45 | 0.19 | 97.22 | 95.05 | 0 | 0 | 0 |
| 4 | 0.05 | 98.68 | 97.93 | 0.22 | 96.47 | 94.78 | 0 | 0 | 0 |
| 5 | 0.03 | 99.55 | 99.17 | 0.23 | 97 | 95.33 | 0 | 0 | 0 |
| 6 | 0.04 | 99.02 | 98.55 | 0.24 | 97.67 | 95.6 | 0 | 0 | 0 |
| 7 | 0.03 | 99.34 | 98.97 | 0.21 | 96.57 | 94.78 | 0 | 0 | 0 |
| 8 | 0.04 | 99.02 | 98.55 | 0.22 | 96.37 | 94.23 | 0 | 0 | 0 |
| 9 | 0.02 | 99.52 | 99.24 | 0.19 | 98.17 | 96.98 | 0 | 0 | 0 |
| 10 | 0.01 | 99.68 | 99.52 | 0.24 | 96.08 | 94.23 | 0 | 0 | 0 | | {} | question-answering | pgajo/mdeberta_EW-TT-PE_U0_S1_Tingredient_P0.25_DROP1_mdeberta_E9_DEV97.0 | [
"transformers",
"safetensors",
"deberta-v2",
"question-answering",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:37:19+00:00 | [] | [] | TAGS
#transformers #safetensors #deberta-v2 #question-answering #endpoints_compatible #region-us
| Model description:
```
Model: microsoft/mdeberta-v3-base
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 9
Best exact match: 96.98
Best epoch: 9
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 8
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.25_DROP1_mdeberta
```
Results
| [] | [
"TAGS\n#transformers #safetensors #deberta-v2 #question-answering #endpoints_compatible #region-us \n"
] | [
35
] | [
"passage: TAGS\n#transformers #safetensors #deberta-v2 #question-answering #endpoints_compatible #region-us \n"
] | [
-0.03728775680065155,
-0.0038377046585083008,
-0.009311766363680363,
-0.024030903354287148,
0.09035065770149231,
0.005984686780720949,
0.08575788140296936,
0.05532265827059746,
0.06348118185997009,
0.03387044742703438,
0.18101909756660461,
0.19251902401447296,
-0.058089353144168854,
0.04107458144426346,
-0.13241812586784363,
-0.14612004160881042,
0.12823431193828583,
0.047934602946043015,
-0.07287584245204926,
0.07187519967556,
0.10195355862379074,
-0.10431212931871414,
0.05277901515364647,
-0.07257415354251862,
-0.06344954669475555,
0.08719473332166672,
0.044681012630462646,
-0.08118650317192078,
0.1287916600704193,
0.03779929131269455,
0.20841151475906372,
0.06395259499549866,
-0.08667069673538208,
-0.19618846476078033,
0.023215238004922867,
0.012712759897112846,
-0.07039128988981247,
-0.004744246602058411,
0.005283471662551165,
-0.04632415995001793,
-0.07809045165777206,
-0.01760007254779339,
0.023938005790114403,
0.05124702677130699,
-0.16341817378997803,
-0.21908938884735107,
-0.07441376149654388,
-0.0582892969250679,
0.13350747525691986,
0.07887715101242065,
-0.010550078004598618,
0.16895923018455505,
-0.11356569081544876,
0.08616088330745697,
0.12874191999435425,
-0.29962998628616333,
0.009337653405964375,
0.0861138105392456,
0.11587682366371155,
0.05225814878940582,
0.04153287410736084,
0.07279273122549057,
0.09410037100315094,
-0.0009737316868267953,
-0.05661074444651604,
-0.09237425774335861,
-0.03325352445244789,
0.08559805154800415,
-0.08217465877532959,
-0.06781372427940369,
0.23070332407951355,
0.016196254640817642,
0.007937050424516201,
-0.002183179836720228,
-0.12220358103513718,
0.041106440126895905,
0.03423582389950752,
-0.1241849735379219,
0.0017509078606963158,
0.052354611456394196,
0.04683992266654968,
-0.0034914726857095957,
-0.12999871373176575,
-0.04563375189900398,
-0.22419606149196625,
0.24771186709403992,
0.011630578897893429,
0.08584821969270706,
-0.24102671444416046,
0.02130679227411747,
-0.07927899062633514,
-0.10876813530921936,
-0.026147108525037766,
-0.0916609913110733,
0.0002376376069150865,
-0.026093177497386932,
-0.053491055965423584,
-0.03605819493532181,
0.14947523176670074,
0.2028331458568573,
-0.010358676314353943,
0.014293797314167023,
-0.0744699090719223,
0.04649025946855545,
0.04467272013425827,
0.10649570822715759,
-0.03231889009475708,
-0.03329123184084892,
0.03121146187186241,
-0.10594095289707184,
0.03815029188990593,
-0.03234180063009262,
-0.08156953752040863,
-0.07521678507328033,
0.06908408552408218,
0.19591230154037476,
0.06820499897003174,
-0.0026782427448779345,
-0.08307023346424103,
0.04234248399734497,
0.06869948655366898,
-0.04712492600083351,
-0.03400883823633194,
-0.013266735710203648,
0.053173311054706573,
0.07299400120973587,
-0.07136741280555725,
0.04754676669836044,
0.007166758645325899,
0.041958071291446686,
-0.05782022327184677,
-0.09400831907987595,
-0.025366829708218575,
-0.05529634654521942,
0.06341332942247391,
-0.08864553272724152,
0.09145759046077728,
-0.18967559933662415,
-0.10267826169729233,
0.016610626131296158,
-0.0045001329854130745,
-0.0059241256676614285,
0.04960429668426514,
-0.013106233440339565,
-0.040768858045339584,
-0.029761778190732002,
-0.0827065035700798,
-0.1321946680545807,
-0.05983034148812294,
0.05447603389620781,
0.07513409852981567,
0.04758704826235771,
-0.10108914226293564,
0.021683545783162117,
-0.0947238877415657,
0.06994698941707611,
-0.0967060849070549,
-0.01885940693318844,
-0.02939951792359352,
0.16544556617736816,
-0.05750654265284538,
-0.010703980922698975,
-0.06641863286495209,
0.04682425409555435,
-0.008118162862956524,
0.1765333116054535,
-0.09428954869508743,
-0.021007629111409187,
0.21591816842556,
-0.12629573047161102,
-0.25531452894210815,
0.07319356501102448,
0.014977891929447651,
-0.008239700458943844,
0.10758701711893082,
0.16017425060272217,
0.003659900976344943,
-0.1249273270368576,
0.05626790225505829,
0.08938276767730713,
-0.1734611839056015,
-0.04195570945739746,
0.0161068607121706,
-0.05066784471273422,
-0.09808830171823502,
0.009794488549232483,
0.011747514829039574,
0.04220179468393326,
-0.07061201333999634,
-0.031821198761463165,
-0.040559060871601105,
-0.03380554914474487,
0.03127153590321541,
0.02641715109348297,
0.007530045695602894,
-0.10770026594400406,
0.030615776777267456,
-0.024632485583424568,
-0.00683521619066596,
0.009172736667096615,
-0.007994556799530983,
-0.11802337318658829,
0.07900033891201019,
-0.13670556247234344,
0.03207860514521599,
-0.12633967399597168,
-0.19738146662712097,
0.005839425139129162,
0.04774182662367821,
-0.08468694984912872,
0.21800173819065094,
0.09875518828630447,
-0.09097693115472794,
-0.006137054413557053,
-0.05907114967703819,
0.08960998058319092,
0.08079451322555542,
0.0015853705117478967,
-0.06100659444928169,
0.07632071524858475,
-0.09650418162345886,
-0.09953558444976807,
-0.018393639475107193,
-0.017714479938149452,
0.1304686814546585,
0.1346324235200882,
0.04929674416780472,
0.10122460871934891,
-0.02789202146232128,
0.01993481069803238,
-0.017174601554870605,
-0.009066427126526833,
0.04489145055413246,
-0.049963824450969696,
-0.08283296227455139,
0.10970352590084076,
-0.13440923392772675,
0.3570311963558197,
0.16495820879936218,
-0.18925440311431885,
0.016876207664608955,
0.04143786057829857,
-0.0035933763720095158,
0.028533434495329857,
0.05441593378782272,
-0.05190100893378258,
-0.027621831744909286,
0.0003395829407963902,
0.08186915516853333,
-0.05591926723718643,
-0.021061910316348076,
-0.0024214573204517365,
-0.06779544800519943,
-0.07636790722608566,
0.03156960383057594,
-0.03236952796578407,
-0.23581324517726898,
0.1598215401172638,
0.2888161540031433,
0.06887117028236389,
0.06974518299102783,
-0.06956253200769424,
-0.05127473920583725,
-0.01880931295454502,
0.07158878445625305,
-0.009421447291970253,
0.07846536487340927,
-0.1845901757478714,
0.012462212704122066,
0.048904385417699814,
0.05341748148202896,
0.06331686675548553,
-0.10831060260534286,
-0.07400919497013092,
0.03772532194852829,
-0.012694379314780235,
-0.03839917853474617,
0.10736404359340668,
0.022606419399380684,
0.10709960758686066,
0.03297307342290878,
-0.03738418594002724,
0.11714612692594528,
-0.036412306129932404,
-0.08094025403261185,
0.17963960766792297,
-0.1312190294265747,
-0.2529188394546509,
-0.05371266230940819,
-0.0309743732213974,
0.015309958718717098,
0.07682015001773834,
0.08493343740701675,
-0.12386374920606613,
-0.07411549985408783,
0.05231013521552086,
0.08626353740692139,
-0.09790954738855362,
0.03934162110090256,
0.0023797620087862015,
0.10002171993255615,
-0.019342733547091484,
-0.09933225065469742,
-0.051427166908979416,
-0.024293815717101097,
-0.04063684493303299,
0.10013644397258759,
-0.08902595192193985,
0.13652992248535156,
0.07149036973714828,
0.022849300876259804,
0.014357123523950577,
-0.018676836043596268,
0.21740539371967316,
-0.10584890097379684,
-0.02909567952156067,
0.21149852871894836,
-0.061582233756780624,
0.06120970845222473,
0.21723942458629608,
-0.011369073763489723,
-0.14137785136699677,
0.0490938276052475,
-0.04474305361509323,
-0.07489360123872757,
-0.24073997139930725,
-0.04105493426322937,
-0.08793067932128906,
0.06107258051633835,
-0.03293713554739952,
0.031044837087392807,
0.11687543988227844,
0.08729026466608047,
0.009007125161588192,
-0.08792039752006531,
0.013844164088368416,
0.0475117564201355,
0.2525629997253418,
-0.050750844180583954,
0.09648704528808594,
-0.0905306413769722,
-0.15796737372875214,
0.06860008090734482,
0.10873650014400482,
0.10214661061763763,
0.1462642401456833,
-0.0027462129946798086,
0.0652061328291893,
0.07337166368961334,
0.1169021800160408,
0.12465336173772812,
0.05215666815638542,
-0.08677806705236435,
-0.015214472077786922,
0.006260489579290152,
-0.05600907281041145,
0.06300559639930725,
0.05267763137817383,
-0.12824462354183197,
-0.02818644419312477,
-0.1126512736082077,
0.10054311156272888,
0.058934297412633896,
0.11722028255462646,
-0.16743294894695282,
0.02464774064719677,
0.13799428939819336,
0.011353823356330395,
-0.058697812259197235,
0.0912867859005928,
0.03950318694114685,
-0.05620834231376648,
0.05313059687614441,
-0.012288566678762436,
0.09224139899015427,
0.0033262569922953844,
0.08071277290582657,
-0.08797255903482437,
-0.11835828423500061,
0.03301083669066429,
0.08238526433706284,
-0.3295687735080719,
0.22564776241779327,
0.028279071673750877,
-0.016620904207229614,
-0.06687446683645248,
-0.005727334879338741,
-0.06650315225124359,
0.15835775434970856,
0.1886526644229889,
-0.02183588780462742,
-0.11979547142982483,
-0.07963583618402481,
0.07401353865861893,
0.07268458604812622,
0.13214190304279327,
-0.0008550439379177988,
0.011137178167700768,
-0.020029472187161446,
0.01817243918776512,
0.009023798629641533,
0.0339263416826725,
-0.06312233954668045,
-0.08897468447685242,
0.018689529970288277,
0.030155029147863388,
0.11139077693223953,
-0.06486526876688004,
0.061214711517095566,
-0.03871696814894676,
0.09737993031740189,
-0.10540647059679031,
-0.05383811146020889,
-0.09303666651248932,
-0.12369555979967117,
0.10137403011322021,
-0.05370093137025833,
0.05306076258420944,
-0.0555231012403965,
-0.015339870005846024,
-0.060825176537036896,
-0.13736888766288757,
0.15165752172470093,
-0.13151134550571442,
-0.02399410679936409,
-0.060091447085142136,
0.13432838022708893,
-0.06052115187048912,
-0.04956622049212456,
0.03849561884999275,
0.030640382319688797,
-0.05581487715244293,
-0.07224435359239578,
0.01818917691707611,
-0.02525155432522297,
0.05334388464689255,
0.05658275634050369,
0.01350982952862978,
-0.02610687166452408,
0.019570866599678993,
0.01517036184668541,
0.15224997699260712,
0.2728946805000305,
-0.04704027995467186,
0.034734707325696945,
0.2019861787557602,
0.019508758559823036,
-0.2997712194919586,
-0.03708970919251442,
-0.16996325552463531,
-0.03763081505894661,
0.0001576267823111266,
-0.014361141249537468,
0.0958404615521431,
0.05704042315483093,
-0.05061405897140503,
0.09281529486179352,
-0.18354500830173492,
-0.059356939047575,
0.18360604345798492,
0.03641260042786598,
0.46958258748054504,
-0.1513713002204895,
-0.0824398323893547,
-0.06946707516908646,
-0.2224908471107483,
0.06882217526435852,
-0.07528354972600937,
0.0046777850948274136,
0.005234878975898027,
0.0012454054085537791,
0.03865218907594681,
-0.07250551134347916,
0.1923351287841797,
-0.02821686677634716,
0.08594304323196411,
-0.09839803725481033,
-0.04746972769498825,
0.09848132729530334,
-0.013502247631549835,
0.03634418547153473,
0.048766423016786575,
0.06638693064451218,
-0.05494767054915428,
-0.04515192285180092,
-0.04681549221277237,
0.05731835588812828,
0.0200260728597641,
-0.08612947911024094,
-0.033141303807497025,
-0.047092095017433167,
-0.007574393413960934,
-0.02145240642130375,
0.25384604930877686,
-0.04925965517759323,
0.10755962133407593,
0.048958804458379745,
0.13844121992588043,
-0.15345866978168488,
0.058802489191293716,
0.03176873177289963,
-0.075651153922081,
0.11595148593187332,
-0.05387841910123825,
0.11258704960346222,
0.11980435997247696,
-0.06261411309242249,
0.0276875589042902,
0.08715503662824631,
0.013339112512767315,
-0.020646551623940468,
0.12270597368478775,
-0.1804414838552475,
-0.17352819442749023,
0.013026049360632896,
-0.043761175125837326,
0.06835563480854034,
0.17754718661308289,
0.12196899205446243,
0.08846712112426758,
-0.0035179394762963057,
-0.02048347517848015,
-0.010183928534388542,
-0.08858445286750793,
0.04105261713266373,
0.08416090160608292,
0.03822343051433563,
-0.08193250745534897,
0.10291159152984619,
-0.03591543808579445,
-0.2500148415565491,
0.003552555339410901,
-0.03672315180301666,
-0.10880371183156967,
-0.09555232524871826,
-0.06167761608958244,
0.10387071967124939,
-0.11213231831789017,
-0.09997513145208359,
-0.07097186893224716,
-0.13154636323451996,
0.03360617533326149,
0.23974372446537018,
0.08289383351802826,
0.13268114626407623,
0.07666579633951187,
-0.012107719667255878,
-0.01010901853442192,
-0.010384861379861832,
-0.06637462228536606,
0.032844386994838715,
-0.1438174545764923,
-0.14763179421424866,
-0.06754093617200851,
0.10804397612810135,
-0.09265581518411636,
-0.0004247319884598255,
-0.17914313077926636,
0.05854702740907669,
-0.2196883112192154,
-0.07214508950710297,
-0.11454200744628906,
-0.05406768620014191,
0.025963526219129562,
-0.10953541100025177,
-0.03651311621069908,
-0.008068571798503399,
-0.08005882799625397,
0.06632442772388458,
0.05048135668039322,
0.0028475665021687746,
-0.11325653642416,
-0.08365554362535477,
0.09528572112321854,
-0.05175342410802841,
0.09759414941072464,
0.10428863763809204,
-0.06820128113031387,
0.06353648006916046,
-0.14875872433185577,
-0.09039495885372162,
0.1012660339474678,
-0.0038444052916020155,
0.07761853188276291,
0.018537240102887154,
-0.0044877128675580025,
0.09658176451921463,
-0.014644335024058819,
0.04661324620246887,
-0.014643060974776745,
-0.07971281558275223,
0.011742083355784416,
-0.0024761410895735025,
-0.15974916517734528,
-0.03513343632221222,
-0.1250457763671875,
0.14386332035064697,
-0.009737849235534668,
0.11325902491807938,
-0.0033590025268495083,
0.08404765278100967,
-0.021738460287451744,
0.007495634723454714,
0.01325159054249525,
-0.12161193788051605,
0.02199508249759674,
-0.017364859580993652,
0.006241925060749054,
-0.052283305674791336,
0.2766420543193817,
-0.10509592294692993,
0.11256786435842514,
0.07183399796485901,
-0.03606297820806503,
0.09216972440481186,
0.061178795993328094,
0.25528907775878906,
0.05826177820563316,
-0.04465165361762047,
-0.1735457479953766,
0.050498366355895996,
-0.026103811338543892,
-0.11913085728883743,
0.0648529902100563,
0.17591971158981323,
-0.047176338732242584,
0.09989645332098007,
0.030453339219093323,
0.020518073812127113,
-0.050770167261362076,
-0.1876874417066574,
-0.004301256965845823,
-0.0432882234454155,
0.06259779632091522,
-0.008821825496852398,
0.21463893353939056,
-0.025025110691785812,
-0.0033572805114090443,
-0.0632471889257431,
-0.017249418422579765,
-0.16657495498657227,
-0.03429330140352249,
-0.11253293603658676,
-0.13044434785842896,
0.040249474346637726,
-0.1115269809961319,
-0.03301050513982773,
0.06645764410495758,
0.04753605276346207,
-0.04213758185505867,
0.1902361363172531,
0.06573200970888138,
-0.03289858624339104,
0.01988375559449196,
0.028958622366189957,
0.05513424053788185,
0.13553409278392792,
-0.01344628818333149,
-0.09995265305042267,
-0.05822005495429039,
-0.08046729862689972,
0.022376641631126404,
-0.10237812250852585,
-0.001977994106709957,
-0.1252664476633072,
-0.07004109025001526,
-0.06012414023280144,
0.13463832437992096,
-0.1158134788274765,
0.12949733436107635,
0.008366498164832592,
-0.0026542560663074255,
0.06424061208963394,
0.18103350698947906,
-0.057416003197431564,
-0.09918779879808426,
-0.06368650496006012,
0.1449824422597885,
0.04360406845808029,
0.18814997375011444,
-0.017729584127664566,
-0.031461697071790695,
-0.05557883530855179,
0.21372833847999573,
0.16409939527511597,
-0.03719138354063034,
0.05825265124440193,
0.011034042574465275,
0.038524314761161804,
0.03307616710662842,
0.03439149260520935,
0.08178666234016418,
0.2752123773097992,
-0.05242934077978134,
-0.03383177891373634,
0.00390842417255044,
0.010725707747042179,
-0.055061809718608856,
0.07009056210517883,
0.019406987354159355,
-0.03337034210562706,
-0.05271846055984497,
0.1394403576850891,
-0.07101699709892273,
0.07581845670938492,
0.08650929480791092,
-0.1462441086769104,
-0.022530609741806984,
-0.0031092013232409954,
0.181584894657135,
-0.078005351126194,
0.09853580594062805,
-0.05395420268177986,
-0.1217523142695427,
0.03871089220046997,
0.03587624430656433,
-0.16465380787849426,
-0.04326138272881508,
0.0567278116941452,
0.10924361646175385,
0.037795569747686386,
-0.004048179369419813,
0.063839852809906,
0.10895700007677078,
0.019401034340262413,
-0.0708446279168129,
0.1313953399658203,
0.09407249838113785,
-0.08008626103401184,
-0.063413605093956,
-0.035939209163188934,
0.0012321395333856344,
-0.023244787007570267,
0.08809870481491089,
-0.24330021440982819,
0.025229470804333687,
0.0493527315557003,
-0.06088758632540703,
-0.09089525043964386,
0.04719321057200432,
-0.07631068676710129,
0.03341719135642052,
0.0013287434121593833,
-0.02169523946940899,
0.03511111065745354,
-0.007284884341061115,
0.05827337130904198,
0.07404907047748566,
-0.020775051787495613,
-0.08432212471961975,
-0.04175800085067749,
-0.018653327599167824,
0.1740911304950714,
-0.008556295186281204,
-0.07556404918432236,
-0.03197469562292099,
-0.034262072294950485,
0.047229327261447906,
-0.0786563903093338,
0.02384847216308117,
0.0753261148929596,
0.04348769038915634,
-0.01207562256604433,
-0.13913826644420624,
0.009004125371575356,
0.09089305996894836,
-0.08680365979671478,
-0.12171396613121033
] |
null | null | transformers | # [MaziyarPanahi/deepseek-math-7b-instruct-GGUF](https://huggingface.co/MaziyarPanahi/deepseek-math-7b-instruct-GGUF)
- Model creator: [deepseek-ai](https://huggingface.co/deepseek-ai)
- Original model: [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct)
## Description
[MaziyarPanahi/deepseek-math-7b-instruct-GGUF](https://huggingface.co/MaziyarPanahi/deepseek-math-7b-instruct-GGUF) contains GGUF format model files for [deepseek-ai/deepseek-math-7b-instruct](https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct).
## How to use
Thanks to [TheBloke](https://huggingface.co/TheBloke) for preparing an amazing README on how to use GGUF models:
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
### Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: [MaziyarPanahi/deepseek-math-7b-instruct-GGUF](https://huggingface.co/MaziyarPanahi/deepseek-math-7b-instruct-GGUF) and below it, a specific filename to download, such as: deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download MaziyarPanahi/deepseek-math-7b-instruct-GGUF deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
</details>
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download [MaziyarPanahi/deepseek-math-7b-instruct-GGUF](https://huggingface.co/MaziyarPanahi/deepseek-math-7b-instruct-GGUF) --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MaziyarPanahi/deepseek-math-7b-instruct-GGUF deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf", # Download the model file first
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) | {"tags": ["quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "transformers", "pytorch", "llama", "text-generation", "conversational", "arxiv:2402.03300", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us", "has_space"], "model_name": "deepseek-math-7b-instruct-GGUF", "base_model": "deepseek-ai/deepseek-math-7b-instruct", "inference": false, "model_creator": "deepseek-ai", "pipeline_tag": "text-generation", "quantized_by": "MaziyarPanahi"} | text-generation | MaziyarPanahi/deepseek-math-7b-instruct-GGUF | [
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"pytorch",
"llama",
"text-generation",
"conversational",
"arxiv:2402.03300",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:deepseek-ai/deepseek-math-7b-instruct"
] | 2024-02-13T12:39:57+00:00 | [
"2402.03300"
] | [] | TAGS
#transformers #gguf #mistral #quantized #2-bit #3-bit #4-bit #5-bit #6-bit #8-bit #GGUF #pytorch #llama #text-generation #conversational #arxiv-2402.03300 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us #base_model-deepseek-ai/deepseek-math-7b-instruct
| # MaziyarPanahi/deepseek-math-7b-instruct-GGUF
- Model creator: deepseek-ai
- Original model: deepseek-ai/deepseek-math-7b-instruct
## Description
MaziyarPanahi/deepseek-math-7b-instruct-GGUF contains GGUF format model files for deepseek-ai/deepseek-math-7b-instruct.
## How to use
Thanks to TheBloke for preparing an amazing README on how to use GGUF models:
### About GGUF
GGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* URL. The source project for GGUF. Offers a CLI and a server option.
* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
### Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
## How to download GGUF files
Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* URL
### In 'text-generation-webui'
Under Download Model, you can enter the model repo: MaziyarPanahi/deepseek-math-7b-instruct-GGUF and below it, a specific filename to download, such as: deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the 'huggingface-hub' Python library:
Then you can download any individual model file to the current directory, at high speed, with a command like this:
</details>
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
For more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install 'hf_transfer':
And set environment variable 'HF_HUB_ENABLE_HF_TRANSFER' to '1':
Windows Command Line users: You can set the environment variable by running 'set HF_HUB_ENABLE_HF_TRANSFER=1' before the download command.
</details>
## Example 'URL' command
Make sure you are using 'URL' from commit d0cee0d or later.
Change '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the '-p <PROMPT>' argument with '-i -ins'
For other parameters and how to use them, please refer to the URL documentation
## How to run in 'text-generation-webui'
Further instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.
## How to run from Python code
You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: llama-cpp-python docs.
#### First install the package
Run one of the following commands, according to your system:
#### Simple llama-cpp-python example code
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* LangChain + llama-cpp-python
* LangChain + ctransformers | [
"# MaziyarPanahi/deepseek-math-7b-instruct-GGUF\n- Model creator: deepseek-ai\n- Original model: deepseek-ai/deepseek-math-7b-instruct",
"## Description\nMaziyarPanahi/deepseek-math-7b-instruct-GGUF contains GGUF format model files for deepseek-ai/deepseek-math-7b-instruct.",
"## How to use\nThanks to TheBloke for preparing an amazing README on how to use GGUF models:",
"### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.",
"### Explanation of quantisation methods\n\n<details>\n <summary>Click to see details</summary>\n\nThe new methods available are:\n\n* GGML_TYPE_Q2_K - \"type-1\" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)\n* GGML_TYPE_Q3_K - \"type-0\" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.\n* GGML_TYPE_Q4_K - \"type-1\" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.\n* GGML_TYPE_Q5_K - \"type-1\" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw\n* GGML_TYPE_Q6_K - \"type-0\" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw",
"## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL",
"### In 'text-generation-webui'\n\nUnder Download Model, you can enter the model repo: MaziyarPanahi/deepseek-math-7b-instruct-GGUF and below it, a specific filename to download, such as: deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf.\n\nThen click Download.",
"### On the command line, including multiple files at once\n\nI recommend using the 'huggingface-hub' Python library:\n\n\n\nThen you can download any individual model file to the current directory, at high speed, with a command like this:\n\n\n</details>\n<details>\n <summary>More advanced huggingface-cli download usage (click to read)</summary>\n\nYou can also download multiple files at once with a pattern:\n\n\n\nFor more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.\n\nTo accelerate downloads on fast connections (1Gbit/s or higher), install 'hf_transfer':\n\n\n\nAnd set environment variable 'HF_HUB_ENABLE_HF_TRANSFER' to '1':\n\n\n\nWindows Command Line users: You can set the environment variable by running 'set HF_HUB_ENABLE_HF_TRANSFER=1' before the download command.\n</details>",
"## Example 'URL' command\n\nMake sure you are using 'URL' from commit d0cee0d or later.\n\n\n\nChange '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.\n\nChange '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.\n\nIf you want to have a chat-style conversation, replace the '-p <PROMPT>' argument with '-i -ins'\n\nFor other parameters and how to use them, please refer to the URL documentation",
"## How to run in 'text-generation-webui'\n\nFurther instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.",
"## How to run from Python code\n\nYou can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.",
"### How to load this model in Python code, using llama-cpp-python\n\nFor full documentation, please see: llama-cpp-python docs.",
"#### First install the package\n\nRun one of the following commands, according to your system:",
"#### Simple llama-cpp-python example code",
"## How to use with LangChain\n\nHere are guides on using llama-cpp-python and ctransformers with LangChain:\n\n* LangChain + llama-cpp-python\n* LangChain + ctransformers"
] | [
"TAGS\n#transformers #gguf #mistral #quantized #2-bit #3-bit #4-bit #5-bit #6-bit #8-bit #GGUF #pytorch #llama #text-generation #conversational #arxiv-2402.03300 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us #base_model-deepseek-ai/deepseek-math-7b-instruct \n",
"# MaziyarPanahi/deepseek-math-7b-instruct-GGUF\n- Model creator: deepseek-ai\n- Original model: deepseek-ai/deepseek-math-7b-instruct",
"## Description\nMaziyarPanahi/deepseek-math-7b-instruct-GGUF contains GGUF format model files for deepseek-ai/deepseek-math-7b-instruct.",
"## How to use\nThanks to TheBloke for preparing an amazing README on how to use GGUF models:",
"### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.",
"### Explanation of quantisation methods\n\n<details>\n <summary>Click to see details</summary>\n\nThe new methods available are:\n\n* GGML_TYPE_Q2_K - \"type-1\" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)\n* GGML_TYPE_Q3_K - \"type-0\" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.\n* GGML_TYPE_Q4_K - \"type-1\" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.\n* GGML_TYPE_Q5_K - \"type-1\" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw\n* GGML_TYPE_Q6_K - \"type-0\" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw",
"## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL",
"### In 'text-generation-webui'\n\nUnder Download Model, you can enter the model repo: MaziyarPanahi/deepseek-math-7b-instruct-GGUF and below it, a specific filename to download, such as: deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf.\n\nThen click Download.",
"### On the command line, including multiple files at once\n\nI recommend using the 'huggingface-hub' Python library:\n\n\n\nThen you can download any individual model file to the current directory, at high speed, with a command like this:\n\n\n</details>\n<details>\n <summary>More advanced huggingface-cli download usage (click to read)</summary>\n\nYou can also download multiple files at once with a pattern:\n\n\n\nFor more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.\n\nTo accelerate downloads on fast connections (1Gbit/s or higher), install 'hf_transfer':\n\n\n\nAnd set environment variable 'HF_HUB_ENABLE_HF_TRANSFER' to '1':\n\n\n\nWindows Command Line users: You can set the environment variable by running 'set HF_HUB_ENABLE_HF_TRANSFER=1' before the download command.\n</details>",
"## Example 'URL' command\n\nMake sure you are using 'URL' from commit d0cee0d or later.\n\n\n\nChange '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.\n\nChange '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.\n\nIf you want to have a chat-style conversation, replace the '-p <PROMPT>' argument with '-i -ins'\n\nFor other parameters and how to use them, please refer to the URL documentation",
"## How to run in 'text-generation-webui'\n\nFurther instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.",
"## How to run from Python code\n\nYou can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.",
"### How to load this model in Python code, using llama-cpp-python\n\nFor full documentation, please see: llama-cpp-python docs.",
"#### First install the package\n\nRun one of the following commands, according to your system:",
"#### Simple llama-cpp-python example code",
"## How to use with LangChain\n\nHere are guides on using llama-cpp-python and ctransformers with LangChain:\n\n* LangChain + llama-cpp-python\n* LangChain + ctransformers"
] | [
116,
48,
46,
26,
401,
323,
84,
83,
218,
182,
49,
77,
36,
19,
12,
50
] | [
"passage: TAGS\n#transformers #gguf #mistral #quantized #2-bit #3-bit #4-bit #5-bit #6-bit #8-bit #GGUF #pytorch #llama #text-generation #conversational #arxiv-2402.03300 #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us #base_model-deepseek-ai/deepseek-math-7b-instruct \n# MaziyarPanahi/deepseek-math-7b-instruct-GGUF\n- Model creator: deepseek-ai\n- Original model: deepseek-ai/deepseek-math-7b-instruct## Description\nMaziyarPanahi/deepseek-math-7b-instruct-GGUF contains GGUF format model files for deepseek-ai/deepseek-math-7b-instruct.## How to use\nThanks to TheBloke for preparing an amazing README on how to use GGUF models:",
"passage: ### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.### Explanation of quantisation methods\n\n<details>\n <summary>Click to see details</summary>\n\nThe new methods available are:\n\n* GGML_TYPE_Q2_K - \"type-1\" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)\n* GGML_TYPE_Q3_K - \"type-0\" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.\n* GGML_TYPE_Q4_K - \"type-1\" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.\n* GGML_TYPE_Q5_K - \"type-1\" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw\n* GGML_TYPE_Q6_K - \"type-0\" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL### In 'text-generation-webui'\n\nUnder Download Model, you can enter the model repo: MaziyarPanahi/deepseek-math-7b-instruct-GGUF and below it, a specific filename to download, such as: deepseek-math-7b-instruct-GGUF.Q4_K_M.gguf.\n\nThen click Download."
] | [
-0.05712154880166054,
0.10377625375986099,
-0.003030782099813223,
0.08562596142292023,
0.05542632192373276,
0.044799163937568665,
0.01054353080689907,
0.1138300970196724,
0.08781313896179199,
0.08534751832485199,
0.0591360442340374,
0.05029522255063057,
0.04588274657726288,
0.15550106763839722,
0.08147451281547546,
-0.22221533954143524,
0.0180628914386034,
-0.004536643624305725,
-0.0021803369745612144,
0.03858860582113266,
0.053686562925577164,
-0.043634139001369476,
0.07425938546657562,
-0.025849781930446625,
-0.03746451810002327,
-0.03636762499809265,
-0.060449957847595215,
-0.0034805145114660263,
0.05220672860741615,
0.049974311143159866,
-0.0667504370212555,
-0.05355601757764816,
-0.01894386112689972,
-0.10995496809482574,
0.03195120021700859,
0.05556315928697586,
-0.0126720005646348,
0.04776281490921974,
-0.034234266728162766,
0.02892116829752922,
0.11555831134319305,
-0.09540075063705444,
0.002416994422674179,
0.03057805262506008,
-0.07860060036182404,
-0.12173841893672943,
-0.09459245949983597,
0.02932930737733841,
0.030245818197727203,
0.034526340663433075,
0.008504141122102737,
0.06319621205329895,
0.02053249627351761,
0.029879286885261536,
0.22112169861793518,
-0.2621241509914398,
-0.06405865401029587,
0.09807143360376358,
0.041919149458408356,
0.0834725946187973,
-0.0970369428396225,
0.06191705912351608,
0.01650647632777691,
0.019413242116570473,
0.04783248528838158,
-0.03539564087986946,
0.12263308465480804,
-0.012497322633862495,
-0.10385145246982574,
-0.004559413995593786,
0.07458426058292389,
-0.0018405979499220848,
-0.04605955630540848,
-0.08264844119548798,
-0.059940680861473083,
-0.020764010027050972,
-0.05466257780790329,
-0.0012575089931488037,
0.021007275208830833,
0.016475753858685493,
0.0528927817940712,
-0.1321428120136261,
-0.03538275510072708,
-0.04360025003552437,
-0.028749730437994003,
0.23498526215553284,
0.021530460566282272,
0.03272569179534912,
0.03429938852787018,
0.11840666830539703,
-0.14645881950855255,
-0.05843528360128403,
-0.10779878497123718,
-0.012521653436124325,
-0.03966645896434784,
0.02649398148059845,
0.01896856725215912,
0.04130886495113373,
0.03368763253092766,
0.12790971994400024,
-0.030869824811816216,
0.08747056126594543,
0.05008310452103615,
0.006923886947333813,
-0.002494828775525093,
0.10036347806453705,
-0.05113112926483154,
-0.1195325255393982,
0.08342611789703369,
0.023857394233345985,
0.10848327726125717,
-0.05174950882792473,
-0.055974483489990234,
-0.017655711621046066,
-0.0432397723197937,
0.016745727509260178,
0.03071153536438942,
0.033078767359256744,
-0.02208574302494526,
-0.058424126356840134,
0.156105637550354,
-0.08089381456375122,
0.04318993166089058,
0.004634177312254906,
-0.04756957292556763,
-0.023233138024806976,
0.01934473216533661,
-0.016200922429561615,
-0.036726370453834534,
-0.006340323016047478,
-0.08379367738962173,
-0.027427110821008682,
-0.07705610990524292,
-0.03061848133802414,
0.04629134386777878,
-0.03736933693289757,
-0.02535502426326275,
-0.0712752640247345,
-0.19752264022827148,
0.027018524706363678,
0.06784334778785706,
-0.0419020801782608,
-0.032871492207050323,
0.0048311930149793625,
-0.005435571074485779,
0.007207946386188269,
0.023740261793136597,
0.06533314287662506,
-0.027111880481243134,
0.036153025925159454,
0.021341880783438683,
0.0532526820898056,
-0.12418439984321594,
0.0058044325560331345,
-0.03982740640640259,
0.062398459762334824,
-0.1107487753033638,
0.10875378549098969,
-0.10397160053253174,
0.03184566646814346,
-0.06847307085990906,
-0.02510669082403183,
-0.06418691575527191,
-0.02562377043068409,
0.05614054948091507,
0.06668169796466827,
-0.08719686418771744,
-0.06178395450115204,
0.0683078020811081,
-0.09971985220909119,
-0.08539364486932755,
0.13091354072093964,
-0.0077206166461110115,
0.03819941729307175,
0.0847960039973259,
0.1281719207763672,
0.18360206484794617,
-0.02125503122806549,
-0.08844995498657227,
0.0025069471448659897,
0.03152463212609291,
0.022271182388067245,
0.05227036401629448,
0.03309567645192146,
-0.028503280133008957,
0.046575114130973816,
-0.062404945492744446,
0.04210471734404564,
0.015222757123410702,
-0.0534248948097229,
-0.039704833179712296,
-0.0739002376794815,
0.06052170693874359,
-0.021054910495877266,
0.007992345839738846,
-0.009807631373405457,
-0.06790676712989807,
-0.0513608381152153,
0.13056759536266327,
-0.021834027022123337,
0.023287858814001083,
-0.07729730010032654,
0.15567150712013245,
-0.06047769635915756,
0.0455964058637619,
-0.043792471289634705,
-0.06620582938194275,
0.07594954967498779,
-0.0989265888929367,
0.07911573350429535,
-0.07288460433483124,
0.06367447227239609,
0.05904781073331833,
-0.03620432689785957,
0.020669054239988327,
-0.016343209892511368,
-0.041488803923130035,
-0.06281505525112152,
-0.04366215318441391,
-0.0032439501956105232,
-0.027764389291405678,
0.08192551136016846,
-0.06446641683578491,
0.019706163555383682,
0.05198950693011284,
0.036893896758556366,
0.022633161395788193,
-0.09737168252468109,
0.04892523214221001,
-0.027029961347579956,
0.03216959908604622,
-0.04625970870256424,
0.012032648548483849,
0.01425216719508171,
-0.09784791618585587,
0.015850652009248734,
-0.11869455873966217,
0.04450166970491409,
0.06029200926423073,
0.09479688107967377,
0.03467324748635292,
-0.03920375183224678,
0.003787399036809802,
-0.03612472116947174,
0.017977651208639145,
-0.019347872585058212,
0.18800108134746552,
-0.0073509542271494865,
0.04287665709853172,
-0.0647483617067337,
-0.01664813421666622,
0.0008337455801665783,
0.01820826530456543,
-0.002522944938391447,
0.06560515612363815,
0.06001994013786316,
-0.10780505836009979,
0.03461853787302971,
0.05384667590260506,
-0.03771749511361122,
0.16168518364429474,
0.023804983124136925,
-0.03964714705944061,
-0.04712364077568054,
0.00469023734331131,
0.007488856092095375,
0.12294574081897736,
-0.12156142294406891,
0.007135790307074785,
0.014033225364983082,
0.01099014189094305,
0.06342773884534836,
-0.0837787464261055,
0.015539655461907387,
-0.036443233489990234,
-0.0617169514298439,
0.06445761770009995,
0.03738681226968765,
-0.08046802878379822,
0.03929328918457031,
0.06568238139152527,
0.11111000180244446,
0.004427401348948479,
0.000858464278280735,
-0.06686475872993469,
0.13139867782592773,
-0.10016879439353943,
-0.17952555418014526,
-0.11887605488300323,
-0.030559740960597992,
-0.06902766227722168,
-0.021357281133532524,
0.01747482642531395,
-0.05640798807144165,
-0.03675922751426697,
-0.06493175774812698,
0.026632482185959816,
0.0008905958384275436,
-0.0077997855842113495,
0.062109969556331635,
-0.0733504518866539,
-0.01402819249778986,
-0.11321228742599487,
0.009848338551819324,
0.006203965283930302,
-0.08942615985870361,
0.023052100092172623,
0.02844724804162979,
0.06066030263900757,
0.06125010550022125,
0.037665415555238724,
0.006855633109807968,
-0.007312440313398838,
0.21028080582618713,
-0.10224108397960663,
0.09350276738405228,
0.12433847784996033,
0.065207339823246,
0.0617600679397583,
-0.0014150012284517288,
0.0271279476583004,
-0.074104443192482,
-0.0025093108415603638,
0.039053477346897125,
-0.08139879256486893,
-0.1062789261341095,
-0.05385708808898926,
-0.07381509244441986,
0.054017893970012665,
0.011791756376624107,
0.08099934458732605,
-0.05219801887869835,
0.07992307841777802,
-0.017362922430038452,
0.06254802644252777,
0.009404227137565613,
0.05572142452001572,
0.1063004583120346,
0.0033011874184012413,
0.032534562051296234,
-0.06906309723854065,
0.029091374948620796,
0.10254045575857162,
0.11025425046682358,
0.12163538485765457,
-0.08660188317298889,
0.16257084906101227,
-0.003934736829251051,
0.06368221342563629,
0.009143807925283909,
0.020096639171242714,
-0.07359656691551208,
0.00040462729521095753,
-0.03364675119519234,
-0.05219350755214691,
-0.08552957326173782,
0.042900487780570984,
0.014306850731372833,
-0.004574501886963844,
0.0333835631608963,
0.06935431063175201,
0.061965130269527435,
0.10763674229383469,
0.01254837866872549,
-0.11675925552845001,
-0.12184397876262665,
0.04680745303630829,
-0.03866439312696457,
-0.07200418412685394,
0.016060490161180496,
0.05570795387029648,
-0.06892877072095871,
0.04402895271778107,
-0.048827189952135086,
0.042004477232694626,
-0.10585395246744156,
-0.007439959794282913,
0.0033322125673294067,
0.16280801594257355,
0.007103217765688896,
0.06584924459457397,
-0.1562938541173935,
0.018405597656965256,
0.03359953314065933,
0.06268982589244843,
-0.056317560374736786,
0.008786548860371113,
0.09085668623447418,
-0.012952439486980438,
0.04574604704976082,
0.02508446015417576,
0.07396981120109558,
-0.008711257949471474,
-0.12883812189102173,
0.06943051517009735,
0.03663671761751175,
-0.0724358856678009,
0.054797060787677765,
-0.017550373449921608,
0.012317752465605736,
-0.03926125168800354,
-0.001276843249797821,
-0.05459063872694969,
-0.15850409865379333,
0.1167188435792923,
-0.012849317863583565,
-0.04761800542473793,
-0.08474070578813553,
-0.03976018726825714,
-0.016995536163449287,
0.15744107961654663,
-0.04149725288152695,
-0.0580485463142395,
-0.08305759727954865,
0.023568440228700638,
0.10918476432561874,
-0.0901634469628334,
0.02344253659248352,
-0.025675268843770027,
0.06037425249814987,
-0.03557558357715607,
-0.10595032572746277,
0.04585636034607887,
-0.06133466958999634,
-0.09423734247684479,
0.007478771731257439,
0.09241633117198944,
0.043260835111141205,
0.037757933139801025,
-0.017340991646051407,
0.009276371449232101,
-0.01703929901123047,
-0.13315127789974213,
0.0539693646132946,
0.13399867713451385,
-0.13742339611053467,
0.07667957246303558,
-0.025250433012843132,
0.059984102845191956,
-0.017851822078227997,
-0.016748465597629547,
0.09176364541053772,
0.14841771125793457,
-0.03522668778896332,
0.1353277713060379,
0.11053643375635147,
-0.07756572216749191,
-0.21704179048538208,
-0.015743162482976913,
0.00009671971201896667,
0.02422388270497322,
-0.07532455027103424,
-0.24539773166179657,
0.09993325173854828,
0.0529312901198864,
-0.035552553832530975,
0.22376087307929993,
-0.23297953605651855,
-0.07668992877006531,
-0.03184144198894501,
0.05059337988495827,
0.1786532998085022,
-0.1253117322921753,
-0.06354726850986481,
0.008291454054415226,
-0.09528922289609909,
0.0480743870139122,
-0.053007230162620544,
0.13769465684890747,
-0.033674515783786774,
0.08047464489936829,
-0.0028724144212901592,
-0.02651515044271946,
0.13186979293823242,
-0.0842069759964943,
0.010674858465790749,
-0.06655967980623245,
0.0457313098013401,
0.0008663851767778397,
-0.06364434212446213,
0.10142894089221954,
-0.09156778454780579,
0.018359214067459106,
-0.0778246521949768,
-0.019777899608016014,
-0.056203506886959076,
0.042579926550388336,
-0.004768110811710358,
-0.04535634443163872,
-0.09619806706905365,
0.07010027766227722,
0.004845434799790382,
0.044792212545871735,
-0.021182218566536903,
0.02696428820490837,
0.020026735961437225,
0.017616985365748405,
0.11385289579629898,
-0.12447229772806168,
-0.06755735725164413,
-0.018710296601057053,
-0.008680553175508976,
0.06801757961511612,
-0.13894933462142944,
0.012720515951514244,
0.08365127444267273,
0.014792264439165592,
0.05230194702744484,
0.01992110349237919,
-0.13282448053359985,
0.063285693526268,
0.06727006286382675,
-0.12073604762554169,
-0.1962662935256958,
-0.022591348737478256,
0.019138487055897713,
-0.04959951341152191,
0.041230570524930954,
0.1409461498260498,
-0.013696778565645218,
-0.0267722737044096,
0.0068539585918188095,
0.05983678251504898,
-0.02230038307607174,
0.07555025815963745,
0.023555802181363106,
0.004547068849205971,
-0.08379068225622177,
0.06555996835231781,
0.01444284524768591,
-0.02509712241590023,
0.04687558859586716,
0.18500670790672302,
-0.06416025757789612,
-0.08489261567592621,
-0.11357490718364716,
0.00018687546253204346,
-0.011020523495972157,
0.009557811543345451,
-0.024601753801107407,
-0.03162125498056412,
0.024946626275777817,
0.061773885041475296,
0.0198732390999794,
0.016332237049937248,
-0.0369102880358696,
0.08412505686283112,
-0.019919943064451218,
0.0552583709359169,
-0.0347105972468853,
0.0616009421646595,
-0.1066884994506836,
-0.029154282063245773,
0.0020861830562353134,
0.05641360208392143,
-0.02953602373600006,
-0.03002043440937996,
-0.067875437438488,
-0.03943468630313873,
-0.09605257213115692,
-0.009107979014515877,
-0.09431716054677963,
0.020644210278987885,
-0.013511997647583485,
0.006258852779865265,
-0.027911264449357986,
0.03589852899312973,
-0.05146500840783119,
-0.039324987679719925,
-0.04531152546405792,
0.009446617215871811,
-0.06651672720909119,
0.016819164156913757,
0.07506417483091354,
-0.04206974431872368,
0.1472499668598175,
0.007730577141046524,
0.015144698321819305,
0.03678777813911438,
-0.12039516866207123,
0.020265065133571625,
-0.006454583257436752,
-0.00008169910870492458,
-0.015187767334282398,
-0.07825204730033875,
0.04054645076394081,
-0.040293749421834946,
0.017567994073033333,
0.012382138520479202,
0.14350005984306335,
-0.06983739882707596,
0.004152832552790642,
-0.04333607479929924,
-0.00919282902032137,
-0.03257065266370773,
0.045015789568424225,
0.052877843379974365,
0.018969465047121048,
0.01772526279091835,
-0.04632001370191574,
-0.008227227255702019,
-0.11941875517368317,
-0.0017039591912180185,
0.014942213892936707,
-0.044955089688301086,
-0.020054655149579048,
-0.039287593215703964,
0.04636206477880478,
0.0035455897450447083,
0.1500903069972992,
-0.029752280563116074,
-0.12251440435647964,
-0.01126849465072155,
-0.047503165900707245,
0.05953560024499893,
-0.001487284665927291,
0.0771370381116867,
0.044790275394916534,
-0.020947501063346863,
0.008642234839498997,
0.041818808764219284,
0.03743379935622215,
0.0084573645144701,
0.049722280353307724,
0.015475647523999214,
0.06723128259181976,
0.08498913794755936,
0.013291103765368462,
-0.059749454259872437,
-0.07242073118686676,
0.08211365342140198,
-0.08656088262796402,
0.06570707261562347,
-0.054708052426576614,
0.06985095143318176,
0.11293516308069229,
-0.09072230756282806,
0.05300815403461456,
0.020544009283185005,
-0.05502576380968094,
-0.050511304289102554,
-0.1349039077758789,
-0.04737343639135361,
-0.09556391835212708,
0.01955639384686947,
-0.0908949077129364,
0.015562041662633419,
-0.005508037284016609,
0.033633049577474594,
-0.007948603481054306,
0.17852109670639038,
-0.0007214096840471029,
-0.01655035838484764,
0.07160478085279465,
0.011009587906301022,
-0.057014863938093185,
0.09883765876293182,
-0.049485962837934494,
-0.00686380360275507,
-0.008217439986765385,
0.08271001279354095,
0.02705211564898491,
-0.021430237218737602,
0.06760787218809128,
-0.002993345260620117,
-0.024523712694644928,
-0.022656191140413284,
0.017333202064037323,
0.00469631003215909,
0.13739332556724548,
0.012585453689098358,
-0.07537557929754257,
-0.010635112412273884,
0.13324207067489624,
-0.023068416863679886,
0.02634277381002903,
-0.09839838743209839,
0.08681958168745041,
-0.07230304181575775,
-0.014155112206935883,
-0.044082850217819214,
-0.053135816007852554,
0.003464015666395426,
0.1460040807723999,
0.17091745138168335,
-0.09235140681266785,
-0.004451123997569084,
0.03855235502123833,
0.003226740285754204,
-0.01435238029807806,
0.117506243288517,
0.07278475165367126,
0.20865140855312347,
-0.034763261675834656,
-0.00705648772418499,
-0.021452154964208603,
-0.03007545694708824,
-0.09885963052511215,
0.05324320122599602,
-0.03937844932079315,
0.050052061676979065,
-0.06289467960596085,
0.01733941212296486,
-0.06726904958486557,
-0.11880408227443695,
-0.03589339554309845,
-0.1481333076953888,
-0.09087780117988586,
-0.017931850627064705,
-0.048545148223638535,
0.017729729413986206,
0.053026460111141205,
0.02892177365720272,
0.010694596916437149,
0.022027023136615753,
0.015177134424448013,
-0.1353064477443695,
-0.025682765990495682,
0.07668575644493103,
-0.008915621787309647,
0.21046359837055206,
-0.012981864623725414,
-0.004221427254378796,
0.08285419642925262,
-0.030328527092933655,
-0.10372741520404816,
0.053247563540935516,
0.011511539109051228,
-0.09764371067285538,
-0.045261405408382416,
0.12040764093399048,
0.0008843764662742615,
0.04294626787304878,
0.07375290989875793,
0.09710441529750824,
-0.00841444730758667,
0.037942927330732346,
0.016083262860774994,
-0.06038180738687515,
0.002074873074889183,
-0.1357010304927826,
0.16515538096427917,
0.12938739359378815,
-0.010208645835518837,
-0.017708459869027138,
-0.06424155831336975,
0.03901536762714386,
-0.010936996899545193,
0.03981582447886467,
-0.05130983144044876,
-0.12999974191188812,
-0.00008377525955438614,
-0.03977344185113907,
0.024409182369709015,
-0.21580907702445984,
-0.0695444867014885,
-0.024196496233344078,
0.015455683693289757,
-0.005518484860658646,
0.09940308332443237,
0.10568425059318542,
-0.008941136300563812,
-0.027086222544312477,
-0.1590198129415512,
-0.02302282303571701,
0.04508499801158905,
-0.12147584557533264,
-0.06522667407989502
] |
null | null | null |
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
```python
{'exp_name': 'ppo'
'seed': 1
'torch_deterministic': True
'cuda': True
'track': False
'wandb_project_name': 'cleanRL'
'wandb_entity': None
'capture_video': False
'env_id': 'LunarLander-v2'
'total_timesteps': 50000
'learning_rate': 0.00025
'num_envs': 4
'num_steps': 128
'anneal_lr': True
'gae': True
'gamma': 0.99
'gae_lambda': 0.95
'num_minibatches': 4
'update_epochs': 8
'norm_adv': True
'clip_coef': 0.2
'clip_vloss': True
'ent_coef': 0.01
'vf_coef': 0.5
'max_grad_norm': 0.5
'target_kl': None
'repo_id': 'vpepe2003/PPO-LunarLander'
'batch_size': 512
'minibatch_size': 128}
```
| {"tags": ["LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "-226.61 +/- 112.82", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | vpepe2003/PPO-LunarLander | [
"tensorboard",
"LunarLander-v2",
"ppo",
"deep-reinforcement-learning",
"reinforcement-learning",
"custom-implementation",
"deep-rl-course",
"model-index",
"region:us"
] | 2024-02-13T12:43:13+00:00 | [] | [] | TAGS
#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us
|
# PPO Agent Playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2.
# Hyperparameters
| [
"# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters"
] | [
"TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n",
"# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters"
] | [
51,
37
] | [
"passage: TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n \n # Hyperparameters"
] | [
0.07948226481676102,
-0.021824665367603302,
-0.005334289278835058,
0.07425090670585632,
0.11451162397861481,
-0.051334477961063385,
0.11827225238084793,
0.05111894756555557,
0.0632978081703186,
0.08233953267335892,
0.09910695254802704,
0.11526558548212051,
0.02103434130549431,
0.12346389144659042,
0.10133372992277145,
-0.26653239130973816,
0.0048308540135622025,
-0.042133692651987076,
0.020121442154049873,
0.07062754780054092,
-0.028985055163502693,
-0.12164036184549332,
0.02042403817176819,
-0.008055811747908592,
0.04164125770330429,
0.03685355558991432,
-0.020250989124178886,
-0.07061084359884262,
0.1035412922501564,
-0.04342407360672951,
0.07646117359399796,
0.04053044691681862,
0.12915800511837006,
-0.11266650259494781,
0.03731851652264595,
0.047094929963350296,
-0.058420803397893906,
0.040810972452163696,
0.023221731185913086,
0.07433853298425674,
0.15582501888275146,
0.0008022422553040087,
0.10807766020298004,
-0.019928930327296257,
-0.15859591960906982,
-0.0564296655356884,
0.04013175517320633,
0.10688508301973343,
0.041339244693517685,
0.05763867497444153,
0.01518392562866211,
0.24210692942142487,
-0.07300914824008942,
0.0014766358071938157,
0.1963091939687729,
-0.2750851511955261,
-0.056198850274086,
0.2650637924671173,
0.08425293117761612,
0.09438422322273254,
-0.09869689494371414,
-0.0236953292042017,
0.007850034162402153,
0.013983802869915962,
-0.038732558488845825,
-0.07621388882398605,
0.1343805193901062,
0.06358266621828079,
-0.07906194031238556,
-0.05448254942893982,
0.09211132675409317,
0.015635671094059944,
0.03398676961660385,
0.0008897133520804346,
-0.015260354615747929,
0.03964465111494064,
-0.008004734292626381,
-0.08323223143815994,
0.067534439265728,
0.017411211505532265,
-0.059903185814619064,
-0.11101946979761124,
-0.11182308942079544,
-0.028280947357416153,
-0.08438915759325027,
0.16840966045856476,
-0.023494480177760124,
0.07285201549530029,
-0.06215810775756836,
0.06860414892435074,
-0.037912189960479736,
0.004227026831358671,
0.006380763836205006,
-0.049948662519454956,
-0.04539962485432625,
-0.025878654792904854,
0.006328459829092026,
0.011017742566764355,
0.11213880032300949,
-0.002449487103149295,
0.0508684441447258,
0.04856472462415695,
0.014653711579740047,
0.0942535474896431,
0.04126615449786186,
0.18958540260791779,
-0.006363034248352051,
0.0650586485862732,
0.062062907963991165,
0.017491057515144348,
0.022076671943068504,
-0.05142693966627121,
-0.1658715307712555,
0.0807771384716034,
-0.08260773122310638,
-0.028765955939888954,
0.09323479980230331,
-0.044928085058927536,
-0.1112084910273552,
-0.01773354969918728,
-0.07590804249048233,
-0.025731517001986504,
-0.01252016518265009,
0.01790926419198513,
-0.035574477165937424,
0.005672375671565533,
0.03449513763189316,
0.08204318583011627,
0.033907562494277954,
-0.08674118667840958,
0.00984077900648117,
0.012360874563455582,
-0.122767873108387,
-0.004771664272993803,
0.010288639925420284,
0.04804306477308273,
0.04491464048624039,
-0.1116413027048111,
-0.2020648866891861,
-0.08828215301036835,
0.053431469947099686,
-0.07537820190191269,
-0.15614600479602814,
-0.11512033641338348,
0.02302604168653488,
-0.10217837989330292,
-0.046169016510248184,
-0.0017400066135451198,
-0.019300667569041252,
0.05366985872387886,
-0.06531468033790588,
0.1828034669160843,
0.0271916463971138,
-0.00020129751646891236,
-0.14947181940078735,
0.019320663064718246,
-0.2362208217382431,
0.07685942947864532,
-0.04987453296780586,
0.07074880599975586,
-0.04584719240665436,
-0.09154892712831497,
-0.01864667609333992,
0.054014526307582855,
0.013841784559190273,
0.10950348526239395,
-0.1638582944869995,
-0.05129624530673027,
0.024843567982316017,
-0.08068934828042984,
-0.0030390452593564987,
-0.04837793856859207,
-0.04604795575141907,
0.1606992781162262,
0.018704978749155998,
0.14688511192798615,
-0.12919624149799347,
-0.09930720180273056,
0.19129104912281036,
0.03531093895435333,
-0.16984215378761292,
-0.036521974951028824,
0.09952033311128616,
0.019277004525065422,
-0.01849931664764881,
-0.05688142776489258,
-0.07599073648452759,
0.015944182872772217,
-0.08702079951763153,
-0.04182637855410576,
0.04013517126441002,
-0.042824242264032364,
0.14606650173664093,
0.10223949700593948,
0.07952884584665298,
-0.07538176327943802,
-0.007020880468189716,
0.08674140274524689,
0.06271850317716599,
0.045035574585199356,
0.03672485426068306,
-0.05614851415157318,
0.03206208720803261,
-0.025039123371243477,
-0.01738123595714569,
-0.13521039485931396,
0.0019960827194154263,
-0.06055765971541405,
0.1118607297539711,
0.13101612031459808,
0.28467631340026855,
0.10075046867132187,
0.02464960888028145,
0.07675616443157196,
-0.07042508572340012,
-0.10758408159017563,
0.002032244112342596,
0.0235405582934618,
-0.1785016655921936,
0.026378504931926727,
-0.07599464803934097,
-0.14044412970542908,
-0.1351996809244156,
-0.025685761123895645,
-0.17195537686347961,
0.02159930020570755,
0.054728612303733826,
-0.018639836460351944,
0.0013907389948144555,
0.12220112234354019,
0.013543038628995419,
-0.053733617067337036,
0.10188740491867065,
0.009542218409478664,
-0.05206648260354996,
-0.045367226004600525,
0.1050298660993576,
0.13431710004806519,
0.1365344226360321,
-0.2098493129014969,
0.008600602857768536,
0.1119711846113205,
-0.04708562791347504,
0.03519878163933754,
0.026510966941714287,
0.21071651577949524,
0.2740876078605652,
0.0374440960586071,
0.008118349127471447,
-0.05789022892713547,
0.0453064851462841,
-0.05260699614882469,
-0.11800429224967957,
-0.05410657823085785,
0.17159637808799744,
0.07862472534179688,
-0.006237224210053682,
0.09871696680784225,
0.07909595966339111,
0.037818074226379395,
0.16045765578746796,
0.03334520757198334,
-0.09544764459133148,
-0.03232238441705704,
-0.026171676814556122,
-0.0047440179623663425,
0.06791821867227554,
-0.0798373743891716,
-0.032012078911066055,
0.021649274975061417,
-0.13788609206676483,
0.018513672053813934,
-0.18612799048423767,
-0.1437452882528305,
0.03805195167660713,
0.043561313301324844,
-0.008401780389249325,
0.04065251722931862,
-0.0160639937967062,
0.05676067993044853,
0.03282754495739937,
-0.08861549198627472,
0.04405612871050835,
-0.005384152289479971,
0.009959283284842968,
0.03441033884882927,
-0.01767686940729618,
-0.21204280853271484,
-0.15340813994407654,
0.013550614938139915,
-0.05142427980899811,
0.05592547729611397,
-0.008550947532057762,
-0.19242143630981445,
0.025911282747983932,
-0.014332908205688,
0.02364996261894703,
-0.03164665028452873,
-0.03833974152803421,
0.1345074623823166,
0.14185978472232819,
-0.026165392249822617,
0.00023905932903289795,
-0.03341824188828468,
-0.14318081736564636,
-0.180479034781456,
0.06557876616716385,
0.0740460753440857,
0.006866236217319965,
0.1220167726278305,
0.004434254486113787,
0.026604121550917625,
-0.00636066310107708,
0.007762894034385681,
-0.07827747613191605,
-0.10268643498420715,
0.2943233549594879,
0.02490289881825447,
-0.022609207779169083,
-0.023361563682556152,
0.022680940106511116,
-0.005913543980568647,
0.020695405080914497,
-0.06731052696704865,
-0.11051533371210098,
-0.10214895755052567,
-0.018064133822917938,
-0.05326148122549057,
0.08696132898330688,
0.05207669362425804,
-0.0023201601579785347,
-0.058658841997385025,
0.0491698756814003,
0.15816207230091095,
0.0022554483730345964,
-0.07889559864997864,
0.00756099633872509,
0.06827649474143982,
-0.10357149690389633,
0.019141824916005135,
-0.011750275269150734,
-0.06115471199154854,
0.01578802429139614,
0.021844392642378807,
0.02698187716305256,
0.10298074781894684,
-0.21004606783390045,
0.04396829754114151,
0.06455216556787491,
0.025463011115789413,
0.08768844604492188,
0.05016043782234192,
-0.11047832667827606,
-0.016628960147500038,
-0.0343489907681942,
-0.16258354485034943,
0.1297316700220108,
0.14130131900310516,
0.06893892586231232,
0.039022352546453476,
0.04288983345031738,
-0.07514789700508118,
0.058336563408374786,
-0.03656633570790291,
-0.1470387876033783,
-0.018523573875427246,
0.03902188688516617,
0.03257647529244423,
0.038807060569524765,
0.10827972739934921,
0.10223158448934555,
-0.14332416653633118,
-0.03201044723391533,
0.06512229144573212,
-0.008886558935046196,
-0.04119880497455597,
0.004403908737003803,
-0.09832779318094254,
0.07498125731945038,
-0.0024919756688177586,
0.04813602566719055,
-0.20199769735336304,
0.16434083878993988,
-0.09330786764621735,
0.034300561994314194,
-0.04896155744791031,
-0.044333528727293015,
0.03555295243859291,
-0.09057865291833878,
0.20472288131713867,
0.0057462104596197605,
0.008313721977174282,
-0.12209630757570267,
-0.17661772668361664,
-0.034985676407814026,
-0.09205599129199982,
-0.07460658252239227,
0.02909865602850914,
0.0682184249162674,
0.029013507068157196,
-0.044006895273923874,
0.1327963024377823,
-0.007539169397205114,
0.08532623946666718,
-0.09495806694030762,
-0.09892267733812332,
-0.06850815564393997,
-0.09003753960132599,
-0.13165755569934845,
-0.069197878241539,
0.05082700401544571,
0.12665395438671112,
0.02109835296869278,
-0.02864154241979122,
0.016000375151634216,
-0.01131656114012003,
0.0060316757299005985,
-0.006539386231452227,
0.0482512004673481,
0.015850301831960678,
-0.05547862499952316,
-0.13189296424388885,
0.08252222090959549,
-0.06544385105371475,
-0.06556238979101181,
-0.023766927421092987,
0.09430349618196487,
0.09706855565309525,
0.1314772367477417,
-0.052682001143693924,
0.028886299580335617,
-0.03723334148526192,
-0.04484548792243004,
0.18565788865089417,
0.0040725888684391975,
-0.07140722125768661,
0.04510314390063286,
0.08041586726903915,
0.05989309027791023,
0.0390491709113121,
-0.031676698476076126,
0.20406655967235565,
0.15550298988819122,
-0.018378838896751404,
0.19636642932891846,
-0.017176153138279915,
-0.0269333329051733,
-0.20952188968658447,
0.006836839485913515,
-0.019357649609446526,
0.029477683827280998,
0.1340312361717224,
-0.1391998678445816,
0.02293945848941803,
-0.004865060094743967,
-0.02284914068877697,
-0.07053285837173462,
-0.3114997148513794,
-0.06468415260314941,
0.20102077722549438,
0.17379379272460938,
0.30399972200393677,
-0.10662104934453964,
0.05403600633144379,
0.02176249772310257,
0.035715505480766296,
0.03934846818447113,
-0.07645441591739655,
0.1000572219491005,
-0.11122481524944305,
0.16528162360191345,
0.08111181855201721,
-0.020749825984239578,
-0.02004031278192997,
-0.13701297342777252,
0.018633954226970673,
-0.12466508150100708,
-0.017992790788412094,
0.08779406547546387,
-0.003319771494716406,
-0.09328535199165344,
0.23242005705833435,
-0.06734555959701538,
-0.127778559923172,
-0.028943995013833046,
-0.057271506637334824,
-0.030531147494912148,
0.012628542259335518,
-0.09404513984918594,
0.005903336685150862,
0.1308545619249344,
-0.011834635399281979,
0.11608193069696426,
0.16071371734142303,
-0.035819161683321,
0.07980551570653915,
0.11671095341444016,
0.041628848761320114,
0.06653126329183578,
-0.16247588396072388,
-0.008802353404462337,
-0.0202709399163723,
0.029673689976334572,
-0.1328430324792862,
-0.08996491879224777,
0.037999510765075684,
0.055287107825279236,
-0.016219541430473328,
0.11157703399658203,
-0.02790040522813797,
0.0671137273311615,
0.05197756364941597,
-0.14911557734012604,
-0.21309031546115875,
0.043088413774967194,
-0.03457297012209892,
0.16741053760051727,
0.032527483999729156,
0.07026690244674683,
-0.1318490356206894,
0.005996404681354761,
-0.008010598830878735,
-0.02555401436984539,
-0.113502137362957,
-0.04016893729567528,
0.10736791044473648,
0.01890859194099903,
-0.05588224157691002,
0.11932288110256195,
0.053731534630060196,
0.07207717001438141,
0.022103527560830116,
0.036430660635232925,
0.10638459026813507,
-0.05759545415639877,
0.08525355905294418,
0.19163745641708374,
0.022084489464759827,
-0.050156377255916595,
-0.1069810688495636,
-0.142279252409935,
0.1059383824467659,
-0.029212607070803642,
0.06867408007383347,
-0.16743674874305725,
-0.09695854038000107,
0.03239866718649864,
-0.006085241679102182,
-0.045712824910879135,
-0.04037291929125786,
-0.029692232608795166,
-0.1638854742050171,
0.07177262753248215,
-0.026750473305583,
0.09733851999044418,
-0.07764898240566254,
-0.08057862520217896,
-0.1878826767206192,
0.0927230566740036,
0.11600489169359207,
-0.09250454604625702,
-0.07816965878009796,
0.0006463889149017632,
0.007188722491264343,
-0.05905555561184883,
-0.05547625944018364,
0.05128099024295807,
-0.1268264353275299,
0.03925716504454613,
0.02211940288543701,
0.07955963909626007,
-0.013168327510356903,
-0.022237133234739304,
0.053730763494968414,
-0.05526714771986008,
-0.004513209220021963,
-0.0007778665167279541,
-0.010598957538604736,
-0.04734821990132332,
-0.2539333701133728,
0.026826584711670876,
0.015074611641466618,
0.023000292479991913,
0.11450504511594772,
0.052672553807497025,
0.002142281737178564,
-0.022901082411408424,
-0.09921795129776001,
0.004082086030393839,
0.0676940307021141,
-0.0444176085293293,
0.02973432093858719,
0.04361078143119812,
-0.10892095416784286,
-0.011856138706207275,
-0.024206269532442093,
0.07134921103715897,
0.010941405780613422,
0.06965811550617218,
-0.07052738219499588,
0.09066002070903778,
-0.1813029795885086,
-0.042003389447927475,
0.02394963428378105,
0.0719861164689064,
0.12007027864456177,
-0.10232933610677719,
0.05554276332259178,
0.007666701916605234,
0.16984406113624573,
0.10653958469629288,
-0.002575549529865384,
-0.03601353242993355,
0.06471540033817291,
0.09858960658311844,
0.034707363694906235,
0.04066390544176102,
0.06345933675765991,
-0.010203788988292217,
0.10382732003927231,
0.10297582298517227,
0.14551296830177307,
0.050692107528448105,
0.15706492960453033,
0.03763074800372124,
0.008729667402803898,
0.07412492483854294,
0.0944521427154541,
0.08652419596910477,
-0.006242257542908192,
0.1731923371553421,
-0.007543493993580341,
-0.01751723699271679,
-0.03595760464668274,
0.16348356008529663,
0.06810002774000168,
-0.10502735525369644,
0.032236937433481216,
-0.05084357038140297,
0.025795334950089455,
-0.021152885630726814,
-0.15513712167739868,
-0.03436838835477829,
-0.2639841139316559,
0.12161721289157867,
-0.04934193193912506,
-0.00526955584064126,
0.0620683990418911,
-0.019800636917352676,
-0.053851764649152756,
-0.00036916558747179806,
0.0654521957039833,
0.026729213073849678,
0.01114212442189455,
-0.028801998123526573,
-0.021474527195096016,
-0.19075548648834229,
-0.11265835911035538,
-0.04041624069213867,
-0.13205185532569885,
-0.026539895683526993,
0.02738100476562977,
-0.05638997629284859,
0.00884995236992836,
-0.0025031883269548416,
-0.01385815255343914,
0.04824291169643402,
-0.052424367517232895,
0.045965224504470825,
0.051154542714357376,
0.06721315532922745,
-0.07684784382581711,
0.00411610584706068,
0.11700203269720078,
0.03185063600540161,
-0.09347992390394211,
0.055158115923404694,
0.12995439767837524,
-0.058530066162347794,
0.026019345968961716,
-0.007744444999843836,
-0.032847896218299866,
-0.09708602726459503,
0.19312189519405365,
0.11783043295145035,
-0.16847896575927734,
0.0006766151054762304,
-0.036616407334804535,
-0.01160040870308876,
-0.09233774989843369,
0.12344596534967422,
0.1592838317155838,
0.055998723953962326,
-0.15062640607357025,
-0.11043619364500046,
-0.10300665348768234,
0.06709197163581848,
-0.07569106668233871,
-0.07460284233093262,
0.15964122116565704,
-0.02457398921251297,
-0.10188330709934235,
0.03819292411208153,
-0.21867942810058594,
-0.01995755359530449,
0.19039398431777954,
-0.29568302631378174,
-0.11494400352239609,
-0.07910088449716568,
0.18586759269237518,
0.025469033047556877,
0.11436232179403305,
-0.023825788870453835,
-0.02012297883629799,
-0.221383735537529,
0.0029703411273658276,
-0.08713068813085556,
0.034245800226926804,
0.0651308074593544,
-0.09516268968582153,
0.24007263779640198,
-0.09044498205184937,
0.05269941687583923,
0.033750344067811966,
0.07691317796707153,
0.01018204540014267,
0.05163824185729027,
-0.048588331788778305,
-0.16688252985477448,
-0.09095858782529831,
0.014404932036995888,
0.03795035555958748,
0.0503084696829319,
0.09903772920370102,
-0.04082057997584343,
0.04713768512010574,
0.0953395888209343,
0.030845828354358673,
-0.004454230889678001,
0.052237071096897125,
-0.15630710124969482,
0.05534590780735016,
0.018921079114079475,
-0.025683825835585594,
0.02539582923054695,
-0.08227502554655075,
0.10333657264709473,
0.03491305932402611,
0.0618959404528141,
-0.0665573701262474,
0.03160114586353302,
-0.009742318652570248,
-0.12334126234054565,
-0.04329211637377739,
-0.18513770401477814,
-0.0893927589058876,
-0.1391412913799286,
-0.03897256776690483,
-0.04044290632009506,
-0.025919048115611076,
0.01644543558359146,
0.00776201207190752,
-0.0044921645894646645,
-0.11029971390962601,
0.07136444747447968,
0.11884529888629913,
-0.030008424073457718,
0.0031494214199483395
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | jafarisbarov/aze-bpe | [
"transformers",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:43:49+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
26,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.08389580249786377,
0.19830818474292755,
-0.0013316317927092314,
0.02313883788883686,
0.11396584659814835,
0.01961737498641014,
0.053626976907253265,
0.14538456499576569,
0.0060051376931369305,
0.10656800121068954,
0.066679947078228,
0.09131570905447006,
0.09678101539611816,
0.20042605698108673,
0.04371999576687813,
-0.17659740149974823,
0.010636410675942898,
-0.06930278241634369,
-0.010073255747556686,
0.11651819199323654,
0.141214057803154,
-0.10151198506355286,
0.07627976685762405,
-0.03319970890879631,
-0.02870541252195835,
-0.0070160143077373505,
-0.07769215852022171,
-0.05755697935819626,
0.07573003321886063,
0.054863471537828445,
0.04207949340343475,
-0.0008347301045432687,
0.08447454124689102,
-0.2674994468688965,
0.013753628358244896,
0.07452993094921112,
0.010659529827535152,
0.05990942195057869,
0.07833302766084671,
-0.04036625102162361,
0.12881849706172943,
-0.06320446729660034,
0.13035163283348083,
0.0906217098236084,
-0.0681561604142189,
-0.24378153681755066,
-0.08239314705133438,
0.06505522131919861,
0.12533815205097198,
0.07694927603006363,
-0.02823091857135296,
0.16422191262245178,
-0.07247646898031235,
0.019290022552013397,
0.09481704235076904,
-0.1151006743311882,
-0.060644298791885376,
0.08318385481834412,
0.14101974666118622,
0.10340547561645508,
-0.1255619376897812,
-0.012289565056562424,
0.04275871813297272,
0.045979104936122894,
0.07389909774065018,
0.011339850723743439,
0.1143413558602333,
0.05629947781562805,
-0.13526225090026855,
-0.05700986459851265,
0.14547574520111084,
0.023872992023825645,
-0.057064127177000046,
-0.2138909548521042,
-0.002902575535699725,
-0.07730814069509506,
-0.011685127392411232,
-0.06846728920936584,
0.0291305985301733,
-0.01194276288151741,
0.060226380825042725,
-0.0496203787624836,
-0.09797755628824234,
-0.046314824372529984,
0.1015089675784111,
0.054820988327264786,
0.011354796588420868,
-0.01489334274083376,
0.03576440364122391,
0.13432876765727997,
0.04213530570268631,
-0.10012737661600113,
-0.07065672427415848,
-0.0701170489192009,
-0.09620913118124008,
-0.03947552293539047,
0.04272124543786049,
0.020167991518974304,
0.042202774435281754,
0.2283228635787964,
0.024096308276057243,
0.05459817871451378,
0.029667891561985016,
0.0026177873369306326,
0.03211980313062668,
0.1073630079627037,
-0.041210614144802094,
-0.188126802444458,
-0.03292805701494217,
0.0931866466999054,
-0.009821015410125256,
-0.028658604249358177,
-0.033444397151470184,
0.035014089196920395,
0.08379437029361725,
0.11821532249450684,
0.08875755965709686,
-0.012828069739043713,
-0.037612639367580414,
-0.03493109717965126,
0.2115669697523117,
-0.14141373336315155,
0.045799970626831055,
-0.022097334265708923,
-0.018195297569036484,
-0.06905751675367355,
0.030103791505098343,
0.01831657998263836,
-0.003142025787383318,
0.06966056674718857,
-0.061253178864717484,
-0.05794486775994301,
-0.11518853157758713,
-0.045523155480623245,
0.04711875319480896,
-0.024105608463287354,
-0.024469668045639992,
-0.07765042781829834,
-0.11219723522663116,
-0.06417357176542282,
0.06612563133239746,
-0.04156653955578804,
-0.03974827378988266,
0.005308232270181179,
-0.07131324708461761,
0.008387917652726173,
0.008993842639029026,
0.12122467905282974,
-0.030063031241297722,
0.05833350867033005,
-0.002476902212947607,
0.05916252359747887,
0.10643328726291656,
0.03227818012237549,
-0.08492200076580048,
0.057466037571430206,
-0.20633617043495178,
0.08371785283088684,
-0.11420095711946487,
0.034276340156793594,
-0.17048145830631256,
-0.024183684960007668,
0.008447963744401932,
0.023597201332449913,
0.023726604878902435,
0.1338067352771759,
-0.2097422182559967,
-0.016196569427847862,
0.14133213460445404,
-0.09649793803691864,
-0.12422871589660645,
0.07990546524524689,
-0.03459475561976433,
0.1747698187828064,
0.038475677371025085,
-0.019652999937534332,
0.09909367561340332,
-0.15559963881969452,
-0.05852397903800011,
-0.026064254343509674,
-0.008927824907004833,
0.08823978155851364,
0.07542291283607483,
-0.05844951793551445,
0.02285866066813469,
0.02562655322253704,
-0.04727208614349365,
-0.0268824752420187,
-0.05256075784564018,
-0.10127434879541397,
-0.023140445351600647,
-0.09642518311738968,
0.026515161618590355,
0.000058677000197349116,
-0.07310442626476288,
-0.028560271486639977,
-0.17347893118858337,
-0.02563360333442688,
0.10103316605091095,
0.004820956848561764,
-0.007559072691947222,
-0.08540112525224686,
0.022149885073304176,
-0.05362366884946823,
-0.006164622958749533,
-0.16996455192565918,
-0.03558015450835228,
0.051895126700401306,
-0.14917676150798798,
0.015460150316357613,
-0.07327745854854584,
0.07047311216592789,
0.02098717913031578,
-0.05859505757689476,
-0.03108096309006214,
0.0007694467785768211,
0.004292082041501999,
-0.06229274719953537,
-0.1903683841228485,
-0.058886781334877014,
-0.041500482708215714,
0.15720732510089874,
-0.24841000139713287,
0.0300158578902483,
0.03247617185115814,
0.13185922801494598,
0.007058668415993452,
-0.06344027817249298,
0.02096918225288391,
-0.04676475748419762,
-0.050621338188648224,
-0.06898977607488632,
-0.009901339188218117,
-0.014539826661348343,
-0.031393732875585556,
0.012980648316442966,
-0.14970256388187408,
-0.060514215379953384,
0.09452559798955917,
0.11224991828203201,
-0.14555825293064117,
0.00204002158716321,
-0.0460561066865921,
-0.07002599537372589,
-0.07487804442644119,
-0.0761631652712822,
0.07739497721195221,
0.044650159776210785,
0.049250341951847076,
-0.06317461282014847,
-0.06234706938266754,
0.023210179060697556,
0.005524294450879097,
-0.019023682922124863,
0.0948529988527298,
0.074309803545475,
-0.09122881293296814,
0.07973480224609375,
0.08461450785398483,
0.04414684325456619,
0.086973637342453,
0.005991141777485609,
-0.11396963149309158,
-0.03062884695827961,
0.037754856050014496,
0.024159027263522148,
0.15351562201976776,
-0.08692087233066559,
0.030462130904197693,
0.052177220582962036,
-0.03854219615459442,
0.03157065063714981,
-0.0923321321606636,
0.025362705811858177,
0.021495236083865166,
-0.006555700208991766,
0.05864228308200836,
-0.018769768998026848,
-0.01403577346354723,
0.06336429715156555,
0.05677810311317444,
0.044270504266023636,
0.02595379762351513,
-0.02093072421848774,
-0.1278371512889862,
0.16537296772003174,
-0.09028079360723495,
-0.2540280222892761,
-0.17074446380138397,
0.015454737469553947,
0.03706491366028786,
-0.021728800609707832,
0.039588842540979385,
-0.06286025792360306,
-0.10237989574670792,
-0.09417891502380371,
0.0029635571409016848,
0.023925531655550003,
-0.058347854763269424,
-0.0817074254155159,
0.060779985040426254,
0.04047083482146263,
-0.13689260184764862,
0.0349188968539238,
0.06170675903558731,
-0.03042641654610634,
0.0018567070364952087,
0.07321398705244064,
0.12743599712848663,
0.14838241040706635,
-0.006730219814926386,
-0.012446845881640911,
0.035035960376262665,
0.229813352227211,
-0.1490442156791687,
0.10630457103252411,
0.14053207635879517,
-0.021705523133277893,
0.06635113060474396,
0.1461038440465927,
0.023231739178299904,
-0.07546708732843399,
0.04147516191005707,
0.04027445614337921,
-0.04228919371962547,
-0.2589097023010254,
-0.05694316700100899,
-0.00946022942662239,
-0.07043391466140747,
0.09718906134366989,
0.09238530695438385,
0.11972260475158691,
0.0337289460003376,
-0.05568677559494972,
-0.025771914049983025,
-0.003401360474526882,
0.114128477871418,
-0.027640055865049362,
-0.004564122296869755,
0.07965842634439468,
-0.05878787487745285,
0.011684526689350605,
0.09941446036100388,
0.019347423687577248,
0.17601320147514343,
0.02533329278230667,
0.10681075602769852,
0.06725578010082245,
0.09347675740718842,
-0.0015635732561349869,
0.034774236381053925,
0.05337131395936012,
0.022044572979211807,
0.010453542694449425,
-0.09408048540353775,
-0.012431944720447063,
0.13713060319423676,
0.019816776737570763,
0.009031654335558414,
0.008926562033593655,
-0.01010479498654604,
0.03131420537829399,
0.20501568913459778,
0.0009575071162544191,
-0.22537250816822052,
-0.09500737488269806,
0.059459153562784195,
-0.06931101530790329,
-0.143676295876503,
-0.02094252221286297,
0.030270220711827278,
-0.17292405664920807,
0.016790566965937614,
-0.0316389761865139,
0.09112390875816345,
-0.07145322859287262,
-0.028050832450389862,
0.06891903281211853,
0.07569212466478348,
-0.012108199298381805,
0.07973295450210571,
-0.19069278240203857,
0.12254468351602554,
0.03037673607468605,
0.08605273067951202,
-0.11708726733922958,
0.07849059253931046,
-0.0019813794642686844,
-0.014807495288550854,
0.17999744415283203,
-0.014062200672924519,
-0.0586031936109066,
-0.08878950774669647,
-0.08704045414924622,
-0.011727320961654186,
0.10361312329769135,
-0.09322915226221085,
0.09586969763040543,
-0.02775636687874794,
-0.03705112263560295,
0.012418309226632118,
-0.10469507426023483,
-0.1636953055858612,
-0.18679304420948029,
0.06244563311338425,
-0.07802703976631165,
0.012347841635346413,
-0.11227322369813919,
-0.06334327906370163,
-0.01575082167983055,
0.23160123825073242,
-0.16648635268211365,
-0.07049825042486191,
-0.1498587429523468,
-0.03997112438082695,
0.17463743686676025,
-0.042160745710134506,
0.06849376112222672,
-0.021383514627814293,
0.1873992383480072,
-0.008081548847258091,
-0.013158116489648819,
0.06569221615791321,
-0.09637628495693207,
-0.16879262030124664,
-0.05748843029141426,
0.14160962402820587,
0.10863390564918518,
0.05731578543782234,
-0.0038195757661014795,
0.013171887956559658,
-0.03383830562233925,
-0.09896382689476013,
0.013824623078107834,
0.13817466795444489,
0.0034514935687184334,
0.00682973163202405,
-0.03995988517999649,
-0.07027145475149155,
-0.05825701728463173,
-0.07912654429674149,
0.057147104293107986,
0.187900573015213,
-0.09512355923652649,
0.1602867990732193,
0.12431421875953674,
-0.06468851119279861,
-0.2306901067495346,
0.03996593505144119,
0.04701630026102066,
0.007666614837944508,
0.022401191294193268,
-0.19138796627521515,
0.09788824617862701,
0.0009011493530124426,
-0.06807263940572739,
0.14616990089416504,
-0.16564498841762543,
-0.1461436152458191,
0.08002161979675293,
0.025075770914554596,
-0.22560662031173706,
-0.14821304380893707,
-0.1037549376487732,
-0.03735695406794548,
-0.13707835972309113,
0.048581719398498535,
0.02614329755306244,
0.019834673032164574,
0.025222565978765488,
0.005338077899068594,
0.029657263308763504,
-0.07272187620401382,
0.1870686560869217,
-0.020297454670071602,
0.0072362530045211315,
-0.050640691071748734,
-0.04617878794670105,
0.09227550774812698,
-0.06150037795305252,
0.11741586774587631,
0.018679620698094368,
0.018796883523464203,
-0.1431548148393631,
-0.049209367483854294,
-0.060803934931755066,
0.04456847906112671,
-0.07284719496965408,
-0.09393193572759628,
-0.04137463867664337,
0.08888561278581619,
0.07211937010288239,
-0.032792408019304276,
-0.0027768779546022415,
-0.07569456845521927,
0.09405932575464249,
0.184477761387825,
0.17357055842876434,
0.009977072477340698,
-0.07020942866802216,
0.024555526673793793,
-0.042279548943042755,
0.03349342197179794,
-0.24652716517448425,
0.03456863760948181,
0.066053606569767,
0.03803660348057747,
0.08509242534637451,
-0.016836483031511307,
-0.1781480610370636,
-0.04086102172732353,
0.08498652279376984,
-0.06206206604838371,
-0.19876568019390106,
-0.02703288197517395,
0.08424776047468185,
-0.20383712649345398,
-0.032998621463775635,
0.041543323546648026,
-0.03834589570760727,
-0.02396267279982567,
-0.002415500348433852,
0.06396626681089401,
-0.008327016606926918,
0.12156640738248825,
0.06747189164161682,
0.10266115516424179,
-0.09284433722496033,
0.08920657634735107,
0.10416955500841141,
-0.09140542894601822,
0.03545991703867912,
0.10264154523611069,
-0.05670900270342827,
-0.04460543021559715,
0.033935222774744034,
0.05925208330154419,
-0.028357384726405144,
-0.06409841030836105,
-0.000502707262057811,
-0.0359574519097805,
0.04993389546871185,
0.08058220148086548,
0.036113787442445755,
-0.01202210783958435,
0.06544706225395203,
0.028145326301455498,
-0.11693570017814636,
0.10949387401342392,
0.04405685141682625,
0.04509059712290764,
-0.07182393968105316,
-0.012280966155230999,
0.015999672934412956,
0.032540347427129745,
-0.019734015688300133,
-0.014576527290046215,
-0.03146412968635559,
-0.007561005651950836,
-0.1553635597229004,
-0.02064543403685093,
-0.06516171246767044,
0.006067827809602022,
0.022207623347640038,
-0.03830232471227646,
-0.012014663778245449,
0.01381110493093729,
-0.07979435473680496,
-0.07571027427911758,
-0.01700955256819725,
0.08539021760225296,
-0.1381402313709259,
0.006627439055591822,
0.07182712107896805,
-0.10980239510536194,
0.07347989827394485,
-0.0048679932951927185,
0.017079560086131096,
0.010923396795988083,
-0.11654401570558548,
0.04386281594634056,
-0.005810429807752371,
0.01551580335944891,
0.022556742653250694,
-0.171111062169075,
0.011553828604519367,
-0.038553636521101,
-0.03114982508122921,
0.011926400475203991,
-0.025060230866074562,
-0.11875922232866287,
0.08676479011774063,
-0.028097305446863174,
-0.037512701004743576,
-0.03292486071586609,
0.06296087801456451,
0.08736220002174377,
-0.011740099638700485,
0.09667140990495682,
-0.025766119360923767,
0.04818311333656311,
-0.1756584197282791,
-0.01910574547946453,
-0.050167568027973175,
0.02537350542843342,
-0.01759655587375164,
-0.0070639788173139095,
0.055272240191698074,
-0.004191063344478607,
0.20991376042366028,
-0.03921036794781685,
0.1548677533864975,
0.05199402943253517,
-0.009925156831741333,
0.010884369723498821,
0.05032730847597122,
0.06423956155776978,
0.031145188957452774,
0.00853167474269867,
0.04660189896821976,
-0.004552975296974182,
-0.020357951521873474,
-0.13699717819690704,
0.02791593410074711,
0.16117429733276367,
0.061918217688798904,
0.0392887257039547,
0.03704594820737839,
-0.1422400325536728,
-0.09538721293210983,
0.10306388139724731,
-0.0331864058971405,
0.014331420883536339,
-0.08317886292934418,
0.17621558904647827,
0.12328410148620605,
-0.1574767529964447,
0.0577850341796875,
-0.07234696298837662,
-0.05066767707467079,
-0.1024852767586708,
-0.11832084506750107,
-0.06293155997991562,
-0.06027044355869293,
-0.004747506696730852,
-0.042489297688007355,
0.05734556168317795,
0.026751231402158737,
-0.003270963439717889,
-0.006759525276720524,
0.12665949761867523,
-0.0249644722789526,
-0.004145825747400522,
0.04152364656329155,
0.0326087586581707,
0.019319625571370125,
-0.05872373282909393,
0.017997145652770996,
0.018602589145302773,
0.022180357947945595,
0.06835069507360458,
0.0260987039655447,
-0.059317342936992645,
0.044286735355854034,
0.00319746439345181,
-0.11313364654779434,
0.018146557733416557,
-0.00002245741598017048,
-0.05020225793123245,
0.13557326793670654,
0.04076748713850975,
0.01548024732619524,
-0.029270920902490616,
0.24342355132102966,
-0.07199113070964813,
-0.08681939542293549,
-0.13965600728988647,
0.11511493474245071,
-0.023563209921121597,
0.03755274787545204,
0.016542524099349976,
-0.12659503519535065,
0.011511262506246567,
0.18531471490859985,
0.12824349105358124,
0.012459068559110165,
-0.007656481582671404,
0.05736639350652695,
-0.0007639875984750688,
-0.05985576659440994,
0.05051197111606598,
0.0664999932050705,
0.16097788512706757,
-0.09069112688302994,
0.0652846097946167,
-0.008405503816902637,
-0.0831485390663147,
-0.027498632669448853,
0.11705785244703293,
-0.022675158455967903,
0.02148384228348732,
-0.03778035193681717,
0.11204422265291214,
-0.052532415837049484,
-0.2719486355781555,
0.02952493168413639,
-0.09503202140331268,
-0.13993041217327118,
-0.02591860294342041,
0.041448429226875305,
-0.03349510580301285,
0.01577647216618061,
0.06254769116640091,
-0.045389387756586075,
0.18837277591228485,
0.025987716391682625,
-0.08679025620222092,
-0.07755549252033234,
0.05874146893620491,
-0.08695939928293228,
0.2789687216281891,
0.003863075515255332,
0.04782010242342949,
0.12108923494815826,
-0.03053574077785015,
-0.18664880096912384,
0.014769754372537136,
0.11989909410476685,
-0.09114406257867813,
0.07780203968286514,
0.18139931559562683,
-0.005561648402363062,
0.12649618089199066,
0.04705416411161423,
-0.03877115994691849,
0.03976387158036232,
-0.02721380814909935,
-0.03821522742509842,
-0.12209630757570267,
0.05661242455244064,
-0.0612691193819046,
0.15957388281822205,
0.1158948540687561,
-0.05964287370443344,
0.001120698289014399,
-0.06126941740512848,
0.06300627440214157,
0.014774397015571594,
0.12115653604269028,
0.018452486023306847,
-0.2023056596517563,
0.05087360367178917,
-0.03283824771642685,
0.08166342973709106,
-0.254973828792572,
-0.08186668157577515,
0.07622263580560684,
-0.019022729247808456,
-0.04275642707943916,
0.12311509251594543,
0.06101066991686821,
0.03676839917898178,
-0.03853875398635864,
-0.08537755906581879,
-0.01412904355674982,
0.15376435220241547,
-0.14123432338237762,
-0.029574336484074593
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DataSnipper_FinerDistilBert
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1207
- Precision: 0.8704
- Recall: 0.8225
- F1: 0.8458
- Accuracy: 0.9212
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1089 | 1.0 | 56274 | 0.1062 | 0.8142 | 0.7512 | 0.7814 | 0.8900 |
| 0.0825 | 2.0 | 112548 | 0.1017 | 0.8441 | 0.7706 | 0.8057 | 0.9017 |
| 0.0673 | 3.0 | 168822 | 0.1023 | 0.8607 | 0.7937 | 0.8259 | 0.9102 |
| 0.0526 | 4.0 | 225096 | 0.1135 | 0.8678 | 0.8209 | 0.8437 | 0.9199 |
| 0.0352 | 5.0 | 281370 | 0.1207 | 0.8704 | 0.8225 | 0.8458 | 0.9212 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "DataSnipper_FinerDistilBert", "results": []}]} | token-classification | gvisser/DataSnipper_FinerDistilBert | [
"transformers",
"safetensors",
"distilbert",
"token-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:45:41+00:00 | [] | [] | TAGS
#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| DataSnipper\_FinerDistilBert
============================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1207
* Precision: 0.8704
* Recall: 0.8225
* F1: 0.8458
* Accuracy: 0.9212
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 5
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.2.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
69,
98,
4,
33
] | [
"passage: TAGS\n#transformers #safetensors #distilbert #token-classification #generated_from_trainer #base_model-distilbert-base-uncased #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.10113692283630371,
0.09854251146316528,
-0.0020981444977223873,
0.11675982177257538,
0.15007472038269043,
0.016674140468239784,
0.14083372056484222,
0.09336518496274948,
-0.0693931058049202,
0.041790250688791275,
0.13069306313991547,
0.13961884379386902,
-0.0011912722839042544,
0.13946881890296936,
-0.07611535489559174,
-0.21230889856815338,
0.025403767824172974,
0.018102366477251053,
-0.04222672060132027,
0.11217347532510757,
0.10180122405290604,
-0.1293199211359024,
0.09126437455415726,
-0.007971265353262424,
-0.17155222594738007,
-0.00022502655338030308,
0.023572787642478943,
-0.0455649197101593,
0.13050049543380737,
0.01731264963746071,
0.13252678513526917,
0.018569624051451683,
0.09969417005777359,
-0.19356080889701843,
0.0024367424193769693,
0.04927242547273636,
0.006795316468924284,
0.0711490735411644,
0.02471722848713398,
0.004580073989927769,
0.0558457188308239,
-0.07950488477945328,
0.06281482428312302,
0.01838003844022751,
-0.1283608227968216,
-0.214202418923378,
-0.0921553522348404,
0.04026437923312187,
0.10212742537260056,
0.0672823041677475,
-0.0053784726187586784,
0.12785440683364868,
-0.08132804185152054,
0.08214996755123138,
0.20774583518505096,
-0.3187797963619232,
-0.061046354472637177,
0.06047280505299568,
0.01761031150817871,
0.06182611361145973,
-0.1016804501414299,
-0.038692228496074677,
0.06446174532175064,
0.025591878220438957,
0.1356004923582077,
-0.02588149905204773,
-0.08707619458436966,
0.0010585482232272625,
-0.14727142453193665,
-0.020844124257564545,
0.15810266137123108,
0.058772340416908264,
-0.06382808089256287,
-0.04062242805957794,
-0.06430820375680923,
-0.14323489367961884,
-0.03953394293785095,
-0.02633344754576683,
0.05337339639663696,
-0.019248012453317642,
-0.04852132126688957,
0.009325094521045685,
-0.09006806463003159,
-0.08040658384561539,
-0.05062445253133774,
0.1796986311674118,
0.04095114395022392,
0.0019953136797994375,
0.008783551864326,
0.10810713469982147,
-0.05596086382865906,
-0.12605291604995728,
0.003599392483010888,
0.012983068823814392,
0.011925836093723774,
-0.06345134228467941,
-0.053952332586050034,
-0.02343347854912281,
0.024455750361084938,
0.18170471489429474,
-0.060842473059892654,
0.03265024349093437,
0.03092184104025364,
0.03605886921286583,
-0.10286176204681396,
0.15441347658634186,
-0.030840417370200157,
-0.03516792505979538,
0.028754951432347298,
0.07419814169406891,
0.04713215306401253,
0.00743524543941021,
-0.11141318082809448,
0.017455004155635834,
0.11334340274333954,
0.021392803639173508,
-0.08321678638458252,
0.07136589288711548,
-0.06410149484872818,
-0.000059044330555479974,
0.038653500378131866,
-0.08604523539543152,
0.022454196587204933,
-0.00955484714359045,
-0.04920737072825432,
-0.07041358947753906,
0.023291025310754776,
0.03156294301152229,
0.0249774269759655,
0.10578681528568268,
-0.0918976217508316,
0.0038726951461285353,
-0.0836319625377655,
-0.10687141865491867,
0.004159584175795317,
-0.08303997665643692,
0.03754490613937378,
-0.11468464136123657,
-0.19986547529697418,
-0.0013040258781984448,
0.05494625121355057,
-0.016841687262058258,
-0.036362022161483765,
-0.052660372108221054,
-0.07457007467746735,
0.004409406334161758,
-0.013923502527177334,
0.05320937931537628,
-0.0688907727599144,
0.09471829980611801,
0.04849359765648842,
0.06244314834475517,
-0.05422411486506462,
0.0343795008957386,
-0.1260780543088913,
0.04210924729704857,
-0.18839238584041595,
0.01286033820360899,
-0.07105755805969238,
0.07131480425596237,
-0.07090634107589722,
-0.08042381703853607,
0.007495918311178684,
-0.006634373217821121,
0.06929462403059006,
0.10204397886991501,
-0.14947305619716644,
-0.04815734550356865,
0.16269730031490326,
-0.09929778426885605,
-0.1466144472360611,
0.124217189848423,
-0.058309826999902725,
0.057038139551877975,
0.061650682240724564,
0.16269551217556,
0.06781866401433945,
-0.0930105596780777,
-0.003462308319285512,
-0.008444111794233322,
0.051643237471580505,
-0.02985774353146553,
0.06965915113687515,
0.006337613798677921,
-0.030373552814126015,
0.024808626621961594,
-0.06765013188123703,
0.04896319657564163,
-0.0878525823354721,
-0.08653268218040466,
-0.05172258988022804,
-0.11399015039205551,
0.07163461297750473,
0.04055226594209671,
0.055797141045331955,
-0.1164117082953453,
-0.07462561875581741,
0.07074572890996933,
0.0851360633969307,
-0.05667656287550926,
0.008884628303349018,
-0.07102666795253754,
0.08791039884090424,
-0.05799850448966026,
-0.02748906798660755,
-0.14470136165618896,
-0.059275832027196884,
0.02551497146487236,
0.00027363805565983057,
0.004649180918931961,
-0.0197808388620615,
0.06539490818977356,
0.09793636947870255,
-0.06903085112571716,
-0.04242952913045883,
-0.02860141173005104,
0.025984324514865875,
-0.11958400160074234,
-0.18420639634132385,
-0.027743225917220116,
-0.028307132422924042,
0.13990941643714905,
-0.2288532853126526,
0.04937785863876343,
-0.026036275550723076,
0.09216881543397903,
0.03674257919192314,
-0.01134558767080307,
-0.04970931634306908,
0.07220610976219177,
-0.04569542407989502,
-0.06545663625001907,
0.051009465008974075,
0.012989477254450321,
-0.08197513967752457,
-0.06467898935079575,
-0.12338275462388992,
0.20016448199748993,
0.1220288947224617,
-0.07832857966423035,
-0.08933991938829422,
-0.011116014793515205,
-0.043893229216337204,
-0.027516238391399384,
-0.056606657803058624,
0.013299091719090939,
0.11171884089708328,
-0.020653581246733665,
0.14044013619422913,
-0.08402866125106812,
-0.028317062184214592,
0.019089294597506523,
-0.056188467890024185,
0.025199010968208313,
0.08868040889501572,
0.09582410007715225,
-0.1152808889746666,
0.15478582680225372,
0.19035279750823975,
-0.08926327526569366,
0.11031673848628998,
-0.04518962651491165,
-0.048196062445640564,
-0.029739446938037872,
0.013307985849678516,
0.004604261368513107,
0.11404528468847275,
-0.10493362694978714,
0.01465608086436987,
0.010270214639604092,
0.02732907049357891,
-0.0022595704067498446,
-0.2138078510761261,
-0.03404950723052025,
0.03999265655875206,
-0.04128933697938919,
-0.0012755251955240965,
-0.017825324088335037,
-0.008266553282737732,
0.0884658694267273,
-0.002113251481205225,
-0.095208540558815,
0.05570576339960098,
0.00850037019699812,
-0.07787914574146271,
0.2045956552028656,
-0.09226491302251816,
-0.09906017035245895,
-0.1265895515680313,
-0.07116532325744629,
-0.05185812711715698,
0.03778505697846413,
0.06957171112298965,
-0.057095833122730255,
-0.047042448073625565,
-0.09720488637685776,
-0.0051005007699131966,
0.04735046997666359,
0.027263019233942032,
0.015720965340733528,
-0.002759548369795084,
0.08837098628282547,
-0.09638544917106628,
-0.018350059166550636,
-0.0326586589217186,
-0.06273680925369263,
0.037421196699142456,
0.03551129996776581,
0.11260012537240982,
0.12813186645507812,
-0.0285627543926239,
-0.01456755492836237,
-0.02548890747129917,
0.2569655478000641,
-0.04677347093820572,
-0.021809663623571396,
0.131544291973114,
-0.01607261225581169,
0.04925645515322685,
0.14277496933937073,
0.061143554747104645,
-0.10922848433256149,
0.023354116827249527,
0.029153283685445786,
-0.027620496228337288,
-0.19210968911647797,
-0.04402365908026695,
-0.03560673072934151,
-0.011049332097172737,
0.0952649936079979,
0.023100735619664192,
0.024080919101834297,
0.0793062075972557,
0.023364372551441193,
0.08488041907548904,
-0.01633259654045105,
0.08585768938064575,
0.11275374889373779,
0.049457039684057236,
0.12291491776704788,
-0.033878978341817856,
-0.05709240213036537,
0.032871052622795105,
-0.0015911925584077835,
0.20859019458293915,
0.03336828574538231,
0.10501167178153992,
0.05869598314166069,
0.18407005071640015,
-0.0035021970979869366,
0.0759219229221344,
-0.002705323975533247,
-0.04532482475042343,
-0.01422678492963314,
-0.049336064606904984,
-0.04289810359477997,
0.04432777315378189,
-0.10354619473218918,
0.0761365070939064,
-0.11299426853656769,
0.023801511153578758,
0.06108316034078598,
0.2545101046562195,
0.04958837106823921,
-0.330807626247406,
-0.1021120697259903,
0.02246319130063057,
-0.02523583360016346,
-0.02995501458644867,
0.03715746849775314,
0.10375472158193588,
-0.05865012854337692,
0.028196614235639572,
-0.056403081864118576,
0.07531296461820602,
-0.017942657694220543,
0.04484333097934723,
0.05727943032979965,
0.08528082817792892,
-0.0025988535489887,
0.06474139541387558,
-0.25924333930015564,
0.262197881937027,
0.011606968939304352,
0.07735446095466614,
-0.03818734735250473,
0.000735593494027853,
0.0351586639881134,
0.10979370772838593,
0.08044447749853134,
-0.008379229344427586,
-0.06782318651676178,
-0.2180105596780777,
-0.04196811467409134,
0.024550536647439003,
0.08704078942537308,
-0.0374862439930439,
0.10421399027109146,
-0.04160409793257713,
0.006334047298878431,
0.08114242553710938,
-0.00888415053486824,
-0.09677289426326752,
-0.07449567317962646,
-0.027997741475701332,
0.042853567749261856,
0.015489079058170319,
-0.08883555233478546,
-0.08748546242713928,
-0.12880314886569977,
0.14749249815940857,
-0.052309535443782806,
-0.028853515163064003,
-0.09901222586631775,
0.03901628404855728,
0.05713581293821335,
-0.07182841747999191,
0.06608500331640244,
0.006041824351996183,
0.08490435779094696,
0.02480200119316578,
-0.04405693709850311,
0.12276533991098404,
-0.08467937260866165,
-0.18743853271007538,
-0.07493564486503601,
0.09706556797027588,
0.022401228547096252,
0.038388632237911224,
0.003737193299457431,
0.017742475494742393,
-0.011357279494404793,
-0.0848853588104248,
0.015602889470756054,
-0.0017331377603113651,
0.06462827324867249,
0.03268802911043167,
-0.07048829644918442,
0.007873921655118465,
-0.04790030047297478,
-0.029439399018883705,
0.14623112976551056,
0.30592048168182373,
-0.09358472377061844,
-0.0027074753306806087,
0.06298509240150452,
-0.053368933498859406,
-0.18973635137081146,
0.024319389835000038,
0.027511952444911003,
-0.0024159958120435476,
0.05454498529434204,
-0.13564114272594452,
0.1332717090845108,
0.12144836038351059,
-0.03138576075434685,
0.10118959844112396,
-0.2644922435283661,
-0.1271534264087677,
0.13651646673679352,
0.15613295137882233,
0.135247141122818,
-0.138701930642128,
-0.02737896330654621,
-0.03380706161260605,
-0.1394719034433365,
0.09794019162654877,
-0.09836193919181824,
0.10373443365097046,
-0.01645408570766449,
0.055338066071271896,
0.002443612553179264,
-0.05052873492240906,
0.13543574512004852,
0.010455094277858734,
0.12823840975761414,
-0.05825074389576912,
-0.01851074770092964,
0.0366588830947876,
-0.0587020181119442,
0.029486577957868576,
-0.08872634917497635,
0.05223063752055168,
-0.049564119428396225,
-0.025792323052883148,
-0.043891336768865585,
0.04531339555978775,
-0.034055713564157486,
-0.07633236050605774,
-0.04094740375876427,
0.03290732577443123,
0.04551256448030472,
-0.015387533232569695,
0.1367899477481842,
0.029579970985651016,
0.15107092261314392,
0.12206294387578964,
0.06139418110251427,
-0.08273641020059586,
-0.01709972694516182,
-0.009823168627917767,
-0.03889748081564903,
0.06722202897071838,
-0.1249266192317009,
0.04486856237053871,
0.11771813780069351,
0.014492487534880638,
0.14672861993312836,
0.07496268302202225,
-0.009421116672456264,
0.009037988260388374,
0.061659276485443115,
-0.1690969169139862,
-0.07889754325151443,
0.0009726437856443226,
-0.021400652825832367,
-0.11380566656589508,
0.07350572198629379,
0.11189605295658112,
-0.0827033668756485,
0.004143127240240574,
-0.01834283210337162,
0.014804855920374393,
-0.04776899144053459,
0.17121414840221405,
0.06218581646680832,
0.04964567348361015,
-0.07994332164525986,
0.08051375299692154,
0.04506276920437813,
-0.04103487357497215,
-0.007986416108906269,
0.012320922687649727,
-0.09754344075918198,
-0.0420246347784996,
0.04680229723453522,
0.17306968569755554,
-0.05094918608665466,
-0.05086538568139076,
-0.13084204494953156,
-0.11928031593561172,
0.05008842796087265,
0.16952219605445862,
0.10930637270212173,
0.022271646186709404,
-0.021340930834412575,
0.015530860982835293,
-0.10987075418233871,
0.10668368637561798,
0.03206905350089073,
0.0959741473197937,
-0.1737944781780243,
0.10696781426668167,
-0.009688634425401688,
0.003250132780522108,
-0.022452013567090034,
0.04783458635210991,
-0.1159784346818924,
-0.008652113378047943,
-0.1262560784816742,
-0.013529917225241661,
-0.037026405334472656,
0.019468823447823524,
0.00901876762509346,
-0.061793550848960876,
-0.05373500660061836,
0.020707810297608376,
-0.0951860323548317,
-0.015763651579618454,
0.04577120393514633,
0.0664779543876648,
-0.11900107562541962,
-0.04317989572882652,
0.03288652002811432,
-0.07136719673871994,
0.06493659317493439,
0.026195675134658813,
0.028404194861650467,
0.04931388795375824,
-0.1789710819721222,
0.022401724010705948,
0.07287143170833588,
0.007401564158499241,
0.05181780457496643,
-0.10540416836738586,
-0.019735699519515038,
-0.001375487307086587,
0.03585163876414299,
0.015528406947851181,
0.0841788798570633,
-0.13344420492649078,
-0.00451866677030921,
-0.017125781625509262,
-0.05880851298570633,
-0.05122503265738487,
-0.004239323083311319,
0.10843699425458908,
-0.013717589899897575,
0.2142067849636078,
-0.08982975035905838,
0.00806793849915266,
-0.1927909553050995,
-0.0030423463322222233,
-0.007610765285789967,
-0.1092221587896347,
-0.14894014596939087,
-0.052009642124176025,
0.035350341349840164,
-0.047783706337213516,
0.15037405490875244,
-0.007310809567570686,
0.029212763532996178,
0.03021721914410591,
-0.04006804898381233,
0.03926840052008629,
0.024658946320414543,
0.22900353372097015,
0.037772390991449356,
-0.04402206838130951,
0.016081321984529495,
0.03386549651622772,
0.10898381471633911,
0.041353289037942886,
0.15995965898036957,
0.16527655720710754,
-0.05812922120094299,
0.09371285885572433,
0.03455974906682968,
-0.055169448256492615,
-0.15644097328186035,
0.041837841272354126,
-0.03127061203122139,
0.08165405690670013,
-0.01680627092719078,
0.21303454041481018,
0.08489222079515457,
-0.16545335948467255,
0.013979032635688782,
-0.0519595667719841,
-0.07166720926761627,
-0.10674158483743668,
-0.04324154183268547,
-0.09511349350214005,
-0.16110031306743622,
0.002134589944034815,
-0.10927196592092514,
0.00273802038282156,
0.109650619328022,
-0.008075064048171043,
-0.011503289453685284,
0.1772337257862091,
-0.008649967610836029,
0.0529261976480484,
0.03502858057618141,
-0.005608833394944668,
-0.04320024698972702,
-0.08344655483961105,
-0.10879389196634293,
0.0021408507600426674,
-0.02820540778338909,
0.024267995730042458,
-0.061276260763406754,
-0.034068889915943146,
0.03229904919862747,
-0.00008390981383854523,
-0.09539683163166046,
0.015395112335681915,
0.025669440627098083,
0.034089505672454834,
0.026179049164056778,
0.006592662539333105,
0.02032569609582424,
0.005202570464462042,
0.21143530309200287,
-0.07523131370544434,
-0.07796729356050491,
-0.10117048770189285,
0.234890416264534,
0.042739614844322205,
0.022867286577820778,
0.02163182944059372,
-0.08916454017162323,
0.03835449740290642,
0.19245608150959015,
0.15360964834690094,
-0.08158852159976959,
0.002828132826834917,
-0.021735668182373047,
-0.020810240879654884,
-0.04860666021704674,
0.08686874061822891,
0.11434551328420639,
0.0006799077382311225,
-0.06972233951091766,
-0.03699274733662605,
-0.04939800128340721,
-0.005705561488866806,
-0.048593707382678986,
0.041958022862672806,
0.018905311822891235,
0.012312875129282475,
-0.05427217110991478,
0.04686006158590317,
-0.031014911830425262,
-0.08821333944797516,
0.07054778933525085,
-0.17172537744045258,
-0.14420484006404877,
-0.016732588410377502,
0.09541327506303787,
-0.005953568499535322,
0.046278584748506546,
-0.040056049823760986,
-0.009434536099433899,
0.07391951978206635,
-0.0269415695220232,
-0.04834304377436638,
-0.08781854063272476,
0.06456413865089417,
-0.05005756393074989,
0.24928098917007446,
-0.029112549498677254,
0.054792094975709915,
0.12332935631275177,
0.04532260447740555,
-0.08691318333148956,
0.0976971685886383,
0.04996814951300621,
-0.07193738222122192,
0.025000201538205147,
0.06820585578680038,
-0.04126310721039772,
0.13930962979793549,
0.04770207032561302,
-0.16027268767356873,
0.012324318289756775,
-0.01813783496618271,
-0.08696658909320831,
-0.05839855596423149,
-0.0404290147125721,
-0.05169910192489624,
0.13761289417743683,
0.17830443382263184,
-0.04192258417606354,
0.005427184514701366,
-0.04754709452390671,
0.047377198934555054,
0.07567080855369568,
0.027246778830885887,
-0.032485853880643845,
-0.23523759841918945,
0.04040403291583061,
0.09328963607549667,
-0.014577069319784641,
-0.24050123989582062,
-0.09802444279193878,
-0.005739409476518631,
-0.0490448921918869,
-0.09084048867225647,
0.08294884860515594,
0.1138637512922287,
0.05386406183242798,
-0.062018126249313354,
-0.11093130707740784,
-0.08749385923147202,
0.15601852536201477,
-0.11171318590641022,
-0.1073419451713562
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | kaushalpowar/llama2_finetuned2_easymonk_refined_data2 | [
"transformers",
"pytorch",
"safetensors",
"llama",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:46:56+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #pytorch #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #pytorch #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
60,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #pytorch #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.0519743338227272,
0.16706189513206482,
-0.005402840208262205,
0.019627947360277176,
0.10505536943674088,
0.010567820630967617,
0.05886068195104599,
0.11645746976137161,
-0.02467164397239685,
0.1126355454325676,
0.031605593860149384,
0.10833971202373505,
0.11441005766391754,
0.1518041342496872,
0.002214804757386446,
-0.2278977334499359,
0.04760894551873207,
-0.11594757437705994,
-0.021815655753016472,
0.12490447610616684,
0.14636488258838654,
-0.10343634337186813,
0.06970188766717911,
-0.026780223473906517,
-0.008760119788348675,
-0.03150850161910057,
-0.06100143864750862,
-0.047907985746860504,
0.048243939876556396,
0.05911477282643318,
0.06734593957662582,
0.008104296401143074,
0.09192440658807755,
-0.26637035608291626,
0.019330304116010666,
0.07269252091646194,
-0.0019736182875931263,
0.07349341362714767,
0.07226867973804474,
-0.07565611600875854,
0.10162398219108582,
-0.0539759024977684,
0.1440325826406479,
0.08019261807203293,
-0.08679001033306122,
-0.20116271078586578,
-0.08913100510835648,
0.10753144323825836,
0.17815665900707245,
0.05308981612324715,
-0.023887254297733307,
0.10350920259952545,
-0.09406635910272598,
0.016476724296808243,
0.05872608721256256,
-0.07315584272146225,
-0.051791876554489136,
0.0548037551343441,
0.0773153156042099,
0.062471866607666016,
-0.12423991411924362,
-0.03588000684976578,
0.000469326478196308,
0.013396477326750755,
0.07936855405569077,
0.019611122086644173,
0.1440502405166626,
0.0318019725382328,
-0.1289927214384079,
-0.05378938466310501,
0.09229929745197296,
0.030226049944758415,
-0.04448139667510986,
-0.2507825493812561,
-0.03239121660590172,
-0.036217302083969116,
-0.029002996161580086,
-0.034972868859767914,
0.04061214253306389,
-0.012942541390657425,
0.08351149410009384,
-0.002549612196162343,
-0.07660144567489624,
-0.04152745380997658,
0.06474750488996506,
0.07111404836177826,
0.03594597056508064,
-0.013709993101656437,
0.010867706499993801,
0.1266964077949524,
0.11934216320514679,
-0.11941086500883102,
-0.05299285799264908,
-0.06367255002260208,
-0.07950550317764282,
-0.037293341010808945,
0.03632865846157074,
0.031219113618135452,
0.05112699046730995,
0.24974554777145386,
0.006771682761609554,
0.0553051196038723,
0.0419742688536644,
0.010117979720234871,
0.057648975402116776,
0.11538989096879959,
-0.06581122428178787,
-0.09653942286968231,
-0.02427547797560692,
0.09204497933387756,
0.009388810954988003,
-0.03052694909274578,
-0.0481208860874176,
0.05784386023879051,
0.030617764219641685,
0.12237436324357986,
0.0914500281214714,
0.012228479608893394,
-0.07221081107854843,
-0.06271711736917496,
0.19506628811359406,
-0.166283518075943,
0.04044514521956444,
0.03906765580177307,
-0.042726144194602966,
-0.005622582510113716,
0.015238869935274124,
0.012491629458963871,
-0.03548913821578026,
0.09735845774412155,
-0.0532635897397995,
-0.03874460980296135,
-0.110831119120121,
-0.03268603980541229,
0.033493828028440475,
0.008554072119295597,
-0.03654006868600845,
-0.03334259241819382,
-0.08568605035543442,
-0.07705365866422653,
0.08936075866222382,
-0.06977423280477524,
-0.051773738116025925,
-0.016615089029073715,
-0.07599126547574997,
0.01875530742108822,
0.016111841425299644,
0.07753873616456985,
-0.025062667205929756,
0.05286639556288719,
-0.055887673050165176,
0.055518630892038345,
0.11927789449691772,
0.03870371729135513,
-0.06333991140127182,
0.057301752269268036,
-0.23498153686523438,
0.09549546986818314,
-0.07041449099779129,
0.05188070237636566,
-0.1503269225358963,
-0.03432689607143402,
0.04838106781244278,
0.004431125707924366,
-0.006867483723908663,
0.13728488981723785,
-0.20997703075408936,
-0.028174391016364098,
0.17831368744373322,
-0.0984790101647377,
-0.06814166158437729,
0.05609941482543945,
-0.04702526330947876,
0.10219892114400864,
0.03820062801241875,
-0.02378309704363346,
0.06535616517066956,
-0.12550660967826843,
0.0015655641909688711,
-0.049636926501989365,
-0.020099397748708725,
0.14558126032352448,
0.0726257860660553,
-0.07203753292560577,
0.07298809289932251,
0.027707215398550034,
-0.030481817200779915,
-0.04278330132365227,
-0.020450793206691742,
-0.10362508893013,
0.01556937675923109,
-0.06268790364265442,
0.021001065149903297,
-0.014465601183474064,
-0.09035739302635193,
-0.027514761313796043,
-0.17736206948757172,
-0.03490332514047623,
0.08896198123693466,
-0.010057207196950912,
-0.018877075985074043,
-0.11442133039236069,
0.016192195937037468,
0.041961073875427246,
0.004509476944804192,
-0.140924870967865,
-0.047968555241823196,
0.027714330703020096,
-0.16330380737781525,
0.027631953358650208,
-0.06190613657236099,
0.04730388894677162,
0.03039906919002533,
-0.027302946895360947,
-0.03495771810412407,
0.01864611543715,
0.00294931186363101,
-0.011721807532012463,
-0.23691332340240479,
-0.03118581883609295,
-0.022582612931728363,
0.16531214118003845,
-0.2062409222126007,
0.03724540024995804,
0.07393660396337509,
0.15239059925079346,
0.008005966432392597,
-0.04347168654203415,
0.011941398493945599,
-0.06543681770563126,
-0.022142425179481506,
-0.05834329128265381,
0.00014429049042519182,
-0.03402901440858841,
-0.04255397990345955,
0.045763060450553894,
-0.16262774169445038,
-0.028690803796052933,
0.09792093932628632,
0.06535551697015762,
-0.1377536952495575,
-0.018266448751091957,
-0.042246028780937195,
-0.04852140694856644,
-0.052378978580236435,
-0.053729332983493805,
0.11416640877723694,
0.062385451048612595,
0.0489099845290184,
-0.06230955198407173,
-0.07942834496498108,
-0.0029579000547528267,
-0.013215522281825542,
-0.013915224000811577,
0.10190489143133163,
0.07477767765522003,
-0.12591901421546936,
0.09432397782802582,
0.0911935493350029,
0.08046689629554749,
0.09261434525251389,
-0.023282788693904877,
-0.08519372344017029,
-0.04145181179046631,
0.032853879034519196,
0.01612360030412674,
0.12947821617126465,
-0.019605763256549835,
0.04524917155504227,
0.0440145768225193,
-0.022013742476701736,
0.016201360151171684,
-0.09375874698162079,
0.0317411832511425,
0.0240574162453413,
-0.01869172416627407,
0.04441560059785843,
-0.03543232008814812,
0.03221666440367699,
0.08995259553194046,
0.043167758733034134,
0.03536875545978546,
0.016309604048728943,
-0.05143960192799568,
-0.10930277407169342,
0.16791431605815887,
-0.12461394816637039,
-0.23584474623203278,
-0.13777241110801697,
0.008943567983806133,
0.03384258970618248,
-0.019542088732123375,
0.005402385722845793,
-0.06043187156319618,
-0.11761543899774551,
-0.08696124702692032,
0.011984916403889656,
0.053741391748189926,
-0.09253212064504623,
-0.0718187615275383,
0.05611284077167511,
0.041080910712480545,
-0.14598284661769867,
0.017704622820019722,
0.043440889567136765,
-0.10000646859407425,
0.0003956478904001415,
0.0867643877863884,
0.0693235769867897,
0.17782308161258698,
0.014079133048653603,
-0.020829783752560616,
0.029670847579836845,
0.20390254259109497,
-0.1345394104719162,
0.10609187185764313,
0.14090120792388916,
-0.08730954676866531,
0.08491189032793045,
0.1948450654745102,
0.03822382539510727,
-0.09672436863183975,
0.029943101108074188,
0.021168580278754234,
-0.027014536783099174,
-0.24723365902900696,
-0.07453278452157974,
-0.0007395384600386024,
-0.05859796702861786,
0.07755067199468613,
0.09536827355623245,
0.0785909965634346,
0.01210806518793106,
-0.09628938138484955,
-0.09171727299690247,
0.05552516505122185,
0.10174673795700073,
0.018123051151633263,
-0.011657556518912315,
0.09112957864999771,
-0.031923554837703705,
0.017127055674791336,
0.08393401652574539,
0.0026524928398430347,
0.17901644110679626,
0.03989602252840996,
0.1773570030927658,
0.080473393201828,
0.08428636938333511,
0.010421994142234325,
0.017587894573807716,
0.018528228625655174,
0.03551046550273895,
0.00015404808800667524,
-0.08356249332427979,
-0.02700214460492134,
0.10776893049478531,
0.06950579583644867,
0.014240802265703678,
0.00882679782807827,
-0.047767262905836105,
0.08009064197540283,
0.189117431640625,
-0.010364792309701443,
-0.18216535449028015,
-0.05939771234989166,
0.0685373917222023,
-0.09894932806491852,
-0.09951915591955185,
-0.013472969643771648,
0.02636566013097763,
-0.17854097485542297,
0.02251635119318962,
-0.026060553267598152,
0.10978779941797256,
-0.1436263471841812,
-0.02102273516356945,
0.07482167333364487,
0.07215555757284164,
0.00583511171862483,
0.06212444230914116,
-0.15784414112567902,
0.1073889285326004,
0.004194594919681549,
0.06740174442529678,
-0.09820389002561569,
0.09874244034290314,
-0.0014190898509696126,
-0.021010659635066986,
0.14163675904273987,
0.003930879291146994,
-0.05574188381433487,
-0.08240212500095367,
-0.0947631299495697,
-0.00896742194890976,
0.1240362748503685,
-0.14218750596046448,
0.08617802709341049,
-0.036111701279878616,
-0.042271457612514496,
-0.007709538098424673,
-0.10468191653490067,
-0.11044184118509293,
-0.18244773149490356,
0.058867089450359344,
-0.1393566131591797,
0.03569600358605385,
-0.11136602610349655,
-0.03929466754198074,
-0.028666241094470024,
0.189669668674469,
-0.23233745992183685,
-0.07963433116674423,
-0.1468169093132019,
-0.10010065138339996,
0.14365153014659882,
-0.0555076003074646,
0.0837177187204361,
-0.007824809290468693,
0.16589634120464325,
0.02105928212404251,
-0.02663233131170273,
0.09145718812942505,
-0.09159539639949799,
-0.1985636204481125,
-0.07475504279136658,
0.16281740367412567,
0.13347281515598297,
0.03142377734184265,
-0.004960278980433941,
0.03381487727165222,
-0.02004203200340271,
-0.12019174546003342,
0.013836128637194633,
0.17963868379592896,
0.07193353027105331,
0.026686212047934532,
-0.028260616585612297,
-0.11839886754751205,
-0.07320037484169006,
-0.024669088423252106,
0.036242034286260605,
0.1705707311630249,
-0.07147584855556488,
0.1851113736629486,
0.14366810023784637,
-0.05537678301334381,
-0.20665626227855682,
0.0030253580771386623,
0.03713839128613472,
0.000414730457123369,
0.025376053526997566,
-0.20186442136764526,
0.0848083421587944,
0.007624306250363588,
-0.051332395523786545,
0.13403548300266266,
-0.1766687035560608,
-0.14272472262382507,
0.0817081481218338,
0.044503986835479736,
-0.19528916478157043,
-0.12764887511730194,
-0.09047647565603256,
-0.03656516969203949,
-0.17909157276153564,
0.09729953110218048,
0.03440920636057854,
0.012235241942107677,
0.022285163402557373,
0.030375193804502487,
0.021334217861294746,
-0.04530974477529526,
0.1781158298254013,
-0.028610264882445335,
0.02419200912117958,
-0.08581013977527618,
-0.0703452005982399,
0.03400072827935219,
-0.052269306033849716,
0.0783848986029625,
-0.021178411319851875,
0.013596807606518269,
-0.10684718936681747,
-0.042009830474853516,
-0.046135108917951584,
0.01650162786245346,
-0.09445475786924362,
-0.08547115325927734,
-0.04265490174293518,
0.09836334735155106,
0.09630752354860306,
-0.03336099535226822,
-0.03237393498420715,
-0.07199321687221527,
0.0478377565741539,
0.19491228461265564,
0.17397242784500122,
0.040310848504304886,
-0.089284248650074,
-0.010599702596664429,
-0.009916375391185284,
0.042689960449934006,
-0.19650641083717346,
0.05905641242861748,
0.05663960799574852,
0.023092392832040787,
0.11034686118364334,
-0.019230734556913376,
-0.154476135969162,
-0.07285703718662262,
0.06408938765525818,
-0.06582776457071304,
-0.19542108476161957,
0.005066774785518646,
0.05684494227170944,
-0.16578230261802673,
-0.040926288813352585,
0.03999267518520355,
-0.00658567575737834,
-0.04378366842865944,
0.019012313336133957,
0.09176355600357056,
0.0067964415065944195,
0.0762358084321022,
0.0572005957365036,
0.08553408086299896,
-0.10666126012802124,
0.08023848384618759,
0.0900353342294693,
-0.0804501622915268,
0.01886405237019062,
0.10794413089752197,
-0.06185045465826988,
-0.03451856970787048,
0.021446600556373596,
0.07623752951622009,
0.022676941007375717,
-0.043928153812885284,
0.011498936451971531,
-0.10094466805458069,
0.0629684254527092,
0.08260824531316757,
0.0337434783577919,
0.015213939361274242,
0.03356156125664711,
0.04296944662928581,
-0.07457233220338821,
0.12321266531944275,
0.03560607507824898,
0.014080427587032318,
-0.03759434074163437,
-0.03697669506072998,
0.02581869065761566,
-0.021954068914055824,
-0.004339737351983786,
-0.032251615077257156,
-0.07218848913908005,
-0.012231593020260334,
-0.1599930226802826,
-0.013177708722651005,
-0.05738747492432594,
0.00964173674583435,
0.026823511347174644,
-0.031133504584431648,
0.011528964154422283,
0.012591860257089138,
-0.07707995176315308,
-0.06895989179611206,
-0.019954528659582138,
0.0932464599609375,
-0.16556626558303833,
0.022037440910935402,
0.08110339194536209,
-0.11963336914777756,
0.09733449667692184,
0.02197897806763649,
-0.007640111725777388,
0.026726417243480682,
-0.14543108642101288,
0.030035879462957382,
-0.03245643526315689,
0.011221821419894695,
0.04208695888519287,
-0.2187846153974533,
0.0040822988376021385,
-0.03234344720840454,
-0.07278918474912643,
-0.008908017538487911,
-0.035470325499773026,
-0.12099109590053558,
0.10707954317331314,
0.010005844756960869,
-0.08463171124458313,
-0.035984333604574203,
0.029697544872760773,
0.07631591707468033,
-0.01952040009200573,
0.1529894918203354,
-0.010249060578644276,
0.07990633696317673,
-0.16597940027713776,
-0.021184463053941727,
-0.009170851670205593,
0.021087130531668663,
-0.021631473675370216,
-0.007638993207365274,
0.04485904052853584,
-0.019432583823800087,
0.17700964212417603,
-0.026384999975562096,
0.021217845380306244,
0.06333838403224945,
0.02550331875681877,
-0.02744298242032528,
0.09895695745944977,
0.03785301372408867,
0.01413987297564745,
0.015243995934724808,
0.008912056684494019,
-0.04624021798372269,
-0.03419721871614456,
-0.19918522238731384,
0.07443807274103165,
0.15620417892932892,
0.10405881702899933,
-0.021504875272512436,
0.07845485955476761,
-0.1009749174118042,
-0.1174570694565773,
0.11110851913690567,
-0.04576796665787697,
-0.004041977226734161,
-0.06820065528154373,
0.14001382887363434,
0.1445923149585724,
-0.1852324903011322,
0.07516685873270035,
-0.06555581092834473,
-0.04720945283770561,
-0.10845762491226196,
-0.1943729966878891,
-0.05245157703757286,
-0.047502148896455765,
-0.015196348540484905,
-0.0467243492603302,
0.06843651086091995,
0.056968968361616135,
0.0051003689877688885,
-0.007327452767640352,
0.07013888657093048,
-0.023590978235006332,
-0.006884381175041199,
0.03305123373866081,
0.06849106401205063,
0.01550290733575821,
-0.03263987600803375,
0.01840197481215,
-0.0136229507625103,
0.045766979455947876,
0.07054593414068222,
0.04719432815909386,
-0.03455859795212746,
0.017242617905139923,
-0.03937158361077309,
-0.10200946778059006,
0.04506291076540947,
-0.023834826424717903,
-0.07166143506765366,
0.15824684500694275,
0.023318728432059288,
0.008450480177998543,
-0.0217287614941597,
0.24070635437965393,
-0.07093775272369385,
-0.09779518097639084,
-0.13972696661949158,
0.11778434365987778,
-0.0332937091588974,
0.048797816038131714,
0.05461882799863815,
-0.10345358401536942,
0.017965009436011314,
0.1317717730998993,
0.16603025794029236,
-0.03476989269256592,
0.021820811554789543,
0.031063349917531013,
0.005034408997744322,
-0.035215310752391815,
0.05046186223626137,
0.07719052582979202,
0.1726875901222229,
-0.049206238240003586,
0.09542026370763779,
-0.0008909896132536232,
-0.09126165509223938,
-0.03910234570503235,
0.10966160148382187,
-0.015142385847866535,
0.01685958169400692,
-0.062115687876939774,
0.11906944215297699,
-0.06678294390439987,
-0.2349361777305603,
0.06360543519258499,
-0.06954524666070938,
-0.1422126293182373,
-0.02231421507894993,
0.08106163889169693,
-0.01196480542421341,
0.027620594948530197,
0.07561125606298447,
-0.06679411977529526,
0.19909748435020447,
0.038820140063762665,
-0.05481730028986931,
-0.052124783396720886,
0.0800684243440628,
-0.09852508455514908,
0.2794410288333893,
0.016223769634962082,
0.04865993931889534,
0.10313098877668381,
-0.00965174101293087,
-0.140383780002594,
0.0246428195387125,
0.09381308406591415,
-0.10246250778436661,
0.04439946264028549,
0.19708752632141113,
0.002705289050936699,
0.11182710528373718,
0.07175149023532867,
-0.07463574409484863,
0.04682227969169617,
-0.08534546941518784,
-0.06503921747207642,
-0.09501412510871887,
0.10211336612701416,
-0.07309316843748093,
0.13978929817676544,
0.13975800573825836,
-0.05050061270594597,
0.012516533024609089,
-0.036818284541368484,
0.04304252192378044,
-0.0013428520178422332,
0.09788814187049866,
0.009277479723095894,
-0.18206731975078583,
0.02733813226222992,
0.0029682593885809183,
0.10703673213720322,
-0.16381803154945374,
-0.09259600192308426,
0.04451525956392288,
-0.003116340609267354,
-0.07126250863075256,
0.12775391340255737,
0.04250470921397209,
0.043893683701753616,
-0.03651601821184158,
-0.02117959037423134,
-0.010156678035855293,
0.13530166447162628,
-0.11286182701587677,
0.0016504342202097178
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 0.0007 | 1.0 | 3938 | 0.0000 |
| 0.0002 | 2.0 | 7876 | 0.0000 |
| 0.0001 | 3.0 | 11814 | 0.0000 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "t5-small", "model-index": [{"name": "results", "results": []}]} | text2text-generation | notAbdelrahman/Pardeep_Kumar | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:t5-small",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T12:51:16+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| results
=======
This model is a fine-tuned version of t5-small on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0000
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 8
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 3
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
77,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 3### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.09347370266914368,
0.06867215782403946,
-0.0019648822490125895,
0.10770054161548615,
0.12326936423778534,
-0.001996910898014903,
0.17009373009204865,
0.125465527176857,
-0.06628028303384781,
0.044078003615140915,
0.13543517887592316,
0.11460017412900925,
0.032537300139665604,
0.14000560343265533,
-0.06665652245283127,
-0.20501753687858582,
0.015134686604142189,
0.02612285129725933,
-0.04355495795607567,
0.12831614911556244,
0.09834330528974533,
-0.1116882860660553,
0.10749238729476929,
-0.012864631600677967,
-0.15137016773223877,
0.0017177313566207886,
0.017643185332417488,
-0.0539996512234211,
0.13680432736873627,
0.04157530143857002,
0.09550321102142334,
0.03587225079536438,
0.06333126872777939,
-0.17942357063293457,
0.012174190953373909,
0.06258679926395416,
-0.005079545546323061,
0.0834638923406601,
0.05130387097597122,
0.015299325808882713,
0.0944446250796318,
-0.08406558632850647,
0.04448532313108444,
0.031899046152830124,
-0.12450771778821945,
-0.1968294084072113,
-0.07547755539417267,
0.03599390387535095,
0.10096278786659241,
0.09498912841081619,
-0.016937214881181717,
0.13773776590824127,
-0.022023845463991165,
0.10335659235715866,
0.21607273817062378,
-0.31790629029273987,
-0.06299341470003128,
0.04742396995425224,
0.06400298327207565,
0.11899988353252411,
-0.08935610204935074,
-0.008582737296819687,
0.055401287972927094,
0.03254476189613342,
0.14922596514225006,
-0.028006508946418762,
-0.02485503815114498,
-0.004960297606885433,
-0.14035004377365112,
-0.03705109283328056,
0.17986494302749634,
0.05924800783395767,
-0.04716950282454491,
-0.07598135620355606,
-0.08002232015132904,
-0.14050517976284027,
-0.03230864554643631,
-0.017382539808750153,
0.044039830565452576,
-0.010033106431365013,
-0.05927848815917969,
-0.04513704404234886,
-0.11602416634559631,
-0.0642571747303009,
-0.03191516920924187,
0.08534272760152817,
0.023305825889110565,
-0.003892292734235525,
-0.037593454122543335,
0.09007758647203445,
-0.01763838343322277,
-0.1396619826555252,
0.014517147094011307,
0.019654516130685806,
0.024786820635199547,
-0.039632175117731094,
-0.04733094200491905,
-0.10840585827827454,
0.02818419598042965,
0.11588915437459946,
-0.04188414290547371,
0.05056431517004967,
-0.002767788013443351,
0.04776761680841446,
-0.10918416827917099,
0.15586204826831818,
-0.03282135725021362,
-0.0595608614385128,
0.02944401279091835,
0.10024502873420715,
0.0669575110077858,
-0.016521502286195755,
-0.13975055515766144,
0.023714685812592506,
0.12174341082572937,
0.02841443382203579,
-0.034587323665618896,
0.06558380275964737,
-0.04172128438949585,
-0.012599185109138489,
0.030634285882115364,
-0.08223802596330643,
0.004073353949934244,
-0.010795767419040203,
-0.04245589300990105,
-0.0615130290389061,
0.024973643943667412,
0.021685542538762093,
-0.01153197605162859,
0.07065003365278244,
-0.08495492488145828,
-0.007818876765668392,
-0.06925796717405319,
-0.1207272931933403,
0.021505730226635933,
-0.07747990638017654,
0.016628652811050415,
-0.12049506604671478,
-0.19147098064422607,
-0.0016872819978743792,
0.050775229930877686,
-0.030769415199756622,
-0.05437018349766731,
-0.05952541530132294,
-0.0845046415925026,
0.020744994282722473,
-0.01887369155883789,
0.09366834908723831,
-0.07098592072725296,
0.09847564995288849,
0.039674289524555206,
0.05834656208753586,
-0.060781244188547134,
0.031842298805713654,
-0.1049981489777565,
0.03636157512664795,
-0.15347124636173248,
0.02650403045117855,
-0.029740331694483757,
0.0773824006319046,
-0.10012326389551163,
-0.06725063174962997,
-0.01262668240815401,
-0.0016163613181561232,
0.0700048953294754,
0.10365373641252518,
-0.16537132859230042,
-0.057342529296875,
0.17868861556053162,
-0.08780030161142349,
-0.1811744123697281,
0.14510680735111237,
-0.034915290772914886,
0.06944591552019119,
0.06968694925308228,
0.20622804760932922,
0.05883309990167618,
-0.08714502304792404,
0.009569649584591389,
0.00673604104667902,
0.07013886421918869,
-0.06320858746767044,
0.09295690804719925,
-0.008758597075939178,
0.0053996918722987175,
0.005675602238625288,
-0.04519905149936676,
0.05857594683766365,
-0.06396712362766266,
-0.07848130166530609,
-0.04085949808359146,
-0.10512888431549072,
0.03412806987762451,
0.040060799568891525,
0.05928077921271324,
-0.121832937002182,
-0.09419171512126923,
0.03463398292660713,
0.06844437122344971,
-0.07789140194654465,
0.023547209799289703,
-0.07265205681324005,
0.09320573508739471,
-0.08490338921546936,
-0.008942876011133194,
-0.13727177679538727,
-0.04288235679268837,
0.018490195274353027,
0.007858938537538052,
0.010929647833108902,
-0.0005033689667470753,
0.07838620990514755,
0.07546074688434601,
-0.06744498759508133,
-0.03349125385284424,
-0.007123843301087618,
0.014404582791030407,
-0.12603776156902313,
-0.18888601660728455,
-0.017575055360794067,
-0.027065368369221687,
0.15035611391067505,
-0.23055557906627655,
0.054145827889442444,
0.005642406176775694,
0.06745535880327225,
0.0382627509534359,
-0.012550760991871357,
-0.02683386392891407,
0.04948022589087486,
-0.0513637438416481,
-0.07220853865146637,
0.0717676505446434,
0.02724258415400982,
-0.109456367790699,
-0.0006202426739037037,
-0.18141783773899078,
0.18344485759735107,
0.13242921233177185,
-0.056690763682127,
-0.061641957610845566,
0.007536374963819981,
-0.036098793148994446,
-0.03209945559501648,
-0.0290940273553133,
-0.025035785511136055,
0.1033233031630516,
0.0013815582497045398,
0.16426967084407806,
-0.1045258492231369,
-0.04759572073817253,
0.031920675188302994,
-0.04258554056286812,
0.012577165849506855,
0.11518778651952744,
0.06405758112668991,
-0.13753348588943481,
0.15288618206977844,
0.20125025510787964,
-0.0583198219537735,
0.14194688200950623,
-0.044979482889175415,
-0.0656600147485733,
-0.022489681839942932,
0.03198271989822388,
0.023557141423225403,
0.10565553605556488,
-0.10657107084989548,
0.007813028059899807,
0.01286088302731514,
0.02175959385931492,
0.01490288320928812,
-0.20211344957351685,
-0.025803498923778534,
0.05334874615073204,
-0.05625184252858162,
0.0017099344404414296,
-0.01125353667885065,
-0.02403530851006508,
0.09788307547569275,
0.0055059571750462055,
-0.07301715761423111,
0.04495415836572647,
-0.0016516913892701268,
-0.09009174257516861,
0.20407302677631378,
-0.06538015604019165,
-0.16942961513996124,
-0.145066499710083,
-0.0650586485862732,
-0.053858377039432526,
0.03090077079832554,
0.07954434305429459,
-0.06140368804335594,
-0.037387169897556305,
-0.1367456167936325,
0.004299233201891184,
0.012330126948654652,
0.018558312207460403,
0.012728264555335045,
-0.0030920642893761396,
0.08300770819187164,
-0.10156748443841934,
-0.012335858307778835,
-0.012887184508144855,
-0.038229767233133316,
0.028548862785100937,
0.0031955954618752003,
0.11420533061027527,
0.13737671077251434,
-0.01083992887288332,
-0.002267418894916773,
-0.040163107216358185,
0.23332251608371735,
-0.061005305498838425,
0.005703683011233807,
0.15791086852550507,
-0.01770906336605549,
0.05709727853536606,
0.13187290728092194,
0.04140150547027588,
-0.09837222844362259,
0.02546471543610096,
0.020732151344418526,
-0.03525089472532272,
-0.20908404886722565,
-0.016035249456763268,
-0.05063961073756218,
0.03636425733566284,
0.09426145255565643,
0.034309372305870056,
0.048363473266363144,
0.06558013707399368,
0.011987018398940563,
0.0847863182425499,
0.007101277820765972,
0.08496329933404922,
0.11012119054794312,
0.04577048495411873,
0.12918533384799957,
-0.057689715176820755,
-0.03789672255516052,
0.045032799243927,
0.008772886358201504,
0.1780250519514084,
0.015240090899169445,
0.19702886044979095,
0.04568599537014961,
0.14511053264141083,
-0.0037861091550439596,
0.07405442744493484,
-0.01624404452741146,
-0.032971374690532684,
-0.023833081126213074,
-0.05600564554333687,
-0.0279286727309227,
0.030359085649251938,
-0.09353592991828918,
0.059380535036325455,
-0.10539592057466507,
0.02395571582019329,
0.05043542757630348,
0.25515270233154297,
0.0577489472925663,
-0.34220629930496216,
-0.10186441242694855,
0.028527067974209785,
-0.023939039558172226,
-0.03394230827689171,
0.02610480599105358,
0.15225280821323395,
-0.05521082505583763,
0.03456123173236847,
-0.08004213124513626,
0.08919960260391235,
-0.026088060811161995,
0.052827365696430206,
0.04597829654812813,
0.07122660428285599,
-0.01213972456753254,
0.07047568261623383,
-0.28497540950775146,
0.26135629415512085,
0.01561396848410368,
0.0663687214255333,
-0.05681296065449715,
0.002250872552394867,
0.02218577079474926,
0.07275057584047318,
0.08700210601091385,
-0.016039501875638962,
-0.05673277750611305,
-0.1741437464952469,
-0.07833845913410187,
0.02778189815580845,
0.08798377960920334,
-0.05007649213075638,
0.10884948074817657,
-0.051944464445114136,
0.00011699079186655581,
0.08003796637058258,
0.01088105607777834,
-0.06180926784873009,
-0.1033245325088501,
-0.0024192873388528824,
0.05044955387711525,
-0.02647312730550766,
-0.08169252425432205,
-0.08413760364055634,
-0.10176825523376465,
0.14991244673728943,
-0.047788627445697784,
-0.046471815556287766,
-0.09878706932067871,
0.037560947239398956,
0.04571811109781265,
-0.08266767114400864,
0.04137179255485535,
0.005057164002209902,
0.09633810818195343,
0.017129356041550636,
-0.06600815802812576,
0.12656261026859283,
-0.07709991931915283,
-0.1739414930343628,
-0.05484914034605026,
0.12612521648406982,
-0.006890830583870411,
0.04429091513156891,
0.0012901664013043046,
0.008520948700606823,
-0.03387708216905594,
-0.0664731040596962,
0.014928841963410378,
-0.010985741391777992,
0.05356905236840248,
-0.01869702711701393,
-0.031911492347717285,
0.011935902759432793,
-0.06046295538544655,
-0.05204232782125473,
0.1710219383239746,
0.3013617694377899,
-0.07266505062580109,
0.011019939556717873,
0.05709942802786827,
-0.06043177470564842,
-0.18088923394680023,
0.015226487070322037,
0.015289409086108208,
0.0011759520275518298,
0.06565781682729721,
-0.12441904842853546,
0.07503510266542435,
0.08636599034070969,
-0.025033826008439064,
0.10588903725147247,
-0.32419347763061523,
-0.13760468363761902,
0.09945843368768692,
0.15797948837280273,
0.1203719824552536,
-0.1726606786251068,
-0.04699961841106415,
-0.04338085651397705,
-0.12252072244882584,
0.11372635513544083,
-0.14018326997756958,
0.11069376766681671,
-0.0055401683785021305,
0.0453452542424202,
0.004756892565637827,
-0.05146172270178795,
0.12596486508846283,
-0.03953436389565468,
0.09013684093952179,
-0.07514998316764832,
0.01629449985921383,
0.07125616073608398,
-0.06734820455312729,
0.027231888845562935,
-0.15590080618858337,
0.0351439043879509,
-0.06532588601112366,
-0.029607243835926056,
-0.053923025727272034,
0.027274344116449356,
-0.03853459656238556,
-0.06273374706506729,
-0.034415118396282196,
0.015001446008682251,
0.05571983754634857,
-0.011540542356669903,
0.157199889421463,
-0.001458515995182097,
0.1543501615524292,
0.1525018960237503,
0.0960945412516594,
-0.07233065366744995,
-0.020622070878744125,
-0.012130646035075188,
-0.039638422429561615,
0.04694148525595665,
-0.1598149985074997,
0.03340966999530792,
0.10830450803041458,
-0.0003779125399887562,
0.14015597105026245,
0.06748175621032715,
-0.034095216542482376,
0.012031462043523788,
0.06590981036424637,
-0.16940833628177643,
-0.14403748512268066,
-0.03018578141927719,
-0.0010301581351086497,
-0.13171443343162537,
0.046225812286138535,
0.1341385841369629,
-0.07578004151582718,
0.007755592931061983,
-0.008592890575528145,
0.021232979372143745,
-0.034776635468006134,
0.16321755945682526,
0.04628856107592583,
0.05474235862493515,
-0.07322470098733902,
0.08568231761455536,
0.05203435570001602,
-0.07992881536483765,
0.02385292761027813,
0.06271054595708847,
-0.09267795085906982,
-0.04967021197080612,
0.05306100472807884,
0.16375897824764252,
-0.03545815125107765,
-0.053874168545007706,
-0.14857546985149384,
-0.11550498753786087,
0.049748990684747696,
0.1729051172733307,
0.08015447854995728,
0.014474509283900261,
-0.02334270253777504,
0.0050368839874863625,
-0.10945611447095871,
0.12274294346570969,
0.033573564141988754,
0.08531966060400009,
-0.15905538201332092,
0.11163230985403061,
-0.007885192520916462,
0.012328200042247772,
-0.018365003168582916,
0.0481569729745388,
-0.10177197307348251,
-0.006129599642008543,
-0.13796557486057281,
0.004004803020507097,
-0.02388283610343933,
-0.003698173211887479,
-0.00932991225272417,
-0.04382731020450592,
-0.061805833131074905,
0.01416589692234993,
-0.09592670202255249,
-0.0336700901389122,
0.02712356112897396,
0.05644042789936066,
-0.11446563154459,
-0.032216910272836685,
0.021470215171575546,
-0.07727079093456268,
0.07428720593452454,
0.0050511141307652,
0.007489211857318878,
0.04574035853147507,
-0.14894220232963562,
0.03892383724451065,
0.049952682107686996,
0.011620644479990005,
0.03453756868839264,
-0.0792192742228508,
-0.02264840342104435,
0.0038625977467745543,
0.03404022753238678,
0.020234912633895874,
0.09363164007663727,
-0.12009643763303757,
0.005772162228822708,
-0.016997788101434708,
-0.044035207480192184,
-0.05733306705951691,
0.02992156334221363,
0.062969870865345,
0.008733927272260189,
0.20751483738422394,
-0.09397397190332413,
0.012368821538984776,
-0.20910301804542542,
0.010287521407008171,
0.005809638649225235,
-0.12348609417676926,
-0.1133560836315155,
-0.05988312512636185,
0.04737717658281326,
-0.061904534697532654,
0.10760994255542755,
-0.0087590292096138,
0.05116185545921326,
0.03935098275542259,
-0.027745826169848442,
0.055680133402347565,
0.01713978312909603,
0.2442040592432022,
0.008165417239069939,
-0.042216263711452484,
0.026415757834911346,
0.026238972321152687,
0.11103269457817078,
0.09248317033052444,
0.181604266166687,
0.1648636907339096,
-0.04796141758561134,
0.1095355674624443,
0.02951475977897644,
-0.03084109164774418,
-0.15458664298057556,
0.03686906769871712,
-0.027596833184361458,
0.1166737750172615,
-0.021576836705207825,
0.22454319894313812,
0.12486838549375534,
-0.15299394726753235,
0.005853664129972458,
-0.06693246215581894,
-0.06821727007627487,
-0.10426735132932663,
-0.09013744443655014,
-0.09362378716468811,
-0.1381499171257019,
-0.020401297137141228,
-0.1089400202035904,
0.01844066195189953,
0.10415947437286377,
0.01345446053892374,
-0.02618582919239998,
0.17294935882091522,
0.012158875353634357,
0.007495460566133261,
0.04932836443185806,
-0.004427582956850529,
-0.03313377872109413,
-0.07793226093053818,
-0.09063103049993515,
0.00912928581237793,
-0.01085948757827282,
0.027062203735113144,
-0.038171011954545975,
-0.025841694325208664,
0.039678849279880524,
-0.020373743027448654,
-0.11197402328252792,
0.00926131196320057,
0.03245889022946358,
0.05164092779159546,
0.05136903002858162,
0.015361841768026352,
-0.005667575169354677,
0.004713995382189751,
0.24350731074810028,
-0.08297950774431229,
-0.07894538342952728,
-0.08280804753303528,
0.1918795257806778,
0.007202867418527603,
-0.007624194025993347,
0.0024925542529672384,
-0.08769597113132477,
0.030512886121869087,
0.2336271107196808,
0.17657308280467987,
-0.08863376826047897,
-0.004690786823630333,
-0.02060953713953495,
-0.005768125411123037,
-0.03786216676235199,
0.1055159866809845,
0.10920816659927368,
0.01801389455795288,
-0.07765547931194305,
-0.016093701124191284,
-0.03551063314080238,
0.0020823716185986996,
-0.05000080168247223,
0.0747952088713646,
0.02234957553446293,
0.010563460178673267,
-0.02930639125406742,
0.06850093603134155,
-0.034543219953775406,
-0.09070524573326111,
-0.0034976790193468332,
-0.192473903298378,
-0.1383362114429474,
-0.025479551404714584,
0.11622032523155212,
-0.019045470282435417,
0.04503164067864418,
-0.02876320481300354,
0.021424351260066032,
0.04378565400838852,
-0.022374600172042847,
-0.06634657829999924,
-0.05743909999728203,
0.06174502149224281,
-0.12257226556539536,
0.22435277700424194,
-0.03779479116201401,
0.023839429020881653,
0.1331723928451538,
0.03184095770120621,
-0.09732165187597275,
0.09398677945137024,
0.05076412111520767,
-0.03090847283601761,
0.048767901957035065,
0.085252545773983,
-0.032861609011888504,
0.11361430585384369,
0.05348959565162659,
-0.1245645061135292,
0.006692399270832539,
-0.03793064132332802,
-0.05546611174941063,
-0.03988180309534073,
-0.05077916011214256,
-0.05710491165518761,
0.14072588086128235,
0.16524624824523926,
-0.05645293369889259,
-0.0030169563833624125,
-0.05209064111113548,
0.015699265524744987,
0.07621265947818756,
0.03457095846533775,
-0.025197269394993782,
-0.23300254344940186,
0.005968000274151564,
0.0697762593626976,
0.003704506205394864,
-0.31259047985076904,
-0.08220239728689194,
-0.016937172040343285,
-0.03783375397324562,
-0.11333701759576797,
0.08840226382017136,
0.13511677086353302,
0.04019254446029663,
-0.06274262815713882,
-0.05501111224293709,
-0.07922200858592987,
0.16708172857761383,
-0.12539324164390564,
-0.09817871451377869
] |
null | null | transformers | Model description:
Model: microsoft/mdeberta-v3-base
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 5
Best exact match: 98.08
Best epoch: 5
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 8
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.75_DROP1_mdeberta
Results
| epoch | train_loss | train_f1 | train_exact | dev_loss | dev_f1 | dev_exact | test_loss | test_f1 | test_exact |
|--------:|-------------:|-----------:|--------------:|-----------:|---------:|------------:|------------:|----------:|-------------:|
| 1 | 1.12 | 72.67 | 67.29 | 0.15 | 97.79 | 95.88 | 0 | 0 | 0 |
| 2 | 0.12 | 97.51 | 95.87 | 0.13 | 97.86 | 96.98 | 0 | 0 | 0 |
| 3 | 0.07 | 98.49 | 97.59 | 0.11 | 98.12 | 97.53 | 0 | 0 | 0 |
| 4 | 0.03 | 99.33 | 98.76 | 0.11 | 97.99 | 97.8 | 0 | 0 | 0 |
| 5 | 0.03 | 99.49 | 99.04 | 0.08 | 98.44 | 98.08 | 0 | 0 | 0 |
| 6 | 0.02 | 99.7 | 99.38 | 0.15 | 97.74 | 96.98 | 0 | 0 | 0 |
| 7 | 0.02 | 99.75 | 99.31 | 0.09 | 98.39 | 97.8 | 0 | 0 | 0 |
| 8 | 0.02 | 99.5 | 99.04 | 0.11 | 97.61 | 96.15 | 0 | 0 | 0 | | {} | question-answering | pgajo/mdeberta_EW-TT-PE_U0_S1_Tingredient_P0.75_DROP1_mdeberta_E5_DEV98.0 | [
"transformers",
"safetensors",
"deberta-v2",
"question-answering",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:53:25+00:00 | [] | [] | TAGS
#transformers #safetensors #deberta-v2 #question-answering #endpoints_compatible #region-us
| Model description:
```
Model: microsoft/mdeberta-v3-base
Dataset: TASTEset
Unshuffled ratio: ['0']
Shuffled ratio: ['1']
Best exact match epoch: 5
Best exact match: 98.08
Best epoch: 5
Drop duplicates: ['1']
Max epochs = 10
Optimizer lr = 3e-05
Optimizer eps = 1e-08
Batch size = 8
Dataset path = pgajo/EW-TT-PE_U0_S1_Tingredient_P0.75_DROP1_mdeberta
```
Results
| [] | [
"TAGS\n#transformers #safetensors #deberta-v2 #question-answering #endpoints_compatible #region-us \n"
] | [
35
] | [
"passage: TAGS\n#transformers #safetensors #deberta-v2 #question-answering #endpoints_compatible #region-us \n"
] | [
-0.03728775680065155,
-0.0038377046585083008,
-0.009311766363680363,
-0.024030903354287148,
0.09035065770149231,
0.005984686780720949,
0.08575788140296936,
0.05532265827059746,
0.06348118185997009,
0.03387044742703438,
0.18101909756660461,
0.19251902401447296,
-0.058089353144168854,
0.04107458144426346,
-0.13241812586784363,
-0.14612004160881042,
0.12823431193828583,
0.047934602946043015,
-0.07287584245204926,
0.07187519967556,
0.10195355862379074,
-0.10431212931871414,
0.05277901515364647,
-0.07257415354251862,
-0.06344954669475555,
0.08719473332166672,
0.044681012630462646,
-0.08118650317192078,
0.1287916600704193,
0.03779929131269455,
0.20841151475906372,
0.06395259499549866,
-0.08667069673538208,
-0.19618846476078033,
0.023215238004922867,
0.012712759897112846,
-0.07039128988981247,
-0.004744246602058411,
0.005283471662551165,
-0.04632415995001793,
-0.07809045165777206,
-0.01760007254779339,
0.023938005790114403,
0.05124702677130699,
-0.16341817378997803,
-0.21908938884735107,
-0.07441376149654388,
-0.0582892969250679,
0.13350747525691986,
0.07887715101242065,
-0.010550078004598618,
0.16895923018455505,
-0.11356569081544876,
0.08616088330745697,
0.12874191999435425,
-0.29962998628616333,
0.009337653405964375,
0.0861138105392456,
0.11587682366371155,
0.05225814878940582,
0.04153287410736084,
0.07279273122549057,
0.09410037100315094,
-0.0009737316868267953,
-0.05661074444651604,
-0.09237425774335861,
-0.03325352445244789,
0.08559805154800415,
-0.08217465877532959,
-0.06781372427940369,
0.23070332407951355,
0.016196254640817642,
0.007937050424516201,
-0.002183179836720228,
-0.12220358103513718,
0.041106440126895905,
0.03423582389950752,
-0.1241849735379219,
0.0017509078606963158,
0.052354611456394196,
0.04683992266654968,
-0.0034914726857095957,
-0.12999871373176575,
-0.04563375189900398,
-0.22419606149196625,
0.24771186709403992,
0.011630578897893429,
0.08584821969270706,
-0.24102671444416046,
0.02130679227411747,
-0.07927899062633514,
-0.10876813530921936,
-0.026147108525037766,
-0.0916609913110733,
0.0002376376069150865,
-0.026093177497386932,
-0.053491055965423584,
-0.03605819493532181,
0.14947523176670074,
0.2028331458568573,
-0.010358676314353943,
0.014293797314167023,
-0.0744699090719223,
0.04649025946855545,
0.04467272013425827,
0.10649570822715759,
-0.03231889009475708,
-0.03329123184084892,
0.03121146187186241,
-0.10594095289707184,
0.03815029188990593,
-0.03234180063009262,
-0.08156953752040863,
-0.07521678507328033,
0.06908408552408218,
0.19591230154037476,
0.06820499897003174,
-0.0026782427448779345,
-0.08307023346424103,
0.04234248399734497,
0.06869948655366898,
-0.04712492600083351,
-0.03400883823633194,
-0.013266735710203648,
0.053173311054706573,
0.07299400120973587,
-0.07136741280555725,
0.04754676669836044,
0.007166758645325899,
0.041958071291446686,
-0.05782022327184677,
-0.09400831907987595,
-0.025366829708218575,
-0.05529634654521942,
0.06341332942247391,
-0.08864553272724152,
0.09145759046077728,
-0.18967559933662415,
-0.10267826169729233,
0.016610626131296158,
-0.0045001329854130745,
-0.0059241256676614285,
0.04960429668426514,
-0.013106233440339565,
-0.040768858045339584,
-0.029761778190732002,
-0.0827065035700798,
-0.1321946680545807,
-0.05983034148812294,
0.05447603389620781,
0.07513409852981567,
0.04758704826235771,
-0.10108914226293564,
0.021683545783162117,
-0.0947238877415657,
0.06994698941707611,
-0.0967060849070549,
-0.01885940693318844,
-0.02939951792359352,
0.16544556617736816,
-0.05750654265284538,
-0.010703980922698975,
-0.06641863286495209,
0.04682425409555435,
-0.008118162862956524,
0.1765333116054535,
-0.09428954869508743,
-0.021007629111409187,
0.21591816842556,
-0.12629573047161102,
-0.25531452894210815,
0.07319356501102448,
0.014977891929447651,
-0.008239700458943844,
0.10758701711893082,
0.16017425060272217,
0.003659900976344943,
-0.1249273270368576,
0.05626790225505829,
0.08938276767730713,
-0.1734611839056015,
-0.04195570945739746,
0.0161068607121706,
-0.05066784471273422,
-0.09808830171823502,
0.009794488549232483,
0.011747514829039574,
0.04220179468393326,
-0.07061201333999634,
-0.031821198761463165,
-0.040559060871601105,
-0.03380554914474487,
0.03127153590321541,
0.02641715109348297,
0.007530045695602894,
-0.10770026594400406,
0.030615776777267456,
-0.024632485583424568,
-0.00683521619066596,
0.009172736667096615,
-0.007994556799530983,
-0.11802337318658829,
0.07900033891201019,
-0.13670556247234344,
0.03207860514521599,
-0.12633967399597168,
-0.19738146662712097,
0.005839425139129162,
0.04774182662367821,
-0.08468694984912872,
0.21800173819065094,
0.09875518828630447,
-0.09097693115472794,
-0.006137054413557053,
-0.05907114967703819,
0.08960998058319092,
0.08079451322555542,
0.0015853705117478967,
-0.06100659444928169,
0.07632071524858475,
-0.09650418162345886,
-0.09953558444976807,
-0.018393639475107193,
-0.017714479938149452,
0.1304686814546585,
0.1346324235200882,
0.04929674416780472,
0.10122460871934891,
-0.02789202146232128,
0.01993481069803238,
-0.017174601554870605,
-0.009066427126526833,
0.04489145055413246,
-0.049963824450969696,
-0.08283296227455139,
0.10970352590084076,
-0.13440923392772675,
0.3570311963558197,
0.16495820879936218,
-0.18925440311431885,
0.016876207664608955,
0.04143786057829857,
-0.0035933763720095158,
0.028533434495329857,
0.05441593378782272,
-0.05190100893378258,
-0.027621831744909286,
0.0003395829407963902,
0.08186915516853333,
-0.05591926723718643,
-0.021061910316348076,
-0.0024214573204517365,
-0.06779544800519943,
-0.07636790722608566,
0.03156960383057594,
-0.03236952796578407,
-0.23581324517726898,
0.1598215401172638,
0.2888161540031433,
0.06887117028236389,
0.06974518299102783,
-0.06956253200769424,
-0.05127473920583725,
-0.01880931295454502,
0.07158878445625305,
-0.009421447291970253,
0.07846536487340927,
-0.1845901757478714,
0.012462212704122066,
0.048904385417699814,
0.05341748148202896,
0.06331686675548553,
-0.10831060260534286,
-0.07400919497013092,
0.03772532194852829,
-0.012694379314780235,
-0.03839917853474617,
0.10736404359340668,
0.022606419399380684,
0.10709960758686066,
0.03297307342290878,
-0.03738418594002724,
0.11714612692594528,
-0.036412306129932404,
-0.08094025403261185,
0.17963960766792297,
-0.1312190294265747,
-0.2529188394546509,
-0.05371266230940819,
-0.0309743732213974,
0.015309958718717098,
0.07682015001773834,
0.08493343740701675,
-0.12386374920606613,
-0.07411549985408783,
0.05231013521552086,
0.08626353740692139,
-0.09790954738855362,
0.03934162110090256,
0.0023797620087862015,
0.10002171993255615,
-0.019342733547091484,
-0.09933225065469742,
-0.051427166908979416,
-0.024293815717101097,
-0.04063684493303299,
0.10013644397258759,
-0.08902595192193985,
0.13652992248535156,
0.07149036973714828,
0.022849300876259804,
0.014357123523950577,
-0.018676836043596268,
0.21740539371967316,
-0.10584890097379684,
-0.02909567952156067,
0.21149852871894836,
-0.061582233756780624,
0.06120970845222473,
0.21723942458629608,
-0.011369073763489723,
-0.14137785136699677,
0.0490938276052475,
-0.04474305361509323,
-0.07489360123872757,
-0.24073997139930725,
-0.04105493426322937,
-0.08793067932128906,
0.06107258051633835,
-0.03293713554739952,
0.031044837087392807,
0.11687543988227844,
0.08729026466608047,
0.009007125161588192,
-0.08792039752006531,
0.013844164088368416,
0.0475117564201355,
0.2525629997253418,
-0.050750844180583954,
0.09648704528808594,
-0.0905306413769722,
-0.15796737372875214,
0.06860008090734482,
0.10873650014400482,
0.10214661061763763,
0.1462642401456833,
-0.0027462129946798086,
0.0652061328291893,
0.07337166368961334,
0.1169021800160408,
0.12465336173772812,
0.05215666815638542,
-0.08677806705236435,
-0.015214472077786922,
0.006260489579290152,
-0.05600907281041145,
0.06300559639930725,
0.05267763137817383,
-0.12824462354183197,
-0.02818644419312477,
-0.1126512736082077,
0.10054311156272888,
0.058934297412633896,
0.11722028255462646,
-0.16743294894695282,
0.02464774064719677,
0.13799428939819336,
0.011353823356330395,
-0.058697812259197235,
0.0912867859005928,
0.03950318694114685,
-0.05620834231376648,
0.05313059687614441,
-0.012288566678762436,
0.09224139899015427,
0.0033262569922953844,
0.08071277290582657,
-0.08797255903482437,
-0.11835828423500061,
0.03301083669066429,
0.08238526433706284,
-0.3295687735080719,
0.22564776241779327,
0.028279071673750877,
-0.016620904207229614,
-0.06687446683645248,
-0.005727334879338741,
-0.06650315225124359,
0.15835775434970856,
0.1886526644229889,
-0.02183588780462742,
-0.11979547142982483,
-0.07963583618402481,
0.07401353865861893,
0.07268458604812622,
0.13214190304279327,
-0.0008550439379177988,
0.011137178167700768,
-0.020029472187161446,
0.01817243918776512,
0.009023798629641533,
0.0339263416826725,
-0.06312233954668045,
-0.08897468447685242,
0.018689529970288277,
0.030155029147863388,
0.11139077693223953,
-0.06486526876688004,
0.061214711517095566,
-0.03871696814894676,
0.09737993031740189,
-0.10540647059679031,
-0.05383811146020889,
-0.09303666651248932,
-0.12369555979967117,
0.10137403011322021,
-0.05370093137025833,
0.05306076258420944,
-0.0555231012403965,
-0.015339870005846024,
-0.060825176537036896,
-0.13736888766288757,
0.15165752172470093,
-0.13151134550571442,
-0.02399410679936409,
-0.060091447085142136,
0.13432838022708893,
-0.06052115187048912,
-0.04956622049212456,
0.03849561884999275,
0.030640382319688797,
-0.05581487715244293,
-0.07224435359239578,
0.01818917691707611,
-0.02525155432522297,
0.05334388464689255,
0.05658275634050369,
0.01350982952862978,
-0.02610687166452408,
0.019570866599678993,
0.01517036184668541,
0.15224997699260712,
0.2728946805000305,
-0.04704027995467186,
0.034734707325696945,
0.2019861787557602,
0.019508758559823036,
-0.2997712194919586,
-0.03708970919251442,
-0.16996325552463531,
-0.03763081505894661,
0.0001576267823111266,
-0.014361141249537468,
0.0958404615521431,
0.05704042315483093,
-0.05061405897140503,
0.09281529486179352,
-0.18354500830173492,
-0.059356939047575,
0.18360604345798492,
0.03641260042786598,
0.46958258748054504,
-0.1513713002204895,
-0.0824398323893547,
-0.06946707516908646,
-0.2224908471107483,
0.06882217526435852,
-0.07528354972600937,
0.0046777850948274136,
0.005234878975898027,
0.0012454054085537791,
0.03865218907594681,
-0.07250551134347916,
0.1923351287841797,
-0.02821686677634716,
0.08594304323196411,
-0.09839803725481033,
-0.04746972769498825,
0.09848132729530334,
-0.013502247631549835,
0.03634418547153473,
0.048766423016786575,
0.06638693064451218,
-0.05494767054915428,
-0.04515192285180092,
-0.04681549221277237,
0.05731835588812828,
0.0200260728597641,
-0.08612947911024094,
-0.033141303807497025,
-0.047092095017433167,
-0.007574393413960934,
-0.02145240642130375,
0.25384604930877686,
-0.04925965517759323,
0.10755962133407593,
0.048958804458379745,
0.13844121992588043,
-0.15345866978168488,
0.058802489191293716,
0.03176873177289963,
-0.075651153922081,
0.11595148593187332,
-0.05387841910123825,
0.11258704960346222,
0.11980435997247696,
-0.06261411309242249,
0.0276875589042902,
0.08715503662824631,
0.013339112512767315,
-0.020646551623940468,
0.12270597368478775,
-0.1804414838552475,
-0.17352819442749023,
0.013026049360632896,
-0.043761175125837326,
0.06835563480854034,
0.17754718661308289,
0.12196899205446243,
0.08846712112426758,
-0.0035179394762963057,
-0.02048347517848015,
-0.010183928534388542,
-0.08858445286750793,
0.04105261713266373,
0.08416090160608292,
0.03822343051433563,
-0.08193250745534897,
0.10291159152984619,
-0.03591543808579445,
-0.2500148415565491,
0.003552555339410901,
-0.03672315180301666,
-0.10880371183156967,
-0.09555232524871826,
-0.06167761608958244,
0.10387071967124939,
-0.11213231831789017,
-0.09997513145208359,
-0.07097186893224716,
-0.13154636323451996,
0.03360617533326149,
0.23974372446537018,
0.08289383351802826,
0.13268114626407623,
0.07666579633951187,
-0.012107719667255878,
-0.01010901853442192,
-0.010384861379861832,
-0.06637462228536606,
0.032844386994838715,
-0.1438174545764923,
-0.14763179421424866,
-0.06754093617200851,
0.10804397612810135,
-0.09265581518411636,
-0.0004247319884598255,
-0.17914313077926636,
0.05854702740907669,
-0.2196883112192154,
-0.07214508950710297,
-0.11454200744628906,
-0.05406768620014191,
0.025963526219129562,
-0.10953541100025177,
-0.03651311621069908,
-0.008068571798503399,
-0.08005882799625397,
0.06632442772388458,
0.05048135668039322,
0.0028475665021687746,
-0.11325653642416,
-0.08365554362535477,
0.09528572112321854,
-0.05175342410802841,
0.09759414941072464,
0.10428863763809204,
-0.06820128113031387,
0.06353648006916046,
-0.14875872433185577,
-0.09039495885372162,
0.1012660339474678,
-0.0038444052916020155,
0.07761853188276291,
0.018537240102887154,
-0.0044877128675580025,
0.09658176451921463,
-0.014644335024058819,
0.04661324620246887,
-0.014643060974776745,
-0.07971281558275223,
0.011742083355784416,
-0.0024761410895735025,
-0.15974916517734528,
-0.03513343632221222,
-0.1250457763671875,
0.14386332035064697,
-0.009737849235534668,
0.11325902491807938,
-0.0033590025268495083,
0.08404765278100967,
-0.021738460287451744,
0.007495634723454714,
0.01325159054249525,
-0.12161193788051605,
0.02199508249759674,
-0.017364859580993652,
0.006241925060749054,
-0.052283305674791336,
0.2766420543193817,
-0.10509592294692993,
0.11256786435842514,
0.07183399796485901,
-0.03606297820806503,
0.09216972440481186,
0.061178795993328094,
0.25528907775878906,
0.05826177820563316,
-0.04465165361762047,
-0.1735457479953766,
0.050498366355895996,
-0.026103811338543892,
-0.11913085728883743,
0.0648529902100563,
0.17591971158981323,
-0.047176338732242584,
0.09989645332098007,
0.030453339219093323,
0.020518073812127113,
-0.050770167261362076,
-0.1876874417066574,
-0.004301256965845823,
-0.0432882234454155,
0.06259779632091522,
-0.008821825496852398,
0.21463893353939056,
-0.025025110691785812,
-0.0033572805114090443,
-0.0632471889257431,
-0.017249418422579765,
-0.16657495498657227,
-0.03429330140352249,
-0.11253293603658676,
-0.13044434785842896,
0.040249474346637726,
-0.1115269809961319,
-0.03301050513982773,
0.06645764410495758,
0.04753605276346207,
-0.04213758185505867,
0.1902361363172531,
0.06573200970888138,
-0.03289858624339104,
0.01988375559449196,
0.028958622366189957,
0.05513424053788185,
0.13553409278392792,
-0.01344628818333149,
-0.09995265305042267,
-0.05822005495429039,
-0.08046729862689972,
0.022376641631126404,
-0.10237812250852585,
-0.001977994106709957,
-0.1252664476633072,
-0.07004109025001526,
-0.06012414023280144,
0.13463832437992096,
-0.1158134788274765,
0.12949733436107635,
0.008366498164832592,
-0.0026542560663074255,
0.06424061208963394,
0.18103350698947906,
-0.057416003197431564,
-0.09918779879808426,
-0.06368650496006012,
0.1449824422597885,
0.04360406845808029,
0.18814997375011444,
-0.017729584127664566,
-0.031461697071790695,
-0.05557883530855179,
0.21372833847999573,
0.16409939527511597,
-0.03719138354063034,
0.05825265124440193,
0.011034042574465275,
0.038524314761161804,
0.03307616710662842,
0.03439149260520935,
0.08178666234016418,
0.2752123773097992,
-0.05242934077978134,
-0.03383177891373634,
0.00390842417255044,
0.010725707747042179,
-0.055061809718608856,
0.07009056210517883,
0.019406987354159355,
-0.03337034210562706,
-0.05271846055984497,
0.1394403576850891,
-0.07101699709892273,
0.07581845670938492,
0.08650929480791092,
-0.1462441086769104,
-0.022530609741806984,
-0.0031092013232409954,
0.181584894657135,
-0.078005351126194,
0.09853580594062805,
-0.05395420268177986,
-0.1217523142695427,
0.03871089220046997,
0.03587624430656433,
-0.16465380787849426,
-0.04326138272881508,
0.0567278116941452,
0.10924361646175385,
0.037795569747686386,
-0.004048179369419813,
0.063839852809906,
0.10895700007677078,
0.019401034340262413,
-0.0708446279168129,
0.1313953399658203,
0.09407249838113785,
-0.08008626103401184,
-0.063413605093956,
-0.035939209163188934,
0.0012321395333856344,
-0.023244787007570267,
0.08809870481491089,
-0.24330021440982819,
0.025229470804333687,
0.0493527315557003,
-0.06088758632540703,
-0.09089525043964386,
0.04719321057200432,
-0.07631068676710129,
0.03341719135642052,
0.0013287434121593833,
-0.02169523946940899,
0.03511111065745354,
-0.007284884341061115,
0.05827337130904198,
0.07404907047748566,
-0.020775051787495613,
-0.08432212471961975,
-0.04175800085067749,
-0.018653327599167824,
0.1740911304950714,
-0.008556295186281204,
-0.07556404918432236,
-0.03197469562292099,
-0.034262072294950485,
0.047229327261447906,
-0.0786563903093338,
0.02384847216308117,
0.0753261148929596,
0.04348769038915634,
-0.01207562256604433,
-0.13913826644420624,
0.009004125371575356,
0.09089305996894836,
-0.08680365979671478,
-0.12171396613121033
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | AntoineGourru/Mistral_qlora_drome | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:53:41+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Goodreads_Books_Reviews_tiny4_50
This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9662
- F1: 0.5258
- Accuracy: 0.5865
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:--------:|
| 1.049 | 1.0 | 12657 | 1.0229 | 0.4890 | 0.5620 |
| 1.0144 | 2.0 | 25314 | 0.9833 | 0.5116 | 0.5782 |
| 0.995 | 3.0 | 37971 | 0.9704 | 0.5226 | 0.5846 |
| 0.9883 | 4.0 | 50628 | 0.9662 | 0.5258 | 0.5865 |
### Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0
- Datasets 2.1.0
- Tokenizers 0.12.1
| {"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["f1", "accuracy"], "model-index": [{"name": "Goodreads_Books_Reviews_tiny4_50", "results": []}]} | text-classification | lilouuch/Goodreads_Books_Reviews_tiny4_50 | [
"transformers",
"pytorch",
"bert",
"text-classification",
"generated_from_trainer",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T12:57:49+00:00 | [] | [] | TAGS
#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us
| Goodreads\_Books\_Reviews\_tiny4\_50
====================================
This model is a fine-tuned version of prajjwal1/bert-tiny on the None dataset.
It achieves the following results on the evaluation set:
* Loss: 0.9662
* F1: 0.5258
* Accuracy: 0.5865
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* num\_epochs: 4
### Training results
### Framework versions
* Transformers 4.20.1
* Pytorch 1.11.0
* Datasets 2.1.0
* Tokenizers 0.12.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.20.1\n* Pytorch 1.11.0\n* Datasets 2.1.0\n* Tokenizers 0.12.1"
] | [
"TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.20.1\n* Pytorch 1.11.0\n* Datasets 2.1.0\n* Tokenizers 0.12.1"
] | [
48,
116,
4,
30
] | [
"passage: TAGS\n#transformers #pytorch #bert #text-classification #generated_from_trainer #license-mit #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* num\\_epochs: 4### Training results### Framework versions\n\n\n* Transformers 4.20.1\n* Pytorch 1.11.0\n* Datasets 2.1.0\n* Tokenizers 0.12.1"
] | [
-0.0901774913072586,
0.05718756839632988,
-0.0018780137179419398,
0.12035252898931503,
0.1898418366909027,
0.03548053279519081,
0.11176507920026779,
0.12549950182437897,
-0.0961717963218689,
0.010595045983791351,
0.12009410560131073,
0.17739945650100708,
0.007889879867434502,
0.12319475412368774,
-0.0586075559258461,
-0.2857389748096466,
-0.02096256986260414,
0.02027556486427784,
-0.06926687061786652,
0.13623523712158203,
0.08850221335887909,
-0.14441411197185516,
0.08794192224740982,
-0.0011395555920898914,
-0.2119368314743042,
0.017723357304930687,
0.014691483229398727,
-0.05344099551439285,
0.15656286478042603,
0.011256673373281956,
0.1253069043159485,
0.02115476131439209,
0.11493179202079773,
-0.20148169994354248,
0.007866241037845612,
0.04646121338009834,
0.012425354681909084,
0.07838582247495651,
0.0487353652715683,
-0.01541498675942421,
0.13124293088912964,
-0.09542941302061081,
0.0718347504734993,
0.018971001729369164,
-0.1351994276046753,
-0.22896119952201843,
-0.07885967195034027,
0.0077691166661679745,
0.0750909298658371,
0.09106829017400742,
-0.006673448719084263,
0.13536056876182556,
-0.11661779135465622,
0.10178149491548538,
0.24351786077022552,
-0.285858154296875,
-0.06794620305299759,
0.025695865973830223,
-0.0030365854036062956,
0.07122611254453659,
-0.1231384351849556,
-0.012791658751666546,
0.042303476482629776,
0.04579102620482445,
0.13558538258075714,
-0.033488694578409195,
-0.10196998715400696,
0.025655243545770645,
-0.13552871346473694,
-0.01543303020298481,
0.07855094224214554,
0.026255402714014053,
-0.03801530972123146,
-0.03509831055998802,
-0.04986004903912544,
-0.1715783178806305,
-0.048769235610961914,
-0.020597880706191063,
0.05658929795026779,
-0.05018908903002739,
-0.08567962050437927,
0.011952631175518036,
-0.08964245021343231,
-0.0770377665758133,
-0.05266832187771797,
0.16384385526180267,
0.034861598163843155,
0.004580858629196882,
-0.014470099471509457,
0.11930451542139053,
0.00446259044110775,
-0.13561111688613892,
0.012691680341959,
0.031047789379954338,
-0.029508264735341072,
-0.06512891501188278,
-0.06296927481889725,
-0.018513016402721405,
0.0011658057337626815,
0.12458311766386032,
-0.05507861077785492,
0.0654853880405426,
0.029988529160618782,
0.02156989835202694,
-0.10159230977296829,
0.19209672510623932,
-0.016915924847126007,
-0.030521946027874947,
-0.013765312731266022,
0.046018991619348526,
-0.011425649747252464,
-0.020711686462163925,
-0.12334547936916351,
0.007170291151851416,
0.09807249903678894,
0.018170034512877464,
-0.09649434685707092,
0.07353715598583221,
-0.044928666204214096,
-0.01630738563835621,
-0.0026190674398094416,
-0.0998055562376976,
0.05682488530874252,
0.004100324120372534,
-0.0943405032157898,
-0.05246435105800629,
0.012223550118505955,
0.02507171779870987,
-0.007399095222353935,
0.1636786013841629,
-0.08220461755990982,
0.0511188879609108,
-0.10488203912973404,
-0.12108185887336731,
-0.000641687074676156,
-0.07920780032873154,
0.02582676336169243,
-0.09082888811826706,
-0.16419123113155365,
-0.011227655224502087,
0.06352188438177109,
-0.04645710438489914,
-0.03546970710158348,
-0.06383426487445831,
-0.07003644108772278,
0.017491882666945457,
-0.023668713867664337,
0.16570061445236206,
-0.06950662285089493,
0.1106862798333168,
0.040521685034036636,
0.06929916888475418,
-0.040938831865787506,
0.05607055500149727,
-0.09590431302785873,
0.0010165059939026833,
-0.20733565092086792,
0.05760504677891731,
-0.055395230650901794,
0.06255672127008438,
-0.07732948660850525,
-0.12024497985839844,
0.033355869352817535,
0.0026581475976854563,
0.07945584505796432,
0.10627640038728714,
-0.17323936522006989,
-0.0804581344127655,
0.1476801633834839,
-0.06230422481894493,
-0.09943433105945587,
0.10606659948825836,
-0.07559765130281448,
0.04932168871164322,
0.07692287117242813,
0.1816152036190033,
0.06453172862529755,
-0.09160376340150833,
0.03759971261024475,
-0.01981986127793789,
0.057603612542152405,
-0.03388593718409538,
0.050763703882694244,
0.010212266817688942,
0.01627463847398758,
0.024623725563287735,
-0.034199059009552,
0.051644712686538696,
-0.1112096980214119,
-0.09409696608781815,
-0.026655493304133415,
-0.0923793688416481,
0.06671405583620071,
0.06375113129615784,
0.0846773311495781,
-0.1186595931649208,
-0.08266275376081467,
0.09559531509876251,
0.06696490943431854,
-0.04206380993127823,
0.032136429101228714,
-0.06484730541706085,
0.0360557995736599,
0.001429933588951826,
-0.02480258420109749,
-0.18293236196041107,
-0.013491017743945122,
0.008324910886585712,
0.02912641130387783,
0.030885277315974236,
0.005957660265266895,
0.08026624470949173,
0.07715369015932083,
-0.07198473066091537,
-0.011916505172848701,
-0.030426129698753357,
0.006727697793394327,
-0.14571283757686615,
-0.21459275484085083,
-0.03428368270397186,
-0.010218758136034012,
0.11359407752752304,
-0.21927881240844727,
0.03448839858174324,
-0.005462568253278732,
0.06711876392364502,
0.007049383595585823,
-0.008993747644126415,
-0.06490115821361542,
0.09347502887248993,
-0.025136519223451614,
-0.051385536789894104,
0.07665759325027466,
-0.009585335850715637,
-0.08777189999818802,
-0.05712178349494934,
-0.10003174096345901,
0.17161984741687775,
0.1322767734527588,
-0.11437869071960449,
-0.1016303077340126,
-0.015587850473821163,
-0.05756881833076477,
-0.02629639208316803,
-0.04970863461494446,
0.05269767716526985,
0.19304443895816803,
-0.009562584571540356,
0.14855457842350006,
-0.057011619210243225,
-0.04412597045302391,
0.017968028783798218,
-0.02930428460240364,
0.05004207789897919,
0.1253042370080948,
0.1258162558078766,
-0.08653723448514938,
0.1321919560432434,
0.13631290197372437,
-0.07540538907051086,
0.13381482660770416,
-0.02539019100368023,
-0.06003381684422493,
-0.016915272921323776,
-0.028601346537470818,
-0.007401226554065943,
0.09834021329879761,
-0.12522180378437042,
-0.01075400784611702,
0.0065271430648863316,
0.03632287681102753,
0.005027763079851866,
-0.23011350631713867,
-0.04385858029127121,
0.03987168148159981,
-0.04612410068511963,
-0.036927442997694016,
-0.03154950216412544,
0.012045672163367271,
0.11274626851081848,
0.014530421234667301,
-0.07810365408658981,
0.02761395461857319,
0.0015171038685366511,
-0.07098018378019333,
0.2106318473815918,
-0.08492445200681686,
-0.11431427299976349,
-0.0982116237282753,
-0.11116653680801392,
-0.039170041680336,
0.01938668265938759,
0.06393955647945404,
-0.11341919004917145,
-0.01787099428474903,
-0.05137114226818085,
0.02137843146920204,
0.00047565519344061613,
0.04291053116321564,
-0.0030095777474343777,
-0.006146103609353304,
0.050679489970207214,
-0.10268571227788925,
-0.021719874814152718,
-0.058505039662122726,
-0.07573242485523224,
0.06292735040187836,
0.050167180597782135,
0.10595975816249847,
0.14559859037399292,
-0.03804495930671692,
0.013563938438892365,
-0.04302578791975975,
0.24045012891292572,
-0.07634967565536499,
-0.02745691128075123,
0.10593529790639877,
-0.012711038812994957,
0.0514555461704731,
0.11749935895204544,
0.07492807507514954,
-0.10670863837003708,
0.020008690655231476,
0.04452373459935188,
-0.03713801130652428,
-0.20148618519306183,
-0.030185909941792488,
-0.04655511677265167,
-0.03200830519199371,
0.09450579434633255,
0.022532805800437927,
0.025378532707691193,
0.05359642207622528,
0.05039302259683609,
0.05515770986676216,
-0.027782948687672615,
0.057988982647657394,
0.10019407421350479,
0.053166985511779785,
0.1323447972536087,
-0.03297191858291626,
-0.07128065824508667,
0.03402138501405716,
-0.03203277662396431,
0.2271610051393509,
0.014418627135455608,
0.09152936935424805,
0.05174589157104492,
0.17102983593940735,
-0.0015096056740731,
0.08039537072181702,
0.012283499352633953,
-0.05069069564342499,
-0.01511656679213047,
-0.03846272453665733,
-0.03650438040494919,
0.028330838307738304,
-0.05433569476008415,
0.04135111719369888,
-0.1374412626028061,
-0.010721448808908463,
0.05899821221828461,
0.2696654498577118,
0.027240879833698273,
-0.30847644805908203,
-0.08027423918247223,
0.006786382757127285,
-0.039672065526247025,
-0.011936190538108349,
0.009922947734594345,
0.09215184301137924,
-0.11378338187932968,
0.04634924978017807,
-0.05857454612851143,
0.09447485953569412,
-0.02440665476024151,
0.054818183183670044,
0.07187590003013611,
0.09157547354698181,
-0.01232140138745308,
0.07203903049230576,
-0.3365497291088104,
0.28847336769104004,
0.00708222109824419,
0.08090963959693909,
-0.083287812769413,
-0.006714893039315939,
0.03807098791003227,
0.06658928841352463,
0.04898059740662575,
-0.014806450344622135,
-0.06607624888420105,
-0.2246963083744049,
-0.030306555330753326,
0.03172695264220238,
0.12197882682085037,
-0.035045869648456573,
0.10635674744844437,
-0.029295049607753754,
0.0060879262164235115,
0.07951781153678894,
-0.01504598930478096,
-0.05657171085476875,
-0.08030808717012405,
-0.026207201182842255,
0.00817016139626503,
-0.025731688365340233,
-0.05608807131648064,
-0.11536145955324173,
-0.10033109039068222,
0.14443235099315643,
-0.008240225724875927,
-0.029889455065131187,
-0.12724292278289795,
0.08854269981384277,
0.06370002031326294,
-0.08254572004079819,
0.03381592407822609,
0.02535564824938774,
0.05610065534710884,
0.03487945348024368,
-0.05666045844554901,
0.12735699117183685,
-0.05826122686266899,
-0.1809794306755066,
-0.05756121128797531,
0.09392829239368439,
0.05073200538754463,
0.07297179847955704,
-0.013122490607202053,
0.026023143902420998,
-0.018850451335310936,
-0.09499999135732651,
0.04156307131052017,
-0.0439196452498436,
0.0678102895617485,
0.023928064852952957,
-0.0709548145532608,
0.03401587903499603,
-0.06558553874492645,
-0.03391541540622711,
0.17790955305099487,
0.2765098810195923,
-0.10043008625507355,
0.045704521238803864,
0.02433871105313301,
-0.07148443907499313,
-0.1936834156513214,
0.06550884246826172,
0.07344134151935577,
0.00030114658875390887,
0.06048819050192833,
-0.19548965990543365,
0.12456141412258148,
0.10168132930994034,
-0.006909826770424843,
0.11481478065252304,
-0.29981961846351624,
-0.13939808309078217,
0.10426292568445206,
0.1532713919878006,
0.12233847379684448,
-0.13926611840724945,
-0.008438050746917725,
-0.03142594173550606,
-0.1169261708855629,
0.09567040205001831,
-0.07042478770017624,
0.12885190546512604,
-0.023105308413505554,
0.10143515467643738,
0.00792629737406969,
-0.04485002160072327,
0.10965421795845032,
0.026231886819005013,
0.11777780205011368,
-0.0662667378783226,
-0.03760065138339996,
0.015368743799626827,
-0.035985540598630905,
-0.006695072632282972,
-0.08492254465818405,
0.015125972218811512,
-0.09443755447864532,
-0.021361690014600754,
-0.08661966025829315,
0.03682295233011246,
-0.041147518903017044,
-0.07430830597877502,
-0.022482294589281082,
0.033226702362298965,
0.056463390588760376,
-0.02433258481323719,
0.11648008972406387,
-0.012084870599210262,
0.1634221225976944,
0.09682232141494751,
0.07980968803167343,
-0.06931133568286896,
-0.026657428592443466,
0.0019684142898768187,
-0.008566521108150482,
0.047316960990428925,
-0.12746047973632812,
0.03038535639643669,
0.14620058238506317,
0.02495347335934639,
0.13511516153812408,
0.0926954448223114,
-0.00476499367505312,
0.01140537392348051,
0.06539435684680939,
-0.15089088678359985,
-0.06670977920293808,
0.008795133791863918,
-0.07880402356386185,
-0.09008122235536575,
0.03886933624744415,
0.08962652832269669,
-0.0680580586194992,
-0.009097505360841751,
-0.009023965336382389,
0.00418403185904026,
-0.06746186316013336,
0.21052613854408264,
0.05111599341034889,
0.05947774276137352,
-0.10667971521615982,
0.06486047059297562,
0.04835885390639305,
-0.04961966350674629,
0.018377546221017838,
0.08625316619873047,
-0.08581087738275528,
-0.02717692218720913,
0.097633495926857,
0.19979168474674225,
-0.06131953373551369,
-0.024537838995456696,
-0.14074736833572388,
-0.12908609211444855,
0.0790080726146698,
0.1681181937456131,
0.10625910758972168,
-0.0006601107306778431,
-0.05896258354187012,
0.033052798360586166,
-0.1282995343208313,
0.0800439864397049,
0.033525239676237106,
0.07077963650226593,
-0.1276271492242813,
0.18864993751049042,
0.0010479404591023922,
0.043863553553819656,
-0.02641935832798481,
0.029834747314453125,
-0.12752613425254822,
0.024724474176764488,
-0.12561392784118652,
-0.04952477291226387,
-0.010629192925989628,
0.007077724207192659,
-0.00449132826179266,
-0.07092121988534927,
-0.05639524757862091,
0.004892872180789709,
-0.12944500148296356,
-0.021730730310082436,
0.03077203780412674,
0.04836001247167587,
-0.12054048478603363,
-0.047413285821676254,
0.02630387246608734,
-0.06335388869047165,
0.059983693063259125,
0.05446113646030426,
0.007071150001138449,
0.06918960064649582,
-0.14887668192386627,
-0.004100142512470484,
0.05645235627889633,
-0.005032524932175875,
0.08006289601325989,
-0.08762278407812119,
-0.011263309977948666,
-0.012660708278417587,
0.08995550870895386,
0.03334888815879822,
0.09179245680570602,
-0.13754358887672424,
0.015301158651709557,
-0.03002583235502243,
-0.10741834342479706,
-0.05410255491733551,
0.03814275935292244,
0.08203689754009247,
0.0051142810843884945,
0.18953369557857513,
-0.09223734587430954,
0.0467643216252327,
-0.21178320050239563,
-0.014888064935803413,
-0.012327966280281544,
-0.10696936398744583,
-0.13105902075767517,
-0.08669864386320114,
0.07907864451408386,
-0.05518379807472229,
0.13772675395011902,
0.04828018322587013,
0.05918867886066437,
0.036684323102235794,
-0.05026216804981232,
0.0060460628010332584,
0.02251344732940197,
0.20414550602436066,
0.0431438572704792,
-0.048590078949928284,
0.09285562485456467,
0.06821323186159134,
0.09193990379571915,
0.10282544046640396,
0.23701274394989014,
0.1531771719455719,
-0.011726630851626396,
0.07965105026960373,
0.029080504551529884,
-0.07718967646360397,
-0.16849569976329803,
0.026059245690703392,
-0.04163132235407829,
0.09125644713640213,
-0.04776117205619812,
0.22627395391464233,
0.04702303931117058,
-0.18366539478302002,
0.057801079005002975,
-0.0670434832572937,
-0.09496524930000305,
-0.12723825871944427,
-0.004159879870712757,
-0.08896268904209137,
-0.15953093767166138,
0.009097416885197163,
-0.10505621880292892,
0.03910278156399727,
0.10797429084777832,
0.011787926778197289,
-0.00945783220231533,
0.16092176735401154,
0.013447770848870277,
0.04038791358470917,
0.055001772940158844,
-0.004216555040329695,
-0.018040286377072334,
-0.10594705492258072,
-0.07785724103450775,
-0.017339350655674934,
-0.019378958269953728,
0.03162834793329239,
-0.06418042629957199,
-0.09525246918201447,
0.026130937039852142,
-0.021207589656114578,
-0.10135617107152939,
0.026846913620829582,
0.025333071127533913,
0.07807877659797668,
0.040672529488801956,
-0.00009534724085824564,
0.010298521257936954,
-0.019543182104825974,
0.24231699109077454,
-0.08807767927646637,
-0.09008495509624481,
-0.08454471826553345,
0.31292277574539185,
0.059209272265434265,
0.006594948936253786,
0.023044534027576447,
-0.06401465088129044,
0.0003998299944214523,
0.2309650182723999,
0.20061594247817993,
-0.1104729101061821,
-0.007539200596511364,
-0.01227794773876667,
-0.007678565569221973,
-0.0024251146242022514,
0.1355551779270172,
0.13140267133712769,
0.013478944078087807,
-0.10219608247280121,
-0.02997746504843235,
-0.04784763976931572,
-0.025053227320313454,
-0.03996550291776657,
0.07753289490938187,
0.051999010145664215,
0.01272240187972784,
-0.0471813902258873,
0.06032480672001839,
-0.060375507920980453,
-0.12750749289989471,
0.07443907111883163,
-0.21065212786197662,
-0.16455455124378204,
-0.006369916722178459,
0.09450779110193253,
0.003965558018535376,
0.07119663059711456,
-0.019161097705364227,
-0.006687491666525602,
0.055991701781749725,
-0.02035183645784855,
-0.0660049095749855,
-0.09392887353897095,
0.11177310347557068,
-0.125837504863739,
0.19548511505126953,
-0.0523362010717392,
0.05053392052650452,
0.12348838150501251,
0.06883230805397034,
-0.056253582239151,
0.0713556706905365,
0.04383840411901474,
-0.10583193600177765,
0.025511017069220543,
0.1006091982126236,
-0.04938419163227081,
0.05444834753870964,
0.03790132328867912,
-0.14917497336864471,
0.030818026512861252,
-0.07358203083276749,
-0.07183872908353806,
-0.037205442786216736,
-0.05097433552145958,
-0.049992870539426804,
0.11707215011119843,
0.2389196753501892,
-0.019982988014817238,
0.0315149649977684,
-0.08643834292888641,
0.013522437773644924,
0.04879244789481163,
0.02782951109111309,
-0.09413948655128479,
-0.2517419159412384,
0.012146475724875927,
0.10541971027851105,
-0.03037315607070923,
-0.24012839794158936,
-0.09346011281013489,
0.01105540245771408,
-0.06101705878973007,
-0.08991476893424988,
0.09877556562423706,
0.06285073608160019,
0.055766332894563675,
-0.05468590185046196,
-0.14024674892425537,
-0.07020952552556992,
0.17937065660953522,
-0.1563558131456375,
-0.07974614948034286
] |
null | null | null | # Nordavind-7B
A model trained on top of [normistral-7b (warm)](https://huggingface.co/norallm/normistral-7b-warm) on various Norwegian instruct data with a context length of 2048. The name is derived from [Mistral](https://en.wikipedia.org/wiki/Mistral_(wind)).
Trained on a V100 32GB. [See example outputs below!](#examples)
## Prompt format:
```python
<s>{system_prompt} [INST] {inst} [/INST] \\n {res} </s>
```
Inference:
```python
<s>{system_prompt} [INST] {inst} [/INST] \\n *YOUR_PROMPT*
```
## Running the model
Suggested (PEFT adapter):
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
BASE_MODEL = "norallm/normistral-7b-warm"
ADAPTER = "tollefj/nordavind-7b-instruct-adapter"
model = AutoModelForCausalLM.from_pretrained(
ADAPTER,
device_map="auto",
return_dict=True,
torch_dtype=torch.float16,
)
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
```
or the full model (will be updated less frequently):
```python
from transformers import pipeline
pipe = pipeline("text-generation", model="tollefj/nordavind-7b-instruct-warm")
```
See [train.py](train/train.py) for training details and [util.py](train/util.py) for the prompt format. Here you can import the `generate(...)` function for inference.
So far, the model has seen better results with greedy sampling.
## TODO:
- [ ] Define more tasks/templates for generation
## Things it can do...
- Translation:
- "Oversett fra engelsk til norsk"
- "Oversett frasen ''*tekst*'' til *språk*
- Listing:
- Lag en liste over ...
- Ranger en liste med fire elementer fra lavest til høyest...
- Explanations:
- Beskriv en av fordelene ved...
- Forklar hvordan ...
- Kan du tenke på ...
- Beskrive konseptet ...
- Hvordan kan ...
- Tasks:
- Du vil få en oppgave. Du må generere et detaljert og langt svar. ...
- Bruker vil du gi deg en oppgave. Målet ditt er å fullføre oppgaven så trofast du kan. Mens du utfører oppgaven, tenk trinn for trinn og begrunn trinnene dine.
- Generation
- Finn ...
- Generer ...
- Summarization
- Oppsummer ...
- Gi en kort oppsummering av ...
- Lag en kort oppsummering av teksten: ...
## Examples
```
#https://www.nrk.no/nordland/dayo-i-bodo-fekk-jobb-i-siste-augeblikk-1.16753304
text = "Dayo måtte ut av landet om han ikkje fekk rett jobb på tre veker. Advokat meiner få utanlandske studentar forstår kor viktig val av studie er."
generate(
model,
tokenizer,
text,
task="create-title",
tokens=50,
first_sent=True
)
```
> Utenlandske studenter må velge riktig studie for å få jobb i Norge
*generate("Lag en skikkelig norsk setning", tokens=50, first_sent=True)*
> Jeg liker å gå på tur i skogen.
*generate("Lag en liste med tre forskjellige bruksområder (inkludert eksempler) for kunstig intelligens.")*
>1. Automatisering av oppgaver: AI kan brukes til å automatisere oppgaver som å svare på kundehenvendelser, behandle medisinske bilder og diagnostisere sykdommer, og til og med kjøre biler.
>2. Forbedre kundeservice: AI kan brukes for å forbedre kundeservicen ved å gi personlige anbefalinger, gi raskere svar og gi mer nøyaktige svar.
>3. Forbedre sikkerhet: AI kan brukes i sikkerhetssystemer for å oppdage og forhindre cyberangrep, oppdage svindel og oppdage mistenkelige aktiviteter.
*generate("Hvem tror du vinner valget i Bergen?", tokens=60)*
>Det er vanskelig å forutsi hvem som vinner valget i Bergen, men det er sannsynlig at enten Arbeiderpartiet eller Høyre vil vinne. Arbeiderpartiet har hatt makten i Bergen i mange år, men Høyre har hatt en sterk tilstedeværelse i byen de siste årene.
*generate("Forklar dyp læring til en femteklassing")*
>Dyp læring er en type maskinlæring som bruker nevrale nettverk for å lære komplekse mønstre i data. Det innebærer å trene en datamaskin til å gjenkjenne mønstre i data og ta beslutninger basert på disse mønstrene.
| {} | null | tollefj/nordavind-7b-instruct-adapter | [
"safetensors",
"region:us"
] | 2024-02-13T12:57:54+00:00 | [] | [] | TAGS
#safetensors #region-us
| # Nordavind-7B
A model trained on top of normistral-7b (warm) on various Norwegian instruct data with a context length of 2048. The name is derived from Mistral).
Trained on a V100 32GB. See example outputs below!
## Prompt format:
Inference:
## Running the model
Suggested (PEFT adapter):
or the full model (will be updated less frequently):
See URL for training details and URL for the prompt format. Here you can import the 'generate(...)' function for inference.
So far, the model has seen better results with greedy sampling.
## TODO:
- [ ] Define more tasks/templates for generation
## Things it can do...
- Translation:
- "Oversett fra engelsk til norsk"
- "Oversett frasen ''*tekst*'' til *språk*
- Listing:
- Lag en liste over ...
- Ranger en liste med fire elementer fra lavest til høyest...
- Explanations:
- Beskriv en av fordelene ved...
- Forklar hvordan ...
- Kan du tenke på ...
- Beskrive konseptet ...
- Hvordan kan ...
- Tasks:
- Du vil få en oppgave. Du må generere et detaljert og langt svar. ...
- Bruker vil du gi deg en oppgave. Målet ditt er å fullføre oppgaven så trofast du kan. Mens du utfører oppgaven, tenk trinn for trinn og begrunn trinnene dine.
- Generation
- Finn ...
- Generer ...
- Summarization
- Oppsummer ...
- Gi en kort oppsummering av ...
- Lag en kort oppsummering av teksten: ...
## Examples
> Utenlandske studenter må velge riktig studie for å få jobb i Norge
*generate("Lag en skikkelig norsk setning", tokens=50, first_sent=True)*
> Jeg liker å gå på tur i skogen.
*generate("Lag en liste med tre forskjellige bruksområder (inkludert eksempler) for kunstig intelligens.")*
>1. Automatisering av oppgaver: AI kan brukes til å automatisere oppgaver som å svare på kundehenvendelser, behandle medisinske bilder og diagnostisere sykdommer, og til og med kjøre biler.
>2. Forbedre kundeservice: AI kan brukes for å forbedre kundeservicen ved å gi personlige anbefalinger, gi raskere svar og gi mer nøyaktige svar.
>3. Forbedre sikkerhet: AI kan brukes i sikkerhetssystemer for å oppdage og forhindre cyberangrep, oppdage svindel og oppdage mistenkelige aktiviteter.
*generate("Hvem tror du vinner valget i Bergen?", tokens=60)*
>Det er vanskelig å forutsi hvem som vinner valget i Bergen, men det er sannsynlig at enten Arbeiderpartiet eller Høyre vil vinne. Arbeiderpartiet har hatt makten i Bergen i mange år, men Høyre har hatt en sterk tilstedeværelse i byen de siste årene.
*generate("Forklar dyp læring til en femteklassing")*
>Dyp læring er en type maskinlæring som bruker nevrale nettverk for å lære komplekse mønstre i data. Det innebærer å trene en datamaskin til å gjenkjenne mønstre i data og ta beslutninger basert på disse mønstrene.
| [
"# Nordavind-7B\n\nA model trained on top of normistral-7b (warm) on various Norwegian instruct data with a context length of 2048. The name is derived from Mistral).\n\nTrained on a V100 32GB. See example outputs below!",
"## Prompt format:\n\nInference:",
"## Running the model\nSuggested (PEFT adapter):\n\nor the full model (will be updated less frequently):\n\nSee URL for training details and URL for the prompt format. Here you can import the 'generate(...)' function for inference.\nSo far, the model has seen better results with greedy sampling.",
"## TODO:\n- [ ] Define more tasks/templates for generation",
"## Things it can do...\n- Translation:\n - \"Oversett fra engelsk til norsk\"\n - \"Oversett frasen ''*tekst*'' til *språk*\n- Listing:\n - Lag en liste over ...\n - Ranger en liste med fire elementer fra lavest til høyest...\n- Explanations:\n - Beskriv en av fordelene ved...\n - Forklar hvordan ...\n - Kan du tenke på ...\n - Beskrive konseptet ...\n - Hvordan kan ...\n- Tasks:\n - Du vil få en oppgave. Du må generere et detaljert og langt svar. ...\n - Bruker vil du gi deg en oppgave. Målet ditt er å fullføre oppgaven så trofast du kan. Mens du utfører oppgaven, tenk trinn for trinn og begrunn trinnene dine.\n- Generation\n - Finn ...\n - Generer ...\n- Summarization\n - Oppsummer ...\n - Gi en kort oppsummering av ...\n - Lag en kort oppsummering av teksten: ...",
"## Examples\n\n\n> Utenlandske studenter må velge riktig studie for å få jobb i Norge\n\n*generate(\"Lag en skikkelig norsk setning\", tokens=50, first_sent=True)*\n\n> Jeg liker å gå på tur i skogen.\n\n*generate(\"Lag en liste med tre forskjellige bruksområder (inkludert eksempler) for kunstig intelligens.\")*\n\n>1. Automatisering av oppgaver: AI kan brukes til å automatisere oppgaver som å svare på kundehenvendelser, behandle medisinske bilder og diagnostisere sykdommer, og til og med kjøre biler.\n>2. Forbedre kundeservice: AI kan brukes for å forbedre kundeservicen ved å gi personlige anbefalinger, gi raskere svar og gi mer nøyaktige svar.\n>3. Forbedre sikkerhet: AI kan brukes i sikkerhetssystemer for å oppdage og forhindre cyberangrep, oppdage svindel og oppdage mistenkelige aktiviteter.\n\n\n*generate(\"Hvem tror du vinner valget i Bergen?\", tokens=60)*\n>Det er vanskelig å forutsi hvem som vinner valget i Bergen, men det er sannsynlig at enten Arbeiderpartiet eller Høyre vil vinne. Arbeiderpartiet har hatt makten i Bergen i mange år, men Høyre har hatt en sterk tilstedeværelse i byen de siste årene.\n\n*generate(\"Forklar dyp læring til en femteklassing\")*\n>Dyp læring er en type maskinlæring som bruker nevrale nettverk for å lære komplekse mønstre i data. Det innebærer å trene en datamaskin til å gjenkjenne mønstre i data og ta beslutninger basert på disse mønstrene."
] | [
"TAGS\n#safetensors #region-us \n",
"# Nordavind-7B\n\nA model trained on top of normistral-7b (warm) on various Norwegian instruct data with a context length of 2048. The name is derived from Mistral).\n\nTrained on a V100 32GB. See example outputs below!",
"## Prompt format:\n\nInference:",
"## Running the model\nSuggested (PEFT adapter):\n\nor the full model (will be updated less frequently):\n\nSee URL for training details and URL for the prompt format. Here you can import the 'generate(...)' function for inference.\nSo far, the model has seen better results with greedy sampling.",
"## TODO:\n- [ ] Define more tasks/templates for generation",
"## Things it can do...\n- Translation:\n - \"Oversett fra engelsk til norsk\"\n - \"Oversett frasen ''*tekst*'' til *språk*\n- Listing:\n - Lag en liste over ...\n - Ranger en liste med fire elementer fra lavest til høyest...\n- Explanations:\n - Beskriv en av fordelene ved...\n - Forklar hvordan ...\n - Kan du tenke på ...\n - Beskrive konseptet ...\n - Hvordan kan ...\n- Tasks:\n - Du vil få en oppgave. Du må generere et detaljert og langt svar. ...\n - Bruker vil du gi deg en oppgave. Målet ditt er å fullføre oppgaven så trofast du kan. Mens du utfører oppgaven, tenk trinn for trinn og begrunn trinnene dine.\n- Generation\n - Finn ...\n - Generer ...\n- Summarization\n - Oppsummer ...\n - Gi en kort oppsummering av ...\n - Lag en kort oppsummering av teksten: ...",
"## Examples\n\n\n> Utenlandske studenter må velge riktig studie for å få jobb i Norge\n\n*generate(\"Lag en skikkelig norsk setning\", tokens=50, first_sent=True)*\n\n> Jeg liker å gå på tur i skogen.\n\n*generate(\"Lag en liste med tre forskjellige bruksområder (inkludert eksempler) for kunstig intelligens.\")*\n\n>1. Automatisering av oppgaver: AI kan brukes til å automatisere oppgaver som å svare på kundehenvendelser, behandle medisinske bilder og diagnostisere sykdommer, og til og med kjøre biler.\n>2. Forbedre kundeservice: AI kan brukes for å forbedre kundeservicen ved å gi personlige anbefalinger, gi raskere svar og gi mer nøyaktige svar.\n>3. Forbedre sikkerhet: AI kan brukes i sikkerhetssystemer for å oppdage og forhindre cyberangrep, oppdage svindel og oppdage mistenkelige aktiviteter.\n\n\n*generate(\"Hvem tror du vinner valget i Bergen?\", tokens=60)*\n>Det er vanskelig å forutsi hvem som vinner valget i Bergen, men det er sannsynlig at enten Arbeiderpartiet eller Høyre vil vinne. Arbeiderpartiet har hatt makten i Bergen i mange år, men Høyre har hatt en sterk tilstedeværelse i byen de siste årene.\n\n*generate(\"Forklar dyp læring til en femteklassing\")*\n>Dyp læring er en type maskinlæring som bruker nevrale nettverk for å lære komplekse mønstre i data. Det innebærer å trene en datamaskin til å gjenkjenne mønstre i data og ta beslutninger basert på disse mønstrene."
] | [
11,
59,
10,
68,
18,
202,
338
] | [
"passage: TAGS\n#safetensors #region-us \n# Nordavind-7B\n\nA model trained on top of normistral-7b (warm) on various Norwegian instruct data with a context length of 2048. The name is derived from Mistral).\n\nTrained on a V100 32GB. See example outputs below!## Prompt format:\n\nInference:## Running the model\nSuggested (PEFT adapter):\n\nor the full model (will be updated less frequently):\n\nSee URL for training details and URL for the prompt format. Here you can import the 'generate(...)' function for inference.\nSo far, the model has seen better results with greedy sampling.## TODO:\n- [ ] Define more tasks/templates for generation## Things it can do...\n- Translation:\n - \"Oversett fra engelsk til norsk\"\n - \"Oversett frasen ''*tekst*'' til *språk*\n- Listing:\n - Lag en liste over ...\n - Ranger en liste med fire elementer fra lavest til høyest...\n- Explanations:\n - Beskriv en av fordelene ved...\n - Forklar hvordan ...\n - Kan du tenke på ...\n - Beskrive konseptet ...\n - Hvordan kan ...\n- Tasks:\n - Du vil få en oppgave. Du må generere et detaljert og langt svar. ...\n - Bruker vil du gi deg en oppgave. Målet ditt er å fullføre oppgaven så trofast du kan. Mens du utfører oppgaven, tenk trinn for trinn og begrunn trinnene dine.\n- Generation\n - Finn ...\n - Generer ...\n- Summarization\n - Oppsummer ...\n - Gi en kort oppsummering av ...\n - Lag en kort oppsummering av teksten: ..."
] | [
-0.018932458013296127,
-0.10973159223794937,
-0.01070838887244463,
0.07480686157941818,
0.049887530505657196,
-0.009232734329998493,
0.006676545832306147,
0.0008318584295921028,
0.04337221011519432,
0.05377654731273651,
0.1002412736415863,
0.04025629535317421,
0.03932059556245804,
0.15534929931163788,
0.028026793152093887,
-0.2940969169139862,
0.1145351380109787,
-0.09284961968660355,
-0.0066268849186599255,
0.06641645729541779,
0.16251222789287567,
0.026776805520057678,
0.05870377644896507,
-0.051921579986810684,
-0.03976495563983917,
0.009773972444236279,
-0.03828617185354233,
-0.01066726353019476,
0.1270894557237625,
0.028635745868086815,
0.10140397399663925,
-0.03929059952497482,
0.000326807756209746,
-0.14140531420707703,
0.016354994848370552,
0.03222189471125603,
-0.037697091698646545,
-0.015428547747433186,
0.009071634151041508,
0.010720165446400642,
0.2108721286058426,
-0.056037385016679764,
0.020090704783797264,
-0.03231281787157059,
-0.09560118615627289,
-0.004349560011178255,
-0.04639763385057449,
0.008203066885471344,
0.01967625692486763,
0.01428456511348486,
-0.03254283592104912,
0.09780482202768326,
-0.12493747472763062,
0.07290909439325333,
0.06560292840003967,
-0.24107354879379272,
-0.07868686318397522,
0.15299920737743378,
0.07554452866315842,
0.021126914769411087,
-0.1398862898349762,
-0.00001503305247751996,
0.03540604189038277,
0.057617660611867905,
-0.004856183659285307,
-0.04669693112373352,
0.15296943485736847,
-0.026785749942064285,
-0.08670705556869507,
0.03372087702155113,
0.1963738203048706,
0.07522649317979813,
-0.04204748570919037,
-0.06981109082698822,
-0.01682114601135254,
0.10965672880411148,
0.0038935227785259485,
-0.11120021343231201,
-0.024964788928627968,
-0.004050815477967262,
0.09538229554891586,
-0.0007100885268300772,
-0.09542383998632431,
-0.005362274590879679,
-0.044340964406728745,
0.0712699145078659,
0.011251038871705532,
-0.04142967611551285,
0.04891680181026459,
0.031052209436893463,
-0.09259364008903503,
-0.09787198156118393,
-0.07785055786371231,
-0.09669827669858932,
-0.07840417325496674,
-0.04524937644600868,
0.005579233169555664,
-0.10652996599674225,
0.04204703867435455,
0.10249468684196472,
-0.048983097076416016,
0.0596289224922657,
-0.042338788509368896,
0.05499427020549774,
0.04152221977710724,
0.00528752151876688,
-0.05966324359178543,
-0.12320017069578171,
-0.0701747015118599,
-0.01590024121105671,
-0.03385727480053902,
-0.015588329173624516,
-0.04710395261645317,
-0.021724820137023926,
0.06405528634786606,
-0.008595040999352932,
-0.01996130682528019,
0.06598284095525742,
-0.013876154087483883,
-0.05010257288813591,
0.05690796673297882,
-0.1327660232782364,
-0.023114806041121483,
-0.05556337907910347,
-0.014718985185027122,
0.046565085649490356,
-0.002177454996854067,
-0.0019243416609242558,
-0.06614939123392105,
0.07293989509344101,
-0.012203287333250046,
-0.024509213864803314,
-0.04784908518195152,
-0.053895603865385056,
0.003220920218154788,
-0.09191760420799255,
-0.016015026718378067,
-0.1407797485589981,
-0.09295795112848282,
-0.0682516023516655,
0.08510667830705643,
-0.05490634962916374,
-0.014666855335235596,
-0.09702901542186737,
-0.11437312513589859,
-0.0022617981303483248,
0.01185784675180912,
-0.055320799350738525,
-0.02429196424782276,
0.010656709782779217,
-0.09086458384990692,
0.05662797391414642,
0.035012371838092804,
0.008654027245938778,
-0.08002535998821259,
0.043383028358221054,
-0.22419224679470062,
0.10420962423086166,
-0.08652184903621674,
-0.013140741735696793,
-0.13651156425476074,
-0.06845761835575104,
-0.062374185770750046,
0.04829299822449684,
0.06422726809978485,
0.13906967639923096,
-0.16319042444229126,
0.025577818974852562,
0.09407560527324677,
-0.1342431902885437,
-0.05183910205960274,
0.14864926040172577,
0.02486308105289936,
0.15317662060260773,
0.10561145842075348,
0.2086205631494522,
0.0629722997546196,
-0.0710521787405014,
-0.0024587984662503004,
0.0073137967847287655,
-0.08488612622022629,
0.11365728080272675,
0.045700035989284515,
0.012903586030006409,
0.024059385061264038,
0.054842036217451096,
-0.029473965987563133,
0.019560890272259712,
0.017120100557804108,
-0.03323052078485489,
0.007901403121650219,
0.030337143689393997,
0.07591123878955841,
-0.0048967814072966576,
-0.018314145505428314,
0.0007075330358929932,
-0.08324158191680908,
0.03146429359912872,
0.011853853240609169,
0.009122144430875778,
0.06519294530153275,
-0.047827426344156265,
0.08601143956184387,
-0.008127845823764801,
0.013264825567603111,
-0.06802926957607269,
-0.023752892389893532,
-0.025662396103143692,
0.01617768406867981,
0.07844483852386475,
0.15261313319206238,
0.09268996119499207,
0.07768188416957855,
-0.05497930571436882,
-0.024054953828454018,
-0.07482907921075821,
-0.03650711849331856,
-0.024333205074071884,
-0.14271467924118042,
0.016675593331456184,
-0.04417254030704498,
-0.061756681650877,
-0.10391952842473984,
-0.010590833611786366,
0.039561741054058075,
0.10815376788377762,
-0.008978797122836113,
-0.0229085311293602,
-0.09736022353172302,
-0.011153624393045902,
-0.007230164483189583,
0.006917860824614763,
0.03152713552117348,
-0.02908647060394287,
-0.040325574576854706,
0.08049770444631577,
0.008694231510162354,
-0.018802456557750702,
0.0625697672367096,
-0.005123933777213097,
-0.13139422237873077,
-0.0033574472181499004,
-0.033170200884342194,
-0.02863379940390587,
0.029618801549077034,
-0.048421941697597504,
0.07492492347955704,
0.040556371212005615,
0.03087937831878662,
-0.056920770555734634,
0.02950087934732437,
0.007932344451546669,
-0.009103414602577686,
-0.07955672591924667,
0.06718018651008606,
-0.007188271265476942,
-0.12138666957616806,
0.04238926246762276,
0.08619964867830276,
-0.02203851006925106,
0.19985169172286987,
0.004912184085696936,
-0.05534756928682327,
-0.08362047374248505,
0.07505901157855988,
-0.020358847454190254,
0.07261479645967484,
-0.07769907265901566,
0.04463789239525795,
-0.0014966554008424282,
0.07974768429994583,
0.030022520571947098,
-0.0012859718408435583,
-0.0455460362136364,
-0.03360529616475105,
-0.01169593632221222,
0.08699670433998108,
0.0832454264163971,
-0.013366300612688065,
0.04159191995859146,
0.031324103474617004,
-0.06300981342792511,
0.030911559239029884,
-0.042821042239665985,
-0.04643796756863594,
0.13954780995845795,
-0.07699441909790039,
-0.16104239225387573,
-0.03946183621883392,
0.07078173756599426,
-0.10762146860361099,
0.0059777251444756985,
0.04710789769887924,
-0.021258439868688583,
-0.06935328990221024,
-0.0313168428838253,
0.18760071694850922,
0.020702796056866646,
0.018246393650770187,
-0.161581888794899,
-0.0069853998720645905,
-0.030415179207921028,
-0.0699106827378273,
0.008138887584209442,
-0.01920023001730442,
-0.08841169625520706,
0.01329669076949358,
-0.019153589382767677,
0.07340826094150543,
-0.014389030635356903,
0.03865867480635643,
-0.0509750097990036,
0.01061591412872076,
0.2200588881969452,
-0.09797143191099167,
0.09821847081184387,
-0.06470548361539841,
-0.001262443489395082,
0.0772707536816597,
0.17044147849082947,
0.011130970902740955,
-0.03069639392197132,
0.017781944945454597,
0.07340160012245178,
-0.02418661117553711,
-0.12223448604345322,
-0.07596422731876373,
-0.05885336920619011,
0.10422321408987045,
0.03038940578699112,
0.06331902742385864,
-0.0035488836001604795,
0.07989180088043213,
-0.051518794149160385,
-0.0444527342915535,
0.044525619596242905,
0.06411873549222946,
0.11754054576158524,
-0.027047690004110336,
0.02000354789197445,
-0.015016221441328526,
-0.04661884531378746,
0.0354158915579319,
0.028774326667189598,
0.13224674761295319,
0.018007809296250343,
-0.040702201426029205,
0.07222864776849747,
0.09959709644317627,
-0.018696000799536705,
0.09463711827993393,
-0.024759739637374878,
-0.02225429192185402,
-0.0015765875577926636,
-0.03801359981298447,
-0.005036476533859968,
0.09170453995466232,
-0.011435404419898987,
-0.02853100560605526,
0.033673569560050964,
0.024543341249227524,
0.09923284500837326,
0.0119499946013093,
0.025313425809144974,
-0.07365607470273972,
-0.08821409195661545,
0.009786982089281082,
-0.04376457259058952,
-0.04443611949682236,
0.047800514847040176,
0.14978526532649994,
-0.091888926923275,
0.05637172982096672,
-0.051044024527072906,
0.018239235505461693,
0.06862068176269531,
0.0350772924721241,
-0.03555481880903244,
0.12735022604465485,
-0.017907381057739258,
0.0577702634036541,
-0.2146870195865631,
0.19529525935649872,
-0.0323067270219326,
0.1015981137752533,
-0.002973307389765978,
0.0037130408454686403,
-0.01960061490535736,
0.04673883318901062,
0.22332791984081268,
0.016924332827329636,
-0.06458569318056107,
-0.027098067104816437,
0.005802619736641645,
0.006717185489833355,
0.03349071368575096,
-0.049781858921051025,
0.07810108363628387,
-0.004277640022337437,
0.05732164904475212,
-0.005550054833292961,
-0.0036059704143553972,
-0.1484358012676239,
-0.07776806503534317,
0.015398512594401836,
-0.05247015133500099,
0.11265493184328079,
-0.0001820644538383931,
-0.011866818182170391,
-0.17742526531219482,
0.16932111978530884,
-0.11445152014493942,
-0.054476626217365265,
-0.036045048385858536,
-0.04733032360672951,
0.10698113590478897,
-0.0668879896402359,
-0.061634890735149384,
0.0008136300602927804,
0.02607562020421028,
-0.055080726742744446,
0.007270622067153454,
0.047013264149427414,
-0.02993016317486763,
-0.007513311225920916,
0.031325142830610275,
0.113523930311203,
0.14807380735874176,
0.011607004329562187,
0.014495180919766426,
0.0427924320101738,
0.020511768758296967,
-0.1543392539024353,
-0.02056104503571987,
-0.008317643776535988,
-0.11675195395946503,
0.05285147950053215,
-0.06520545482635498,
-0.0002733801957219839,
-0.0764438733458519,
0.0154978446662426,
0.05648869648575783,
0.12555445730686188,
-0.028411731123924255,
0.1100473627448082,
0.08255548775196075,
-0.020345747470855713,
-0.23015744984149933,
-0.06526205688714981,
0.06790503114461899,
0.02962501160800457,
-0.02758384309709072,
-0.12750235199928284,
0.10884654521942139,
0.06402072310447693,
0.04230311140418053,
0.024041472002863884,
-0.2186763882637024,
-0.11034393310546875,
0.030816402286291122,
0.005001367069780827,
-0.02481822855770588,
-0.036918167024850845,
-0.014179807156324387,
-0.030302993953227997,
-0.025875229388475418,
0.10412982851266861,
-0.06983403861522675,
0.04271753132343292,
-0.009939072653651237,
0.08030399680137634,
0.020663617178797722,
0.013276012614369392,
0.12160179764032364,
0.11862356960773468,
0.04076489806175232,
-0.11045718938112259,
0.014322918839752674,
0.058809615671634674,
0.014953059144318104,
0.15316566824913025,
-0.017730556428432465,
-0.05455783009529114,
-0.0735650286078453,
-0.03384339064359665,
-0.11947149783372879,
0.15479816496372223,
-0.049201469868421555,
-0.07276006788015366,
-0.031182844191789627,
0.12644243240356445,
0.07844029366970062,
-0.009172281250357628,
0.10206884145736694,
-0.036958958953619,
0.04917078837752342,
0.00973623525351286,
0.07296747714281082,
0.017099007964134216,
-0.06096946448087692,
0.06561289727687836,
0.016706600785255432,
0.08143080025911331,
-0.038402657955884933,
-0.006454989779740572,
0.09897720813751221,
-0.030115066096186638,
0.08445268124341965,
0.02180252969264984,
-0.08594005554914474,
-0.01128772459924221,
0.08399374037981033,
-0.10091026872396469,
-0.24454711377620697,
-0.024595174938440323,
-0.08114192634820938,
-0.02521597407758236,
-0.021321646869182587,
0.10797472298145294,
-0.1060241162776947,
0.062405090779066086,
0.00812536384910345,
0.05849633365869522,
-0.05489815026521683,
0.07877646386623383,
0.02009747549891472,
0.005377545487135649,
-0.05042043700814247,
0.07223823666572571,
-0.02601352147758007,
-0.17732378840446472,
0.043255314230918884,
0.0894714891910553,
-0.0613720528781414,
-0.05956225097179413,
-0.013703759759664536,
0.055000752210617065,
-0.06899174302816391,
-0.03647743910551071,
0.07202044874429703,
-0.09283609688282013,
0.018172988668084145,
-0.01906396821141243,
0.0740598738193512,
0.05011795461177826,
0.0025315049570053816,
0.03123684599995613,
-0.07370463758707047,
0.059050653129816055,
0.05254743993282318,
-0.00014312802522908896,
-0.03752748668193817,
0.04119736701250076,
-0.0070556881837546825,
-0.013096156530082226,
-0.03130630776286125,
-0.03696217015385628,
-0.043787214905023575,
-0.0309390127658844,
0.005052181426435709,
0.014520399272441864,
-0.10281932353973389,
0.01731647178530693,
0.030893797054886818,
-0.06244048848748207,
0.00016882095951586962,
-0.0023130890913307667,
-0.03619479760527611,
-0.019398322328925133,
-0.004653370473533869,
0.04744550958275795,
-0.11153461784124374,
-0.009536500088870525,
0.033158306032419205,
-0.07240064442157745,
0.019881082698702812,
0.03350523114204407,
-0.015255764126777649,
0.11370823532342911,
-0.16675259172916412,
0.08432276546955109,
-0.057828787714242935,
0.0005460596876218915,
0.011018258519470692,
-0.03745155781507492,
-0.06291595101356506,
0.00928965862840414,
0.04067326709628105,
0.02455245889723301,
0.004367070738226175,
-0.09457821398973465,
0.04352803900837898,
0.02123425342142582,
-0.07635007798671722,
-0.026567745953798294,
0.053838394582271576,
-0.031247761100530624,
0.020980624482035637,
0.12628509104251862,
-0.07718417793512344,
0.03947534039616585,
-0.06494618207216263,
0.008986529894173145,
0.05816328898072243,
-0.006537789944559336,
0.05757751688361168,
-0.010409238748252392,
0.030676791444420815,
-0.08326271921396255,
-0.08617648482322693,
0.005016697105020285,
0.03211914002895355,
0.05073503777384758,
-0.10763529688119888,
-0.14885693788528442,
0.03695628419518471,
0.04376209154725075,
0.0662868469953537,
0.017313560470938683,
-0.08237894624471664,
0.0053943064995110035,
-0.041063155978918076,
-0.022298425436019897,
0.10226573050022125,
0.07916367799043655,
0.025708522647619247,
0.07085991650819778,
0.0015259997453540564,
0.0074274782091379166,
-0.029137618839740753,
0.14184291660785675,
-0.015418991446495056,
0.02716190740466118,
-0.009220833890140057,
-0.020021827891469002,
0.08487070351839066,
-0.1474302113056183,
0.09194135665893555,
0.03050493262708187,
-0.06912321597337723,
-0.018860943615436554,
-0.1907455325126648,
-0.052040938287973404,
-0.03290434926748276,
0.06490210443735123,
-0.09471922367811203,
0.05609659105539322,
0.028567172586917877,
0.09350930154323578,
-0.0167872104793787,
0.20448561012744904,
-0.07317813485860825,
-0.04471607506275177,
0.0619136318564415,
-0.017734002321958542,
0.02094258740544319,
0.10645259916782379,
0.008023837581276894,
-0.06862211972475052,
0.04788685962557793,
-0.015855055302381516,
0.03947650268673897,
0.04784945398569107,
-0.023841271176934242,
-0.10041587799787521,
-0.026310669258236885,
0.017818603664636612,
0.07052640616893768,
-0.025345832109451294,
0.03975917771458626,
0.059186529368162155,
-0.0874616727232933,
-0.027170438319444656,
0.13453538715839386,
0.02079869620501995,
-0.140941321849823,
-0.1590956747531891,
0.07287431508302689,
0.08304881304502487,
0.060967475175857544,
-0.05040913447737694,
-0.05976284295320511,
0.010990528389811516,
0.11659412831068039,
0.1253156065940857,
0.04359056055545807,
0.0037728273309767246,
-0.005025471560657024,
0.01765381544828415,
0.0746244415640831,
0.05727548152208328,
0.0721362978219986,
0.1718699038028717,
-0.05026228353381157,
0.06776675581932068,
-0.06812842190265656,
-0.004014960490167141,
-0.03962257131934166,
-0.02733122557401657,
0.007875938899815083,
-0.05216894671320915,
-0.08374747633934021,
0.11576896160840988,
-0.13508926331996918,
-0.17259244620800018,
-0.01050073653459549,
0.01208079606294632,
-0.06480257213115692,
-0.0757511556148529,
0.049526676535606384,
0.03880859166383743,
0.050215739756822586,
0.01782064698636532,
-0.03232477605342865,
0.05658748373389244,
0.02040761709213257,
-0.053260497748851776,
0.005179247818887234,
0.040572892874479294,
0.05748719349503517,
0.1251169741153717,
0.022166449576616287,
0.08369714021682739,
0.06263654679059982,
0.0006030210060998797,
0.012018691748380661,
0.03217880427837372,
0.06468983739614487,
-0.02061256766319275,
0.003941800445318222,
0.08432576805353165,
0.014743969775736332,
-0.024611275643110275,
0.03768879547715187,
-0.08835884183645248,
-0.03416844457387924,
0.09877673536539078,
-0.03926357254385948,
-0.05308228358626366,
0.14668278396129608,
-0.08524418622255325,
0.12555168569087982,
0.18868158757686615,
0.026965441182255745,
-0.02588474564254284,
-0.08828678727149963,
0.055352699011564255,
-0.053498297929763794,
0.01563963294029236,
-0.02959420345723629,
-0.11124791204929352,
-0.026804665103554726,
0.022163622081279755,
-0.006112752947956324,
-0.06716101616621017,
-0.07309846580028534,
0.06888889521360397,
0.025109419599175453,
-0.001978290732949972,
0.0996408760547638,
0.0034315409138798714,
0.025934193283319473,
-0.023185107856988907,
-0.03655610978603363,
-0.006534488406032324,
0.07077194005250931,
-0.030402690172195435,
-0.07457234710454941
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | null | Shashwath01/testing | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:00:41+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
31,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06646376848220825,
0.2168014943599701,
-0.00225935154594481,
0.023818302899599075,
0.1271018385887146,
-0.001635765191167593,
0.04218708351254463,
0.13324736058712006,
-0.020175931975245476,
0.11144465953111649,
0.046588581055402756,
0.09377603232860565,
0.09928803145885468,
0.18404334783554077,
0.04859916493296623,
-0.2059975117444992,
0.007056170143187046,
-0.09090408682823181,
0.014076028019189835,
0.1116579994559288,
0.13719257712364197,
-0.10291384905576706,
0.08272874355316162,
-0.04045208916068077,
-0.02019004337489605,
0.00012576708104461432,
-0.09259183704853058,
-0.07032395154237747,
0.06885425746440887,
0.06264153122901917,
0.051234472543001175,
0.001456156256608665,
0.09140396863222122,
-0.2864592671394348,
0.017265573143959045,
0.08406311273574829,
0.0027674848679453135,
0.06290827691555023,
0.07236549258232117,
-0.07389893382787704,
0.11328595131635666,
-0.08021481335163116,
0.13019037246704102,
0.08625296503305435,
-0.062064990401268005,
-0.23071379959583282,
-0.07525765895843506,
0.0963398814201355,
0.12251301854848862,
0.06215599179267883,
-0.022921854630112648,
0.15455181896686554,
-0.06248689442873001,
0.012971068732440472,
0.1294165402650833,
-0.11526761949062347,
-0.05572471022605896,
0.061741601675748825,
0.11775490641593933,
0.10740239918231964,
-0.14110268652439117,
-0.0017287094378843904,
0.04900608956813812,
0.029121357947587967,
0.08589313924312592,
0.022661056369543076,
0.12003941088914871,
0.04652795568108559,
-0.13695219159126282,
-0.04037507623434067,
0.12011898308992386,
0.038862764835357666,
-0.06446044892072678,
-0.2168138176202774,
-0.006778308190405369,
-0.0601806715130806,
-0.014732478186488152,
-0.07019448280334473,
0.039128515869379044,
-0.02470310963690281,
0.07317749410867691,
-0.04465159401297569,
-0.1063927412033081,
-0.0421026237308979,
0.0892222449183464,
0.07748593389987946,
0.011527054943144321,
-0.02519804798066616,
0.04627908393740654,
0.13455867767333984,
0.05402068421244621,
-0.10399353504180908,
-0.07017925381660461,
-0.06942764669656754,
-0.09420394152402878,
-0.04035796597599983,
0.056760527193546295,
0.031942449510097504,
0.02665667235851288,
0.22703726589679718,
0.016653569415211678,
0.04155244305729866,
0.0224777739495039,
0.01032855175435543,
0.043662428855895996,
0.0955500528216362,
-0.05303520709276199,
-0.15660029649734497,
-0.04072032496333122,
0.09077946096658707,
-0.0027527001220732927,
-0.036689214408397675,
-0.03966725245118141,
0.03849169611930847,
0.06843466311693192,
0.13122352957725525,
0.07552056759595871,
-0.017929591238498688,
-0.04813180863857269,
-0.030096933245658875,
0.23523783683776855,
-0.1493375599384308,
0.04426715523004532,
-0.02271856553852558,
-0.01804111897945404,
-0.03908449783921242,
0.03597262129187584,
0.022118929773569107,
-0.000004518366949923802,
0.09706240892410278,
-0.058981191366910934,
-0.05378659814596176,
-0.10168042778968811,
-0.03272576630115509,
0.04088849574327469,
-0.013975566253066063,
-0.010589460842311382,
-0.09025166928768158,
-0.09490354359149933,
-0.04766594246029854,
0.05537205561995506,
-0.05123869329690933,
-0.03770573064684868,
0.009465423412621021,
-0.08151785284280777,
-0.005444355774670839,
-0.005417742300778627,
0.10699385404586792,
-0.03222226724028587,
0.04445803165435791,
-0.027600755915045738,
0.05225523188710213,
0.09919606149196625,
0.031576547771692276,
-0.0773419588804245,
0.0561848059296608,
-0.22559374570846558,
0.07503069192171097,
-0.11481974273920059,
0.04335082694888115,
-0.1704932004213333,
-0.042439818382263184,
0.005444696638733149,
0.0139949731528759,
0.013206101022660732,
0.12720820307731628,
-0.19255615770816803,
-0.01654396951198578,
0.13260798156261444,
-0.09212633967399597,
-0.118110790848732,
0.07884611934423447,
-0.029701577499508858,
0.1624738723039627,
0.04682036489248276,
-0.027025915682315826,
0.09224298596382141,
-0.16434773802757263,
-0.07092688232660294,
-0.00949116237461567,
-0.01727987825870514,
0.12109188735485077,
0.07512219995260239,
-0.05991523340344429,
0.046571120619773865,
0.02832140028476715,
-0.038078423589468,
-0.04424772411584854,
-0.050857074558734894,
-0.10884185880422592,
-0.01070026308298111,
-0.08987759798765182,
0.04065500199794769,
-0.01250192429870367,
-0.07916021347045898,
-0.029885273426771164,
-0.18612512946128845,
-0.0030564051121473312,
0.10038342326879501,
0.0035033065360039473,
-0.005652366206049919,
-0.08666291832923889,
0.026358824223279953,
-0.03112892620265484,
-0.008404186926782131,
-0.16764774918556213,
-0.04399421438574791,
0.046902090311050415,
-0.16094985604286194,
0.020117372274398804,
-0.06413903087377548,
0.06334125250577927,
0.03641495108604431,
-0.05590536445379257,
-0.0248766727745533,
-0.01730942726135254,
0.011945613659918308,
-0.05083848536014557,
-0.18994836509227753,
-0.056277405470609665,
-0.037882111966609955,
0.149809330701828,
-0.25956398248672485,
0.032966937869787216,
0.051140617579221725,
0.14649195969104767,
0.00406361510977149,
-0.05115427449345589,
0.01429014839231968,
-0.05360214412212372,
-0.054652128368616104,
-0.06746816635131836,
-0.006135428790003061,
-0.027576493099331856,
-0.05147203803062439,
0.019243421033024788,
-0.1755700707435608,
-0.021410830318927765,
0.09424154460430145,
0.12876708805561066,
-0.1486445665359497,
-0.018640631809830666,
-0.048725154250860214,
-0.06339836865663528,
-0.0715010017156601,
-0.07038594037294388,
0.10712739825248718,
0.0513901449739933,
0.04796046018600464,
-0.07435787469148636,
-0.07092321664094925,
0.02726263552904129,
0.006906150374561548,
-0.03382374346256256,
0.08727246522903442,
0.05199531093239784,
-0.09209315478801727,
0.0756213590502739,
0.1092359870672226,
0.07177663594484329,
0.09363535046577454,
0.01574566215276718,
-0.11756632477045059,
-0.028492970392107964,
0.036266472190618515,
0.02740776725113392,
0.1465986967086792,
-0.05952361226081848,
0.04016614332795143,
0.04494241625070572,
-0.04170418903231621,
0.022319864481687546,
-0.08787637203931808,
0.024075502529740334,
0.025203049182891846,
-0.0034381982404738665,
0.06284574419260025,
-0.02525499276816845,
-0.0050758360885083675,
0.07016654312610626,
0.047779910266399384,
0.04621000960469246,
0.009655474685132504,
-0.01720241829752922,
-0.1047825813293457,
0.16950392723083496,
-0.0951867327094078,
-0.269941508769989,
-0.17632324993610382,
0.026197833940386772,
0.04035249724984169,
-0.022378476336598396,
0.031619444489479065,
-0.07056326419115067,
-0.10630585998296738,
-0.1060405746102333,
-0.002429972169920802,
0.01714223250746727,
-0.06364088505506516,
-0.0741225928068161,
0.07348573952913284,
0.04382912442088127,
-0.14902326464653015,
0.038552410900592804,
0.055694397538900375,
-0.057955220341682434,
-0.0233661737293005,
0.09118817001581192,
0.12397737801074982,
0.14583967626094818,
-0.021366750821471214,
-0.028626007959246635,
0.029004426673054695,
0.19620531797409058,
-0.13469526171684265,
0.10371150821447372,
0.13814030587673187,
-0.04545360431075096,
0.08360563963651657,
0.1560150384902954,
0.029186224564909935,
-0.08317049592733383,
0.05044832453131676,
0.04082648828625679,
-0.043159641325473785,
-0.2666129767894745,
-0.0534592866897583,
0.012832709588110447,
-0.06255637854337692,
0.09786593168973923,
0.10183793306350708,
0.11542957276105881,
0.034910861402750015,
-0.07166364789009094,
-0.043925940990448,
-0.0058974819257855415,
0.11737963557243347,
-0.05490213260054588,
-0.012639665976166725,
0.07686592638492584,
-0.05086168646812439,
0.005355054512619972,
0.10266812145709991,
0.02973790094256401,
0.17442677915096283,
0.020399179309606552,
0.11231429129838943,
0.06195578724145889,
0.08633565157651901,
0.0007386076031252742,
0.02951662428677082,
0.05147615820169449,
0.017203815281391144,
-0.002300140680745244,
-0.10421168059110641,
-0.006156572140753269,
0.1449710875749588,
0.028103826567530632,
0.029669636860489845,
-0.0018948549404740334,
-0.005003341939300299,
0.05121048167347908,
0.1746254414319992,
-0.011592294089496136,
-0.22072425484657288,
-0.0845772922039032,
0.06936841458082199,
-0.06218599155545235,
-0.12968985736370087,
-0.026130788028240204,
0.045467354357242584,
-0.17519839107990265,
0.026703642681241035,
-0.027433741837739944,
0.0919293761253357,
-0.09345759451389313,
-0.02221956104040146,
0.03687324374914169,
0.084866963326931,
-0.014529162086546421,
0.08703910559415817,
-0.14498743414878845,
0.11886418610811234,
0.02978132851421833,
0.09024628251791,
-0.11081171780824661,
0.07909037172794342,
-0.007550720125436783,
0.009180475026369095,
0.19379350543022156,
-0.011335089802742004,
-0.03514958545565605,
-0.08774717897176743,
-0.11210042238235474,
-0.013537433929741383,
0.12687496840953827,
-0.1243172138929367,
0.08773399889469147,
-0.015198243781924248,
-0.044079482555389404,
0.00937260314822197,
-0.12100647389888763,
-0.17273177206516266,
-0.19628387689590454,
0.05585884302854538,
-0.09575839340686798,
0.025643249973654747,
-0.11914430558681488,
-0.07089093327522278,
-0.02952558360993862,
0.241120383143425,
-0.1745356321334839,
-0.06510113179683685,
-0.1468164622783661,
-0.046294767409563065,
0.1662203073501587,
-0.04437198117375374,
0.0718095526099205,
-0.0208172257989645,
0.20345525443553925,
0.005988610442727804,
-0.004939318168908358,
0.06724198162555695,
-0.08892562240362167,
-0.16873881220817566,
-0.06771010160446167,
0.1510489284992218,
0.11680185794830322,
0.04907919466495514,
-0.002248800592496991,
0.0011772146681323647,
-0.016943959519267082,
-0.1137804463505745,
-0.0033210667315870523,
0.16037839651107788,
0.03878779336810112,
0.025986969470977783,
-0.05243593826889992,
-0.08797456324100494,
-0.06899320334196091,
-0.06853509694337845,
0.06221301481127739,
0.19590823352336884,
-0.10376439243555069,
0.1700313836336136,
0.147536963224411,
-0.07305635511875153,
-0.23175598680973053,
0.035342130810022354,
0.04983805492520332,
0.0014306638622656465,
0.04886869341135025,
-0.18252557516098022,
0.10521943867206573,
0.019543392583727837,
-0.05505957826972008,
0.13485197722911835,
-0.1557481735944748,
-0.1552847921848297,
0.0722852572798729,
0.03904085233807564,
-0.22423844039440155,
-0.1354004591703415,
-0.09622503817081451,
-0.05825018882751465,
-0.14065024256706238,
0.06054598465561867,
-0.002136280992999673,
0.015948504209518433,
0.03500790148973465,
-0.0015643214574083686,
0.027123261243104935,
-0.058935679495334625,
0.18609118461608887,
-0.004065449349582195,
0.020676052197813988,
-0.060264769941568375,
-0.0478842556476593,
0.09839435666799545,
-0.06130504235625267,
0.12208222597837448,
0.004057085141539574,
0.01594383642077446,
-0.10362856835126877,
-0.048314861953258514,
-0.04328322783112526,
0.05154227837920189,
-0.07548051327466965,
-0.10070807486772537,
-0.043625857681035995,
0.08841723203659058,
0.07005169242620468,
-0.03383097052574158,
0.00549331633374095,
-0.07189501076936722,
0.10019614547491074,
0.17795267701148987,
0.17573626339435577,
0.009926567785441875,
-0.07241068035364151,
0.01677953451871872,
-0.04142116755247116,
0.044231921434402466,
-0.2513144314289093,
0.03756171092391014,
0.06098250672221184,
0.029438555240631104,
0.09217222779989243,
-0.020435843616724014,
-0.1820858269929886,
-0.04050002992153168,
0.08094815909862518,
-0.05452597141265869,
-0.22617179155349731,
-0.019085140898823738,
0.0954197570681572,
-0.2020406424999237,
-0.007372708059847355,
0.03995226323604584,
-0.048725228756666183,
-0.023169852793216705,
0.00010950004070764408,
0.06317184865474701,
0.002471912419423461,
0.09773622453212738,
0.0735151618719101,
0.09715340286493301,
-0.08337292820215225,
0.10562895983457565,
0.10150538384914398,
-0.09572599828243256,
0.03605884686112404,
0.06754924356937408,
-0.05300498008728027,
-0.043293699622154236,
0.03665391728281975,
0.033023297786712646,
0.005234600510448217,
-0.060321882367134094,
0.013913018628954887,
-0.036497246474027634,
0.044923391193151474,
0.08326134830713272,
0.03754979372024536,
-0.013354414142668247,
0.06462216377258301,
0.03401726484298706,
-0.10898099094629288,
0.10366570204496384,
0.01731540448963642,
0.04105307161808014,
-0.08384523540735245,
-0.019968897104263306,
0.035425446927547455,
0.030576206743717194,
-0.01765924133360386,
-0.02306121215224266,
-0.02860277332365513,
-0.01614218018949032,
-0.14299540221691132,
-0.023106401786208153,
-0.07243485748767853,
0.006181265693157911,
0.014656842686235905,
-0.031884219497442245,
-0.011233693920075893,
0.02475680410861969,
-0.06979699432849884,
-0.07426341623067856,
-0.006949664559215307,
0.09833318740129471,
-0.15115703642368317,
0.008848577737808228,
0.06907843053340912,
-0.11088496446609497,
0.08190931379795074,
-0.008411259390413761,
0.016245156526565552,
0.022527478635311127,
-0.15448406338691711,
0.05601610988378525,
0.0008648968650959432,
0.01916889287531376,
0.025886621326208115,
-0.16471809148788452,
0.004104440100491047,
-0.04661374166607857,
-0.02149827405810356,
-0.00004464812809601426,
-0.02647159807384014,
-0.12325995415449142,
0.06858719140291214,
-0.015622655861079693,
-0.035931166261434555,
-0.02701525390148163,
0.0539589487016201,
0.07888586074113846,
-0.027474910020828247,
0.10445091128349304,
-0.008690856397151947,
0.04941811040043831,
-0.16801609098911285,
-0.02470702864229679,
-0.04982255399227142,
0.019377702847123146,
0.009884213097393513,
-0.007693959400057793,
0.04183054715394974,
-0.00976533442735672,
0.21883612871170044,
-0.05075952783226967,
0.1607085019350052,
0.05847611650824547,
-0.017352959141135216,
-0.0007513365126214921,
0.06180921941995621,
0.05997028574347496,
0.04658793285489082,
0.009480604901909828,
0.023740366101264954,
-0.022450892254710197,
-0.006695089396089315,
-0.15932634472846985,
0.01890849508345127,
0.14999441802501678,
0.06301083415746689,
0.024745315313339233,
0.05866100639104843,
-0.12775006890296936,
-0.12135478109121323,
0.09311001747846603,
-0.026755332946777344,
0.00928465835750103,
-0.08245618641376495,
0.1358020007610321,
0.14980104565620422,
-0.14000412821769714,
0.05256148427724838,
-0.06134212389588356,
-0.05217423290014267,
-0.10388828068971634,
-0.12032219022512436,
-0.05887215584516525,
-0.053666237741708755,
0.002330566756427288,
-0.03760887682437897,
0.054546963423490524,
0.03344334661960602,
-0.009351172484457493,
-0.00022941511997487396,
0.13597318530082703,
-0.019751882180571556,
-0.0028988157864660025,
0.048313532024621964,
0.03693558648228645,
0.02373051457107067,
-0.05275435373187065,
0.02940409444272518,
0.02539868652820587,
0.032232340425252914,
0.06546790152788162,
0.033412106335163116,
-0.047448933124542236,
0.03804153576493263,
-0.0025254099164158106,
-0.11207924783229828,
0.019641218706965446,
-0.00460948096588254,
-0.0742158442735672,
0.1268945336341858,
0.0407399944961071,
0.010224059224128723,
-0.03741471841931343,
0.24361543357372284,
-0.06653323769569397,
-0.06378097087144852,
-0.13251738250255585,
0.10491154342889786,
-0.0027236645109951496,
0.06476365029811859,
0.023412218317389488,
-0.1284150779247284,
0.005243356805294752,
0.13858191668987274,
0.12181595712900162,
0.0045748427510261536,
0.009228081442415714,
0.0518609918653965,
0.0025186820421367884,
-0.06998204439878464,
0.054019294679164886,
0.06992026418447495,
0.12919506430625916,
-0.07847554981708527,
0.07680778950452805,
0.0006860480643808842,
-0.08370215445756912,
-0.02947772853076458,
0.11312682181596756,
-0.0409729965031147,
0.03491825982928276,
-0.047444481402635574,
0.10916327685117722,
-0.05787910893559456,
-0.29412412643432617,
0.02350960113108158,
-0.09588567912578583,
-0.15202060341835022,
-0.018367812037467957,
0.05944539234042168,
-0.02624768204987049,
0.018029648810625076,
0.06971040368080139,
-0.06011629104614258,
0.20098382234573364,
0.0335683599114418,
-0.07864278554916382,
-0.0664360448718071,
0.04837050288915634,
-0.06564252078533173,
0.2949807047843933,
0.008418165147304535,
0.02863333560526371,
0.10770907253026962,
-0.03253700211644173,
-0.18271861970424652,
0.010723991319537163,
0.1133992001414299,
-0.08056149631738663,
0.08200647681951523,
0.19000613689422607,
-0.012578671798110008,
0.1209007054567337,
0.05294662341475487,
-0.047376248985528946,
0.04217283055186272,
-0.03389401361346245,
-0.051268599927425385,
-0.10752558708190918,
0.058453381061553955,
-0.05909625440835953,
0.15447644889354706,
0.10152646154165268,
-0.05671518296003342,
-0.004550917539745569,
-0.05555408447980881,
0.04875178262591362,
0.01804669201374054,
0.12263146042823792,
0.02951994352042675,
-0.1865430772304535,
0.032826557755470276,
-0.01144319772720337,
0.10186848044395447,
-0.25588861107826233,
-0.08421015739440918,
0.08833149075508118,
-0.011924264021217823,
-0.05105875805020332,
0.10560628771781921,
0.057650718837976456,
0.04243382066488266,
-0.043439045548439026,
-0.10480839014053345,
-0.02186836116015911,
0.14663739502429962,
-0.1469624787569046,
-0.025013303384184837
] |
null | null | transformers | # merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [eren23/dpo-binarized-NeutrixOmnibe-7B](https://huggingface.co/eren23/dpo-binarized-NeutrixOmnibe-7B)
* [Gille/StrangeMerges_21-7B-slerp](https://huggingface.co/Gille/StrangeMerges_21-7B-slerp)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: Gille/StrangeMerges_21-7B-slerp
dtype: bfloat16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.3, 0.5, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.7, 0.5, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: eren23/dpo-binarized-NeutrixOmnibe-7B
- layer_range: [0, 32]
model:
model:
path: Gille/StrangeMerges_21-7B-slerp
``` | {"license": "cc-by-nc-4.0", "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["eren23/dpo-binarized-NeutrixOmnibe-7B", "Gille/StrangeMerges_21-7B-slerp"]} | text-generation | nlpguy/AlloyIngot | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"base_model:eren23/dpo-binarized-NeutrixOmnibe-7B",
"base_model:Gille/StrangeMerges_21-7B-slerp",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:00:43+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #mergekit #merge #base_model-eren23/dpo-binarized-NeutrixOmnibe-7B #base_model-Gille/StrangeMerges_21-7B-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # merged
This is a merge of pre-trained language models created using mergekit.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* eren23/dpo-binarized-NeutrixOmnibe-7B
* Gille/StrangeMerges_21-7B-slerp
### Configuration
The following YAML configuration was used to produce this model:
| [
"# merged\n\nThis is a merge of pre-trained language models created using mergekit.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* eren23/dpo-binarized-NeutrixOmnibe-7B\n* Gille/StrangeMerges_21-7B-slerp",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #base_model-eren23/dpo-binarized-NeutrixOmnibe-7B #base_model-Gille/StrangeMerges_21-7B-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# merged\n\nThis is a merge of pre-trained language models created using mergekit.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* eren23/dpo-binarized-NeutrixOmnibe-7B\n* Gille/StrangeMerges_21-7B-slerp",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
107,
19,
4,
18,
50,
17
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #base_model-eren23/dpo-binarized-NeutrixOmnibe-7B #base_model-Gille/StrangeMerges_21-7B-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# merged\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* eren23/dpo-binarized-NeutrixOmnibe-7B\n* Gille/StrangeMerges_21-7B-slerp### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.0809837356209755,
-0.025060007348656654,
-0.0015015535755082965,
-0.0031283320859074593,
0.09198233485221863,
0.05194105952978134,
0.20409120619297028,
0.026965202763676643,
0.08209776133298874,
0.028697842732071877,
0.013388619758188725,
0.0732806921005249,
0.03939434513449669,
0.1742536872625351,
-0.02644723281264305,
-0.19492684304714203,
0.08761974424123764,
-0.03648870810866356,
-0.14858214557170868,
0.10133573412895203,
0.1224830225110054,
-0.04282920062541962,
0.1023460328578949,
0.047396935522556305,
-0.13996125757694244,
0.019154593348503113,
-0.031137030571699142,
0.025515999644994736,
0.12311404198408127,
0.1116776391863823,
0.08392884582281113,
0.03600778430700302,
0.021921124309301376,
-0.15164826810359955,
0.04916464537382126,
-0.0019361580489203334,
-0.014192627742886543,
0.053114745765924454,
0.05762677639722824,
-0.01444134209305048,
0.12679460644721985,
-0.07050509750843048,
0.035702772438526154,
0.06406636536121368,
-0.08077079802751541,
-0.09091715514659882,
-0.11546832323074341,
0.11525889486074448,
0.1209883913397789,
0.029665017500519753,
-0.021553833037614822,
0.06628625094890594,
0.036517202854156494,
0.06945964694023132,
-0.0018231341382488608,
-0.27169254422187805,
0.007586815860122442,
0.14818350970745087,
0.05908172205090523,
-0.09818121790885925,
0.038748763501644135,
0.03823605179786682,
0.034951310604810715,
-0.011814466677606106,
0.01854674331843853,
-0.05497439205646515,
0.1414996236562729,
-0.09442545473575592,
-0.1577860713005066,
-0.012842129915952682,
0.0858985111117363,
0.017838401719927788,
-0.017340583726763725,
-0.12378884106874466,
-0.12457495927810669,
0.061282239854335785,
-0.012847814708948135,
-0.056756824254989624,
0.01184228714555502,
0.012691221199929714,
0.09415198117494583,
-0.10187205672264099,
-0.044282298535108566,
-0.02966310828924179,
-0.1285024881362915,
0.2195613980293274,
0.041435882449150085,
0.027638565748929977,
-0.061167456209659576,
0.06796880066394806,
-0.20774446427822113,
-0.08309023827314377,
0.019003255292773247,
-0.0592985674738884,
-0.05668741837143898,
-0.01894626021385193,
-0.11116062849760056,
-0.16843900084495544,
0.09544297307729721,
0.24715904891490936,
-0.11818978190422058,
0.004077766556292772,
0.09821970015764236,
0.06788364797830582,
0.029922766610980034,
-0.01331228855997324,
-0.14964215457439423,
-0.12276207655668259,
0.05309503525495529,
0.020800955593585968,
0.11057203263044357,
0.0097691360861063,
-0.13227775692939758,
-0.016837304458022118,
-0.025951135903596878,
-0.026605602353811264,
0.03267835080623627,
0.10677137970924377,
-0.018312012776732445,
-0.053989507257938385,
0.16283699870109558,
-0.060866277664899826,
0.004956171847879887,
-0.01671607419848442,
-0.0132073275744915,
-0.02372906543314457,
0.11755017936229706,
0.06217010319232941,
0.022861065343022346,
0.10899559408426285,
-0.05906062573194504,
-0.020778371021151543,
-0.04826521873474121,
-0.1017247810959816,
0.017578046768903732,
-0.04719450697302818,
-0.03328598663210869,
-0.09661988168954849,
-0.2479034662246704,
-0.04761897400021553,
0.0006849258788861334,
-0.010010686703026295,
-0.02654131129384041,
-0.05806725472211838,
0.06671373546123505,
-0.004410566296428442,
-0.006452600937336683,
-0.04720668867230415,
0.00022777756385039538,
-0.04060336574912071,
-0.04676167666912079,
0.018136436119675636,
-0.19702722132205963,
0.02635682374238968,
-0.10046452283859253,
0.1277722716331482,
-0.17813272774219513,
0.10422561317682266,
-0.005910889711230993,
0.018702438101172447,
-0.1053861677646637,
-0.013027974404394627,
-0.019026998430490494,
0.03312418609857559,
0.08356457948684692,
0.15511421859264374,
-0.10280844569206238,
-0.08776850253343582,
0.09302135556936264,
-0.16060112416744232,
-0.08558595925569534,
0.11726924031972885,
-0.007375257555395365,
0.04333415627479553,
0.04364955425262451,
0.23080210387706757,
0.14172589778900146,
0.025583142414689064,
-0.0336916521191597,
-0.008335188962519169,
-0.008005176670849323,
0.024255529046058655,
0.07851576060056686,
-0.05745682865381241,
-0.0982513353228569,
0.029728975147008896,
-0.020663008093833923,
0.13125532865524292,
-0.03622639179229736,
-0.02882268652319908,
-0.049886737018823624,
-0.0463697724044323,
0.14945217967033386,
-0.03922571614384651,
0.03045632503926754,
-0.059061504900455475,
-0.016091275960206985,
0.13998228311538696,
0.1175818219780922,
-0.0643194392323494,
0.011683978140354156,
-0.0302512738853693,
0.12566520273685455,
-0.0639200508594513,
0.04020889475941658,
-0.12139133363962173,
-0.13311584293842316,
-0.04356643930077553,
-0.09163791686296463,
0.059042010456323624,
-0.006269731093198061,
0.052153490483760834,
0.062161099165678024,
-0.050777919590473175,
-0.013071084395051003,
0.06618425250053406,
0.041162047535181046,
-0.02261306531727314,
-0.15823262929916382,
-0.09874089807271957,
-0.06613154709339142,
0.3034733831882477,
-0.08913987874984741,
0.08758849650621414,
-0.05989345163106918,
0.23324906826019287,
-0.06269022822380066,
0.007823723368346691,
0.03507954627275467,
0.045046914368867874,
-0.025335174053907394,
0.012437894940376282,
0.07720000296831131,
0.027303647249937057,
-0.2041924148797989,
0.1502126008272171,
-0.15778416395187378,
-0.020707838237285614,
0.08523241430521011,
0.01060097198933363,
-0.0451737642288208,
-0.11353801190853119,
-0.005926171783357859,
-0.06748785823583603,
0.04858111962676048,
-0.0861191377043724,
0.1317150592803955,
0.033417437225580215,
0.12823015451431274,
-0.02798805944621563,
-0.010919294320046902,
0.0023469815496355295,
-0.04103522747755051,
-0.04452812299132347,
0.0659395158290863,
-0.026142796501517296,
-0.2309773862361908,
0.12861594557762146,
0.1778945028781891,
0.053241219371557236,
0.07276533544063568,
0.026498280465602875,
0.037380777299404144,
-0.06849513947963715,
-0.02245146408677101,
-0.04026789590716362,
-0.043265312910079956,
-0.04892079532146454,
0.034729018807411194,
0.059568870812654495,
0.0001467721740482375,
0.05967497080564499,
-0.09930866211652756,
0.040923744440078735,
0.04473289102315903,
0.015134780667722225,
0.07758424431085587,
0.11029856652021408,
0.013814670965075493,
0.052343983203172684,
0.01932831108570099,
-0.03785642981529236,
0.04049903154373169,
-0.004477487411350012,
-0.12266791611909866,
0.1707039773464203,
-0.14130762219429016,
-0.20776525139808655,
-0.21643035113811493,
-0.038154155015945435,
-0.1485046148300171,
0.0004842069756705314,
0.041132111102342606,
0.026689967140555382,
-0.04322545602917671,
-0.09084425866603851,
0.13447025418281555,
0.01758662238717079,
-0.03074585646390915,
-0.018537310883402824,
-0.05591505765914917,
0.020301571115851402,
-0.09469260275363922,
-0.020249944180250168,
0.002997291972860694,
0.006192329339683056,
0.04195401445031166,
-0.01500055193901062,
0.0983797237277031,
0.14326554536819458,
-0.02900036983191967,
-0.039874523878097534,
-0.03001941554248333,
0.16517910361289978,
-0.03854570910334587,
0.07150717824697495,
0.2011171579360962,
-0.12161845713853836,
0.06166297197341919,
0.2053835093975067,
0.029867181554436684,
-0.02844184637069702,
0.009831434115767479,
-0.03045458160340786,
-0.0666666105389595,
-0.1660299003124237,
-0.17358087003231049,
-0.06398943811655045,
-0.007170760538429022,
0.004770119674503803,
0.03873559460043907,
0.0426105335354805,
0.056063707917928696,
-0.09029021114110947,
-0.03174172341823578,
0.06452427804470062,
0.0580558143556118,
0.3052629828453064,
-0.01961492747068405,
0.10172458738088608,
-0.03434143587946892,
-0.01840975135564804,
0.05800335481762886,
-0.008861945942044258,
0.06667143851518631,
0.07254134863615036,
0.1267949789762497,
0.08846183866262436,
-0.004335767589509487,
0.05197944864630699,
0.051742807030677795,
0.002969956723973155,
0.03487950935959816,
-0.02134775184094906,
-0.08154705911874771,
0.005538560450077057,
0.05843087658286095,
-0.06670380383729935,
0.07624229043722153,
-0.07767631858587265,
0.013749035075306892,
0.06519974768161774,
0.14646443724632263,
0.10068326443433762,
-0.2720968425273895,
-0.12524420022964478,
0.03823775053024292,
0.03663572669029236,
-0.013278486207127571,
-0.04257442057132721,
0.03272571042180061,
-0.0823524072766304,
0.19834491610527039,
-0.035969801247119904,
0.08657853305339813,
-0.0031205161940306425,
0.00707171531394124,
0.0010623959824442863,
0.13589255511760712,
0.009605646133422852,
0.03806048631668091,
-0.10643129050731659,
0.1575893610715866,
0.029627351090312004,
-0.05205463990569115,
0.03638387471437454,
0.03330375254154205,
0.03653933107852936,
0.24581368267536163,
0.03859972953796387,
0.017890922725200653,
0.0016829677624627948,
-0.011385821737349033,
-0.11019887775182724,
-0.027290603145956993,
0.01823633350431919,
-0.07100817561149597,
0.07195451855659485,
-0.054719459265470505,
-0.03810183331370354,
0.0011434474727138877,
0.12665051221847534,
-0.09097623825073242,
-0.1363147348165512,
0.058720167726278305,
0.07528407871723175,
0.05887962877750397,
-0.07286162674427032,
-0.052262332290410995,
-0.15789435803890228,
0.2635059654712677,
0.005991981830447912,
-0.09643387049436569,
-0.0952184647321701,
0.0020143010187894106,
0.11765187233686447,
-0.06648125499486923,
0.07271092385053635,
-0.025920094922184944,
0.06469002366065979,
-0.10917341709136963,
-0.16669103503227234,
0.08674351125955582,
-0.08074498176574707,
-0.10388757288455963,
-0.0030319502111524343,
0.11655274033546448,
-0.03575786203145981,
0.021329153329133987,
0.004497987683862448,
0.05332637205719948,
-0.03851539269089699,
-0.055265530943870544,
-0.03146125376224518,
0.2431863695383072,
0.011098970659077168,
0.1351347714662552,
-0.016486385837197304,
-0.1560140997171402,
-0.00000545832290299586,
-0.018337970599532127,
0.1672358363866806,
0.2441563457250595,
-0.04898093640804291,
0.05734769254922867,
0.17017123103141785,
-0.07290007174015045,
-0.211582750082016,
-0.03470092639327049,
-0.012508160434663296,
0.04737276956439018,
-0.0017019512597471476,
-0.019192952662706375,
0.013630151748657227,
0.13341474533081055,
-0.0018686356488615274,
0.0391603522002697,
-0.32269346714019775,
-0.18110930919647217,
0.06445308029651642,
0.008709948509931564,
0.20171736180782318,
-0.07127387076616287,
-0.08614140003919601,
-0.07767079770565033,
-0.18494626879692078,
0.054666098207235336,
-0.12295985966920853,
0.04781097173690796,
-0.010966738685965538,
0.04355476051568985,
0.019896434620022774,
-0.03977997228503227,
0.1354140192270279,
-0.020522737875580788,
0.03585532307624817,
-0.07852593064308167,
-0.00637260265648365,
0.056836891919374466,
-0.044423025101423264,
0.10294115543365479,
-0.0652613416314125,
0.019765209406614304,
-0.022344455122947693,
-0.041273944079875946,
-0.04510623589158058,
0.08204479515552521,
-0.03439241275191307,
-0.05241908133029938,
-0.06355954706668854,
0.03147146850824356,
-0.021177377551794052,
0.0013207641895860434,
0.15789206326007843,
-0.04532987251877785,
0.11511840671300888,
0.18398119509220123,
0.07967858016490936,
-0.033743716776371,
-0.024202048778533936,
0.021750887855887413,
-0.07454302906990051,
0.051714397966861725,
-0.04417557269334793,
-0.023733440786600113,
0.12090793997049332,
-0.0022387870121747255,
0.11276812851428986,
0.024525882676243782,
-0.05613784119486809,
0.0008759439806453884,
0.06184780225157738,
-0.16254499554634094,
-0.3024650812149048,
-0.029863446950912476,
-0.030207540839910507,
-0.03340483829379082,
0.08377785235643387,
0.2139327973127365,
-0.07069510966539383,
-0.021860167384147644,
0.01741603948175907,
0.01740097627043724,
-0.10376136004924774,
0.08866473287343979,
-0.010762360878288746,
0.02467779442667961,
-0.08241414278745651,
0.0800759419798851,
0.06774541735649109,
-0.08631495386362076,
-0.01869642734527588,
0.07804147154092789,
-0.13042302429676056,
-0.09221653640270233,
-0.16860899329185486,
0.1676996350288391,
-0.11754614859819412,
-0.08370630443096161,
-0.09409385919570923,
-0.1278253048658371,
-0.002484635915607214,
0.11551753431558609,
0.06490330398082733,
0.02640666998922825,
0.0026019855868071318,
-0.06939038634300232,
-0.04037024825811386,
0.04241305962204933,
0.019638003781437874,
0.10108710080385208,
-0.08143271505832672,
0.0949045941233635,
-0.0284245777875185,
0.04701966047286987,
-0.04399711266160011,
0.0005556306568905711,
-0.10280770808458328,
-0.04581305384635925,
-0.16134890913963318,
-0.04039214551448822,
-0.1587006002664566,
-0.03125434368848801,
0.001050816848874092,
-0.007754743564873934,
0.013227732852101326,
0.01736482046544552,
-0.014455532655119896,
-0.04585885629057884,
-0.021937666460871696,
0.03445777669548988,
-0.08880457282066345,
-0.029696501791477203,
-0.01362957339733839,
-0.024689383804798126,
0.08184321969747543,
0.013612889684736729,
-0.012544959783554077,
-0.034263335168361664,
-0.09561403095722198,
-0.04466059431433678,
0.046566177159547806,
0.005851501598954201,
0.01239379495382309,
-0.11136995255947113,
-0.03661448508501053,
-0.0005820306832902133,
-0.06977339833974838,
-0.02168293111026287,
0.05148089677095413,
-0.061920687556266785,
0.01757374405860901,
0.000981330987997353,
0.009285742416977882,
-0.05379598215222359,
-0.05059843510389328,
0.012371749617159367,
0.11674167215824127,
0.13348987698554993,
-0.061231788247823715,
0.055478982627391815,
-0.15755493938922882,
-0.019130727276206017,
-0.007990365847945213,
-0.10799882560968399,
-0.0360727459192276,
-0.09629809111356735,
-0.00069483055267483,
-0.00013649594620801508,
0.14529988169670105,
-0.000999778974801302,
-0.036909300833940506,
0.031771618872880936,
0.017245061695575714,
0.009239650331437588,
0.03932339698076248,
0.1410030722618103,
0.0176822692155838,
0.01372301671653986,
-0.0891505628824234,
0.06965573132038116,
0.006291983183473349,
-0.04427275061607361,
0.07365679740905762,
0.0436871200799942,
0.028263753280043602,
0.07908638566732407,
0.11332938820123672,
-0.0005635910201817751,
-0.06787049025297165,
-0.14202697575092316,
0.007053660694509745,
0.04852348938584328,
-0.03476043418049812,
0.1348656266927719,
0.1022404208779335,
-0.16294001042842865,
0.08895479887723923,
0.024726027622818947,
-0.0195454228669405,
-0.085145965218544,
-0.09928048402070999,
-0.08888793736696243,
-0.11377875506877899,
-0.046645671129226685,
-0.07112552970647812,
-0.04754535108804703,
-0.002313873963430524,
-0.010050872340798378,
-0.015466606244444847,
0.11859240382909775,
-0.07578665763139725,
-0.02862006239593029,
0.006796383764594793,
-0.0029231407679617405,
0.021615000441670418,
-0.0201353058218956,
-0.06685104221105576,
0.06981160491704941,
0.002058669226244092,
0.009572873823344707,
0.016658442094922066,
0.08435137569904327,
0.043203964829444885,
-0.027062570676207542,
-0.0821923315525055,
-0.015156327746808529,
0.0737973302602768,
0.06736673414707184,
-0.023868780583143234,
0.05413898080587387,
-0.0335187092423439,
-0.020663786679506302,
0.055832959711551666,
-0.033457379788160324,
-0.08137685060501099,
-0.06145777925848961,
0.23796825110912323,
-0.029034269973635674,
0.0533938854932785,
0.033543091267347336,
-0.09827536344528198,
0.01694798842072487,
0.08251114934682846,
0.339404433965683,
-0.007184244692325592,
0.00568749476224184,
0.006793383043259382,
0.020381232723593712,
0.03743615001440048,
0.05301094427704811,
0.029693251475691795,
0.1195603758096695,
-0.031433042138814926,
0.10049622505903244,
-0.04139426350593567,
-0.05533524975180626,
-0.04154427349567413,
-0.0020592876244336367,
-0.02955137938261032,
-0.02946196123957634,
0.04945474490523338,
0.0885787084698677,
-0.06018473953008652,
-0.06284079700708389,
0.033810827881097794,
-0.13355478644371033,
-0.08288780599832535,
-0.06879498809576035,
0.05173449218273163,
0.004038520157337189,
0.055692218244075775,
-0.04094173014163971,
0.004202098585665226,
0.16333268582820892,
-0.016029179096221924,
-0.0722857117652893,
-0.1049124225974083,
0.03652847930788994,
-0.01758960261940956,
0.013154705986380577,
-0.01623525843024254,
0.056768108159303665,
0.09135514497756958,
0.010007495991885662,
-0.10068075358867645,
0.021531300619244576,
0.013548912480473518,
0.024944525212049484,
0.025257658213377,
0.000042799980292329565,
-0.022617414593696594,
0.05551191419363022,
0.00870840810239315,
-0.20607852935791016,
0.0629940927028656,
0.003704387927427888,
-0.0897364690899849,
-0.05926729366183281,
0.09898614883422852,
-0.05281822755932808,
0.15046441555023193,
0.15824273228645325,
-0.0419897586107254,
-0.0011873344192281365,
-0.009959201328456402,
0.025447921827435493,
0.07725954055786133,
0.14771553874015808,
-0.013307475484907627,
-0.1674523949623108,
0.02486535720527172,
0.03841940686106682,
0.04907471686601639,
-0.2567324638366699,
-0.10145395994186401,
-0.11326844990253448,
-0.022302065044641495,
-0.03239648789167404,
0.09275447577238083,
0.1348961889743805,
0.020160507410764694,
-0.02387235313653946,
-0.17897522449493408,
-0.013171969912946224,
0.08670876175165176,
-0.08376048505306244,
-0.087612085044384
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec
This model is a fine-tuned version of [vitouphy/wav2vec2-xls-r-300m-english](https://huggingface.co/vitouphy/wav2vec2-xls-r-300m-english) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 417.9874
- Pcc Accuracy: 0.2482
- Pcc Fluency: 0.2791
- Pcc Total Score: 0.3110
- Pcc Content: 0.3780
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 6
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.4
- num_epochs: 25
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Pcc Accuracy | Pcc Fluency | Pcc Total Score | Pcc Content |
|:-------------:|:-----:|:----:|:---------------:|:------------:|:-----------:|:---------------:|:-----------:|
| 3176.8777 | 1.01 | 100 | 2967.8770 | 0.2384 | 0.1513 | -0.2037 | -0.0386 |
| 3000.9279 | 2.02 | 200 | 2907.2825 | 0.2949 | 0.1813 | -0.1250 | 0.0827 |
| 2716.2498 | 3.03 | 300 | 2805.8979 | 0.3034 | 0.2123 | 0.0290 | 0.2344 |
| 2600.8768 | 4.04 | 400 | 2666.0171 | 0.2859 | 0.2345 | 0.1642 | 0.3183 |
| 2222.3631 | 5.05 | 500 | 2490.9263 | 0.2698 | 0.2475 | 0.2305 | 0.3488 |
| 1940.7414 | 6.06 | 600 | 2284.4573 | 0.2573 | 0.2552 | 0.2588 | 0.3591 |
| 1962.4018 | 7.07 | 700 | 2051.6846 | 0.2504 | 0.2603 | 0.2738 | 0.3635 |
| 1506.0297 | 8.08 | 800 | 1798.2383 | 0.2444 | 0.2633 | 0.2813 | 0.3653 |
| 1448.3059 | 9.09 | 900 | 1534.5461 | 0.2396 | 0.2662 | 0.2845 | 0.3650 |
| 1202.578 | 10.1 | 1000 | 1265.2390 | 0.2376 | 0.2678 | 0.2873 | 0.3647 |
| 917.5093 | 11.11 | 1100 | 1021.2091 | 0.2356 | 0.2697 | 0.2896 | 0.3651 |
| 781.4407 | 12.12 | 1200 | 825.2852 | 0.2340 | 0.2710 | 0.2901 | 0.3647 |
| 633.8744 | 13.13 | 1300 | 674.1681 | 0.2337 | 0.2724 | 0.2918 | 0.3652 |
| 554.5075 | 14.14 | 1400 | 573.6318 | 0.2354 | 0.2737 | 0.2954 | 0.3677 |
| 500.6607 | 15.15 | 1500 | 510.6489 | 0.2378 | 0.2740 | 0.2978 | 0.3700 |
| 472.1874 | 16.16 | 1600 | 468.3256 | 0.2394 | 0.2751 | 0.3012 | 0.3720 |
| 406.9743 | 17.17 | 1700 | 444.8770 | 0.2421 | 0.2763 | 0.3041 | 0.3739 |
| 373.2401 | 18.18 | 1800 | 432.6308 | 0.2438 | 0.2771 | 0.3068 | 0.3751 |
| 447.599 | 19.19 | 1900 | 425.9487 | 0.2457 | 0.2778 | 0.3081 | 0.3762 |
| 360.8572 | 20.2 | 2000 | 421.8146 | 0.2466 | 0.2786 | 0.3093 | 0.3772 |
| 409.8801 | 21.21 | 2100 | 420.0713 | 0.2473 | 0.2786 | 0.3100 | 0.3777 |
| 419.8665 | 22.22 | 2200 | 418.7286 | 0.2478 | 0.2791 | 0.3107 | 0.3778 |
| 369.3772 | 23.23 | 2300 | 418.1939 | 0.2477 | 0.2791 | 0.3105 | 0.3776 |
| 449.1843 | 24.24 | 2400 | 417.9874 | 0.2482 | 0.2791 | 0.3110 | 0.3780 |
### Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "vitouphy/wav2vec2-xls-r-300m-english", "model-index": [{"name": "wav2vec", "results": []}]} | null | arslanarjumand/wav2vec | [
"transformers",
"safetensors",
"wav2vec2",
"generated_from_trainer",
"base_model:vitouphy/wav2vec2-xls-r-300m-english",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:05:07+00:00 | [] | [] | TAGS
#transformers #safetensors #wav2vec2 #generated_from_trainer #base_model-vitouphy/wav2vec2-xls-r-300m-english #license-apache-2.0 #endpoints_compatible #region-us
| wav2vec
=======
This model is a fine-tuned version of vitouphy/wav2vec2-xls-r-300m-english on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 417.9874
* Pcc Accuracy: 0.2482
* Pcc Fluency: 0.2791
* Pcc Total Score: 0.3110
* Pcc Content: 0.3780
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 4
* eval\_batch\_size: 6
* seed: 42
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 8
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_ratio: 0.4
* num\_epochs: 25
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.37.0
* Pytorch 2.1.2
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 6\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.4\n* num\\_epochs: 25\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #safetensors #wav2vec2 #generated_from_trainer #base_model-vitouphy/wav2vec2-xls-r-300m-english #license-apache-2.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 6\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.4\n* num\\_epochs: 25\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
66,
161,
4,
30
] | [
"passage: TAGS\n#transformers #safetensors #wav2vec2 #generated_from_trainer #base_model-vitouphy/wav2vec2-xls-r-300m-english #license-apache-2.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 6\n* seed: 42\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.4\n* num\\_epochs: 25\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.0\n* Pytorch 2.1.2\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.10471593588590622,
0.04913187026977539,
-0.0026650717481970787,
0.05231798440217972,
0.12803170084953308,
0.0243234783411026,
0.1013215109705925,
0.11910919845104218,
-0.10237336158752441,
0.06967858970165253,
0.10904593765735626,
0.0721384584903717,
0.05978028103709221,
0.13980479538440704,
-0.03409634530544281,
-0.2733648419380188,
0.023822171613574028,
-0.009581360965967178,
-0.1486571878194809,
0.1141708493232727,
0.1013806015253067,
-0.12752509117126465,
0.04601486772298813,
0.011529828421771526,
-0.12180092185735703,
0.00495637021958828,
-0.021824300289154053,
-0.03523619845509529,
0.12697386741638184,
0.05309021845459938,
0.1331147998571396,
0.028196891769766808,
0.10825566947460175,
-0.2752256393432617,
0.018261728808283806,
0.07954026758670807,
0.024115676060318947,
0.07484382390975952,
0.10585139691829681,
-0.005144842434674501,
0.11757992208003998,
-0.10517081618309021,
0.07640345394611359,
0.03773611783981323,
-0.11678960174322128,
-0.3059002757072449,
-0.10120216012001038,
0.029324721544981003,
0.1429244577884674,
0.08270590007305145,
-0.015717413276433945,
0.09772545099258423,
-0.07342492789030075,
0.06972800195217133,
0.2521546185016632,
-0.2596127688884735,
-0.09205810725688934,
0.0017861243104562163,
0.0606021024286747,
0.053867872804403305,
-0.1233467310667038,
-0.02176509238779545,
0.037025194615125656,
0.026803292334079742,
0.1268816441297531,
0.007845092564821243,
-0.038699544966220856,
0.02233143523335457,
-0.1457487791776657,
-0.0307177621871233,
0.10402726382017136,
0.09662408381700516,
-0.027376266196370125,
-0.06616716086864471,
-0.02320946753025055,
-0.18108953535556793,
-0.05123338848352432,
-0.010626312345266342,
0.03650639206171036,
-0.03739762306213379,
-0.07120326161384583,
0.019082989543676376,
-0.10058702528476715,
-0.09936022758483887,
0.019000651314854622,
0.15549370646476746,
0.04215559363365173,
-0.026784904301166534,
0.008242258802056313,
0.11394618451595306,
0.0184272900223732,
-0.13877016305923462,
0.011978194117546082,
0.01997683383524418,
-0.11103741824626923,
-0.04276075214147568,
-0.03747769072651863,
-0.03841165453195572,
0.02252708561718464,
0.11862792074680328,
-0.057897891849279404,
0.06596513837575912,
0.030677558854222298,
0.029315052554011345,
-0.09975921362638474,
0.13166126608848572,
-0.05910690501332283,
-0.051722679287195206,
-0.044181790202856064,
0.0961226224899292,
-0.012777759693562984,
0.00554461358115077,
-0.052910808473825455,
0.005536022130399942,
0.08995230495929718,
0.04474278539419174,
-0.032275162637233734,
0.015146045945584774,
-0.0778520405292511,
-0.007882045581936836,
0.014984207227826118,
-0.0823374018073082,
0.046192970126867294,
0.02218783088028431,
-0.055996641516685486,
-0.025662975385785103,
0.009157706052064896,
0.039518970996141434,
0.023716116324067116,
0.13314588367938995,
-0.06558872759342194,
0.0015051588416099548,
-0.09799810498952866,
-0.1119164302945137,
0.023684905841946602,
-0.012601366266608238,
0.01357571966946125,
-0.0842241570353508,
-0.10546321421861649,
-0.04910461604595184,
0.07190078496932983,
-0.04087942838668823,
-0.052302002906799316,
-0.04650101065635681,
-0.06700164079666138,
0.04381362348794937,
-0.01382086519151926,
0.20290184020996094,
-0.06519041210412979,
0.10443389415740967,
0.003350392682477832,
0.04734127223491669,
0.029557036235928535,
0.045536141842603683,
-0.05030345916748047,
0.05463042110204697,
-0.15657924115657806,
0.018081238493323326,
-0.07650791853666306,
0.06879181414842606,
-0.15614229440689087,
-0.10570560395717621,
-0.024530816823244095,
-0.011347942985594273,
0.09367193281650543,
0.10085740685462952,
-0.17339204251766205,
-0.06492804735898972,
0.16120782494544983,
-0.08860819041728973,
-0.11624405533075333,
0.12557199597358704,
-0.0340837761759758,
0.004582115449011326,
0.025243792682886124,
0.1020677238702774,
0.09804845601320267,
-0.1032290980219841,
0.031007379293441772,
-0.045824967324733734,
0.10434594005346298,
0.03903867304325104,
0.1057242602109909,
-0.028969967737793922,
-0.009523344226181507,
-0.01457552146166563,
-0.049808070063591,
0.07157009094953537,
-0.1042570024728775,
-0.08100425451993942,
-0.02446630969643593,
-0.0855836346745491,
0.028838468715548515,
0.04256708174943924,
0.02647346444427967,
-0.1023697555065155,
-0.11548490077257156,
0.027033982798457146,
0.11067260801792145,
-0.07737644761800766,
0.016229810193181038,
-0.05336098372936249,
0.02312837913632393,
-0.03499741479754448,
-0.017577514052391052,
-0.14230161905288696,
-0.059649739414453506,
0.012743967585265636,
-0.02800368331372738,
-0.013404509983956814,
0.016834504902362823,
0.09160590171813965,
0.06630425900220871,
-0.07521486282348633,
-0.07234572619199753,
-0.07900121808052063,
0.012454194016754627,
-0.08932379633188248,
-0.26052263379096985,
-0.07107589393854141,
-0.03470344841480255,
0.16600005328655243,
-0.2629348337650299,
0.012739800848066807,
-0.007776033598929644,
0.12930002808570862,
0.04552115872502327,
-0.027030229568481445,
-0.02791440300643444,
0.06690043956041336,
-0.015969324856996536,
-0.06840609759092331,
0.026485998183488846,
-0.008609290234744549,
-0.1299416571855545,
0.00703158974647522,
-0.10772909969091415,
0.12982794642448425,
0.09603868424892426,
-0.03321371600031853,
-0.10952446609735489,
-0.09733321517705917,
-0.062429312616586685,
-0.06371525675058365,
-0.04727374389767647,
0.013033868744969368,
0.15101709961891174,
0.02813187800347805,
0.11231493204832077,
-0.06542307883501053,
-0.04223661124706268,
0.030898993834853172,
-0.0007692474755458534,
-0.005167554598301649,
0.13228994607925415,
0.07121515274047852,
-0.1108148843050003,
0.09973758459091187,
0.17273809015750885,
-0.06925275176763535,
0.11403586715459824,
-0.05763928219676018,
-0.10739101469516754,
-0.024323973804712296,
0.04213545098900795,
0.027897842228412628,
0.12130818516016006,
-0.09454762935638428,
0.026660339906811714,
0.013708733022212982,
0.025936715304851532,
0.0064177303574979305,
-0.20821991562843323,
-0.02952517196536064,
0.05151086300611496,
-0.04515581950545311,
-0.009601922705769539,
-0.03667161986231804,
0.0011246600188314915,
0.0912155732512474,
0.011389825493097305,
-0.0540810264647007,
-0.0028922916390001774,
-0.013365454971790314,
-0.08314915746450424,
0.20873914659023285,
-0.10408490896224976,
-0.08781886845827103,
-0.11454617977142334,
-0.009608564898371696,
0.01743612438440323,
-0.014123301953077316,
0.04437737539410591,
-0.11057619005441666,
-0.04172264039516449,
-0.06715825200080872,
0.04668823629617691,
-0.04313783347606659,
0.03607071563601494,
-0.006930897478014231,
0.02532138116657734,
0.07863561809062958,
-0.09022408723831177,
0.029285172000527382,
0.00039096770342439413,
-0.04403434321284294,
0.043121784925460815,
0.03818802163004875,
0.0958942249417305,
0.13923384249210358,
0.015553422272205353,
-0.003725104732438922,
-0.03374411165714264,
0.16374531388282776,
-0.09117663651704788,
-0.022982003167271614,
0.10404295474290848,
0.00070385163417086,
0.036161649972200394,
0.14630378782749176,
0.06266997754573822,
-0.08064094185829163,
0.03600630909204483,
0.051186833530664444,
0.002687679138034582,
-0.2398443967103958,
-0.02149898372590542,
-0.04765382781624794,
-0.05636321380734444,
0.114739328622818,
0.029338348656892776,
-0.04082236438989639,
0.04694104194641113,
-0.03171053156256676,
0.0044562253169715405,
0.005699817091226578,
0.07480452209711075,
0.027989698573946953,
0.04496867209672928,
0.11036525666713715,
-0.022602170705795288,
-0.032828010618686676,
0.03177831694483757,
-0.003142555942758918,
0.24927695095539093,
0.006964233238250017,
0.1314941793680191,
0.05708736181259155,
0.15889550745487213,
-0.0010548693826422095,
0.06052090972661972,
0.03019336611032486,
-0.051234591752290726,
0.0005674121784977615,
-0.05843610689043999,
-0.010553460568189621,
0.0661504715681076,
0.026334552094340324,
0.05160291865468025,
-0.13178618252277374,
-0.010903524234890938,
0.028509555384516716,
0.3240164816379547,
0.05851893126964569,
-0.29844561219215393,
-0.0836617723107338,
0.019590064883232117,
-0.06391528248786926,
-0.047201648354530334,
0.007011937443166971,
0.13386604189872742,
-0.09021280705928802,
0.061037883162498474,
-0.076962411403656,
0.09189905971288681,
-0.013665667735040188,
-0.0003674259060062468,
0.0755024403333664,
0.09314816445112228,
-0.013755960389971733,
0.06706022471189499,
-0.2455686628818512,
0.32688426971435547,
-0.003056176006793976,
0.06935910880565643,
-0.03415517136454582,
0.022086691111326218,
0.02620762586593628,
0.012428647838532925,
0.06716041266918182,
-0.018097709864377975,
-0.12236621975898743,
-0.19863927364349365,
-0.06040215119719505,
0.035182174295186996,
0.12774908542633057,
-0.06403280049562454,
0.1309572011232376,
-0.035257142037153244,
-0.013732959516346455,
0.07104892283678055,
-0.02403920888900757,
-0.1275106519460678,
-0.09978366643190384,
-0.0006403657607734203,
0.004941485356539488,
0.07996825873851776,
-0.1240556538105011,
-0.10391119867563248,
-0.08343639969825745,
0.17508310079574585,
-0.062159035354852676,
0.003644397249445319,
-0.13123227655887604,
0.10407337546348572,
0.15283946692943573,
-0.06119518354535103,
0.05580499768257141,
0.022331316024065018,
0.12111267447471619,
0.01916290819644928,
0.00723425205796957,
0.12064158171415329,
-0.0933731198310852,
-0.21318504214286804,
-0.07437657564878464,
0.135361447930336,
0.05281566083431244,
0.0634826198220253,
-0.012044111266732216,
0.026543697342276573,
-0.01327119767665863,
-0.07975218445062637,
0.044016819447278976,
0.027787387371063232,
0.0429249182343483,
0.05561194196343422,
-0.04437268525362015,
0.004004637245088816,
-0.04742269590497017,
-0.08671101182699203,
0.1363770067691803,
0.33740079402923584,
-0.09461114555597305,
0.01380867138504982,
0.027286909520626068,
-0.045931681990623474,
-0.12598180770874023,
0.04248962923884392,
0.11454401165246964,
0.029019393026828766,
0.061551161110401154,
-0.17876778542995453,
0.06173006817698479,
0.10583510249853134,
-0.022764386609196663,
0.06531158834695816,
-0.31276512145996094,
-0.12318383902311325,
0.0956965982913971,
0.14130783081054688,
-0.018292801454663277,
-0.16472062468528748,
-0.039468180388212204,
-0.027761483564972878,
-0.12424372136592865,
0.06685855984687805,
-0.09023607522249222,
0.09781336784362793,
-0.009608387015759945,
0.01723313517868519,
0.026094403117895126,
-0.05841727927327156,
0.1754966825246811,
-0.05419473722577095,
0.08825148642063141,
-0.017359869554638863,
0.06215875968337059,
0.00015377148520201445,
-0.05621311441063881,
-0.02254032902419567,
-0.09400129318237305,
0.015575985424220562,
-0.0929221510887146,
-0.026146747171878815,
-0.07361139357089996,
0.025587059557437897,
-0.050170302391052246,
-0.04707248881459236,
-0.020496869459748268,
0.05619761347770691,
0.06045569106936455,
-0.0073944092728197575,
0.12962278723716736,
-0.0322909951210022,
0.17935170233249664,
0.07060585170984268,
0.09489816427230835,
0.008631338365375996,
-0.052947208285331726,
-0.003547562286257744,
-0.017224416136741638,
0.06076115742325783,
-0.11740417778491974,
0.03614536672830582,
0.1343083679676056,
0.025828193873167038,
0.14334259927272797,
0.05222499370574951,
-0.06554277241230011,
0.008816193789243698,
0.08131571114063263,
-0.08893612772226334,
-0.1282661110162735,
-0.0014241035096347332,
0.08855043351650238,
-0.15887874364852905,
0.00048308318946510553,
0.11282788217067719,
-0.0610804483294487,
-0.01369454711675644,
0.002546882489696145,
0.03238942101597786,
-0.0566067174077034,
0.21989455819129944,
0.02479720488190651,
0.08193821460008621,
-0.07220456004142761,
0.0657210648059845,
0.06366189569234848,
-0.15610358119010925,
0.003824069397523999,
0.07307098805904388,
-0.049198295921087265,
-0.03138309344649315,
0.09725192934274673,
0.0953247919678688,
-0.0021768761798739433,
-0.05895843356847763,
-0.1009695902466774,
-0.1477033644914627,
0.05866006016731262,
0.10532395541667938,
0.04091659188270569,
0.015019739046692848,
0.019222380593419075,
0.025565896183252335,
-0.09299471229314804,
0.09009646624326706,
0.07265646755695343,
0.08682116866111755,
-0.14074625074863434,
0.14591242372989655,
-0.00467434199526906,
-0.010085711255669594,
0.006607640068978071,
0.03521018102765083,
-0.10664626955986023,
0.008713188581168652,
-0.1317736655473709,
-0.02211304008960724,
-0.044309210032224655,
-0.00047455274034291506,
0.01266204658895731,
-0.057939305901527405,
-0.047222841531038284,
0.0076037985272705555,
-0.11109333485364914,
-0.04316521808505058,
-0.007576906122267246,
0.07788368314504623,
-0.10136111080646515,
-0.040621012449264526,
0.05397014692425728,
-0.096577949821949,
0.07079818844795227,
0.0224310215562582,
0.05541989952325821,
0.03543093428015709,
-0.1777278482913971,
0.026319488883018494,
0.04115121066570282,
-0.012499830685555935,
0.023163987323641777,
-0.17531485855579376,
-0.024655964225530624,
-0.03352368250489235,
0.027291880920529366,
-0.007804774679243565,
0.03247597813606262,
-0.1331150084733963,
-0.05672366917133331,
-0.03638090938329697,
-0.07569563388824463,
-0.04870140179991722,
0.02059822902083397,
0.056478191167116165,
0.013821395114064217,
0.16938287019729614,
-0.09036359190940857,
0.04810264706611633,
-0.22600267827510834,
0.004039071034640074,
-0.040843792259693146,
-0.054584305733442307,
-0.07813062518835068,
-0.035206492990255356,
0.07406733185052872,
-0.062442597001791,
0.07509325444698334,
-0.061957746744155884,
0.07660563290119171,
0.04064488410949707,
-0.13958361744880676,
0.04372657835483551,
0.05323203280568123,
0.2206767201423645,
0.04713951796293259,
-0.017513908445835114,
0.03549085184931755,
0.020498177036643028,
0.06484165042638779,
0.1275007277727127,
0.17336083948612213,
0.19727371633052826,
0.010114201344549656,
0.08648687601089478,
0.03965049609541893,
-0.13969622552394867,
-0.08632025867700577,
0.11629403382539749,
-0.023997383192181587,
0.10548802465200424,
-0.018908919766545296,
0.2172115296125412,
0.1255285143852234,
-0.2106969803571701,
0.019883951172232628,
-0.05409584194421768,
-0.07178418338298798,
-0.08330542594194412,
-0.015552528202533722,
-0.08418445289134979,
-0.19029931724071503,
0.0002017086953856051,
-0.10091222077608109,
0.042857374995946884,
0.04965115711092949,
0.029357392340898514,
0.03575117513537407,
0.13813193142414093,
0.07723257690668106,
0.013926167041063309,
0.06455302238464355,
0.022841431200504303,
0.0037997530307620764,
-0.04915401339530945,
-0.10478483885526657,
0.038961682468652725,
-0.06573290377855301,
0.019796160981059074,
-0.05865815654397011,
-0.08821278810501099,
0.0683472529053688,
0.038780417293310165,
-0.11350640654563904,
0.0246315635740757,
-0.011437136679887772,
0.06058549880981445,
0.08139491826295853,
0.03185955807566643,
0.017800670117139816,
-0.029115865007042885,
0.249156653881073,
-0.08803383260965347,
-0.06126615032553673,
-0.12558627128601074,
0.2338932901620865,
0.013119406066834927,
-0.0027483783196657896,
0.01914263516664505,
-0.07152653485536575,
0.02180802822113037,
0.12603361904621124,
0.12607161700725555,
-0.03633574768900871,
-0.002734980545938015,
0.008059470914304256,
-0.02067018859088421,
-0.060064468532800674,
0.07278510183095932,
0.12410826236009598,
0.010320508852601051,
-0.0990157499909401,
-0.03087434731423855,
-0.04939644783735275,
-0.021768392994999886,
-0.026278303936123848,
0.04066334292292595,
0.03513472154736519,
0.0017107841558754444,
-0.016070198267698288,
0.11289094388484955,
0.0034887101501226425,
-0.1306702196598053,
0.05361432582139969,
-0.1642201840877533,
-0.17634795606136322,
-0.0528336800634861,
0.07776939868927002,
0.01533083338290453,
0.05498950928449631,
-0.024756593629717827,
-0.03355842083692551,
0.1022045761346817,
-0.006572474259883165,
-0.027477644383907318,
-0.14929160475730896,
0.09309249371290207,
-0.066827692091465,
0.20072531700134277,
-0.03693988919258118,
0.027476368471980095,
0.1290884017944336,
0.04456457495689392,
-0.08795683830976486,
0.04692314937710762,
0.08090776950120926,
-0.12104243040084839,
0.0533435121178627,
0.15912429988384247,
-0.04852326586842537,
0.14578405022621155,
0.048466261476278305,
-0.12923364341259003,
0.036277882754802704,
-0.10433510690927505,
-0.06430133432149887,
-0.03902113437652588,
0.007725865114480257,
-0.03799602761864662,
0.14547283947467804,
0.2182989865541458,
-0.05927562341094017,
-0.0013491346035152674,
-0.05317670479416847,
0.033569175750017166,
0.050482358783483505,
0.14821094274520874,
-0.03792044520378113,
-0.25458410382270813,
0.03525976091623306,
0.06113249808549881,
0.01647731103003025,
-0.22124680876731873,
-0.10685507953166962,
0.034024499356746674,
-0.05421542003750801,
-0.05866287276148796,
0.10423539578914642,
0.0922861397266388,
0.05184773728251457,
-0.06072686240077019,
-0.15871509909629822,
-0.04718349501490593,
0.17677675187587738,
-0.1454974114894867,
-0.07062102109193802
] |
null | null | transformers | # [MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF](https://huggingface.co/MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF)
- Model creator: [WhiteRabbitNeo](https://huggingface.co/WhiteRabbitNeo)
- Original model: [WhiteRabbitNeo/WhiteRabbitNeo-13B-v1](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-13B-v1)
## Description
[MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF](https://huggingface.co/MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF) contains GGUF format model files for [WhiteRabbitNeo/WhiteRabbitNeo-13B-v1](https://huggingface.co/WhiteRabbitNeo/WhiteRabbitNeo-13B-v1).
## How to use
Thanks to [TheBloke](https://huggingface.co/TheBloke) for preparing an amazing README on how to use GGUF models:
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
### Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
## How to download GGUF files
**Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* Faraday.dev
### In `text-generation-webui`
Under Download Model, you can enter the model repo: [MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF](https://huggingface.co/MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF) and below it, a specific filename to download, such as: WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the `huggingface-hub` Python library:
```shell
pip3 install huggingface-hub
```
Then you can download any individual model file to the current directory, at high speed, with a command like this:
```shell
huggingface-cli download MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
</details>
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
```shell
huggingface-cli download [MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF](https://huggingface.co/MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF) --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli).
To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`:
```shell
pip3 install hf_transfer
```
And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`:
```shell
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False
```
Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command.
</details>
## Example `llama.cpp` command
Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later.
```shell
./main -ngl 35 -m WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf --color -c 32768 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"
```
Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change `-c 32768` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins`
For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
## How to run in `text-generation-webui`
Further instructions can be found in the text-generation-webui documentation, here: [text-generation-webui/docs/04 ‐ Model Tab.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/04%20%E2%80%90%20Model%20Tab.md#llamacpp).
## How to run from Python code
You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: [llama-cpp-python docs](https://abetlen.github.io/llama-cpp-python/).
#### First install the package
Run one of the following commands, according to your system:
```shell
# Base ctransformers with no GPU acceleration
pip install llama-cpp-python
# With NVidia CUDA acceleration
CMAKE_ARGS="-DLLAMA_CUBLAS=on" pip install llama-cpp-python
# Or with OpenBLAS acceleration
CMAKE_ARGS="-DLLAMA_BLAS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS" pip install llama-cpp-python
# Or with CLBLast acceleration
CMAKE_ARGS="-DLLAMA_CLBLAST=on" pip install llama-cpp-python
# Or with AMD ROCm GPU acceleration (Linux only)
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" pip install llama-cpp-python
# Or with Metal GPU acceleration for macOS systems only
CMAKE_ARGS="-DLLAMA_METAL=on" pip install llama-cpp-python
# In windows, to set the variables CMAKE_ARGS in PowerShell, follow this format; eg for NVidia CUDA:
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
pip install llama-cpp-python
```
#### Simple llama-cpp-python example code
```python
from llama_cpp import Llama
# Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system.
llm = Llama(
model_path="./WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf", # Download the model file first
n_ctx=32768, # The max sequence length to use - note that longer sequence lengths require much more resources
n_threads=8, # The number of CPU threads to use, tailor to your system and the resulting performance
n_gpu_layers=35 # The number of layers to offload to GPU, if you have GPU acceleration available
)
# Simple inference example
output = llm(
"<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant", # Prompt
max_tokens=512, # Generate up to 512 tokens
stop=["</s>"], # Example stop token - not necessarily correct for this specific model! Please check before using.
echo=True # Whether to echo the prompt
)
# Chat Completion API
llm = Llama(model_path="./WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf", chat_format="llama-2") # Set chat_format according to the model you are using
llm.create_chat_completion(
messages = [
{"role": "system", "content": "You are a story writing assistant."},
{
"role": "user",
"content": "Write a story about llamas."
}
]
)
```
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp)
* [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) | {"tags": ["quantized", "2-bit", "3-bit", "4-bit", "5-bit", "6-bit", "8-bit", "GGUF", "transformers", "pytorch", "llama", "text-generation", "custom_code", "license:llama2", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us"], "model_name": "WhiteRabbitNeo-13B-v1-GGUF", "base_model": "WhiteRabbitNeo/WhiteRabbitNeo-13B-v1", "inference": false, "model_creator": "WhiteRabbitNeo", "pipeline_tag": "text-generation", "quantized_by": "MaziyarPanahi"} | text-generation | MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF | [
"transformers",
"gguf",
"mistral",
"quantized",
"2-bit",
"3-bit",
"4-bit",
"5-bit",
"6-bit",
"8-bit",
"GGUF",
"pytorch",
"llama",
"text-generation",
"custom_code",
"license:llama2",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us",
"base_model:WhiteRabbitNeo/WhiteRabbitNeo-13B-v1"
] | 2024-02-13T13:09:46+00:00 | [] | [] | TAGS
#transformers #gguf #mistral #quantized #2-bit #3-bit #4-bit #5-bit #6-bit #8-bit #GGUF #pytorch #llama #text-generation #custom_code #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us #base_model-WhiteRabbitNeo/WhiteRabbitNeo-13B-v1
| # MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF
- Model creator: WhiteRabbitNeo
- Original model: WhiteRabbitNeo/WhiteRabbitNeo-13B-v1
## Description
MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF contains GGUF format model files for WhiteRabbitNeo/WhiteRabbitNeo-13B-v1.
## How to use
Thanks to TheBloke for preparing an amazing README on how to use GGUF models:
### About GGUF
GGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* URL. The source project for GGUF. Offers a CLI and a server option.
* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.
* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
### Explanation of quantisation methods
<details>
<summary>Click to see details</summary>
The new methods available are:
* GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)
* GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.
* GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.
* GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw
* GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw
## How to download GGUF files
Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.
The following clients/libraries will automatically download models for you, providing a list of available models to choose from:
* LM Studio
* LoLLMS Web UI
* URL
### In 'text-generation-webui'
Under Download Model, you can enter the model repo: MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF and below it, a specific filename to download, such as: WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf.
Then click Download.
### On the command line, including multiple files at once
I recommend using the 'huggingface-hub' Python library:
Then you can download any individual model file to the current directory, at high speed, with a command like this:
</details>
<details>
<summary>More advanced huggingface-cli download usage (click to read)</summary>
You can also download multiple files at once with a pattern:
For more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.
To accelerate downloads on fast connections (1Gbit/s or higher), install 'hf_transfer':
And set environment variable 'HF_HUB_ENABLE_HF_TRANSFER' to '1':
Windows Command Line users: You can set the environment variable by running 'set HF_HUB_ENABLE_HF_TRANSFER=1' before the download command.
</details>
## Example 'URL' command
Make sure you are using 'URL' from commit d0cee0d or later.
Change '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.
Change '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.
If you want to have a chat-style conversation, replace the '-p <PROMPT>' argument with '-i -ins'
For other parameters and how to use them, please refer to the URL documentation
## How to run in 'text-generation-webui'
Further instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.
## How to run from Python code
You can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.
### How to load this model in Python code, using llama-cpp-python
For full documentation, please see: llama-cpp-python docs.
#### First install the package
Run one of the following commands, according to your system:
#### Simple llama-cpp-python example code
## How to use with LangChain
Here are guides on using llama-cpp-python and ctransformers with LangChain:
* LangChain + llama-cpp-python
* LangChain + ctransformers | [
"# MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF\n- Model creator: WhiteRabbitNeo\n- Original model: WhiteRabbitNeo/WhiteRabbitNeo-13B-v1",
"## Description\nMaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF contains GGUF format model files for WhiteRabbitNeo/WhiteRabbitNeo-13B-v1.",
"## How to use\nThanks to TheBloke for preparing an amazing README on how to use GGUF models:",
"### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.",
"### Explanation of quantisation methods\n\n<details>\n <summary>Click to see details</summary>\n\nThe new methods available are:\n\n* GGML_TYPE_Q2_K - \"type-1\" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)\n* GGML_TYPE_Q3_K - \"type-0\" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.\n* GGML_TYPE_Q4_K - \"type-1\" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.\n* GGML_TYPE_Q5_K - \"type-1\" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw\n* GGML_TYPE_Q6_K - \"type-0\" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw",
"## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL",
"### In 'text-generation-webui'\n\nUnder Download Model, you can enter the model repo: MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF and below it, a specific filename to download, such as: WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf.\n\nThen click Download.",
"### On the command line, including multiple files at once\n\nI recommend using the 'huggingface-hub' Python library:\n\n\n\nThen you can download any individual model file to the current directory, at high speed, with a command like this:\n\n\n</details>\n<details>\n <summary>More advanced huggingface-cli download usage (click to read)</summary>\n\nYou can also download multiple files at once with a pattern:\n\n\n\nFor more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.\n\nTo accelerate downloads on fast connections (1Gbit/s or higher), install 'hf_transfer':\n\n\n\nAnd set environment variable 'HF_HUB_ENABLE_HF_TRANSFER' to '1':\n\n\n\nWindows Command Line users: You can set the environment variable by running 'set HF_HUB_ENABLE_HF_TRANSFER=1' before the download command.\n</details>",
"## Example 'URL' command\n\nMake sure you are using 'URL' from commit d0cee0d or later.\n\n\n\nChange '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.\n\nChange '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.\n\nIf you want to have a chat-style conversation, replace the '-p <PROMPT>' argument with '-i -ins'\n\nFor other parameters and how to use them, please refer to the URL documentation",
"## How to run in 'text-generation-webui'\n\nFurther instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.",
"## How to run from Python code\n\nYou can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.",
"### How to load this model in Python code, using llama-cpp-python\n\nFor full documentation, please see: llama-cpp-python docs.",
"#### First install the package\n\nRun one of the following commands, according to your system:",
"#### Simple llama-cpp-python example code",
"## How to use with LangChain\n\nHere are guides on using llama-cpp-python and ctransformers with LangChain:\n\n* LangChain + llama-cpp-python\n* LangChain + ctransformers"
] | [
"TAGS\n#transformers #gguf #mistral #quantized #2-bit #3-bit #4-bit #5-bit #6-bit #8-bit #GGUF #pytorch #llama #text-generation #custom_code #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us #base_model-WhiteRabbitNeo/WhiteRabbitNeo-13B-v1 \n",
"# MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF\n- Model creator: WhiteRabbitNeo\n- Original model: WhiteRabbitNeo/WhiteRabbitNeo-13B-v1",
"## Description\nMaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF contains GGUF format model files for WhiteRabbitNeo/WhiteRabbitNeo-13B-v1.",
"## How to use\nThanks to TheBloke for preparing an amazing README on how to use GGUF models:",
"### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.",
"### Explanation of quantisation methods\n\n<details>\n <summary>Click to see details</summary>\n\nThe new methods available are:\n\n* GGML_TYPE_Q2_K - \"type-1\" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)\n* GGML_TYPE_Q3_K - \"type-0\" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.\n* GGML_TYPE_Q4_K - \"type-1\" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.\n* GGML_TYPE_Q5_K - \"type-1\" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw\n* GGML_TYPE_Q6_K - \"type-0\" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw",
"## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL",
"### In 'text-generation-webui'\n\nUnder Download Model, you can enter the model repo: MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF and below it, a specific filename to download, such as: WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf.\n\nThen click Download.",
"### On the command line, including multiple files at once\n\nI recommend using the 'huggingface-hub' Python library:\n\n\n\nThen you can download any individual model file to the current directory, at high speed, with a command like this:\n\n\n</details>\n<details>\n <summary>More advanced huggingface-cli download usage (click to read)</summary>\n\nYou can also download multiple files at once with a pattern:\n\n\n\nFor more documentation on downloading with 'huggingface-cli', please see: HF -> Hub Python Library -> Download files -> Download from the CLI.\n\nTo accelerate downloads on fast connections (1Gbit/s or higher), install 'hf_transfer':\n\n\n\nAnd set environment variable 'HF_HUB_ENABLE_HF_TRANSFER' to '1':\n\n\n\nWindows Command Line users: You can set the environment variable by running 'set HF_HUB_ENABLE_HF_TRANSFER=1' before the download command.\n</details>",
"## Example 'URL' command\n\nMake sure you are using 'URL' from commit d0cee0d or later.\n\n\n\nChange '-ngl 32' to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration.\n\nChange '-c 32768' to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by URL automatically. Note that longer sequence lengths require much more resources, so you may need to reduce this value.\n\nIf you want to have a chat-style conversation, replace the '-p <PROMPT>' argument with '-i -ins'\n\nFor other parameters and how to use them, please refer to the URL documentation",
"## How to run in 'text-generation-webui'\n\nFurther instructions can be found in the text-generation-webui documentation, here: text-generation-webui/docs/04 ‐ Model URL.",
"## How to run from Python code\n\nYou can use GGUF models from Python using the llama-cpp-python or ctransformers libraries. Note that at the time of writing (Nov 27th 2023), ctransformers has not been updated for some time and is not compatible with some recent models. Therefore I recommend you use llama-cpp-python.",
"### How to load this model in Python code, using llama-cpp-python\n\nFor full documentation, please see: llama-cpp-python docs.",
"#### First install the package\n\nRun one of the following commands, according to your system:",
"#### Simple llama-cpp-python example code",
"## How to use with LangChain\n\nHere are guides on using llama-cpp-python and ctransformers with LangChain:\n\n* LangChain + llama-cpp-python\n* LangChain + ctransformers"
] | [
113,
51,
48,
26,
401,
323,
84,
83,
218,
182,
49,
77,
36,
19,
12,
50
] | [
"passage: TAGS\n#transformers #gguf #mistral #quantized #2-bit #3-bit #4-bit #5-bit #6-bit #8-bit #GGUF #pytorch #llama #text-generation #custom_code #license-llama2 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us #base_model-WhiteRabbitNeo/WhiteRabbitNeo-13B-v1 \n# MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF\n- Model creator: WhiteRabbitNeo\n- Original model: WhiteRabbitNeo/WhiteRabbitNeo-13B-v1## Description\nMaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF contains GGUF format model files for WhiteRabbitNeo/WhiteRabbitNeo-13B-v1.## How to use\nThanks to TheBloke for preparing an amazing README on how to use GGUF models:",
"passage: ### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.### Explanation of quantisation methods\n\n<details>\n <summary>Click to see details</summary>\n\nThe new methods available are:\n\n* GGML_TYPE_Q2_K - \"type-1\" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw)\n* GGML_TYPE_Q3_K - \"type-0\" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw.\n* GGML_TYPE_Q4_K - \"type-1\" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw.\n* GGML_TYPE_Q5_K - \"type-1\" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw\n* GGML_TYPE_Q6_K - \"type-0\" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL### In 'text-generation-webui'\n\nUnder Download Model, you can enter the model repo: MaziyarPanahi/WhiteRabbitNeo-13B-v1-GGUF and below it, a specific filename to download, such as: WhiteRabbitNeo-13B-v1-GGUF.Q4_K_M.gguf.\n\nThen click Download."
] | [
-0.06239683926105499,
0.18758860230445862,
-0.00340451393276453,
0.06955766677856445,
0.06699170917272568,
0.04881925880908966,
0.040942657738924026,
0.12523671984672546,
0.08611591160297394,
0.07796518504619598,
0.06688292324542999,
0.023278504610061646,
0.0450822077691555,
0.15203462541103363,
0.10535266250371933,
-0.20948204398155212,
0.02717173844575882,
0.011976871639490128,
0.011007229797542095,
0.03828117623925209,
0.0398096963763237,
-0.047161560505628586,
0.0708572193980217,
-0.012173650786280632,
-0.06145090237259865,
-0.037414152175188065,
-0.04736629128456116,
0.006338860839605331,
0.061667948961257935,
0.04551625996828079,
-0.049757685512304306,
-0.027044551447033882,
-0.019933972507715225,
-0.1564560830593109,
0.02186611108481884,
0.05336844548583031,
-0.03266041353344917,
0.04276612773537636,
-0.008312137797474861,
0.004473874345421791,
0.16802456974983215,
-0.061809320002794266,
0.0007089171558618546,
0.059948742389678955,
-0.07948744297027588,
-0.10451710969209671,
-0.113804891705513,
0.03969654440879822,
-0.011745616793632507,
0.049669280648231506,
0.013655437156558037,
0.05787932127714157,
0.008757399395108223,
0.049635082483291626,
0.2285885065793991,
-0.1836651861667633,
-0.050351329147815704,
0.10150555521249771,
0.07468223571777344,
0.03950522094964981,
-0.10077841579914093,
0.04940266162157059,
0.023564612492918968,
0.012892419472336769,
0.04157721623778343,
-0.03443364053964615,
0.1253841072320938,
-0.009928597137331963,
-0.11273129284381866,
-0.023100700229406357,
0.052250005304813385,
0.012279028072953224,
-0.049097735434770584,
-0.06894376873970032,
-0.05865655839443207,
-0.08329826593399048,
-0.0357048436999321,
0.015363653190433979,
0.013893185183405876,
0.011579261161386967,
0.02509043924510479,
-0.15269795060157776,
-0.013741889968514442,
-0.04543132334947586,
0.008993594907224178,
0.23764634132385254,
0.01764247752726078,
0.038926802575588226,
0.02317311428487301,
0.10361102223396301,
-0.1372229903936386,
-0.05501750111579895,
-0.07780628651380539,
0.002976616146042943,
-0.043865546584129333,
0.029963485896587372,
0.018786828964948654,
0.0445445291697979,
0.05332687497138977,
0.18097977340221405,
-0.05148383229970932,
0.07418957352638245,
0.06408002972602844,
-0.0019700443372130394,
-0.026136448606848717,
0.09695734083652496,
-0.051674772053956985,
-0.15387393534183502,
0.06446482241153717,
0.006918241269886494,
0.09022864699363708,
-0.04758671671152115,
-0.05573899671435356,
-0.005044016987085342,
-0.025197293609380722,
0.024937845766544342,
0.06185498833656311,
0.022229401394724846,
-0.032082825899124146,
-0.04955853521823883,
0.17637577652931213,
-0.08671276271343231,
0.04587307572364807,
-0.008501742035150528,
-0.027421453967690468,
0.005044430494308472,
0.038669735193252563,
-0.03583643585443497,
-0.04313017427921295,
0.006396131590008736,
-0.10515899956226349,
-0.04614930972456932,
-0.08209411054849625,
-0.036881208419799805,
0.05682462453842163,
-0.08266253769397736,
-0.031139478087425232,
-0.06361883878707886,
-0.20303568243980408,
0.01694411039352417,
0.05114090442657471,
-0.02814340405166149,
-0.027821704745292664,
-0.0028937440365552902,
-0.031477488577365875,
0.025000860914587975,
0.0335141122341156,
0.043428655713796616,
-0.02550513669848442,
0.03155897557735443,
0.029287610203027725,
0.06492197513580322,
-0.13500021398067474,
0.002436164766550064,
-0.027731116861104965,
0.06537610292434692,
-0.10111325979232788,
0.08955332636833191,
-0.0975392609834671,
0.035326942801475525,
-0.06950508058071136,
-0.01488699670881033,
-0.0442582331597805,
-0.02646351233124733,
0.041909776628017426,
0.06926169991493225,
-0.08253726363182068,
-0.0713403970003128,
0.12405450642108917,
-0.13309691846370697,
-0.03727233037352562,
0.11976782977581024,
0.007767501287162304,
-0.013349621556699276,
0.07914803177118301,
0.08643016219139099,
0.1828179508447647,
-0.0657222718000412,
-0.08909494429826736,
-0.001453674165531993,
0.024171752855181694,
0.01625543273985386,
0.031926192343235016,
0.012454941868782043,
-0.02687286213040352,
0.047168850898742676,
-0.06452223658561707,
0.04982886463403702,
0.006452612578868866,
-0.047901034355163574,
-0.04217806085944176,
-0.08447380363941193,
0.07640127092599869,
-0.011294369585812092,
-0.04675249010324478,
-0.009669877588748932,
-0.09807386994361877,
-0.02811369299888611,
0.15272372961044312,
-0.03239487111568451,
0.028751887381076813,
-0.07706118375062943,
0.15362852811813354,
-0.04850148409605026,
0.020728467032313347,
-0.03925808519124985,
-0.07800710946321487,
0.06338142603635788,
-0.0955854207277298,
0.03243723139166832,
-0.055390264838933945,
0.04617529362440109,
0.06256429105997086,
-0.052032407373189926,
0.01942211575806141,
-0.05068667605519295,
-0.032905884087085724,
-0.03653885796666145,
-0.03795109689235687,
-0.018387341871857643,
-0.03399902582168579,
0.10039452463388443,
-0.09819823503494263,
0.01614004746079445,
0.12203507125377655,
0.05801026523113251,
0.03394141048192978,
-0.1116081178188324,
0.04034457728266716,
-0.012904184870421886,
-0.0016346117481589317,
-0.05421341583132744,
0.009393662214279175,
0.031370315700769424,
-0.08105770498514175,
0.029565099626779556,
-0.11608445644378662,
-0.005967222154140472,
0.08248523622751236,
0.1070263460278511,
0.011699696071445942,
-0.006086457055062056,
-0.007982117123901844,
-0.03283749520778656,
-0.0033788951113820076,
-0.03901677578687668,
0.11088772863149643,
0.002004171023145318,
0.05034727603197098,
-0.04493597894906998,
-0.007654363289475441,
0.028118867427110672,
0.025870291516184807,
-0.009958840906620026,
0.0535663440823555,
0.08279728889465332,
-0.01538105309009552,
0.044254861772060394,
-0.007460843771696091,
-0.048384811729192734,
0.18878918886184692,
0.03553077578544617,
-0.03574587404727936,
-0.050932470709085464,
0.008802837692201138,
0.02365262806415558,
0.1320524960756302,
-0.13129562139511108,
0.015453658066689968,
0.007637017406523228,
0.009255827404558659,
0.07240922003984451,
-0.09943322092294693,
0.01768520288169384,
-0.02632715553045273,
-0.0714648962020874,
0.07769238203763962,
0.010251164436340332,
-0.09401503950357437,
0.027928408235311508,
0.042049020528793335,
0.08121731877326965,
0.00810974556952715,
-0.002170282881706953,
-0.06903549283742905,
0.12549921870231628,
-0.09576257318258286,
-0.174141064286232,
-0.15382131934165955,
-0.06216221675276756,
-0.06567747890949249,
-0.0015741963870823383,
0.010999735444784164,
-0.03839825838804245,
-0.036153435707092285,
-0.05374382436275482,
0.03346918523311615,
-0.011161236092448235,
0.0022542839869856834,
0.04909396544098854,
-0.0387958362698555,
-0.003803770523518324,
-0.10995036363601685,
0.00388145144097507,
0.017119891941547394,
-0.09703287482261658,
0.033436477184295654,
0.0017585325986146927,
0.09833800792694092,
0.07801131159067154,
0.026537636294960976,
0.0007997974753379822,
-0.009268976747989655,
0.19946055114269257,
-0.10013141483068466,
0.10379719734191895,
0.12452811002731323,
0.05780560150742531,
0.07439498603343964,
-0.028415493667125702,
0.015449457801878452,
-0.08388008177280426,
-0.0028730020858347416,
0.04789413511753082,
-0.1048368364572525,
-0.1252250373363495,
-0.07181188464164734,
-0.07433386892080307,
0.06378153711557388,
0.037765905261039734,
0.0786624476313591,
-0.005005791783332825,
0.08065186440944672,
-0.0234538521617651,
0.06208112835884094,
-0.01310216635465622,
0.06861665099859238,
0.09752113372087479,
0.0008299862965941429,
0.03420183062553406,
-0.0740288645029068,
0.0378890223801136,
0.11432933807373047,
0.11662453413009644,
0.12535783648490906,
-0.06520997732877731,
0.20639947056770325,
0.0166347436606884,
0.0423787385225296,
0.013782906346023083,
0.03128112480044365,
-0.05491749197244644,
0.004735203459858894,
-0.027468860149383545,
-0.06477370858192444,
-0.05799444019794464,
0.034327197819948196,
-0.009504001587629318,
0.0009761762339621782,
0.01860424131155014,
0.06481466442346573,
0.048762645572423935,
0.1076241210103035,
0.032755620777606964,
-0.15885278582572937,
-0.09808112680912018,
0.0259132981300354,
-0.02809046022593975,
-0.05538347363471985,
0.015145514160394669,
0.10060079395771027,
-0.0707867369055748,
0.07736888527870178,
-0.03023746982216835,
0.04720999300479889,
-0.12475840747356415,
-0.021761370822787285,
0.010647837072610855,
0.153489351272583,
0.0027830302715301514,
0.06372927129268646,
-0.1473570168018341,
0.019874028861522675,
0.029668815433979034,
0.05843821167945862,
-0.04177490249276161,
0.015763357281684875,
0.0651991218328476,
-0.006503647193312645,
0.06470844149589539,
0.030719531700015068,
0.04389362037181854,
-0.017800964415073395,
-0.10917770862579346,
0.03708314895629883,
0.04854815825819969,
-0.05086827278137207,
0.0739114060997963,
-0.020497731864452362,
0.0004972964525222778,
-0.030730176717042923,
0.00010955333709716797,
-0.051678646355867386,
-0.1708909571170807,
0.10474206507205963,
0.02549690753221512,
-0.055026158690452576,
-0.0858035460114479,
-0.038894783705472946,
-0.0032338229939341545,
0.13861335813999176,
-0.07260966300964355,
-0.061006125062704086,
-0.11316085606813431,
-0.0036861756816506386,
0.1265246868133545,
-0.08905337750911713,
0.04468186944723129,
-0.024580417200922966,
0.10925070941448212,
-0.0877879410982132,
-0.07150812447071075,
0.027553118765354156,
-0.07126975059509277,
-0.14792971312999725,
-0.015921439975500107,
0.1126793622970581,
0.057872939854860306,
0.03515499085187912,
-0.010735324583947659,
0.02426643669605255,
-0.005594349466264248,
-0.1419011652469635,
0.05124205723404884,
0.1306057572364807,
-0.12654386460781097,
0.052075088024139404,
0.00977146252989769,
0.08536887168884277,
-0.019758131355047226,
-0.014175739139318466,
0.08310788124799728,
0.17520681023597717,
-0.0523921400308609,
0.13051404058933258,
0.10492488741874695,
-0.10402698069810867,
-0.22537308931350708,
-0.007337292656302452,
-0.001960989087820053,
0.0005309535190463066,
-0.06925034523010254,
-0.22839981317520142,
0.09706928580999374,
0.06377605348825455,
-0.027640219777822495,
0.24679988622665405,
-0.20880965888500214,
-0.06819018721580505,
-0.05928054451942444,
0.04800154268741608,
0.16628044843673706,
-0.13616758584976196,
-0.06852221488952637,
-0.024776184931397438,
-0.1775342971086502,
0.06952869892120361,
-0.005479641258716583,
0.11664246022701263,
-0.03498097136616707,
0.07114477455615997,
0.0005817171186208725,
-0.041604962199926376,
0.12744827568531036,
-0.025007303804159164,
-0.0032552904449403286,
-0.05778440460562706,
0.011036073789000511,
0.055528413504362106,
-0.06146293133497238,
0.07494352757930756,
-0.09122645109891891,
0.012915387749671936,
-0.07910288870334625,
-0.032199546694755554,
-0.07493511587381363,
0.05841931700706482,
-0.023829080164432526,
-0.045180387794971466,
-0.08924722671508789,
0.06072218343615532,
0.015883736312389374,
0.042401425540447235,
-0.027647294104099274,
0.009323851205408573,
-0.0001693442463874817,
0.09964321553707123,
0.0622837096452713,
-0.14275534451007843,
-0.09203395992517471,
-0.005793863907456398,
-0.02590971253812313,
0.06264481693506241,
-0.1110401302576065,
0.024492468684911728,
0.06849072873592377,
0.03877473995089531,
0.0636104941368103,
0.017083803191781044,
-0.1525987833738327,
0.04506934806704521,
0.07456856966018677,
-0.1346638798713684,
-0.1696929931640625,
-0.03662087768316269,
-0.020258907228708267,
-0.04662686213850975,
0.04002273455262184,
0.15954643487930298,
-0.008903015404939651,
-0.016496267169713974,
-0.000034753233194351196,
0.06409811973571777,
-0.022651618346571922,
0.09217406064271927,
0.06307964026927948,
0.021521463990211487,
-0.08653390407562256,
0.06748946011066437,
0.02711818739771843,
-0.04913828521966934,
0.022683769464492798,
0.1570645570755005,
-0.06923449039459229,
-0.0640285313129425,
-0.1471741944551468,
-0.01116480678319931,
-0.056173283606767654,
-0.014505256898701191,
-0.04372867941856384,
-0.01564270816743374,
0.03237239271402359,
0.06677666306495667,
0.027353493496775627,
0.04107565060257912,
-0.00964224711060524,
0.06895372271537781,
-0.0738220065832138,
0.045443203300237656,
-0.046813756227493286,
0.06896376609802246,
-0.1001717820763588,
0.011707158759236336,
0.011416153982281685,
0.04704339802265167,
-0.019288305193185806,
-0.03168010711669922,
-0.08260699361562729,
-0.036350101232528687,
-0.07434029132127762,
0.012330766767263412,
-0.10414030402898788,
0.01355294045060873,
-0.030099768191576004,
0.010066349990665913,
-0.04341726005077362,
0.03976712003350258,
-0.05355978012084961,
-0.04849565401673317,
-0.034136176109313965,
-0.007019859738647938,
-0.05730215087532997,
0.03143354132771492,
0.08185618370771408,
-0.052221812307834625,
0.13035304844379425,
-0.037361666560173035,
0.017502769827842712,
0.03409980982542038,
-0.08871584385633469,
0.020991750061511993,
-0.002471477724611759,
-0.027473298832774162,
-0.011492663994431496,
-0.08616113662719727,
0.029356008395552635,
-0.041634559631347656,
0.023760292679071426,
-0.0023412173613905907,
0.09797881543636322,
-0.09234574437141418,
0.011584041640162468,
-0.02839152328670025,
-0.0356362983584404,
-0.026951763778924942,
0.04186590760946274,
0.06784582883119583,
0.0011436007916927338,
0.03654532879590988,
-0.0215054452419281,
-0.0004413202404975891,
-0.12489482760429382,
-0.002779587171971798,
0.0035902466624975204,
-0.025207694619894028,
0.005196083337068558,
-0.0077950600534677505,
0.038866862654685974,
0.007231062278151512,
0.17640866339206696,
-0.04200580716133118,
-0.0893612653017044,
-0.01538131758570671,
-0.05108632147312164,
0.0019148874562233686,
-0.01584721729159355,
0.11858196556568146,
0.04101850837469101,
-0.023823294788599014,
-0.0009033386595547199,
0.02615441009402275,
0.036167509853839874,
0.03518587350845337,
0.06811290979385376,
0.016084643080830574,
0.057246994227170944,
0.09010102599859238,
0.009842095896601677,
-0.043226875364780426,
-0.09524860233068466,
0.0642189159989357,
-0.07459153234958649,
0.0862455889582634,
-0.04460802301764488,
0.06647925078868866,
0.12703120708465576,
-0.10877570509910583,
0.07104548811912537,
0.058050308376550674,
-0.04829906299710274,
-0.0719146728515625,
-0.1632871776819229,
-0.04042338579893112,
-0.10165315866470337,
0.013587109744548798,
-0.08853032439947128,
0.02423306740820408,
0.02107345685362816,
0.009615598246455193,
0.004388503264635801,
0.12791647017002106,
-0.007210384588688612,
-0.028616994619369507,
0.05080913379788399,
0.026025552302598953,
-0.04992684721946716,
0.09413540363311768,
-0.042541973292827606,
0.0015775151550769806,
0.006137729622423649,
0.08839952945709229,
0.022490598261356354,
0.006561058107763529,
0.07733070850372314,
-0.0034594163298606873,
-0.017892755568027496,
-0.01708970032632351,
0.0204379353672266,
0.020747877657413483,
0.10607606917619705,
-0.003508985508233309,
-0.06173703074455261,
-0.007251224480569363,
0.12260328978300095,
-0.020819637924432755,
-0.007005402818322182,
-0.09041682630777359,
0.062378041446208954,
-0.03722522035241127,
0.007585614454001188,
-0.057152971625328064,
-0.048163872212171555,
0.024992337450385094,
0.18020030856132507,
0.16600066423416138,
-0.030238347128033638,
-0.003707224503159523,
0.033039361238479614,
-0.0017731422558426857,
0.02143346518278122,
0.10702002048492432,
0.0296336617320776,
0.2251889854669571,
-0.006560098379850388,
-0.01623544469475746,
-0.03283761814236641,
-0.028376568108797073,
-0.06922983378171921,
0.055477455258369446,
-0.05898075923323631,
0.04690107703208923,
-0.06642869859933853,
0.008033417165279388,
-0.04992073029279709,
-0.1422347128391266,
0.008388032205402851,
-0.13656437397003174,
-0.08207942545413971,
-0.010855723172426224,
-0.051885999739170074,
0.024809150025248528,
0.06027034670114517,
0.03081856109201908,
-0.018066849559545517,
0.07424677908420563,
0.007685549557209015,
-0.17459440231323242,
-0.03312993794679642,
0.04732512682676315,
-0.0035010683350265026,
0.23152315616607666,
-0.027352754026651382,
-0.016616227105259895,
0.09915967285633087,
-0.016041569411754608,
-0.13658669590950012,
0.06164999306201935,
0.016350386664271355,
-0.08803527802228928,
-0.02599344775080681,
0.11156131327152252,
-0.01710747554898262,
0.034680888056755066,
0.059366606175899506,
0.10900183022022247,
0.0009488118812441826,
0.032708317041397095,
0.021754834800958633,
-0.0630480945110321,
-0.010523843578994274,
-0.13149763643741608,
0.15554413199424744,
0.13190124928951263,
-0.028043443337082863,
-0.009416172280907631,
-0.06761184334754944,
0.0399477556347847,
-0.010362613946199417,
0.05590822547674179,
-0.03658375144004822,
-0.12572456896305084,
0.0030654773581773043,
-0.022788165137171745,
0.007736183702945709,
-0.21314671635627747,
-0.049015674740076065,
-0.03092348389327526,
-0.005003005266189575,
-0.005787815898656845,
0.10544013231992722,
0.09185689687728882,
0.0009782398119568825,
-0.030947253108024597,
-0.13862398266792297,
-0.03504757583141327,
0.06058179959654808,
-0.11322936415672302,
-0.07500201463699341
] |
null | null | pyannote-audio |
# 🎹 Speaker diarization
Relies on pyannote.audio 2.0: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation).
## TL;DR
```python
# load the pipeline from Hugginface Hub
from pyannote.audio import Pipeline
pipeline = Pipeline.from_pretrained("pyannote/[email protected]")
# apply the pipeline to an audio file
diarization = pipeline("audio.wav")
# dump the diarization output to disk using RTTM format
with open("audio.rttm", "w") as rttm:
diarization.write_rttm(rttm)
```
## Advanced usage
In case the number of speakers is known in advance, one can use the `num_speakers` option:
```python
diarization = pipeline("audio.wav", num_speakers=2)
```
One can also provide lower and/or upper bounds on the number of speakers using `min_speakers` and `max_speakers` options:
```python
diarization = pipeline("audio.wav", min_speakers=2, max_speakers=5)
```
If you feel adventurous, you can try and play with the various pipeline hyper-parameters.
For instance, one can use a more aggressive voice activity detection by increasing the value of `segmentation_onset` threshold:
```python
hparams = pipeline.parameters(instantiated=True)
hparams["segmentation_onset"] += 0.1
pipeline.instantiate(hparams)
```
## Benchmark
### Real-time factor
Real-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part).
In other words, it takes approximately 3 minutes to process a one hour conversation.
### Accuracy
This pipeline is benchmarked on a growing collection of datasets.
Processing is fully automatic:
* no manual voice activity detection (as is sometimes the case in the literature)
* no manual number of speakers (though it is possible to provide it to the pipeline)
* no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset
... with the least forgiving diarization error rate (DER) setup (named *"Full"* in [this paper](https://doi.org/10.1016/j.csl.2021.101254)):
* no forgiveness collar
* evaluation of overlapped speech
| Benchmark | [DER%](. "Diarization error rate") | [FA%](. "False alarm rate") | [Miss%](. "Missed detection rate") | [Conf%](. "Speaker confusion rate") | Expected output | File-level evaluation |
| ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------- | --------------------------- | ---------------------------------- | ----------------------------------- | ------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------ |
| [AISHELL-4](http://www.openslr.org/111/) | 14.61 | 3.31 | 4.35 | 6.95 | [RTTM](reproducible_research/AISHELL.SpeakerDiarization.Full.test.rttm) | [eval](reproducible_research/AISHELL.SpeakerDiarization.Full.test.eval) |
| [AMI *Mix-Headset*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 18.21 | 3.28 | 11.07 | 3.87 | [RTTM](reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.rttm) | [eval](reproducible_research/2022.07/AMI.SpeakerDiarization.only_words.test.eval) |
| [AMI *Array1-01*](https://groups.inf.ed.ac.uk/ami/corpus/) [*only_words*](https://github.com/BUTSpeechFIT/AMI-diarization-setup) | 29.00 | 2.71 | 21.61 | 4.68 | [RTTM](reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.rttm) | [eval](reproducible_research/2022.07/AMI-SDM.SpeakerDiarization.only_words.test.eval) |
| [CALLHOME](https://catalog.ldc.upenn.edu/LDC2001S97) [*Part2*](https://github.com/BUTSpeechFIT/CALLHOME_sublists/issues/1) | 30.24 | 3.71 | 16.86 | 9.66 | [RTTM](reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.rttm) | [eval](reproducible_research/2022.07/CALLHOME.SpeakerDiarization.CALLHOME.test.eval) |
| [DIHARD 3 *Full*](https://arxiv.org/abs/2012.01477) | 20.99 | 4.25 | 10.74 | 6.00 | [RTTM](reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.rttm) | [eval](reproducible_research/2022.07/DIHARD.SpeakerDiarization.Full.test.eval) |
| [REPERE *Phase 2*](https://islrn.org/resources/360-758-359-485-0/) | 12.62 | 1.55 | 3.30 | 7.76 | [RTTM](reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.rttm) | [eval](reproducible_research/2022.07/REPERE.SpeakerDiarization.Full.test.eval) |
| [VoxConverse *v0.0.2*](https://github.com/joonson/voxconverse) | 12.76 | 3.45 | 3.85 | 5.46 | [RTTM](reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.rttm) | [eval](reproducible_research/2022.07/VoxConverse.SpeakerDiarization.VoxConverse.test.eval) |
## Support
For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]).
For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository.
## Citations
```bibtex
@inproceedings{Bredin2021,
Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}},
Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine},
Booktitle = {Proc. Interspeech 2021},
Address = {Brno, Czech Republic},
Month = {August},
Year = {2021},
}
```
```bibtex
@inproceedings{Bredin2020,
Title = {{pyannote.audio: neural building blocks for speaker diarization}},
Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe},
Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing},
Address = {Barcelona, Spain},
Month = {May},
Year = {2020},
}
```
| {"license": "mit", "tags": ["pyannote", "pyannote-audio", "pyannote-audio-pipeline", "audio", "voice", "speech", "speaker", "speaker-diarization", "speaker-change-detection", "voice-activity-detection", "overlapped-speech-detection"], "datasets": ["ami", "dihard", "voxconverse", "aishell", "repere", "voxceleb"]} | voice-activity-detection | BoKnows/vad-endpoint | [
"pyannote-audio",
"pyannote",
"pyannote-audio-pipeline",
"audio",
"voice",
"speech",
"speaker",
"speaker-diarization",
"speaker-change-detection",
"voice-activity-detection",
"overlapped-speech-detection",
"dataset:ami",
"dataset:dihard",
"dataset:voxconverse",
"dataset:aishell",
"dataset:repere",
"dataset:voxceleb",
"arxiv:2012.01477",
"license:mit",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:10:58+00:00 | [
"2012.01477"
] | [] | TAGS
#pyannote-audio #pyannote #pyannote-audio-pipeline #audio #voice #speech #speaker #speaker-diarization #speaker-change-detection #voice-activity-detection #overlapped-speech-detection #dataset-ami #dataset-dihard #dataset-voxconverse #dataset-aishell #dataset-repere #dataset-voxceleb #arxiv-2012.01477 #license-mit #endpoints_compatible #region-us
| Speaker diarization
===================
Relies on URL 2.0: see installation instructions.
TL;DR
-----
Advanced usage
--------------
In case the number of speakers is known in advance, one can use the 'num\_speakers' option:
One can also provide lower and/or upper bounds on the number of speakers using 'min\_speakers' and 'max\_speakers' options:
If you feel adventurous, you can try and play with the various pipeline hyper-parameters.
For instance, one can use a more aggressive voice activity detection by increasing the value of 'segmentation\_onset' threshold:
Benchmark
---------
### Real-time factor
Real-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part).
In other words, it takes approximately 3 minutes to process a one hour conversation.
### Accuracy
This pipeline is benchmarked on a growing collection of datasets.
Processing is fully automatic:
* no manual voice activity detection (as is sometimes the case in the literature)
* no manual number of speakers (though it is possible to provide it to the pipeline)
* no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset
... with the least forgiving diarization error rate (DER) setup (named *"Full"* in this paper):
* no forgiveness collar
* evaluation of overlapped speech
Support
-------
For commercial enquiries and scientific consulting, please contact me.
For technical questions and bug reports, please check URL Github repository.
s
| [
"### Real-time factor\n\n\nReal-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part).\n\n\nIn other words, it takes approximately 3 minutes to process a one hour conversation.",
"### Accuracy\n\n\nThis pipeline is benchmarked on a growing collection of datasets.\n\n\nProcessing is fully automatic:\n\n\n* no manual voice activity detection (as is sometimes the case in the literature)\n* no manual number of speakers (though it is possible to provide it to the pipeline)\n* no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset\n\n\n... with the least forgiving diarization error rate (DER) setup (named *\"Full\"* in this paper):\n\n\n* no forgiveness collar\n* evaluation of overlapped speech\n\n\n\nSupport\n-------\n\n\nFor commercial enquiries and scientific consulting, please contact me. \n\nFor technical questions and bug reports, please check URL Github repository.\n\n\ns"
] | [
"TAGS\n#pyannote-audio #pyannote #pyannote-audio-pipeline #audio #voice #speech #speaker #speaker-diarization #speaker-change-detection #voice-activity-detection #overlapped-speech-detection #dataset-ami #dataset-dihard #dataset-voxconverse #dataset-aishell #dataset-repere #dataset-voxceleb #arxiv-2012.01477 #license-mit #endpoints_compatible #region-us \n",
"### Real-time factor\n\n\nReal-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part).\n\n\nIn other words, it takes approximately 3 minutes to process a one hour conversation.",
"### Accuracy\n\n\nThis pipeline is benchmarked on a growing collection of datasets.\n\n\nProcessing is fully automatic:\n\n\n* no manual voice activity detection (as is sometimes the case in the literature)\n* no manual number of speakers (though it is possible to provide it to the pipeline)\n* no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset\n\n\n... with the least forgiving diarization error rate (DER) setup (named *\"Full\"* in this paper):\n\n\n* no forgiveness collar\n* evaluation of overlapped speech\n\n\n\nSupport\n-------\n\n\nFor commercial enquiries and scientific consulting, please contact me. \n\nFor technical questions and bug reports, please check URL Github repository.\n\n\ns"
] | [
137,
65,
166
] | [
"passage: TAGS\n#pyannote-audio #pyannote #pyannote-audio-pipeline #audio #voice #speech #speaker #speaker-diarization #speaker-change-detection #voice-activity-detection #overlapped-speech-detection #dataset-ami #dataset-dihard #dataset-voxconverse #dataset-aishell #dataset-repere #dataset-voxceleb #arxiv-2012.01477 #license-mit #endpoints_compatible #region-us \n### Real-time factor\n\n\nReal-time factor is around 5% using one Nvidia Tesla V100 SXM2 GPU (for the neural inference part) and one Intel Cascade Lake 6248 CPU (for the clustering part).\n\n\nIn other words, it takes approximately 3 minutes to process a one hour conversation.### Accuracy\n\n\nThis pipeline is benchmarked on a growing collection of datasets.\n\n\nProcessing is fully automatic:\n\n\n* no manual voice activity detection (as is sometimes the case in the literature)\n* no manual number of speakers (though it is possible to provide it to the pipeline)\n* no fine-tuning of the internal models nor tuning of the pipeline hyper-parameters to each dataset\n\n\n... with the least forgiving diarization error rate (DER) setup (named *\"Full\"* in this paper):\n\n\n* no forgiveness collar\n* evaluation of overlapped speech\n\n\n\nSupport\n-------\n\n\nFor commercial enquiries and scientific consulting, please contact me. \n\nFor technical questions and bug reports, please check URL Github repository.\n\n\ns"
] | [
-0.10479354113340378,
0.12566661834716797,
-0.0005145934410393238,
0.06846101582050323,
0.03775835782289505,
-0.0022014158312231302,
-0.0023753447458148003,
0.09909094870090485,
0.035013847053050995,
0.12898412346839905,
-0.02574625238776207,
0.005389836151152849,
0.07037851959466934,
0.16827334463596344,
-0.019628368318080902,
-0.11635598540306091,
0.011894652619957924,
-0.05994885042309761,
0.17057834565639496,
0.10015592724084854,
0.09252475947141647,
-0.0909198746085167,
0.03506673872470856,
-0.02983737923204899,
-0.060907892882823944,
-0.06322263181209564,
0.07922007888555527,
-0.04671427980065346,
0.0638570562005043,
0.004179590847343206,
0.01848980225622654,
-0.02260224148631096,
0.06435711681842804,
-0.12342748045921326,
0.006802944932132959,
0.10252735763788223,
0.08855168521404266,
0.08370141685009003,
0.11021609604358673,
-0.02030051313340664,
0.09465699642896652,
-0.04918604716658592,
0.06977535039186478,
0.06963642686605453,
-0.05811772868037224,
-0.17848004400730133,
-0.08569411188364029,
-0.012114573270082474,
0.10782504826784134,
0.07685224711894989,
-0.049927204847335815,
0.09926760196685791,
-0.04070655256509781,
0.07522117346525192,
0.021594397723674774,
-0.16943365335464478,
-0.01636856608092785,
0.051954418420791626,
-0.016566598787903786,
0.10918799042701721,
-0.06071352958679199,
-0.018519435077905655,
0.018296901136636734,
0.004446971230208874,
0.07335469871759415,
-0.001140077831223607,
-0.025678010657429695,
-0.06861264258623123,
-0.07694333046674728,
-0.010266313329339027,
0.1347166895866394,
0.0029304029885679483,
-0.06758618354797363,
-0.1653292030096054,
-0.09115664660930634,
-0.17201316356658936,
-0.009370611049234867,
-0.006626789923757315,
-0.0034060105681419373,
-0.022932257503271103,
0.028469780460000038,
0.001968096476048231,
-0.08058859407901764,
-0.08256968855857849,
-0.08714351803064346,
0.04282844066619873,
0.03786490485072136,
0.047395940870046616,
0.011166040785610676,
0.12839236855506897,
-0.052351970225572586,
-0.07425513863563538,
-0.031368356198072433,
-0.019320417195558548,
-0.1996549367904663,
-0.0033321608789265156,
-0.0032054607290774584,
0.015023713931441307,
-0.04237423464655876,
0.14788219332695007,
-0.049019765108823776,
0.0008089307812042534,
-0.01447603851556778,
-0.029120465740561485,
0.07539854198694229,
0.04266054555773735,
-0.0014107481110841036,
-0.15297968685626984,
0.007431644480675459,
-0.01502232812345028,
0.09143911302089691,
-0.0328524187207222,
0.01172705926001072,
-0.015132532455027103,
0.012788595631718636,
0.03612508624792099,
0.06689351052045822,
-0.03781408816576004,
-0.08339852839708328,
-0.07770021259784698,
0.1424982249736786,
-0.1539299190044403,
0.036695800721645355,
0.015473224222660065,
-0.00584451574832201,
0.08775579184293747,
-0.02557183802127838,
-0.0034431531094014645,
-0.09374196082353592,
0.07936899363994598,
-0.07152160257101059,
-0.036567460745573044,
-0.10152745991945267,
-0.024453500285744667,
0.02240324206650257,
-0.06821619719266891,
-0.06379237771034241,
-0.03949490934610367,
-0.13268017768859863,
-0.03377398103475571,
0.035829056054353714,
-0.11045847833156586,
-0.05727279558777809,
0.023600779473781586,
0.009467977099120617,
0.0797405019402504,
-0.05089840665459633,
0.10721497982740402,
-0.06351057440042496,
0.07252989709377289,
0.019615808501839638,
0.07190343737602234,
0.05445089563727379,
0.042247530072927475,
-0.12050384283065796,
0.0017833624733611941,
-0.12190113216638565,
0.13749882578849792,
-0.05701110139489174,
-0.09316300600767136,
-0.1312917172908783,
-0.03233429044485092,
-0.07354386895895004,
-0.012775538489222527,
0.014856579713523388,
0.11476422101259232,
-0.19536180794239044,
-0.04736746475100517,
0.1006891280412674,
-0.10235761106014252,
0.007399688940495253,
0.18937255442142487,
0.02233112044632435,
-0.012223753146827221,
0.1093730479478836,
0.13061827421188354,
-0.008373431861400604,
-0.1341569423675537,
-0.09871654957532883,
-0.017707908526062965,
0.019048014655709267,
0.058324187994003296,
0.09087737649679184,
-0.03664886951446533,
0.05445132404565811,
0.03716607391834259,
0.014968029223382473,
-0.030651159584522247,
0.001432981458492577,
-0.06456514447927475,
-0.0539894737303257,
-0.03649883717298508,
-0.004338122438639402,
0.0025473705027252436,
-0.050021830946207047,
-0.030170314013957977,
-0.14411459863185883,
-0.08649508655071259,
0.12669670581817627,
-0.01809585653245449,
0.03479982912540436,
-0.09296625107526779,
0.05414106324315071,
-0.0806332379579544,
-0.023067401722073555,
-0.17900967597961426,
-0.019088497385382652,
0.05555998161435127,
-0.09079204499721527,
0.04182355850934982,
-0.03280462697148323,
-0.0107348021119833,
0.06122013181447983,
-0.039958417415618896,
0.008117125369608402,
0.056074801832437515,
-0.042771048843860626,
-0.06986192613840103,
-0.14439453184604645,
-0.022026527673006058,
-0.032255832105875015,
0.1053708866238594,
-0.11395306885242462,
-0.04262755438685417,
-0.004866448231041431,
0.1102425679564476,
0.046124447137117386,
-0.12744960188865662,
-0.015855571255087852,
-0.033236484974622726,
-0.03623867407441139,
-0.025412417948246002,
0.012167361564934254,
-0.026320746168494225,
0.014420570805668831,
0.06415402889251709,
-0.15908527374267578,
-0.041403643786907196,
0.12417490780353546,
0.13808830082416534,
-0.064822256565094,
-0.005288667045533657,
-0.02427397295832634,
-0.03911960870027542,
-0.12057808041572571,
-0.04685245081782341,
0.1011839509010315,
0.06804876774549484,
0.05997222289443016,
-0.10671024024486542,
-0.040638670325279236,
0.02082033082842827,
0.0012272000312805176,
-0.003075133776292205,
0.08188683539628983,
0.0890863835811615,
-0.06843909621238708,
0.054985035210847855,
-0.0015484592877328396,
0.010406237095594406,
0.13190625607967377,
0.03056633658707142,
-0.14082466065883636,
-0.028911801055073738,
-0.07206893712282181,
-0.004549207631498575,
0.11644742637872696,
-0.04962717369198799,
0.044825516641139984,
0.09604202955961227,
0.0180502962321043,
0.01448706816881895,
-0.09581171721220016,
0.06388020515441895,
0.003506361274048686,
-0.035032059997320175,
-0.02308281883597374,
0.03807475417852402,
-0.0031609628349542618,
0.11689046770334244,
-0.05810726806521416,
-0.00845848023891449,
-0.02911197952926159,
-0.03066377341747284,
-0.09920042753219604,
0.0918436348438263,
-0.06735190749168396,
-0.2374744713306427,
-0.1093766987323761,
-0.060692090541124344,
-0.015787193551659584,
0.00591381685808301,
0.003660515882074833,
-0.052501652389764786,
-0.11642588675022125,
-0.07572002708911896,
0.024775328114628792,
-0.004159913863986731,
-0.022452104836702347,
-0.07670078426599503,
0.0023447955027222633,
0.039540525525808334,
-0.0933288186788559,
-0.00588865764439106,
0.00818563811480999,
-0.09614947438240051,
0.02179824933409691,
0.09309346973896027,
0.0601741261780262,
0.18784111738204956,
0.04639894887804985,
-0.032164037227630615,
0.018087290227413177,
0.17033235728740692,
-0.11786304414272308,
0.12086214125156403,
0.22330670058727264,
0.03125057741999626,
0.026149790734052658,
0.17028303444385529,
0.02712985873222351,
-0.06846190243959427,
0.024905916303396225,
0.05000077560544014,
-0.06402347981929779,
-0.22637201845645905,
-0.12967586517333984,
-0.06129198521375656,
-0.002167280064895749,
0.06474845856428146,
0.016316991299390793,
-0.010853500105440617,
0.007832319475710392,
-0.09074973315000534,
-0.025782672688364983,
0.030669571831822395,
0.03950677812099457,
0.0847640410065651,
-0.001415021950379014,
0.13927260041236877,
-0.01863246224820614,
0.04236771538853645,
0.10898125171661377,
0.06727364659309387,
0.15278321504592896,
-0.04084590822458267,
0.17150934040546417,
-0.0036932071670889854,
0.13869379460811615,
0.07083933055400848,
0.005199479404836893,
-0.00943533144891262,
0.045781802386045456,
-0.010182386264204979,
-0.06729134917259216,
-0.05448204278945923,
0.03927804157137871,
0.07697092741727829,
-0.056794218719005585,
0.029668614268302917,
0.014398830942809582,
0.022917302325367928,
0.20087994635105133,
0.15209637582302094,
-0.19692008197307587,
-0.09543047845363617,
0.0259513258934021,
-0.07868634909391403,
-0.08475635945796967,
0.017959417775273323,
0.09867455810308456,
-0.08686821162700653,
0.012507996521890163,
-0.04273064807057381,
0.07222288846969604,
-0.12613876163959503,
-0.007886982522904873,
0.024290310218930244,
0.0968683585524559,
0.019095169380307198,
0.06066392734646797,
-0.12125171720981598,
0.09275346994400024,
0.008753768168389797,
0.1089497059583664,
-0.03118797205388546,
0.015911340713500977,
-0.0032731920946389437,
-0.04814416915178299,
0.13970912992954254,
0.016623085364699364,
-0.02315477281808853,
-0.155733123421669,
-0.2123086154460907,
0.0012693066382780671,
0.030499979853630066,
-0.05133571848273277,
0.05133959278464317,
-0.053304802626371384,
-0.009380188770592213,
-0.015197324566543102,
-0.11797075718641281,
-0.10976249724626541,
-0.15981045365333557,
0.0447668619453907,
0.018412819132208824,
-0.02305983006954193,
-0.027283690869808197,
-0.038960203528404236,
-0.04177458956837654,
0.15698327124118805,
-0.12662532925605774,
-0.10264872014522552,
-0.12129198759794235,
-0.010944627225399017,
0.17698225378990173,
-0.04728430509567261,
0.04329106584191322,
0.002392195165157318,
0.1405167430639267,
0.009584018029272556,
-0.09356549382209778,
0.05148085951805115,
-0.08288548141717911,
-0.13439983129501343,
-0.07647207379341125,
0.17072486877441406,
0.07224742323160172,
0.0801902487874031,
-0.009833579882979393,
0.0738036036491394,
-0.03782004490494728,
-0.061635736376047134,
0.06025740131735802,
0.1840631514787674,
0.03082166612148285,
0.04933717101812363,
0.012127243913710117,
-0.13073761761188507,
-0.06717050820589066,
-0.06470011919736862,
0.06533379852771759,
0.16097934544086456,
-0.07483843713998795,
0.19601744413375854,
0.12027572840452194,
-0.04690898209810257,
-0.2042958289384842,
-0.0578632727265358,
0.09268280118703842,
0.020255524665117264,
0.031206652522087097,
-0.1471119374036789,
0.16217166185379028,
0.1118803322315216,
-0.046135999262332916,
0.12155424058437347,
-0.2477574497461319,
-0.1510959267616272,
0.038853082805871964,
-0.04465272277593613,
-0.012464109808206558,
-0.02926192246377468,
-0.04856915771961212,
-0.03564279526472092,
-0.0855606347322464,
0.16326232254505157,
-0.04861420765519142,
0.10234710574150085,
-0.0023797200992703438,
0.06461544334888458,
0.027807235717773438,
-0.056431178003549576,
0.11135029047727585,
0.024302151054143906,
0.013901381753385067,
0.019219480454921722,
0.05105796828866005,
-0.04141886904835701,
-0.02309511974453926,
0.13706272840499878,
0.02026239223778248,
0.049459390342235565,
-0.012614415027201176,
-0.09469830989837646,
-0.04226767271757126,
0.03021017089486122,
-0.017422454431653023,
-0.07681141048669815,
-0.07207826524972916,
0.09468360245227814,
0.03534388542175293,
-0.06070052087306976,
-0.015330168418586254,
-0.04807855188846588,
0.009276952594518661,
0.1894170194864273,
0.09955339133739471,
-0.03813935071229935,
-0.20331117510795593,
-0.042783431708812714,
-0.046803683042526245,
0.05237516760826111,
-0.09062142670154572,
0.05585870519280434,
0.10107551515102386,
0.03288434445858002,
0.06674635410308838,
-0.035704970359802246,
-0.09667433053255081,
0.0016636359505355358,
0.0336521752178669,
-0.05654357001185417,
-0.17603376507759094,
0.04025701433420181,
-0.013555559329688549,
-0.10559840500354767,
-0.05575209856033325,
0.1199125126004219,
-0.02585415728390217,
-0.030166687443852425,
0.03127627447247505,
0.11255710572004318,
0.0067406585440039635,
0.20999836921691895,
-0.041828833520412445,
0.035338737070560455,
-0.1508309543132782,
0.11191945523023605,
0.09894617646932602,
-0.1346890777349472,
-0.004399059806019068,
0.04771001264452934,
-0.08946149796247482,
-0.019921768456697464,
-0.027785342186689377,
-0.08883202075958252,
-0.051537059247493744,
-0.03151649236679077,
0.023407693952322006,
-0.07426680624485016,
0.05280426889657974,
-0.0828666016459465,
0.02804294228553772,
0.0586976632475853,
-0.097394198179245,
-0.009518111124634743,
-0.04978896677494049,
0.134507954120636,
0.058581043034791946,
0.03713127225637436,
-0.10073916614055634,
0.11614244431257248,
0.026775481179356575,
-0.024522097781300545,
-0.029848238453269005,
-0.03384300321340561,
-0.006990613881498575,
-0.0002676747099030763,
-0.09348494559526443,
0.010202699340879917,
-0.03594622761011124,
-0.00785886961966753,
-0.019892023876309395,
-0.015236745588481426,
-0.02348184399306774,
0.017392819747328758,
-0.04891172796487808,
-0.05381111055612564,
-0.05177757516503334,
0.02666337601840496,
-0.1088995635509491,
0.04112972691655159,
0.06461960077285767,
-0.07214578241109848,
0.08306241780519485,
0.058434467762708664,
0.0021371382754296064,
0.01124522928148508,
-0.11752979457378387,
-0.024211600422859192,
0.013989036902785301,
0.1044388860464096,
0.04185088351368904,
-0.14979630708694458,
-0.008991838432848454,
0.06194766238331795,
-0.019755929708480835,
0.00967690721154213,
0.06581302732229233,
-0.12197189033031464,
-0.0018766192952170968,
-0.06397653371095657,
-0.04651562497019768,
-0.06443970650434494,
-0.008259620517492294,
0.06844446808099747,
0.07802288979291916,
0.16993655264377594,
-0.03744164854288101,
0.03007236309349537,
-0.2147027850151062,
0.02494746260344982,
-0.01999027654528618,
-0.015627343207597733,
-0.10876456648111343,
0.020346706733107567,
0.09559515118598938,
-0.0019188669975847006,
0.1394851803779602,
0.056121084839105606,
-0.013559493236243725,
0.033835917711257935,
-0.011225510388612747,
-0.06737391650676727,
0.00170929916203022,
0.07375562191009521,
0.0734238401055336,
0.021798357367515564,
0.05006268247961998,
-0.030622364953160286,
0.022529421374201775,
0.1329832822084427,
0.14866632223129272,
0.10401854664087296,
0.15494917333126068,
0.011709540151059628,
-0.02150861732661724,
-0.1336718499660492,
-0.16987696290016174,
0.11777399480342865,
-0.15409108996391296,
0.059244316071271896,
0.010490366257727146,
0.16345424950122833,
0.06963986903429031,
-0.185455322265625,
0.09651694446802139,
-0.0341777577996254,
-0.06835998594760895,
-0.12620151042938232,
-0.2041713446378708,
-0.04877496510744095,
-0.047045253217220306,
-0.025837209075689316,
-0.07690683007240295,
0.0673842504620552,
0.03717537224292755,
0.04080059751868248,
-0.02967710606753826,
0.09952028095722198,
-0.10390044748783112,
-0.04622973874211311,
0.027458427473902702,
0.05219489708542824,
-0.02504371665418148,
0.049648217856884,
-0.012521893717348576,
0.03179257735610008,
0.06936461478471756,
0.1124546006321907,
0.01752615161240101,
-0.0227043479681015,
0.05067446827888489,
0.025560420006513596,
-0.049170199781656265,
0.0008893226622603834,
-0.010811314918100834,
0.03446875512599945,
0.20040546357631683,
0.07293209433555603,
0.021571476012468338,
-0.037285443395376205,
0.23576483130455017,
-0.07433755695819855,
-0.04392389953136444,
-0.1466948390007019,
0.23510587215423584,
-0.0646415501832962,
0.006425127387046814,
0.048917364329099655,
-0.12638534605503082,
-0.03788123279809952,
0.15284523367881775,
0.16078412532806396,
-0.055718399584293365,
-0.046554237604141235,
-0.014917569234967232,
-0.02184612862765789,
-0.06772354990243912,
0.08846267312765121,
0.06470678001642227,
0.3587191700935364,
-0.03440900519490242,
0.10837532579898834,
0.01167468260973692,
-0.03452976420521736,
-0.026674289256334305,
0.10875319689512253,
-0.06757118552923203,
0.02368040382862091,
-0.05859077721834183,
0.06522859632968903,
-0.007774753961712122,
-0.20813199877738953,
-0.0031273476779460907,
-0.027293987572193146,
-0.1238531619310379,
0.041983459144830704,
0.02891959436237812,
-0.03262433037161827,
0.0011705529177561402,
-0.009153777733445168,
0.05358623340725899,
0.06705685704946518,
-0.02041926234960556,
-0.09541209787130356,
-0.05090927332639694,
0.09213957190513611,
-0.011986007913947105,
0.18995851278305054,
0.013650319539010525,
0.1043424978852272,
0.05303262919187546,
0.020674047991633415,
-0.13427361845970154,
0.07838737964630127,
-0.00035846876562573016,
-0.12777504324913025,
0.07258571684360504,
0.23306052386760712,
0.004693021532148123,
0.1187799870967865,
0.0902719795703888,
-0.014008975587785244,
0.011569998227059841,
-0.04088025912642479,
-0.0260422695428133,
-0.1048210933804512,
0.059039004147052765,
-0.07095310837030411,
0.1174350455403328,
0.13594457507133484,
-0.02396494708955288,
0.0019468363607302308,
-0.04136978089809418,
0.05803162232041359,
-0.023450201377272606,
0.07340557128190994,
0.04450127109885216,
-0.21429075300693512,
0.0429278202354908,
0.000952292641159147,
0.034614384174346924,
-0.13870815932750702,
-0.06631772965192795,
0.004560223314911127,
-0.0450277216732502,
-0.08534812182188034,
0.08280027657747269,
0.03274562209844589,
0.014608731493353844,
-0.04505893588066101,
0.010224537923932076,
0.05399363115429878,
0.05143851414322853,
-0.12454145401716232,
-0.05589057877659798
] |
null | null | ml-agents |
# **ppo** Agent playing **SnowballTarget**
This is a trained model of a **ppo** agent playing **SnowballTarget**
using the [Unity ML-Agents Library](https://github.com/Unity-Technologies/ml-agents).
## Usage (with ML-Agents)
The Documentation: https://unity-technologies.github.io/ml-agents/ML-Agents-Toolkit-Documentation/
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog 🐶 to fetch the stick and then play with him directly in your
browser: https://huggingface.co/learn/deep-rl-course/unitbonus1/introduction
- A *longer tutorial* to understand how works ML-Agents:
https://huggingface.co/learn/deep-rl-course/unit5/introduction
### Resume the training
```bash
mlagents-learn <your_configuration_file_path.yaml> --run-id=<run_id> --resume
```
### Watch your Agent play
You can watch your agent **playing directly in your browser**
1. If the environment is part of ML-Agents official environments, go to https://huggingface.co/unity
2. Step 1: Find your model_id: arekpaterak/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play 👀
| {"library_name": "ml-agents", "tags": ["SnowballTarget", "deep-reinforcement-learning", "reinforcement-learning", "ML-Agents-SnowballTarget"]} | reinforcement-learning | arekpaterak/ppo-SnowballTarget | [
"ml-agents",
"tensorboard",
"onnx",
"SnowballTarget",
"deep-reinforcement-learning",
"reinforcement-learning",
"ML-Agents-SnowballTarget",
"region:us"
] | 2024-02-13T13:15:24+00:00 | [] | [] | TAGS
#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us
|
# ppo Agent playing SnowballTarget
This is a trained model of a ppo agent playing SnowballTarget
using the Unity ML-Agents Library.
## Usage (with ML-Agents)
The Documentation: URL
We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:
- A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your
browser: URL
- A *longer tutorial* to understand how works ML-Agents:
URL
### Resume the training
### Watch your Agent play
You can watch your agent playing directly in your browser
1. If the environment is part of ML-Agents official environments, go to URL
2. Step 1: Find your model_id: arekpaterak/ppo-SnowballTarget
3. Step 2: Select your *.nn /*.onnx file
4. Click on Watch the agent play
| [
"# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: arekpaterak/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
"TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n",
"# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: arekpaterak/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
50,
207
] | [
"passage: TAGS\n#ml-agents #tensorboard #onnx #SnowballTarget #deep-reinforcement-learning #reinforcement-learning #ML-Agents-SnowballTarget #region-us \n# ppo Agent playing SnowballTarget\n This is a trained model of a ppo agent playing SnowballTarget\n using the Unity ML-Agents Library.\n\n ## Usage (with ML-Agents)\n The Documentation: URL\n\n We wrote a complete tutorial to learn to train your first agent using ML-Agents and publish it to the Hub:\n - A *short tutorial* where you teach Huggy the Dog to fetch the stick and then play with him directly in your\n browser: URL\n - A *longer tutorial* to understand how works ML-Agents:\n URL\n\n ### Resume the training\n \n\n ### Watch your Agent play\n You can watch your agent playing directly in your browser\n\n 1. If the environment is part of ML-Agents official environments, go to URL\n 2. Step 1: Find your model_id: arekpaterak/ppo-SnowballTarget\n 3. Step 2: Select your *.nn /*.onnx file\n 4. Click on Watch the agent play"
] | [
-0.0408441536128521,
0.05995257571339607,
-0.0035687917843461037,
0.10431566834449768,
0.167643740773201,
-0.01192350685596466,
0.15218201279640198,
0.10692743211984634,
0.13513636589050293,
0.06086249649524689,
0.09036172926425934,
0.09454669803380966,
0.05566571280360222,
0.13331137597560883,
0.08486168086528778,
-0.2428276240825653,
-0.04738311842083931,
-0.09959704428911209,
0.003276852425187826,
0.0781417116522789,
0.04684188589453697,
-0.036437198519706726,
0.02187153324484825,
0.05704826861619949,
-0.013388183899223804,
-0.010129036381840706,
-0.07480315864086151,
-0.043151307851076126,
0.07060907781124115,
-0.03857029229402542,
0.01954648084938526,
-0.05984837934374809,
0.08777078986167908,
-0.16583570837974548,
0.026603737846016884,
0.04244489595293999,
-0.0001568029256304726,
-0.0259090643376112,
0.14067715406417847,
0.023906642571091652,
0.11137351393699646,
-0.13604046404361725,
0.09435133635997772,
0.06789419054985046,
-0.05348294973373413,
-0.01854282058775425,
-0.07028098404407501,
0.059713564813137054,
0.21054287254810333,
0.14469122886657715,
-0.0036561815068125725,
0.07678379118442535,
-0.027696730569005013,
0.06765522807836533,
0.15979844331741333,
-0.28032976388931274,
-0.06936483085155487,
0.1787767857313156,
-0.05317184701561928,
0.036211173981428146,
-0.011539255268871784,
0.04677169770002365,
-0.024077795445919037,
0.022623423486948013,
-0.013787029311060905,
0.02627704106271267,
0.24981984496116638,
0.017413685098290443,
-0.10296709835529327,
-0.08412888646125793,
-0.008590128272771835,
0.023958463221788406,
-0.04492675140500069,
-0.18737056851387024,
0.015462278388440609,
0.1275414675474167,
0.01047678291797638,
0.039959318935871124,
0.044327203184366226,
0.00934434775263071,
-0.10518855601549149,
-0.15306229889392853,
-0.03504885733127594,
-0.05735386162996292,
0.10235617309808731,
0.11260811239480972,
-0.02304454706609249,
-0.00748975807800889,
0.03442109748721123,
0.081755630671978,
0.09797098487615585,
-0.04765225574374199,
-0.03745490312576294,
-0.026401104405522346,
-0.14661404490470886,
-0.00922910775989294,
-0.0367901474237442,
-0.013321428559720516,
0.03245653584599495,
0.15314272046089172,
0.15945498645305634,
0.036231379956007004,
0.03850273787975311,
0.02998090349137783,
0.005624741781502962,
0.11902621388435364,
0.052251413464546204,
-0.027362914755940437,
-0.006956115365028381,
0.01190652884542942,
0.062257394194602966,
-0.08590322732925415,
-0.08840490877628326,
0.04641420394182205,
-0.03489131107926369,
0.1330755203962326,
0.16293947398662567,
-0.018795013427734375,
0.00009963846969185397,
-0.03198408707976341,
0.01088529359549284,
-0.13820789754390717,
0.0727512389421463,
0.055754657834768295,
-0.049795299768447876,
-0.08024550974369049,
-0.06649025529623032,
0.061788223683834076,
-0.07872062176465988,
0.0549529492855072,
0.012584085576236248,
0.06993331760168076,
0.008853929117321968,
-0.0348031185567379,
0.05548678711056709,
-0.13736304640769958,
-0.007946323603391647,
-0.16709886491298676,
-0.12516634166240692,
-0.07631998509168625,
0.042835794389247894,
-0.046493735164403915,
-0.11852683126926422,
-0.09401137381792068,
0.03365560248494148,
-0.06684432923793793,
0.03012453392148018,
-0.024871379137039185,
-0.06302420794963837,
-0.031163785606622696,
-0.11804184317588806,
0.06268239766359329,
0.1699688583612442,
0.004866838455200195,
-0.030906761065125465,
0.021888403221964836,
-0.17736534774303436,
0.1647886484861374,
-0.14671701192855835,
0.1509045511484146,
-0.08602733165025711,
0.03960799425840378,
0.11758140474557877,
-0.02607867307960987,
0.05363272503018379,
0.18479543924331665,
-0.10588867962360382,
-0.07481243461370468,
0.04840095341205597,
-0.08971431106328964,
-0.10575412213802338,
0.059807438403367996,
0.014411160722374916,
0.05892888456583023,
0.06142375245690346,
0.22491981089115143,
0.1082276701927185,
-0.2414730042219162,
0.039975062012672424,
0.014071368612349033,
-0.12940648198127747,
0.0033346156124025583,
0.11988604813814163,
-0.08084049075841904,
-0.009000136516988277,
-0.03432689979672432,
-0.1314312070608139,
0.10747212171554565,
-0.00634416239336133,
-0.06297467648983002,
0.022817982360720634,
-0.04917604848742485,
-0.035529423505067825,
-0.004864733200520277,
0.043771691620349884,
-0.04060082882642746,
-0.05205515772104263,
-0.028468867763876915,
0.030559787526726723,
-0.00006818625843152404,
0.07356417924165726,
-0.016146119683980942,
0.11610253155231476,
-0.009806093759834766,
0.011608235538005829,
-0.10771257430315018,
-0.14922134578227997,
-0.016732200980186462,
0.011389629915356636,
0.07378735393285751,
-0.09094447642564774,
0.09668228775262833,
0.0748261883854866,
0.03794335201382637,
-0.07113359868526459,
-0.051719993352890015,
0.02444610185921192,
-0.11462292075157166,
-0.09946820884943008,
-0.062212202697992325,
-0.059283237904310226,
0.11077147722244263,
-0.08490223437547684,
0.06645407527685165,
-0.05679013580083847,
0.09073040634393692,
-0.020123634487390518,
-0.07093963772058487,
0.04947694018483162,
-0.009066004306077957,
0.045502450317144394,
-0.09795922040939331,
0.10781551152467728,
0.06964275240898132,
-0.13156943023204803,
0.041409920901060104,
0.06510104238986969,
-0.11329406499862671,
0.12494665384292603,
0.05684708058834076,
-0.0018519051373004913,
-0.049466557800769806,
-0.06485440582036972,
-0.0005723388749174774,
-0.07528334110975266,
0.017640767619013786,
0.21286430954933167,
0.14259110391139984,
0.07264740020036697,
-0.027272557839751244,
-0.06244470179080963,
-0.03140692412853241,
-0.05611578747630119,
-0.06150815635919571,
0.13331441581249237,
0.026484182104468346,
-0.007937938906252384,
0.030913224443793297,
0.009889308363199234,
0.08479750901460648,
0.12795741856098175,
-0.011119023896753788,
-0.11891598999500275,
0.016506560146808624,
0.05088743567466736,
0.055270303040742874,
0.01873895339667797,
0.04788251593708992,
-0.025962362065911293,
-0.011501619592308998,
-0.05804838240146637,
-0.013469935394823551,
-0.11319899559020996,
-0.059830740094184875,
0.062369633466005325,
-0.01018876489251852,
-0.010200309567153454,
-0.06415336579084396,
-0.044454336166381836,
0.0296318419277668,
0.09817005693912506,
-0.005212993826717138,
0.04123513773083687,
-0.035885151475667953,
-0.12092307209968567,
0.044548697769641876,
-0.09378297626972198,
-0.2223242074251175,
-0.10677208006381989,
-0.039253171533346176,
-0.07168380916118622,
0.007739676162600517,
0.07646802067756653,
-0.19704246520996094,
0.0040250481106340885,
-0.0932372584939003,
0.003748545655980706,
-0.0152066545560956,
-0.03364747017621994,
0.13829484581947327,
0.08873672783374786,
-0.03167269751429558,
-0.0680113434791565,
0.009489135816693306,
0.019392644986510277,
-0.06196495518088341,
0.0006542013725265861,
0.07084017992019653,
0.09660835564136505,
0.0729697197675705,
0.06377328187227249,
0.05685251206159592,
-0.03175390139222145,
0.14791372418403625,
-0.057300031185150146,
0.032671574503183365,
0.04603271558880806,
-0.010260737501084805,
0.08196362853050232,
0.02196435071527958,
0.02840818464756012,
0.00893368199467659,
0.011851148679852486,
0.016659880056977272,
-0.08221610635519028,
-0.2177257090806961,
-0.07920444756746292,
0.0017209110083058476,
0.1768912672996521,
0.1521763652563095,
0.08851510286331177,
-0.1112920343875885,
0.03064560890197754,
0.009189224801957607,
-0.11495385318994522,
0.10971923172473907,
0.13053162395954132,
-0.05406966060400009,
-0.018647735938429832,
0.033804189413785934,
-0.043480463325977325,
0.052303723990917206,
0.05164701119065285,
-0.03973029553890228,
0.10248258709907532,
0.015158544294536114,
-0.011231053620576859,
-0.021427331492304802,
-0.054367221891880035,
-0.061832647770643234,
0.13217073678970337,
0.06562407314777374,
0.027454158291220665,
0.013403842225670815,
-0.06500566750764847,
-0.07533794641494751,
0.129386305809021,
0.1568484604358673,
-0.07810080796480179,
-0.0449167937040329,
0.11401045322418213,
0.060486383736133575,
0.20529384911060333,
0.0021752736065536737,
-0.1008542999625206,
-0.07174414396286011,
-0.0028175702318549156,
-0.11149566620588303,
0.00976256188005209,
0.03671487048268318,
-0.009837808087468147,
-0.17036084830760956,
0.05517401918768883,
-0.009772880002856255,
0.10963037610054016,
0.01999533921480179,
-0.030011804774403572,
0.05833292007446289,
0.007466339971870184,
-0.030967116355895996,
0.04796777665615082,
-0.1637614369392395,
0.04168292507529259,
-0.004024934489279985,
0.09652183949947357,
-0.07269218564033508,
0.017709167674183846,
0.08984864503145218,
-0.05369952693581581,
0.16124099493026733,
0.05415754392743111,
-0.06174968183040619,
-0.13278110325336456,
-0.16721288859844208,
-0.04926934838294983,
-0.017262883484363556,
-0.1059994176030159,
0.07992833107709885,
0.04315052926540375,
-0.017445553094148636,
-0.10006827116012573,
0.019137106835842133,
-0.050115469843149185,
-0.12034085392951965,
-0.040064968168735504,
-0.07869240641593933,
0.06036067754030228,
-0.055872540920972824,
-0.07381411641836166,
-0.08826971054077148,
0.16872809827327728,
0.09034320712089539,
-0.11955422163009644,
-0.11525750905275345,
0.004039336461573839,
-0.05325925350189209,
-0.035923831164836884,
0.0713433250784874,
0.015823284164071083,
0.10908882319927216,
-0.10978054255247116,
-0.05309566855430603,
-0.037809357047080994,
-0.11135999113321304,
-0.09346353262662888,
0.032783929258584976,
0.16262255609035492,
0.04278187453746796,
0.0840923935174942,
-0.013632852584123611,
0.10620051622390747,
-0.006187762133777142,
-0.07419952005147934,
0.12324874848127365,
0.09425731003284454,
-0.02770129404962063,
0.05406895652413368,
0.028869669884443283,
0.07644407451152802,
-0.13990886509418488,
-0.024134816601872444,
0.22673167288303375,
0.25735655426979065,
-0.07402408868074417,
0.19330888986587524,
0.010837739333510399,
-0.04336918890476227,
-0.15803875029087067,
-0.05277349427342415,
0.023880230262875557,
-0.05335578694939613,
0.10038664937019348,
-0.20122478902339935,
0.09022311866283417,
0.0040666451677680016,
-0.010489730164408684,
0.03738154470920563,
-0.1613357812166214,
-0.08718043565750122,
0.025253336876630783,
0.1012997031211853,
-0.05598205327987671,
-0.1094624474644661,
-0.07545553147792816,
0.02280278131365776,
-0.07635767757892609,
0.028125692158937454,
-0.10419074445962906,
0.05790872499346733,
0.016374167054891586,
0.05498397350311279,
0.06184014678001404,
-0.059583600610494614,
0.12781397998332977,
-0.025628261268138885,
-0.06697680801153183,
-0.06821322441101074,
0.029742645099759102,
-0.010712278075516224,
-0.10230182856321335,
0.06017298251390457,
-0.0056385318748652935,
-0.014614059589803219,
-0.20892119407653809,
-0.043713461607694626,
0.012059208936989307,
0.03842682018876076,
-0.03570110350847244,
-0.08532091230154037,
-0.02409409172832966,
0.06311054527759552,
0.08610154688358307,
0.02101956307888031,
0.111575186252594,
0.00971898715943098,
-0.007532998453825712,
0.05604281648993492,
0.020695673301815987,
0.05222124978899956,
-0.14534339308738708,
-0.061602070927619934,
-0.06769851595163345,
-0.0005510607152245939,
-0.05617034435272217,
-0.02322123572230339,
0.05130736157298088,
0.06499526649713516,
-0.01651923730969429,
0.0513518787920475,
-0.08805683255195618,
-0.018401553854346275,
0.022144461050629616,
-0.09629689902067184,
-0.10667012631893158,
-0.07730374485254288,
-0.0986132025718689,
0.025148270651698112,
-0.08040609955787659,
0.09247176349163055,
-0.05158628523349762,
0.0010241313138976693,
0.004938243888318539,
0.03400449827313423,
0.002109629800543189,
0.04238446056842804,
0.030446233227849007,
0.03823438286781311,
-0.06889107823371887,
0.1326221525669098,
0.00529282633215189,
-0.04607601836323738,
0.057291820645332336,
0.17516674101352692,
-0.06539234519004822,
-0.0702132135629654,
-0.05539604276418686,
0.06684804707765579,
0.04822250083088875,
-0.024831902235746384,
-0.024160878732800484,
-0.05270424112677574,
0.1152559146285057,
-0.1504322588443756,
0.008005981333553791,
-0.12095574289560318,
0.0020687656942754984,
0.05141190439462662,
-0.0516674630343914,
0.07833334803581238,
-0.01812155731022358,
-0.062238071113824844,
-0.14123035967350006,
0.06688788533210754,
0.02063804492354393,
0.09183459728956223,
-0.010756959207355976,
-0.027302924543619156,
-0.1430586725473404,
0.028540441766381264,
-0.008439479395747185,
0.004803250543773174,
-0.16828738152980804,
0.018754838034510612,
-0.0074449507519602776,
0.029375551268458366,
0.03633318096399307,
0.060413628816604614,
-0.04344329982995987,
-0.09573040157556534,
-0.05982059985399246,
0.06408552825450897,
-0.08715587854385376,
-0.03363865613937378,
-0.018960122019052505,
-0.07975877076387405,
0.053697045892477036,
0.0848979577422142,
-0.02164931781589985,
-0.04639608785510063,
-0.05863526836037636,
0.017661770805716515,
-0.023142270743846893,
-0.05224240571260452,
0.040088653564453125,
-0.1386602222919464,
0.015369470231235027,
-0.07026412338018417,
-0.10241623967885971,
0.04195532202720642,
0.1269386112689972,
-0.0715930312871933,
0.04446082189679146,
0.06611736118793488,
-0.0839724913239479,
-0.07303155958652496,
-0.009055943228304386,
0.0690130740404129,
0.051271650940179825,
0.11426927894353867,
-0.08558826148509979,
0.1968395709991455,
-0.09772186726331711,
-0.030314180999994278,
0.012922883033752441,
0.06292650103569031,
0.05026772618293762,
-0.08924376219511032,
0.037116967141628265,
-0.013500392436981201,
0.06950680911540985,
0.07217860221862793,
0.014187398366630077,
0.0502467080950737,
0.039859168231487274,
0.12881535291671753,
0.007131614256650209,
0.09119494259357452,
-0.007848198525607586,
0.01847907155752182,
0.10913975536823273,
0.0033191682305186987,
0.06870844960212708,
-0.07079380005598068,
0.07929913699626923,
0.06795410066843033,
0.09639047831296921,
0.07188351452350616,
0.05527329444885254,
-0.09385987371206284,
-0.16653870046138763,
-0.05778970196843147,
0.037838615477085114,
0.046516191214323044,
-0.04344099387526512,
0.19316431879997253,
0.12890376150608063,
-0.2065664678812027,
0.012909871526062489,
0.001164260902442038,
0.03591190278530121,
-0.07048765569925308,
-0.0870322585105896,
0.011865169741213322,
-0.13309843838214874,
0.09753113985061646,
-0.01340983435511589,
0.004820551257580519,
-0.02654048427939415,
0.009408347308635712,
0.029632030054926872,
0.05170389264822006,
-0.04163512587547302,
-0.001036051893606782,
0.06119608134031296,
-0.027988646179437637,
-0.0011054278584197164,
-0.0028716532979160547,
-0.0732814222574234,
-0.04487941786646843,
-0.05810060352087021,
-0.022832905873656273,
0.028382301330566406,
-0.0063687339425086975,
0.05755195394158363,
0.012397260405123234,
-0.05925716832280159,
0.06885867565870285,
0.008030649274587631,
0.02617260441184044,
0.19764962792396545,
0.0986812561750412,
-0.044539619237184525,
-0.04720892757177353,
0.20749008655548096,
-0.034843217581510544,
-0.06829120963811874,
-0.08274086564779282,
0.12108214944601059,
-0.05600428953766823,
-0.050346773117780685,
-0.04616184160113335,
-0.16889771819114685,
-0.0526433028280735,
0.17047752439975739,
0.1286907196044922,
-0.011034715920686722,
0.0036559617146849632,
-0.07133445143699646,
0.005477755330502987,
0.028439560905098915,
0.1008397564291954,
0.06978433579206467,
0.05851753428578377,
-0.10064240545034409,
0.002077490324154496,
-0.07029149681329727,
-0.10087385028600693,
-0.2059270143508911,
0.044860947877168655,
0.02897607907652855,
-0.03601870313286781,
-0.01885409466922283,
0.13152825832366943,
-0.11828476190567017,
-0.09420554339885712,
0.10099776089191437,
-0.03877934813499451,
-0.07895617932081223,
0.005373152904212475,
0.02869582362473011,
0.0016832887195050716,
0.12123667448759079,
0.0835171490907669,
0.04861821234226227,
0.026585441082715988,
-0.015579075552523136,
-0.08556228876113892,
0.028593171387910843,
0.039959196001291275,
-0.12360605597496033,
0.22892063856124878,
-0.017271289601922035,
0.013354322873055935,
0.10175873339176178,
0.05959152430295944,
-0.18264801800251007,
0.014403109438717365,
0.05697733908891678,
-0.17164592444896698,
0.012200015597045422,
0.08617214113473892,
-0.04390200600028038,
-0.002707861829549074,
0.06962712109088898,
-0.031037459149956703,
0.01756998710334301,
0.19575275480747223,
0.048711005598306656,
-0.0486900769174099,
0.08074262738227844,
-0.14785340428352356,
0.10091114044189453,
0.1075623482465744,
-0.06223781034350395,
0.008364292792975903,
-0.029209138825535774,
-0.002377433003857732,
-0.012770123779773712,
-0.020030202344059944,
-0.02488063834607601,
-0.11338365077972412,
-0.017779512330889702,
-0.04422558844089508,
0.025853335857391357,
-0.20553962886333466,
-0.13097600638866425,
-0.05157738924026489,
-0.07580137997865677,
-0.03547554835677147,
0.0813298374414444,
0.07294731587171555,
-0.05715516582131386,
0.01696642115712166,
-0.13108305633068085,
0.020859722048044205,
0.1535598337650299,
-0.08460261672735214,
0.00012085698108421639
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | omarelsayeed/arabart_all_data_gemini_morexd | [
"transformers",
"safetensors",
"mbart",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:16:49+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
49,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #mbart #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.07865390926599503,
0.15635262429714203,
-0.00360822188667953,
0.02468828111886978,
0.11631380766630173,
0.008657850325107574,
0.07833018898963928,
0.10771152377128601,
-0.01796611212193966,
0.12609244883060455,
0.04089849442243576,
0.09725120663642883,
0.11127364635467529,
0.1970299482345581,
-0.0023162243887782097,
-0.20152688026428223,
0.06197051331400871,
-0.11890662461519241,
0.014425479806959629,
0.12597832083702087,
0.136797234416008,
-0.11046242713928223,
0.07074829190969467,
-0.041378553956747055,
-0.022860001772642136,
-0.03354799374938011,
-0.06088327243924141,
-0.05275993421673775,
0.06539401412010193,
0.05543314293026924,
0.0608874075114727,
0.022374236956238747,
0.08138154447078705,
-0.2830637991428375,
0.02055063471198082,
0.07729823887348175,
0.0012704676482826471,
0.0643443837761879,
0.07915864884853363,
-0.07812532037496567,
0.10094013065099716,
-0.05748038366436958,
0.1500542163848877,
0.07707870751619339,
-0.09836459159851074,
-0.18009160459041595,
-0.08804743736982346,
0.10485595464706421,
0.1773715317249298,
0.05808412656188011,
-0.036351174116134644,
0.14170369505882263,
-0.06816475093364716,
0.01826678030192852,
0.07071343809366226,
-0.07372352480888367,
-0.05539947748184204,
0.05983038619160652,
0.07623281329870224,
0.0995861142873764,
-0.13016831874847412,
-0.006847027689218521,
0.042450446635484695,
0.01733742654323578,
0.10858767479658127,
0.019437024369835854,
0.13219426572322845,
0.02973686344921589,
-0.14398469030857086,
-0.06233404949307442,
0.1070927157998085,
0.03522114083170891,
-0.058777179569005966,
-0.24969059228897095,
-0.008248555473983288,
-0.038921259343624115,
-0.027996733784675598,
-0.040593221783638,
0.03768628090620041,
-0.026184549555182457,
0.08666425943374634,
0.0013446121010929346,
-0.06865353137254715,
-0.055928584188222885,
0.0939885601401329,
0.06418245285749435,
0.02576254867017269,
-0.026056531816720963,
0.013792352750897408,
0.12272542715072632,
0.10413844138383865,
-0.11508175730705261,
-0.06154591217637062,
-0.06349031627178192,
-0.08552884310483932,
-0.0457598939538002,
0.037667691707611084,
0.06686674058437347,
0.053431976586580276,
0.20408591628074646,
-0.007169615011662245,
0.04911728575825691,
0.029871748760342598,
0.014427272602915764,
0.06883235275745392,
0.07207301259040833,
-0.05978628993034363,
-0.13678056001663208,
-0.029824156314134598,
0.1191401481628418,
0.008309838362038136,
-0.030509818345308304,
-0.03411421179771423,
0.05740470811724663,
0.047637082636356354,
0.1266878843307495,
0.07065399736166,
0.015898393467068672,
-0.07754254341125488,
-0.05166564881801605,
0.1802992820739746,
-0.15905359387397766,
0.024341227486729622,
0.018813397735357285,
-0.050055764615535736,
-0.03224698081612587,
0.020285947248339653,
0.009022007696330547,
-0.029118116945028305,
0.08818960189819336,
-0.06393963098526001,
-0.04508752003312111,
-0.11053043603897095,
-0.053015053272247314,
0.033180687576532364,
-0.02327922359108925,
-0.028307368978857994,
-0.03911846876144409,
-0.1337331384420395,
-0.07800900191068649,
0.06928452104330063,
-0.06516946852207184,
-0.06093195453286171,
-0.034834958612918854,
-0.06651120632886887,
0.013629472814500332,
-0.003949356265366077,
0.1263343244791031,
-0.030193574726581573,
0.051509153097867966,
-0.0532345287501812,
0.06983030587434769,
0.1393999457359314,
0.02911798469722271,
-0.0666782408952713,
0.06786905229091644,
-0.210239976644516,
0.10932538658380508,
-0.08482516556978226,
0.029439950361847878,
-0.16369274258613586,
-0.016576265916228294,
0.030135588720440865,
0.03515183925628662,
-0.008744210004806519,
0.1483536660671234,
-0.17905084788799286,
-0.03571779653429985,
0.19315873086452484,
-0.1268908530473709,
-0.09477676451206207,
0.057165712118148804,
-0.058667853474617004,
0.1363360583782196,
0.05674607306718826,
-0.022972194477915764,
0.05246288329362869,
-0.1355435699224472,
-0.025690026581287384,
-0.06434284150600433,
-0.016853585839271545,
0.1495627760887146,
0.06156468391418457,
-0.046810634434223175,
0.026376748457551003,
0.018453359603881836,
-0.02472173608839512,
-0.04709894210100174,
-0.03526892140507698,
-0.09526801109313965,
0.005710109602659941,
-0.08114314824342728,
0.019764680415391922,
-0.02570297382771969,
-0.09234775602817535,
-0.03982413932681084,
-0.15411852300167084,
0.0014073409838601947,
0.09886373579502106,
-0.0038683898746967316,
-0.030197758227586746,
-0.10135278105735779,
-0.0016146717825904489,
0.00872087012976408,
-0.0038999852258712053,
-0.15418337285518646,
-0.05179525539278984,
0.023067656904459,
-0.16811324656009674,
0.027982192113995552,
-0.053077127784490585,
0.03956684097647667,
0.04398041591048241,
-0.04441440850496292,
-0.03500377759337425,
0.01999080926179886,
0.018743157386779785,
-0.02318708226084709,
-0.2595391273498535,
-0.01523476094007492,
-0.05054660886526108,
0.1779421865940094,
-0.25138208270072937,
0.049947284162044525,
0.06453178077936172,
0.12033043056726456,
0.006411897484213114,
-0.044572263956069946,
0.04237039014697075,
-0.05657593905925751,
-0.03714311495423317,
-0.06881219893693924,
-0.007856464944779873,
-0.03362765908241272,
-0.04819197580218315,
0.04216339811682701,
-0.18378472328186035,
-0.029249683022499084,
0.11588101834058762,
0.07570083439350128,
-0.16560818254947662,
-0.07299412786960602,
-0.03523481264710426,
-0.06044330820441246,
-0.08142245560884476,
-0.056247226893901825,
0.0865727886557579,
0.04950207844376564,
0.05219203978776932,
-0.06886576861143112,
-0.05890725925564766,
0.013741453178226948,
-0.013246787711977959,
-0.028228027746081352,
0.08957090228796005,
0.0694940984249115,
-0.12562116980552673,
0.1059708446264267,
0.07514376193284988,
0.07366102933883667,
0.11000277101993561,
0.006573040038347244,
-0.09468506276607513,
-0.01862516440451145,
0.030331926420331,
0.014360006898641586,
0.14891476929187775,
-0.062093477696180344,
0.037687502801418304,
0.043042365461587906,
-0.02443518489599228,
0.010432709939777851,
-0.0987953320145607,
0.02076457254588604,
0.03030979260802269,
-0.01319560594856739,
0.018989406526088715,
-0.05354124680161476,
0.01520141214132309,
0.10663086920976639,
0.029947280883789062,
0.03521794080734253,
0.01604812778532505,
-0.042906079441308975,
-0.1297650933265686,
0.17834340035915375,
-0.09501507133245468,
-0.24610227346420288,
-0.1278935968875885,
-0.007032830733805895,
0.03800654411315918,
-0.011631695553660393,
0.0205230675637722,
-0.05773103982210159,
-0.10873371362686157,
-0.10359638184309006,
0.03484940528869629,
0.06615354865789413,
-0.08546292036771774,
-0.06514915078878403,
0.051668256521224976,
0.04201868176460266,
-0.1274910867214203,
0.02213032729923725,
0.04502732306718826,
-0.07434329390525818,
0.008421776816248894,
0.05627424642443657,
0.08148954063653946,
0.18043600022792816,
0.011029214598238468,
-0.017327453941106796,
0.013604913838207722,
0.2165181189775467,
-0.14625495672225952,
0.09477821737527847,
0.14641466736793518,
-0.0617947094142437,
0.08076024800539017,
0.20181052386760712,
0.029474446550011635,
-0.100038543343544,
0.03869079053401947,
0.03237665444612503,
-0.038074396550655365,
-0.24486953020095825,
-0.07380962371826172,
0.003125239862129092,
-0.06117221713066101,
0.1044551357626915,
0.08585948497056961,
0.10542116314172745,
0.04903595522046089,
-0.11464664340019226,
-0.06554199010133743,
0.05275518447160721,
0.11938218027353287,
-0.031432054936885834,
-0.0010134333278983831,
0.09615105390548706,
-0.02636859565973282,
0.028861848637461662,
0.0918804481625557,
0.025974515825510025,
0.18359430134296417,
0.04379447549581528,
0.14295761287212372,
0.09118349105119705,
0.06044115126132965,
0.016319042071700096,
0.0242832750082016,
0.018865348771214485,
0.029429441317915916,
-0.01825549080967903,
-0.08394420146942139,
-0.011956557631492615,
0.13425467908382416,
0.017246095463633537,
0.04349507763981819,
0.0032946912106126547,
-0.048404209315776825,
0.07331117242574692,
0.17401401698589325,
0.013181080110371113,
-0.23146149516105652,
-0.06731004267930984,
0.07477808743715286,
-0.072688028216362,
-0.11893023550510406,
-0.018224114552140236,
0.03297882899641991,
-0.18260209262371063,
0.03956417739391327,
-0.024644799530506134,
0.10304750502109528,
-0.11385789513587952,
-0.02154684253036976,
0.03603748604655266,
0.059161532670259476,
-0.03318158909678459,
0.07242915034294128,
-0.19426988065242767,
0.14089269936084747,
0.009771730750799179,
0.06949160248041153,
-0.10213932394981384,
0.07945366203784943,
0.018212754279375076,
0.002728369552642107,
0.16124801337718964,
-0.005051842890679836,
-0.06466178596019745,
-0.09926515072584152,
-0.08844804763793945,
-0.013357745483517647,
0.09697362035512924,
-0.12484393268823624,
0.096270851790905,
-0.006813456770032644,
-0.034170377999544144,
-0.00380346761085093,
-0.13301041722297668,
-0.13700149953365326,
-0.1783018857240677,
0.044537924230098724,
-0.12093253433704376,
0.04648909717798233,
-0.10832297056913376,
-0.055482417345047,
-0.03805621340870857,
0.18992702662944794,
-0.21527355909347534,
-0.08350256830453873,
-0.15224255621433258,
-0.06410401314496994,
0.1167384460568428,
-0.04314368590712547,
0.07960948348045349,
0.009493723511695862,
0.20186179876327515,
-0.0019653046038001776,
-0.004845114424824715,
0.09540688246488571,
-0.10015542060136795,
-0.21103034913539886,
-0.09727481007575989,
0.13742728531360626,
0.13511647284030914,
0.04256640002131462,
0.004062796477228403,
0.024203896522521973,
-0.0064010112546384335,
-0.11396854370832443,
0.03343700245022774,
0.15810580551624298,
0.10726672410964966,
0.03886733576655388,
-0.02382940985262394,
-0.13677945733070374,
-0.09859776496887207,
-0.05162547156214714,
0.008424082770943642,
0.19212354719638824,
-0.06872332096099854,
0.16194845736026764,
0.15873658657073975,
-0.06023791804909706,
-0.21019227802753448,
0.03246081620454788,
0.03299938142299652,
0.0007923442171886563,
0.047925882041454315,
-0.20253965258598328,
0.07732059806585312,
0.012676072306931019,
-0.058226145803928375,
0.13073818385601044,
-0.18467861413955688,
-0.14689122140407562,
0.08782391995191574,
0.07967614382505417,
-0.1967301070690155,
-0.13300135731697083,
-0.09639308601617813,
-0.0498325414955616,
-0.10470736026763916,
0.08890377730131149,
-0.017795026302337646,
0.006818882189691067,
0.03149089217185974,
0.020379334688186646,
0.014858298934996128,
-0.05204394832253456,
0.194880872964859,
-0.0015249386196956038,
0.05068426579236984,
-0.07369044423103333,
-0.0673905536532402,
0.03674359992146492,
-0.07181672006845474,
0.08883603662252426,
-0.022913120687007904,
0.0076375193893909454,
-0.11384224891662598,
-0.06498444825410843,
-0.044577706605196,
0.030962485820055008,
-0.08579668402671814,
-0.09373386949300766,
-0.045524414628744125,
0.10094311833381653,
0.08922141790390015,
-0.035346414893865585,
-0.07154711335897446,
-0.09401798248291016,
0.04925830662250519,
0.22634994983673096,
0.1832399219274521,
0.07105018943548203,
-0.07132609933614731,
-0.007637187838554382,
-0.02092723175883293,
0.05893326923251152,
-0.2114027440547943,
0.04725237563252449,
0.03604063391685486,
0.03466048091650009,
0.1291349232196808,
-0.026097485795617104,
-0.16433240473270416,
-0.04791109636425972,
0.05576687306165695,
-0.07493621110916138,
-0.16006866097450256,
0.005510978866368532,
0.08467528969049454,
-0.15681341290473938,
-0.04216902703046799,
0.04027790203690529,
-0.029005011543631554,
-0.029442500323057175,
-0.000035737506550503895,
0.08263727277517319,
0.01929192803800106,
0.10869091004133224,
0.06255745142698288,
0.1079002246260643,
-0.10729824751615524,
0.07086726278066635,
0.08283758908510208,
-0.10496741533279419,
0.039285533130168915,
0.06225143373012543,
-0.06497757136821747,
-0.03414611890912056,
0.032150715589523315,
0.09037698805332184,
0.02692287601530552,
-0.07303480803966522,
0.004580768756568432,
-0.11099833995103836,
0.06614884734153748,
0.13624541461467743,
0.037788596004247665,
0.012078636325895786,
0.042222488671541214,
0.029771490022540092,
-0.1025727391242981,
0.11928295344114304,
0.05228843912482262,
0.03750395402312279,
-0.05221611633896828,
-0.015177796594798565,
0.04168306291103363,
-0.020867999643087387,
-0.01738041453063488,
-0.040089450776576996,
-0.06773463636636734,
-0.009653303772211075,
-0.17137117683887482,
0.02204553782939911,
-0.0647578239440918,
0.008862772025167942,
0.014382746070623398,
-0.029606392607092857,
0.0037289592437446117,
0.013432884588837624,
-0.07367062568664551,
-0.047290507704019547,
-0.00628611771389842,
0.10605917870998383,
-0.1689893752336502,
0.010817745700478554,
0.08279518038034439,
-0.12762854993343353,
0.0839133933186531,
0.00627423170953989,
-0.0044763716869056225,
0.020973237231373787,
-0.1370149552822113,
0.05927008390426636,
-0.007858246564865112,
0.00405872892588377,
0.030798524618148804,
-0.21520967781543732,
0.0034368543419986963,
-0.04878005012869835,
-0.0652531236410141,
-0.0026413598097860813,
-0.03577959164977074,
-0.1135968491435051,
0.10424298793077469,
0.01648339442908764,
-0.07392653077840805,
-0.02184497006237507,
0.05094081535935402,
0.10816168040037155,
-0.04920781031250954,
0.14570775628089905,
-0.017861152067780495,
0.058611854910850525,
-0.18525990843772888,
-0.019484877586364746,
-0.018931247293949127,
0.017603585496544838,
-0.040015604346990585,
-0.005468267016112804,
0.05399853736162186,
-0.01762426644563675,
0.22001415491104126,
-0.023630138486623764,
0.025109438225626945,
0.06115090474486351,
-0.0013586481800302863,
-0.013114627450704575,
0.096846804022789,
0.051799476146698,
0.01217479258775711,
0.024824419990181923,
0.0131106311455369,
-0.03924513980746269,
-0.007611239794641733,
-0.136241614818573,
0.07979423552751541,
0.16501329839229584,
0.08274126797914505,
-0.005242760758846998,
0.04897220432758331,
-0.10881820321083069,
-0.09913069009780884,
0.09462538361549377,
-0.0397336408495903,
-0.017608163878321648,
-0.05212340131402016,
0.13981309533119202,
0.16192631423473358,
-0.19057822227478027,
0.06243497505784035,
-0.06482721120119095,
-0.0549345463514328,
-0.10606326907873154,
-0.1804763674736023,
-0.05979454517364502,
-0.039068471640348434,
-0.013458002358675003,
-0.0613526850938797,
0.06244436651468277,
0.10273180156946182,
0.016567686572670937,
0.007992854341864586,
0.08776410669088364,
-0.023313190788030624,
0.005183220375329256,
0.03909127041697502,
0.05984938144683838,
0.01665106974542141,
-0.058586928993463516,
0.008460438810288906,
0.0071218060329556465,
0.03614235296845436,
0.05553290247917175,
0.03454434126615524,
-0.013462861999869347,
0.008381731808185577,
-0.024288490414619446,
-0.10421585291624069,
0.03904672712087631,
-0.023980991914868355,
-0.04776107147336006,
0.15419955551624298,
0.02304644137620926,
-0.007220180705189705,
-0.022592337802052498,
0.23549996316432953,
-0.06647061556577682,
-0.07845693081617355,
-0.1388711780309677,
0.14428623020648956,
-0.04051667079329491,
0.05187494307756424,
0.04470658302307129,
-0.1064765453338623,
0.039907824248075485,
0.143296480178833,
0.14319543540477753,
-0.04166344925761223,
0.01098859217017889,
0.005994882900267839,
0.004065718036144972,
-0.027034970000386238,
0.053527358919382095,
0.051298946142196655,
0.1238182783126831,
-0.062264882028102875,
0.100828155875206,
-0.004653807729482651,
-0.09374257922172546,
-0.024762731045484543,
0.13400942087173462,
-0.0007248892216011882,
0.023920075967907906,
-0.0805574506521225,
0.12744031846523285,
-0.05165974795818329,
-0.2511097490787506,
0.06268429011106491,
-0.06190577149391174,
-0.14949636161327362,
-0.020570993423461914,
0.020437616854906082,
-0.002989273751154542,
0.023851973935961723,
0.06257106363773346,
-0.06153261289000511,
0.15866120159626007,
0.03531190752983093,
-0.0654766783118248,
-0.07453469932079315,
0.07675468921661377,
-0.08002345263957977,
0.30545616149902344,
0.005902462638914585,
0.052069611847400665,
0.09690389037132263,
-0.03998665511608124,
-0.14367231726646423,
0.03174230456352234,
0.08840355277061462,
-0.04932000860571861,
0.062109529972076416,
0.2102404534816742,
-0.010033581405878067,
0.11114954203367233,
0.07298064976930618,
-0.08478641510009766,
0.04511121287941933,
-0.09450535476207733,
-0.09075058251619339,
-0.09037777781486511,
0.09066848456859589,
-0.05398723855614662,
0.152066171169281,
0.12437792122364044,
-0.04967234656214714,
0.009256181307137012,
-0.02012227475643158,
0.05953164026141167,
0.0005842145183123648,
0.11668387800455093,
0.03221360594034195,
-0.19646984338760376,
0.028566919267177582,
0.0022470206022262573,
0.09997411072254181,
-0.24932217597961426,
-0.08666640520095825,
0.040649428963661194,
-0.0025277682580053806,
-0.05950586497783661,
0.12410800158977509,
0.05186088755726814,
0.046460721641778946,
-0.051118094474077225,
-0.0470571368932724,
-0.007433110382407904,
0.16457399725914001,
-0.1015067994594574,
-0.005538619123399258
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-classification | CCTD/LLM_Favrskov | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:20:06+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
46,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06817419826984406,
0.1699906885623932,
-0.003845146857202053,
0.018365124240517616,
0.11478200554847717,
0.00763329304754734,
0.07986336201429367,
0.10738246887922287,
-0.0269484706223011,
0.1267213374376297,
0.03862300142645836,
0.1017010435461998,
0.11044707149267197,
0.18616852164268494,
0.002953584771603346,
-0.2117370218038559,
0.062315817922353745,
-0.11355884373188019,
0.01421935111284256,
0.12174045294523239,
0.14285145699977875,
-0.10472407191991806,
0.07340893894433975,
-0.03533155843615532,
-0.019184017553925514,
-0.029508300125598907,
-0.06138347089290619,
-0.062117863446474075,
0.06899366527795792,
0.06911981105804443,
0.06776530295610428,
0.02535320073366165,
0.07980640977621078,
-0.2927248775959015,
0.019224179908633232,
0.07704847306013107,
0.004596637096256018,
0.06310366839170456,
0.07900875061750412,
-0.06604467332363129,
0.12630145251750946,
-0.0469624362885952,
0.15577000379562378,
0.07483451068401337,
-0.09700790792703629,
-0.1833430528640747,
-0.07868417352437973,
0.08138132095336914,
0.1542958915233612,
0.0575118213891983,
-0.03566069155931473,
0.14360417425632477,
-0.0863327905535698,
0.015191552229225636,
0.06608161330223083,
-0.07603584229946136,
-0.05265629291534424,
0.04255614057183266,
0.07708034664392471,
0.09375373274087906,
-0.1291297972202301,
-0.010211804881691933,
0.04229271039366722,
0.01873886212706566,
0.10347303748130798,
0.02310175821185112,
0.11163661628961563,
0.026270611211657524,
-0.13941870629787445,
-0.06378244608640671,
0.1267201453447342,
0.02999917045235634,
-0.05697820335626602,
-0.23340454697608948,
-0.007031846325844526,
-0.028088124468922615,
-0.024382783100008965,
-0.03983099386096001,
0.03844287618994713,
-0.0294374767690897,
0.07875318825244904,
0.011917876079678535,
-0.07096433639526367,
-0.04893866181373596,
0.08819517493247986,
0.06123629957437515,
0.022971229627728462,
-0.02526908740401268,
0.02413375861942768,
0.11652170121669769,
0.09283795207738876,
-0.11929406225681305,
-0.06425759196281433,
-0.06432286649942398,
-0.08888134360313416,
-0.04847237840294838,
0.03574979677796364,
0.0754702165722847,
0.04938753694295883,
0.19765597581863403,
0.006366121117025614,
0.05646394565701485,
0.0260426327586174,
0.015338202007114887,
0.06355882436037064,
0.07606974244117737,
-0.0483609177172184,
-0.13532373309135437,
-0.041331104934215546,
0.11784996092319489,
0.007102925330400467,
-0.032494835555553436,
-0.03608081117272377,
0.06173410639166832,
0.05820438638329506,
0.1192656010389328,
0.06626396626234055,
0.019241811707615852,
-0.06749388575553894,
-0.03806937485933304,
0.1874811202287674,
-0.1540532261133194,
0.020778683945536613,
0.01720726117491722,
-0.05474008247256279,
-0.043989501893520355,
0.0171356238424778,
0.008756347931921482,
-0.02707439661026001,
0.10765543580055237,
-0.0681026354432106,
-0.03794260695576668,
-0.10775765031576157,
-0.057500679045915604,
0.032596319913864136,
-0.011795170605182648,
-0.030085675418376923,
-0.0443500280380249,
-0.1081358790397644,
-0.07622874528169632,
0.06656987965106964,
-0.06241556629538536,
-0.07165607810020447,
-0.03565853461623192,
-0.05456356331706047,
0.012712954543530941,
0.002376573858782649,
0.12743701040744781,
-0.02916865609586239,
0.04608776792883873,
-0.04567936435341835,
0.06814887374639511,
0.13260088860988617,
0.03273140639066696,
-0.07753180712461472,
0.0658058449625969,
-0.21566881239414215,
0.10687019675970078,
-0.09710393846035004,
0.030530039221048355,
-0.1602926403284073,
-0.027380328625440598,
0.025517668575048447,
0.035233598202466965,
-0.01142354216426611,
0.1405038684606552,
-0.18839864432811737,
-0.036833859980106354,
0.17594264447689056,
-0.13455410301685333,
-0.09238629788160324,
0.06278568506240845,
-0.057844966650009155,
0.12792403995990753,
0.05209182947874069,
-0.027332304045557976,
0.059202857315540314,
-0.13285812735557556,
-0.024411480873823166,
-0.0557100772857666,
-0.0024997375439852476,
0.1512058526277542,
0.06197551265358925,
-0.05537422001361847,
0.02062765136361122,
0.020016051828861237,
-0.024297641590237617,
-0.045233841985464096,
-0.034582652151584625,
-0.0977277010679245,
0.006374812684953213,
-0.07783913612365723,
0.015467152930796146,
-0.014978265389800072,
-0.08572793006896973,
-0.037934768944978714,
-0.15898989140987396,
-0.0011305080261081457,
0.09650373458862305,
0.007345336955040693,
-0.029424650594592094,
-0.09241348505020142,
0.005526319146156311,
0.014208783395588398,
-0.01407501008361578,
-0.15675009787082672,
-0.05031281337141991,
0.03119790367782116,
-0.16866113245487213,
0.033627450466156006,
-0.04903757572174072,
0.03549545630812645,
0.04459671676158905,
-0.04535774141550064,
-0.02160848118364811,
0.0152364457026124,
0.017460787668824196,
-0.02394135482609272,
-0.24046528339385986,
-0.016492176800966263,
-0.049182213842868805,
0.17930001020431519,
-0.24510087072849274,
0.04199686273932457,
0.062341514974832535,
0.12092601507902145,
0.005246761720627546,
-0.047405339777469635,
0.03611646965146065,
-0.04782456159591675,
-0.04614211246371269,
-0.06458985060453415,
-0.004041698761284351,
-0.03005247749388218,
-0.04619463160634041,
0.04105473682284355,
-0.19605930149555206,
-0.029964644461870193,
0.11028317362070084,
0.07146124541759491,
-0.1701718270778656,
-0.07740049809217453,
-0.03032514825463295,
-0.06061795726418495,
-0.09144899994134903,
-0.04754206910729408,
0.10501570999622345,
0.0424359068274498,
0.054926108568906784,
-0.07243066281080246,
-0.047703035175800323,
0.012159520760178566,
-0.008316845633089542,
-0.035265736281871796,
0.0910128578543663,
0.09147894382476807,
-0.1183665320277214,
0.1003284826874733,
0.06719938665628433,
0.061502620577812195,
0.10171586275100708,
0.005867301486432552,
-0.09559345990419388,
-0.012123096734285355,
0.023821083828806877,
0.014739413745701313,
0.13627171516418457,
-0.08041682839393616,
0.03041158802807331,
0.043761420994997025,
-0.03445654734969139,
0.011279189959168434,
-0.10341424494981766,
0.02347799763083458,
0.03186830133199692,
-0.007050554268062115,
0.025736309587955475,
-0.054652560502290726,
0.013161799870431423,
0.1042112186551094,
0.03211836516857147,
0.0227707140147686,
0.015011876821517944,
-0.03876445069909096,
-0.12403564900159836,
0.17888623476028442,
-0.09523385018110275,
-0.25718894600868225,
-0.12982366979122162,
0.0025806569028645754,
0.04723223298788071,
-0.01322246715426445,
0.01721704937517643,
-0.057064954191446304,
-0.10620168596506119,
-0.10562704503536224,
0.017637979239225388,
0.05363597348332405,
-0.08985256403684616,
-0.06360358744859695,
0.05353172495961189,
0.038684699684381485,
-0.12286891043186188,
0.023170825093984604,
0.04556644707918167,
-0.0685787945985794,
0.004107215907424688,
0.05788148567080498,
0.08483386784791946,
0.18220773339271545,
0.013182112947106361,
-0.017085859552025795,
0.012520790100097656,
0.22458304464817047,
-0.14599265158176422,
0.09336943179368973,
0.13670575618743896,
-0.0603153258562088,
0.08385994285345078,
0.20927630364894867,
0.031639765948057175,
-0.09247095137834549,
0.04077373072504997,
0.032938770949840546,
-0.040111273527145386,
-0.23512989282608032,
-0.07784179598093033,
0.0005755177116952837,
-0.07578593492507935,
0.10564399510622025,
0.09113350510597229,
0.11394096910953522,
0.05373004451394081,
-0.10628228634595871,
-0.06785868853330612,
0.04576247185468674,
0.11892180144786835,
-0.020387137308716774,
0.0034232554025948048,
0.09533460438251495,
-0.032669007778167725,
0.016892950981855392,
0.0903218612074852,
0.010076770558953285,
0.18146716058254242,
0.040793538093566895,
0.12895575165748596,
0.08216089755296707,
0.06404399126768112,
0.023877892643213272,
0.01690720207989216,
0.028041476383805275,
0.02853785827755928,
-0.021422842517495155,
-0.08959300816059113,
-0.01811058260500431,
0.14208537340164185,
0.03174193948507309,
0.030387144535779953,
0.009561240673065186,
-0.0344390794634819,
0.0656830444931984,
0.16341377794742584,
0.01373966783285141,
-0.23032663762569427,
-0.06265294551849365,
0.07538370788097382,
-0.07251506298780441,
-0.11472991853952408,
-0.007447437848895788,
0.029569825157523155,
-0.17949488759040833,
0.045079123228788376,
-0.02245110087096691,
0.1028464064002037,
-0.11004801839590073,
-0.024476202204823494,
0.04228143393993378,
0.06811302900314331,
-0.03619502857327461,
0.07936927676200867,
-0.21071307361125946,
0.14414268732070923,
0.0071875168941915035,
0.0627245381474495,
-0.10963346809148788,
0.08230046182870865,
0.02151823230087757,
0.009466269053518772,
0.16101586818695068,
-0.0074920570477843285,
-0.09318114817142487,
-0.07651645690202713,
-0.07556641101837158,
-0.011319656856358051,
0.09559466689825058,
-0.10184428840875626,
0.08486217260360718,
-0.008358954451978207,
-0.03313955292105675,
-0.00388424564152956,
-0.1140027567744255,
-0.13622364401817322,
-0.18601436913013458,
0.05523287504911423,
-0.11181046068668365,
0.03691478446125984,
-0.11166879534721375,
-0.06252610683441162,
-0.02911795862019062,
0.19807842373847961,
-0.1904531568288803,
-0.08140338957309723,
-0.14539870619773865,
-0.07204011082649231,
0.12212951481342316,
-0.04274967685341835,
0.07663191109895706,
0.00015701932716183364,
0.2071707546710968,
-0.004644640255719423,
0.0014644638868048787,
0.0856679305434227,
-0.09557735919952393,
-0.206184521317482,
-0.09439684450626373,
0.13821037113666534,
0.12497473508119583,
0.04596934840083122,
-0.0036321566440165043,
0.024304913356900215,
-0.0027867835015058517,
-0.10976199060678482,
0.02332260087132454,
0.1432444006204605,
0.08416087180376053,
0.03885705769062042,
-0.02675866149365902,
-0.14533737301826477,
-0.1054752767086029,
-0.05289754271507263,
0.019448768347501755,
0.17674845457077026,
-0.07222644239664078,
0.1607094258069992,
0.15837931632995605,
-0.06414622813463211,
-0.20734171569347382,
0.032782182097435,
0.03679283335804939,
-0.011663361452519894,
0.03244366869330406,
-0.20815548300743103,
0.07330463081598282,
0.016213007271289825,
-0.06075131520628929,
0.1363404095172882,
-0.1705039143562317,
-0.14891991019248962,
0.0919104814529419,
0.07189090549945831,
-0.2193969339132309,
-0.13394345343112946,
-0.09907522052526474,
-0.055755600333213806,
-0.10410746932029724,
0.08695419132709503,
0.014253350906074047,
0.004559517838060856,
0.040003977715969086,
0.024713784456253052,
0.021094202995300293,
-0.05303549766540527,
0.19554594159126282,
-0.004308625590056181,
0.041122131049633026,
-0.08143328875303268,
-0.08729361742734909,
0.030160382390022278,
-0.06146852299571037,
0.07429458200931549,
-0.02577015943825245,
0.004456855356693268,
-0.1102396696805954,
-0.06384536623954773,
-0.05289682373404503,
0.03639809414744377,
-0.08915901929140091,
-0.0958789587020874,
-0.05767008289694786,
0.10389325767755508,
0.08919540792703629,
-0.03324571251869202,
-0.058615610003471375,
-0.10058292001485825,
0.0726626068353653,
0.22699709236621857,
0.18807223439216614,
0.07284927368164062,
-0.07015843689441681,
0.0006279588560573757,
-0.022037893533706665,
0.05516184866428375,
-0.20622296631336212,
0.04608523100614548,
0.042553652077913284,
0.028887338936328888,
0.13527612388134003,
-0.02506665140390396,
-0.1602775603532791,
-0.04527048021554947,
0.06014934554696083,
-0.06545355916023254,
-0.1614707112312317,
-0.0005388054414652288,
0.09576781094074249,
-0.16179001331329346,
-0.06273222714662552,
0.024773813784122467,
-0.036137934774160385,
-0.025756290182471275,
0.0013679420808330178,
0.08270203322172165,
0.027825508266687393,
0.11478793621063232,
0.06896458566188812,
0.11150709539651871,
-0.10231363028287888,
0.08406093716621399,
0.09299708157777786,
-0.10971303284168243,
0.03247435390949249,
0.07298728823661804,
-0.0610542818903923,
-0.03390142321586609,
0.023122351616621017,
0.08364028483629227,
0.026266440749168396,
-0.0744837298989296,
-0.0008558011031709611,
-0.1099681630730629,
0.06663114577531815,
0.13796411454677582,
0.032853204756975174,
0.0030810926109552383,
0.04435998201370239,
0.025823330506682396,
-0.09881676733493805,
0.11186433583498001,
0.03916766867041588,
0.03720828518271446,
-0.04767070338129997,
0.004865953233093023,
0.041960928589105606,
-0.01269921287894249,
-0.016253290697932243,
-0.039693526923656464,
-0.06471271812915802,
-0.010708925314247608,
-0.15688052773475647,
0.031037067994475365,
-0.07176970690488815,
0.009115522727370262,
0.018755896016955376,
-0.033779606223106384,
0.0002807097043842077,
0.0073861307464540005,
-0.07919271290302277,
-0.03761441633105278,
-0.006646361667662859,
0.10705258697271347,
-0.15747743844985962,
0.008323745802044868,
0.08949586004018784,
-0.12556882202625275,
0.07766758650541306,
-0.007498627994209528,
-0.010838181711733341,
0.01879316382110119,
-0.14380721747875214,
0.06054820865392685,
-0.008177737705409527,
0.006405212916433811,
0.023949483409523964,
-0.20071232318878174,
0.005702852737158537,
-0.04664513096213341,
-0.053938448429107666,
-0.00976315326988697,
-0.04211960732936859,
-0.11404810100793839,
0.10492629557847977,
0.0196357611566782,
-0.0860515683889389,
-0.018402770161628723,
0.05309472978115082,
0.10592338442802429,
-0.057369641959667206,
0.1371336728334427,
-0.02283608354628086,
0.05825338885188103,
-0.17831756174564362,
-0.016339747235178947,
-0.017454219982028008,
0.012596609070897102,
-0.03102201037108898,
-0.008158523589372635,
0.05483707785606384,
-0.015072896145284176,
0.22714339196681976,
-0.021177595481276512,
0.030790245160460472,
0.06548503786325455,
0.0070373364724218845,
-0.013032838702201843,
0.08790382742881775,
0.04639120027422905,
0.021969040855765343,
0.017426103353500366,
0.016819516196846962,
-0.047575462609529495,
-0.019116412848234177,
-0.12834098935127258,
0.08396804332733154,
0.16439755260944366,
0.08264775574207306,
-0.005125291179865599,
0.053218428045511246,
-0.11920209228992462,
-0.08098750561475754,
0.10049403458833694,
-0.033211447298526764,
-0.001258186181075871,
-0.057700008153915405,
0.14298145473003387,
0.15607422590255737,
-0.1750815361738205,
0.06616412103176117,
-0.07047461718320847,
-0.05687202885746956,
-0.11070677638053894,
-0.17143365740776062,
-0.06694129854440689,
-0.03149404004216194,
-0.005430171266198158,
-0.06143372505903244,
0.06926561146974564,
0.10244123637676239,
0.008475886657834053,
0.002354414900764823,
0.08415096998214722,
-0.033749498426914215,
-0.0007962242234498262,
0.04344722256064415,
0.05283457785844803,
0.021373692899942398,
-0.06691429764032364,
0.0076249162666499615,
0.004598149098455906,
0.038937900215387344,
0.05476561188697815,
0.0317605659365654,
-0.014559607952833176,
0.011871086433529854,
-0.013089693151414394,
-0.09815122187137604,
0.03718226030468941,
-0.029980625957250595,
-0.0468674972653389,
0.14802806079387665,
0.01827765442430973,
0.0034919960889965296,
-0.021031659096479416,
0.23128560185432434,
-0.06903756409883499,
-0.0798255056142807,
-0.14009471237659454,
0.15071772038936615,
-0.04670744761824608,
0.05065378174185753,
0.04940982535481453,
-0.10087474435567856,
0.03407741338014603,
0.14691931009292603,
0.14527682960033417,
-0.02467990294098854,
0.007901503704488277,
0.011187983676791191,
0.0055741616524755955,
-0.025625228881835938,
0.05354921892285347,
0.04412171617150307,
0.12145667523145676,
-0.06669453531503677,
0.09297986328601837,
-0.007810541894286871,
-0.0844663754105568,
-0.02094031497836113,
0.1328510195016861,
0.0014671299140900373,
0.02338746376335621,
-0.0805477648973465,
0.11851188540458679,
-0.06559251248836517,
-0.25864502787590027,
0.061333827674388885,
-0.06666524708271027,
-0.15384668111801147,
-0.018917718902230263,
0.02399173192679882,
0.00401253392919898,
0.024401430040597916,
0.06268756836652756,
-0.06360985338687897,
0.14903949201107025,
0.03688151761889458,
-0.07834678888320923,
-0.07808853685855865,
0.07696148753166199,
-0.08397532254457474,
0.3018210828304291,
0.008228152059018612,
0.04951678216457367,
0.09650786966085434,
-0.03327273949980736,
-0.13361208140850067,
0.04569283500313759,
0.09728528559207916,
-0.06408768892288208,
0.06690182536840439,
0.19748380780220032,
-0.008177485316991806,
0.12026696652173996,
0.07469146698713303,
-0.08128973841667175,
0.057554539293050766,
-0.07613562047481537,
-0.09007242321968079,
-0.09192728251218796,
0.08888110518455505,
-0.060599785298109055,
0.15479759871959686,
0.13393908739089966,
-0.04440179467201233,
-0.001819826546125114,
-0.03071022778749466,
0.05197824910283089,
-0.002023093169555068,
0.1104598417878151,
0.022785736247897148,
-0.19388216733932495,
0.031831543892621994,
-0.014316190034151077,
0.0986877828836441,
-0.2479904145002365,
-0.07837841659784317,
0.0403057225048542,
-0.013808837160468102,
-0.05274871736764908,
0.12204353511333466,
0.052187733352184296,
0.04937480762600899,
-0.05449601635336876,
-0.057812657207250595,
-0.00025569170247763395,
0.16358551383018494,
-0.1094348207116127,
-0.00204258831217885
] |
null | null | null | https://civitai.com/models/104487/privaty-nikke-lora-or-4-outfits-cat-maid-dress-casual-and-default | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/privaty-nikke-richy-v2 | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:22:04+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/303652/haruka-morishima-amagami-ss-lora | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/morishimaharuka-nvwls-v1 | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:22:45+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/304033/honkai-star-rail-black-swan-or | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/blackswan-str-v1c | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:23:10+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/303497/black-swan-or-honkai-star-rail | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/black_swan-lora-Faxtron | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:23:54+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/297274/firefly-honkai-star-rail | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/Firefly_v1_2 | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:24:18+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/302511/mai-kawakami-myriad-colors-phantom-world-musaigen-no-phantom-world-anime-design | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/eft_phantom_blonde-03 | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:24:41+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | OmarHaroon01/t5_pretrain_final_final_final_kaggle_final | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:24:54+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
58,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.053328532725572586,
0.16120538115501404,
-0.005120371468365192,
0.022602224722504616,
0.09686747193336487,
0.013199392706155777,
0.07261143624782562,
0.11177206039428711,
-0.020693831145763397,
0.1128523200750351,
0.0323781855404377,
0.09778297692537308,
0.11381756514310837,
0.15530984103679657,
-0.0018252237932756543,
-0.23414164781570435,
0.051169246435165405,
-0.12603329122066498,
-0.039110470563173294,
0.11734651774168015,
0.14655858278274536,
-0.10434788465499878,
0.07780920714139938,
-0.029932111501693726,
-0.010786613449454308,
-0.030950399115681648,
-0.06109464541077614,
-0.04963193088769913,
0.05158040300011635,
0.07096312940120697,
0.06875279545783997,
0.009741154499351978,
0.09293358027935028,
-0.2676756680011749,
0.021060682833194733,
0.07436702400445938,
-0.0019205488497391343,
0.07644513249397278,
0.05394738167524338,
-0.07786445319652557,
0.08801496773958206,
-0.053122974932193756,
0.14802159368991852,
0.08166222274303436,
-0.09144649654626846,
-0.19256246089935303,
-0.08630277216434479,
0.10201671719551086,
0.17971307039260864,
0.050409309566020966,
-0.02338344417512417,
0.10295069962739944,
-0.08843041211366653,
0.012706292793154716,
0.059160783886909485,
-0.06515879184007645,
-0.05482804775238037,
0.0630323737859726,
0.08173035830259323,
0.0787791833281517,
-0.12468571215867996,
-0.018215585500001907,
0.011311499401926994,
0.00691694812849164,
0.08102929592132568,
0.022060219198465347,
0.14176861941814423,
0.03922285884618759,
-0.1292058527469635,
-0.047744158655405045,
0.10315844416618347,
0.04381343349814415,
-0.04969092458486557,
-0.24839195609092712,
-0.028692634776234627,
-0.03409173712134361,
-0.029329892247915268,
-0.041139665991067886,
0.04428756237030029,
-0.010770969092845917,
0.08322557806968689,
-0.008045176975429058,
-0.07979845255613327,
-0.03690612316131592,
0.06324487924575806,
0.05645342543721199,
0.024454401805996895,
-0.008984005078673363,
0.006743076257407665,
0.1175178587436676,
0.10636600106954575,
-0.12631633877754211,
-0.05289403349161148,
-0.06528059393167496,
-0.0853288322687149,
-0.04429693520069122,
0.03338160738348961,
0.04351643845438957,
0.04334709793329239,
0.24920088052749634,
0.011966975405812263,
0.05556565150618553,
0.03878911957144737,
0.011687099933624268,
0.06360286474227905,
0.11270952969789505,
-0.05845928564667702,
-0.09383665025234222,
-0.033332064747810364,
0.09301437437534332,
0.008503437042236328,
-0.0402098223567009,
-0.06047673895955086,
0.06078295037150383,
0.015703821554780006,
0.12211526930332184,
0.087046779692173,
0.002870776690542698,
-0.07195370644330978,
-0.06478150933980942,
0.19285908341407776,
-0.15949691832065582,
0.047871991991996765,
0.03357849270105362,
-0.040312062948942184,
-0.0005020854296162724,
0.01165273692458868,
0.023987481370568275,
-0.021567439660429955,
0.0924374982714653,
-0.05500924214720726,
-0.03761355206370354,
-0.10879732668399811,
-0.03591866046190262,
0.03197222575545311,
0.0022585385013371706,
-0.02967100404202938,
-0.033424828201532364,
-0.08920473605394363,
-0.0635172426700592,
0.09580977261066437,
-0.07413128018379211,
-0.05156254023313522,
-0.016345804557204247,
-0.0761859342455864,
0.026101797819137573,
0.01702207140624523,
0.08535456657409668,
-0.0213642455637455,
0.037230201065540314,
-0.05421315133571625,
0.06241346150636673,
0.10910454392433167,
0.0320611298084259,
-0.053984515368938446,
0.06094928830862045,
-0.2412392497062683,
0.10316064208745956,
-0.07156267017126083,
0.05108866095542908,
-0.15137021243572235,
-0.025331947952508926,
0.04665522649884224,
0.009590202011168003,
-0.011478574015200138,
0.14007656276226044,
-0.2198302298784256,
-0.029333066195249557,
0.1640782356262207,
-0.09730498492717743,
-0.08055570721626282,
0.059064920991659164,
-0.054139286279678345,
0.10999192297458649,
0.04003598168492317,
-0.023768696933984756,
0.06297750771045685,
-0.14250542223453522,
-0.0039275879971683025,
-0.041889119893312454,
-0.01720282807946205,
0.16010744869709015,
0.07506491243839264,
-0.06698185205459595,
0.077672079205513,
0.022212913259863853,
-0.023321649059653282,
-0.04393244534730911,
-0.022494852542877197,
-0.10826845467090607,
0.009565223939716816,
-0.06269361078739166,
0.02424052357673645,
-0.023944495245814323,
-0.0903024971485138,
-0.029575346037745476,
-0.1770460456609726,
-0.013402442447841167,
0.08679109811782837,
-0.010982494801282883,
-0.019886262714862823,
-0.11693590134382248,
0.012033592909574509,
0.032231178134679794,
0.0004325093177612871,
-0.13445010781288147,
-0.05658498778939247,
0.0273329745978117,
-0.16240260004997253,
0.031236927956342697,
-0.05114622414112091,
0.04928715154528618,
0.03406677767634392,
-0.03175085783004761,
-0.031348153948783875,
0.01572313904762268,
0.006510823033750057,
-0.013680041767656803,
-0.24737438559532166,
-0.02852414920926094,
-0.022412575781345367,
0.16979394853115082,
-0.2190135270357132,
0.04012007266283035,
0.07135825604200363,
0.15074580907821655,
0.006911954842507839,
-0.03669405356049538,
0.005606858059763908,
-0.0768459290266037,
-0.03284264728426933,
-0.0623927041888237,
-0.008401541970670223,
-0.03721899166703224,
-0.054593876004219055,
0.051287684589624405,
-0.16718235611915588,
-0.031153932213783264,
0.1028679683804512,
0.06780845671892166,
-0.13963541388511658,
-0.01705223321914673,
-0.04106766730546951,
-0.043112557381391525,
-0.05709490180015564,
-0.05539087578654289,
0.11148729920387268,
0.05757083371281624,
0.04828811436891556,
-0.06848311424255371,
-0.0756818875670433,
0.006132613401859999,
-0.0179264098405838,
-0.021222935989499092,
0.0928845927119255,
0.07583390921354294,
-0.12310270220041275,
0.09178637713193893,
0.10549022257328033,
0.0892157256603241,
0.10119049996137619,
-0.02137933485209942,
-0.08691582083702087,
-0.04892461374402046,
0.0229446180164814,
0.016364475712180138,
0.13983985781669617,
-0.016759416088461876,
0.05310053750872612,
0.04020100086927414,
-0.012910815887153149,
0.011883769184350967,
-0.09328193217515945,
0.02934250421822071,
0.03636814281344414,
-0.019501443952322006,
0.040251899510622025,
-0.03908125311136246,
0.020790016278624535,
0.08787564933300018,
0.04434992000460625,
0.03818633407354355,
0.013980780728161335,
-0.04370194673538208,
-0.11091572046279907,
0.17051653563976288,
-0.12536633014678955,
-0.239797443151474,
-0.14147889614105225,
0.001731917611323297,
0.041165996342897415,
-0.01159723661839962,
0.0031763319857418537,
-0.06770002096891403,
-0.11874829977750778,
-0.09346967190504074,
0.015001182444393635,
0.04228860139846802,
-0.080612413585186,
-0.05524664744734764,
0.05777253210544586,
0.040611669421195984,
-0.143319234251976,
0.020423002541065216,
0.04869217798113823,
-0.08989228308200836,
-0.00900039542466402,
0.08071441948413849,
0.06998268514871597,
0.17929090559482574,
0.009512054733932018,
-0.020932139828801155,
0.03292093798518181,
0.2157505750656128,
-0.13771237432956696,
0.11451084166765213,
0.14277678728103638,
-0.0911637470126152,
0.08293474465608597,
0.1991184800863266,
0.03884927183389664,
-0.10264625400304794,
0.03326369449496269,
0.022328944876790047,
-0.028676386922597885,
-0.2503291964530945,
-0.06918580830097198,
0.0007976540364325047,
-0.05238448083400726,
0.07527847588062286,
0.08888168632984161,
0.09494108706712723,
0.01729334332048893,
-0.09416709095239639,
-0.08025584369897842,
0.04901478812098503,
0.10409125685691833,
0.010409193113446236,
-0.01156378723680973,
0.09060908854007721,
-0.03323452174663544,
0.01843860000371933,
0.09313460439443588,
0.004041523206979036,
0.17060963809490204,
0.05550962686538696,
0.18336638808250427,
0.07643263041973114,
0.0721396952867508,
0.015671607106924057,
0.013079277239739895,
0.02304760180413723,
0.021578695625066757,
-0.0033059304114431143,
-0.0851421132683754,
-0.009511260315775871,
0.11862117052078247,
0.06801546365022659,
0.020754681900143623,
0.009507957845926285,
-0.033934496343135834,
0.08064714074134827,
0.17465052008628845,
-0.0009437129483558238,
-0.1870066076517105,
-0.06896740943193436,
0.08026526123285294,
-0.08972865343093872,
-0.10345284640789032,
-0.02900044620037079,
0.0354950949549675,
-0.17372116446495056,
0.02448408491909504,
-0.018045885488390923,
0.11108683049678802,
-0.1356782615184784,
-0.01890929788351059,
0.06319493800401688,
0.07008420675992966,
-0.0016097982879728079,
0.06208989396691322,
-0.16155508160591125,
0.10791012644767761,
0.01390943955630064,
0.06503470987081528,
-0.09786296635866165,
0.10111832618713379,
-0.006267238408327103,
-0.007413685787469149,
0.14043578505516052,
0.009255880489945412,
-0.07051325589418411,
-0.08343593031167984,
-0.0979004055261612,
-0.010649190284311771,
0.12877127528190613,
-0.14879846572875977,
0.08456916362047195,
-0.0322830006480217,
-0.04405250772833824,
0.005208021495491266,
-0.10768675804138184,
-0.12857580184936523,
-0.18887875974178314,
0.05537694692611694,
-0.13356289267539978,
0.033175256103277206,
-0.1055491715669632,
-0.0408647358417511,
-0.02885887771844864,
0.19630752503871918,
-0.22321896255016327,
-0.0670507624745369,
-0.15318840742111206,
-0.09096445143222809,
0.14798617362976074,
-0.049908362329006195,
0.08374498039484024,
-0.005065108183771372,
0.18742504715919495,
0.01894373446702957,
-0.024415504187345505,
0.1011786088347435,
-0.09638315439224243,
-0.19627197086811066,
-0.08534666895866394,
0.15457913279533386,
0.13537167012691498,
0.0351712740957737,
-0.004617651924490929,
0.03167666867375374,
-0.0189940445125103,
-0.12101218104362488,
0.022920187562704086,
0.17696480453014374,
0.07036592066287994,
0.024736741557717323,
-0.02639835514128208,
-0.11453131586313248,
-0.06600044667720795,
-0.032452553510665894,
0.02982977218925953,
0.18294402956962585,
-0.07586611062288284,
0.18679921329021454,
0.13732017576694489,
-0.05770440772175789,
-0.1956426501274109,
0.01923983357846737,
0.04058924317359924,
0.00837375782430172,
0.032165057957172394,
-0.20239581167697906,
0.08806682378053665,
0.0007347199134528637,
-0.05074144899845123,
0.13624143600463867,
-0.17552010715007782,
-0.15046143531799316,
0.06929060816764832,
0.03642011433839798,
-0.19279520213603973,
-0.12030941992998123,
-0.08865538984537125,
-0.05107492581009865,
-0.17776648700237274,
0.10758756101131439,
0.02193085290491581,
0.00676411809399724,
0.033654287457466125,
0.026140762493014336,
0.014790141955018044,
-0.0396585576236248,
0.19431912899017334,
-0.02348872646689415,
0.030807901173830032,
-0.08293910324573517,
-0.07001609355211258,
0.05941145867109299,
-0.05705835670232773,
0.0775861069560051,
-0.022215960547327995,
0.013414059765636921,
-0.10643109679222107,
-0.04425564035773277,
-0.03175993636250496,
0.015691282227635384,
-0.09722420573234558,
-0.08909335732460022,
-0.050057362765073776,
0.09262266010046005,
0.0974174216389656,
-0.035089656710624695,
-0.03564268350601196,
-0.07118509709835052,
0.039714183658361435,
0.18831974267959595,
0.17605267465114594,
0.046182651072740555,
-0.08030564337968826,
-0.004098092205822468,
-0.011694483458995819,
0.042484745383262634,
-0.21906526386737823,
0.062426332384347916,
0.05058585852384567,
0.014059843495488167,
0.1173645630478859,
-0.01779606007039547,
-0.15810294449329376,
-0.06761486083269119,
0.05993710458278656,
-0.06326820701360703,
-0.19225671887397766,
0.0032602818682789803,
0.055388111621141434,
-0.16711848974227905,
-0.04538320377469063,
0.0430813767015934,
-0.005750913172960281,
-0.039257556200027466,
0.01613711006939411,
0.08359149098396301,
0.0031580389477312565,
0.07040093839168549,
0.05520293489098549,
0.086640864610672,
-0.10250966250896454,
0.07937785238027573,
0.08386688679456711,
-0.08347215503454208,
0.028158824890851974,
0.09330378472805023,
-0.06144890934228897,
-0.029910072684288025,
0.032212331891059875,
0.08255140483379364,
0.012964491732418537,
-0.04401125758886337,
0.008184057660400867,
-0.10146338492631912,
0.0627170279622078,
0.09755739569664001,
0.03206513822078705,
0.011901181191205978,
0.03383762761950493,
0.04645882546901703,
-0.07481352984905243,
0.11842621862888336,
0.025973208248615265,
0.01822328381240368,
-0.04273592680692673,
-0.04516541585326195,
0.027133917436003685,
-0.02340707741677761,
-0.007566304877400398,
-0.03583317995071411,
-0.06988023966550827,
-0.01722576655447483,
-0.16493180394172668,
-0.01076561864465475,
-0.044063083827495575,
0.008020744659006596,
0.026847293600440025,
-0.0369400717318058,
0.008594665676355362,
0.009077225811779499,
-0.07577309012413025,
-0.06240518018603325,
-0.02245018258690834,
0.0914878100156784,
-0.16343435645103455,
0.023352261632680893,
0.08310231566429138,
-0.12098916620016098,
0.09322582185268402,
0.018653366714715958,
-0.0019369579385966063,
0.02680385299026966,
-0.15561461448669434,
0.0368269607424736,
-0.027320701628923416,
0.014671673998236656,
0.045705173164606094,
-0.21818207204341888,
-0.0014451020397245884,
-0.03558654710650444,
-0.059982262551784515,
-0.010693925432860851,
-0.037350837141275406,
-0.11245633661746979,
0.10088492184877396,
0.012412267737090588,
-0.08672942966222763,
-0.03157110512256622,
0.03652326017618179,
0.08053763210773468,
-0.02631879225373268,
0.15205731987953186,
-0.0010786735219880939,
0.07447176426649094,
-0.1738860309123993,
-0.0210786834359169,
-0.0090115275233984,
0.02177848480641842,
-0.016872623935341835,
-0.01564885675907135,
0.042430613189935684,
-0.026671668514609337,
0.18584245443344116,
-0.027355844154953957,
0.03733034059405327,
0.06316441297531128,
0.01770097203552723,
-0.021354418247938156,
0.10755398869514465,
0.06012963131070137,
0.02173144742846489,
0.019801700487732887,
0.0075409491546452045,
-0.041807159781455994,
-0.018543899059295654,
-0.19347810745239258,
0.07164526730775833,
0.14044208824634552,
0.08769161999225616,
-0.012164209969341755,
0.08067302405834198,
-0.10084949433803558,
-0.11743459850549698,
0.11121641099452972,
-0.059808436781167984,
-0.0022669173777103424,
-0.06652101874351501,
0.13155525922775269,
0.14582572877407074,
-0.19254228472709656,
0.07050827890634537,
-0.06511960923671722,
-0.05269601568579674,
-0.11906112730503082,
-0.1953776627779007,
-0.05703132599592209,
-0.054343048483133316,
-0.015079263597726822,
-0.05059242993593216,
0.07498416304588318,
0.05622640252113342,
0.010858895257115364,
0.0015552249969914556,
0.06971994787454605,
-0.019759170711040497,
0.001521410304121673,
0.032095473259687424,
0.06417544931173325,
0.014362066984176636,
-0.03133942559361458,
0.018592869862914085,
-0.008470231667160988,
0.03991629183292389,
0.0633486732840538,
0.04155107960104942,
-0.028110865503549576,
0.01659207232296467,
-0.0337030366063118,
-0.10854189842939377,
0.04278707876801491,
-0.028698457404971123,
-0.08063279837369919,
0.13984808325767517,
0.025403661653399467,
0.009562181308865547,
-0.022226108238101006,
0.241981640458107,
-0.07480388879776001,
-0.09265431761741638,
-0.14692139625549316,
0.1055137887597084,
-0.04348868504166603,
0.06415078788995743,
0.045384783297777176,
-0.10421041399240494,
0.012057800777256489,
0.12658540904521942,
0.1625804305076599,
-0.0438871793448925,
0.019560009241104126,
0.03037482313811779,
0.00398933095857501,
-0.03853052854537964,
0.05252939090132713,
0.06827457249164581,
0.14848913252353668,
-0.050116557627916336,
0.09223522990942001,
0.0050886585377156734,
-0.09908851981163025,
-0.034064266830682755,
0.11810369789600372,
-0.019035303965210915,
0.019260596483945847,
-0.05601469427347183,
0.11788773536682129,
-0.06368034332990646,
-0.233087420463562,
0.06406685709953308,
-0.07426205277442932,
-0.14131881296634674,
-0.024826664477586746,
0.07676053047180176,
-0.014309047721326351,
0.027850469574332237,
0.0722186341881752,
-0.07654546946287155,
0.19937579333782196,
0.03671684116125107,
-0.058611851185560226,
-0.05623113736510277,
0.07896319031715393,
-0.11419995129108429,
0.27488458156585693,
0.015893742442131042,
0.045155949890613556,
0.1038452610373497,
-0.013412448577582836,
-0.13435201346874237,
0.01833420805633068,
0.09638454020023346,
-0.08846497535705566,
0.04018587991595268,
0.20595665276050568,
-0.0028567397966980934,
0.11962885409593582,
0.07707620412111282,
-0.08087631314992905,
0.049051105976104736,
-0.09828304499387741,
-0.07230360060930252,
-0.08931835740804672,
0.09120666980743408,
-0.07232820242643356,
0.14308606088161469,
0.1311190128326416,
-0.05265164002776146,
0.00968363881111145,
-0.029376711696386337,
0.045510269701480865,
0.004632700700312853,
0.10403459519147873,
0.008749093860387802,
-0.1797543615102768,
0.02403045818209648,
0.01841445453464985,
0.10992073267698288,
-0.1701374351978302,
-0.09734909981489182,
0.043629229068756104,
-0.0012522460892796516,
-0.06121290475130081,
0.1290796846151352,
0.05957380682229996,
0.05011506378650665,
-0.043520737439394,
-0.0211784765124321,
-0.008504665456712246,
0.14072857797145844,
-0.10404830425977707,
-0.00016830587992444634
] |
null | null | null | https://civitai.com/models/302264/munetani-mashimo-or-high-school-fleet | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/HighSchoolFleet_MunetaniMashimo | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:25:01+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` | {"license": "other", "tags": ["autotrain", "text-generation"], "widget": [{"text": "I love AutoTrain because "}]} | text-generation | ElderlyDed/MistGuaco | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"autotrain",
"conversational",
"license:other",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:25:10+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #autotrain #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit AutoTrain.
# Usage
| [
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #autotrain #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.",
"# Usage"
] | [
60,
29,
3
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #autotrain #conversational #license-other #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.# Usage"
] | [
-0.021511150524020195,
0.04406950995326042,
-0.0018974434351548553,
0.042258311063051224,
0.12830689549446106,
-0.032055750489234924,
0.25097373127937317,
0.046006232500076294,
-0.055674921721220016,
-0.0875626727938652,
0.1800176501274109,
0.18086481094360352,
-0.044509101659059525,
0.18035292625427246,
-0.050944287329912186,
-0.25305476784706116,
0.03928804025053978,
-0.03002876788377762,
0.08513160794973373,
0.11528930813074112,
0.15422189235687256,
-0.06810108572244644,
0.07065033167600632,
0.02824488840997219,
-0.20104824006557465,
0.019978217780590057,
0.061692725867033005,
-0.13531090319156647,
0.1744065284729004,
0.06427885591983795,
0.10493632405996323,
0.055612560361623764,
0.116838239133358,
-0.1132093071937561,
0.022470777854323387,
-0.0016907136887311935,
-0.014712871052324772,
0.08243117481470108,
0.06501992791891098,
-0.05186719819903374,
0.07627531886100769,
0.15464681386947632,
0.10604750365018845,
0.0482061542570591,
-0.11266434192657471,
0.019983580335974693,
-0.009796111844480038,
0.024494826793670654,
0.11246276646852493,
0.10748797655105591,
-0.019376493990421295,
0.17442357540130615,
-0.11404631286859512,
0.08803998678922653,
-0.06867949664592743,
-0.2569102942943573,
-0.02377595752477646,
0.17971466481685638,
0.04951933026313782,
0.009332622401416302,
-0.11764580756425858,
0.07480819523334503,
0.10503014177083969,
-0.0036651177797466516,
0.06326811760663986,
-0.027249373495578766,
-0.04522029682993889,
-0.012807485647499561,
-0.08539242297410965,
0.01736890710890293,
0.19978225231170654,
-0.07611245661973953,
-0.029304297640919685,
-0.11826693266630173,
-0.03709862753748894,
0.039590343832969666,
-0.003653857856988907,
-0.11187566071748734,
-0.03012414276599884,
0.09636328369379044,
-0.040389467030763626,
-0.02467985264956951,
-0.1315167397260666,
-0.05055169388651848,
-0.10564202070236206,
0.06777604669332504,
-0.005282477010041475,
-0.013226459734141827,
-0.1092604473233223,
0.10347986221313477,
0.024692028760910034,
-0.11134970933198929,
0.054500650614500046,
-0.0958658754825592,
0.02550862729549408,
-0.1014677956700325,
-0.028109585866332054,
-0.12843111157417297,
0.029125744476914406,
0.2112814038991928,
0.14645351469516754,
0.0026995285879820585,
-0.08157949894666672,
0.03567685931921005,
0.021564165130257607,
0.10918251425027847,
0.04826131463050842,
-0.05470609664916992,
0.05478431284427643,
-0.05002056062221527,
-0.01882634125649929,
-0.03960404917597771,
-0.18943770229816437,
0.035271406173706055,
0.03341565653681755,
0.055131714791059494,
-0.06098131462931633,
0.10801588743925095,
-0.030042583122849464,
0.02901764214038849,
0.05494352802634239,
-0.03733232617378235,
0.025456679984927177,
-0.04736876115202904,
0.0010906178504228592,
-0.05055661499500275,
0.04184268042445183,
0.11400067061185837,
0.029079049825668335,
0.10226564854383469,
-0.07642456144094467,
-0.04008793830871582,
-0.09685022383928299,
-0.07439978420734406,
0.005647685844451189,
0.047459330409765244,
0.043970074504613876,
-0.20281462371349335,
-0.2693801820278168,
-0.019272325560450554,
0.05773158743977547,
-0.022137636318802834,
-0.07310711592435837,
-0.10689149051904678,
0.0075124879367649555,
0.06080935522913933,
-0.03403749689459801,
0.04879654571413994,
-0.019104430451989174,
0.027751440182328224,
-0.07201311737298965,
0.022503772750496864,
-0.07536090165376663,
0.020340394228696823,
-0.13729903101921082,
-0.02291964925825596,
-0.019758576527237892,
0.050816237926483154,
-0.02963360585272312,
0.15936978161334991,
-0.03056740015745163,
0.03803997114300728,
-0.027829257771372795,
0.05552501976490021,
0.010931183584034443,
0.15893206000328064,
-0.1403975933790207,
-0.03167174383997917,
0.15015147626399994,
-0.11030462384223938,
-0.11657889932394028,
0.12217075377702713,
-0.10353213548660278,
0.26386839151382446,
0.12699852883815765,
0.11197960376739502,
0.04626157879829407,
-0.07833969593048096,
0.12762103974819183,
0.012613244354724884,
-0.08764777332544327,
-0.004540602210909128,
0.005323404911905527,
0.007409125100821257,
-0.20041394233703613,
0.03927268087863922,
0.12687388062477112,
0.07012435793876648,
-0.04830225929617882,
-0.08430612087249756,
-0.007972520776093006,
-0.04824082925915718,
0.08512664586305618,
-0.011973553337156773,
0.13039983808994293,
-0.06363964080810547,
-0.03081914782524109,
0.06789000332355499,
0.042220357805490494,
0.042559653520584106,
-0.04828557372093201,
-0.08518916368484497,
-0.04232817888259888,
-0.017585016787052155,
0.02622099779546261,
-0.09633272886276245,
-0.04491637647151947,
-0.02053658664226532,
0.11658555269241333,
0.0512460358440876,
0.09422498941421509,
0.036101795732975006,
0.05028996989130974,
-0.01500276941806078,
0.016517972573637962,
0.18897680938243866,
0.03480306640267372,
-0.12018852680921555,
-0.11630555242300034,
0.11346139758825302,
-0.08252450078725815,
0.1552623063325882,
-0.23897039890289307,
0.036255478858947754,
-0.09490116685628891,
0.08064372092485428,
0.0017309013055637479,
0.08484213799238205,
-0.07529973238706589,
0.022200478240847588,
-0.10573600977659225,
0.0037568025290966034,
0.075276680290699,
0.04180307686328888,
-0.05554218962788582,
0.15476444363594055,
-0.16981041431427002,
0.22939729690551758,
0.11703455448150635,
-0.13663136959075928,
-0.0915972888469696,
-0.1152295246720314,
0.007930442690849304,
-0.016463875770568848,
-0.07295192033052444,
-0.009564582258462906,
0.12166782468557358,
-0.03571236506104469,
0.18361419439315796,
-0.018240265548229218,
-0.028462545946240425,
-0.013746020384132862,
-0.09323040395975113,
-0.012784305028617382,
0.017725640907883644,
0.04489867389202118,
-0.231642484664917,
0.13959123194217682,
0.15498210489749908,
-0.023230239748954773,
0.19611501693725586,
0.0333954393863678,
0.028921006247401237,
0.00525292381644249,
-0.05130617320537567,
0.0011728843674063683,
-0.026411594823002815,
-0.051287874579429626,
-0.04254357889294624,
0.020757026970386505,
0.0074368310160934925,
0.026900894939899445,
-0.11432439088821411,
-0.03215554356575012,
0.022868173196911812,
0.05850449204444885,
0.02872556447982788,
0.06238703802227974,
-0.08062804490327835,
0.07846172899007797,
-0.03310805931687355,
-0.14237742125988007,
0.1218472421169281,
0.008713995106518269,
-0.12699823081493378,
0.17084048688411713,
-0.09632863849401474,
-0.21641428768634796,
-0.19598573446273804,
-0.17537488043308258,
-0.005434079095721245,
0.07832824438810349,
0.07291760295629501,
-0.07093466073274612,
-0.06506931781768799,
-0.013085749931633472,
-0.06344981491565704,
0.014589118771255016,
-0.02378881722688675,
-0.0763881728053093,
0.040016770362854004,
-0.019185611978173256,
-0.10781533271074295,
-0.04439970850944519,
0.012527063488960266,
-0.060712482780218124,
0.08484047651290894,
-0.06380870193243027,
0.055258508771657944,
0.15709160268306732,
-0.014931886456906796,
0.0185655876994133,
-0.039996929466724396,
0.1619407683610916,
-0.07088436186313629,
0.007049378007650375,
0.09842365980148315,
-0.06707129627466202,
0.03206530585885048,
0.21750140190124512,
0.01955440454185009,
-0.06769856065511703,
0.09086031466722488,
-0.05018770694732666,
-0.056951407343149185,
-0.19610178470611572,
-0.11177343130111694,
-0.011685210280120373,
0.015133507549762726,
0.08075802773237228,
0.04754025116562843,
0.27289727330207825,
0.12313301116228104,
0.05691686272621155,
0.05817769095301628,
0.054087668657302856,
0.09844991564750671,
0.15277034044265747,
-0.035599011927843094,
0.18337403237819672,
-0.06327883899211884,
-0.1762838214635849,
0.0463390089571476,
-0.031888697296381,
0.07911207526922226,
0.17036698758602142,
0.018747372552752495,
0.034574054181575775,
0.06665497273206711,
0.14666350185871124,
0.12334746867418289,
0.084808848798275,
-0.056319113820791245,
-0.021449556574225426,
-0.020032169297337532,
-0.05785588547587395,
0.12442591786384583,
-0.04964852333068848,
-0.04578586295247078,
-0.02340216189622879,
0.04389573261141777,
0.04918395355343819,
0.0898701474070549,
0.0074623748660087585,
-0.286918967962265,
0.0050653028301894665,
0.04626360535621643,
-0.05904335901141167,
-0.08890440315008163,
0.08012378960847855,
-0.007189115509390831,
-0.16694433987140656,
0.014110126532614231,
-0.03885189816355705,
0.0952671691775322,
0.01716073974967003,
0.07566265016794205,
-0.09568360447883606,
-0.02710309624671936,
-0.042300328612327576,
0.13319268822669983,
-0.39069533348083496,
0.21181745827198029,
-0.01682322286069393,
0.045987967401742935,
-0.10731089115142822,
0.007316072005778551,
0.08743616193532944,
0.1837569922208786,
0.096399687230587,
-0.055255234241485596,
-0.16648070514202118,
-0.1134042739868164,
-0.09045281261205673,
-0.005390846636146307,
0.02524641342461109,
-0.01680302806198597,
0.018255090340971947,
-0.1121804416179657,
-0.004623611457645893,
0.05001246929168701,
0.015457145869731903,
-0.1535630226135254,
-0.16051709651947021,
0.006068591494113207,
0.031445879489183426,
0.11646050214767456,
-0.031057335436344147,
-0.08076300472021103,
-0.094660185277462,
0.1585388332605362,
0.03501934930682182,
0.0011602110462263227,
-0.13256333768367767,
-0.04017394408583641,
-0.04944954439997673,
-0.03613399714231491,
0.06408081203699112,
0.005305019672960043,
0.1273590475320816,
-0.08283259719610214,
-0.08643025904893875,
0.11136641353368759,
-0.11668875813484192,
-0.060902297496795654,
-0.10979162901639938,
0.024973781779408455,
-0.019845841452479362,
0.003304521320387721,
0.10422127693891525,
0.04288886487483978,
-0.07108274102210999,
-0.05980661138892174,
-0.02113221026957035,
-0.005155228078365326,
-0.014997591264545918,
-0.10641545802354813,
-0.11598227173089981,
-0.14479388296604156,
-0.03176797181367874,
-0.11093590408563614,
0.22375445067882538,
0.15719911456108093,
-0.08290619403123856,
0.146688774228096,
0.2352554351091385,
-0.11010316014289856,
-0.3153008222579956,
-0.06070736423134804,
-0.0540805347263813,
0.006331745535135269,
0.03831018880009651,
-0.12917447090148926,
0.08694636821746826,
0.007767969276756048,
-0.07379741966724396,
-0.04062706604599953,
-0.14264778792858124,
-0.1587120145559311,
0.25331321358680725,
0.013260179199278355,
0.23543070256710052,
-0.09259489178657532,
-0.059353094547986984,
-0.14886894822120667,
0.005429987329989672,
0.06631099432706833,
-0.09092322736978531,
0.06045657396316528,
0.051252949982881546,
0.07965859025716782,
0.02966240607202053,
-0.024035006761550903,
0.055772002786397934,
-0.05038310959935188,
0.0759878158569336,
-0.17024953663349152,
-0.04500401392579079,
0.05323336645960808,
-0.018912682309746742,
0.0998123288154602,
-0.05401824042201042,
0.02677818201482296,
-0.008542642928659916,
-0.06801259517669678,
0.023929402232170105,
0.06284014135599136,
-0.004270337522029877,
-0.11778664588928223,
0.014000087045133114,
-0.010050134733319283,
0.0053947134874761105,
-0.059911634773015976,
0.05780978873372078,
-0.03476967662572861,
0.1485874503850937,
0.15241393446922302,
0.23329348862171173,
-0.07141220569610596,
0.10244371742010117,
-0.03340986743569374,
-0.11548477411270142,
0.08455099910497665,
-0.07695529609918594,
0.027050279080867767,
0.07731927186250687,
-0.047056566923856735,
0.1748439520597458,
0.05639607086777687,
0.011933833360671997,
-0.008426292799413204,
0.142360657453537,
-0.15987731516361237,
0.009308046661317348,
-0.07943334430456161,
0.13067156076431274,
0.04492649808526039,
0.0004141576064284891,
0.12906450033187866,
-0.09000152349472046,
-0.01941542886197567,
0.021079346537590027,
0.00479003693908453,
-0.03201186656951904,
0.10242592543363571,
0.02793554961681366,
0.016818257048726082,
-0.07914214581251144,
0.03550894185900688,
0.07390327006578445,
0.0034617725759744644,
0.04619156941771507,
0.02801675535738468,
-0.10968965291976929,
-0.11486479640007019,
0.003840886289253831,
0.2648932933807373,
-0.17048506438732147,
-0.0780344158411026,
-0.012264362536370754,
-0.1285719871520996,
0.0121929831802845,
0.08398593217134476,
0.07780637592077255,
0.04008983448147774,
-0.06751032918691635,
-0.02295597828924656,
-0.09875822067260742,
0.09456682950258255,
0.012302984483540058,
0.047485072165727615,
-0.13529013097286224,
0.0852399468421936,
-0.03691168501973152,
-0.007895942777395248,
-0.09560481458902359,
-0.049228549003601074,
-0.12735776603221893,
0.02569100819528103,
-0.13867126405239105,
-0.03795100376009941,
-0.05277736112475395,
-0.007859637029469013,
0.05610223114490509,
-0.015295255929231644,
-0.018181191757321358,
-0.03177627921104431,
-0.09117025136947632,
0.030161157250404358,
-0.0012549255043268204,
0.057158660143613815,
-0.044383708387613297,
-0.027280032634735107,
0.03378000855445862,
-0.0044015152379870415,
0.06994954496622086,
0.02122250199317932,
-0.032562851905822754,
0.052383456379175186,
-0.19439010322093964,
0.013238121755421162,
0.07609103620052338,
-0.001706396578811109,
0.032405223697423935,
-0.04411722719669342,
-0.01344985794275999,
0.10101554542779922,
0.043881531804800034,
0.04432373866438866,
0.011401806026697159,
-0.08144962042570114,
0.04596644267439842,
0.06498777121305466,
-0.13372421264648438,
-0.03389865532517433,
-0.03190535679459572,
0.0028287700843065977,
-0.03814942017197609,
0.22334830462932587,
-0.12197455763816833,
0.04868736490607262,
-0.04305120185017586,
0.03215811774134636,
-0.02491365373134613,
-0.13802887499332428,
-0.11349769681692123,
-0.12090087682008743,
-0.028644030913710594,
-0.005757875274866819,
0.24444162845611572,
0.11631548404693604,
-0.023379435762763023,
0.03680773451924324,
0.0689404159784317,
0.05268724635243416,
0.019476626068353653,
0.20020228624343872,
0.11798638105392456,
0.00801010336726904,
-0.13824819028377533,
0.08099787682294846,
0.03446761891245842,
-0.05022868886590004,
-0.0002508852630853653,
0.006553226616233587,
-0.07786662876605988,
0.06981057673692703,
0.051118154078722,
-0.010024713352322578,
-0.08102474361658096,
-0.12497129291296005,
-0.1094818115234375,
0.039945054799318314,
-0.09261518716812134,
0.019266700372099876,
0.17661623656749725,
-0.04462537169456482,
-0.012400207109749317,
-0.06642598658800125,
-0.044931549578905106,
-0.20246891677379608,
-0.16378946602344513,
-0.11721070855855942,
-0.07838650792837143,
0.010228404775261879,
-0.041436467319726944,
0.0513053722679615,
0.024983378127217293,
0.06237258389592171,
-0.05817200243473053,
0.0788678303360939,
-0.08986064791679382,
-0.010724514722824097,
0.01965920440852642,
-0.06444259732961655,
0.005938014481216669,
-0.1949824094772339,
-0.015196557156741619,
-0.11736103147268295,
0.0319199413061142,
-0.02515447326004505,
-0.018131008371710777,
0.0060718166641891,
-0.005089160520583391,
-0.045827340334653854,
-0.036580640822649,
-0.012856644578278065,
0.03945055603981018,
-0.006096675992012024,
0.04251397028565407,
0.01255482342094183,
-0.00021614103752654046,
0.045874763280153275,
0.20457006990909576,
-0.03719383850693703,
-0.1900760382413864,
-0.14537177979946136,
0.24047856032848358,
0.016291463747620583,
0.13067831099033356,
-0.05723630264401436,
-0.007833994925022125,
0.038664985448122025,
0.28923484683036804,
0.30338987708091736,
-0.056060388684272766,
0.011621600948274136,
-0.01911630854010582,
-0.005083557218313217,
-0.006262179929763079,
0.1619090884923935,
0.01673344522714615,
0.15317486226558685,
-0.04591422155499458,
0.06250827014446259,
-0.013997954316437244,
-0.08819081634283066,
-0.04897632822394371,
0.12038447707891464,
-0.013747419230639935,
-0.010778333060443401,
-0.023452607914805412,
0.08203831315040588,
-0.0993853434920311,
0.1308000087738037,
-0.16504473984241486,
-0.043394576758146286,
-0.061062831431627274,
0.037428054958581924,
0.1087816059589386,
0.004587629344314337,
0.04372462257742882,
-0.020919285714626312,
-0.015757059678435326,
0.04033498093485832,
-0.04032468423247337,
-0.0748470202088356,
-0.010522308759391308,
0.07876913994550705,
-0.023894717916846275,
0.19323021173477173,
-0.01973799616098404,
0.05881485715508461,
0.08197367191314697,
0.0009901272132992744,
-0.0923495963215828,
0.09593427926301956,
-0.002569346921518445,
-0.04332247003912926,
0.12296795845031738,
-0.003559875302016735,
0.009056528098881245,
0.0047286273911595345,
0.014467168599367142,
-0.16888590157032013,
0.12593960762023926,
-0.09653013944625854,
-0.09478563070297241,
-0.04189549759030342,
0.10743332654237747,
-0.01823744736611843,
0.14765001833438873,
0.07268229871988297,
-0.018285823985934258,
0.017968133091926575,
-0.027959873899817467,
0.05307796970009804,
-0.01953253708779812,
-0.10735776275396347,
-0.042452070862054825,
-0.20386724174022675,
-0.031956519931554794,
0.07400371879339218,
-0.012480479665100574,
-0.2703115940093994,
-0.07448812574148178,
-0.0989629402756691,
-0.02670217864215374,
-0.12356587499380112,
0.07305317372083664,
0.21730293333530426,
0.030869849026203156,
-0.009126100689172745,
-0.1264304667711258,
-0.009863014332950115,
0.0476914644241333,
-0.0390271432697773,
-0.09755232185125351
] |
null | null | null | https://civitai.com/models/271022/firefly-honkai-star-rail-lora | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/Firefly-1024-v2_5 | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:25:26+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/301865/fubuki-hellish-blizzard-one-punch-man | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/Fubuki | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:25:46+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/55509/aether-gazer-lingguang | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/lingguangV1 | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:26:10+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | null | https://civitai.com/models/27824 | {"license": "creativeml-openrail-m"} | null | LarryAIDraw/linguang | [
"license:creativeml-openrail-m",
"region:us"
] | 2024-02-13T13:26:33+00:00 | [] | [] | TAGS
#license-creativeml-openrail-m #region-us
| URL | [] | [
"TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
18
] | [
"passage: TAGS\n#license-creativeml-openrail-m #region-us \n"
] | [
-0.07587551325559616,
0.1441737711429596,
-0.0062791393138468266,
0.012048184871673584,
-0.001431003911420703,
-0.022854028269648552,
0.2091037780046463,
-0.018623588606715202,
0.08854977041482925,
-0.11491455882787704,
0.14648450911045074,
0.18939465284347534,
-0.10384178161621094,
0.0838744044303894,
-0.061768148094415665,
-0.13200531899929047,
0.029243366792798042,
-0.07651498913764954,
-0.0865340456366539,
0.028722204267978668,
0.056829702109098434,
-0.01273291651159525,
-0.003666024887934327,
-0.0012952570104971528,
-0.11045186221599579,
0.07173702865839005,
-0.029841862618923187,
-0.037320639938116074,
0.060927797108888626,
-0.04866224527359009,
0.04899880662560463,
0.11812204867601395,
-0.033462416380643845,
-0.13358792662620544,
0.004443002864718437,
-0.11795501410961151,
-0.13281011581420898,
0.007506446447223425,
0.121794693171978,
-0.0353701114654541,
0.12644833326339722,
0.17882929742336273,
0.0022871040273457766,
0.07042364031076431,
-0.1692226231098175,
-0.17680460214614868,
-0.04340395703911781,
-0.018681490793824196,
-0.026622790843248367,
0.0532202385365963,
0.11296376585960388,
0.0959911122918129,
-0.1474708467721939,
0.059626504778862,
0.08025065064430237,
-0.29932230710983276,
0.03342466056346893,
0.23123668134212494,
0.11160528659820557,
0.03646189346909523,
-0.04899992793798447,
0.06103713810443878,
0.037279851734638214,
-0.055691562592983246,
-0.011489230208098888,
-0.07466674596071243,
0.033063821494579315,
0.1203068420290947,
-0.048032116144895554,
-0.025952165946364403,
0.3207513689994812,
-0.011608880013227463,
0.004257023800164461,
0.03850623592734337,
-0.046627260744571686,
0.03471478819847107,
0.053042974323034286,
0.07628075033426285,
0.05806995555758476,
0.1503586620092392,
0.06162842735648155,
-0.11057397723197937,
-0.12041215598583221,
0.018044639378786087,
-0.14939343929290771,
0.16419777274131775,
-0.05087574943900108,
0.0932750254869461,
-0.11752020567655563,
0.018267955631017685,
-0.0651155412197113,
-0.03550999239087105,
-0.010290741920471191,
-0.14436741173267365,
0.09543514996767044,
-0.00750720826908946,
-0.044816359877586365,
-0.06333030760288239,
0.06353012472391129,
0.134693443775177,
0.06326734274625778,
-0.01916888915002346,
0.03110724687576294,
0.18312698602676392,
0.02453736774623394,
-0.039170458912849426,
0.02620672434568405,
0.14288429915905,
0.03429737314581871,
-0.1762668490409851,
-0.0059744445607066154,
-0.0644608810544014,
-0.1936662793159485,
-0.02320769429206848,
-0.19997692108154297,
0.16352415084838867,
-0.030033577233552933,
-0.016221072524785995,
-0.03707468882203102,
0.022218478843569756,
0.04353277385234833,
0.007484832778573036,
0.018807580694556236,
-0.044244956225156784,
-0.08294660598039627,
-0.08514150232076645,
-0.020517800003290176,
0.05681263282895088,
0.07853931933641434,
0.18057872354984283,
-0.12033670395612717,
0.0023163571022450924,
-0.04746192321181297,
-0.002028648741543293,
0.10751507431268692,
-0.1799560934305191,
0.05942503362894058,
-0.10612065345048904,
-0.21264076232910156,
-0.0035186251625418663,
0.11188323050737381,
0.02211635187268257,
0.00010340322478441522,
0.023470120504498482,
-0.042402785271406174,
-0.03322858735918999,
-0.06714189052581787,
-0.09123854339122772,
-0.07618846744298935,
0.0644230917096138,
-0.15088342130184174,
-0.06908489763736725,
-0.27447474002838135,
0.021657612174749374,
-0.11370886117219925,
0.030269425362348557,
0.09551744163036346,
-0.08233252167701721,
-0.11906278878450394,
0.24992190301418304,
0.07235409319400787,
0.07105377316474915,
-0.037106942385435104,
-0.02335505001246929,
-0.040998950600624084,
0.07576625794172287,
-0.051450882107019424,
0.006896975915879011,
0.06892602890729904,
-0.05309505760669708,
-0.13028347492218018,
-0.018723927438259125,
-0.04109232872724533,
0.13036558032035828,
-0.005558064207434654,
0.30143606662750244,
0.04775548353791237,
-0.18540549278259277,
0.20458267629146576,
0.13462620973587036,
-0.17578788101673126,
-0.3525811433792114,
0.10510481148958206,
-0.08032525330781937,
-0.12903624773025513,
0.02135874517261982,
0.05760384723544121,
0.08029629290103912,
-0.016704760491847992,
-0.03554001823067665,
0.003427563700824976,
-0.061561521142721176,
-0.016107140108942986,
0.031175263226032257,
0.09541988372802734,
-0.08737137913703918,
0.08379733562469482,
0.03426050394773483,
-0.0114505710080266,
0.14006270468235016,
-0.02073829248547554,
-0.0763879269361496,
0.02079492248594761,
0.04172089695930481,
-0.020384199917316437,
-0.056601639837026596,
-0.019958069548010826,
0.024005193263292313,
-0.017852509394288063,
0.10743143409490585,
0.29301881790161133,
0.0457768440246582,
-0.015894168987870216,
0.050522804260253906,
0.02892244979739189,
0.031187754124403,
0.04622279107570648,
0.002081167884171009,
-0.15730762481689453,
0.07284589111804962,
-0.05682012811303139,
-0.09314198791980743,
-0.03167767822742462,
-0.0017506676958873868,
0.0981268361210823,
-0.05222945287823677,
0.06663653254508972,
0.04907272756099701,
0.008146014995872974,
-0.0024776349309831858,
0.019724633544683456,
0.03505800664424896,
0.15693770349025726,
0.06973138451576233,
-0.09330075234174728,
0.2326427847146988,
-0.07795968651771545,
0.3451519012451172,
0.06519531458616257,
-0.17186447978019714,
0.0015280802035704255,
-0.16536928713321686,
-0.08274903148412704,
0.009426575154066086,
0.06846177577972412,
0.04244798794388771,
-0.06766051799058914,
-0.0681324228644371,
0.1076645776629448,
-0.05602144077420235,
-0.05967314541339874,
-0.09208252280950546,
-0.06438151746988297,
-0.09841792285442352,
0.11479154229164124,
0.17103825509548187,
-0.17601613700389862,
0.14707137644290924,
0.31644511222839355,
0.0033473046496510506,
0.20550797879695892,
-0.06598898768424988,
0.06533558666706085,
-0.11870601028203964,
0.06948951631784439,
-0.033792875707149506,
0.1264963299036026,
-0.10152938961982727,
0.04339653253555298,
0.01719778962433338,
0.05835990980267525,
0.12580721080303192,
-0.1375611275434494,
-0.2047722488641739,
0.05393601953983307,
0.04846670478582382,
-0.08490802347660065,
0.15654030442237854,
-0.07621043175458908,
0.03958071768283844,
-0.04002580791711807,
-0.10932640731334686,
0.16022461652755737,
-0.07396190613508224,
-0.03576399013400078,
0.04601873457431793,
-0.162797212600708,
0.04817049205303192,
-0.13655415177345276,
-0.20034807920455933,
-0.03256381303071976,
0.011739566922187805,
0.09091648459434509,
0.0064963698387146,
-0.045913100242614746,
0.008927296847105026,
-0.1321311742067337,
-0.24660253524780273,
-0.10214889049530029,
-0.04224977269768715,
0.1463703066110611,
-0.09529456496238708,
-0.08689732849597931,
-0.008191614411771297,
-0.027925807982683182,
0.0383632630109787,
0.0873899981379509,
-0.04390016943216324,
0.15604910254478455,
0.13776685297489166,
0.03233470022678375,
0.07692384719848633,
-0.0302706528455019,
0.16908830404281616,
0.07715359330177307,
-0.09182680398225784,
0.09044599533081055,
-0.006939579267054796,
0.07778391242027283,
0.26205286383628845,
0.13615888357162476,
-0.10827198624610901,
0.0021787171717733145,
-0.09298930317163467,
-0.13136249780654907,
-0.25473496317863464,
-0.03117409534752369,
-0.15477068722248077,
0.13437145948410034,
-0.08579761534929276,
0.08686056733131409,
0.13696706295013428,
0.05041143670678139,
0.10572081059217453,
0.018525123596191406,
-0.016791416332125664,
0.022843502461910248,
0.17746564745903015,
-0.02853401191532612,
-0.043541014194488525,
-0.14404186606407166,
-0.022182300686836243,
0.15260697901248932,
0.10192563384771347,
0.16757766902446747,
0.16616763174533844,
0.11930298805236816,
0.1956932544708252,
0.11704401671886444,
0.10304278880357742,
0.052189555019140244,
-0.013531852513551712,
-0.004093863070011139,
-0.01228472962975502,
-0.042497504502534866,
0.05230056867003441,
0.05571495369076729,
0.027585504576563835,
-0.19872500002384186,
0.02184155583381653,
-0.19329896569252014,
-0.02313016541302204,
-0.08243345469236374,
0.01644495315849781,
0.05239224433898926,
0.2096434086561203,
0.04210057109594345,
0.10118018835783005,
0.021744482219219208,
0.10573884844779968,
0.015865135937929153,
-0.07006605714559555,
-0.0065298317931592464,
-0.024272896349430084,
0.09974277764558792,
0.10174193233251572,
0.021700428798794746,
-0.016679642722010612,
-0.09889253973960876,
0.04607788100838661,
0.17424549162387848,
-0.17494839429855347,
0.3187439739704132,
-0.0007240860140882432,
-0.04524024948477745,
-0.04190666601061821,
-0.08219234645366669,
0.04142151027917862,
0.1647384762763977,
0.1017698273062706,
0.0333428718149662,
-0.14635729789733887,
-0.06874663382768631,
-0.029922528192400932,
-0.029125673696398735,
0.10087492316961288,
-0.06689736992120743,
-0.13817089796066284,
-0.025579528883099556,
0.0344909206032753,
0.003919827751815319,
0.21354736387729645,
-0.10228335112333298,
-0.15175104141235352,
0.00922450888901949,
0.13133007287979126,
-0.06745465099811554,
-0.04906000941991806,
0.09594502300024033,
-0.02669750526547432,
0.0972210094332695,
-0.0541548989713192,
0.002656505908817053,
-0.14727191627025604,
-0.2363637089729309,
0.010592032223939896,
-0.02335694245994091,
0.020698489621281624,
-0.07203120738267899,
-0.11125075072050095,
-0.1240958720445633,
-0.1789770871400833,
0.11374562233686447,
-0.06521226465702057,
0.09276589751243591,
-0.09726036339998245,
0.08684233576059341,
-0.08414942771196365,
0.02816055528819561,
-0.05099964141845703,
-0.0012100528692826629,
-0.09757094830274582,
-0.14613427221775055,
0.024435222148895264,
-0.13409870862960815,
-0.001014217734336853,
0.034934982657432556,
-0.11161556839942932,
0.14066044986248016,
0.13931402564048767,
-0.08724056929349899,
0.17418785393238068,
0.42831170558929443,
-0.05984934791922569,
0.25173598527908325,
0.2527628242969513,
-0.13718484342098236,
-0.2734082341194153,
-0.059651490300893784,
-0.23391994833946228,
-0.08160211890935898,
0.1082993745803833,
-0.1578003615140915,
0.015907390043139458,
0.05020333454012871,
-0.11690597236156464,
0.1467704027891159,
-0.32824045419692993,
-0.07495500147342682,
0.09672868996858597,
0.007048844825476408,
0.4732857048511505,
-0.1068139299750328,
-0.12494277954101562,
-0.07125994563102722,
-0.10485164821147919,
0.10395017266273499,
-0.07008004188537598,
0.08493339270353317,
-0.030203424394130707,
0.025772906839847565,
0.011868835426867008,
-0.04774972423911095,
0.14879614114761353,
-0.0427577942609787,
0.19098854064941406,
-0.11560776084661484,
0.0027590321842581034,
0.14695321023464203,
-0.03108292631804943,
0.038532279431819916,
-0.07178329676389694,
0.04545990377664566,
-0.042950090020895004,
-0.027814088389277458,
-0.018928585574030876,
0.11621513217687607,
-0.004339784849435091,
-0.1380559802055359,
-0.06945756077766418,
0.01972813345491886,
-0.07362999767065048,
-0.05320021137595177,
0.15675771236419678,
0.03502804413437843,
0.05609925836324692,
0.11970125883817673,
0.004991572815924883,
-0.146412655711174,
0.00884049292653799,
-0.07536338269710541,
0.01455683447420597,
0.04314182698726654,
-0.08771193772554398,
-0.050023581832647324,
0.11971840262413025,
0.021750157698988914,
0.0665673241019249,
0.06486256420612335,
-0.042168524116277695,
0.02131110616028309,
0.11186312884092331,
-0.12857086956501007,
-0.06895474344491959,
-0.017605429515242577,
0.2739332914352417,
0.20882153511047363,
0.06424131989479065,
0.011942589655518532,
0.03977527841925621,
0.08851079642772675,
0.025800030678510666,
-0.024320857599377632,
-0.027894796803593636,
-0.07533380389213562,
0.08076632767915726,
-0.026636533439159393,
-0.08794095367193222,
0.1338292956352234,
0.04866079241037369,
-0.0795087143778801,
-0.08115667849779129,
0.10095386952161789,
-0.03139214217662811,
-0.0645640566945076,
-0.04291141778230667,
0.16875873506069183,
-0.142974391579628,
-0.05379750579595566,
0.05253109708428383,
-0.06923473626375198,
0.03050602227449417,
0.1983366161584854,
0.06317481398582458,
0.10652732849121094,
0.020412208512425423,
-0.03693949803709984,
0.09139978885650635,
-0.008889229968190193,
-0.1458244025707245,
0.04242372885346413,
-0.1516965925693512,
-0.1209954097867012,
-0.03220202773809433,
0.059742625802755356,
-0.06468313187360764,
-0.0443362258374691,
-0.16110824048519135,
0.08512833714485168,
-0.059125129133462906,
-0.04787873104214668,
-0.07900126278400421,
-0.034204404801130295,
-0.011031275615096092,
-0.027199620380997658,
-0.08409348875284195,
0.0068776607513427734,
-0.22133535146713257,
0.051574207842350006,
0.04428314045071602,
0.017113016918301582,
-0.03435007482767105,
-0.08292978256940842,
0.07848229259252548,
0.04986674711108208,
0.10280575603246689,
0.03711284324526787,
-0.059191394597291946,
0.0037306465674191713,
-0.20414716005325317,
-0.038815271109342575,
0.04232484847307205,
-0.021390240639448166,
0.0267819594591856,
0.08142497390508652,
-0.03312315046787262,
0.05886727198958397,
-0.04134150594472885,
0.031092548742890358,
-0.12302310764789581,
-0.19250139594078064,
-0.07369648665189743,
0.0737677738070488,
-0.1768668293952942,
-0.007294799666851759,
-0.158339723944664,
0.12045895308256149,
0.0037357027176767588,
0.19128042459487915,
0.05877019464969635,
0.07969143241643906,
0.07085993885993958,
-0.03897101804614067,
0.1005023792386055,
-0.05584702640771866,
-0.09622103720903397,
-0.019361555576324463,
-0.12480172514915466,
-0.049345120787620544,
0.42032214999198914,
0.05109545961022377,
-0.34862402081489563,
0.03209015727043152,
0.10416815429925919,
0.09029489010572433,
0.0010600913083180785,
0.1751212626695633,
-0.02115757390856743,
0.00999172031879425,
-0.09422436356544495,
0.09467131644487381,
-0.0020058725494891405,
-0.11290951073169708,
0.0739678293466568,
0.09658773243427277,
0.08477838337421417,
-0.024424241855740547,
0.13553570210933685,
-0.010457966476678848,
0.03920025750994682,
-0.11343693733215332,
0.15077632665634155,
0.06773624569177628,
-0.05210328474640846,
0.062154389917850494,
0.1635616272687912,
0.05306112766265869,
0.07038675248622894,
0.04032095894217491,
0.0014122785069048405,
-0.1754148155450821,
-0.1602102369070053,
0.02099275030195713,
-0.05523645877838135,
0.07993361353874207,
0.02664482593536377,
0.06025690957903862,
0.05930217728018761,
0.08369890600442886,
-0.02683570235967636,
-0.012045243754982948,
-0.21370548009872437,
-0.059094905853271484,
-0.014421275816857815,
-0.06632379442453384,
-0.06530799716711044,
-0.13236206769943237,
-0.007965253666043282,
-0.11605394631624222,
-0.1677420735359192,
-0.11075370758771896,
0.06186629459261894,
-0.03134578466415405,
-0.07950954884290695,
-0.1361609846353531,
0.005552724003791809,
-0.051663242280483246,
0.0591781884431839,
0.020678075030446053,
0.14382748305797577,
-0.055859338492155075,
-0.007769476156681776,
0.03557850420475006,
0.17586101591587067,
0.03452156111598015,
-0.019137056544423103,
0.05009777843952179,
-0.11230028420686722,
-0.013903132639825344,
0.09447801858186722,
-0.05355257913470268,
0.03868480771780014,
0.05060523375868797,
0.14069905877113342,
0.3000718951225281,
-0.15852685272693634,
0.022173447534441948,
-0.0156106511130929,
0.027616411447525024,
0.03752091899514198,
0.10538272559642792,
-0.047601912170648575,
0.30318450927734375,
-0.03754459694027901,
0.015319152735173702,
-0.05392564833164215,
0.03960913047194481,
-0.0902356207370758,
0.13807453215122223,
0.07016881555318832,
-0.1437612622976303,
-0.11773919314146042,
0.13123241066932678,
-0.2251790165901184,
0.21079330146312714,
0.05835592746734619,
-0.018531115725636482,
0.0006959201418794692,
-0.017787374556064606,
0.20127902925014496,
-0.06664536148309708,
0.07648804783821106,
-0.10087135434150696,
-0.11177007853984833,
-0.14956814050674438,
0.008278977125883102,
-0.3149573504924774,
-0.07720612734556198,
0.10045251995325089,
0.1509818434715271,
0.17898774147033691,
-0.022407056763768196,
0.060840118676424026,
0.03429623693227768,
0.016734736040234566,
-0.09003262221813202,
0.09443855285644531,
0.08975303173065186,
-0.14206120371818542,
-0.09327292442321777,
-0.12793666124343872,
-0.015153053216636181,
-0.009946417063474655,
-0.008153465576469898,
0.0022670275066047907,
0.04026666656136513,
0.12014163285493851,
-0.04463301971554756,
-0.05576737970113754,
0.06202622875571251,
-0.09607529640197754,
0.03486022725701332,
-0.03752650320529938,
0.012558498419821262,
-0.07468373328447342,
-0.03885192796587944,
-0.04395401477813721,
0.06765811145305634,
-0.2736577093601227,
-0.04237256944179535,
0.10482975840568542,
-0.0006625195383094251,
0.22920070588588715,
0.053381726145744324,
-0.108866386115551,
-0.028044672682881355,
-0.11392955482006073,
0.06305203586816788,
-0.12086670845746994,
-0.0018355880165472627,
0.1538183093070984,
0.022182224318385124,
0.03804173693060875,
-0.16429899632930756,
0.040075428783893585,
-0.10011276602745056,
-0.03175477311015129,
-0.06921384483575821
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# videomae-base-finetuned-ucf101-subset
This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2152
- eval_accuracy: 0.9143
- eval_runtime: 97.9825
- eval_samples_per_second: 0.714
- eval_steps_per_second: 0.714
- epoch: 2.25
- step: 900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1200
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "base_model": "MCG-NJU/videomae-base", "model-index": [{"name": "videomae-base-finetuned-ucf101-subset", "results": []}]} | video-classification | Myaukko/videomae-base-finetuned-ucf101-subset | [
"transformers",
"safetensors",
"videomae",
"video-classification",
"generated_from_trainer",
"base_model:MCG-NJU/videomae-base",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:26:57+00:00 | [] | [] | TAGS
#transformers #safetensors #videomae #video-classification #generated_from_trainer #base_model-MCG-NJU/videomae-base #license-cc-by-nc-4.0 #endpoints_compatible #region-us
|
# videomae-base-finetuned-ucf101-subset
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.2152
- eval_accuracy: 0.9143
- eval_runtime: 97.9825
- eval_samples_per_second: 0.714
- eval_steps_per_second: 0.714
- epoch: 2.25
- step: 900
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 1200
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu118
- Datasets 2.17.0
- Tokenizers 0.15.2
| [
"# videomae-base-finetuned-ucf101-subset\n\nThis model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2152\n- eval_accuracy: 0.9143\n- eval_runtime: 97.9825\n- eval_samples_per_second: 0.714\n- eval_steps_per_second: 0.714\n- epoch: 2.25\n- step: 900",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 1200",
"### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu118\n- Datasets 2.17.0\n- Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #safetensors #videomae #video-classification #generated_from_trainer #base_model-MCG-NJU/videomae-base #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n",
"# videomae-base-finetuned-ucf101-subset\n\nThis model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2152\n- eval_accuracy: 0.9143\n- eval_runtime: 97.9825\n- eval_samples_per_second: 0.714\n- eval_steps_per_second: 0.714\n- epoch: 2.25\n- step: 900",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 1200",
"### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu118\n- Datasets 2.17.0\n- Tokenizers 0.15.2"
] | [
65,
127,
6,
12,
8,
3,
104,
33
] | [
"passage: TAGS\n#transformers #safetensors #videomae #video-classification #generated_from_trainer #base_model-MCG-NJU/videomae-base #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n# videomae-base-finetuned-ucf101-subset\n\nThis model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2152\n- eval_accuracy: 0.9143\n- eval_runtime: 97.9825\n- eval_samples_per_second: 0.714\n- eval_steps_per_second: 0.714\n- epoch: 2.25\n- step: 900## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_ratio: 0.1\n- training_steps: 1200### Framework versions\n\n- Transformers 4.37.2\n- Pytorch 2.2.0+cu118\n- Datasets 2.17.0\n- Tokenizers 0.15.2"
] | [
-0.10185825079679489,
0.16909094154834747,
-0.001600597403012216,
0.07128357887268066,
0.13712623715400696,
0.011364467442035675,
0.040165189653635025,
0.1498630791902542,
-0.1023489385843277,
0.09493713825941086,
0.06460952013731003,
0.05081937462091446,
0.07131677120923996,
0.158768430352211,
-0.022703910246491432,
-0.173407182097435,
0.002357670571655035,
-0.042809609323740005,
0.008984167128801346,
0.10301929712295532,
0.11935678124427795,
-0.10528706759214401,
0.048743393272161484,
-0.023291535675525665,
-0.1261623054742813,
0.012337438762187958,
-0.025334298610687256,
-0.045311957597732544,
0.08994027227163315,
-0.0020786470267921686,
0.03820035606622696,
-0.0016074092127382755,
0.13328994810581207,
-0.27787771821022034,
-0.013227240182459354,
0.07145845144987106,
0.037817660719156265,
0.0466732494533062,
0.07414066046476364,
0.019576402381062508,
0.036364417523145676,
-0.1774417906999588,
0.10342259705066681,
0.037027180194854736,
-0.08824338018894196,
-0.13981379568576813,
-0.0947023257613182,
0.049604374915361404,
0.12006256729364395,
0.09297241270542145,
-0.02124357968568802,
0.1456548273563385,
-0.06309757381677628,
0.08229952305555344,
0.1909346878528595,
-0.23094098269939423,
-0.05264709144830704,
0.04744880646467209,
0.0951535776257515,
0.08933702111244202,
-0.10969167947769165,
0.018024159595370293,
0.0677013173699379,
-0.016224434599280357,
0.08075263351202011,
0.0002683122002054006,
-0.10740351676940918,
-0.028241707012057304,
-0.10760132223367691,
-0.08373114466667175,
0.16844302415847778,
0.10803491622209549,
-0.052055928856134415,
-0.11280170828104019,
-0.006905281450599432,
-0.1507917195558548,
-0.03077702410519123,
-0.03201191499829292,
0.03721927851438522,
-0.063336081802845,
-0.03860360011458397,
-0.021017879247665405,
-0.08095833659172058,
-0.07224249839782715,
0.08009006083011627,
0.13131828606128693,
0.03966909646987915,
0.008708701469004154,
-0.029279520735144615,
0.12386997789144516,
-0.01572425663471222,
-0.13962700963020325,
-0.04343196004629135,
0.019580623134970665,
-0.10607905685901642,
-0.06407621502876282,
-0.03447874262928963,
-0.00859018974006176,
-0.03471170738339424,
0.17883290350437164,
-0.022721638903021812,
0.0652204379439354,
0.029035858809947968,
0.006096983328461647,
-0.01824711263179779,
0.13718010485172272,
-0.03470296785235405,
-0.07766953110694885,
-0.019225846976041794,
0.1428023725748062,
-0.012698523700237274,
-0.006398021709173918,
-0.04089286923408508,
-0.009153294377028942,
0.07347220927476883,
0.08109001815319061,
-0.00672159856185317,
0.010402192361652851,
-0.09462916105985641,
0.0027561846654862165,
0.008817914873361588,
-0.14582496881484985,
0.03494453430175781,
-0.013325893320143223,
-0.09112327545881271,
-0.09381306916475296,
0.04268578439950943,
0.0232703760266304,
-0.009846127592027187,
0.03249908611178398,
-0.04325588420033455,
-0.0012649635318666697,
-0.0678219273686409,
-0.041573379188776016,
0.025691349059343338,
-0.1078777089715004,
0.004076857585459948,
-0.06256208568811417,
-0.1526365429162979,
-0.04493961110711098,
0.016151539981365204,
-0.047439150512218475,
-0.04911339282989502,
-0.06570929288864136,
-0.05108148977160454,
0.011617702431976795,
-0.013002974912524223,
0.14260853826999664,
-0.050873398780822754,
0.0671151801943779,
0.0006629085401073098,
0.03568243235349655,
0.09603088349103928,
0.038378551602363586,
-0.04843204468488693,
0.04017995297908783,
-0.09341389685869217,
0.11931100487709045,
-0.10085345059633255,
-0.005044865887612104,
-0.13225679099559784,
-0.05709866061806679,
0.021230002865195274,
-0.03136138617992401,
0.05425124242901802,
0.1440940499305725,
-0.18702630698680878,
-0.004618953447788954,
0.12268747389316559,
-0.038943562656641006,
-0.11285383254289627,
0.08019289374351501,
-0.038594454526901245,
0.04477044939994812,
0.0491536520421505,
0.12420635670423508,
0.08203678578138351,
-0.19461563229560852,
-0.018548572435975075,
0.0345754474401474,
0.05647747218608856,
0.09710441529750824,
0.09866542369127274,
-0.0029862651135772467,
0.06617062538862228,
-0.01283746212720871,
-0.12978404760360718,
-0.008940176106989384,
-0.09794719517230988,
-0.09509485214948654,
-0.03900056704878807,
-0.09135319292545319,
0.007297375705093145,
0.021941116079688072,
0.00828805286437273,
-0.0737580806016922,
-0.12776370346546173,
0.04874122515320778,
0.15794804692268372,
-0.04350416362285614,
0.02595685049891472,
-0.09676500409841537,
-0.0007427939563058317,
-0.020193245261907578,
-0.045476034283638,
-0.18182887136936188,
-0.09453456848859787,
0.03962990641593933,
-0.07694534957408905,
-0.02513355389237404,
-0.012483751401305199,
0.04966794699430466,
0.07525015622377396,
-0.033146932721138,
-0.0341748408973217,
-0.13441355526447296,
0.012980935163795948,
-0.06722515821456909,
-0.17157022655010223,
-0.05751223489642143,
-0.042531922459602356,
0.2510504424571991,
-0.22119414806365967,
-0.01187938917428255,
0.008856973610818386,
0.14576056599617004,
0.023605499416589737,
-0.10551579296588898,
0.008074690587818623,
-0.005655941087752581,
0.011685916222631931,
-0.11153478920459747,
0.006807760801166296,
0.009543337859213352,
-0.0909821093082428,
-0.04592495039105415,
-0.14158271253108978,
-0.029279986396431923,
0.07300820201635361,
0.0449509359896183,
-0.10322294384241104,
0.018066536635160446,
-0.045517366379499435,
-0.042508650571107864,
-0.07998427748680115,
-0.01925918459892273,
0.18157094717025757,
0.0314813107252121,
0.11789007484912872,
-0.056220024824142456,
-0.07971971482038498,
0.01299707219004631,
-0.005806556902825832,
-0.017176683992147446,
0.09106988459825516,
0.022209642454981804,
-0.11679183691740036,
0.061335086822509766,
0.08118859678506851,
0.018376903608441353,
0.11480988562107086,
-0.045918527990579605,
-0.11843562871217728,
-0.03601880371570587,
0.04423840343952179,
0.015282618813216686,
0.10927529633045197,
-0.06878339499235153,
0.010976150631904602,
0.04176584631204605,
-0.03044995106756687,
-0.016398554667830467,
-0.1652754843235016,
-0.023201897740364075,
0.06359466910362244,
-0.045530013740062714,
0.02137771062552929,
-0.053260814398527145,
0.0016969767166301608,
0.07942083477973938,
0.0332779623568058,
-0.012854731641709805,
0.014780968427658081,
-0.033426254987716675,
-0.08943464607000351,
0.14991740882396698,
-0.09532861411571503,
-0.15545856952667236,
-0.10040221363306046,
0.06216259300708771,
-0.017086295410990715,
-0.02181096561253071,
0.011735210195183754,
-0.08838465064764023,
-0.06482832878828049,
-0.09949841350317001,
-0.08302707225084305,
-0.05974326282739639,
-0.04445686936378479,
0.0911271721124649,
0.04898499324917793,
0.10379062592983246,
-0.10996993631124496,
0.01782897487282753,
0.0047371541149914265,
-0.10541146993637085,
0.0003092721162829548,
0.0650239959359169,
0.12046287953853607,
0.07702412456274033,
-0.02417607419192791,
0.02135748416185379,
-0.027751866728067398,
0.2266026735305786,
-0.1118067130446434,
-0.029738863930106163,
0.12758563458919525,
-0.009408841840922832,
0.05147723853588104,
0.1201385036110878,
0.010305116884410381,
-0.09921249747276306,
0.03845643624663353,
0.04861593246459961,
-0.009671675972640514,
-0.2374611794948578,
-0.020797498524188995,
-0.007741067558526993,
-0.09541579335927963,
0.131338432431221,
0.03566369041800499,
-0.00016023530042730272,
0.04511665552854538,
-0.05094092711806297,
0.020794134587049484,
0.012995135970413685,
0.09342927485704422,
0.02834060601890087,
0.03601619973778725,
0.07704999297857285,
-0.021036528050899506,
0.016571179032325745,
0.04128270223736763,
0.02889115922152996,
0.22040224075317383,
-0.014635727740824223,
0.1465950757265091,
0.040811583399772644,
0.15168368816375732,
-0.05046386644244194,
-0.013452427461743355,
0.0632234439253807,
0.0006916385609656572,
0.020625894889235497,
-0.07242782413959503,
-0.058868855237960815,
0.06042645871639252,
-0.0064748735167086124,
0.006059909705072641,
-0.08602939546108246,
0.0850798636674881,
0.024911044165492058,
0.25648754835128784,
0.05459969863295555,
-0.31409135460853577,
-0.05310366675257683,
0.01823192462325096,
-0.0036813674960285425,
-0.07041525095701218,
-0.0230848528444767,
0.12869004905223846,
-0.15223300457000732,
0.08182406425476074,
-0.014430973678827286,
0.07370463758707047,
-0.06968069076538086,
-0.016057558357715607,
0.04753502830862999,
0.03479544818401337,
0.014613132923841476,
0.08373969793319702,
-0.17982767522335052,
0.20476558804512024,
0.015887564048171043,
0.11793471872806549,
-0.04245021939277649,
0.03584139794111252,
-0.005871592089533806,
0.03223957121372223,
0.1952580064535141,
0.003199170809239149,
-0.01798260398209095,
-0.2149435132741928,
-0.08638982474803925,
0.017984816804528236,
0.1302613615989685,
-0.1042364165186882,
0.08739453554153442,
-0.03686352074146271,
-0.0017505655996501446,
0.025219665840268135,
-0.0996345579624176,
-0.18669992685317993,
-0.1185329332947731,
0.010764853097498417,
-0.0011664399644359946,
0.01698949560523033,
-0.08903954178094864,
-0.08687271177768707,
-0.09380095452070236,
0.18253976106643677,
-0.06025541573762894,
-0.036585815250873566,
-0.13117645680904388,
0.08165345340967178,
0.09583207219839096,
-0.059455715119838715,
0.04908312112092972,
0.02999430149793625,
0.16239593923091888,
0.021430345252156258,
-0.01816658489406109,
0.04870355501770973,
-0.07308796793222427,
-0.16073518991470337,
-0.07493262737989426,
0.12956009805202484,
0.06104934215545654,
0.05533919483423233,
0.011687017977237701,
0.025872811675071716,
0.030665215104818344,
-0.05696066841483116,
-0.008250268176198006,
0.08114848285913467,
0.08469360321760178,
0.05112757161259651,
-0.04147663339972496,
-0.011987173929810524,
-0.08278306573629379,
-0.029802097007632256,
0.13842302560806274,
0.3107994496822357,
-0.10117316991090775,
0.054063525050878525,
0.042827293276786804,
-0.07000606507062912,
-0.16277845203876495,
0.047421734780073166,
0.15346837043762207,
-0.0035637288819998503,
0.10967306792736053,
-0.13367609679698944,
0.0836251899600029,
0.11543585360050201,
-0.03143724426627159,
0.0009904660983011127,
-0.287895143032074,
-0.1333097666501999,
0.04636860266327858,
0.12734130024909973,
-0.04289061576128006,
-0.10157899558544159,
-0.03288273140788078,
-0.019148675724864006,
-0.18885937333106995,
0.05227676406502724,
-0.023068919777870178,
0.09535527229309082,
0.011276922188699245,
0.007175847887992859,
0.041571758687496185,
-0.03249610587954521,
0.17479577660560608,
0.05359740927815437,
0.07491675764322281,
-0.055430248379707336,
0.02230043150484562,
0.10628411173820496,
-0.09998659044504166,
0.07871836423873901,
-0.02146976813673973,
0.05348370224237442,
-0.19102710485458374,
-0.005943079479038715,
-0.04603828117251396,
0.027537189424037933,
-0.05100780352950096,
-0.05177022144198418,
-0.03719675540924072,
0.05333882197737694,
0.07144893705844879,
-0.006843895651400089,
0.051285598427057266,
0.006809280253946781,
0.041552238166332245,
0.1346905678510666,
0.05118841677904129,
0.039051707834005356,
-0.16246546804904938,
-0.015989121049642563,
-0.009490528143942356,
0.061770711094141006,
-0.12216515839099884,
0.036834459751844406,
0.10621567815542221,
0.055367060005664825,
0.15846017003059387,
-0.009905151091516018,
-0.06978831440210342,
0.02929329127073288,
0.034780777990818024,
-0.06918159127235413,
-0.13285931944847107,
0.006389945279806852,
-0.02620089240372181,
-0.12443038076162338,
-0.045720431953668594,
0.09221654385328293,
-0.06076708063483238,
0.0024915109388530254,
-0.0627058818936348,
0.037254754453897476,
-0.026968950405716896,
0.16065415740013123,
0.028925536200404167,
0.08588318526744843,
-0.08327095210552216,
0.15196512639522552,
0.09002410620450974,
-0.07428167015314102,
0.05687328055500984,
0.011984521523118019,
-0.08221407979726791,
-0.00952635332942009,
0.05797966942191124,
0.07692404836416245,
0.008066794835031033,
-0.04505225643515587,
-0.05288095772266388,
-0.0517071932554245,
0.04816986992955208,
0.0077398112043738365,
0.028867030516266823,
-0.00823383778333664,
0.024946078658103943,
0.011540918610990047,
-0.1370326727628708,
0.08926687389612198,
0.05398626625537872,
0.04276006296277046,
-0.14404982328414917,
0.09749682992696762,
0.028689328581094742,
0.04200313240289688,
-0.001737162470817566,
0.005399344488978386,
-0.02159924991428852,
0.02130240388214588,
-0.06265213340520859,
0.01985122263431549,
0.0012951517710462213,
0.016949443146586418,
-0.019183412194252014,
-0.03467341884970665,
-0.030311688780784607,
0.06813540309667587,
-0.06071086600422859,
-0.09975749999284744,
0.014582565985620022,
0.0810149759054184,
-0.14765192568302155,
-0.04157193750143051,
0.04089411720633507,
-0.11879578232765198,
0.06205745413899422,
0.050018589943647385,
0.042683426290750504,
-0.006678932346403599,
-0.11624609678983688,
-0.024146704003214836,
0.04777484014630318,
0.039299458265304565,
0.03352522477507591,
-0.09176535904407501,
-0.0001675264647928998,
-0.03835577145218849,
0.011215734295547009,
-0.0004899634514003992,
0.0254045482724905,
-0.12151101231575012,
-0.04653807356953621,
-0.03694744408130646,
-0.01575995236635208,
-0.051765430718660355,
0.05282462760806084,
0.09288053214550018,
0.023188292980194092,
0.14206883311271667,
-0.04443109408020973,
0.021044746041297913,
-0.22182027995586395,
-0.05442284047603607,
-0.014911566860973835,
-0.009548366069793701,
-0.08675404638051987,
-0.028416480869054794,
0.09332992136478424,
-0.045087091624736786,
0.07930570095777512,
-0.02555704675614834,
0.11839423328638077,
0.044604331254959106,
-0.05460576340556145,
0.0019257093081250787,
0.011004581116139889,
0.15312758088111877,
0.08298066258430481,
0.002234244719147682,
0.0668795108795166,
-0.04636137932538986,
0.09673100709915161,
-0.014578358270227909,
0.07348189502954483,
0.17819063365459442,
-0.02536124363541603,
0.05078698694705963,
0.05098576471209526,
-0.11400310695171356,
-0.14389429986476898,
0.13676896691322327,
-0.07711586356163025,
0.11057786643505096,
-0.03669700399041176,
0.09939781576395035,
0.11504554748535156,
-0.19292306900024414,
0.031242668628692627,
-0.05462402477860451,
-0.08638245612382889,
-0.07414982467889786,
-0.046631649136543274,
-0.08509787917137146,
-0.10209361463785172,
0.05996241420507431,
-0.10094417631626129,
0.07319767028093338,
0.12479115277528763,
0.016727445647120476,
0.006735798437148333,
0.16461902856826782,
-0.05864184722304344,
-0.008826984092593193,
0.0893716886639595,
0.001967885997146368,
0.0121405478566885,
-0.07281352579593658,
-0.05118473246693611,
0.11360060423612595,
0.02575851045548916,
0.10102704912424088,
-0.03380582481622696,
0.004152013920247555,
0.054930247366428375,
0.027935054153203964,
-0.10014806687831879,
0.036062534898519516,
0.009548782370984554,
0.029240382835268974,
0.04672525078058243,
0.06936328858137131,
0.05208819359540939,
-0.027611616998910904,
0.2587701380252838,
-0.04908905550837517,
-0.06844213604927063,
-0.12123200297355652,
0.1029268130660057,
0.05609197914600372,
0.030329285189509392,
0.060937151312828064,
-0.12883134186267853,
0.003808386391028762,
0.08505409210920334,
0.06631078571081161,
-0.05412295460700989,
-0.018320182338356972,
-0.03348993882536888,
-0.013833961449563503,
-0.0687483474612236,
0.07911588251590729,
0.0646594688296318,
-0.08089742809534073,
-0.06369194388389587,
0.033047743141651154,
0.010276899673044682,
-0.0560273639857769,
-0.04034515097737312,
0.009980577044188976,
-0.014855202287435532,
0.030096709728240967,
-0.04843064770102501,
0.08497201651334763,
0.05465828254818916,
-0.23179692029953003,
0.08969669789075851,
-0.14787085354328156,
-0.16707061231136322,
-0.005803311243653297,
0.1010683923959732,
-0.005519876256585121,
0.032065074890851974,
0.011415245942771435,
-0.010387491434812546,
0.12055772542953491,
-0.006025307811796665,
-0.022264724597334862,
-0.1315346211194992,
0.06244686618447304,
-0.07488451898097992,
0.29076018929481506,
0.001401925110258162,
0.09296344220638275,
0.06796620041131973,
-0.01701429858803749,
-0.15184186398983002,
0.06347691267728806,
0.09380102902650833,
-0.02895420789718628,
0.048907000571489334,
0.19479885697364807,
-0.06631859391927719,
0.12646354734897614,
0.0674036368727684,
-0.10324916243553162,
-0.006369732785969973,
-0.05615353211760521,
0.005197225604206324,
-0.10136786848306656,
-0.011709870770573616,
-0.03591453284025192,
0.15963773429393768,
0.16121777892112732,
-0.05420229956507683,
0.022205693647265434,
-0.08305779844522476,
0.015304063446819782,
0.07352212071418762,
0.12573206424713135,
0.010107588022947311,
-0.1776730716228485,
0.051222801208496094,
0.013534282334148884,
0.06288261711597443,
-0.16854408383369446,
-0.11280371248722076,
0.05347065255045891,
-0.07409043610095978,
-0.012243595905601978,
0.09967420250177383,
0.06167783960700035,
-0.001467481954023242,
-0.04317573830485344,
-0.20132029056549072,
-0.012909077107906342,
0.14816401898860931,
-0.1270495355129242,
-0.04780028760433197
] |
null | null | transformers | # merged
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* [nlpguy/AlloyIngot](https://huggingface.co/nlpguy/AlloyIngot)
* [liminerity/Omningotex-7b-slerp](https://huggingface.co/liminerity/Omningotex-7b-slerp)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model:
model:
path: liminerity/Omningotex-7b-slerp
dtype: bfloat16
merge_method: slerp
parameters:
t:
- filter: self_attn
value: [0.0, 0.5, 0.3, 0.7, 1.0]
- filter: mlp
value: [1.0, 0.5, 0.7, 0.3, 0.0]
- value: 0.5
slices:
- sources:
- layer_range: [0, 32]
model:
model:
path: liminerity/Omningotex-7b-slerp
- layer_range: [0, 32]
model:
model:
path: nlpguy/AlloyIngot
``` | {"license": "cc-by-nc-4.0", "library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["nlpguy/AlloyIngot", "liminerity/Omningotex-7b-slerp"]} | text-generation | nlpguy/AlloyIngotNeo | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"base_model:nlpguy/AlloyIngot",
"base_model:liminerity/Omningotex-7b-slerp",
"license:cc-by-nc-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:27:10+00:00 | [] | [] | TAGS
#transformers #safetensors #mistral #text-generation #mergekit #merge #base_model-nlpguy/AlloyIngot #base_model-liminerity/Omningotex-7b-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| # merged
This is a merge of pre-trained language models created using mergekit.
## Merge Details
### Merge Method
This model was merged using the SLERP merge method.
### Models Merged
The following models were included in the merge:
* nlpguy/AlloyIngot
* liminerity/Omningotex-7b-slerp
### Configuration
The following YAML configuration was used to produce this model:
| [
"# merged\n\nThis is a merge of pre-trained language models created using mergekit.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* nlpguy/AlloyIngot\n* liminerity/Omningotex-7b-slerp",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
"TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #base_model-nlpguy/AlloyIngot #base_model-liminerity/Omningotex-7b-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# merged\n\nThis is a merge of pre-trained language models created using mergekit.",
"## Merge Details",
"### Merge Method\n\nThis model was merged using the SLERP merge method.",
"### Models Merged\n\nThe following models were included in the merge:\n* nlpguy/AlloyIngot\n* liminerity/Omningotex-7b-slerp",
"### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
98,
19,
4,
18,
40,
17
] | [
"passage: TAGS\n#transformers #safetensors #mistral #text-generation #mergekit #merge #base_model-nlpguy/AlloyIngot #base_model-liminerity/Omningotex-7b-slerp #license-cc-by-nc-4.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# merged\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* nlpguy/AlloyIngot\n* liminerity/Omningotex-7b-slerp### Configuration\n\nThe following YAML configuration was used to produce this model:"
] | [
-0.08437009900808334,
-0.017075667157769203,
-0.0008688599918968976,
0.010497636161744595,
0.11322784423828125,
0.039653655141592026,
0.17418928444385529,
0.0208465363830328,
0.08504173159599304,
0.012905146926641464,
0.017513729631900787,
0.095797598361969,
0.022895831614732742,
0.15361982583999634,
-0.04560939595103264,
-0.19598761200904846,
0.08060545474290848,
-0.027374282479286194,
-0.1508723497390747,
0.09860420227050781,
0.11162610352039337,
-0.051503051072359085,
0.11531320959329605,
0.0563664473593235,
-0.14422838389873505,
0.021542780101299286,
-0.01859687641263008,
0.0004443132784217596,
0.103058822453022,
0.11493059247732162,
0.049173176288604736,
0.03152422606945038,
0.0071760546416044235,
-0.1666586548089981,
0.05116972699761391,
-0.00448634522035718,
-0.013950762338936329,
0.045779962092638016,
0.05553990975022316,
-0.034576475620269775,
0.116648830473423,
-0.06901399791240692,
0.03562646359205246,
0.08000736683607101,
-0.09782537072896957,
-0.06163410097360611,
-0.10293586552143097,
0.0937514677643776,
0.12186958640813828,
0.02916780672967434,
-0.013709587045013905,
0.10024195909500122,
0.03755726292729378,
0.09603063017129898,
0.004666258115321398,
-0.29801350831985474,
0.001508789835497737,
0.1901155561208725,
0.06495604664087296,
-0.09735439717769623,
0.04693984612822533,
0.07310013473033905,
0.04682226479053497,
-0.022764427587389946,
0.027290886268019676,
-0.06899850815534592,
0.16271242499351501,
-0.07604966312646866,
-0.1530342847108841,
-0.008147615008056164,
0.10535776615142822,
0.025371065363287926,
-0.032510388642549515,
-0.13962338864803314,
-0.10420438647270203,
0.08241917192935944,
-0.03725026920437813,
-0.04190802201628685,
0.025915751233696938,
0.01778409257531166,
0.07343357801437378,
-0.0810345858335495,
-0.03186233714222908,
0.001360714086331427,
-0.1031162366271019,
0.2401270568370819,
0.03404179587960243,
0.03717484697699547,
-0.05092000961303711,
0.061863191425800323,
-0.22873996198177338,
-0.09056946635246277,
-0.000432297820225358,
-0.0665130540728569,
-0.05068778619170189,
-0.037389446049928665,
-0.10401827841997147,
-0.15262262523174286,
0.09759032726287842,
0.23581825196743011,
-0.09627329558134079,
0.018577171489596367,
0.061788495630025864,
0.06656667590141296,
0.03799822926521301,
-0.009511863812804222,
-0.12760688364505768,
-0.1545533388853073,
0.06488077342510223,
-0.015933359041810036,
0.1041790097951889,
-0.007608393672853708,
-0.12925487756729126,
-0.0013429408427327871,
-0.05511429160833359,
-0.015976838767528534,
0.027065424248576164,
0.12809498608112335,
-0.019825929775834084,
-0.05963646620512009,
0.14382585883140564,
-0.06471361219882965,
0.026487154886126518,
-0.029591014608740807,
0.005474920384585857,
-0.04442085698246956,
0.14125816524028778,
0.06624406576156616,
0.027623305097222328,
0.0744776576757431,
-0.06523186713457108,
-0.01398177444934845,
-0.050411026924848557,
-0.1009204164147377,
0.00873640552163124,
-0.01641293242573738,
0.0011600649449974298,
-0.110228531062603,
-0.24700011312961578,
-0.02885151095688343,
0.028016293421387672,
-0.016843298450112343,
-0.01785110868513584,
-0.03969480097293854,
0.04872272536158562,
-0.014618724584579468,
0.003917595371603966,
-0.05238819122314453,
-0.02145097404718399,
-0.05386050045490265,
-0.013670630753040314,
0.020792856812477112,
-0.15138734877109528,
0.022619416937232018,
-0.11190014332532883,
0.12190267443656921,
-0.1915295571088791,
0.12441958487033844,
0.004524036776274443,
0.05317845940589905,
-0.0813925489783287,
-0.02593596838414669,
-0.01910371705889702,
0.045698292553424835,
0.06354371458292007,
0.17885302007198334,
-0.06289879232645035,
-0.09272409975528717,
0.11430980265140533,
-0.16507959365844727,
-0.1138911098241806,
0.09611597657203674,
-0.022678177803754807,
0.04921324923634529,
0.059521548449993134,
0.18197984993457794,
0.14340491592884064,
0.005343779921531677,
-0.011920023709535599,
-0.007314635440707207,
-0.0266550425440073,
0.0030579024460166693,
0.05857822671532631,
-0.022775543853640556,
-0.14386716485023499,
0.03965803608298302,
-0.0034120113123208284,
0.14133480191230774,
-0.04710064083337784,
-0.03484208509325981,
-0.06470776349306107,
-0.053438059985637665,
0.12314556539058685,
-0.02675050124526024,
0.03583703562617302,
-0.07147403806447983,
-0.009148672223091125,
0.13546976447105408,
0.09992322325706482,
-0.06729310750961304,
0.007342797238379717,
-0.044534556567668915,
0.115700364112854,
-0.12936528027057648,
0.037168435752391815,
-0.10814642906188965,
-0.1236853152513504,
-0.05057592689990997,
-0.05528366565704346,
0.04437193274497986,
0.0026060701347887516,
0.06047125533223152,
0.07790243625640869,
-0.05600384995341301,
-0.004162141587585211,
0.12202969193458557,
0.04508684203028679,
-0.03858616203069687,
-0.1696324646472931,
-0.08524075895547867,
-0.07485680282115936,
0.27201536297798157,
-0.11850954592227936,
0.0968366414308548,
-0.08012112230062485,
0.20719891786575317,
-0.05114093795418739,
0.002680136589333415,
0.04657762870192528,
0.03878241032361984,
-0.02682887390255928,
0.003676466876640916,
0.07735492289066315,
0.040674589574337006,
-0.20460771024227142,
0.1754709929227829,
-0.18217714130878448,
0.012113966047763824,
0.1129751205444336,
0.002341145882382989,
-0.02955945022404194,
-0.13023902475833893,
-0.011070764623582363,
-0.06580891460180283,
0.04855448007583618,
-0.04420852288603783,
0.12990571558475494,
0.020987238734960556,
0.14505209028720856,
-0.025746721774339676,
-0.010645760223269463,
0.016870364546775818,
-0.05766381323337555,
-0.06712321192026138,
0.05729179084300995,
-0.0009414026862941682,
-0.2222311794757843,
0.123726025223732,
0.17326872050762177,
0.07475630939006805,
0.07031331211328506,
0.035917624831199646,
0.030367299914360046,
-0.0629040002822876,
-0.035275064408779144,
-0.0220041461288929,
-0.02536381222307682,
-0.07474268227815628,
0.040975406765937805,
0.0647040605545044,
-0.008212976157665253,
0.06040012836456299,
-0.0726761445403099,
0.028312429785728455,
0.060993652790784836,
0.019431568682193756,
0.08547871559858322,
0.1094748005270958,
0.003531990572810173,
0.04035300016403198,
0.0010932448785752058,
-0.024580150842666626,
0.04256022721529007,
0.0004095016047358513,
-0.1349877566099167,
0.16087040305137634,
-0.12253282219171524,
-0.2123919427394867,
-0.1887838989496231,
-0.11747347563505173,
-0.14933380484580994,
0.00849945843219757,
0.0403408408164978,
0.013942738994956017,
-0.06716256588697433,
-0.10778199136257172,
0.07577876001596451,
0.03138553723692894,
-0.023734908550977707,
0.00996894109994173,
-0.055889781564474106,
0.017386194318532944,
-0.09331193566322327,
-0.030443085357546806,
0.0019286880269646645,
-0.004901075270026922,
0.0499916709959507,
-0.014503611251711845,
0.09250596910715103,
0.16933558881282806,
-0.023181190714240074,
-0.014290595427155495,
-0.020710868760943413,
0.15999765694141388,
-0.035033632069826126,
0.05918360874056816,
0.20214444398880005,
-0.11041603982448578,
0.04739290475845337,
0.20741169154644012,
0.034693822264671326,
-0.046476054936647415,
0.012187366373836994,
-0.03785905987024307,
-0.10063870996236801,
-0.12534745037555695,
-0.1846121996641159,
-0.0897601917386055,
0.0021189081016927958,
0.022616589441895485,
0.03986244648694992,
0.07878284901380539,
0.06655915081501007,
-0.06850993633270264,
-0.02826186828315258,
0.07934646308422089,
0.07972632348537445,
0.26967301964759827,
-0.0181560255587101,
0.10630682855844498,
-0.031627435237169266,
-0.019192704930901527,
0.05888272449374199,
-0.01737811043858528,
0.059391386806964874,
0.07497424632310867,
0.061019416898489,
0.08863504976034164,
-0.023752395063638687,
0.06261597573757172,
0.046768587082624435,
-0.012645421549677849,
0.0064408075995743275,
-0.012306422926485538,
-0.08991359174251556,
0.011251060292124748,
0.06863810122013092,
-0.07276659458875656,
0.07957704365253448,
-0.08905103802680969,
0.03572999686002731,
0.0667291134595871,
0.12641137838363647,
0.10466129332780838,
-0.2968335449695587,
-0.12087564915418625,
0.06282485276460648,
0.03385889157652855,
-0.012547677382826805,
-0.03773805499076843,
0.03442667797207832,
-0.08644849807024002,
0.21553270518779755,
-0.047088898718357086,
0.09466605633497238,
0.028004257008433342,
0.003401355817914009,
0.004254578147083521,
0.13114264607429504,
-0.004466188605874777,
0.026215141639113426,
-0.12379807233810425,
0.14185166358947754,
0.031963471323251724,
-0.04013438522815704,
0.0211801640689373,
0.04183634743094444,
0.045818429440259933,
0.2559882402420044,
0.0568467378616333,
0.013404546305537224,
-0.0071566347032785416,
-0.02537541277706623,
-0.11393603682518005,
-0.01292580645531416,
-0.015868259593844414,
-0.05166677013039589,
0.06792550534009933,
-0.0481656938791275,
-0.044112615287303925,
0.011096707545220852,
0.0989639014005661,
-0.09007055312395096,
-0.14723150432109833,
0.04507017508149147,
0.07255556434392929,
0.04718221724033356,
-0.0661846324801445,
-0.05199417844414711,
-0.191162571310997,
0.3233279585838318,
0.051255885511636734,
-0.09542860090732574,
-0.11857312172651291,
0.029648901894688606,
0.08821989595890045,
-0.04947327449917793,
0.09174776822328568,
-0.019339604303240776,
0.0691097155213356,
-0.09100328385829926,
-0.17341306805610657,
0.08496303111314774,
-0.10440894961357117,
-0.07503528892993927,
-0.004783981945365667,
0.12495806813240051,
-0.030640143901109695,
0.014610554091632366,
0.013862982392311096,
0.057499900460243225,
-0.01476012822240591,
-0.06759273260831833,
-0.03738035261631012,
0.24277877807617188,
0.03681287541985512,
0.14187899231910706,
-0.01920950971543789,
-0.1661771684885025,
0.0059145730920135975,
-0.0031438004225492477,
0.17598481476306915,
0.24335944652557373,
-0.05707026645541191,
0.08291129767894745,
0.1358315795660019,
-0.08008166402578354,
-0.17648716270923615,
-0.0021639992482960224,
-0.05446358770132065,
0.03896037116646767,
0.023790720850229263,
0.011174743995070457,
0.06764402240514755,
0.08969773352146149,
0.0028605200350284576,
0.07091943174600601,
-0.3070778250694275,
-0.18328028917312622,
0.06993041187524796,
0.03262617066502571,
0.2562490999698639,
-0.06107969954609871,
-0.08129418641328812,
-0.06845330446958542,
-0.20452113449573517,
0.000928581110201776,
-0.13150878250598907,
0.04457492008805275,
-0.004525278229266405,
0.022473204880952835,
0.03386813402175903,
-0.05282900482416153,
0.12845207750797272,
-0.01933479867875576,
0.046970367431640625,
-0.1092507615685463,
0.014303307048976421,
0.043944865465164185,
-0.05063663795590401,
0.10444922745227814,
-0.07344113290309906,
0.013660060241818428,
-0.00488108117133379,
-0.05049985274672508,
-0.03092116490006447,
0.08582508563995361,
-0.025658708065748215,
-0.06754343211650848,
-0.05383918434381485,
0.03119855932891369,
0.010196927934885025,
0.001206950400955975,
0.13320401310920715,
-0.06379137933254242,
0.11552616208791733,
0.17040258646011353,
0.11292105168104172,
-0.09795113652944565,
-0.008547388017177582,
0.015795143321156502,
-0.06974261999130249,
0.04417398199439049,
-0.04944360628724098,
-0.0006712528993375599,
0.10112651437520981,
-0.0011397663038223982,
0.10911060124635696,
0.02947230264544487,
-0.025765281170606613,
0.002579478081315756,
0.07645091414451599,
-0.17299985885620117,
-0.2579663097858429,
-0.03077719733119011,
-0.06045253947377205,
-0.015501655638217926,
0.07401689141988754,
0.21865151822566986,
-0.07894496619701385,
-0.005067905876785517,
0.021206311881542206,
0.022977929562330246,
-0.10907667130231857,
0.06268579512834549,
-0.006072180345654488,
0.012344049289822578,
-0.09199963510036469,
0.06274181604385376,
0.04292681813240051,
-0.0720527172088623,
-0.017927246168255806,
0.0638822540640831,
-0.1295205056667328,
-0.0960235595703125,
-0.13433174788951874,
0.18301542103290558,
-0.09640640020370483,
-0.0708664134144783,
-0.08353078365325928,
-0.11598692089319229,
0.010036979801952839,
0.11519363522529602,
0.06395895034074783,
0.008216077461838722,
-0.008094633929431438,
-0.06277898699045181,
-0.07208191603422165,
0.0473347082734108,
0.02264520898461342,
0.08141817897558212,
-0.11548970639705658,
0.09292769432067871,
-0.020341694355010986,
0.056216828525066376,
-0.05963791161775589,
-0.026887163519859314,
-0.10415735840797424,
-0.02976330555975437,
-0.14575743675231934,
-0.03914341703057289,
-0.19351428747177124,
-0.022135963663458824,
-0.007010459899902344,
-0.03257833793759346,
-0.01541930716484785,
0.018484922125935555,
-0.01814861036837101,
-0.021638305857777596,
-0.014055673964321613,
0.03456408903002739,
-0.07975960522890091,
-0.03777613118290901,
-0.009244807064533234,
-0.03429025411605835,
0.07340870052576065,
-0.006552437320351601,
-0.048228681087493896,
-0.03910764679312706,
-0.13671483099460602,
-0.039260949939489365,
0.0784291997551918,
-0.008605965413153172,
0.015174961648881435,
-0.11635208874940872,
-0.011462364345788956,
0.025477327406406403,
-0.06080761179327965,
-0.01456256490200758,
0.06329412013292313,
-0.056677643209695816,
0.008799332194030285,
-0.0013357060961425304,
0.008057301864027977,
-0.0488477386534214,
-0.04683389514684677,
0.012466497719287872,
0.0831470862030983,
0.12074131518602371,
-0.06883444637060165,
0.05913529917597771,
-0.17207513749599457,
-0.027575023472309113,
-0.0060830614529550076,
-0.10630733519792557,
-0.00516558438539505,
-0.07726290822029114,
0.006352104712277651,
-0.004486258141696453,
0.2024935781955719,
0.015332665294408798,
-0.06341048330068588,
0.03739095479249954,
0.012447191402316093,
0.05518454313278198,
0.03870653733611107,
0.18667075037956238,
0.025744644924998283,
0.022607212886214256,
-0.0630459114909172,
0.1016584187746048,
0.03802839294075966,
-0.08081310987472534,
0.07438357919454575,
0.04880761727690697,
0.005406721495091915,
0.08812212944030762,
0.08773524314165115,
-0.0006988348322920501,
-0.07004288583993912,
-0.17311209440231323,
-0.030215395614504814,
0.07136432826519012,
-0.02910691313445568,
0.12328585237264633,
0.11434051394462585,
-0.1763276904821396,
0.08702250570058823,
0.04103636369109154,
-0.02093607932329178,
-0.09473317116498947,
-0.1312497854232788,
-0.08798526972532272,
-0.1275211125612259,
-0.034573107957839966,
-0.08206506073474884,
-0.0446099191904068,
-0.010171517729759216,
-0.005961416754871607,
-0.003068363992497325,
0.11759423464536667,
-0.06698063015937805,
-0.01472509652376175,
0.007033830974251032,
-0.018997207283973694,
0.019681589677929878,
-0.021740036085247993,
-0.05132858082652092,
0.027027809992432594,
-0.00943274050951004,
0.0019204745767638087,
0.030032766982913017,
0.0966154932975769,
0.0663231909275055,
-0.034103598445653915,
-0.08951074630022049,
-0.023114550858736038,
0.08230557292699814,
0.08251938968896866,
-0.04102541133761406,
0.04950852319598198,
-0.038887761533260345,
-0.020141825079917908,
0.05786478519439697,
-0.03492738679051399,
-0.09444326162338257,
-0.08385024219751358,
0.22300732135772705,
-0.020999010652303696,
0.030166808515787125,
0.018386447802186012,
-0.09275353699922562,
0.046364814043045044,
0.11502112448215485,
0.36009481549263,
-0.00859487522393465,
0.018775593489408493,
-0.01744852587580681,
0.011577453464269638,
0.05407791584730148,
0.053688038140535355,
0.008842958137392998,
0.14447864890098572,
-0.044238168746232986,
0.07949928194284439,
-0.030505146831274033,
-0.07336778938770294,
-0.0418681725859642,
0.021948983892798424,
-0.0294687170535326,
-0.03574414551258087,
0.05361391231417656,
0.08263624459505081,
-0.05733659863471985,
-0.009094271808862686,
0.054359350353479385,
-0.12407379597425461,
-0.0637592226266861,
-0.06231848523020744,
0.014642535708844662,
0.00818742997944355,
0.048777561634778976,
-0.041778694838285446,
-0.015330841764807701,
0.13155508041381836,
-0.014066958799958229,
-0.08183880150318146,
-0.0984172448515892,
0.04242385923862457,
0.014205300249159336,
0.03374236822128296,
-0.016650957986712456,
0.044712573289871216,
0.10084474831819534,
0.029064062982797623,
-0.09629491716623306,
-0.00528940511867404,
-0.004932843614369631,
0.004122276324778795,
0.032014165073633194,
-0.01885085366666317,
-0.026683444157242775,
0.042227353900671005,
0.015035649761557579,
-0.16977559030056,
0.056533053517341614,
-0.07151193171739578,
-0.09203620254993439,
-0.0641455203294754,
0.06824065744876862,
-0.03843071311712265,
0.14415661990642548,
0.14113670587539673,
-0.0383821502327919,
-0.01197957992553711,
-0.01256355457007885,
0.055093731731176376,
0.05303458869457245,
0.10808353126049042,
-0.01673869602382183,
-0.1749003827571869,
0.03445345535874367,
0.03603276610374451,
0.03700167313218117,
-0.27101024985313416,
-0.1256384253501892,
-0.11156576126813889,
-0.0350567102432251,
-0.03759041056036949,
0.1024496853351593,
0.19464074075222015,
0.02868500165641308,
-0.02932378649711609,
-0.17739716172218323,
0.0033365250565111637,
0.0941472202539444,
-0.08999159932136536,
-0.09218224883079529
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2_base_vietnamese_control_dataset_75_epochs
This model is a fine-tuned version of [nguyenvulebinh/wav2vec2-base-vi](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0584
- Wer: 0.1728
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 75
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 16.8485 | 3.85 | 500 | 15.0708 | 1.0 |
| 7.7941 | 7.69 | 1000 | 5.1283 | 1.0 |
| 3.4391 | 11.54 | 1500 | 3.2167 | 1.0 |
| 3.116 | 15.38 | 2000 | 3.1172 | 1.0 |
| 3.0946 | 19.23 | 2500 | 3.1165 | 1.0 |
| 3.0478 | 23.08 | 3000 | 2.9426 | 1.0 |
| 2.4567 | 26.92 | 3500 | 1.6121 | 0.9993 |
| 1.2305 | 30.77 | 4000 | 0.5487 | 0.3630 |
| 0.5512 | 34.62 | 4500 | 0.2505 | 0.2364 |
| 0.3234 | 38.46 | 5000 | 0.1572 | 0.1869 |
| 0.2232 | 42.31 | 5500 | 0.1170 | 0.1782 |
| 0.1779 | 46.15 | 6000 | 0.0939 | 0.1772 |
| 0.145 | 50.0 | 6500 | 0.0830 | 0.1763 |
| 0.1383 | 53.85 | 7000 | 0.0739 | 0.1756 |
| 0.1161 | 57.69 | 7500 | 0.0681 | 0.1736 |
| 0.1054 | 61.54 | 8000 | 0.0630 | 0.1729 |
| 0.0958 | 65.38 | 8500 | 0.0620 | 0.1729 |
| 0.1028 | 69.23 | 9000 | 0.0582 | 0.1726 |
| 0.1015 | 73.08 | 9500 | 0.0584 | 0.1728 |
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.4
- Tokenizers 0.13.3
| {"license": "cc-by-nc-4.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "nguyenvulebinh/wav2vec2-base-vi", "model-index": [{"name": "wav2vec2_base_vietnamese_control_dataset_75_epochs", "results": []}]} | automatic-speech-recognition | tuanmanh28/wav2vec2-base-vietnamese-control-dataset-75-epochs | [
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"base_model:nguyenvulebinh/wav2vec2-base-vi",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:29:20+00:00 | [] | [] | TAGS
#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-nguyenvulebinh/wav2vec2-base-vi #license-cc-by-nc-4.0 #endpoints_compatible #region-us
| wav2vec2\_base\_vietnamese\_control\_dataset\_75\_epochs
========================================================
This model is a fine-tuned version of nguyenvulebinh/wav2vec2-base-vi on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0584
* Wer: 0.1728
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 1000
* num\_epochs: 75
### Training results
### Framework versions
* Transformers 4.32.1
* Pytorch 2.0.1+cu117
* Datasets 2.14.4
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 75",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1+cu117\n* Datasets 2.14.4\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-nguyenvulebinh/wav2vec2-base-vi #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 75",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1+cu117\n* Datasets 2.14.4\n* Tokenizers 0.13.3"
] | [
74,
116,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #wav2vec2 #automatic-speech-recognition #generated_from_trainer #base_model-nguyenvulebinh/wav2vec2-base-vi #license-cc-by-nc-4.0 #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 1000\n* num\\_epochs: 75### Training results### Framework versions\n\n\n* Transformers 4.32.1\n* Pytorch 2.0.1+cu117\n* Datasets 2.14.4\n* Tokenizers 0.13.3"
] | [
-0.11366603523492813,
0.09994785487651825,
-0.0033125486224889755,
0.08528692275285721,
0.0989287868142128,
0.0012812780914828181,
0.1442253142595291,
0.14896924793720245,
-0.08577815443277359,
0.07362625747919083,
0.12409506738185883,
0.11759261786937714,
0.050186753273010254,
0.1569328010082245,
-0.05678246542811394,
-0.2528386116027832,
0.034833427518606186,
0.04144951328635216,
0.012053946033120155,
0.12250588834285736,
0.08260733634233475,
-0.12114742398262024,
0.07263725250959396,
0.02086411975324154,
-0.1754622459411621,
-0.002976838732138276,
-0.0012461711885407567,
-0.09037845581769943,
0.12094760686159134,
0.022292302921414375,
0.0767691433429718,
0.053767237812280655,
0.07327502965927124,
-0.19212128221988678,
0.004605440888553858,
0.030877981334924698,
0.0032211823854595423,
0.07648345828056335,
0.029005320742726326,
-0.011564087122678757,
0.11767552047967911,
-0.09320715814828873,
0.054464083164930344,
0.023164615035057068,
-0.11942140012979507,
-0.2773307263851166,
-0.07842006534337997,
0.05626366287469864,
0.0769316777586937,
0.07762770354747772,
-0.011034892871975899,
0.16953693330287933,
-0.028900044038891792,
0.10750649869441986,
0.25951331853866577,
-0.3201550245285034,
-0.047604676336050034,
0.0011852940078824759,
0.03802474960684776,
0.05628303810954094,
-0.08985959738492966,
-0.011348783038556576,
0.025160634890198708,
0.04174341261386871,
0.11212234944105148,
-0.019322311505675316,
-0.03715842217206955,
-0.006420184392482042,
-0.13864190876483917,
-0.05078443884849548,
0.13775061070919037,
0.03553934767842293,
-0.04926733300089836,
-0.07251565158367157,
-0.059463728219270706,
-0.148405522108078,
-0.06201861426234245,
-0.008652103133499622,
0.03470735624432564,
-0.05504857376217842,
-0.11126596480607986,
-0.009754164144396782,
-0.06438515335321426,
-0.08019112795591354,
-0.034470029175281525,
0.17174005508422852,
0.035772621631622314,
0.01833057403564453,
-0.031969182193279266,
0.06931489706039429,
-0.05143716558814049,
-0.1563810110092163,
-0.022233184427022934,
0.03188159316778183,
0.0003398352419026196,
-0.030637487769126892,
-0.04332732409238815,
-0.03245972841978073,
0.017858261242508888,
0.14093591272830963,
-0.09601379185914993,
0.07727180421352386,
-0.023441193625330925,
0.028684204444289207,
-0.1041240394115448,
0.19101972877979279,
-0.036100588738918304,
-0.007384843658655882,
-0.006193327251821756,
0.07843849807977676,
0.038123663514852524,
-0.028454631567001343,
-0.11365041136741638,
0.003910223953425884,
0.09938329458236694,
0.02773941494524479,
-0.05797254294157028,
0.05888768658041954,
-0.028205711394548416,
-0.018495390191674232,
0.07567965239286423,
-0.10691220313310623,
0.029993971809744835,
0.020405961200594902,
-0.06953081488609314,
-0.005818186793476343,
0.007643318269401789,
0.0077519905753433704,
-0.037015628069639206,
0.07633942365646362,
-0.06465880572795868,
0.027765054255723953,
-0.043853759765625,
-0.12871596217155457,
0.017441416159272194,
-0.09431850910186768,
-0.0014897153014317155,
-0.10802442580461502,
-0.11885824799537659,
-0.009169615805149078,
0.03972858190536499,
-0.04901832714676857,
-0.016043689101934433,
-0.08294407278299332,
-0.09862657636404037,
0.03979426249861717,
-0.024942755699157715,
0.054837167263031006,
-0.07385773956775665,
0.08939249068498611,
0.06783714145421982,
0.10082586854696274,
-0.050414055585861206,
0.0379670187830925,
-0.07213407009840012,
0.020510727539658546,
-0.19305333495140076,
0.06818858534097672,
-0.07140826433897018,
0.04328968748450279,
-0.12047570943832397,
-0.11282169818878174,
0.03442724049091339,
-0.01374840084463358,
0.0920594111084938,
0.10053839534521103,
-0.18257807195186615,
-0.0873880535364151,
0.1980983316898346,
-0.09802988916635513,
-0.1156911551952362,
0.1339528113603592,
-0.02972727082669735,
0.007482604123651981,
0.06677514314651489,
0.24052347242832184,
0.05052339285612106,
-0.14307469129562378,
0.004350473638623953,
-0.028231550008058548,
0.05976426973938942,
-0.04917383939027786,
0.07395299524068832,
-0.015655463561415672,
0.07510258257389069,
0.005299652926623821,
-0.019107356667518616,
0.015428584069013596,
-0.09020262211561203,
-0.08883647620677948,
-0.03397734835743904,
-0.08799494802951813,
0.024334965273737907,
0.030023928731679916,
0.06018455699086189,
-0.12441425025463104,
-0.09158557653427124,
0.02848045341670513,
0.08836998790502548,
-0.09550508856773376,
0.05936528742313385,
-0.12443992495536804,
0.09173263609409332,
-0.03144614025950432,
-0.011454951949417591,
-0.16592518985271454,
0.03724634274840355,
0.04178297519683838,
0.002829261589795351,
0.03475555405020714,
-0.055193331092596054,
0.08193967491388321,
0.0731874629855156,
-0.04299929365515709,
-0.03333885595202446,
-0.013945640996098518,
0.008039997890591621,
-0.09017931669950485,
-0.1943552941083908,
-0.054828085005283356,
-0.035834383219480515,
0.07815799117088318,
-0.15828371047973633,
0.025089135393500328,
0.07017523795366287,
0.09651347994804382,
0.03338274732232094,
-0.028575539588928223,
-0.012219510041177273,
0.087840735912323,
-0.015352100133895874,
-0.04962243139743805,
0.06062543764710426,
0.002497690496966243,
-0.085025355219841,
0.009269117377698421,
-0.14880475401878357,
0.14841926097869873,
0.14334046840667725,
-0.011332896538078785,
-0.050484608858823776,
-0.005328780505806208,
-0.03331468999385834,
-0.02565130777657032,
-0.0029307000804692507,
0.007498255930840969,
0.18788330256938934,
0.0008486380684189498,
0.1410123109817505,
-0.09330503642559052,
-0.02298472262918949,
0.052432626485824585,
-0.020006271079182625,
-0.013314751908183098,
0.1090850830078125,
0.03527339920401573,
-0.08266258239746094,
0.10204099118709564,
0.11103604733943939,
-0.08041788637638092,
0.12958838045597076,
-0.05774306505918503,
-0.059245966374874115,
-0.03548369184136391,
-0.00828490313142538,
0.024847770109772682,
0.10415218770503998,
-0.13841962814331055,
-0.04101692512631416,
0.027844324707984924,
0.01406060066074133,
0.006959727965295315,
-0.20483139157295227,
0.002271931618452072,
0.035581544041633606,
-0.09008662402629852,
-0.06420470029115677,
0.006811911705881357,
-0.004651212599128485,
0.0942014530301094,
0.008287327364087105,
-0.10720808058977127,
0.009982110932469368,
-0.011215447448194027,
-0.07368703931570053,
0.17238153517246246,
-0.09906169027090073,
-0.1454247236251831,
-0.12190178036689758,
-0.1031816229224205,
-0.05199645459651947,
0.013323064893484116,
0.07502494007349014,
-0.08550065755844116,
-0.03780756890773773,
-0.09979108721017838,
-0.015799924731254578,
-0.0011551269562914968,
0.038125280290842056,
0.06687033921480179,
-0.014375882223248482,
0.06546936929225922,
-0.11656544357538223,
-0.023970697075128555,
-0.046647727489471436,
-0.00204265839420259,
0.04342161491513252,
0.01643780618906021,
0.1076415553689003,
0.13198524713516235,
-0.010909505188465118,
0.04915817454457283,
-0.04674306884407997,
0.25142985582351685,
-0.06056887283921242,
-0.027652567252516747,
0.13508346676826477,
-0.012094861827790737,
0.06399842351675034,
0.1270911693572998,
0.05802261084318161,
-0.10613081604242325,
-0.016940312460064888,
-0.019805381074547768,
-0.046358540654182434,
-0.19212768971920013,
-0.03518013283610344,
-0.04442920908331871,
-0.010411588475108147,
0.10225176811218262,
0.025744449347257614,
0.014775958843529224,
0.026540279388427734,
0.027884382754564285,
0.030049357563257217,
-0.002328484319150448,
0.08891669660806656,
0.12861478328704834,
0.06084977835416794,
0.12866826355457306,
-0.044443529099226,
-0.03670334815979004,
0.02177000604569912,
0.006773026660084724,
0.19342736899852753,
0.02276010811328888,
0.18506108224391937,
0.040602199733257294,
0.15981443226337433,
0.03562266007065773,
0.07165096700191498,
-0.02149655856192112,
-0.016307085752487183,
0.0033300553914159536,
-0.0685344934463501,
-0.03680851683020592,
0.032071419060230255,
0.012699474580585957,
0.027676189318299294,
-0.11369270086288452,
-0.005704781506210566,
0.04549239203333855,
0.2858792841434479,
0.05682786554098129,
-0.358176589012146,
-0.10274568200111389,
-0.005149932112544775,
-0.05017026886343956,
-0.013849210925400257,
0.027119848877191544,
0.10862264037132263,
-0.06386806815862656,
0.06895916908979416,
-0.042115066200494766,
0.09010577946901321,
-0.059043802320957184,
0.04657489061355591,
0.0410073846578598,
0.07358499616384506,
0.00005766228787251748,
0.027761010453104973,
-0.27275145053863525,
0.29824116826057434,
0.02620164304971695,
0.08572317659854889,
-0.05959358066320419,
0.0024953866377472878,
0.009029019623994827,
0.04272468760609627,
0.08079882711172104,
-0.01854030415415764,
-0.08997584134340286,
-0.18358276784420013,
-0.07476436346769333,
0.026714783161878586,
0.12936297059059143,
0.002900877967476845,
0.11474213004112244,
0.007375039160251617,
-0.023724695667624474,
0.05350105091929436,
-0.03780220076441765,
-0.06770917028188705,
-0.07918106019496918,
0.008927171118557453,
0.09253132343292236,
0.009780668653547764,
-0.052406590431928635,
-0.10470903664827347,
-0.10819683223962784,
0.1297462433576584,
-0.0339188426733017,
-0.0417049303650856,
-0.10176632553339005,
0.004274729639291763,
0.10520216822624207,
-0.08827999979257584,
0.03654960170388222,
0.011979132890701294,
0.09464987367391586,
-0.000983130419626832,
-0.06483551859855652,
0.11640730500221252,
-0.06724269688129425,
-0.1712580919265747,
-0.036612942814826965,
0.15437330305576324,
0.020451778545975685,
0.06270167976617813,
0.009880714118480682,
0.03990301862359047,
-0.01322632934898138,
-0.06567159295082092,
0.059271395206451416,
0.004660324193537235,
0.03319243714213371,
-0.01714148186147213,
0.0058240098878741264,
-0.019548119977116585,
-0.09594982862472534,
-0.00178710266482085,
0.17277847230434418,
0.29066428542137146,
-0.08351624757051468,
0.07641138136386871,
0.08890773355960846,
-0.03508949279785156,
-0.16040024161338806,
-0.006684228777885437,
0.062465593218803406,
0.011148770339787006,
-0.03054140694439411,
-0.17510588467121124,
0.0244543869048357,
0.055692534893751144,
-0.02156676910817623,
0.07609492540359497,
-0.29086631536483765,
-0.13866038620471954,
0.11003421992063522,
0.11157544702291489,
0.09387830644845963,
-0.14020682871341705,
-0.05517603084445,
-0.025385860353708267,
-0.14745010435581207,
0.09877422451972961,
-0.0642697811126709,
0.12698547542095184,
-0.0257228072732687,
0.09041903167963028,
0.00853873323649168,
-0.05291582643985748,
0.12515713274478912,
0.03622784838080406,
0.07003629207611084,
-0.045378461480140686,
0.017396973446011543,
0.06083473563194275,
-0.06025730445981026,
0.050421543419361115,
-0.08054035156965256,
0.03516087308526039,
-0.0913887694478035,
-0.025102194398641586,
-0.08321519941091537,
0.010273400694131851,
-0.011524382047355175,
-0.035349246114492416,
-0.025916418060660362,
0.004885727073997259,
0.047336775809526443,
-0.01385863684117794,
0.15041479468345642,
-0.013418866321444511,
0.13687452673912048,
0.18420249223709106,
0.1002693623304367,
-0.10684365779161453,
-0.031617172062397,
0.01684338040649891,
-0.03899111598730087,
0.07295213639736176,
-0.11934355646371841,
0.03073793463408947,
0.13125866651535034,
0.033739764243364334,
0.12783795595169067,
0.06249544396996498,
-0.06254037469625473,
0.0269545316696167,
0.05128464475274086,
-0.1538793295621872,
-0.0959605872631073,
0.009605057537555695,
-0.01227214653044939,
-0.08235660940408707,
0.07370021939277649,
0.13584327697753906,
-0.06266865879297256,
-0.007834427990019321,
-0.011501100845634937,
0.009755433537065983,
-0.049534257501363754,
0.2007666379213333,
0.049972180277109146,
0.06862258911132812,
-0.12404993176460266,
0.05529399961233139,
0.03461833670735359,
-0.10084820538759232,
0.05833243951201439,
0.08589828759431839,
-0.1037975624203682,
-0.026232829317450523,
-0.0023554572835564613,
0.11282103508710861,
-0.03990695998072624,
-0.06106507405638695,
-0.13740335404872894,
-0.12201151996850967,
0.0870252251625061,
0.21136030554771423,
0.0755746141076088,
0.0029633427038788795,
-0.053119201213121414,
0.013354821130633354,
-0.11515545099973679,
0.07188795506954193,
0.02193599008023739,
0.06456739455461502,
-0.11777904629707336,
0.14400668442249298,
-0.0005304822698235512,
0.03764571622014046,
-0.015334254130721092,
0.003919566515833139,
-0.12064313888549805,
0.031586505472660065,
-0.13359178602695465,
0.0006199788767844439,
-0.06099877133965492,
0.001493605668656528,
-0.002041396452113986,
-0.05831671878695488,
-0.05785299092531204,
0.035434260964393616,
-0.11589900404214859,
-0.018510889261960983,
0.01766909845173359,
0.03114335425198078,
-0.1330748200416565,
-0.017638379707932472,
0.00745127908885479,
-0.08672728389501572,
0.0858369693160057,
0.08302799612283707,
-0.03180867061018944,
0.05842464417219162,
-0.08988171070814133,
-0.01874701865017414,
0.06446760147809982,
0.008572882041335106,
0.06801164895296097,
-0.10838158428668976,
-0.013166963122785091,
0.008704116567969322,
0.03810073435306549,
0.03149721398949623,
0.14407333731651306,
-0.09736815094947815,
0.012493548914790154,
-0.0341821126639843,
-0.05330049246549606,
-0.053605206310749054,
0.05245007947087288,
0.11842073500156403,
0.026483312249183655,
0.16589747369289398,
-0.09194930642843246,
0.02158466726541519,
-0.17255093157291412,
-0.010020936839282513,
-0.010988484136760235,
-0.1225399374961853,
-0.08669061213731766,
-0.04277901351451874,
0.08677863329648972,
-0.07186673581600189,
0.11649680137634277,
-0.02291557379066944,
0.03223728761076927,
0.02890787087380886,
-0.07943793386220932,
-0.050781965255737305,
0.018243424594402313,
0.20960238575935364,
0.0512041300535202,
-0.03651569411158562,
0.08013153076171875,
0.015210567973554134,
0.08613928407430649,
0.13126355409622192,
0.16123664379119873,
0.14975273609161377,
0.05330527573823929,
0.118709996342659,
0.09112913906574249,
-0.038381047546863556,
-0.17400741577148438,
0.038712941110134125,
-0.04510018974542618,
0.12385304272174835,
-0.016126183792948723,
0.18359026312828064,
0.11582391709089279,
-0.15082786977291107,
0.037641413509845734,
-0.029296638444066048,
-0.09196154028177261,
-0.11711803823709488,
-0.07135245949029922,
-0.09352625906467438,
-0.15776163339614868,
0.015888281166553497,
-0.11014625430107117,
0.051906682550907135,
0.06392217427492142,
0.021981313824653625,
0.016977986320853233,
0.1375223845243454,
0.015380043536424637,
0.016875794157385826,
0.08855389058589935,
-0.010873973369598389,
-0.06188887357711792,
-0.04116067662835121,
-0.07460666447877884,
0.04187048599123955,
-0.01581668108701706,
0.04746314138174057,
-0.010974746197462082,
-0.05413275212049484,
0.03515926003456116,
-0.029211845248937607,
-0.11524109542369843,
0.013689747080206871,
0.029458679258823395,
0.07188531011343002,
0.05649968236684799,
0.036927372217178345,
-0.02440165914595127,
0.0013505747774615884,
0.17523448169231415,
-0.0894843190908432,
-0.09762397408485413,
-0.1041816994547844,
0.26735731959342957,
0.031205082312226295,
-0.0023265506606549025,
0.014712958596646786,
-0.06085783988237381,
-0.023575903847813606,
0.201186403632164,
0.19238553941249847,
-0.04202326759696007,
0.007689841091632843,
-0.014987731352448463,
0.0002948498004116118,
-0.02550564333796501,
0.09638755023479462,
0.13628581166267395,
0.041237760335206985,
-0.051862042397260666,
-0.05137234181165695,
-0.06747187674045563,
-0.025853782892227173,
-0.04334481805562973,
0.0483715683221817,
0.009579558856785297,
-0.024491259828209877,
-0.041608985513448715,
0.06439835578203201,
-0.08247731626033783,
-0.09234176576137543,
0.033187273889780045,
-0.21676503121852875,
-0.14987055957317352,
0.011451604776084423,
0.06013103574514389,
0.03675035759806633,
0.04870381951332092,
-0.0182154830545187,
-0.0015613146824762225,
0.08552917093038559,
-0.00689012510702014,
-0.07491802424192429,
-0.06800960004329681,
0.08944644033908844,
-0.1531551033258438,
0.1523158848285675,
-0.03333815559744835,
0.09298224002122879,
0.11571600288152695,
0.07997339218854904,
-0.0744578018784523,
0.09480717778205872,
0.051557138562202454,
-0.10084621608257294,
0.007478687446564436,
0.15043994784355164,
-0.03606254979968071,
0.12582746148109436,
0.045938391238451004,
-0.129201278090477,
-0.0035127783194184303,
-0.03610323369503021,
-0.03355954959988594,
-0.04195219650864601,
-0.05125897005200386,
-0.04714929684996605,
0.11836974322795868,
0.1749899685382843,
-0.04436570033431053,
-0.00601052213460207,
-0.036628808826208115,
0.022140977904200554,
0.06288083642721176,
-0.016426196321845055,
-0.07664621621370316,
-0.277534544467926,
0.007885622791945934,
0.039874207228422165,
0.00368512119166553,
-0.2531980276107788,
-0.08888740837574005,
-0.0028247640002518892,
-0.03956745192408562,
-0.07070942223072052,
0.08797404915094376,
0.06878344714641571,
0.04220999404788017,
-0.05769649147987366,
-0.042714253067970276,
-0.035617396235466,
0.1776629090309143,
-0.18380053341388702,
-0.08416089415550232
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Lab1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2158
- Accuracy: 0.925
- F1: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.811 | 1.0 | 250 | 0.3080 | 0.909 | 0.9046 |
| 0.2447 | 2.0 | 500 | 0.2158 | 0.925 | 0.9252 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 1.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "Lab1", "results": []}]} | text-classification | Yanwen9969/Lab1 | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:30:22+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| Lab1
====
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2158
* Accuracy: 0.925
* F1: 0.9252
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 2.1.0+cu121
* Datasets 1.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
57,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
-0.09434865415096283,
0.08467388153076172,
-0.002278369851410389,
0.11989223212003708,
0.178255096077919,
0.02702012099325657,
0.12209464609622955,
0.12432769685983658,
-0.10789045691490173,
0.01131631899625063,
0.11646322160959244,
0.18290816247463226,
0.009834559634327888,
0.1009126678109169,
-0.05452822521328926,
-0.25957897305488586,
-0.016207793727517128,
0.05111593008041382,
-0.08464915305376053,
0.14207570254802704,
0.09654515981674194,
-0.12985233962535858,
0.0769834816455841,
0.0020417277701199055,
-0.22889597713947296,
0.009871004149317741,
0.014445475302636623,
-0.06252464652061462,
0.15139605104923248,
0.02105431631207466,
0.12846627831459045,
0.01146659068763256,
0.07917378842830658,
-0.18203650414943695,
0.010323869995772839,
0.04720050096511841,
0.0044197398237884045,
0.08919724822044373,
0.05461455509066582,
-0.006737236399203539,
0.11444054543972015,
-0.08051896095275879,
0.05260717123746872,
0.022663533687591553,
-0.12316133826971054,
-0.22575312852859497,
-0.08010152727365494,
0.020464777946472168,
0.06499498337507248,
0.10548382997512817,
0.00010400000610388815,
0.12725123763084412,
-0.09737907350063324,
0.09591136127710342,
0.20913466811180115,
-0.2753314673900604,
-0.06492313742637634,
0.027365561574697495,
0.005597751587629318,
0.078748419880867,
-0.11029897630214691,
-0.025027353316545486,
0.05184035003185272,
0.04925576597452164,
0.1334446519613266,
-0.029698096215724945,
-0.12689317762851715,
0.0135493203997612,
-0.14126020669937134,
-0.035614993423223495,
0.14067590236663818,
0.023399243131279945,
-0.02655024826526642,
-0.03935708850622177,
-0.06290493905544281,
-0.15122047066688538,
-0.03732099384069443,
-0.008290776051580906,
0.04434913024306297,
-0.03090624511241913,
-0.0570259653031826,
-0.0042253113351762295,
-0.11024530977010727,
-0.06959428638219833,
-0.07142423838376999,
0.1427973359823227,
0.04000028222799301,
0.012651689350605011,
-0.028179913759231567,
0.11441503465175629,
0.0294655654579401,
-0.1315561830997467,
0.032228775322437286,
0.02918221242725849,
0.004677135497331619,
-0.04336506873369217,
-0.06898317486047745,
-0.049234699457883835,
0.007592242211103439,
0.11187656968832016,
-0.06509601324796677,
0.050152212381362915,
0.02665434405207634,
0.04742349684238434,
-0.10145193338394165,
0.18912562727928162,
-0.023408614099025726,
0.0017862869426608086,
0.00883735716342926,
0.05079920217394829,
0.006106603890657425,
-0.009438683278858662,
-0.12141917645931244,
-0.00012448900088202208,
0.11656496673822403,
0.02031806856393814,
-0.06995610892772675,
0.07073522359132767,
-0.05867990478873253,
-0.026802770793437958,
0.017950473353266716,
-0.10040174424648285,
0.03259027749300003,
0.0024599807802587748,
-0.08408183604478836,
-0.020521624013781548,
0.03088524006307125,
0.01203716266900301,
-0.02882281504571438,
0.10923880338668823,
-0.07509167492389679,
0.04039720073342323,
-0.10161270946264267,
-0.10664782673120499,
0.015599243342876434,
-0.07547774910926819,
0.024115070700645447,
-0.10107725858688354,
-0.16251863539218903,
-0.015750586986541748,
0.05877044424414635,
-0.025329558178782463,
-0.060716431587934494,
-0.05058899521827698,
-0.07257082313299179,
0.013515472412109375,
-0.015860212966799736,
0.15035252273082733,
-0.05720135197043419,
0.11506542563438416,
0.038552042096853256,
0.06707575917243958,
-0.05036069452762604,
0.06473273038864136,
-0.09736503660678864,
-0.0005116218235343695,
-0.18182435631752014,
0.05212788283824921,
-0.0503075011074543,
0.06507472693920135,
-0.08819690346717834,
-0.11406096071004868,
0.01435542106628418,
-0.005758093204349279,
0.06620028614997864,
0.09309054911136627,
-0.16589541733264923,
-0.08089739829301834,
0.14987297356128693,
-0.07139582186937332,
-0.10672305524349213,
0.11546581983566284,
-0.0592714287340641,
0.05892590433359146,
0.07443462312221527,
0.16505233943462372,
0.08641966432332993,
-0.058563098311424255,
0.031044216826558113,
0.007745644077658653,
0.049426235258579254,
-0.07006584852933884,
0.05938245728611946,
0.005294827278703451,
-0.011280728504061699,
0.03686951473355293,
-0.03472703695297241,
0.06963962316513062,
-0.0948624461889267,
-0.09754226356744766,
-0.04023623839020729,
-0.09673238545656204,
0.06326528638601303,
0.08307429403066635,
0.09247423708438873,
-0.08815836161375046,
-0.06746498495340347,
0.07999278604984283,
0.07545473426580429,
-0.06226521357893944,
0.03208176791667938,
-0.04969768971204758,
0.05659019947052002,
-0.025172412395477295,
-0.017499377951025963,
-0.20175501704216003,
-0.0007352145621553063,
0.012105877511203289,
-0.0021437588147819042,
0.021289199590682983,
0.01803869940340519,
0.07044966518878937,
0.058894556015729904,
-0.0612790621817112,
-0.022729674354195595,
-0.02926313690841198,
-0.008502636104822159,
-0.13311482965946198,
-0.19126251339912415,
-0.021221576258540154,
-0.01723651960492134,
0.13762488961219788,
-0.19929055869579315,
0.041545070707798004,
-0.011026493273675442,
0.0629936009645462,
0.0003694153856486082,
-0.0017328535905107856,
-0.0464303120970726,
0.08997108042240143,
-0.03469017520546913,
-0.04421091452240944,
0.08258800953626633,
0.005595578346401453,
-0.08551342040300369,
-0.037629224359989166,
-0.08932347595691681,
0.17134200036525726,
0.14090530574321747,
-0.13012245297431946,
-0.07688618451356888,
-0.004854714032262564,
-0.05975572392344475,
-0.03409641981124878,
-0.036359138786792755,
0.03874611854553223,
0.18197445571422577,
-0.016057170927524567,
0.15847918391227722,
-0.06894781440496445,
-0.046540938317775726,
0.01798045076429844,
-0.0335877500474453,
0.034110669046640396,
0.12460163980722427,
0.11647914350032806,
-0.07739625871181488,
0.145255908370018,
0.15604430437088013,
-0.09847989678382874,
0.13385628163814545,
-0.04783906042575836,
-0.06221232935786247,
-0.005323904100805521,
-0.01651853695511818,
0.00006248753925319761,
0.07948511838912964,
-0.14165912568569183,
-0.002674582414329052,
0.020219646394252777,
0.01905924826860428,
0.02728613093495369,
-0.2332158088684082,
-0.035057518631219864,
0.025447122752666473,
-0.04307394102215767,
-0.004480578936636448,
-0.0201027262955904,
0.012005174532532692,
0.10878436267375946,
-0.0024336951319128275,
-0.08019430190324783,
0.046192336827516556,
0.004455422516912222,
-0.08105041086673737,
0.22106625139713287,
-0.09480050951242447,
-0.16711944341659546,
-0.12812192738056183,
-0.07208587229251862,
-0.036173753440380096,
0.011065220460295677,
0.06075816974043846,
-0.10429289937019348,
-0.020264988765120506,
-0.05020163208246231,
0.026940293610095978,
-0.006140547804534435,
0.03766791895031929,
0.003881834214553237,
0.011951982043683529,
0.07263298332691193,
-0.11265560239553452,
-0.005853806622326374,
-0.05287851393222809,
-0.06754671782255173,
0.05906098335981369,
0.030775239691138268,
0.10247699171304703,
0.16364459693431854,
-0.021580319851636887,
0.005106394644826651,
-0.028526484966278076,
0.2191275954246521,
-0.06622447818517685,
-0.02657075971364975,
0.13787640631198883,
-0.010277767665684223,
0.05675730109214783,
0.09872894734144211,
0.07290704548358917,
-0.08874259889125824,
0.015599642880260944,
0.021716918796300888,
-0.03531781584024429,
-0.23292768001556396,
-0.05322205275297165,
-0.057577237486839294,
-0.023640410974621773,
0.09740949422121048,
0.028740815818309784,
0.04568035528063774,
0.06535015255212784,
0.040694836527109146,
0.08287743479013443,
-0.03126036375761032,
0.0447915755212307,
0.12840327620506287,
0.04231128469109535,
0.12297451496124268,
-0.046949125826358795,
-0.06826726347208023,
0.03064855933189392,
-0.014016612432897091,
0.22044378519058228,
0.004139983560889959,
0.13165876269340515,
0.05749053508043289,
0.18074102699756622,
0.005982929840683937,
0.08738287538290024,
-0.0009364308207295835,
-0.03735630214214325,
-0.00909799337387085,
-0.03842991963028908,
-0.048420533537864685,
0.013549908064305782,
-0.06279898434877396,
0.051566313952207565,
-0.11880597472190857,
-0.018190529197454453,
0.05220794677734375,
0.2529744505882263,
0.021117020398378372,
-0.31864115595817566,
-0.08666068315505981,
0.0016469522379338741,
-0.030956881120800972,
-0.019518211483955383,
0.014866712503135204,
0.08798365294933319,
-0.09871160238981247,
0.024386713281273842,
-0.07045100629329681,
0.0955439880490303,
-0.0487825945019722,
0.044868919998407364,
0.06704225391149521,
0.07732249796390533,
0.01671641878783703,
0.08989465236663818,
-0.3204003870487213,
0.266642689704895,
0.0026548821479082108,
0.06640805304050446,
-0.0815410390496254,
0.0031502197962254286,
0.035696614533662796,
0.06369513273239136,
0.05105511099100113,
-0.012114460580050945,
-0.018881144002079964,
-0.19385631382465363,
-0.057349346578121185,
0.02579413540661335,
0.09225475043058395,
-0.031137514859437943,
0.0812862291932106,
-0.027427172288298607,
0.007778597995638847,
0.07692106813192368,
-0.04240773990750313,
-0.05221264809370041,
-0.10324502736330032,
-0.009543081745505333,
0.011202708818018436,
-0.036603040993213654,
-0.06275580823421478,
-0.11787731945514679,
-0.1160118356347084,
0.15219169855117798,
-0.031222287565469742,
-0.04115338996052742,
-0.11041299998760223,
0.08710181713104248,
0.0755433663725853,
-0.08569605648517609,
0.0497748926281929,
0.004764570388942957,
0.060867082327604294,
0.027847180142998695,
-0.07815305888652802,
0.10502079874277115,
-0.06268835067749023,
-0.1648712456226349,
-0.052217576652765274,
0.11087721586227417,
0.03754449263215065,
0.0643220990896225,
-0.012875434942543507,
0.009671371430158615,
-0.03891364485025406,
-0.09239698946475983,
0.02098691649734974,
-0.01279465202242136,
0.07785122841596603,
0.026596738025546074,
-0.07048755139112473,
0.0038119086530059576,
-0.06479867547750473,
-0.03481702879071236,
0.19709056615829468,
0.2190045863389969,
-0.09592782706022263,
0.028827203437685966,
0.0412093847990036,
-0.07324991375207901,
-0.20851103961467743,
0.042794037610292435,
0.0696818083524704,
0.0038530128076672554,
0.03163605555891991,
-0.1944665014743805,
0.12408526986837387,
0.0962025374174118,
-0.012949075549840927,
0.10838783532381058,
-0.33812883496284485,
-0.125144362449646,
0.11725681275129318,
0.14276117086410522,
0.12040640413761139,
-0.14267182350158691,
-0.023497942835092545,
-0.024487510323524475,
-0.10806913673877716,
0.10884404182434082,
-0.08084005117416382,
0.12271638214588165,
-0.036495134234428406,
0.07768774777650833,
0.0014963081339374185,
-0.05857633799314499,
0.11936022341251373,
0.019747797399759293,
0.09409269690513611,
-0.060341984033584595,
-0.028407340869307518,
0.04800968989729881,
-0.03307292237877846,
0.00797275546938181,
-0.08129556477069855,
0.03063882328569889,
-0.09901030361652374,
-0.019356420263648033,
-0.08485972881317139,
0.04547078162431717,
-0.03782019391655922,
-0.054739709943532944,
-0.030574960634112358,
0.020200980827212334,
0.044045861810445786,
-0.012680879794061184,
0.11878258734941483,
0.026582663878798485,
0.14599931240081787,
0.131633460521698,
0.07113786786794662,
-0.04749323055148125,
-0.057907894253730774,
-0.018773984163999557,
-0.015023535117506981,
0.05962982773780823,
-0.1458326280117035,
0.0291314534842968,
0.14257334172725677,
0.020793989300727844,
0.13213184475898743,
0.08746926486492157,
-0.01650235988199711,
0.006737763062119484,
0.06499029695987701,
-0.1641208976507187,
-0.0805554911494255,
-0.008019410073757172,
-0.05789026618003845,
-0.10132094472646713,
0.04522654414176941,
0.08350145816802979,
-0.06669468432664871,
-0.012203286401927471,
-0.00476935924962163,
0.004909546114504337,
-0.059766583144664764,
0.20633167028427124,
0.06300685554742813,
0.051081717014312744,
-0.10761713981628418,
0.07846672832965851,
0.05957043543457985,
-0.07523740828037262,
-0.0017461915267631412,
0.07757321745157242,
-0.08788806200027466,
-0.04997889697551727,
0.10541332513093948,
0.1630546897649765,
-0.05274341627955437,
-0.0440954826772213,
-0.1367531567811966,
-0.12511645257472992,
0.07730954140424728,
0.15150366723537445,
0.1221192330121994,
0.018264587968587875,
-0.06364735960960388,
0.010594923049211502,
-0.12151538580656052,
0.08118999749422073,
0.037957437336444855,
0.06654855608940125,
-0.129717618227005,
0.16261209547519684,
0.016919860616326332,
0.050647199153900146,
-0.024050068110227585,
0.02198261022567749,
-0.10020571947097778,
0.020343530923128128,
-0.11326639354228973,
-0.02600814588367939,
-0.010114242322742939,
0.005339488387107849,
-0.010070371441543102,
-0.055323436856269836,
-0.0470038503408432,
0.01679028943181038,
-0.1220618188381195,
-0.023689761757850647,
0.023835837841033936,
0.057160086929798126,
-0.11397761851549149,
-0.04519669711589813,
0.029262840747833252,
-0.063848577439785,
0.06654092669487,
0.05508613958954811,
0.01122970599681139,
0.06859306246042252,
-0.13196992874145508,
-0.0057662432081997395,
0.08145313709974289,
0.01793084107339382,
0.05862528085708618,
-0.08692119270563126,
-0.006597533822059631,
0.006114786025136709,
0.06566142290830612,
0.023267284035682678,
0.08933085948228836,
-0.1451181024312973,
0.00798836164176464,
-0.03858551010489464,
-0.08627807348966599,
-0.06809774041175842,
0.03393024206161499,
0.08366644382476807,
0.01484567578881979,
0.19556470215320587,
-0.07820306718349457,
0.040571391582489014,
-0.2105739563703537,
0.0016836179420351982,
-0.01839892566204071,
-0.11758489906787872,
-0.12829846143722534,
-0.06818818300962448,
0.06304533779621124,
-0.05042639374732971,
0.13317056000232697,
0.029715215787291527,
0.038267314434051514,
0.025174103677272797,
-0.01186751201748848,
0.0059179142117500305,
0.026389559730887413,
0.214702770113945,
0.03884920850396156,
-0.03280370309948921,
0.07373147457838058,
0.05350871756672859,
0.09430832415819168,
0.1138470321893692,
0.19154682755470276,
0.158256396651268,
-0.021241264417767525,
0.08810283988714218,
0.02637624181807041,
-0.047080036252737045,
-0.15510259568691254,
0.04748423397541046,
-0.05006524547934532,
0.09821878373622894,
-0.027813147753477097,
0.21618466079235077,
0.05370688810944557,
-0.16449187695980072,
0.051213402301073074,
-0.05122041329741478,
-0.09423599392175674,
-0.10349514335393906,
-0.02724548988044262,
-0.08276518434286118,
-0.141457661986351,
-0.0029128037858754396,
-0.10614034533500671,
0.011624651029706001,
0.1094387024641037,
0.0029065634589642286,
-0.028681600466370583,
0.15401014685630798,
0.04531065374612808,
0.013819622807204723,
0.06349528580904007,
-0.0016955824103206396,
-0.02874474599957466,
-0.10811968892812729,
-0.06799528747797012,
-0.016858482733368874,
-0.003133583813905716,
0.03658725693821907,
-0.05177505686879158,
-0.07202652096748352,
0.03505951538681984,
-0.03232857584953308,
-0.09836658090353012,
0.016135239973664284,
0.023442821577191353,
0.06450428068637848,
0.048337966203689575,
0.007200198248028755,
0.009477256797254086,
-0.009891385212540627,
0.22058463096618652,
-0.07574810832738876,
-0.08557499200105667,
-0.08635213971138,
0.2721922695636749,
0.04693186283111572,
-0.005773663055151701,
0.03690089285373688,
-0.060347992926836014,
-0.003916338086128235,
0.2510091960430145,
0.20080576837062836,
-0.08935964852571487,
-0.008422767743468285,
0.009265618398785591,
-0.008987867273390293,
-0.011019877158105373,
0.12828265130519867,
0.14713436365127563,
0.041426822543144226,
-0.10679063200950623,
-0.0439688116312027,
-0.05686644837260246,
-0.015786396339535713,
-0.04622247442603111,
0.06840349733829498,
0.0365595668554306,
-0.0010263697477057576,
-0.04103179648518562,
0.061429981142282486,
-0.06800851970911026,
-0.09355117380619049,
0.05916906148195267,
-0.20950491726398468,
-0.1638241708278656,
-0.014250506646931171,
0.11018764972686768,
-0.003967287018895149,
0.05827362835407257,
-0.02643745020031929,
0.00444800965487957,
0.06633400917053223,
-0.024191996082663536,
-0.09069070219993591,
-0.07172638177871704,
0.09315025061368942,
-0.12132900208234787,
0.17839229106903076,
-0.042340029031038284,
0.07436756789684296,
0.11830627173185349,
0.07126593589782715,
-0.06433915346860886,
0.06066358834505081,
0.03399050608277321,
-0.06997977197170258,
0.03706402704119682,
0.0878523513674736,
-0.029365692287683487,
0.04019802436232567,
0.03848041594028473,
-0.11916062980890274,
0.025936102494597435,
-0.07120086997747421,
-0.05635419487953186,
-0.04150819405913353,
-0.046250153332948685,
-0.056555092334747314,
0.11665674299001694,
0.2209848016500473,
-0.025691140443086624,
0.012491308152675629,
-0.07722533494234085,
0.0027995810378342867,
0.05020969361066818,
0.018868129700422287,
-0.07960382103919983,
-0.23175203800201416,
0.00173812301363796,
0.05928743630647659,
-0.01737271435558796,
-0.2266964614391327,
-0.08965737372636795,
-0.0034131966531276703,
-0.07334467023611069,
-0.10002723336219788,
0.08334432542324066,
0.06819260120391846,
0.048207126557826996,
-0.05047854036092758,
-0.08249980211257935,
-0.08244439214468002,
0.15666531026363373,
-0.15792527794837952,
-0.08750952780246735
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Lab1
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2158
- Accuracy: 0.925
- F1: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.811 | 1.0 | 250 | 0.3080 | 0.909 | 0.9046 |
| 0.2447 | 2.0 | 500 | 0.2158 | 0.925 | 0.9252 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 1.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "Lab1", "results": []}]} | text-classification | JiajianY/Lab1 | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:30:37+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| Lab1
====
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2158
* Accuracy: 0.925
* F1: 0.9252
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 2.1.0+cu121
* Datasets 1.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
57,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
-0.09434865415096283,
0.08467388153076172,
-0.002278369851410389,
0.11989223212003708,
0.178255096077919,
0.02702012099325657,
0.12209464609622955,
0.12432769685983658,
-0.10789045691490173,
0.01131631899625063,
0.11646322160959244,
0.18290816247463226,
0.009834559634327888,
0.1009126678109169,
-0.05452822521328926,
-0.25957897305488586,
-0.016207793727517128,
0.05111593008041382,
-0.08464915305376053,
0.14207570254802704,
0.09654515981674194,
-0.12985233962535858,
0.0769834816455841,
0.0020417277701199055,
-0.22889597713947296,
0.009871004149317741,
0.014445475302636623,
-0.06252464652061462,
0.15139605104923248,
0.02105431631207466,
0.12846627831459045,
0.01146659068763256,
0.07917378842830658,
-0.18203650414943695,
0.010323869995772839,
0.04720050096511841,
0.0044197398237884045,
0.08919724822044373,
0.05461455509066582,
-0.006737236399203539,
0.11444054543972015,
-0.08051896095275879,
0.05260717123746872,
0.022663533687591553,
-0.12316133826971054,
-0.22575312852859497,
-0.08010152727365494,
0.020464777946472168,
0.06499498337507248,
0.10548382997512817,
0.00010400000610388815,
0.12725123763084412,
-0.09737907350063324,
0.09591136127710342,
0.20913466811180115,
-0.2753314673900604,
-0.06492313742637634,
0.027365561574697495,
0.005597751587629318,
0.078748419880867,
-0.11029897630214691,
-0.025027353316545486,
0.05184035003185272,
0.04925576597452164,
0.1334446519613266,
-0.029698096215724945,
-0.12689317762851715,
0.0135493203997612,
-0.14126020669937134,
-0.035614993423223495,
0.14067590236663818,
0.023399243131279945,
-0.02655024826526642,
-0.03935708850622177,
-0.06290493905544281,
-0.15122047066688538,
-0.03732099384069443,
-0.008290776051580906,
0.04434913024306297,
-0.03090624511241913,
-0.0570259653031826,
-0.0042253113351762295,
-0.11024530977010727,
-0.06959428638219833,
-0.07142423838376999,
0.1427973359823227,
0.04000028222799301,
0.012651689350605011,
-0.028179913759231567,
0.11441503465175629,
0.0294655654579401,
-0.1315561830997467,
0.032228775322437286,
0.02918221242725849,
0.004677135497331619,
-0.04336506873369217,
-0.06898317486047745,
-0.049234699457883835,
0.007592242211103439,
0.11187656968832016,
-0.06509601324796677,
0.050152212381362915,
0.02665434405207634,
0.04742349684238434,
-0.10145193338394165,
0.18912562727928162,
-0.023408614099025726,
0.0017862869426608086,
0.00883735716342926,
0.05079920217394829,
0.006106603890657425,
-0.009438683278858662,
-0.12141917645931244,
-0.00012448900088202208,
0.11656496673822403,
0.02031806856393814,
-0.06995610892772675,
0.07073522359132767,
-0.05867990478873253,
-0.026802770793437958,
0.017950473353266716,
-0.10040174424648285,
0.03259027749300003,
0.0024599807802587748,
-0.08408183604478836,
-0.020521624013781548,
0.03088524006307125,
0.01203716266900301,
-0.02882281504571438,
0.10923880338668823,
-0.07509167492389679,
0.04039720073342323,
-0.10161270946264267,
-0.10664782673120499,
0.015599243342876434,
-0.07547774910926819,
0.024115070700645447,
-0.10107725858688354,
-0.16251863539218903,
-0.015750586986541748,
0.05877044424414635,
-0.025329558178782463,
-0.060716431587934494,
-0.05058899521827698,
-0.07257082313299179,
0.013515472412109375,
-0.015860212966799736,
0.15035252273082733,
-0.05720135197043419,
0.11506542563438416,
0.038552042096853256,
0.06707575917243958,
-0.05036069452762604,
0.06473273038864136,
-0.09736503660678864,
-0.0005116218235343695,
-0.18182435631752014,
0.05212788283824921,
-0.0503075011074543,
0.06507472693920135,
-0.08819690346717834,
-0.11406096071004868,
0.01435542106628418,
-0.005758093204349279,
0.06620028614997864,
0.09309054911136627,
-0.16589541733264923,
-0.08089739829301834,
0.14987297356128693,
-0.07139582186937332,
-0.10672305524349213,
0.11546581983566284,
-0.0592714287340641,
0.05892590433359146,
0.07443462312221527,
0.16505233943462372,
0.08641966432332993,
-0.058563098311424255,
0.031044216826558113,
0.007745644077658653,
0.049426235258579254,
-0.07006584852933884,
0.05938245728611946,
0.005294827278703451,
-0.011280728504061699,
0.03686951473355293,
-0.03472703695297241,
0.06963962316513062,
-0.0948624461889267,
-0.09754226356744766,
-0.04023623839020729,
-0.09673238545656204,
0.06326528638601303,
0.08307429403066635,
0.09247423708438873,
-0.08815836161375046,
-0.06746498495340347,
0.07999278604984283,
0.07545473426580429,
-0.06226521357893944,
0.03208176791667938,
-0.04969768971204758,
0.05659019947052002,
-0.025172412395477295,
-0.017499377951025963,
-0.20175501704216003,
-0.0007352145621553063,
0.012105877511203289,
-0.0021437588147819042,
0.021289199590682983,
0.01803869940340519,
0.07044966518878937,
0.058894556015729904,
-0.0612790621817112,
-0.022729674354195595,
-0.02926313690841198,
-0.008502636104822159,
-0.13311482965946198,
-0.19126251339912415,
-0.021221576258540154,
-0.01723651960492134,
0.13762488961219788,
-0.19929055869579315,
0.041545070707798004,
-0.011026493273675442,
0.0629936009645462,
0.0003694153856486082,
-0.0017328535905107856,
-0.0464303120970726,
0.08997108042240143,
-0.03469017520546913,
-0.04421091452240944,
0.08258800953626633,
0.005595578346401453,
-0.08551342040300369,
-0.037629224359989166,
-0.08932347595691681,
0.17134200036525726,
0.14090530574321747,
-0.13012245297431946,
-0.07688618451356888,
-0.004854714032262564,
-0.05975572392344475,
-0.03409641981124878,
-0.036359138786792755,
0.03874611854553223,
0.18197445571422577,
-0.016057170927524567,
0.15847918391227722,
-0.06894781440496445,
-0.046540938317775726,
0.01798045076429844,
-0.0335877500474453,
0.034110669046640396,
0.12460163980722427,
0.11647914350032806,
-0.07739625871181488,
0.145255908370018,
0.15604430437088013,
-0.09847989678382874,
0.13385628163814545,
-0.04783906042575836,
-0.06221232935786247,
-0.005323904100805521,
-0.01651853695511818,
0.00006248753925319761,
0.07948511838912964,
-0.14165912568569183,
-0.002674582414329052,
0.020219646394252777,
0.01905924826860428,
0.02728613093495369,
-0.2332158088684082,
-0.035057518631219864,
0.025447122752666473,
-0.04307394102215767,
-0.004480578936636448,
-0.0201027262955904,
0.012005174532532692,
0.10878436267375946,
-0.0024336951319128275,
-0.08019430190324783,
0.046192336827516556,
0.004455422516912222,
-0.08105041086673737,
0.22106625139713287,
-0.09480050951242447,
-0.16711944341659546,
-0.12812192738056183,
-0.07208587229251862,
-0.036173753440380096,
0.011065220460295677,
0.06075816974043846,
-0.10429289937019348,
-0.020264988765120506,
-0.05020163208246231,
0.026940293610095978,
-0.006140547804534435,
0.03766791895031929,
0.003881834214553237,
0.011951982043683529,
0.07263298332691193,
-0.11265560239553452,
-0.005853806622326374,
-0.05287851393222809,
-0.06754671782255173,
0.05906098335981369,
0.030775239691138268,
0.10247699171304703,
0.16364459693431854,
-0.021580319851636887,
0.005106394644826651,
-0.028526484966278076,
0.2191275954246521,
-0.06622447818517685,
-0.02657075971364975,
0.13787640631198883,
-0.010277767665684223,
0.05675730109214783,
0.09872894734144211,
0.07290704548358917,
-0.08874259889125824,
0.015599642880260944,
0.021716918796300888,
-0.03531781584024429,
-0.23292768001556396,
-0.05322205275297165,
-0.057577237486839294,
-0.023640410974621773,
0.09740949422121048,
0.028740815818309784,
0.04568035528063774,
0.06535015255212784,
0.040694836527109146,
0.08287743479013443,
-0.03126036375761032,
0.0447915755212307,
0.12840327620506287,
0.04231128469109535,
0.12297451496124268,
-0.046949125826358795,
-0.06826726347208023,
0.03064855933189392,
-0.014016612432897091,
0.22044378519058228,
0.004139983560889959,
0.13165876269340515,
0.05749053508043289,
0.18074102699756622,
0.005982929840683937,
0.08738287538290024,
-0.0009364308207295835,
-0.03735630214214325,
-0.00909799337387085,
-0.03842991963028908,
-0.048420533537864685,
0.013549908064305782,
-0.06279898434877396,
0.051566313952207565,
-0.11880597472190857,
-0.018190529197454453,
0.05220794677734375,
0.2529744505882263,
0.021117020398378372,
-0.31864115595817566,
-0.08666068315505981,
0.0016469522379338741,
-0.030956881120800972,
-0.019518211483955383,
0.014866712503135204,
0.08798365294933319,
-0.09871160238981247,
0.024386713281273842,
-0.07045100629329681,
0.0955439880490303,
-0.0487825945019722,
0.044868919998407364,
0.06704225391149521,
0.07732249796390533,
0.01671641878783703,
0.08989465236663818,
-0.3204003870487213,
0.266642689704895,
0.0026548821479082108,
0.06640805304050446,
-0.0815410390496254,
0.0031502197962254286,
0.035696614533662796,
0.06369513273239136,
0.05105511099100113,
-0.012114460580050945,
-0.018881144002079964,
-0.19385631382465363,
-0.057349346578121185,
0.02579413540661335,
0.09225475043058395,
-0.031137514859437943,
0.0812862291932106,
-0.027427172288298607,
0.007778597995638847,
0.07692106813192368,
-0.04240773990750313,
-0.05221264809370041,
-0.10324502736330032,
-0.009543081745505333,
0.011202708818018436,
-0.036603040993213654,
-0.06275580823421478,
-0.11787731945514679,
-0.1160118356347084,
0.15219169855117798,
-0.031222287565469742,
-0.04115338996052742,
-0.11041299998760223,
0.08710181713104248,
0.0755433663725853,
-0.08569605648517609,
0.0497748926281929,
0.004764570388942957,
0.060867082327604294,
0.027847180142998695,
-0.07815305888652802,
0.10502079874277115,
-0.06268835067749023,
-0.1648712456226349,
-0.052217576652765274,
0.11087721586227417,
0.03754449263215065,
0.0643220990896225,
-0.012875434942543507,
0.009671371430158615,
-0.03891364485025406,
-0.09239698946475983,
0.02098691649734974,
-0.01279465202242136,
0.07785122841596603,
0.026596738025546074,
-0.07048755139112473,
0.0038119086530059576,
-0.06479867547750473,
-0.03481702879071236,
0.19709056615829468,
0.2190045863389969,
-0.09592782706022263,
0.028827203437685966,
0.0412093847990036,
-0.07324991375207901,
-0.20851103961467743,
0.042794037610292435,
0.0696818083524704,
0.0038530128076672554,
0.03163605555891991,
-0.1944665014743805,
0.12408526986837387,
0.0962025374174118,
-0.012949075549840927,
0.10838783532381058,
-0.33812883496284485,
-0.125144362449646,
0.11725681275129318,
0.14276117086410522,
0.12040640413761139,
-0.14267182350158691,
-0.023497942835092545,
-0.024487510323524475,
-0.10806913673877716,
0.10884404182434082,
-0.08084005117416382,
0.12271638214588165,
-0.036495134234428406,
0.07768774777650833,
0.0014963081339374185,
-0.05857633799314499,
0.11936022341251373,
0.019747797399759293,
0.09409269690513611,
-0.060341984033584595,
-0.028407340869307518,
0.04800968989729881,
-0.03307292237877846,
0.00797275546938181,
-0.08129556477069855,
0.03063882328569889,
-0.09901030361652374,
-0.019356420263648033,
-0.08485972881317139,
0.04547078162431717,
-0.03782019391655922,
-0.054739709943532944,
-0.030574960634112358,
0.020200980827212334,
0.044045861810445786,
-0.012680879794061184,
0.11878258734941483,
0.026582663878798485,
0.14599931240081787,
0.131633460521698,
0.07113786786794662,
-0.04749323055148125,
-0.057907894253730774,
-0.018773984163999557,
-0.015023535117506981,
0.05962982773780823,
-0.1458326280117035,
0.0291314534842968,
0.14257334172725677,
0.020793989300727844,
0.13213184475898743,
0.08746926486492157,
-0.01650235988199711,
0.006737763062119484,
0.06499029695987701,
-0.1641208976507187,
-0.0805554911494255,
-0.008019410073757172,
-0.05789026618003845,
-0.10132094472646713,
0.04522654414176941,
0.08350145816802979,
-0.06669468432664871,
-0.012203286401927471,
-0.00476935924962163,
0.004909546114504337,
-0.059766583144664764,
0.20633167028427124,
0.06300685554742813,
0.051081717014312744,
-0.10761713981628418,
0.07846672832965851,
0.05957043543457985,
-0.07523740828037262,
-0.0017461915267631412,
0.07757321745157242,
-0.08788806200027466,
-0.04997889697551727,
0.10541332513093948,
0.1630546897649765,
-0.05274341627955437,
-0.0440954826772213,
-0.1367531567811966,
-0.12511645257472992,
0.07730954140424728,
0.15150366723537445,
0.1221192330121994,
0.018264587968587875,
-0.06364735960960388,
0.010594923049211502,
-0.12151538580656052,
0.08118999749422073,
0.037957437336444855,
0.06654855608940125,
-0.129717618227005,
0.16261209547519684,
0.016919860616326332,
0.050647199153900146,
-0.024050068110227585,
0.02198261022567749,
-0.10020571947097778,
0.020343530923128128,
-0.11326639354228973,
-0.02600814588367939,
-0.010114242322742939,
0.005339488387107849,
-0.010070371441543102,
-0.055323436856269836,
-0.0470038503408432,
0.01679028943181038,
-0.1220618188381195,
-0.023689761757850647,
0.023835837841033936,
0.057160086929798126,
-0.11397761851549149,
-0.04519669711589813,
0.029262840747833252,
-0.063848577439785,
0.06654092669487,
0.05508613958954811,
0.01122970599681139,
0.06859306246042252,
-0.13196992874145508,
-0.0057662432081997395,
0.08145313709974289,
0.01793084107339382,
0.05862528085708618,
-0.08692119270563126,
-0.006597533822059631,
0.006114786025136709,
0.06566142290830612,
0.023267284035682678,
0.08933085948228836,
-0.1451181024312973,
0.00798836164176464,
-0.03858551010489464,
-0.08627807348966599,
-0.06809774041175842,
0.03393024206161499,
0.08366644382476807,
0.01484567578881979,
0.19556470215320587,
-0.07820306718349457,
0.040571391582489014,
-0.2105739563703537,
0.0016836179420351982,
-0.01839892566204071,
-0.11758489906787872,
-0.12829846143722534,
-0.06818818300962448,
0.06304533779621124,
-0.05042639374732971,
0.13317056000232697,
0.029715215787291527,
0.038267314434051514,
0.025174103677272797,
-0.01186751201748848,
0.0059179142117500305,
0.026389559730887413,
0.214702770113945,
0.03884920850396156,
-0.03280370309948921,
0.07373147457838058,
0.05350871756672859,
0.09430832415819168,
0.1138470321893692,
0.19154682755470276,
0.158256396651268,
-0.021241264417767525,
0.08810283988714218,
0.02637624181807041,
-0.047080036252737045,
-0.15510259568691254,
0.04748423397541046,
-0.05006524547934532,
0.09821878373622894,
-0.027813147753477097,
0.21618466079235077,
0.05370688810944557,
-0.16449187695980072,
0.051213402301073074,
-0.05122041329741478,
-0.09423599392175674,
-0.10349514335393906,
-0.02724548988044262,
-0.08276518434286118,
-0.141457661986351,
-0.0029128037858754396,
-0.10614034533500671,
0.011624651029706001,
0.1094387024641037,
0.0029065634589642286,
-0.028681600466370583,
0.15401014685630798,
0.04531065374612808,
0.013819622807204723,
0.06349528580904007,
-0.0016955824103206396,
-0.02874474599957466,
-0.10811968892812729,
-0.06799528747797012,
-0.016858482733368874,
-0.003133583813905716,
0.03658725693821907,
-0.05177505686879158,
-0.07202652096748352,
0.03505951538681984,
-0.03232857584953308,
-0.09836658090353012,
0.016135239973664284,
0.023442821577191353,
0.06450428068637848,
0.048337966203689575,
0.007200198248028755,
0.009477256797254086,
-0.009891385212540627,
0.22058463096618652,
-0.07574810832738876,
-0.08557499200105667,
-0.08635213971138,
0.2721922695636749,
0.04693186283111572,
-0.005773663055151701,
0.03690089285373688,
-0.060347992926836014,
-0.003916338086128235,
0.2510091960430145,
0.20080576837062836,
-0.08935964852571487,
-0.008422767743468285,
0.009265618398785591,
-0.008987867273390293,
-0.011019877158105373,
0.12828265130519867,
0.14713436365127563,
0.041426822543144226,
-0.10679063200950623,
-0.0439688116312027,
-0.05686644837260246,
-0.015786396339535713,
-0.04622247442603111,
0.06840349733829498,
0.0365595668554306,
-0.0010263697477057576,
-0.04103179648518562,
0.061429981142282486,
-0.06800851970911026,
-0.09355117380619049,
0.05916906148195267,
-0.20950491726398468,
-0.1638241708278656,
-0.014250506646931171,
0.11018764972686768,
-0.003967287018895149,
0.05827362835407257,
-0.02643745020031929,
0.00444800965487957,
0.06633400917053223,
-0.024191996082663536,
-0.09069070219993591,
-0.07172638177871704,
0.09315025061368942,
-0.12132900208234787,
0.17839229106903076,
-0.042340029031038284,
0.07436756789684296,
0.11830627173185349,
0.07126593589782715,
-0.06433915346860886,
0.06066358834505081,
0.03399050608277321,
-0.06997977197170258,
0.03706402704119682,
0.0878523513674736,
-0.029365692287683487,
0.04019802436232567,
0.03848041594028473,
-0.11916062980890274,
0.025936102494597435,
-0.07120086997747421,
-0.05635419487953186,
-0.04150819405913353,
-0.046250153332948685,
-0.056555092334747314,
0.11665674299001694,
0.2209848016500473,
-0.025691140443086624,
0.012491308152675629,
-0.07722533494234085,
0.0027995810378342867,
0.05020969361066818,
0.018868129700422287,
-0.07960382103919983,
-0.23175203800201416,
0.00173812301363796,
0.05928743630647659,
-0.01737271435558796,
-0.2266964614391327,
-0.08965737372636795,
-0.0034131966531276703,
-0.07334467023611069,
-0.10002723336219788,
0.08334432542324066,
0.06819260120391846,
0.048207126557826996,
-0.05047854036092758,
-0.08249980211257935,
-0.08244439214468002,
0.15666531026363373,
-0.15792527794837952,
-0.08750952780246735
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2158
- Accuracy: 0.925
- F1: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.811 | 1.0 | 250 | 0.3080 | 0.909 | 0.9046 |
| 0.2447 | 2.0 | 500 | 0.2158 | 0.925 | 0.9252 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 1.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": []}]} | text-classification | anamelchor/distilbert-base-uncased-finetuned-emotion | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:32:11+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-emotion
=========================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2158
* Accuracy: 0.925
* F1: 0.9252
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 2.1.0+cu121
* Datasets 1.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
57,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
-0.09434865415096283,
0.08467388153076172,
-0.002278369851410389,
0.11989223212003708,
0.178255096077919,
0.02702012099325657,
0.12209464609622955,
0.12432769685983658,
-0.10789045691490173,
0.01131631899625063,
0.11646322160959244,
0.18290816247463226,
0.009834559634327888,
0.1009126678109169,
-0.05452822521328926,
-0.25957897305488586,
-0.016207793727517128,
0.05111593008041382,
-0.08464915305376053,
0.14207570254802704,
0.09654515981674194,
-0.12985233962535858,
0.0769834816455841,
0.0020417277701199055,
-0.22889597713947296,
0.009871004149317741,
0.014445475302636623,
-0.06252464652061462,
0.15139605104923248,
0.02105431631207466,
0.12846627831459045,
0.01146659068763256,
0.07917378842830658,
-0.18203650414943695,
0.010323869995772839,
0.04720050096511841,
0.0044197398237884045,
0.08919724822044373,
0.05461455509066582,
-0.006737236399203539,
0.11444054543972015,
-0.08051896095275879,
0.05260717123746872,
0.022663533687591553,
-0.12316133826971054,
-0.22575312852859497,
-0.08010152727365494,
0.020464777946472168,
0.06499498337507248,
0.10548382997512817,
0.00010400000610388815,
0.12725123763084412,
-0.09737907350063324,
0.09591136127710342,
0.20913466811180115,
-0.2753314673900604,
-0.06492313742637634,
0.027365561574697495,
0.005597751587629318,
0.078748419880867,
-0.11029897630214691,
-0.025027353316545486,
0.05184035003185272,
0.04925576597452164,
0.1334446519613266,
-0.029698096215724945,
-0.12689317762851715,
0.0135493203997612,
-0.14126020669937134,
-0.035614993423223495,
0.14067590236663818,
0.023399243131279945,
-0.02655024826526642,
-0.03935708850622177,
-0.06290493905544281,
-0.15122047066688538,
-0.03732099384069443,
-0.008290776051580906,
0.04434913024306297,
-0.03090624511241913,
-0.0570259653031826,
-0.0042253113351762295,
-0.11024530977010727,
-0.06959428638219833,
-0.07142423838376999,
0.1427973359823227,
0.04000028222799301,
0.012651689350605011,
-0.028179913759231567,
0.11441503465175629,
0.0294655654579401,
-0.1315561830997467,
0.032228775322437286,
0.02918221242725849,
0.004677135497331619,
-0.04336506873369217,
-0.06898317486047745,
-0.049234699457883835,
0.007592242211103439,
0.11187656968832016,
-0.06509601324796677,
0.050152212381362915,
0.02665434405207634,
0.04742349684238434,
-0.10145193338394165,
0.18912562727928162,
-0.023408614099025726,
0.0017862869426608086,
0.00883735716342926,
0.05079920217394829,
0.006106603890657425,
-0.009438683278858662,
-0.12141917645931244,
-0.00012448900088202208,
0.11656496673822403,
0.02031806856393814,
-0.06995610892772675,
0.07073522359132767,
-0.05867990478873253,
-0.026802770793437958,
0.017950473353266716,
-0.10040174424648285,
0.03259027749300003,
0.0024599807802587748,
-0.08408183604478836,
-0.020521624013781548,
0.03088524006307125,
0.01203716266900301,
-0.02882281504571438,
0.10923880338668823,
-0.07509167492389679,
0.04039720073342323,
-0.10161270946264267,
-0.10664782673120499,
0.015599243342876434,
-0.07547774910926819,
0.024115070700645447,
-0.10107725858688354,
-0.16251863539218903,
-0.015750586986541748,
0.05877044424414635,
-0.025329558178782463,
-0.060716431587934494,
-0.05058899521827698,
-0.07257082313299179,
0.013515472412109375,
-0.015860212966799736,
0.15035252273082733,
-0.05720135197043419,
0.11506542563438416,
0.038552042096853256,
0.06707575917243958,
-0.05036069452762604,
0.06473273038864136,
-0.09736503660678864,
-0.0005116218235343695,
-0.18182435631752014,
0.05212788283824921,
-0.0503075011074543,
0.06507472693920135,
-0.08819690346717834,
-0.11406096071004868,
0.01435542106628418,
-0.005758093204349279,
0.06620028614997864,
0.09309054911136627,
-0.16589541733264923,
-0.08089739829301834,
0.14987297356128693,
-0.07139582186937332,
-0.10672305524349213,
0.11546581983566284,
-0.0592714287340641,
0.05892590433359146,
0.07443462312221527,
0.16505233943462372,
0.08641966432332993,
-0.058563098311424255,
0.031044216826558113,
0.007745644077658653,
0.049426235258579254,
-0.07006584852933884,
0.05938245728611946,
0.005294827278703451,
-0.011280728504061699,
0.03686951473355293,
-0.03472703695297241,
0.06963962316513062,
-0.0948624461889267,
-0.09754226356744766,
-0.04023623839020729,
-0.09673238545656204,
0.06326528638601303,
0.08307429403066635,
0.09247423708438873,
-0.08815836161375046,
-0.06746498495340347,
0.07999278604984283,
0.07545473426580429,
-0.06226521357893944,
0.03208176791667938,
-0.04969768971204758,
0.05659019947052002,
-0.025172412395477295,
-0.017499377951025963,
-0.20175501704216003,
-0.0007352145621553063,
0.012105877511203289,
-0.0021437588147819042,
0.021289199590682983,
0.01803869940340519,
0.07044966518878937,
0.058894556015729904,
-0.0612790621817112,
-0.022729674354195595,
-0.02926313690841198,
-0.008502636104822159,
-0.13311482965946198,
-0.19126251339912415,
-0.021221576258540154,
-0.01723651960492134,
0.13762488961219788,
-0.19929055869579315,
0.041545070707798004,
-0.011026493273675442,
0.0629936009645462,
0.0003694153856486082,
-0.0017328535905107856,
-0.0464303120970726,
0.08997108042240143,
-0.03469017520546913,
-0.04421091452240944,
0.08258800953626633,
0.005595578346401453,
-0.08551342040300369,
-0.037629224359989166,
-0.08932347595691681,
0.17134200036525726,
0.14090530574321747,
-0.13012245297431946,
-0.07688618451356888,
-0.004854714032262564,
-0.05975572392344475,
-0.03409641981124878,
-0.036359138786792755,
0.03874611854553223,
0.18197445571422577,
-0.016057170927524567,
0.15847918391227722,
-0.06894781440496445,
-0.046540938317775726,
0.01798045076429844,
-0.0335877500474453,
0.034110669046640396,
0.12460163980722427,
0.11647914350032806,
-0.07739625871181488,
0.145255908370018,
0.15604430437088013,
-0.09847989678382874,
0.13385628163814545,
-0.04783906042575836,
-0.06221232935786247,
-0.005323904100805521,
-0.01651853695511818,
0.00006248753925319761,
0.07948511838912964,
-0.14165912568569183,
-0.002674582414329052,
0.020219646394252777,
0.01905924826860428,
0.02728613093495369,
-0.2332158088684082,
-0.035057518631219864,
0.025447122752666473,
-0.04307394102215767,
-0.004480578936636448,
-0.0201027262955904,
0.012005174532532692,
0.10878436267375946,
-0.0024336951319128275,
-0.08019430190324783,
0.046192336827516556,
0.004455422516912222,
-0.08105041086673737,
0.22106625139713287,
-0.09480050951242447,
-0.16711944341659546,
-0.12812192738056183,
-0.07208587229251862,
-0.036173753440380096,
0.011065220460295677,
0.06075816974043846,
-0.10429289937019348,
-0.020264988765120506,
-0.05020163208246231,
0.026940293610095978,
-0.006140547804534435,
0.03766791895031929,
0.003881834214553237,
0.011951982043683529,
0.07263298332691193,
-0.11265560239553452,
-0.005853806622326374,
-0.05287851393222809,
-0.06754671782255173,
0.05906098335981369,
0.030775239691138268,
0.10247699171304703,
0.16364459693431854,
-0.021580319851636887,
0.005106394644826651,
-0.028526484966278076,
0.2191275954246521,
-0.06622447818517685,
-0.02657075971364975,
0.13787640631198883,
-0.010277767665684223,
0.05675730109214783,
0.09872894734144211,
0.07290704548358917,
-0.08874259889125824,
0.015599642880260944,
0.021716918796300888,
-0.03531781584024429,
-0.23292768001556396,
-0.05322205275297165,
-0.057577237486839294,
-0.023640410974621773,
0.09740949422121048,
0.028740815818309784,
0.04568035528063774,
0.06535015255212784,
0.040694836527109146,
0.08287743479013443,
-0.03126036375761032,
0.0447915755212307,
0.12840327620506287,
0.04231128469109535,
0.12297451496124268,
-0.046949125826358795,
-0.06826726347208023,
0.03064855933189392,
-0.014016612432897091,
0.22044378519058228,
0.004139983560889959,
0.13165876269340515,
0.05749053508043289,
0.18074102699756622,
0.005982929840683937,
0.08738287538290024,
-0.0009364308207295835,
-0.03735630214214325,
-0.00909799337387085,
-0.03842991963028908,
-0.048420533537864685,
0.013549908064305782,
-0.06279898434877396,
0.051566313952207565,
-0.11880597472190857,
-0.018190529197454453,
0.05220794677734375,
0.2529744505882263,
0.021117020398378372,
-0.31864115595817566,
-0.08666068315505981,
0.0016469522379338741,
-0.030956881120800972,
-0.019518211483955383,
0.014866712503135204,
0.08798365294933319,
-0.09871160238981247,
0.024386713281273842,
-0.07045100629329681,
0.0955439880490303,
-0.0487825945019722,
0.044868919998407364,
0.06704225391149521,
0.07732249796390533,
0.01671641878783703,
0.08989465236663818,
-0.3204003870487213,
0.266642689704895,
0.0026548821479082108,
0.06640805304050446,
-0.0815410390496254,
0.0031502197962254286,
0.035696614533662796,
0.06369513273239136,
0.05105511099100113,
-0.012114460580050945,
-0.018881144002079964,
-0.19385631382465363,
-0.057349346578121185,
0.02579413540661335,
0.09225475043058395,
-0.031137514859437943,
0.0812862291932106,
-0.027427172288298607,
0.007778597995638847,
0.07692106813192368,
-0.04240773990750313,
-0.05221264809370041,
-0.10324502736330032,
-0.009543081745505333,
0.011202708818018436,
-0.036603040993213654,
-0.06275580823421478,
-0.11787731945514679,
-0.1160118356347084,
0.15219169855117798,
-0.031222287565469742,
-0.04115338996052742,
-0.11041299998760223,
0.08710181713104248,
0.0755433663725853,
-0.08569605648517609,
0.0497748926281929,
0.004764570388942957,
0.060867082327604294,
0.027847180142998695,
-0.07815305888652802,
0.10502079874277115,
-0.06268835067749023,
-0.1648712456226349,
-0.052217576652765274,
0.11087721586227417,
0.03754449263215065,
0.0643220990896225,
-0.012875434942543507,
0.009671371430158615,
-0.03891364485025406,
-0.09239698946475983,
0.02098691649734974,
-0.01279465202242136,
0.07785122841596603,
0.026596738025546074,
-0.07048755139112473,
0.0038119086530059576,
-0.06479867547750473,
-0.03481702879071236,
0.19709056615829468,
0.2190045863389969,
-0.09592782706022263,
0.028827203437685966,
0.0412093847990036,
-0.07324991375207901,
-0.20851103961467743,
0.042794037610292435,
0.0696818083524704,
0.0038530128076672554,
0.03163605555891991,
-0.1944665014743805,
0.12408526986837387,
0.0962025374174118,
-0.012949075549840927,
0.10838783532381058,
-0.33812883496284485,
-0.125144362449646,
0.11725681275129318,
0.14276117086410522,
0.12040640413761139,
-0.14267182350158691,
-0.023497942835092545,
-0.024487510323524475,
-0.10806913673877716,
0.10884404182434082,
-0.08084005117416382,
0.12271638214588165,
-0.036495134234428406,
0.07768774777650833,
0.0014963081339374185,
-0.05857633799314499,
0.11936022341251373,
0.019747797399759293,
0.09409269690513611,
-0.060341984033584595,
-0.028407340869307518,
0.04800968989729881,
-0.03307292237877846,
0.00797275546938181,
-0.08129556477069855,
0.03063882328569889,
-0.09901030361652374,
-0.019356420263648033,
-0.08485972881317139,
0.04547078162431717,
-0.03782019391655922,
-0.054739709943532944,
-0.030574960634112358,
0.020200980827212334,
0.044045861810445786,
-0.012680879794061184,
0.11878258734941483,
0.026582663878798485,
0.14599931240081787,
0.131633460521698,
0.07113786786794662,
-0.04749323055148125,
-0.057907894253730774,
-0.018773984163999557,
-0.015023535117506981,
0.05962982773780823,
-0.1458326280117035,
0.0291314534842968,
0.14257334172725677,
0.020793989300727844,
0.13213184475898743,
0.08746926486492157,
-0.01650235988199711,
0.006737763062119484,
0.06499029695987701,
-0.1641208976507187,
-0.0805554911494255,
-0.008019410073757172,
-0.05789026618003845,
-0.10132094472646713,
0.04522654414176941,
0.08350145816802979,
-0.06669468432664871,
-0.012203286401927471,
-0.00476935924962163,
0.004909546114504337,
-0.059766583144664764,
0.20633167028427124,
0.06300685554742813,
0.051081717014312744,
-0.10761713981628418,
0.07846672832965851,
0.05957043543457985,
-0.07523740828037262,
-0.0017461915267631412,
0.07757321745157242,
-0.08788806200027466,
-0.04997889697551727,
0.10541332513093948,
0.1630546897649765,
-0.05274341627955437,
-0.0440954826772213,
-0.1367531567811966,
-0.12511645257472992,
0.07730954140424728,
0.15150366723537445,
0.1221192330121994,
0.018264587968587875,
-0.06364735960960388,
0.010594923049211502,
-0.12151538580656052,
0.08118999749422073,
0.037957437336444855,
0.06654855608940125,
-0.129717618227005,
0.16261209547519684,
0.016919860616326332,
0.050647199153900146,
-0.024050068110227585,
0.02198261022567749,
-0.10020571947097778,
0.020343530923128128,
-0.11326639354228973,
-0.02600814588367939,
-0.010114242322742939,
0.005339488387107849,
-0.010070371441543102,
-0.055323436856269836,
-0.0470038503408432,
0.01679028943181038,
-0.1220618188381195,
-0.023689761757850647,
0.023835837841033936,
0.057160086929798126,
-0.11397761851549149,
-0.04519669711589813,
0.029262840747833252,
-0.063848577439785,
0.06654092669487,
0.05508613958954811,
0.01122970599681139,
0.06859306246042252,
-0.13196992874145508,
-0.0057662432081997395,
0.08145313709974289,
0.01793084107339382,
0.05862528085708618,
-0.08692119270563126,
-0.006597533822059631,
0.006114786025136709,
0.06566142290830612,
0.023267284035682678,
0.08933085948228836,
-0.1451181024312973,
0.00798836164176464,
-0.03858551010489464,
-0.08627807348966599,
-0.06809774041175842,
0.03393024206161499,
0.08366644382476807,
0.01484567578881979,
0.19556470215320587,
-0.07820306718349457,
0.040571391582489014,
-0.2105739563703537,
0.0016836179420351982,
-0.01839892566204071,
-0.11758489906787872,
-0.12829846143722534,
-0.06818818300962448,
0.06304533779621124,
-0.05042639374732971,
0.13317056000232697,
0.029715215787291527,
0.038267314434051514,
0.025174103677272797,
-0.01186751201748848,
0.0059179142117500305,
0.026389559730887413,
0.214702770113945,
0.03884920850396156,
-0.03280370309948921,
0.07373147457838058,
0.05350871756672859,
0.09430832415819168,
0.1138470321893692,
0.19154682755470276,
0.158256396651268,
-0.021241264417767525,
0.08810283988714218,
0.02637624181807041,
-0.047080036252737045,
-0.15510259568691254,
0.04748423397541046,
-0.05006524547934532,
0.09821878373622894,
-0.027813147753477097,
0.21618466079235077,
0.05370688810944557,
-0.16449187695980072,
0.051213402301073074,
-0.05122041329741478,
-0.09423599392175674,
-0.10349514335393906,
-0.02724548988044262,
-0.08276518434286118,
-0.141457661986351,
-0.0029128037858754396,
-0.10614034533500671,
0.011624651029706001,
0.1094387024641037,
0.0029065634589642286,
-0.028681600466370583,
0.15401014685630798,
0.04531065374612808,
0.013819622807204723,
0.06349528580904007,
-0.0016955824103206396,
-0.02874474599957466,
-0.10811968892812729,
-0.06799528747797012,
-0.016858482733368874,
-0.003133583813905716,
0.03658725693821907,
-0.05177505686879158,
-0.07202652096748352,
0.03505951538681984,
-0.03232857584953308,
-0.09836658090353012,
0.016135239973664284,
0.023442821577191353,
0.06450428068637848,
0.048337966203689575,
0.007200198248028755,
0.009477256797254086,
-0.009891385212540627,
0.22058463096618652,
-0.07574810832738876,
-0.08557499200105667,
-0.08635213971138,
0.2721922695636749,
0.04693186283111572,
-0.005773663055151701,
0.03690089285373688,
-0.060347992926836014,
-0.003916338086128235,
0.2510091960430145,
0.20080576837062836,
-0.08935964852571487,
-0.008422767743468285,
0.009265618398785591,
-0.008987867273390293,
-0.011019877158105373,
0.12828265130519867,
0.14713436365127563,
0.041426822543144226,
-0.10679063200950623,
-0.0439688116312027,
-0.05686644837260246,
-0.015786396339535713,
-0.04622247442603111,
0.06840349733829498,
0.0365595668554306,
-0.0010263697477057576,
-0.04103179648518562,
0.061429981142282486,
-0.06800851970911026,
-0.09355117380619049,
0.05916906148195267,
-0.20950491726398468,
-0.1638241708278656,
-0.014250506646931171,
0.11018764972686768,
-0.003967287018895149,
0.05827362835407257,
-0.02643745020031929,
0.00444800965487957,
0.06633400917053223,
-0.024191996082663536,
-0.09069070219993591,
-0.07172638177871704,
0.09315025061368942,
-0.12132900208234787,
0.17839229106903076,
-0.042340029031038284,
0.07436756789684296,
0.11830627173185349,
0.07126593589782715,
-0.06433915346860886,
0.06066358834505081,
0.03399050608277321,
-0.06997977197170258,
0.03706402704119682,
0.0878523513674736,
-0.029365692287683487,
0.04019802436232567,
0.03848041594028473,
-0.11916062980890274,
0.025936102494597435,
-0.07120086997747421,
-0.05635419487953186,
-0.04150819405913353,
-0.046250153332948685,
-0.056555092334747314,
0.11665674299001694,
0.2209848016500473,
-0.025691140443086624,
0.012491308152675629,
-0.07722533494234085,
0.0027995810378342867,
0.05020969361066818,
0.018868129700422287,
-0.07960382103919983,
-0.23175203800201416,
0.00173812301363796,
0.05928743630647659,
-0.01737271435558796,
-0.2266964614391327,
-0.08965737372636795,
-0.0034131966531276703,
-0.07334467023611069,
-0.10002723336219788,
0.08334432542324066,
0.06819260120391846,
0.048207126557826996,
-0.05047854036092758,
-0.08249980211257935,
-0.08244439214468002,
0.15666531026363373,
-0.15792527794837952,
-0.08750952780246735
] |
null | null | peft | ## Training procedure
The following `bitsandbytes` quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0 | {"language": ["code"], "library_name": "peft", "tags": ["llama-2"], "pipeline_tag": "text-generation"} | text-generation | SJ182120/codellama_trial_v1 | [
"peft",
"llama-2",
"text-generation",
"code",
"region:us"
] | 2024-02-13T13:34:08+00:00 | [] | [
"code"
] | TAGS
#peft #llama-2 #text-generation #code #region-us
| ## Training procedure
The following 'bitsandbytes' quantization config was used during training:
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: float16
### Framework versions
- PEFT 0.4.0 | [
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
"TAGS\n#peft #llama-2 #text-generation #code #region-us \n",
"## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16",
"### Framework versions\n\n\n- PEFT 0.4.0"
] | [
20,
154,
11
] | [
"passage: TAGS\n#peft #llama-2 #text-generation #code #region-us \n## Training procedure\n\n\nThe following 'bitsandbytes' quantization config was used during training:\n- load_in_8bit: False\n- load_in_4bit: True\n- llm_int8_threshold: 6.0\n- llm_int8_skip_modules: None\n- llm_int8_enable_fp32_cpu_offload: False\n- llm_int8_has_fp16_weight: False\n- bnb_4bit_quant_type: nf4\n- bnb_4bit_use_double_quant: False\n- bnb_4bit_compute_dtype: float16### Framework versions\n\n\n- PEFT 0.4.0"
] | [
-0.05351971462368965,
0.03918806090950966,
-0.003291812026873231,
0.12975575029850006,
0.1105257198214531,
0.060824647545814514,
0.11475013196468353,
0.1311645209789276,
0.02097824029624462,
0.08636009693145752,
0.11188072711229324,
0.059191759675741196,
0.07643250375986099,
0.14272631704807281,
-0.02356884628534317,
-0.02507183700799942,
0.04685743898153305,
-0.013938725925981998,
0.0019076536409556866,
0.08290781080722809,
0.052371084690093994,
-0.01726839691400528,
0.03802991285920143,
-0.10062728822231293,
-0.16080693900585175,
0.0177816990762949,
0.0058629815466701984,
0.02718130126595497,
0.04029976204037666,
0.03907320648431778,
0.05776651203632355,
-0.004173320718109608,
-0.04179956018924713,
-0.21599030494689941,
-0.006983436178416014,
0.10491813719272614,
-0.03174372762441635,
0.06373436748981476,
-0.0853116437792778,
0.11988020688295364,
-0.003449284005910158,
-0.05311203375458717,
-0.009039885364472866,
0.039033740758895874,
-0.08678346127271652,
-0.1054358258843422,
-0.05797252804040909,
0.05116886645555496,
0.019528333097696304,
0.07974317669868469,
-0.009441271424293518,
0.1577540785074234,
-0.11221504211425781,
0.10257527977228165,
0.09599178284406662,
-0.2353181093931198,
-0.028064904734492302,
0.1265936940908432,
-0.006886096205562353,
0.1661074161529541,
-0.06589825451374054,
-0.08218822628259659,
0.08378461003303528,
0.05654916539788246,
-0.06518952548503876,
-0.012049036100506783,
-0.0985303744673729,
0.006772663444280624,
-0.13366293907165527,
-0.05318956822156906,
0.1681663542985916,
0.0214912761002779,
-0.045051295310258865,
-0.038866084069013596,
-0.08881392329931259,
-0.3398571312427521,
0.03394269570708275,
0.009451472200453281,
-0.07272887974977493,
0.05871758610010147,
0.02999769151210785,
-0.03952378034591675,
-0.010214393027126789,
-0.08508118242025375,
-0.031370364129543304,
0.09278406947851181,
0.031750354915857315,
0.035289663821458817,
-0.009329660795629025,
0.09710565209388733,
-0.10214612632989883,
-0.042304448783397675,
-0.03812811151146889,
-0.023951806128025055,
-0.006283660419285297,
0.007815982215106487,
-0.07767757773399353,
0.15140900015830994,
0.096787229180336,
0.06482112407684326,
-0.17934170365333557,
0.13112212717533112,
-0.05604813992977142,
0.058000896126031876,
-0.04960332438349724,
0.016604678705334663,
-0.10135142505168915,
0.10965296626091003,
0.017290590330958366,
0.14235873520374298,
0.036565035581588745,
-0.0502261258661747,
-0.08552607893943787,
-0.017591167241334915,
0.12157667428255081,
0.0375884547829628,
-0.1071668416261673,
0.020221175625920296,
-0.12728571891784668,
-0.02057899348437786,
0.05450662598013878,
-0.08856508880853653,
0.010644174180924892,
0.04834338277578354,
-0.044681183993816376,
0.01011066697537899,
0.11059430241584778,
-0.058520033955574036,
-0.06728522479534149,
-0.06503939628601074,
-0.09172330796718597,
-0.005043667275458574,
-0.09631780534982681,
-0.12569627165794373,
0.0581052340567112,
-0.17207856476306915,
-0.012702664360404015,
-0.03493219614028931,
-0.07779303193092346,
0.02937288023531437,
0.0015711092855781317,
-0.08230612426996231,
0.052057042717933655,
-0.11473888903856277,
-0.1806924045085907,
-0.026892179623246193,
0.0183829665184021,
0.010227908380329609,
-0.0286600012332201,
0.1114434078335762,
0.03967997804284096,
0.10505746304988861,
-0.1961725354194641,
-0.003972542472183704,
0.017952196300029755,
0.075615793466568,
0.03881263732910156,
0.1302381008863449,
-0.08919220417737961,
-0.034347109496593475,
-0.05823555961251259,
-0.06491173058748245,
-0.09209200739860535,
-0.007514611817896366,
0.12356995791196823,
0.11043045669794083,
-0.1724439412355423,
-0.01442781649529934,
0.09432285279035568,
-0.024917853996157646,
-0.0737689658999443,
0.14100292325019836,
-0.04123357683420181,
0.10809418559074402,
-0.03029152750968933,
0.08905418962240219,
0.2184252291917801,
-0.12027344852685928,
0.00848379172384739,
0.11963505297899246,
0.05155252292752266,
0.005095896776765585,
-0.000033798685763031244,
0.06038009375333786,
-0.15268976986408234,
0.047898128628730774,
0.07589942961931229,
0.03823007270693779,
-0.04632439464330673,
-0.06720202416181564,
-0.034673504531383514,
-0.05187705159187317,
0.11698512732982635,
0.0131810512393713,
-0.0005844555562362075,
-0.07944340258836746,
-0.07004968076944351,
0.11014305055141449,
0.12088856846094131,
-0.027180003002285957,
-0.004686625674366951,
-0.11244111508131027,
0.0045869005843997,
-0.024171557277441025,
0.03313272446393967,
-0.1152002140879631,
0.010087725706398487,
0.06921732425689697,
0.022369377315044403,
0.017194412648677826,
0.03550444543361664,
0.058240748941898346,
0.028528906404972076,
-0.04589930921792984,
0.021511569619178772,
-0.04308822378516197,
-0.0025443024933338165,
-0.08250213414430618,
-0.09084932506084442,
0.017506172880530357,
-0.007151698227971792,
0.2029581218957901,
-0.16175618767738342,
0.04178957641124725,
0.11641249060630798,
-0.0008348377305082977,
-0.02940455824136734,
-0.03022313117980957,
-0.055446822196245193,
0.09869565069675446,
-0.01281833741813898,
-0.026183590292930603,
0.04826284572482109,
0.03094642236828804,
-0.0721544399857521,
-0.1459423154592514,
-0.12120917439460754,
0.028681790456175804,
0.1289088875055313,
0.058044709265232086,
-0.06730635464191437,
-0.03824038431048393,
-0.007930724881589413,
-0.027114368975162506,
0.07058881223201752,
-0.06844823062419891,
0.037346646189689636,
0.0001932591840159148,
0.08271448314189911,
-0.10061462968587875,
-0.026371227577328682,
0.0739709809422493,
-0.020067811012268066,
-0.052434518933296204,
0.13094423711299896,
0.005700495094060898,
-0.07257551699876785,
0.07510780543088913,
0.07096946984529495,
-0.13959981501102448,
0.1260681450366974,
-0.0030141184106469154,
-0.014161358587443829,
-0.10429544746875763,
0.19290779531002045,
0.021891480311751366,
0.10368529707193375,
-0.1577836573123932,
0.0931137278676033,
-0.016335785388946533,
0.00884652603417635,
0.0798208937048912,
-0.19185025990009308,
-0.015871817246079445,
-0.04764852300286293,
-0.10288967192173004,
-0.05222383514046669,
-0.011421293951570988,
0.017004622146487236,
0.054160960018634796,
0.00003853844464174472,
0.04689681902527809,
0.1458285003900528,
-0.028615213930606842,
-0.0924605280160904,
0.18012456595897675,
-0.22591233253479004,
-0.22495539486408234,
-0.2522093653678894,
0.005595176946371794,
-0.1376136690378189,
-0.027735484763979912,
-0.04540325328707695,
-0.09294448792934418,
0.03440440073609352,
-0.09540815651416779,
-0.03002995438873768,
-0.04318692907691002,
-0.003869634121656418,
0.04337802901864052,
0.011477869004011154,
0.1578996181488037,
-0.08607395738363266,
0.017865264788269997,
0.061199791729450226,
-0.030161745846271515,
0.09527420252561569,
-0.10127989947795868,
-0.023681912571191788,
0.13154488801956177,
-0.005490760784596205,
0.033254314213991165,
0.008107850328087807,
0.31482642889022827,
0.0019332345109432936,
0.02770467847585678,
0.09545597434043884,
-0.007878611795604229,
0.0683213323354721,
0.08553998172283173,
0.010057315230369568,
-0.11453543603420258,
0.07014812529087067,
0.03990680351853371,
-0.0830271914601326,
-0.14852605760097504,
-0.03785337135195732,
-0.07294498383998871,
0.028115224093198776,
0.057015035301446915,
0.07189074158668518,
0.09960739314556122,
0.060736749321222305,
0.021816076710820198,
0.10856087505817413,
0.023936491459608078,
0.0018310175510123372,
0.1369859129190445,
-0.03316974267363548,
0.036625150591135025,
-0.027010193094611168,
0.019361164420843124,
0.06692641228437424,
0.13724452257156372,
0.06426441669464111,
-0.07694394886493683,
0.03120720572769642,
0.04936185106635094,
0.24108394980430603,
-0.01965438574552536,
0.09126593917608261,
-0.06564468890428543,
-0.005136646796017885,
-0.0024673393927514553,
-0.049661219120025635,
-0.06867073476314545,
0.031558528542518616,
-0.032619353383779526,
0.07344852387905121,
-0.02310820296406746,
-0.03325428068637848,
0.07326111197471619,
0.08299688994884491,
0.15632487833499908,
-0.26600638031959534,
-0.09625174850225449,
0.004403198137879372,
0.1117001622915268,
-0.11061441898345947,
0.03980528563261032,
0.22136254608631134,
0.007950052618980408,
-0.05961736664175987,
-0.031138287857174873,
0.035019632428884506,
-0.003504046006128192,
0.025622909888625145,
0.08983203023672104,
0.1315179020166397,
0.004985328763723373,
0.0881279855966568,
-0.3037196695804596,
0.022368768230080605,
0.0593733936548233,
0.04366537928581238,
-0.05355849117040634,
0.006640896666795015,
-0.05033149570226669,
-0.058866750448942184,
0.05914957821369171,
0.008211159147322178,
0.17183886468410492,
-0.2626458704471588,
-0.0526837483048439,
-0.010313994251191616,
0.14177729189395905,
0.0776723325252533,
0.05121725797653198,
0.02182086929678917,
0.05337252467870712,
0.06497595459222794,
0.039919156581163406,
-0.040115006268024445,
-0.10853444784879684,
0.011881607584655285,
0.17034445703029633,
-0.12270883470773697,
-0.04757058247923851,
-0.04910948500037193,
-0.014547934755682945,
0.0720134750008583,
-0.2024761140346527,
-0.06283746659755707,
-0.05398201569914818,
0.008441643789410591,
0.13662858307361603,
-0.024203428998589516,
-0.01795026659965515,
-0.03225567936897278,
0.02668629214167595,
-0.04314187914133072,
-0.09517217427492142,
0.10741928964853287,
-0.026778191328048706,
-0.13561250269412994,
-0.016318975016474724,
0.152512788772583,
0.07242508232593536,
-0.013333183713257313,
-0.08354542404413223,
-0.03820367157459259,
0.02816813625395298,
-0.15885557234287262,
0.009119152091443539,
0.0881989374756813,
-0.06996103376150131,
0.10133103281259537,
-0.11363286525011063,
0.20861206948757172,
-0.06428976356983185,
0.0778990164399147,
0.08948909491300583,
0.3251519501209259,
-0.07553371787071228,
0.02289428375661373,
0.05320170521736145,
-0.04468558728694916,
-0.25789493322372437,
0.02772267535328865,
0.04255245625972748,
0.04850561171770096,
-0.046910010278224945,
-0.1728505939245224,
0.008144214749336243,
0.07290087640285492,
0.02105056494474411,
0.22614438831806183,
-0.33036530017852783,
-0.06488975882530212,
0.03286249190568924,
0.06513706594705582,
0.16874009370803833,
-0.06946614384651184,
-0.011542708612978458,
-0.0151450140401721,
-0.002738501876592636,
0.16769030690193176,
-0.12475770711898804,
0.12233572453260422,
-0.018183860927820206,
0.054021064192056656,
0.014124705456197262,
-0.03428928181529045,
0.1565711796283722,
-0.0012045649345964193,
0.08406417071819305,
0.0011326766107231379,
-0.06242367997765541,
0.06428857892751694,
-0.06641288846731186,
0.05306487902998924,
-0.10231335461139679,
0.07675421237945557,
-0.07679186761379242,
0.01027930248528719,
-0.07630940526723862,
-0.0068610655143857,
-0.085670106112957,
-0.02980574406683445,
-0.09550295770168304,
0.060831256210803986,
0.0013406124198809266,
-0.01167701929807663,
-0.014107240363955498,
0.03575250878930092,
0.06057089567184448,
0.45352429151535034,
-0.032303616404533386,
-0.024362193420529366,
0.11180950701236725,
0.10855093598365784,
-0.026594128459692,
0.10001742839813232,
-0.13353578746318817,
0.036475468426942825,
0.12065963447093964,
0.0053006624802947044,
0.14006951451301575,
0.09050334990024567,
-0.1151449903845787,
-0.006719769444316626,
0.040245894342660904,
-0.15250834822654724,
-0.07569097727537155,
-0.045831430703401566,
-0.007069671526551247,
-0.09382116049528122,
0.015189106576144695,
0.12291458994150162,
-0.031883031129837036,
0.0595860481262207,
0.026798376813530922,
0.04387005418539047,
-0.13741008937358856,
0.12172923237085342,
0.05206325650215149,
0.07051167637109756,
-0.08358988165855408,
0.09045396745204926,
0.024092821404337883,
0.005289627239108086,
0.058255087584257126,
0.035293083637952805,
-0.09594294428825378,
-0.0007721874280832708,
-0.04447144269943237,
-0.06073430925607681,
0.09207957983016968,
-0.056178051978349686,
-0.052132897078990936,
-0.11314894258975983,
0.008413140662014484,
0.11751805990934372,
0.04668553173542023,
0.10759343206882477,
-0.025131434202194214,
0.0062221959233284,
-0.12652789056301117,
0.06679662317037582,
-0.043368708342313766,
0.01525988057255745,
-0.13040153682231903,
0.07947589457035065,
-0.022401954978704453,
0.07582919299602509,
-0.027964023873209953,
-0.02111378125846386,
-0.221380814909935,
0.016734544187784195,
-0.0660947933793068,
0.017260542139410973,
0.04094649851322174,
0.030641520395874977,
0.019564174115657806,
0.0604325495660305,
-0.031139127910137177,
0.03611603006720543,
-0.035947274416685104,
-0.05712413415312767,
0.027605464681982994,
-0.0020401773508638144,
-0.042469821870326996,
-0.04992378130555153,
0.03995176777243614,
-0.11613760888576508,
0.03931881859898567,
0.037387676537036896,
-0.06090104952454567,
0.08066795021295547,
0.03344891592860222,
0.03285790607333183,
0.0874110609292984,
0.05140356346964836,
0.02811688557267189,
-0.04787478968501091,
0.025629140436649323,
-0.015451094135642052,
0.005185720510780811,
0.05941346287727356,
0.1378987431526184,
-0.05785191431641579,
-0.06111770123243332,
-0.11593931168317795,
-0.033519260585308075,
-0.045049164444208145,
0.05640816688537598,
0.14155738055706024,
0.09185840934515,
0.09289150685071945,
-0.09369567036628723,
-0.006457803305238485,
-0.1270001083612442,
-0.07061421126127243,
0.055694788694381714,
-0.049872398376464844,
-0.019244592636823654,
-0.03708290681242943,
0.07001964747905731,
-0.01362937968224287,
0.13325341045856476,
-0.09839245676994324,
-0.08934842795133591,
-0.04942897707223892,
-0.1773497760295868,
-0.12546151876449585,
-0.005445650313049555,
0.2486923485994339,
0.03701190650463104,
-0.038012709468603134,
-0.08357653766870499,
-0.007023361977189779,
0.06805885583162308,
0.1460184007883072,
0.05224282667040825,
0.06059706583619118,
-0.11832212656736374,
0.1188456267118454,
0.04456324130296707,
-0.041519712656736374,
0.12569263577461243,
0.3006161153316498,
-0.05421394482254982,
0.024296801537275314,
-0.09639973193407059,
0.08582056313753128,
0.041776079684495926,
-0.13748231530189514,
0.013852006755769253,
-0.039786938577890396,
-0.16621452569961548,
-0.11913838237524033,
0.007266105618327856,
-0.06429257988929749,
-0.17461895942687988,
-0.017725171521306038,
-0.1080942153930664,
-0.044947780668735504,
0.0994139313697815,
0.037517253309488297,
-0.033198338001966476,
0.1873457133769989,
-0.07113409787416458,
0.01645876280963421,
0.006226946599781513,
-0.011081580072641373,
0.006931493990123272,
-0.02081010490655899,
-0.08231823891401291,
0.1469677835702896,
0.0020964459981769323,
0.09434385597705841,
0.02626112662255764,
0.09474936127662659,
0.03211069107055664,
-0.05697702243924141,
-0.0437876358628273,
-0.004981479607522488,
0.027405662462115288,
-0.0499897375702858,
0.13215315341949463,
0.057097673416137695,
-0.09523161500692368,
-0.07260545343160629,
-0.01973627507686615,
-0.08319725841283798,
-0.038847338408231735,
-0.13845102488994598,
0.2547299563884735,
-0.04546032473444939,
0.10937477648258209,
-0.02770993858575821,
-0.05844005569815636,
-0.10908688604831696,
0.17096933722496033,
0.13712666928768158,
-0.14626115560531616,
-0.01276051253080368,
0.07919523119926453,
0.006633823271840811,
-0.06065528094768524,
0.14700113236904144,
0.09135706722736359,
0.009645231068134308,
0.025006961077451706,
-0.019622793421149254,
-0.037237219512462616,
0.002739641349762678,
-0.017532069236040115,
-0.013592798262834549,
0.0037365134339779615,
0.024775495752692223,
-0.1299215853214264,
-0.017837943509221077,
-0.09572695940732956,
-0.06542380899190903,
0.16238178312778473,
-0.13461843132972717,
-0.07834110409021378,
-0.03425627201795578,
-0.07965128123760223,
-0.09311123937368393,
0.0218417439609766,
-0.1090632826089859,
0.062205035239458084,
0.08011821657419205,
-0.06250836700201035,
-0.0164154265075922,
-0.053944967687129974,
-0.012637951411306858,
0.0002201291499659419,
0.05731997266411781,
-0.006541952956467867,
0.0789613351225853,
0.10739617794752121,
-0.022179197520017624,
-0.04409724473953247,
0.11035878956317902,
0.02343149296939373,
-0.023282529786229134,
-0.13901378214359283,
0.03533228486776352,
-0.03102206438779831,
0.10594291239976883,
0.030774584040045738,
-0.04472779110074043,
-0.020236995071172714,
-0.13729609549045563,
-0.03492829576134682,
-0.12931625545024872,
-0.08137378841638565,
-0.08175316452980042,
0.09987900406122208,
0.19777937233448029,
-0.06068747118115425,
0.026550663635134697,
-0.03600066900253296,
0.023450685665011406,
-0.05119854956865311,
0.04110802337527275,
0.001740749808959663,
-0.1461913138628006,
0.0358511246740818,
-0.010229171253740788,
0.013066751882433891,
-0.31760817766189575,
0.005177319515496492,
-0.007710633333772421,
-0.007094870321452618,
-0.06200874224305153,
0.13012690842151642,
0.0048541962169110775,
0.05871598422527313,
-0.056718602776527405,
-0.24805964529514313,
-0.057206857949495316,
0.1387186199426651,
-0.0010975694749504328,
-0.0829925611615181
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# image_classification
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2685
- Accuracy: 0.5563
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log | 1.0 | 40 | 1.2944 | 0.5312 |
| No log | 2.0 | 80 | 1.2047 | 0.5625 |
| No log | 3.0 | 120 | 1.2956 | 0.5125 |
| No log | 4.0 | 160 | 1.2328 | 0.5312 |
| No log | 5.0 | 200 | 1.1533 | 0.575 |
| No log | 6.0 | 240 | 1.2436 | 0.5375 |
| No log | 7.0 | 280 | 1.2940 | 0.5437 |
| No log | 8.0 | 320 | 1.2115 | 0.5875 |
| No log | 9.0 | 360 | 1.2147 | 0.5625 |
| No log | 10.0 | 400 | 1.1741 | 0.5625 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "image_classification", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.55625, "name": "Accuracy"}]}]}]} | image-classification | joshjrreynaldo/image_classification | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:google/vit-base-patch16-224-in21k",
"license:apache-2.0",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:35:22+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
| image\_classification
=====================
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset.
It achieves the following results on the evaluation set:
* Loss: 1.2685
* Accuracy: 0.5563
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 16
* eval\_batch\_size: 16
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 10
### Training results
### Framework versions
* Transformers 4.35.2
* Pytorch 2.1.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
86,
98,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-google/vit-base-patch16-224-in21k #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10### Training results### Framework versions\n\n\n* Transformers 4.35.2\n* Pytorch 2.1.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.1"
] | [
-0.11851447075605392,
0.13434457778930664,
-0.0025761201977729797,
0.1199595108628273,
0.14125056564807892,
0.004193500149995089,
0.14048832654953003,
0.13847318291664124,
-0.07091942429542542,
0.08041033893823624,
0.14838926494121552,
0.13221698999404907,
0.030908094719052315,
0.18695619702339172,
-0.0495256744325161,
-0.22306722402572632,
0.026733241975307465,
0.04827253893017769,
-0.04770926386117935,
0.12072332948446274,
0.08813287317752838,
-0.13832078874111176,
0.11775639653205872,
0.02570209838449955,
-0.20197619497776031,
-0.008346299640834332,
0.02898455783724785,
-0.05830100178718567,
0.11664114147424698,
0.03607523813843727,
0.0914526879787445,
0.028146618977189064,
0.0531645305454731,
-0.14897482097148895,
0.01043405570089817,
0.076047383248806,
-0.008851836435496807,
0.09705646336078644,
0.05577705428004265,
0.011993877589702606,
0.0126569839194417,
-0.09383802860975266,
0.04049021750688553,
0.025959450751543045,
-0.1127275750041008,
-0.23342517018318176,
-0.08595523983240128,
0.05825335532426834,
0.07803147286176682,
0.06977266818284988,
-0.002699451521039009,
0.1444813460111618,
-0.006685927975922823,
0.09767671674489975,
0.22984644770622253,
-0.2740679681301117,
-0.07648013532161713,
0.03902547061443329,
0.02060071751475334,
0.0773349404335022,
-0.10181952267885208,
0.011754856444895267,
0.059764593839645386,
0.013628784567117691,
0.15436263382434845,
-0.00530651630833745,
-0.012522080913186073,
-0.02637992985546589,
-0.12536832690238953,
-0.06330935657024384,
0.19290253520011902,
0.09019921720027924,
-0.04750126972794533,
-0.08205891400575638,
-0.08021427690982819,
-0.1401214599609375,
-0.04672873020172119,
-0.010894126258790493,
0.056958526372909546,
-0.03468127176165581,
-0.06310449540615082,
-0.035307157784700394,
-0.0975637286901474,
-0.0694693848490715,
-0.013624967075884342,
0.09657514095306396,
0.05436890572309494,
0.013015631586313248,
-0.020633326843380928,
0.08112528175115585,
-0.041668519377708435,
-0.1453915536403656,
-0.00726268021389842,
0.01702582836151123,
0.024378981441259384,
-0.03133530169725418,
-0.024616224691271782,
-0.11346405744552612,
0.020986180752515793,
0.11002576351165771,
-0.06707418709993362,
0.056757934391498566,
-0.020126329734921455,
0.051306724548339844,
-0.11184671521186829,
0.19222158193588257,
-0.049127064645290375,
0.015415879897773266,
0.040717657655477524,
0.10379793494939804,
0.050808705389499664,
-0.0015429126797243953,
-0.10616228729486465,
0.017395976930856705,
0.12022075802087784,
0.005440311972051859,
-0.034913573414087296,
0.08239884674549103,
-0.06152508780360222,
-0.02936345338821411,
0.07915190607309341,
-0.08654440194368362,
0.02688722312450409,
-0.005700184963643551,
-0.0544726736843586,
-0.05667152255773544,
0.045882537961006165,
-0.010963164269924164,
-0.01392898615449667,
0.041626833379268646,
-0.10185762494802475,
0.012208799831569195,
-0.0683453232049942,
-0.10959203541278839,
0.01321119163185358,
-0.11982865631580353,
0.01570296473801136,
-0.12258177995681763,
-0.13992495834827423,
-0.013338414020836353,
0.05940208584070206,
-0.028666362166404724,
-0.05076440051198006,
-0.04247741028666496,
-0.081377774477005,
0.025678735226392746,
0.00512315146625042,
0.046449657529592514,
-0.05714090168476105,
0.08784647285938263,
0.04477578401565552,
0.07726127654314041,
-0.02112990990281105,
0.046235911548137665,
-0.08809851855039597,
0.05760893225669861,
-0.20278656482696533,
0.036716341972351074,
-0.05830886960029602,
0.08871806412935257,
-0.1194160208106041,
-0.08657744526863098,
0.00030529231298714876,
-0.020788364112377167,
0.06521957367658615,
0.10814511775970459,
-0.14035937190055847,
-0.057292621582746506,
0.1723712682723999,
-0.10135865956544876,
-0.1560450941324234,
0.11289133131504059,
-0.030550148338079453,
0.029368067160248756,
0.057222891598939896,
0.19741813838481903,
0.0807453840970993,
-0.10979589074850082,
-0.0076239025220274925,
-0.03214672580361366,
0.033840030431747437,
-0.053753215819597244,
0.07574722170829773,
-0.0002172140229959041,
-0.01006769947707653,
0.022550305351614952,
-0.09466923773288727,
0.06254620105028152,
-0.07261009514331818,
-0.08442281186580658,
-0.06627167761325836,
-0.08810097724199295,
0.04332646355032921,
0.059536200016736984,
0.06468988209962845,
-0.10109995305538177,
-0.09103496372699738,
0.028713107109069824,
0.08097530901432037,
-0.09479326009750366,
0.017228111624717712,
-0.08145073801279068,
0.11269725859165192,
-0.10905075073242188,
0.00101108243688941,
-0.13426558673381805,
-0.029200220480561256,
0.04989266023039818,
-0.06378523260354996,
-0.008861678652465343,
-0.036654505878686905,
0.07368488609790802,
0.06204107031226158,
-0.06271646916866302,
-0.07386796176433563,
-0.03988306596875191,
-0.002501395298168063,
-0.09969854354858398,
-0.19277596473693848,
-0.02472318708896637,
-0.02746984176337719,
0.10507752746343613,
-0.21933095157146454,
0.04250449314713478,
0.051020968705415726,
0.10081491619348526,
0.05945183336734772,
-0.031556956470012665,
0.004073431249707937,
0.017610270529985428,
-0.03989012539386749,
-0.09000915288925171,
0.06212723255157471,
0.01427528914064169,
-0.06827797740697861,
0.005657334811985493,
-0.10205429047346115,
0.17307713627815247,
0.131264328956604,
-0.033515430986881256,
-0.061945345252752304,
-0.003920115064829588,
-0.04356630519032478,
-0.03457807004451752,
-0.03509937971830368,
0.008138557896018028,
0.08032773435115814,
-0.009438536129891872,
0.16225844621658325,
-0.10588762909173965,
-0.026497093960642815,
0.05829959735274315,
-0.029501020908355713,
-0.037284813821315765,
0.08878184109926224,
0.06819312274456024,
-0.13731403648853302,
0.14674627780914307,
0.1674332320690155,
-0.0676732286810875,
0.12473814934492111,
-0.046911466866731644,
-0.06223409250378609,
-0.02331826277077198,
0.040090832859277725,
0.0324646420776844,
0.12978383898735046,
-0.12042922526597977,
-0.013588976114988327,
0.02393803931772709,
0.0021923212334513664,
-0.00845778826624155,
-0.20149268209934235,
-0.007802908308804035,
0.038270458579063416,
-0.059725578874349594,
0.02495291270315647,
-0.006145583465695381,
-0.021732745692133904,
0.08486074954271317,
0.0077598812058568,
-0.042857974767684937,
0.04632406309247017,
0.011026504449546337,
-0.06984968483448029,
0.19494763016700745,
-0.083994060754776,
-0.21517802774906158,
-0.13077645003795624,
-0.021528899669647217,
-0.0793931782245636,
0.022238707169890404,
0.0581635907292366,
-0.09397154301404953,
-0.05733857676386833,
-0.1046411469578743,
-0.015540708787739277,
0.030501684173941612,
0.03933313488960266,
0.042827457189559937,
-0.0016885597724467516,
0.13006235659122467,
-0.09951086342334747,
-0.007541895844042301,
-0.010378454811871052,
-0.023590344935655594,
0.04748339578509331,
0.019479574635624886,
0.12012112140655518,
0.08680643886327744,
-0.027751173824071884,
0.03415649011731148,
-0.02178926393389702,
0.24157439172267914,
-0.07357781380414963,
-0.0007917601033113897,
0.1508481353521347,
0.018840041011571884,
0.06801433116197586,
0.13158413767814636,
0.03819283843040466,
-0.10237924754619598,
0.00785990059375763,
0.02158748358488083,
-0.025703687220811844,
-0.1874442845582962,
-0.016510142013430595,
-0.039018258452415466,
-0.003699386026710272,
0.15231870114803314,
0.05492229759693146,
0.06264928728342056,
0.09437105804681778,
-0.0001536067866254598,
0.09108655154705048,
-0.004132745321840048,
0.08793096244335175,
0.10889098048210144,
0.04639656841754913,
0.10928680002689362,
-0.044733677059412,
-0.02852034941315651,
0.031371716409921646,
0.016238657757639885,
0.22488926351070404,
0.0010875805746763945,
0.17413365840911865,
0.04729769751429558,
0.18948598206043243,
0.01721588708460331,
0.05726901814341545,
-0.021391931921243668,
-0.026832634583115578,
-0.008957987651228905,
-0.05418092757463455,
-0.019856562837958336,
0.03553623706102371,
-0.049974191933870316,
0.0661829262971878,
-0.09265659004449844,
0.04077306389808655,
0.06392928957939148,
0.26231107115745544,
0.03920033201575279,
-0.38001567125320435,
-0.0947212353348732,
-0.005210344213992357,
-0.014135021716356277,
-0.06381342560052872,
0.0023882573004812002,
0.14504031836986542,
-0.060938529670238495,
0.060996659100055695,
-0.10418965667486191,
0.08247888088226318,
-0.05034308508038521,
0.02215735986828804,
0.07681279629468918,
0.08918729424476624,
0.00796870794147253,
0.05657682195305824,
-0.2497161626815796,
0.25662919878959656,
0.01575140655040741,
0.06484837085008621,
-0.04785602539777756,
0.012760951183736324,
0.03503763675689697,
0.10513168573379517,
0.10980653017759323,
-0.005689288955181837,
-0.013745134696364403,
-0.1759229451417923,
-0.08883436769247055,
0.006285274866968393,
0.07201211899518967,
-0.044483475387096405,
0.08195725083351135,
-0.03027024120092392,
-0.02428494207561016,
0.05054031312465668,
-0.004472397267818451,
-0.09047721326351166,
-0.09311705827713013,
-0.008109983056783676,
0.042781297117471695,
0.015539802610874176,
-0.09484406560659409,
-0.09683950990438461,
-0.10638461261987686,
0.13121215999126434,
-0.018479634076356888,
-0.04055601730942726,
-0.11925028264522552,
0.08754494786262512,
0.05871998518705368,
-0.09228429198265076,
0.08108188956975937,
-0.028821131214499474,
0.13614939153194427,
0.029871808364987373,
-0.06238121539354324,
0.10915976017713547,
-0.059137772768735886,
-0.1737665832042694,
-0.04656633734703064,
0.10554508864879608,
-0.019346818327903748,
0.024559738114476204,
0.001647569821216166,
0.027744174003601074,
-0.011327014304697514,
-0.058613840490579605,
0.057253193110227585,
0.013472593389451504,
0.05876336619257927,
-0.013541469350457191,
-0.02081923559308052,
0.004757257644087076,
-0.06442872434854507,
-0.028549928218126297,
0.1346869170665741,
0.24394340813159943,
-0.09702984988689423,
0.004988820757716894,
0.01969306915998459,
-0.05219341814517975,
-0.19570663571357727,
0.04868368059396744,
0.06545473635196686,
0.0020541988778859377,
0.030427364632487297,
-0.15310277044773102,
0.07238176465034485,
0.08104120939970016,
-0.02962931990623474,
0.09521191567182541,
-0.2662925124168396,
-0.13337083160877228,
0.08011818677186966,
0.18349575996398926,
0.0661601796746254,
-0.14475363492965698,
-0.054445624351501465,
-0.013246433809399605,
-0.09222261607646942,
0.09474438428878784,
-0.06010463461279869,
0.10480406880378723,
-0.02836124412715435,
0.0013200100511312485,
0.006492686457931995,
-0.0580766461789608,
0.12906304001808167,
-0.032808851450681686,
0.10801015794277191,
-0.05748371034860611,
-0.011330446228384972,
0.07974092662334442,
-0.07709557563066483,
0.06449909508228302,
-0.0904625728726387,
0.06248285993933678,
-0.06191020831465721,
-0.015555761754512787,
-0.07049649953842163,
0.032975148409605026,
-0.01879032887518406,
-0.02548903040587902,
-0.051205024123191833,
0.02328617312014103,
0.05201097950339317,
-0.0008252556435763836,
0.19963327050209045,
0.05001477897167206,
0.08841100335121155,
0.1354178935289383,
0.04432247206568718,
-0.07607009261846542,
-0.09932806342840195,
-0.0268257986754179,
-0.02689208835363388,
0.08698167651891708,
-0.18572968244552612,
0.05032220855355263,
0.09633700549602509,
0.01027350127696991,
0.14391347765922546,
0.04632723331451416,
-0.03309958428144455,
0.018995055928826332,
0.07082390040159225,
-0.15387147665023804,
-0.1614951640367508,
-0.030769741162657738,
-0.020346086472272873,
-0.11502044647932053,
0.06463339924812317,
0.11113496869802475,
-0.08526577055454254,
0.0030256458558142185,
-0.008970425464212894,
0.015371809713542461,
-0.0026067192666232586,
0.16244523227214813,
0.08130014687776566,
0.04465480521321297,
-0.09176525473594666,
0.09911368042230606,
0.05415777117013931,
-0.10566823184490204,
0.02243008464574814,
0.025107495486736298,
-0.10486776381731033,
-0.03777521103620529,
0.06754609197378159,
0.14516238868236542,
0.002981343073770404,
-0.051301028579473495,
-0.14503175020217896,
-0.09338431060314178,
0.0575484000146389,
0.12628349661827087,
0.09260912239551544,
0.015443840064108372,
-0.010960046201944351,
0.00008310841803904623,
-0.1051451563835144,
0.1192999929189682,
0.03180423378944397,
0.09772172570228577,
-0.21895915269851685,
0.059800632297992706,
0.018359240144491196,
0.03145003691315651,
-0.019179480150341988,
0.02969852089881897,
-0.09850677102804184,
-0.01633388362824917,
-0.06082183122634888,
0.04180692508816719,
-0.03746896982192993,
0.005559947341680527,
-0.00670060096308589,
-0.0688491091132164,
-0.06050020828843117,
0.04056376591324806,
-0.10006609559059143,
-0.046006444841623306,
0.036333661526441574,
0.0696609765291214,
-0.10184575617313385,
-0.02952582761645317,
0.024835722520947456,
-0.08018115907907486,
0.07950851321220398,
0.013097739778459072,
-0.0004984094994142652,
0.023009801283478737,
-0.10153808444738388,
0.010926080867648125,
0.0851162001490593,
0.0029740671161562204,
0.029703214764595032,
-0.10308387875556946,
0.007244605105370283,
-0.0012371344491839409,
0.0021023175213485956,
-0.00880505982786417,
0.10516153275966644,
-0.13278807699680328,
-0.02535024657845497,
-0.03768308088183403,
-0.0320645235478878,
-0.0593835711479187,
0.06307793408632278,
0.08443218469619751,
-0.004027439747005701,
0.2015189677476883,
-0.08529984951019287,
0.00034053323906846344,
-0.2238965928554535,
0.004123183432966471,
-0.004578662104904652,
-0.13765333592891693,
-0.12574905157089233,
-0.028268858790397644,
0.053637031465768814,
-0.07278241962194443,
0.09617656469345093,
0.01590345986187458,
0.006603414658457041,
0.035310447216033936,
0.005205725319683552,
-0.003064552554860711,
0.027191681787371635,
0.1867133229970932,
-0.008576134219765663,
-0.021388806402683258,
0.0705714225769043,
0.018894754350185394,
0.11763288080692291,
0.08410022407770157,
0.09788031876087189,
0.1631411463022232,
-0.04371847212314606,
0.10462068021297455,
0.049623362720012665,
-0.02163558080792427,
-0.17263168096542358,
0.10247530788183212,
-0.07552365958690643,
0.1443793922662735,
-0.013457594439387321,
0.1658325493335724,
0.12115058302879333,
-0.15804143249988556,
0.028121480718255043,
-0.02799915336072445,
-0.07369059324264526,
-0.07042855024337769,
-0.14634771645069122,
-0.1171325147151947,
-0.18440315127372742,
0.014947488903999329,
-0.09814713150262833,
0.006640834733843803,
0.07318548858165741,
-0.009509393014013767,
-0.023820944130420685,
0.2065993994474411,
0.04947112128138542,
-0.0025930670090019703,
0.07059651613235474,
0.00115306512452662,
-0.0681908130645752,
-0.059601955115795135,
-0.08369086682796478,
0.038401830941438675,
-0.009032038040459156,
0.033861201256513596,
-0.030052227899432182,
-0.006352761760354042,
0.04949714243412018,
-0.00034319364931434393,
-0.11041475832462311,
0.018030336126685143,
0.015191419050097466,
0.01095255371183157,
0.002668708795681596,
0.005157866515219212,
0.006705748848617077,
-0.009767220355570316,
0.1827099770307541,
-0.05484870821237564,
-0.008543371222913265,
-0.11816687881946564,
0.12290889024734497,
0.029050765559077263,
-0.01628808304667473,
0.029329730197787285,
-0.07998731732368469,
0.02830059453845024,
0.22059619426727295,
0.14571613073349,
-0.017083674669265747,
-0.0017296189907938242,
-0.008246112614870071,
-0.020542366430163383,
-0.030534004792571068,
0.0928453579545021,
0.09304550290107727,
-0.046865034848451614,
-0.05448007211089134,
-0.022935695946216583,
-0.046834275126457214,
-0.016703849658370018,
-0.037842318415641785,
0.03793853148818016,
0.017372192814946175,
0.01397924218326807,
-0.06340368837118149,
0.04334110766649246,
0.020742537453770638,
-0.07265264540910721,
0.0887371376156807,
-0.1952231377363205,
-0.13850711286067963,
-0.033505067229270935,
0.10112984478473663,
-0.005114451982080936,
0.029279712587594986,
-0.021286888048052788,
0.015853585675358772,
0.06906922161579132,
-0.02377251349389553,
-0.08270937949419022,
-0.09822875261306763,
0.04980873689055443,
-0.13433906435966492,
0.24535425007343292,
-0.032493509352207184,
0.007020874880254269,
0.11208215355873108,
0.017852865159511566,
-0.11860151588916779,
0.05196082219481468,
0.025450505316257477,
-0.036610305309295654,
0.026212014257907867,
0.11071173846721649,
-0.020422814413905144,
0.10685264319181442,
0.034089814871549606,
-0.08863403648138046,
-0.016929741948843002,
-0.05332249775528908,
-0.04160851985216141,
-0.05637093260884285,
-0.0231645368039608,
-0.0677117332816124,
0.12414862215518951,
0.1727592498064041,
-0.042692214250564575,
-0.026072194799780846,
-0.06453509628772736,
0.03623573109507561,
0.09104877710342407,
0.015409855172038078,
-0.014177625067532063,
-0.22827236354351044,
0.017384912818670273,
0.02138088084757328,
-0.00338641251437366,
-0.21188320219516754,
-0.10908164829015732,
-0.018048381432890892,
-0.05398419126868248,
-0.08907165378332138,
0.08584945648908615,
0.11772413551807404,
0.05021943897008896,
-0.060453902930021286,
-0.04521303251385689,
-0.06904198229312897,
0.16095879673957825,
-0.12362504005432129,
-0.08593607693910599
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-generation | yeniceriSGK/falcon-1b-pibrain-v3 | [
"transformers",
"safetensors",
"falcon",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | 2024-02-13T13:36:08+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #falcon #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #falcon #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
64,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #falcon #text-generation #custom_code #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.04453665390610695,
0.1909387707710266,
-0.005555706564337015,
0.02009698562324047,
0.09928517788648605,
0.002202220493927598,
0.05591393634676933,
0.11277725547552109,
-0.057992883026599884,
0.12979470193386078,
0.042654167860746384,
0.10920123755931854,
0.12005752325057983,
0.14929279685020447,
-0.006252828054130077,
-0.2134041041135788,
0.04953882843255997,
-0.10335224866867065,
-0.01086056511849165,
0.12334966659545898,
0.1476563662290573,
-0.09718861430883408,
0.07114724069833755,
-0.036244992166757584,
-0.024860747158527374,
-0.03785305470228195,
-0.0595487505197525,
-0.039634235203266144,
0.039995789527893066,
0.06042226403951645,
0.06769220530986786,
-0.0009836091194301844,
0.07885425537824631,
-0.2796455919742584,
0.019178325310349464,
0.07151005417108536,
-0.006919655948877335,
0.06624610722064972,
0.07163652777671814,
-0.06252288073301315,
0.10966669768095016,
-0.049444738775491714,
0.13246740400791168,
0.084211565554142,
-0.0938078835606575,
-0.1822056919336319,
-0.09178999811410904,
0.10561470687389374,
0.17416922748088837,
0.0484575480222702,
-0.025951452553272247,
0.09858915209770203,
-0.07840164005756378,
0.022246353328227997,
0.04883703216910362,
-0.09256608784198761,
-0.05855829641222954,
0.06611574441194534,
0.09133755415678024,
0.05204923823475838,
-0.12691274285316467,
-0.03522179275751114,
0.009058474563062191,
0.01721723936498165,
0.07700812071561813,
0.019413044676184654,
0.1418759971857071,
0.032454222440719604,
-0.13212166726589203,
-0.059588126838207245,
0.10731249302625656,
0.039681512862443924,
-0.046043410897254944,
-0.23570485413074493,
-0.03336421772837639,
-0.02272348292171955,
-0.0341198705136776,
-0.04095032811164856,
0.04227769747376442,
-0.0006343789864331484,
0.09008241444826126,
-0.009444409981369972,
-0.07376758754253387,
-0.037807099521160126,
0.06939547508955002,
0.06980503350496292,
0.03010455332696438,
-0.01593116484582424,
0.019894573837518692,
0.10873140394687653,
0.08636973053216934,
-0.1162659227848053,
-0.05815749242901802,
-0.06317965686321259,
-0.06965572386980057,
-0.03770272806286812,
0.033693619072437286,
0.012340168468654156,
0.07487021386623383,
0.26779240369796753,
0.019667603075504303,
0.05574297159910202,
0.023485545068979263,
0.007517560850828886,
0.04799899831414223,
0.10866300761699677,
-0.061261147260665894,
-0.11703209578990936,
-0.014219003729522228,
0.08728978037834167,
0.023079033941030502,
-0.038951773196458817,
-0.04325496777892113,
0.06728525459766388,
0.04300529137253761,
0.11015605926513672,
0.10105620324611664,
0.021074479445815086,
-0.0715402141213417,
-0.0557621605694294,
0.21137705445289612,
-0.15680187940597534,
0.03674543276429176,
0.044267017394304276,
-0.0316292904317379,
-0.02875566855072975,
0.010211686603724957,
0.02587735652923584,
-0.036022067070007324,
0.08833824843168259,
-0.0525839701294899,
-0.049408841878175735,
-0.10717582702636719,
-0.030840111896395683,
0.04087112098932266,
0.008656567893922329,
-0.030996592715382576,
-0.03811638429760933,
-0.07353513687849045,
-0.08327128738164902,
0.08451396971940994,
-0.06826525181531906,
-0.056710876524448395,
-0.020656531676650047,
-0.0837526023387909,
0.021076807752251625,
0.022399982437491417,
0.07524201273918152,
-0.02734057791531086,
0.05734923854470253,
-0.046132802963256836,
0.049341313540935516,
0.09273886680603027,
0.03224007412791252,
-0.06011774390935898,
0.06155902519822121,
-0.22752223908901215,
0.0827341079711914,
-0.0701761245727539,
0.05535000190138817,
-0.1552843600511551,
-0.021174373105168343,
0.03665536269545555,
0.0028983328957110643,
-0.004714240785688162,
0.13058264553546906,
-0.20505709946155548,
-0.01968754455447197,
0.16734007000923157,
-0.09772137552499771,
-0.06466186791658401,
0.05246074125170708,
-0.04568861424922943,
0.09151032567024231,
0.03263774514198303,
0.003646659664809704,
0.06071169301867485,
-0.10888087004423141,
-0.012166064232587814,
-0.05273926630616188,
-0.025421906262636185,
0.1370338350534439,
0.08078528195619583,
-0.08123568445444107,
0.055560965090990067,
0.02434842474758625,
-0.030269447714090347,
-0.06682562083005905,
-0.016069523990154266,
-0.09870079904794693,
0.013424086384475231,
-0.07048244774341583,
0.00775548443198204,
-0.020568309351801872,
-0.09736152738332748,
-0.027479711920022964,
-0.16466915607452393,
-0.03865848854184151,
0.08033930510282516,
-0.004795180168002844,
-0.013016881421208382,
-0.10705817490816116,
0.03258499503135681,
0.024063624441623688,
0.0026895657647401094,
-0.13068236410617828,
-0.03602854534983635,
0.037118151783943176,
-0.15183864533901215,
0.03041362762451172,
-0.07635925710201263,
0.051014017313718796,
0.01741175539791584,
-0.026979008689522743,
-0.021592440083622932,
0.016442833468317986,
0.007207158952951431,
-0.021860433742403984,
-0.22696970403194427,
-0.029399745166301727,
-0.029851561412215233,
0.15872712433338165,
-0.20569345355033875,
0.03521941974759102,
0.08486489951610565,
0.15441760420799255,
0.0037020102608948946,
-0.05495212972164154,
0.021063216030597687,
-0.06899091601371765,
-0.025963960215449333,
-0.0567413829267025,
-0.001321499585174024,
-0.01364624872803688,
-0.039724286645650864,
0.02455776184797287,
-0.17795418202877045,
-0.04123859107494354,
0.09635645896196365,
0.05286227911710739,
-0.12172684818506241,
-0.017793001607060432,
-0.03796517476439476,
-0.05116693675518036,
-0.04316309839487076,
-0.0652548149228096,
0.10152675211429596,
0.06190277636051178,
0.04221278801560402,
-0.06449716538190842,
-0.07975452393293381,
-0.002510865917429328,
-0.015534510836005211,
-0.0208453256636858,
0.09268542379140854,
0.07696153223514557,
-0.12062439322471619,
0.09454844146966934,
0.08124031871557236,
0.07064208388328552,
0.08388709276914597,
-0.019784949719905853,
-0.07501683384180069,
-0.03474224731326103,
0.04096398875117302,
0.02070939913392067,
0.127272829413414,
-0.04324626177549362,
0.044735442847013474,
0.042813338339328766,
-0.03281288221478462,
0.019368071109056473,
-0.0789046362042427,
0.03477751463651657,
0.02438444457948208,
-0.023067085072398186,
0.04966627433896065,
-0.03796491399407387,
0.017777003347873688,
0.086410291492939,
0.055618125945329666,
0.034197285771369934,
0.015752006322145462,
-0.05180222541093826,
-0.1116505116224289,
0.1603255420923233,
-0.11804656684398651,
-0.21760660409927368,
-0.133219912648201,
0.02440512925386429,
0.02340768836438656,
-0.013408999890089035,
0.0042162188328802586,
-0.05273256078362465,
-0.10836806893348694,
-0.09519179910421371,
0.0020809932611882687,
0.05688413232564926,
-0.08434031158685684,
-0.060320284217596054,
0.03948112577199936,
0.04618431627750397,
-0.1438177227973938,
0.02078346349298954,
0.04113969951868057,
-0.09475471079349518,
-0.014071599580347538,
0.08162059634923935,
0.08266530930995941,
0.1828899383544922,
0.018958356231451035,
-0.018643934279680252,
0.03172494098544121,
0.23090940713882446,
-0.13629217445850372,
0.11638624221086502,
0.1350768655538559,
-0.08650082349777222,
0.08394848555326462,
0.2100806087255478,
0.043485693633556366,
-0.09806657582521439,
0.026381801813840866,
0.033306267112493515,
-0.026859089732170105,
-0.23307451605796814,
-0.06782349944114685,
-0.0019858244340866804,
-0.06354628503322601,
0.07740631699562073,
0.09866151213645935,
0.0780390128493309,
0.021794214844703674,
-0.09731794893741608,
-0.08760849386453629,
0.05686582997441292,
0.10732293128967285,
0.0023640308063477278,
-0.002918716287240386,
0.08658154308795929,
-0.036342114210128784,
0.01677820459008217,
0.0912386104464531,
0.013294782489538193,
0.14498746395111084,
0.04715769737958908,
0.17620420455932617,
0.08277589827775955,
0.07846562564373016,
0.003410395933315158,
0.011320756748318672,
0.008235873654484749,
0.044780924916267395,
-0.006131312344223261,
-0.0848819762468338,
-0.02776206284761429,
0.10752521455287933,
0.06370342522859573,
0.016796445474028587,
0.017344636842608452,
-0.05728970840573311,
0.08524413406848907,
0.18406425416469574,
-0.002633927622810006,
-0.18432281911373138,
-0.05770765617489815,
0.07218682020902634,
-0.09839048981666565,
-0.10539096593856812,
-0.00723700225353241,
0.02178032509982586,
-0.16946057975292206,
0.03620018810033798,
-0.02362026832997799,
0.10919876396656036,
-0.13090506196022034,
-0.01869846321642399,
0.08002742379903793,
0.07152026891708374,
-0.0031599143985658884,
0.056512217968702316,
-0.1868113875389099,
0.09503406286239624,
0.013970657251775265,
0.0697934478521347,
-0.09368602931499481,
0.09287985414266586,
-0.008849430829286575,
-0.026499394327402115,
0.14446701109409332,
-0.004401217680424452,
-0.06620814651250839,
-0.07032917439937592,
-0.09607784450054169,
-0.007364852819591761,
0.12227921187877655,
-0.13433295488357544,
0.08828657120466232,
-0.02958436869084835,
-0.034628983587026596,
-0.014183561317622662,
-0.0855000838637352,
-0.10762646794319153,
-0.17592936754226685,
0.05824372172355652,
-0.1235247254371643,
0.036857567727565765,
-0.10702664405107498,
-0.021083727478981018,
-0.029708638787269592,
0.1712174266576767,
-0.24061107635498047,
-0.07881004363298416,
-0.14433011412620544,
-0.09914591908454895,
0.12869399785995483,
-0.04734301567077637,
0.09356654435396194,
-0.02294059656560421,
0.1584029644727707,
0.016575131565332413,
-0.021096564829349518,
0.08110643178224564,
-0.08579336851835251,
-0.2013741284608841,
-0.06729526072740555,
0.1667507141828537,
0.11356096714735031,
0.028554249554872513,
0.00021348004520405084,
0.03888364136219025,
-0.02329942025244236,
-0.12095320969820023,
0.01913701742887497,
0.1473778784275055,
0.06899469345808029,
0.008328313007950783,
-0.015725411474704742,
-0.10770174860954285,
-0.07449213415384293,
-0.02470727078616619,
0.02393377758562565,
0.1620502769947052,
-0.07433250546455383,
0.1653832495212555,
0.14307019114494324,
-0.05678045377135277,
-0.20564031600952148,
-0.004954501520842314,
0.026278968900442123,
-0.011154405772686005,
0.008703439496457577,
-0.1850665956735611,
0.08444999903440475,
0.0019649346359074116,
-0.05588759109377861,
0.10494216531515121,
-0.16007831692695618,
-0.13503114879131317,
0.081987164914608,
0.05090386047959328,
-0.190145805478096,
-0.1397211104631424,
-0.0986657589673996,
-0.0438401997089386,
-0.1640320122241974,
0.09016454964876175,
0.011982852593064308,
0.013060753233730793,
0.03215835615992546,
0.00997347291558981,
0.024044077843427658,
-0.050926510244607925,
0.17516721785068512,
-0.012887895107269287,
0.026755787432193756,
-0.09369775652885437,
-0.08567874133586884,
0.014542883262038231,
-0.04831458628177643,
0.07301216572523117,
-0.027258891612291336,
0.01678038388490677,
-0.10315357893705368,
-0.03471795842051506,
-0.04467841982841492,
0.01759176142513752,
-0.09924584627151489,
-0.08678551763296127,
-0.05264589935541153,
0.08543965965509415,
0.09601205587387085,
-0.019729604944586754,
-0.03255130350589752,
-0.07696829736232758,
0.056086186319589615,
0.22337792813777924,
0.17939896881580353,
0.04744863137602806,
-0.07171594351530075,
-0.002723131561651826,
-0.015915779396891594,
0.04550015926361084,
-0.19737431406974792,
0.05970478802919388,
0.05623520165681839,
0.02068583481013775,
0.1036977469921112,
-0.02265029028058052,
-0.15529058873653412,
-0.07423704117536545,
0.06274627894163132,
-0.06600723415613174,
-0.20556195080280304,
0.009404796175658703,
0.04761991277337074,
-0.1723693460226059,
-0.0333247110247612,
0.0480525940656662,
-0.007163160480558872,
-0.03616609424352646,
0.01816665008664131,
0.09348054975271225,
0.0033172310795634985,
0.08192651718854904,
0.07648915797472,
0.08316144347190857,
-0.10130025446414948,
0.08446116000413895,
0.09844685345888138,
-0.060192350298166275,
0.02733948454260826,
0.09193270653486252,
-0.05831551551818848,
-0.036187272518873215,
0.03698268160223961,
0.08099217712879181,
0.02633502706885338,
-0.04658699780702591,
0.007984031923115253,
-0.09199433028697968,
0.06505311280488968,
0.11281085014343262,
0.029439743608236313,
0.022750042378902435,
0.04665811359882355,
0.04562155902385712,
-0.073212169110775,
0.12069565057754517,
0.028477732092142105,
0.015673451125621796,
-0.04220086708664894,
-0.03826799616217613,
0.009484526701271534,
-0.028716184198856354,
-0.005086944438517094,
-0.01901283487677574,
-0.08357292413711548,
-0.01591898314654827,
-0.12416110187768936,
0.0014331045094877481,
-0.060666002333164215,
0.014897594228386879,
0.02503013238310814,
-0.03190592676401138,
0.008168932050466537,
0.008999391458928585,
-0.06911855190992355,
-0.0667494684457779,
-0.01107252947986126,
0.09214410930871964,
-0.17018061876296997,
0.02913808822631836,
0.08447875827550888,
-0.11064672470092773,
0.10246492922306061,
0.006543856579810381,
-0.009631764143705368,
0.01821054145693779,
-0.1580088883638382,
0.041540052741765976,
-0.03687871992588043,
0.008244183845818043,
0.018192864954471588,
-0.19031718373298645,
0.0022233319468796253,
-0.032371241599321365,
-0.0713675394654274,
-0.010592167265713215,
-0.012611191719770432,
-0.1175762265920639,
0.10545824468135834,
0.003398436587303877,
-0.07779555022716522,
-0.029375309124588966,
0.031890060752630234,
0.0767318531870842,
-0.029489094391465187,
0.14903375506401062,
-0.010945397429168224,
0.06344805657863617,
-0.16184058785438538,
-0.012112514115869999,
-0.008795775473117828,
0.009387471713125706,
-0.05059373006224632,
-0.0023798528127372265,
0.051249098032712936,
-0.014759009703993797,
0.18000589311122894,
-0.03264591097831726,
0.014091522432863712,
0.06283827871084213,
0.04961233586072922,
-0.02504689060151577,
0.09745560586452484,
0.04935402050614357,
0.016042273491621017,
0.010107748210430145,
0.010634302161633968,
-0.04519105702638626,
-0.03718317672610283,
-0.1896188110113144,
0.06667887419462204,
0.19332972168922424,
0.09775267541408539,
-0.021238725632429123,
0.07185591757297516,
-0.10060291737318039,
-0.09193979948759079,
0.1432638168334961,
-0.039614953100681305,
-0.003152070799842477,
-0.07366806268692017,
0.12533800303936005,
0.14702938497066498,
-0.18035173416137695,
0.0680631548166275,
-0.06366228312253952,
-0.04062335565686226,
-0.10973858088254929,
-0.19396264851093292,
-0.06291978806257248,
-0.043153245002031326,
-0.01706063002347946,
-0.046428751200437546,
0.06866542994976044,
0.07235037535429001,
-0.005334464833140373,
-0.008923451416194439,
0.07358722388744354,
-0.03242181986570358,
-0.0023431198205798864,
0.027715085074305534,
0.060844551771879196,
0.009789250791072845,
-0.03430457413196564,
0.013830730691552162,
-0.009553893469274044,
0.055388353765010834,
0.08014345169067383,
0.05010252445936203,
-0.018158378079533577,
0.021721720695495605,
-0.03957204148173332,
-0.10294679552316666,
0.05101633816957474,
-0.029352717101573944,
-0.07048176229000092,
0.1506207436323166,
0.019765805453062057,
0.008169750683009624,
-0.00927541870623827,
0.23298712074756622,
-0.061777859926223755,
-0.09948190301656723,
-0.14721636474132538,
0.06843370944261551,
-0.044959235936403275,
0.050324033945798874,
0.03928495943546295,
-0.112355075776577,
0.026658296585083008,
0.15314003825187683,
0.1527816653251648,
-0.03738558664917946,
0.02435494400560856,
0.032263368368148804,
0.007983527146279812,
-0.01703016646206379,
0.03988349065184593,
0.05664530023932457,
0.1520930528640747,
-0.046840306371450424,
0.07457534968852997,
0.004483088385313749,
-0.08482256531715393,
-0.03528733178973198,
0.12070002406835556,
-0.020297368988394737,
0.010244566015899181,
-0.059731606394052505,
0.11496695131063461,
-0.0638689175248146,
-0.2224048227071762,
0.04006026312708855,
-0.06709709763526917,
-0.12944550812244415,
-0.021726736798882484,
0.06823421269655228,
-0.009106227196753025,
0.018608465790748596,
0.07853177189826965,
-0.0701594352722168,
0.1892324835062027,
0.03615923225879669,
-0.05911361053586006,
-0.04938262328505516,
0.06969781219959259,
-0.0822150930762291,
0.29828280210494995,
0.017663899809122086,
0.03969915956258774,
0.10929078608751297,
-0.014072122052311897,
-0.13797621428966522,
0.034022893756628036,
0.09724123775959015,
-0.094990573823452,
0.05288228765130043,
0.17340928316116333,
0.0039305174723267555,
0.1284504532814026,
0.07164544612169266,
-0.08326496928930283,
0.047714803367853165,
-0.068685382604599,
-0.0693238228559494,
-0.10318871587514877,
0.09887052327394485,
-0.0937386229634285,
0.142961323261261,
0.1215214654803276,
-0.055416040122509,
0.01026212889701128,
-0.03587771952152252,
0.048618871718645096,
-0.005160714965313673,
0.12107990682125092,
0.014536378905177116,
-0.18938297033309937,
0.030264662578701973,
-0.03206425532698631,
0.09826018661260605,
-0.1596945971250534,
-0.08264226466417313,
0.04596994072198868,
0.010617619380354881,
-0.06794066727161407,
0.12218311429023743,
0.060725919902324677,
0.02809346467256546,
-0.05020172521471977,
-0.025824300944805145,
-0.012600240297615528,
0.14013776183128357,
-0.10047949850559235,
-0.005263396073132753
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# scenario-TCR_data-en-massive_all_1_1
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 2.7850
- Accuracy: 0.6663
- F1: 0.6007
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|
| No log | 0.28 | 100 | 2.8668 | 0.3066 | 0.1117 |
| No log | 0.56 | 200 | 2.0971 | 0.4939 | 0.2673 |
| No log | 0.83 | 300 | 1.7751 | 0.5692 | 0.3808 |
| No log | 1.11 | 400 | 1.5796 | 0.6089 | 0.4444 |
| 1.8216 | 1.39 | 500 | 1.5696 | 0.6234 | 0.4919 |
| 1.8216 | 1.67 | 600 | 1.6751 | 0.6098 | 0.5122 |
| 1.8216 | 1.94 | 700 | 1.4933 | 0.6292 | 0.5400 |
| 1.8216 | 2.22 | 800 | 1.4954 | 0.6431 | 0.5461 |
| 1.8216 | 2.5 | 900 | 1.4810 | 0.6465 | 0.5400 |
| 0.5885 | 2.78 | 1000 | 1.7160 | 0.6084 | 0.5306 |
| 0.5885 | 3.06 | 1100 | 1.4351 | 0.6632 | 0.5878 |
| 0.5885 | 3.33 | 1200 | 1.5652 | 0.6415 | 0.5632 |
| 0.5885 | 3.61 | 1300 | 1.5121 | 0.6593 | 0.5666 |
| 0.5885 | 3.89 | 1400 | 1.5149 | 0.6595 | 0.5815 |
| 0.3358 | 4.17 | 1500 | 1.5927 | 0.6627 | 0.5909 |
| 0.3358 | 4.44 | 1600 | 1.5611 | 0.6656 | 0.5775 |
| 0.3358 | 4.72 | 1700 | 1.7512 | 0.6357 | 0.5696 |
| 0.3358 | 5.0 | 1800 | 1.5428 | 0.6668 | 0.5968 |
| 0.3358 | 5.28 | 1900 | 1.6718 | 0.6638 | 0.5925 |
| 0.2166 | 5.56 | 2000 | 1.7788 | 0.6384 | 0.5716 |
| 0.2166 | 5.83 | 2100 | 1.6970 | 0.6578 | 0.5847 |
| 0.2166 | 6.11 | 2200 | 1.7591 | 0.6460 | 0.5891 |
| 0.2166 | 6.39 | 2300 | 1.7743 | 0.6576 | 0.5895 |
| 0.2166 | 6.67 | 2400 | 1.9936 | 0.6358 | 0.5722 |
| 0.1521 | 6.94 | 2500 | 1.9608 | 0.6341 | 0.5720 |
| 0.1521 | 7.22 | 2600 | 1.8215 | 0.6567 | 0.5845 |
| 0.1521 | 7.5 | 2700 | 2.2601 | 0.6184 | 0.5620 |
| 0.1521 | 7.78 | 2800 | 2.0000 | 0.6492 | 0.5844 |
| 0.1521 | 8.06 | 2900 | 1.8825 | 0.6689 | 0.5884 |
| 0.0972 | 8.33 | 3000 | 1.9969 | 0.6499 | 0.5754 |
| 0.0972 | 8.61 | 3100 | 2.0284 | 0.6475 | 0.5888 |
| 0.0972 | 8.89 | 3200 | 2.0733 | 0.6445 | 0.5778 |
| 0.0972 | 9.17 | 3300 | 2.1821 | 0.6401 | 0.5766 |
| 0.0972 | 9.44 | 3400 | 2.1044 | 0.6540 | 0.5882 |
| 0.0821 | 9.72 | 3500 | 2.2485 | 0.6388 | 0.5783 |
| 0.0821 | 10.0 | 3600 | 2.1973 | 0.6474 | 0.5805 |
| 0.0821 | 10.28 | 3700 | 2.2481 | 0.6441 | 0.5746 |
| 0.0821 | 10.56 | 3800 | 2.3463 | 0.6307 | 0.5712 |
| 0.0821 | 10.83 | 3900 | 2.1873 | 0.6514 | 0.5838 |
| 0.0599 | 11.11 | 4000 | 2.2346 | 0.6465 | 0.5769 |
| 0.0599 | 11.39 | 4100 | 2.1812 | 0.6539 | 0.5863 |
| 0.0599 | 11.67 | 4200 | 2.2318 | 0.6528 | 0.5897 |
| 0.0599 | 11.94 | 4300 | 2.2913 | 0.6413 | 0.5821 |
| 0.0599 | 12.22 | 4400 | 2.1780 | 0.6571 | 0.5899 |
| 0.0465 | 12.5 | 4500 | 2.2604 | 0.6611 | 0.5965 |
| 0.0465 | 12.78 | 4600 | 2.1850 | 0.6650 | 0.5997 |
| 0.0465 | 13.06 | 4700 | 2.2568 | 0.6617 | 0.5962 |
| 0.0465 | 13.33 | 4800 | 2.2311 | 0.6648 | 0.5906 |
| 0.0465 | 13.61 | 4900 | 2.3589 | 0.6568 | 0.5949 |
| 0.0269 | 13.89 | 5000 | 2.5143 | 0.6506 | 0.5905 |
| 0.0269 | 14.17 | 5100 | 2.5963 | 0.6421 | 0.5841 |
| 0.0269 | 14.44 | 5200 | 2.3170 | 0.6703 | 0.6001 |
| 0.0269 | 14.72 | 5300 | 2.3151 | 0.6662 | 0.5984 |
| 0.0269 | 15.0 | 5400 | 2.7048 | 0.6390 | 0.5751 |
| 0.0228 | 15.28 | 5500 | 2.3686 | 0.6626 | 0.5990 |
| 0.0228 | 15.56 | 5600 | 2.5169 | 0.6536 | 0.5968 |
| 0.0228 | 15.83 | 5700 | 2.5162 | 0.6500 | 0.5911 |
| 0.0228 | 16.11 | 5800 | 2.5161 | 0.6531 | 0.5955 |
| 0.0228 | 16.39 | 5900 | 2.6153 | 0.6473 | 0.5926 |
| 0.0183 | 16.67 | 6000 | 2.5704 | 0.6455 | 0.5847 |
| 0.0183 | 16.94 | 6100 | 2.8607 | 0.6329 | 0.5718 |
| 0.0183 | 17.22 | 6200 | 2.6057 | 0.6440 | 0.5871 |
| 0.0183 | 17.5 | 6300 | 2.5630 | 0.6575 | 0.5966 |
| 0.0183 | 17.78 | 6400 | 2.6760 | 0.6554 | 0.5934 |
| 0.0127 | 18.06 | 6500 | 2.7133 | 0.6532 | 0.5947 |
| 0.0127 | 18.33 | 6600 | 2.7012 | 0.6522 | 0.5934 |
| 0.0127 | 18.61 | 6700 | 2.6611 | 0.6513 | 0.5855 |
| 0.0127 | 18.89 | 6800 | 2.6626 | 0.6484 | 0.5852 |
| 0.0127 | 19.17 | 6900 | 2.7077 | 0.6482 | 0.5878 |
| 0.0127 | 19.44 | 7000 | 2.6134 | 0.6614 | 0.5913 |
| 0.0127 | 19.72 | 7100 | 2.6991 | 0.6563 | 0.5903 |
| 0.0127 | 20.0 | 7200 | 2.7596 | 0.6500 | 0.5818 |
| 0.0127 | 20.28 | 7300 | 2.6609 | 0.6621 | 0.5922 |
| 0.0127 | 20.56 | 7400 | 2.6349 | 0.6644 | 0.5952 |
| 0.0094 | 20.83 | 7500 | 2.5675 | 0.6701 | 0.5977 |
| 0.0094 | 21.11 | 7600 | 2.6176 | 0.6687 | 0.5987 |
| 0.0094 | 21.39 | 7700 | 2.8201 | 0.6551 | 0.5887 |
| 0.0094 | 21.67 | 7800 | 2.7250 | 0.6604 | 0.5922 |
| 0.0094 | 21.94 | 7900 | 2.7049 | 0.6587 | 0.5939 |
| 0.0061 | 22.22 | 8000 | 2.6681 | 0.6596 | 0.5971 |
| 0.0061 | 22.5 | 8100 | 2.6907 | 0.6608 | 0.5932 |
| 0.0061 | 22.78 | 8200 | 2.7454 | 0.6574 | 0.5912 |
| 0.0061 | 23.06 | 8300 | 2.7095 | 0.6597 | 0.5952 |
| 0.0061 | 23.33 | 8400 | 2.6966 | 0.6606 | 0.5958 |
| 0.0028 | 23.61 | 8500 | 2.7210 | 0.6637 | 0.5996 |
| 0.0028 | 23.89 | 8600 | 2.6735 | 0.6631 | 0.5949 |
| 0.0028 | 24.17 | 8700 | 2.6844 | 0.6659 | 0.5969 |
| 0.0028 | 24.44 | 8800 | 2.6903 | 0.6616 | 0.5889 |
| 0.0028 | 24.72 | 8900 | 3.0441 | 0.6395 | 0.5798 |
| 0.0048 | 25.0 | 9000 | 2.8181 | 0.6588 | 0.5940 |
| 0.0048 | 25.28 | 9100 | 2.7249 | 0.6673 | 0.5971 |
| 0.0048 | 25.56 | 9200 | 2.7154 | 0.6674 | 0.5962 |
| 0.0048 | 25.83 | 9300 | 2.6837 | 0.6694 | 0.5972 |
| 0.0048 | 26.11 | 9400 | 2.7153 | 0.6669 | 0.5973 |
| 0.0027 | 26.39 | 9500 | 2.7366 | 0.6664 | 0.5987 |
| 0.0027 | 26.67 | 9600 | 2.7943 | 0.6636 | 0.5959 |
| 0.0027 | 26.94 | 9700 | 2.7079 | 0.6706 | 0.6002 |
| 0.0027 | 27.22 | 9800 | 2.7941 | 0.6651 | 0.5993 |
| 0.0027 | 27.5 | 9900 | 2.8876 | 0.6575 | 0.5953 |
| 0.0024 | 27.78 | 10000 | 2.8470 | 0.6603 | 0.5958 |
| 0.0024 | 28.06 | 10100 | 2.8501 | 0.6606 | 0.5955 |
| 0.0024 | 28.33 | 10200 | 2.8663 | 0.6606 | 0.5953 |
| 0.0024 | 28.61 | 10300 | 2.8620 | 0.6597 | 0.5948 |
| 0.0024 | 28.89 | 10400 | 2.8211 | 0.6629 | 0.5977 |
| 0.0019 | 29.17 | 10500 | 2.7943 | 0.6653 | 0.5999 |
| 0.0019 | 29.44 | 10600 | 2.7875 | 0.6658 | 0.6000 |
| 0.0019 | 29.72 | 10700 | 2.7908 | 0.6657 | 0.6003 |
| 0.0019 | 30.0 | 10800 | 2.7850 | 0.6663 | 0.6007 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.13.3
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["massive"], "metrics": ["accuracy", "f1"], "base_model": "xlm-roberta-base", "model-index": [{"name": "scenario-TCR_data-en-massive_all_1_1", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "massive", "type": "massive", "config": "all_1.1", "split": "validation", "args": "all_1.1"}, "metrics": [{"type": "accuracy", "value": 0.6663001649257834, "name": "Accuracy"}, {"type": "f1", "value": 0.6006849005734807, "name": "F1"}]}]}]} | text-classification | haryoaw/scenario-TCR_data-en-massive_all_1_1 | [
"transformers",
"pytorch",
"xlm-roberta",
"text-classification",
"generated_from_trainer",
"dataset:massive",
"base_model:xlm-roberta-base",
"license:mit",
"model-index",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:36:15+00:00 | [] | [] | TAGS
#transformers #pytorch #xlm-roberta #text-classification #generated_from_trainer #dataset-massive #base_model-xlm-roberta-base #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
| scenario-TCR\_data-en-massive\_all\_1\_1
========================================
This model is a fine-tuned version of xlm-roberta-base on the massive dataset.
It achieves the following results on the evaluation set:
* Loss: 2.7850
* Accuracy: 0.6663
* F1: 0.6007
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 30
### Training results
### Framework versions
* Transformers 4.33.3
* Pytorch 2.1.1+cu121
* Datasets 2.14.5
* Tokenizers 0.13.3
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.33.3\n* Pytorch 2.1.1+cu121\n* Datasets 2.14.5\n* Tokenizers 0.13.3"
] | [
"TAGS\n#transformers #pytorch #xlm-roberta #text-classification #generated_from_trainer #dataset-massive #base_model-xlm-roberta-base #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.33.3\n* Pytorch 2.1.1+cu121\n* Datasets 2.14.5\n* Tokenizers 0.13.3"
] | [
74,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #xlm-roberta #text-classification #generated_from_trainer #dataset-massive #base_model-xlm-roberta-base #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 30### Training results### Framework versions\n\n\n* Transformers 4.33.3\n* Pytorch 2.1.1+cu121\n* Datasets 2.14.5\n* Tokenizers 0.13.3"
] | [
-0.09584642946720123,
0.11802089959383011,
-0.002116326941177249,
0.11966659873723984,
0.17677170038223267,
0.04370056092739105,
0.12344798445701599,
0.12587293982505798,
-0.0744115337729454,
0.021604908630251884,
0.12722380459308624,
0.14102907478809357,
0.016511984169483185,
0.14929604530334473,
-0.06446728855371475,
-0.2619260847568512,
-0.015367211773991585,
0.048257723450660706,
-0.06736233085393906,
0.13177980482578278,
0.10994745045900345,
-0.12686313688755035,
0.10086367279291153,
-0.016719650477170944,
-0.19964496791362762,
0.00954070407897234,
0.014768685214221478,
-0.04763301461935043,
0.13143672049045563,
0.038819435983896255,
0.12235759198665619,
0.004326708149164915,
0.09197419881820679,
-0.17301641404628754,
0.012124348431825638,
0.03933895751833916,
0.000197479865164496,
0.09561911970376968,
0.026434173807501793,
-0.009838086552917957,
0.09846293181180954,
-0.0893038883805275,
0.049863051623106,
0.014215325936675072,
-0.1355678141117096,
-0.22009935975074768,
-0.0757269561290741,
0.03833731263875961,
0.07560774683952332,
0.09172244369983673,
-0.008243467658758163,
0.1354377567768097,
-0.07494141906499863,
0.09286139160394669,
0.1913754642009735,
-0.27115780115127563,
-0.07111109048128128,
0.05922069773077965,
0.012830117717385292,
0.08907302469015121,
-0.09197339415550232,
-0.024640467017889023,
0.048849206417798996,
0.03905711695551872,
0.11981458961963654,
-0.03160398080945015,
-0.0292753204703331,
0.015345092862844467,
-0.13184097409248352,
-0.027769874781370163,
0.1800580620765686,
0.05865584313869476,
-0.0341980904340744,
-0.04223809018731117,
-0.043753307312726974,
-0.13392464816570282,
-0.03926364332437515,
0.004156237933784723,
0.04728587716817856,
-0.03521547466516495,
-0.0848473310470581,
-0.004762782249599695,
-0.08363625407218933,
-0.06546986848115921,
-0.06214608624577522,
0.1395055651664734,
0.018767235800623894,
0.007029897067695856,
-0.018104631453752518,
0.10179607570171356,
-0.03273791819810867,
-0.128499373793602,
0.028841843828558922,
0.014761785045266151,
-0.007333456072956324,
-0.06203457713127136,
-0.05502122640609741,
-0.04704532399773598,
0.000801995862275362,
0.11201705783605576,
-0.03980962559580803,
0.03350311517715454,
0.029681026935577393,
0.03584493324160576,
-0.07337962836027145,
0.1906653642654419,
-0.051537130028009415,
-0.07674813270568848,
0.00255754915997386,
0.07010062783956528,
0.007494139019399881,
0.0015362963313236833,
-0.1352050006389618,
-0.0029213796369731426,
0.08616116642951965,
0.007379179820418358,
-0.07580021023750305,
0.07521600276231766,
-0.05330710858106613,
-0.04061811789870262,
0.001953176222741604,
-0.07878299802541733,
0.02147817797958851,
-0.015330771915614605,
-0.08783452212810516,
-0.026755526661872864,
0.010701708495616913,
0.016397563740611076,
0.0063543799333274364,
0.08858182281255722,
-0.105070099234581,
0.022053761407732964,
-0.095683753490448,
-0.12434664368629456,
0.001496488112024963,
-0.0849900171160698,
0.031328216195106506,
-0.09122022986412048,
-0.191898375749588,
-0.02445005066692829,
0.05424204841256142,
-0.03930116817355156,
-0.07252821326255798,
-0.06059302017092705,
-0.06112319603562355,
0.010557275265455246,
-0.007193744648247957,
0.1166624128818512,
-0.06158255785703659,
0.10635761171579361,
0.04323020577430725,
0.06830618530511856,
-0.06370140612125397,
0.05899312347173691,
-0.09906472265720367,
0.01987190544605255,
-0.17608533799648285,
0.060676418244838715,
-0.03979553282260895,
0.07787351310253143,
-0.09030083566904068,
-0.10430534929037094,
0.020513366907835007,
0.0016619313973933458,
0.0567425973713398,
0.08921033143997192,
-0.16452641785144806,
-0.07605899125337601,
0.1636410504579544,
-0.04736240953207016,
-0.1293027102947235,
0.11319011449813843,
-0.08170471340417862,
0.0792708471417427,
0.07437668740749359,
0.1708841770887375,
0.07357852160930634,
-0.04532583802938461,
0.028260329738259315,
-0.008334601297974586,
0.05867530405521393,
-0.06993786990642548,
0.09282050281763077,
0.011612734757363796,
-0.006916931830346584,
0.016375573351979256,
-0.04706747829914093,
0.06395792216062546,
-0.09700193256139755,
-0.09165692329406738,
-0.015241585671901703,
-0.10606814920902252,
0.04409096762537956,
0.06256521493196487,
0.07911480218172073,
-0.10514090210199356,
-0.07157839834690094,
0.07834929972887039,
0.09347598999738693,
-0.053274285048246384,
0.005220652092248201,
-0.06161735579371452,
0.06338883936405182,
-0.06709958612918854,
-0.02625594288110733,
-0.17492170631885529,
-0.014970717951655388,
0.007435555104166269,
0.05729617550969124,
0.03407994657754898,
0.02861398458480835,
0.06645594537258148,
0.058052606880664825,
-0.06571363657712936,
-0.01809633895754814,
-0.022715967148542404,
0.003866442944854498,
-0.12851719558238983,
-0.1779363751411438,
-0.03520415350794792,
-0.019898906350135803,
0.16934248805046082,
-0.23415856063365936,
0.03545990213751793,
-0.04358372092247009,
0.0689869299530983,
0.030903255566954613,
-0.01450018398463726,
-0.039730172604322433,
0.08336470276117325,
-0.03569752350449562,
-0.05097762122750282,
0.07413777709007263,
0.000672453548759222,
-0.10222554951906204,
-0.05841105431318283,
-0.10530184209346771,
0.19171008467674255,
0.12094653397798538,
-0.08843953162431717,
-0.08489564806222916,
-0.0228556077927351,
-0.04158826172351837,
-0.01875426061451435,
-0.031503159552812576,
0.009445898234844208,
0.15735574066638947,
-0.015036318451166153,
0.16348133981227875,
-0.07313159108161926,
-0.026301847770810127,
0.015542690642178059,
-0.03355647996068001,
0.018685510382056236,
0.1358296126127243,
0.1133217141032219,
-0.1421523094177246,
0.15273185074329376,
0.14152248203754425,
-0.0845063105225563,
0.15289250016212463,
-0.032538581639528275,
-0.06057649850845337,
-0.04283515736460686,
-0.04729586839675903,
-0.007231592666357756,
0.09225208312273026,
-0.10429275035858154,
-0.004638508893549442,
0.023629529401659966,
0.015424706041812897,
0.013349954970180988,
-0.19021295011043549,
-0.047986216843128204,
0.047094497829675674,
-0.03574506193399429,
-0.029921846464276314,
-0.01398986205458641,
0.007786156609654427,
0.10944563150405884,
0.01957698166370392,
-0.09286853671073914,
0.040819086134433746,
-0.0005273332353681326,
-0.07203611731529236,
0.1964598000049591,
-0.07144303619861603,
-0.13996447622776031,
-0.13888907432556152,
-0.08568661659955978,
-0.05042477324604988,
0.014976399950683117,
0.03817829489707947,
-0.07316184043884277,
-0.01801765151321888,
-0.07701046019792557,
0.011094632558524609,
-0.00868967454880476,
0.01403986755758524,
0.016838865354657173,
0.002128551946952939,
0.057309046387672424,
-0.09087375551462173,
-0.020388787612318993,
-0.04863443970680237,
-0.04760988801717758,
0.038762424141168594,
-0.007342030294239521,
0.11475839465856552,
0.13713720440864563,
-0.028236327692866325,
0.013634860515594482,
-0.03647499531507492,
0.24960309267044067,
-0.0759551003575325,
-0.025014514103531837,
0.13841380178928375,
0.0038165173027664423,
0.038988202810287476,
0.12716300785541534,
0.06494197249412537,
-0.08934362977743149,
0.011088317260146141,
0.027976667508482933,
-0.03678678348660469,
-0.2007531225681305,
-0.0531143955886364,
-0.0581233985722065,
-0.022507229819893837,
0.09888359159231186,
0.00845552422106266,
0.01857222430408001,
0.06710562109947205,
0.04530216380953789,
0.08205778896808624,
-0.04419896379113197,
0.06409692764282227,
0.10625007003545761,
0.047598231583833694,
0.1346912682056427,
-0.041307803243398666,
-0.06994260847568512,
0.042793724685907364,
-0.0008915051002986729,
0.208811417222023,
0.016123035922646523,
0.13079975545406342,
0.03986327350139618,
0.13309095799922943,
-0.000980410142801702,
0.064776211977005,
0.0001661509886616841,
-0.033914316445589066,
-0.031996820122003555,
-0.03094642050564289,
-0.04927930608391762,
0.03051372990012169,
-0.022248810157179832,
0.059626173228025436,
-0.13017155230045319,
-0.012654773890972137,
0.05172819271683693,
0.23462307453155518,
0.036819130182266235,
-0.34209388494491577,
-0.09554147720336914,
0.021934710443019867,
-0.02990141324698925,
-0.019891753792762756,
0.01505320705473423,
0.08555886894464493,
-0.09918800741434097,
0.02474750205874443,
-0.0619971938431263,
0.0960339903831482,
-0.05385611578822136,
0.049349889159202576,
0.06019691377878189,
0.08832249790430069,
-0.01273299939930439,
0.07743194699287415,
-0.2702910006046295,
0.2861080765724182,
0.011302398517727852,
0.04991582781076431,
-0.06404979526996613,
-0.011336269788444042,
0.03477256000041962,
0.07630633562803268,
0.062183063477277756,
-0.009195012040436268,
-0.022692454978823662,
-0.2188456952571869,
-0.034731511026620865,
0.030167633667588234,
0.0713505893945694,
-0.06292149424552917,
0.11452823877334595,
-0.03132594749331474,
0.013616999611258507,
0.07013103365898132,
0.02416793256998062,
-0.03408055752515793,
-0.09257295727729797,
-0.014282508753240108,
0.029128041118383408,
-0.02917972207069397,
-0.05973003804683685,
-0.10577553510665894,
-0.10242573171854019,
0.14562813937664032,
0.000256395956967026,
-0.03586176410317421,
-0.1073533296585083,
0.09178097546100616,
0.07156238704919815,
-0.08955118805170059,
0.020014382898807526,
0.005805397871881723,
0.07304411381483078,
0.026325805112719536,
-0.05042421445250511,
0.11426731944084167,
-0.052630092948675156,
-0.1460045874118805,
-0.059363190084695816,
0.10579325258731842,
0.02602021023631096,
0.07124240696430206,
-0.001805919804610312,
0.013714931905269623,
-0.03245129436254501,
-0.07044735550880432,
0.031685322523117065,
-0.009190086275339127,
0.0716465637087822,
0.0508970245718956,
-0.05773971974849701,
0.021108925342559814,
-0.060730788856744766,
-0.022385619580745697,
0.19661551713943481,
0.25381019711494446,
-0.08980369567871094,
0.003947219345718622,
0.013344935141503811,
-0.07078131288290024,
-0.17635101079940796,
0.06034257262945175,
0.0563468337059021,
0.01872476376593113,
0.046513453125953674,
-0.1888236105442047,
0.09684500098228455,
0.10449927300214767,
-0.009401128627359867,
0.08510500192642212,
-0.2933928072452545,
-0.1139393150806427,
0.10747040808200836,
0.1270722895860672,
0.1302126944065094,
-0.14151914417743683,
-0.01787971332669258,
-0.045894600450992584,
-0.12688618898391724,
0.1282457709312439,
-0.06859511137008667,
0.13403639197349548,
-0.02481028623878956,
0.09800758957862854,
0.014520060271024704,
-0.04830015078186989,
0.12630821764469147,
0.015278094448149204,
0.11665022373199463,
-0.05604633316397667,
-0.06076958775520325,
0.036808308213949203,
-0.04420630261301994,
0.024333011358976364,
-0.08860816061496735,
0.023786844685673714,
-0.14265410602092743,
-0.02903103269636631,
-0.07611657679080963,
0.018703823909163475,
-0.025137638673186302,
-0.07258259505033493,
-0.034183282405138016,
0.06049206852912903,
0.046530138701200485,
-0.008787364698946476,
0.13950587809085846,
-0.005482948385179043,
0.15550051629543304,
0.09384032338857651,
0.09383674710988998,
-0.04928198829293251,
-0.035136058926582336,
-0.012255704961717129,
-0.020933249965310097,
0.05261008068919182,
-0.15503844618797302,
0.02783500775694847,
0.14191602170467377,
0.014102808199822903,
0.16435496509075165,
0.07737193256616592,
-0.009932924062013626,
0.011845969595015049,
0.0660238191485405,
-0.1408572643995285,
-0.0895412340760231,
-0.022740749642252922,
-0.0660020187497139,
-0.129823237657547,
0.027896616607904434,
0.11927559226751328,
-0.06062990799546242,
-0.017170727252960205,
-0.01477604266256094,
0.008346077054738998,
-0.05740123987197876,
0.18341892957687378,
0.06880270689725876,
0.051830094307661057,
-0.09302148222923279,
0.05989274010062218,
0.05744050815701485,
-0.02785789966583252,
0.009875180199742317,
0.06453566998243332,
-0.07739202678203583,
-0.0381619930267334,
0.03622583672404289,
0.19549229741096497,
-0.08709557354450226,
-0.023964084684848785,
-0.14997151494026184,
-0.1117812991142273,
0.06719609349966049,
0.15005534887313843,
0.1117374449968338,
-0.006311862263828516,
-0.05471979081630707,
-0.010406981222331524,
-0.1188921257853508,
0.08896583318710327,
0.040078096091747284,
0.06444651633501053,
-0.13103337585926056,
0.15968254208564758,
-0.01744057424366474,
0.030769333243370056,
-0.021029550582170486,
0.023841451853513718,
-0.1216776967048645,
0.007550463080406189,
-0.1311865895986557,
-0.03778361529111862,
-0.020143596455454826,
0.011925985105335712,
-0.010647530667483807,
-0.04964449256658554,
-0.0593826025724411,
0.002333368407562375,
-0.11892347037792206,
-0.024407004937529564,
0.038537994027137756,
0.06963835656642914,
-0.08827267587184906,
-0.04171069711446762,
0.01578109711408615,
-0.047899968922138214,
0.06755463778972626,
0.029325153678655624,
0.03095307946205139,
0.034489624202251434,
-0.13459905982017517,
0.01757144182920456,
0.039201222360134125,
0.013609143905341625,
0.06700580567121506,
-0.10298478603363037,
0.007795273791998625,
-0.010187637992203236,
0.057439662516117096,
0.03012123331427574,
0.06456112861633301,
-0.12416093051433563,
0.012226362712681293,
-0.014740110374987125,
-0.06666073948144913,
-0.06594645977020264,
0.04157363623380661,
0.08866199851036072,
0.03590349107980728,
0.1913374960422516,
-0.0730702206492424,
0.03760281950235367,
-0.21598349511623383,
-0.004533449187874794,
-0.014970025978982449,
-0.11583323031663895,
-0.11186869442462921,
-0.07934427261352539,
0.06062044948339462,
-0.04949210211634636,
0.14931580424308777,
0.05059355869889259,
0.029950981959700584,
0.0266789048910141,
-0.012435181066393852,
0.05370783060789108,
0.009443918243050575,
0.2015414535999298,
0.04289315268397331,
-0.044401366263628006,
0.07775271683931351,
0.05969969555735588,
0.09893077611923218,
0.13701321184635162,
0.16973359882831573,
0.15806365013122559,
0.0018991850083693862,
0.06848715990781784,
0.04885788634419441,
-0.044598083943128586,
-0.12444524466991425,
0.030392039567232132,
-0.0030771757010370493,
0.08628257364034653,
-0.02794826403260231,
0.1943296492099762,
0.061723049730062485,
-0.17010794579982758,
0.03509554639458656,
-0.0669732540845871,
-0.0835670605301857,
-0.09904669225215912,
-0.05036303028464317,
-0.0924033597111702,
-0.12622475624084473,
-0.0010781908640637994,
-0.12752243876457214,
0.0006268088473007083,
0.12535008788108826,
-0.008057711645960808,
-0.0325729176402092,
0.11748442053794861,
-0.013636562041938305,
0.015630047768354416,
0.07166791707277298,
-0.005956826265901327,
-0.025018637999892235,
-0.11130085587501526,
-0.06984326243400574,
-0.008509637787938118,
-0.019782448187470436,
0.0323394276201725,
-0.05970771238207817,
-0.051411353051662445,
0.019336804747581482,
-0.015484434552490711,
-0.10840336978435516,
0.004499532748013735,
0.025188202038407326,
0.06709533929824829,
0.059031594544649124,
0.0023986343294382095,
0.009059242904186249,
-0.00903967022895813,
0.2239048182964325,
-0.0689038410782814,
-0.049120668321847916,
-0.11128111928701401,
0.25129401683807373,
0.03339018672704697,
-0.0061621349304914474,
0.019811322912573814,
-0.06737832725048065,
0.026472188532352448,
0.21299289166927338,
0.22372332215309143,
-0.12255142629146576,
-0.005882128607481718,
0.000145911326399073,
-0.006474290508776903,
-0.0076019661501049995,
0.10307582467794418,
0.11337240785360336,
0.0035859879571944475,
-0.08918122947216034,
-0.014691070653498173,
-0.059322942048311234,
-0.006647782865911722,
-0.008862451650202274,
0.058054033666849136,
0.05930684134364128,
0.014950955286622047,
-0.037890609353780746,
0.06852158904075623,
-0.06859775632619858,
-0.09309638291597366,
0.04510411620140076,
-0.2201014757156372,
-0.1750335991382599,
-0.02310965768992901,
0.049100667238235474,
0.014713508076965809,
0.06900189071893692,
-0.037402451038360596,
0.007964503951370716,
0.05692194402217865,
-0.01763804443180561,
-0.08101537078619003,
-0.09709189832210541,
0.10918159037828445,
-0.08810732513666153,
0.1864686757326126,
-0.05032563954591751,
0.04868905246257782,
0.1306019127368927,
0.04306289553642273,
-0.06009635701775551,
0.07906156778335571,
0.04530991613864899,
-0.03619954362511635,
0.03547767549753189,
0.08342724293470383,
-0.03997042402625084,
0.11610652506351471,
0.05110352858901024,
-0.1386156529188156,
0.014311643317341805,
-0.06450582295656204,
-0.07585346698760986,
-0.05365556478500366,
-0.044814515858888626,
-0.05618281289935112,
0.14651808142662048,
0.2350117415189743,
-0.04245513677597046,
-0.008010270074009895,
-0.059513598680496216,
0.021167920902371407,
0.0786554142832756,
0.02616179548203945,
-0.08412525802850723,
-0.21934020519256592,
-0.0034402990713715553,
0.05756836012005806,
-0.018036948516964912,
-0.2759396433830261,
-0.07502680271863937,
-0.02362755499780178,
-0.059890296310186386,
-0.06999386101961136,
0.09624037146568298,
0.08087002485990524,
0.054078713059425354,
-0.057278890162706375,
-0.07393613457679749,
-0.07610100507736206,
0.15440507233142853,
-0.13901318609714508,
-0.09093537926673889
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | automatic-speech-recognition | BlahBlah314/Whisper_LargeV3FR_V3-3 | [
"transformers",
"safetensors",
"whisper",
"automatic-speech-recognition",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:36:23+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
45,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #whisper #automatic-speech-recognition #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.05983767658472061,
0.15663617849349976,
-0.00414510490372777,
0.012621625326573849,
0.10675175487995148,
0.00396517850458622,
0.07058298587799072,
0.10818448662757874,
-0.014333043247461319,
0.1301925629377365,
0.031459614634513855,
0.10620059072971344,
0.11486424505710602,
0.17755427956581116,
-0.00021593451674561948,
-0.21627318859100342,
0.06542544066905975,
-0.11467250436544418,
0.023902224376797676,
0.1205042228102684,
0.14280648529529572,
-0.10782013833522797,
0.0710505023598671,
-0.02651231922209263,
-0.014152529649436474,
-0.030523719266057014,
-0.05870387330651283,
-0.06662651896476746,
0.06516408175230026,
0.0716853216290474,
0.05976768955588341,
0.02008269540965557,
0.07725182175636292,
-0.2948664724826813,
0.018899710848927498,
0.0727730244398117,
0.011833904311060905,
0.06048334762454033,
0.07948420196771622,
-0.06289119273424149,
0.12036014348268509,
-0.044804252684116364,
0.1532549113035202,
0.07767832279205322,
-0.09226784855127335,
-0.19217613339424133,
-0.0771055743098259,
0.06758320331573486,
0.1468338817358017,
0.056199874728918076,
-0.03856382891535759,
0.15159031748771667,
-0.09224481880664825,
0.0102085517719388,
0.06493527442216873,
-0.07805083692073822,
-0.04958232864737511,
0.027303149923682213,
0.08463363349437714,
0.08637925982475281,
-0.1273571401834488,
-0.012682586908340454,
0.03438213840126991,
0.02163512259721756,
0.09837246686220169,
0.025364719331264496,
0.11626957356929779,
0.027283066883683205,
-0.13964000344276428,
-0.055175989866256714,
0.12345059961080551,
0.033505070954561234,
-0.05288216099143028,
-0.23939087986946106,
-0.010561608709394932,
-0.009556320495903492,
-0.03001241944730282,
-0.04216838628053665,
0.03810601681470871,
-0.029798293486237526,
0.07650589942932129,
0.01746492274105549,
-0.07078345119953156,
-0.04342244938015938,
0.06982958316802979,
0.07824850082397461,
0.022348513826727867,
-0.02065650187432766,
0.028734240680933,
0.10911912471055984,
0.08262593299150467,
-0.12154309451580048,
-0.06694398820400238,
-0.06854734569787979,
-0.09466245025396347,
-0.0454239584505558,
0.03469004109501839,
0.06703099608421326,
0.057105712592601776,
0.19864854216575623,
0.011600262485444546,
0.05358051881194115,
0.022981496527791023,
0.01298176683485508,
0.07163717597723007,
0.07945776730775833,
-0.051690056920051575,
-0.1315721571445465,
-0.04847193509340286,
0.11824512481689453,
0.008524151518940926,
-0.033710937947034836,
-0.02968421019613743,
0.0653507187962532,
0.05568600073456764,
0.11161840707063675,
0.07554161548614502,
0.01568971388041973,
-0.07114148139953613,
-0.043046265840530396,
0.19346864521503448,
-0.15610936284065247,
0.021089470013976097,
0.019353056326508522,
-0.05417651683092117,
-0.022803083062171936,
0.007743596564978361,
0.017318524420261383,
-0.02697303518652916,
0.1045108512043953,
-0.07085666805505753,
-0.032245416194200516,
-0.1046156957745552,
-0.055557940155267715,
0.03224421665072441,
0.009115081280469894,
-0.030819423496723175,
-0.042374368757009506,
-0.09924564510583878,
-0.0756484866142273,
0.06214139610528946,
-0.07012778520584106,
-0.06952599436044693,
-0.028100011870265007,
-0.04856603220105171,
0.012879165820777416,
0.0010717154946178198,
0.12350035458803177,
-0.03162076696753502,
0.043779097497463226,
-0.04884343594312668,
0.06864890456199646,
0.13179735839366913,
0.032575443387031555,
-0.07970008254051208,
0.058469612151384354,
-0.22937731444835663,
0.11186469346284866,
-0.09973006695508957,
0.03430512547492981,
-0.15810096263885498,
-0.02635045349597931,
0.024752190336585045,
0.033622484654188156,
-0.017231743782758713,
0.13669319450855255,
-0.2039388120174408,
-0.036121536046266556,
0.1721590757369995,
-0.1349588930606842,
-0.08518610149621964,
0.06643460690975189,
-0.055845119059085846,
0.11782421916723251,
0.049206800758838654,
-0.014434589073061943,
0.04594586789608002,
-0.13173595070838928,
-0.025916490703821182,
-0.053098164498806,
-0.007177549879997969,
0.15609249472618103,
0.06614800542593002,
-0.06571528315544128,
0.03145577386021614,
0.02247771993279457,
-0.018577884882688522,
-0.045781973749399185,
-0.03384651243686676,
-0.09418359398841858,
0.007437155116349459,
-0.07286001741886139,
0.00992972869426012,
-0.017532840371131897,
-0.08721724897623062,
-0.039823103696107864,
-0.16453123092651367,
-0.00716154370456934,
0.09300678223371506,
0.010935397818684578,
-0.02714768424630165,
-0.09726624190807343,
0.006592306774109602,
0.01717078872025013,
-0.01454078033566475,
-0.15828220546245575,
-0.0459267795085907,
0.03719138726592064,
-0.1820053607225418,
0.03403490409255028,
-0.05244239792227745,
0.035954125225543976,
0.03684226796030998,
-0.03816571831703186,
-0.013848266564309597,
0.020031210035085678,
0.018333489075303078,
-0.017020072788000107,
-0.2371053695678711,
-0.014824622310698032,
-0.04800339788198471,
0.16693253815174103,
-0.23147691786289215,
0.03312116861343384,
0.07037223875522614,
0.12888941168785095,
0.003875810420140624,
-0.0490296445786953,
0.030063113197684288,
-0.05199332535266876,
-0.044617995619773865,
-0.05644122138619423,
-0.006168664898723364,
-0.030205117538571358,
-0.04949198290705681,
0.050275903195142746,
-0.19857677817344666,
-0.041567981243133545,
0.11094366759061813,
0.06673718988895416,
-0.1588216871023178,
-0.0695650652050972,
-0.03473977744579315,
-0.06271405518054962,
-0.09103205800056458,
-0.05391426756978035,
0.10852089524269104,
0.04763965308666229,
0.048611950129270554,
-0.07248158007860184,
-0.04900932312011719,
0.007940629497170448,
-0.00704985111951828,
-0.03555170074105263,
0.08515505492687225,
0.08571629226207733,
-0.11543579399585724,
0.09118600934743881,
0.06718818843364716,
0.06912244111299515,
0.0983632430434227,
-0.0017782750073820353,
-0.09694159775972366,
-0.014548503793776035,
0.018360106274485588,
0.01051856018602848,
0.12805555760860443,
-0.07398705929517746,
0.03667636960744858,
0.05262641981244087,
-0.035613641142845154,
0.01095122192054987,
-0.101106658577919,
0.029197964817285538,
0.0282101072371006,
-0.003792217466980219,
0.028733761981129646,
-0.04522410035133362,
0.020432880148291588,
0.1023864597082138,
0.03395526856184006,
0.027725959196686745,
0.010809014551341534,
-0.04075441509485245,
-0.11779133975505829,
0.1720944494009018,
-0.09817105531692505,
-0.25773105025291443,
-0.12466797232627869,
-0.001978461164981127,
0.045932475477457047,
-0.018764600157737732,
0.01608397625386715,
-0.053159136325120926,
-0.11253257840871811,
-0.10541603714227676,
0.019763922318816185,
0.058765511959791183,
-0.08840499073266983,
-0.052470505237579346,
0.04951007664203644,
0.036848895251750946,
-0.12439411878585815,
0.021039357408881187,
0.04023430123925209,
-0.059992119669914246,
0.0014880987582728267,
0.07059671729803085,
0.08472984284162521,
0.18226684629917145,
0.022740190848708153,
-0.01784367859363556,
0.017296429723501205,
0.23125670850276947,
-0.1456713229417801,
0.09739834815263748,
0.1370985060930252,
-0.06344101577997208,
0.08623462915420532,
0.21197044849395752,
0.036558255553245544,
-0.08882707357406616,
0.037767693400382996,
0.03336544707417488,
-0.036437466740608215,
-0.2318716198205948,
-0.08410470932722092,
0.001480261329561472,
-0.08248372375965118,
0.0952354297041893,
0.09051923453807831,
0.11156398802995682,
0.04929385334253311,
-0.10106591880321503,
-0.07701091468334198,
0.04251527413725853,
0.11516540497541428,
-0.006902680266648531,
0.004321529995650053,
0.09879171848297119,
-0.029613742604851723,
0.010339556261897087,
0.09523830562829971,
0.0004232692008372396,
0.18618540465831757,
0.04265686497092247,
0.12916190922260284,
0.08458086103200912,
0.05236417427659035,
0.02661769837141037,
0.01322705764323473,
0.031609587371349335,
0.02576516941189766,
-0.02334577962756157,
-0.09271565079689026,
-0.012906024232506752,
0.1415313482284546,
0.04929639771580696,
0.030407944694161415,
0.020662572234869003,
-0.03531459718942642,
0.07301895320415497,
0.16116659343242645,
0.011933310888707638,
-0.21851851046085358,
-0.05515235662460327,
0.07743874937295914,
-0.08626089245080948,
-0.11299191415309906,
-0.0025294655933976173,
0.021754881367087364,
-0.17833879590034485,
0.05397404730319977,
-0.016486117616295815,
0.10160378366708755,
-0.11242987960577011,
-0.02206907607614994,
0.04055493697524071,
0.07460751384496689,
-0.03305850550532341,
0.07621917128562927,
-0.20276865363121033,
0.1373196691274643,
0.008098544552922249,
0.06249339506030083,
-0.11230216175317764,
0.08414414525032043,
0.019059745594859123,
-0.0036223498173058033,
0.1621086448431015,
-0.009664713405072689,
-0.09406581521034241,
-0.060111574828624725,
-0.07602227479219437,
-0.012445085681974888,
0.09843466430902481,
-0.0939253643155098,
0.08608877658843994,
-0.01022840291261673,
-0.03214890882372856,
-0.007143673487007618,
-0.11786875873804092,
-0.1394684612751007,
-0.183831125497818,
0.05997816100716591,
-0.10696699470281601,
0.03344186022877693,
-0.10895431786775589,
-0.060553617775440216,
-0.03646453842520714,
0.19020794332027435,
-0.18181639909744263,
-0.08386372029781342,
-0.14476649463176727,
-0.07653295993804932,
0.1361350119113922,
-0.04076695069670677,
0.07850751280784607,
-0.00008746175444684923,
0.20719517767429352,
0.001825421117246151,
-0.00039511307841166854,
0.08349475264549255,
-0.09573810547590256,
-0.20032998919487,
-0.0880952924489975,
0.13964824378490448,
0.12494690716266632,
0.04542626440525055,
-0.006928097922354937,
0.027518225833773613,
-0.011671899817883968,
-0.11464269459247589,
0.02507087029516697,
0.1405206173658371,
0.06840235739946365,
0.04314489662647247,
-0.016979211941361427,
-0.15606153011322021,
-0.10666806995868683,
-0.05322869494557381,
0.021586019545793533,
0.17797614634037018,
-0.07007403671741486,
0.1621050238609314,
0.16129834949970245,
-0.05420130863785744,
-0.2030099630355835,
0.02282964438199997,
0.04042449966073036,
-0.013990761712193489,
0.03615177795290947,
-0.19683793187141418,
0.07753707468509674,
0.016794858500361443,
-0.060990821570158005,
0.13549083471298218,
-0.1619698405265808,
-0.1508903205394745,
0.09218499809503555,
0.06408262252807617,
-0.2138945758342743,
-0.13302136957645416,
-0.10209991782903671,
-0.05448025092482567,
-0.10983701795339584,
0.08582660555839539,
0.01998555287718773,
0.0000906725981622003,
0.04219266399741173,
0.03161109238862991,
0.021054213866591454,
-0.0520465187728405,
0.20073460042476654,
0.0012120193568989635,
0.03459459915757179,
-0.08232162147760391,
-0.08637090027332306,
0.026973288506269455,
-0.05251563340425491,
0.0672052875161171,
-0.016655180603265762,
0.0002542635484132916,
-0.09922616183757782,
-0.06439188867807388,
-0.06020424887537956,
0.03343502804636955,
-0.08179902285337448,
-0.09706422686576843,
-0.058388181030750275,
0.10227678716182709,
0.08968468755483627,
-0.03377925977110863,
-0.06091363728046417,
-0.10292473435401917,
0.06651771068572998,
0.22872710227966309,
0.1885143369436264,
0.06312023848295212,
-0.07107747346162796,
0.0009368667961098254,
-0.023646708577871323,
0.050360288470983505,
-0.1945972442626953,
0.046965986490249634,
0.042262639850378036,
0.028454279527068138,
0.12927067279815674,
-0.024874795228242874,
-0.16607771813869476,
-0.04733136296272278,
0.06063033267855644,
-0.059542834758758545,
-0.18076083064079285,
-0.000619421829469502,
0.09315520524978638,
-0.15953904390335083,
-0.06748805940151215,
0.023891208693385124,
-0.020897341892123222,
-0.027535755187273026,
0.004573860205709934,
0.0820559412240982,
0.02817925252020359,
0.11291294544935226,
0.06535529345273972,
0.10744494199752808,
-0.10965088754892349,
0.08151662349700928,
0.09152320772409439,
-0.10730767250061035,
0.02777967043220997,
0.07435369491577148,
-0.05882004648447037,
-0.03269755467772484,
0.0057791233994066715,
0.07514561712741852,
0.02294853888452053,
-0.07087770849466324,
-0.0009696646011434495,
-0.1182747483253479,
0.06833867728710175,
0.13341592252254486,
0.033248964697122574,
-0.0019442925695329905,
0.044254120439291,
0.02532937377691269,
-0.08849740773439407,
0.11402047425508499,
0.03831348940730095,
0.031180279329419136,
-0.04628003388643265,
-0.005872894544154406,
0.04073992744088173,
-0.011434492655098438,
-0.01770744100213051,
-0.03857431188225746,
-0.061015255749225616,
-0.009887747466564178,
-0.1567201316356659,
0.02684243768453598,
-0.0771009624004364,
0.00816130917519331,
0.022786233574151993,
-0.03996667265892029,
-0.005420312751084566,
0.006734060123562813,
-0.08264576643705368,
-0.03730582818388939,
-0.0037628922145813704,
0.1070059984922409,
-0.15296638011932373,
0.00852613802999258,
0.09225248545408249,
-0.12423861026763916,
0.07808402180671692,
-0.0011087276507169008,
-0.013306759297847748,
0.02074836567044258,
-0.1374569684267044,
0.051461800932884216,
-0.006391053553670645,
0.011301612481474876,
0.028202330693602562,
-0.19194763898849487,
0.0008063786081038415,
-0.04062483087182045,
-0.05044460669159889,
-0.012731820344924927,
-0.05135709419846535,
-0.11374296247959137,
0.10732509195804596,
0.023315785452723503,
-0.08887150883674622,
-0.01889934204518795,
0.045546844601631165,
0.10550197213888168,
-0.05122669041156769,
0.13676951825618744,
-0.01927841641008854,
0.0586048886179924,
-0.1769271343946457,
-0.014012092724442482,
-0.018402719870209694,
0.013554446399211884,
-0.017449822276830673,
-0.00605781190097332,
0.0551704466342926,
-0.012471658177673817,
0.23972837626934052,
-0.027916517108678818,
0.03500373288989067,
0.06697984784841537,
0.016924316063523293,
-0.018179070204496384,
0.08486920595169067,
0.05455834046006203,
0.026243781670928,
0.01494054775685072,
0.017568159848451614,
-0.051871586591005325,
-0.021555433049798012,
-0.1424977034330368,
0.07956096529960632,
0.16729016602039337,
0.09009124338626862,
-0.008234765380620956,
0.06473081558942795,
-0.11607895791530609,
-0.07983584702014923,
0.10896016657352448,
-0.03711748123168945,
-0.0032444922253489494,
-0.05700715631246567,
0.1502007693052292,
0.1525147259235382,
-0.16814833879470825,
0.06879524886608124,
-0.06271831691265106,
-0.05224054306745529,
-0.11435537785291672,
-0.16904489696025848,
-0.06866718828678131,
-0.035694681107997894,
-0.002330650808289647,
-0.05624498426914215,
0.07767387479543686,
0.10255347937345505,
0.007528870366513729,
0.0038026864640414715,
0.08233556896448135,
-0.037537459284067154,
-0.006316144950687885,
0.04542352631688118,
0.049430496990680695,
0.015805410221219063,
-0.059124622493982315,
0.010986202396452427,
0.004953318741172552,
0.04692067950963974,
0.05509426072239876,
0.034005217254161835,
-0.028324270620942116,
0.012686561793088913,
-0.018243486061692238,
-0.10028578341007233,
0.035927701741456985,
-0.033664118498563766,
-0.05780354142189026,
0.13973994553089142,
0.0218597874045372,
0.007779987063258886,
-0.02196359448134899,
0.22996114194393158,
-0.07252145558595657,
-0.08971016108989716,
-0.1408918797969818,
0.13730354607105255,
-0.046912964433431625,
0.05402535945177078,
0.04905577376484871,
-0.10465127229690552,
0.0241316556930542,
0.14292258024215698,
0.13702698051929474,
-0.027644719928503036,
0.010874779894948006,
0.015687033534049988,
0.00620539765805006,
-0.031101418659090996,
0.04872303828597069,
0.04169761762022972,
0.13120494782924652,
-0.06359384953975677,
0.0914405807852745,
-0.010274309664964676,
-0.08765450119972229,
-0.0231675673276186,
0.1299583613872528,
0.005232672207057476,
0.02307419292628765,
-0.08125553280115128,
0.11583263427019119,
-0.0691702738404274,
-0.24996554851531982,
0.04865904897451401,
-0.05924736708402634,
-0.15156961977481842,
-0.017320360988378525,
0.02757420763373375,
0.005632835440337658,
0.02303774654865265,
0.06296881288290024,
-0.06651590019464493,
0.1557060331106186,
0.035915885120630264,
-0.07977382838726044,
-0.06385304778814316,
0.08052598685026169,
-0.08511006832122803,
0.29178112745285034,
0.010383724234998226,
0.05882499739527702,
0.0948280319571495,
-0.028215935453772545,
-0.131154403090477,
0.05278646945953369,
0.0955355316400528,
-0.07669185847043991,
0.070269875228405,
0.19858962297439575,
0.0003398389380890876,
0.11546503752470016,
0.07913552224636078,
-0.09058261662721634,
0.05968843400478363,
-0.07367776334285736,
-0.09094593673944473,
-0.0922231450676918,
0.08578167855739594,
-0.06759190559387207,
0.15170368552207947,
0.12874077260494232,
-0.043129127472639084,
-0.001158626051619649,
-0.030579449608922005,
0.051351167261600494,
-0.0008969766786321998,
0.12188339978456497,
0.015837527811527252,
-0.19386562705039978,
0.031386423856019974,
-0.015537483617663383,
0.099497489631176,
-0.23898114264011383,
-0.07769263535737991,
0.03750690072774887,
-0.014490727335214615,
-0.048680152744054794,
0.11743341386318207,
0.05373985692858696,
0.045937854796648026,
-0.05465031415224075,
-0.060885775834321976,
0.006574091035872698,
0.1611197590827942,
-0.11137263476848602,
0.004140520468354225
] |
null | null | null |
# **Reinforce** Agent playing **CartPole-v1**
This is a trained model of a **Reinforce** agent playing **CartPole-v1** .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
| {"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | reinforcement-learning | hugo-massonnat/Reinforce-CartPole-v1 | [
"CartPole-v1",
"reinforce",
"reinforcement-learning",
"custom-implementation",
"deep-rl-class",
"model-index",
"region:us"
] | 2024-02-13T13:36:35+00:00 | [] | [] | TAGS
#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us
|
# Reinforce Agent playing CartPole-v1
This is a trained model of a Reinforce agent playing CartPole-v1 .
To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL
| [
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
"TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n",
"# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
39,
54
] | [
"passage: TAGS\n#CartPole-v1 #reinforce #reinforcement-learning #custom-implementation #deep-rl-class #model-index #region-us \n# Reinforce Agent playing CartPole-v1\n This is a trained model of a Reinforce agent playing CartPole-v1 .\n To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: URL"
] | [
0.007526164408773184,
-0.12498430907726288,
-0.0013541718944907188,
0.09601131081581116,
0.11848696321249008,
-0.04186001420021057,
0.11405468732118607,
0.05624859035015106,
0.09539441019296646,
0.04239490255713463,
0.13636724650859833,
0.06906966865062714,
-0.004102868959307671,
0.12412862479686737,
0.09840741008520126,
-0.26058563590049744,
0.07420794665813446,
-0.04403980076313019,
-0.009944677352905273,
0.10139261186122894,
0.07836852967739105,
-0.08325441926717758,
0.051592715084552765,
0.00009572553972247988,
-0.044259943068027496,
0.0321260429918766,
0.013628939166665077,
-0.053157225251197815,
0.1606452465057373,
-0.07313758134841919,
0.10494591295719147,
-0.03843724727630615,
0.14574295282363892,
-0.1126825287938118,
0.04758213832974434,
0.05111503228545189,
-0.04548581689596176,
0.03848232328891754,
-0.12538743019104004,
-0.06033875793218613,
0.026815801858901978,
-0.015865681692957878,
0.12249194830656052,
0.03647647053003311,
-0.1777559220790863,
-0.13461355865001678,
-0.0165896974503994,
0.12325166910886765,
0.1627800315618515,
0.00512364786118269,
0.014270431362092495,
0.16791965067386627,
-0.1761058121919632,
0.025937072932720184,
0.11400806158781052,
-0.37275227904319763,
-0.00034436015994288027,
0.2240462601184845,
0.06164427846670151,
0.1252165287733078,
-0.12646614015102386,
0.010440526530146599,
0.07403992861509323,
0.04368630796670914,
0.049784936010837555,
-0.015430688858032227,
-0.12260042130947113,
0.08455035835504532,
-0.1383819431066513,
-0.058066487312316895,
0.1495426446199417,
-0.019741326570510864,
-0.009476418606936932,
-0.016515808179974556,
-0.009238536469638348,
-0.050979889929294586,
-0.03430935740470886,
-0.11778499186038971,
0.10755524039268494,
0.04975730925798416,
0.0038771627005189657,
-0.04602450504899025,
-0.05612579360604286,
-0.09815777093172073,
-0.03123871050775051,
0.0372777059674263,
-0.013706400990486145,
0.01091629359871149,
0.027692900970578194,
0.09935613721609116,
-0.13446329534053802,
0.01825822703540325,
-0.028096558526158333,
-0.028040969744324684,
-0.1316804438829422,
-0.11984307318925858,
-0.026084421202540398,
0.004223645199090242,
0.03029833547770977,
0.20433813333511353,
0.020139509811997414,
0.059011414647102356,
-0.0022708347532898188,
0.09776382148265839,
0.029780851677060127,
0.13517548143863678,
-0.04466623440384865,
0.19488364458084106,
0.07711011171340942,
0.05364556983113289,
0.03204274922609329,
-0.05344729498028755,
-0.19369827210903168,
0.04861246794462204,
0.06659778952598572,
0.08274952322244644,
-0.1178959533572197,
0.0059632807970047,
-0.10316018015146255,
0.0028950648847967386,
-0.10474003106355667,
-0.0642905905842781,
-0.02892979420721531,
0.031841445714235306,
-0.10535725951194763,
0.028785312548279762,
0.025052599608898163,
0.04140377417206764,
0.0676041767001152,
-0.12253966927528381,
-0.07404746115207672,
-0.021733485162258148,
-0.12817098200321198,
-0.09923440217971802,
0.08802318572998047,
-0.026199497282505035,
-0.005110981408506632,
-0.1253623217344284,
-0.2661486268043518,
-0.05670225992798805,
0.06396034359931946,
-0.03231031447649002,
-0.08589376509189606,
-0.1633463054895401,
0.026403428986668587,
-0.07700273394584656,
0.05221332609653473,
0.04776721075177193,
-0.03665859252214432,
0.02023705095052719,
-0.07958202809095383,
0.12739010155200958,
0.049698662012815475,
0.00541001046076417,
-0.09916839748620987,
0.07882837951183319,
-0.3034103214740753,
-0.02581131085753441,
-0.15228183567523956,
0.0772043839097023,
-0.07893010973930359,
0.01308529730886221,
0.05044940114021301,
0.043790437281131744,
-0.016942394897341728,
0.16269747912883759,
-0.17043575644493103,
-0.05301272124052048,
0.026445282623171806,
-0.09261117875576019,
-0.09916394203901291,
0.07275339215993881,
-0.06339669227600098,
0.21263530850410461,
0.08751397579908371,
0.17006252706050873,
-0.011036526411771774,
-0.16256992518901825,
0.1207515075802803,
0.07522942125797272,
-0.1639646589756012,
0.004287737421691418,
0.061784300953149796,
-0.0016935690073296428,
0.02746843732893467,
-0.01872866041958332,
-0.07289361208677292,
0.06302516162395477,
-0.07825060933828354,
0.022581040859222412,
0.06258945167064667,
-0.09531243145465851,
0.23986859619617462,
-0.005434412509202957,
0.0862451046705246,
-0.025957979261875153,
-0.09802921861410141,
0.00908072479069233,
0.07164718210697174,
-0.0014321404742076993,
0.01703714393079281,
-0.14553219079971313,
0.23044352233409882,
-0.07965081930160522,
0.011176814325153828,
-0.11607582122087479,
-0.1256982982158661,
0.011873425915837288,
0.13336114585399628,
0.059921663254499435,
0.16569606959819794,
0.09518871456384659,
-0.032197169959545135,
0.017584815621376038,
-0.0023385772947221994,
-0.09040450304746628,
0.01580043137073517,
-0.0021571461111307144,
-0.12167251110076904,
-0.07353103160858154,
-0.08134473115205765,
0.12585052847862244,
-0.20988115668296814,
0.015492538921535015,
0.04099845886230469,
0.008103687316179276,
0.04467369243502617,
0.023746047168970108,
-0.013269703835248947,
-0.00007021807687124237,
0.03244573250412941,
-0.10098352283239365,
0.12937165796756744,
0.013381263241171837,
0.014676140621304512,
-0.006365173030644655,
-0.05572463944554329,
0.03720450773835182,
0.040439579635858536,
-0.11237845569849014,
-0.11330515146255493,
-0.009658765979111195,
-0.0015364213613793254,
0.02637762948870659,
-0.022321155294775963,
0.052120618522167206,
0.27587956190109253,
0.05387469753623009,
0.10401033610105515,
-0.05769326910376549,
0.015315087512135506,
-0.015322818420827389,
-0.07135670632123947,
0.06358719617128372,
0.025013601407408714,
0.08050397783517838,
-0.03531401976943016,
0.03759452700614929,
0.1675453782081604,
-0.015888912603259087,
0.11127935349941254,
-0.06545067578554153,
-0.03844274953007698,
-0.043109722435474396,
0.05627678707242012,
0.015021559782326221,
0.04564907029271126,
0.0000015355876712419558,
-0.08444724231958389,
-0.03503387048840523,
-0.03988509997725487,
-0.010637006722390652,
-0.12273643165826797,
-0.00499896751716733,
0.01265440508723259,
-0.021940499544143677,
0.04488934203982353,
0.07375624030828476,
-0.04849626496434212,
0.025821007788181305,
0.06070821359753609,
-0.10193055868148804,
0.08957115560770035,
0.015067169442772865,
-0.06946801394224167,
0.13769419491291046,
-0.07484805583953857,
-0.045293889939785004,
-0.1025395318865776,
-0.1568877100944519,
0.09384927153587341,
0.06704871356487274,
-0.05427970737218857,
-0.1503879576921463,
-0.0016851738328114152,
-0.008973666466772556,
0.09206123650074005,
-0.006399387493729591,
-0.12621140480041504,
0.01989075168967247,
0.08295059949159622,
-0.05633419007062912,
-0.09804849326610565,
-0.0075809285044670105,
-0.05280788615345955,
-0.17707788944244385,
-0.03888550028204918,
-0.06398582458496094,
-0.06734282523393631,
0.23586803674697876,
0.02017230913043022,
0.08274748176336288,
-0.044721852988004684,
0.04250151664018631,
-0.012231717817485332,
0.0006326579605229199,
0.10689259320497513,
-0.09043551236391068,
-0.017900818958878517,
-0.001320177922025323,
-0.024820495396852493,
-0.07327181100845337,
0.029733488336205482,
-0.04272191599011421,
-0.08249637484550476,
-0.1415451467037201,
-0.04993678629398346,
-0.011005163192749023,
0.10754310339689255,
0.07337497919797897,
0.0048001972027122974,
-0.11733713001012802,
0.062058478593826294,
0.13692134618759155,
0.031207585707306862,
0.004062763415277004,
0.028157465159893036,
0.14977529644966125,
-0.10706274956464767,
-0.022463621571660042,
-0.038119975477457047,
-0.054863203316926956,
0.004114252515137196,
0.016883620992302895,
0.08840765058994293,
0.1410384476184845,
0.11468084901571274,
0.047563645988702774,
0.0464191697537899,
0.06561273336410522,
0.1694946140050888,
0.059157438576221466,
-0.10448314249515533,
-0.044678982347249985,
-0.0040070898830890656,
-0.10903503000736237,
0.057307638227939606,
0.16030821204185486,
0.06326017528772354,
-0.14463356137275696,
0.021787412464618683,
-0.038982175290584564,
0.13649246096611023,
0.020638149231672287,
-0.2677258849143982,
-0.008139112964272499,
0.023630544543266296,
-0.0010347915813326836,
-0.012379839085042477,
0.10821118950843811,
-0.040134772658348083,
-0.233198344707489,
-0.12299054861068726,
0.010077533312141895,
0.031144635751843452,
-0.1509784311056137,
0.015542911365628242,
-0.14036494493484497,
0.08027976751327515,
-0.007007129956036806,
0.07418135553598404,
-0.025149788707494736,
0.15060245990753174,
-0.028731435537338257,
0.01628703810274601,
-0.07902143895626068,
-0.047717493027448654,
0.09898673743009567,
-0.0046631391160190105,
0.1931537538766861,
0.005480166990309954,
-0.023713182657957077,
-0.12098433077335358,
-0.05229806900024414,
-0.04967813938856125,
0.010598190128803253,
-0.05373382940888405,
0.0765683576464653,
-0.02441473677754402,
-0.0039579677395522594,
-0.010900177992880344,
0.08942947536706924,
-0.05291692912578583,
0.03636563941836357,
-0.11246588081121445,
-0.05034820735454559,
0.14550213515758514,
-0.09163831174373627,
-0.10174685716629028,
-0.16205860674381256,
0.14137998223304749,
0.15070600807666779,
0.058216437697410583,
-0.04001476243138313,
0.03867831453680992,
-0.019183965399861336,
-0.024241572245955467,
0.07880574464797974,
0.009653856977820396,
0.1324782371520996,
-0.08983246237039566,
0.014327390119433403,
0.14589735865592957,
-0.05275948345661163,
0.016191845759749413,
-0.02304735779762268,
0.12202176451683044,
0.04650457948446274,
0.06189403310418129,
0.018547222018241882,
0.06655703485012054,
0.06466961652040482,
-0.02262885868549347,
0.08456692099571228,
0.030712679028511047,
-0.18644161522388458,
0.058530256152153015,
-0.09805119782686234,
0.22581584751605988,
0.05066308751702309,
0.06047345697879791,
0.2993181645870209,
0.21986234188079834,
-0.05372472479939461,
0.1669820249080658,
0.044286344200372696,
-0.05891284719109535,
-0.21245966851711273,
-0.03684934973716736,
-0.030655447393655777,
0.09436552971601486,
0.15607263147830963,
-0.0981721356511116,
-0.04201313853263855,
-0.00972361396998167,
-0.032264553010463715,
0.020120708271861076,
-0.24663487076759338,
-0.01734781451523304,
0.14379777014255524,
0.10629188269376755,
0.2451348900794983,
-0.006132842972874641,
0.023609744384884834,
0.049030207097530365,
0.018605992197990417,
-0.02483358606696129,
-0.21013511717319489,
0.09079083055257797,
0.006071676965802908,
0.04935038834810257,
0.022885039448738098,
-0.006052911281585693,
0.04500092566013336,
-0.073696069419384,
0.08904470503330231,
-0.08561883866786957,
-0.08341272175312042,
0.2185351401567459,
-0.03945168852806091,
-0.00661163916811347,
0.12917985022068024,
-0.011526807211339474,
-0.1097102016210556,
-0.015364703722298145,
0.027403371408581734,
0.030678823590278625,
-0.030246863141655922,
-0.03609466925263405,
0.024012766778469086,
0.10202405601739883,
-0.04282205551862717,
0.04565315693616867,
0.10240072011947632,
-0.020902957767248154,
0.15945613384246826,
0.13205459713935852,
0.10420060157775879,
0.002927543595433235,
-0.06464727967977524,
0.014349685050547123,
-0.055471502244472504,
0.02962767891585827,
-0.17038846015930176,
-0.0070191239938139915,
0.055695805698633194,
0.04772466421127319,
0.0945243164896965,
0.11333164572715759,
-0.127106174826622,
0.0300484336912632,
0.028996523469686508,
-0.06286120414733887,
-0.06029998138546944,
-0.002275418024510145,
-0.016458535566926003,
-0.008173024281859398,
-0.09947093576192856,
0.07884971052408218,
-0.10555081814527512,
-0.03306307643651962,
0.05025126785039902,
-0.0607193186879158,
-0.12852220237255096,
-0.010904680006206036,
0.1252979338169098,
0.061709314584732056,
-0.05078592896461487,
0.14939077198505402,
0.06109785661101341,
-0.08055379986763,
0.037185851484537125,
0.027442200109362602,
-0.08008874952793121,
-0.10198270529508591,
-0.0004569833690766245,
0.31761088967323303,
0.06076094135642052,
-0.0329466350376606,
-0.11946453154087067,
-0.15002015233039856,
0.04840146750211716,
0.1035679280757904,
0.12359631806612015,
0.011757869273424149,
-0.05322748050093651,
0.02236519381403923,
-0.05275069922208786,
0.03814244270324707,
0.06910209357738495,
-0.03928454965353012,
-0.13761694729328156,
0.0077122850343585014,
0.026647454127669334,
0.10174071043729782,
-0.06771174818277359,
-0.09184598177671432,
-0.18085066974163055,
0.09208621084690094,
-0.03432070091366768,
-0.10890032351016998,
0.027215104550123215,
-0.017406610772013664,
0.014248576015233994,
0.07639352232217789,
-0.047281619161367416,
0.01244808267802,
-0.1517520695924759,
0.07082249224185944,
0.05706808716058731,
0.08926787972450256,
0.000014311663107946515,
-0.054843269288539886,
0.07618319988250732,
-0.05763502046465874,
0.06680037826299667,
-0.053477559238672256,
0.005539732985198498,
0.10781200975179672,
-0.23264040052890778,
-0.021164139732718468,
0.009476077742874622,
-0.04681631922721863,
0.08765807747840881,
-0.19047698378562927,
0.024190550670027733,
-0.08897756040096283,
-0.024605726823210716,
0.01802127994596958,
-0.1086471825838089,
-0.04306677728891373,
0.08475461602210999,
0.037119291722774506,
-0.031288959085941315,
-0.04612116143107414,
-0.019314980134367943,
-0.0914498046040535,
0.053634315729141235,
0.07442525774240494,
-0.0687926784157753,
0.08314394950866699,
-0.05507456883788109,
0.00841207429766655,
-0.052043743431568146,
0.06760627031326294,
-0.012366239912807941,
-0.12672528624534607,
-0.02123171091079712,
-0.044928714632987976,
0.11662110686302185,
-0.023402327671647072,
0.022080281749367714,
0.014599837362766266,
0.0323631577193737,
-0.012065601535141468,
0.05028461292386055,
0.1019197478890419,
0.05136820673942566,
0.014879679307341576,
0.02292765863239765,
0.055746350437402725,
0.0757644772529602,
-0.1134679913520813,
0.06457309424877167,
-0.02098844014108181,
-0.08620109409093857,
0.1013324111700058,
0.06909440457820892,
0.037490107119083405,
0.15593400597572327,
0.22674402594566345,
0.10539932548999786,
-0.03564648702740669,
-0.03126971051096916,
0.12967991828918457,
0.17799612879753113,
-0.07682197540998459,
0.015780627727508545,
-0.0020607721526175737,
-0.017265556380152702,
-0.09849067777395248,
-0.13722245395183563,
-0.060460351407527924,
-0.2453264594078064,
0.1078341007232666,
-0.03288164362311363,
-0.04169659689068794,
0.128489688038826,
0.027952738106250763,
0.03724630922079086,
0.08183616399765015,
-0.12909026443958282,
-0.013460557907819748,
0.07749562710523605,
-0.08914026618003845,
-0.033571500331163406,
-0.17521262168884277,
-0.06771576404571533,
-0.08741120994091034,
-0.15989220142364502,
-0.06844990700483322,
0.029948782175779343,
0.035394806414842606,
0.010386589914560318,
-0.039711855351924896,
-0.01962728053331375,
0.011063394136726856,
-0.0025537724141031504,
-0.04985455423593521,
-0.01753084547817707,
0.021317757666110992,
-0.11333847790956497,
-0.024336790665984154,
0.16320326924324036,
-0.03297848999500275,
-0.18396754562854767,
-0.0405106395483017,
0.2157316505908966,
0.025046708062291145,
0.0590171180665493,
-0.073721744120121,
-0.016323629766702652,
0.021523483097553253,
0.20813441276550293,
0.10171995311975479,
-0.10821312665939331,
0.015457749366760254,
-0.03655189648270607,
0.0013793212128803134,
-0.061893612146377563,
0.10775819420814514,
0.06519263982772827,
-0.07549984753131866,
-0.17567221820354462,
-0.04389495030045509,
-0.08628730475902557,
0.03370477631688118,
-0.14383791387081146,
-0.03786516562104225,
0.1168690100312233,
0.004516853019595146,
-0.053927481174468994,
0.07883694022893906,
-0.17713546752929688,
0.03441957011818886,
-0.04880853369832039,
-0.13215437531471252,
-0.09491758048534393,
-0.10123858600854874,
0.0027463934384286404,
0.08913854509592056,
0.15567956864833832,
-0.06151591241359711,
-0.07471925020217896,
-0.009579092264175415,
-0.028091613203287125,
-0.052700337022542953,
-0.07900123298168182,
0.059512585401535034,
0.0007560851518064737,
0.16147300601005554,
-0.07439453154802322,
0.09558981657028198,
0.09099138528108597,
-0.021246420219540596,
-0.00915549136698246,
0.032866667956113815,
-0.003863809397444129,
-0.07436864078044891,
-0.04970616102218628,
0.02312966249883175,
0.027639856562018394,
0.10846075415611267,
-0.030836544930934906,
-0.1934703141450882,
0.11230092495679855,
0.09140218049287796,
-0.04296138137578964,
-0.046487610787153244,
0.05351927503943443,
-0.07097935676574707,
0.1252279132604599,
0.03444884717464447,
-0.02163051813840866,
0.013762647286057472,
-0.06370721012353897,
0.08370721340179443,
0.11594565212726593,
-0.048265840858221054,
-0.08278503268957138,
-0.06164652109146118,
0.012770666740834713,
0.02961382456123829,
-0.13650155067443848,
-0.21160630881786346,
-0.10802312940359116,
-0.1383298933506012,
0.004740108735859394,
-0.04703504592180252,
0.08498300611972809,
0.12991970777511597,
0.09780163317918777,
-0.011416295543313026,
-0.004867587238550186,
0.018085451796650887,
0.13192623853683472,
-0.11232008039951324,
-0.08192373812198639
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# finetune-checkpoint
This model is a fine-tuned version of [suke-sho/bert-base-tair10](https://huggingface.co/suke-sho/bert-base-tair10) on the plant-genomic-benchmark dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["plant-genomic-benchmark"], "base_model": "suke-sho/bert-base-tair10", "model-index": [{"name": "finetune-checkpoint", "results": []}]} | text-classification | suke-sho/minimized-splicing-donor-tair10 | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"dataset:plant-genomic-benchmark",
"base_model:suke-sho/bert-base-tair10",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:39:27+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-plant-genomic-benchmark #base_model-suke-sho/bert-base-tair10 #license-mit #autotrain_compatible #endpoints_compatible #region-us
|
# finetune-checkpoint
This model is a fine-tuned version of suke-sho/bert-base-tair10 on the plant-genomic-benchmark dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| [
"# finetune-checkpoint\n\nThis model is a fine-tuned version of suke-sho/bert-base-tair10 on the plant-genomic-benchmark dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-plant-genomic-benchmark #base_model-suke-sho/bert-base-tair10 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n",
"# finetune-checkpoint\n\nThis model is a fine-tuned version of suke-sho/bert-base-tair10 on the plant-genomic-benchmark dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0",
"### Training results",
"### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
81,
40,
6,
12,
8,
3,
90,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #bert #text-classification #generated_from_trainer #dataset-plant-genomic-benchmark #base_model-suke-sho/bert-base-tair10 #license-mit #autotrain_compatible #endpoints_compatible #region-us \n# finetune-checkpoint\n\nThis model is a fine-tuned version of suke-sho/bert-base-tair10 on the plant-genomic-benchmark dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 3.0### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
-0.10332515090703964,
0.21032163500785828,
-0.0029819728806614876,
0.08658289164304733,
0.11018003523349762,
0.006539375055581331,
0.10282023996114731,
0.17165832221508026,
-0.04019038379192352,
0.09660420566797256,
0.06609109789133072,
0.07045796513557434,
0.04764869809150696,
0.15479961037635803,
-0.035253964364528656,
-0.21638914942741394,
0.02022371254861355,
0.000742800475563854,
-0.049154844135046005,
0.08019766211509705,
0.12040983885526657,
-0.09730646759271622,
0.07676897197961807,
-0.007989022880792618,
-0.1315503567457199,
0.03660571575164795,
-0.0010636207880452275,
-0.0700305849313736,
0.09491555392742157,
0.002450155559927225,
0.048178717494010925,
0.015396333299577236,
0.10028856992721558,
-0.22515246272087097,
0.0013390069361776114,
0.05229318514466286,
0.023194175213575363,
0.09709528833627701,
0.03551776707172394,
-0.016623221337795258,
0.048924144357442856,
-0.16454483568668365,
0.1008152961730957,
0.022092236205935478,
-0.07996705174446106,
-0.13655942678451538,
-0.10396737605333328,
0.09511812031269073,
0.08431526273488998,
0.06413675844669342,
0.008597020991146564,
0.13763302564620972,
-0.029850324615836143,
0.07756125926971436,
0.22407759726047516,
-0.2572377026081085,
-0.03159426152706146,
0.04317980259656906,
0.07803112268447876,
0.07634633779525757,
-0.1335027813911438,
0.009680375456809998,
0.05823390185832977,
-0.009914958849549294,
0.10106229037046432,
-0.014250046573579311,
-0.003733258694410324,
-0.0025095148012042046,
-0.11719196289777756,
-0.03208618238568306,
0.18792104721069336,
0.05143178254365921,
-0.047798506915569305,
-0.12906987965106964,
-0.05063772201538086,
-0.0726921334862709,
-0.022206366062164307,
-0.06862195581197739,
0.038334354758262634,
-0.042478058487176895,
-0.03428133204579353,
-0.06622738391160965,
-0.07353562116622925,
-0.059603143483400345,
0.0356500968337059,
0.10133838653564453,
0.05640699341893196,
-0.005573766306042671,
-0.01044006273150444,
0.08116913586854935,
-0.00651771342381835,
-0.13884206116199493,
-0.03175649791955948,
0.01630100980401039,
-0.06541617214679718,
-0.06156863272190094,
-0.022007092833518982,
-0.01726374961435795,
0.022181637585163116,
0.18273703753948212,
-0.047203388065099716,
0.05321621894836426,
-0.004772989545017481,
-0.0040047746151685715,
-0.007984519936144352,
0.13521051406860352,
-0.018192918971180916,
-0.0442979633808136,
0.04074738919734955,
0.09554053097963333,
0.029185788705945015,
0.0007024218793958426,
-0.0779329165816307,
-0.030581366270780563,
0.10789171606302261,
0.0853363648056984,
-0.025960251688957214,
0.008665645495057106,
-0.05742911621928215,
-0.02120107412338257,
0.08033084869384766,
-0.16034173965454102,
0.057962458580732346,
-0.02076290175318718,
-0.04450755938887596,
-0.058564409613609314,
0.01739821955561638,
-0.01041489839553833,
-0.015859371051192284,
0.02971009723842144,
-0.07767117768526077,
-0.01613781787455082,
-0.05183364823460579,
-0.0347987562417984,
0.025621376931667328,
-0.0977681502699852,
0.008435656316578388,
-0.062402237206697464,
-0.1790497750043869,
-0.0389740988612175,
0.010022046975791454,
-0.0638083815574646,
-0.04643974453210831,
-0.018889527767896652,
-0.04647573083639145,
0.009384287521243095,
-0.00021175995061639696,
0.05494370684027672,
-0.028237704187631607,
0.05898520350456238,
0.029215767979621887,
0.04294553026556969,
0.05266698822379112,
0.03771013393998146,
-0.09596899151802063,
0.051480457186698914,
-0.14271675050258636,
0.06385048478841782,
-0.10632331669330597,
0.020966501906514168,
-0.12909144163131714,
-0.062439925968647,
0.002148666186258197,
-0.03392843157052994,
0.044903047382831573,
0.13393212854862213,
-0.14306792616844177,
-0.016944190487265587,
0.17902469635009766,
-0.10042589157819748,
-0.1151721328496933,
0.1001327708363533,
-0.05428851395845413,
0.04964485019445419,
0.08203177899122238,
0.1801944226026535,
0.11327532678842545,
-0.14060117304325104,
-0.04298984259366989,
0.006884879432618618,
0.05829419568181038,
0.03587115556001663,
0.07195886969566345,
-0.011054474860429764,
0.03856584429740906,
0.02890929765999317,
-0.10826127976179123,
-0.036962758749723434,
-0.05157110467553139,
-0.08785130828619003,
-0.06510432809591293,
-0.0760178342461586,
0.05032241716980934,
0.024298058822751045,
0.035043783485889435,
-0.07415132969617844,
-0.09295438975095749,
0.1060468778014183,
0.12833942472934723,
-0.06362808495759964,
0.0315912626683712,
-0.05575966835021973,
0.05516019091010094,
-0.04124680906534195,
-0.029851486906409264,
-0.1814594268798828,
-0.0876101553440094,
0.0648026093840599,
-0.08052083104848862,
0.038088973611593246,
-0.008673288859426975,
0.042447395622730255,
0.05871068686246872,
-0.05268578603863716,
-0.03142330422997475,
-0.085092693567276,
0.00967310182750225,
-0.09482893347740173,
-0.18733634054660797,
-0.03153875470161438,
-0.048637162894010544,
0.13025879859924316,
-0.2217118740081787,
0.034744877368211746,
0.011116757057607174,
0.1536555141210556,
0.024585802108049393,
-0.05798444524407387,
0.011215181089937687,
0.002957258140668273,
-0.028920264914631844,
-0.09706363826990128,
0.016129763796925545,
-0.010081310756504536,
-0.09260015934705734,
-0.022550398483872414,
-0.1422712504863739,
0.07028423994779587,
0.070609912276268,
0.10785533487796783,
-0.09473912417888641,
-0.025235703215003014,
-0.0570654571056366,
-0.04137451574206352,
-0.0953570082783699,
-0.04878828302025795,
0.14640845358371735,
-0.007793608121573925,
0.11961827427148819,
-0.08789971470832825,
-0.086580291390419,
-0.0028206740971654654,
-0.008752435445785522,
-0.044847555458545685,
0.0871288925409317,
0.028061026707291603,
-0.1374693363904953,
0.12176278233528137,
0.1216655746102333,
0.004756349604576826,
0.11545572429895401,
-0.05701771005988121,
-0.0926874577999115,
-0.04316524416208267,
0.03513336926698685,
-0.002146141603589058,
0.13137903809547424,
-0.07255618274211884,
-0.022722426801919937,
0.024644529446959496,
0.009076875634491444,
0.016813285648822784,
-0.1455862820148468,
0.003504557069391012,
0.02633882500231266,
-0.059768080711364746,
0.05865681543946266,
-0.026981690898537636,
0.006465870887041092,
0.08780580013990402,
0.018822288140654564,
0.009751548990607262,
0.031522396951913834,
0.0005608299397863448,
-0.09147205948829651,
0.17386020720005035,
-0.11288583278656006,
-0.18538668751716614,
-0.12280622124671936,
0.05466138944029808,
-0.028570374473929405,
-0.0019006936345249414,
0.02095402032136917,
-0.061895161867141724,
-0.05958418548107147,
-0.09458618611097336,
-0.02720445953309536,
-0.03836435079574585,
-0.009720700792968273,
0.04927552863955498,
0.024286825209856033,
0.08181530982255936,
-0.13202416896820068,
0.006986432708799839,
0.005065900273621082,
-0.05470694229006767,
-0.03147361800074577,
0.034397438168525696,
0.11857925355434418,
0.07573769986629486,
-0.029428793117403984,
0.004621743690222502,
-0.0419805608689785,
0.18587492406368256,
-0.07251039892435074,
0.030404286459088326,
0.119977205991745,
-0.016075802966952324,
0.060018450021743774,
0.10615720599889755,
0.006779068615287542,
-0.08386446535587311,
0.028356680646538734,
0.04357533901929855,
-0.020019080489873886,
-0.27173593640327454,
-0.020970555022358894,
-0.011919713579118252,
-0.03308984637260437,
0.10590796172618866,
0.07850109785795212,
0.0431063249707222,
0.05307528376579285,
-0.03951730951666832,
0.032760538160800934,
-0.003572060726583004,
0.1051626056432724,
0.08741515874862671,
0.02059585228562355,
0.08507776260375977,
-0.03347773849964142,
-0.033364295959472656,
0.06377337127923965,
0.05384625867009163,
0.230611652135849,
0.009699772112071514,
0.18074366450309753,
0.021586790680885315,
0.15748320519924164,
-0.03305822238326073,
0.005101099144667387,
0.01758117601275444,
0.018192872405052185,
0.007870280183851719,
-0.06749161332845688,
-0.008091263473033905,
0.05596371740102768,
-0.045265503227710724,
0.03919900581240654,
-0.07357028126716614,
0.042090583592653275,
0.03055017814040184,
0.1675553321838379,
0.04613662138581276,
-0.24325236678123474,
-0.06763438135385513,
0.038153305649757385,
-0.036713067442178726,
-0.046533726155757904,
0.006399687845259905,
0.10320629924535751,
-0.12906096875667572,
0.057150475680828094,
-0.049967288970947266,
0.09032062441110611,
-0.03254149109125137,
-0.019077004864811897,
-0.00038336036959663033,
0.07910805195569992,
0.002665949519723654,
0.09893469512462616,
-0.19392360746860504,
0.1873316615819931,
0.02462949976325035,
0.0963330790400505,
-0.06895919889211655,
0.05064474046230316,
0.012335267849266529,
0.060495775192976,
0.14449112117290497,
-0.008163445629179478,
-0.10198740661144257,
-0.14473837614059448,
-0.11091279983520508,
0.00029574980726465583,
0.10917678475379944,
-0.08017553389072418,
0.07215644419193268,
-0.03917906433343887,
-0.013912281952798367,
0.03675614297389984,
-0.05933278799057007,
-0.1616196632385254,
-0.12944650650024414,
0.026704926043748856,
-0.006720077712088823,
-0.010738388635218143,
-0.0683608129620552,
-0.08873378485441208,
-0.06713079661130905,
0.1994444578886032,
-0.011245209723711014,
-0.050596047192811966,
-0.14625044167041779,
0.07218975573778152,
0.13304412364959717,
-0.08288270980119705,
0.02200838178396225,
0.017230428755283356,
0.1695133000612259,
0.01908736117184162,
-0.08032619208097458,
0.04856548085808754,
-0.05921363830566406,
-0.19380523264408112,
-0.053122129291296005,
0.1812303364276886,
0.04144570231437683,
0.04641913250088692,
0.03989141061902046,
0.04072404280304909,
0.009880383498966694,
-0.08695598691701889,
0.04257545992732048,
0.06733276695013046,
0.10403615981340408,
0.05482819676399231,
-0.12579071521759033,
-0.017247937619686127,
-0.07107122987508774,
-0.03972013294696808,
0.12419309467077255,
0.21812987327575684,
-0.08866280317306519,
0.12056181579828262,
0.049395423382520676,
-0.12243039906024933,
-0.17212554812431335,
0.0525643453001976,
0.06370789557695389,
0.018054187297821045,
0.09453710913658142,
-0.16134463250637054,
0.11916908621788025,
0.10356438905000687,
-0.03364322707056999,
0.033008504658937454,
-0.2537060081958771,
-0.13400422036647797,
0.0684751644730568,
0.10848518460988998,
-0.025724535807967186,
-0.16175639629364014,
-0.06615840643644333,
-0.0213168952614069,
-0.10743188858032227,
0.10396689921617508,
-0.08004840463399887,
0.08149608224630356,
-0.006228187121450901,
0.047125834971666336,
0.019574375823140144,
-0.03284253552556038,
0.14085455238819122,
0.05641990154981613,
0.0691317543387413,
-0.03907071426510811,
-0.017452875152230263,
0.13023990392684937,
-0.07445564866065979,
0.0959509015083313,
-0.042921293526887894,
0.0789026990532875,
-0.14516288042068481,
-0.02353016845881939,
-0.04140811413526535,
0.0712733045220375,
-0.07574361562728882,
-0.04260055720806122,
-0.08239911496639252,
0.05541231483221054,
0.07365842163562775,
-0.03022916615009308,
0.1218617632985115,
0.03706241026520729,
0.09042317420244217,
0.09459884464740753,
0.08160638809204102,
0.04470240697264671,
-0.10282687097787857,
-0.009129604324698448,
-0.042840924113988876,
0.029106808826327324,
-0.12441613525152206,
0.055107422173023224,
0.10904940217733383,
0.042923085391521454,
0.1449936181306839,
0.005647454876452684,
-0.06814704835414886,
-0.007288604974746704,
0.024751152843236923,
-0.10552233457565308,
-0.12660914659500122,
-0.020995035767555237,
-0.04145551472902298,
-0.14966395497322083,
0.028966417536139488,
0.09740518778562546,
-0.05531999468803406,
-0.03662141039967537,
-0.026565292850136757,
0.032298121601343155,
0.015218077227473259,
0.1605832427740097,
0.06138656288385391,
0.05587776005268097,
-0.06571900844573975,
0.11552687734365463,
0.06721968948841095,
-0.07624591886997223,
0.06499294191598892,
0.05154372379183769,
-0.0936635360121727,
-0.02410568669438362,
0.0558309368789196,
0.1681116819381714,
-0.013029840774834156,
-0.03342517837882042,
-0.11077307909727097,
-0.06144459918141365,
0.03377819061279297,
0.11144471168518066,
0.05449813976883888,
0.0014752763090655208,
0.0005136291729286313,
0.022503184154629707,
-0.14332623779773712,
0.12939850986003876,
0.03872528299689293,
0.08484260737895966,
-0.14936292171478271,
0.07017021626234055,
0.0007261522114276886,
0.029849080368876457,
-0.02259897068142891,
0.03510011360049248,
-0.09106336534023285,
-0.049710713326931,
-0.07241497188806534,
0.03307909891009331,
-0.053160931915044785,
-0.005989932920783758,
-0.028110487386584282,
-0.07901226729154587,
-0.014895227737724781,
0.059346530586481094,
-0.04628295078873634,
-0.07733635604381561,
0.005058726295828819,
0.06468193978071213,
-0.15396492183208466,
-0.02097226120531559,
0.03900554031133652,
-0.09786411374807358,
0.08555290102958679,
0.0447293184697628,
0.04073560610413551,
0.009705704636871815,
-0.054038677364587784,
0.025062501430511475,
0.032471343874931335,
0.032214876264333725,
0.012659667059779167,
-0.15062379837036133,
-0.021072613075375557,
-0.010723755694925785,
0.028304457664489746,
0.022885534912347794,
0.03659231960773468,
-0.1334846019744873,
-0.01850311830639839,
-0.09057500213384628,
-0.05246775969862938,
-0.043509550392627716,
0.04211912304162979,
0.11105180531740189,
-0.0037419432774186134,
0.13856254518032074,
-0.07146701961755753,
0.05475745350122452,
-0.21401579678058624,
-0.019476447254419327,
-0.004158120136708021,
-0.046476710587739944,
-0.10459409654140472,
-0.019398387521505356,
0.058397021144628525,
-0.051007580012083054,
0.15228086709976196,
-0.022801056504249573,
0.07406269758939743,
0.05826808139681816,
-0.02645699493587017,
0.011721041053533554,
0.013459224253892899,
0.19631116092205048,
0.04540075361728668,
-0.020356157794594765,
0.08253244310617447,
-0.03073740005493164,
0.05534641444683075,
-0.022267082706093788,
0.11951381713151932,
0.1794748455286026,
-0.031003031879663467,
0.048305485397577286,
0.06443706154823303,
-0.07837806642055511,
-0.1671837419271469,
0.07491825520992279,
-0.021736331284046173,
0.06775645166635513,
-0.017406729981303215,
0.1277247667312622,
0.1286400854587555,
-0.19102680683135986,
0.055277951061725616,
-0.02867783233523369,
-0.11694805324077606,
-0.1162610724568367,
-0.061407387256622314,
-0.10510402172803879,
-0.08572510629892349,
0.02082514949142933,
-0.1321340948343277,
0.02167755551636219,
0.037380319088697433,
-0.012205765582621098,
-0.012608877383172512,
0.15645679831504822,
-0.027389150112867355,
-0.00034584797685965896,
0.052358705550432205,
0.026836149394512177,
0.00365538545884192,
-0.03930645063519478,
-0.04268970713019371,
0.04889517277479172,
0.024324558675289154,
0.065531425178051,
-0.03775133565068245,
0.050974298268556595,
0.019925018772482872,
-0.03489693999290466,
-0.07639054954051971,
0.021625960245728493,
0.014747470617294312,
0.03151106461882591,
0.031778618693351746,
0.050288934260606766,
-0.008736983872950077,
-0.03830598667263985,
0.2645709812641144,
-0.04576738923788071,
-0.02462179586291313,
-0.11890055239200592,
0.13213101029396057,
0.0594126433134079,
-0.01571447029709816,
0.06326445937156677,
-0.12898962199687958,
0.02739069238305092,
0.14552533626556396,
0.1136624664068222,
-0.0034459384623914957,
-0.005319440271705389,
-0.020938515663146973,
-0.011639186181128025,
-0.006388688459992409,
0.0728137344121933,
0.07335863262414932,
0.010229473933577538,
-0.04257694259285927,
-0.027248868718743324,
0.0056980205699801445,
-0.041642285883426666,
-0.11578501760959625,
0.08102936297655106,
-0.004633921664208174,
0.006705116480588913,
-0.024994008243083954,
0.06539419293403625,
0.03939519077539444,
-0.22235968708992004,
0.028364215046167374,
-0.18432782590389252,
-0.17233185470104218,
-0.007283141370862722,
0.07916248589754105,
-0.02198687754571438,
0.016349468380212784,
0.027270248159766197,
0.021192433312535286,
0.13339948654174805,
0.007193959318101406,
-0.08269913494586945,
-0.05197439342737198,
0.07020971179008484,
-0.07064884155988693,
0.2158825695514679,
0.008215110749006271,
0.06702612340450287,
0.09408640116453171,
-0.005567723419517279,
-0.1568959653377533,
0.0237587820738554,
0.0677824392914772,
-0.029351720586419106,
0.0515311099588871,
0.15749700367450714,
-0.024875458329916,
0.08640021830797195,
0.06418219953775406,
-0.0930689349770546,
-0.03940621390938759,
-0.022615568712353706,
-0.03752937540411949,
-0.09950371831655502,
0.033685147762298584,
-0.07926622778177261,
0.16758818924427032,
0.15598411858081818,
-0.05732212960720062,
-0.0009164956281892955,
-0.05419920012354851,
0.0362408421933651,
0.06815372407436371,
0.06493457406759262,
-0.0025641268584877253,
-0.20614007115364075,
0.005666907876729965,
0.041619922965765,
0.03360559418797493,
-0.24375057220458984,
-0.11519921571016312,
0.048176370561122894,
-0.04280446097254753,
-0.08719579875469208,
0.09322880208492279,
0.062352389097213745,
0.024666273966431618,
-0.03324982896447182,
-0.14060093462467194,
-0.040342219173908234,
0.13876090943813324,
-0.15553230047225952,
-0.03228520601987839
] |
null | null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lora-test
This model is a fine-tuned version of [deepseek-ai/deepseek-coder-7b-instruct-v1.5](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1056
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.2632 | 1.0 | 1 | 0.1060 |
| 0.4033 | 2.0 | 2 | 0.1056 |
### Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 | {"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "deepseek-ai/deepseek-coder-7b-instruct-v1.5", "model-index": [{"name": "lora-test", "results": []}]} | null | asadmasad/lora-test | [
"peft",
"safetensors",
"generated_from_trainer",
"base_model:deepseek-ai/deepseek-coder-7b-instruct-v1.5",
"license:other",
"region:us"
] | 2024-02-13T13:45:13+00:00 | [] | [] | TAGS
#peft #safetensors #generated_from_trainer #base_model-deepseek-ai/deepseek-coder-7b-instruct-v1.5 #license-other #region-us
| lora-test
=========
This model is a fine-tuned version of deepseek-ai/deepseek-coder-7b-instruct-v1.5 on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.1056
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-06
* train\_batch\_size: 2
* eval\_batch\_size: 2
* seed: 42
* distributed\_type: multi-GPU
* num\_devices: 4
* gradient\_accumulation\_steps: 2
* total\_train\_batch\_size: 16
* total\_eval\_batch\_size: 8
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_steps: 10
* num\_epochs: 2
### Training results
### Framework versions
* PEFT 0.8.2
* Transformers 4.37.2
* Pytorch 2.2.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#peft #safetensors #generated_from_trainer #base_model-deepseek-ai/deepseek-coder-7b-instruct-v1.5 #license-other #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
51,
179,
4,
39
] | [
"passage: TAGS\n#peft #safetensors #generated_from_trainer #base_model-deepseek-ai/deepseek-coder-7b-instruct-v1.5 #license-other #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 2\n* total\\_train\\_batch\\_size: 16\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* PEFT 0.8.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.10518842935562134,
0.09935477375984192,
-0.0029883957467973232,
0.08206505328416824,
0.09904424846172333,
0.03820427879691124,
0.1178831085562706,
0.12790478765964508,
-0.06045188754796982,
0.1370108276605606,
0.12013398855924606,
0.0769975557923317,
0.06423130631446838,
0.21324166655540466,
-0.010554792359471321,
-0.2791721224784851,
0.018765047192573547,
-0.05594571679830551,
-0.12021638453006744,
0.11140298843383789,
0.06009439006447792,
-0.13283388316631317,
0.07875612378120422,
-0.029010940343141556,
-0.0988936573266983,
-0.019299093633890152,
-0.05724506825208664,
-0.024522965773940086,
0.09463220834732056,
0.0020948920864611864,
0.08208683878183365,
0.014238614588975906,
0.11818313598632812,
-0.2637515664100647,
0.005057488568127155,
0.08322764933109283,
0.01642405241727829,
0.07805082201957703,
0.10128603875637054,
0.009270979091525078,
0.10331879556179047,
-0.12331856787204742,
0.08318796008825302,
0.024120360612869263,
-0.11766190826892853,
-0.22230087220668793,
-0.08255309611558914,
0.06098945066332817,
0.13668900728225708,
0.055798470973968506,
-0.015178835019469261,
0.11975637078285217,
-0.090028315782547,
0.06628904491662979,
0.2608325779438019,
-0.3046138882637024,
-0.08645351976156235,
0.03855310007929802,
0.021655330434441566,
0.09378674626350403,
-0.12733444571495056,
-0.022164463996887207,
0.03617297485470772,
0.019919129088521004,
0.09251609444618225,
0.01742938533425331,
0.05014665424823761,
0.0024719221983104944,
-0.15045346319675446,
-0.04521236568689346,
0.08953897655010223,
0.08796615153551102,
-0.01802682876586914,
-0.09413281828165054,
-0.05440472438931465,
-0.22724057734012604,
-0.0387704037129879,
-0.017151376232504845,
0.044396184384822845,
-0.06044424697756767,
-0.057276077568531036,
0.0438755564391613,
-0.060231421142816544,
-0.09782501310110092,
0.03874567896127701,
0.14877624809741974,
0.07650673389434814,
-0.007346235681325197,
0.04187430068850517,
0.1263660192489624,
0.031055280938744545,
-0.15025922656059265,
-0.013821340166032314,
0.006394901778548956,
-0.09222283214330673,
-0.026698121801018715,
-0.005111218895763159,
0.07430636137723923,
0.03882119059562683,
0.16907502710819244,
-0.07636949419975281,
0.08192310482263565,
0.05869434028863907,
0.01961197331547737,
-0.07220502197742462,
0.11681987345218658,
-0.08741877973079681,
-0.04061906039714813,
-0.03116120770573616,
0.11237315088510513,
0.0334341898560524,
-0.004176264628767967,
-0.06359107047319412,
0.04366764426231384,
0.0869281142950058,
0.04951611906290054,
-0.03582745045423508,
0.0094593595713377,
-0.07040344923734665,
-0.027544664219021797,
0.059531040489673615,
-0.0974641814827919,
0.06461117416620255,
0.045912954956293106,
-0.07098841667175293,
-0.05768183246254921,
-0.006929973140358925,
0.014119371771812439,
0.009679760783910751,
0.13607367873191833,
-0.08004915714263916,
-0.009391354396939278,
-0.0775621235370636,
-0.09428511559963226,
0.02896871231496334,
-0.07522515952587128,
0.002801130525767803,
-0.08041170984506607,
-0.10932764410972595,
-0.04677259549498558,
0.05051138624548912,
-0.07297299802303314,
-0.06667295098304749,
-0.06463689357042313,
-0.08590028434991837,
0.01610264554619789,
-0.0015389652689918876,
0.1225133016705513,
-0.06635875254869461,
0.092081218957901,
-0.010139073245227337,
0.06713734567165375,
0.07021600008010864,
0.02822192572057247,
-0.05852597951889038,
0.06844582408666611,
-0.1682993322610855,
0.03421967849135399,
-0.08629728853702545,
0.04819728806614876,
-0.12624450027942657,
-0.11566537618637085,
-0.0486629344522953,
-0.0205166507512331,
0.08505383878946304,
0.13079988956451416,
-0.1383817046880722,
-0.06395713239908218,
0.17707720398902893,
-0.07770124077796936,
-0.1168377697467804,
0.12164069712162018,
-0.013235949911177158,
-0.04961308464407921,
0.011340532451868057,
0.17638622224330902,
0.09556005895137787,
-0.11621478199958801,
-0.01252138614654541,
-0.03769989311695099,
0.10404033213853836,
0.019919980317354202,
0.10941267758607864,
-0.022459974512457848,
0.037265315651893616,
-0.0053258128464221954,
-0.03932251036167145,
0.03206630423665047,
-0.10606759786605835,
-0.0897497907280922,
-0.017208101227879524,
-0.0922638475894928,
0.014644586481153965,
0.037852149456739426,
0.04024043306708336,
-0.10583613812923431,
-0.10690001398324966,
-0.02177390083670616,
0.1108853816986084,
-0.06683934479951859,
0.008576370775699615,
-0.04872146621346474,
0.05674620717763901,
-0.02723643369972706,
-0.010310224257409573,
-0.1278926134109497,
-0.07818220555782318,
0.060701243579387665,
-0.05997695401310921,
0.0018029409693554044,
-0.009615326300263405,
0.08315278589725494,
0.10585116595029831,
-0.044801123440265656,
-0.07041988521814346,
-0.06741850078105927,
-0.008900786750018597,
-0.08778384327888489,
-0.24908865988254547,
-0.06125896796584129,
-0.027239274233579636,
0.13591448962688446,
-0.2143159955739975,
0.010366261005401611,
-0.02516801841557026,
0.13395893573760986,
0.029690878465771675,
-0.0654936209321022,
-0.0034608046989887953,
0.06863965094089508,
-0.006418862845748663,
-0.08308305591344833,
0.019942352548241615,
-0.02854873798787594,
-0.09676408767700195,
-0.059981171041727066,
-0.15142710506916046,
0.15231192111968994,
0.0810532346367836,
0.026104215532541275,
-0.10190156102180481,
-0.027190277352929115,
-0.07670630514621735,
-0.06115858629345894,
-0.03546804562211037,
0.043375302106142044,
0.11859085410833359,
0.0076988982036709785,
0.08858148753643036,
-0.08222797513008118,
-0.05173943564295769,
0.038682397454977036,
0.0032052022870630026,
-0.0038234025705605745,
0.15972524881362915,
0.10852713882923126,
-0.07386136800050735,
0.11623126268386841,
0.13759957253932953,
-0.044270921498537064,
0.11491598188877106,
-0.05805620551109314,
-0.09803829342126846,
-0.04420587792992592,
0.06296654045581818,
0.02539351023733616,
0.13592077791690826,
-0.04118162393569946,
0.023870663717389107,
0.0080795306712389,
0.030220169574022293,
0.010958818718791008,
-0.1855730414390564,
-0.03345625847578049,
0.026178516447544098,
-0.06513349711894989,
-0.006702595856040716,
-0.028046922758221626,
-0.000766498560551554,
0.09762708842754364,
0.021991612389683723,
-0.031738441437482834,
-0.029540078714489937,
-0.0070224120281636715,
-0.07725497335195541,
0.205560103058815,
-0.10761472582817078,
-0.08838890492916107,
-0.10093460977077484,
0.050287019461393356,
-0.027901293709874153,
-0.012028687633574009,
0.03370233625173569,
-0.10090161114931107,
-0.03289628401398659,
-0.0937754288315773,
-0.017431622371077538,
-0.0318167582154274,
0.03267859295010567,
0.020481949672102928,
0.011500186286866665,
0.06393591314554214,
-0.08840318769216537,
0.01609841175377369,
-0.024258963763713837,
-0.057238947600126266,
0.03062191791832447,
0.05726201832294464,
0.09216035902500153,
0.13202548027038574,
0.03567718341946602,
0.030322521924972534,
-0.02064291574060917,
0.18572171032428741,
-0.08519632369279861,
-0.026446184143424034,
0.07418044656515121,
0.016444461420178413,
0.04840898513793945,
0.15231755375862122,
0.056208983063697815,
-0.0985339805483818,
0.013538536615669727,
0.05258534848690033,
-0.018377088010311127,
-0.1971949189901352,
-0.036866627633571625,
-0.0331324003636837,
0.025499893352389336,
0.12063352018594742,
0.0512271523475647,
-0.05558004975318909,
0.029691942036151886,
-0.025291506201028824,
-0.003146698698401451,
-0.012552228756248951,
0.06342419236898422,
-0.002373832743614912,
0.04915973171591759,
0.09160231053829193,
-0.016089564189314842,
-0.0336591899394989,
0.03415600210428238,
-0.0045641325414180756,
0.20602266490459442,
-0.010214163921773434,
0.11627864837646484,
0.03902776911854744,
0.1951671987771988,
-0.014609378762543201,
0.06512971967458725,
0.04051681235432625,
-0.030497301369905472,
0.016248680651187897,
-0.06110626831650734,
-0.020902980118989944,
0.061786580830812454,
0.048151761293411255,
0.04728013649582863,
-0.09949280321598053,
0.05592236667871475,
0.04945462569594383,
0.2825833559036255,
0.0746433287858963,
-0.29399099946022034,
-0.07415933161973953,
0.011107726022601128,
-0.04006509855389595,
-0.026211831718683243,
0.028738034889101982,
0.14790107309818268,
-0.08773517608642578,
0.056421756744384766,
-0.0684048980474472,
0.06161218881607056,
-0.04824192076921463,
0.003875182243064046,
0.09296431392431259,
0.11273124814033508,
0.00032080424716696143,
0.05622750148177147,
-0.21778792142868042,
0.28068000078201294,
-0.0002413376932963729,
0.07554566860198975,
-0.038430918008089066,
0.013896924443542957,
0.004811546299606562,
-0.009318959899246693,
0.10067245364189148,
-0.0037593820597976446,
-0.08394867181777954,
-0.20676834881305695,
-0.13945050537586212,
0.03453894704580307,
0.15062004327774048,
-0.10636834055185318,
0.11601036787033081,
-0.007515098433941603,
-0.026032712310552597,
0.030767083168029785,
-0.0677814781665802,
-0.10459306091070175,
-0.07355256378650665,
0.011761203408241272,
-0.04427621141076088,
-0.0009992655832320452,
-0.09017278254032135,
-0.09724050760269165,
-0.11019390821456909,
0.15002276003360748,
-0.12127811461687088,
-0.011773944832384586,
-0.12640781700611115,
0.08842647075653076,
0.1470758467912674,
-0.07937348634004593,
0.046220213174819946,
0.008260688744485378,
0.07243960350751877,
0.031098200008273125,
-0.0246198121458292,
0.12294719368219376,
-0.08364441245794296,
-0.23570984601974487,
-0.0540941059589386,
0.14212819933891296,
0.04582066461443901,
0.05611865967512131,
-0.041802335530519485,
0.028950754553079605,
-0.0029500455129891634,
-0.10513535887002945,
0.07892825454473495,
0.06389523297548294,
0.03897235915064812,
0.05940219387412071,
-0.05371879041194916,
0.07785450667142868,
-0.03958117589354515,
-0.03457936644554138,
0.09570861607789993,
0.3553362488746643,
-0.09814924001693726,
0.044609684497117996,
0.03304900974035263,
-0.034408748149871826,
-0.15876811742782593,
-0.014298345893621445,
0.10467666387557983,
0.034232255071401596,
0.04881971329450607,
-0.19509084522724152,
0.07217617332935333,
0.11433584988117218,
-0.02770480513572693,
0.10165972262620926,
-0.3338213562965393,
-0.13227765262126923,
0.0733792632818222,
0.10919657349586487,
-0.015025126747786999,
-0.17502613365650177,
-0.050661660730838776,
0.015698043629527092,
-0.07796386629343033,
0.056132543832063675,
-0.042544424533843994,
0.11675748974084854,
-0.025167955085635185,
0.006111545953899622,
0.01875973865389824,
-0.051746826618909836,
0.15160223841667175,
-0.025439510121941566,
0.095378577709198,
-0.021583231166005135,
0.020724263042211533,
-0.017741575837135315,
-0.07499359548091888,
0.017634177580475807,
-0.0767667219042778,
0.036995962262153625,
-0.0798298791050911,
-0.01079220324754715,
-0.0719761773943901,
0.01439101155847311,
-0.04865468293428421,
-0.04130235314369202,
-0.03939521312713623,
0.05593486875295639,
0.05925271287560463,
-0.006840313319116831,
0.1317637860774994,
0.01937885954976082,
0.1501307487487793,
0.08978965133428574,
0.06180062144994736,
0.03447354957461357,
-0.06327888369560242,
-0.01215929351747036,
-0.012904520146548748,
0.04544756934046745,
-0.11849787086248398,
0.010937333106994629,
0.14339959621429443,
0.03575542941689491,
0.10265647619962692,
0.054269108921289444,
-0.07833170890808105,
-0.007933033630251884,
0.07216518372297287,
-0.13769549131393433,
-0.16552068293094635,
0.016757789999246597,
-0.008061964996159077,
-0.13619045913219452,
0.03213901445269585,
0.09629533439874649,
-0.05607780069112778,
-0.010947523638606071,
-0.0039109657518565655,
0.059426262974739075,
-0.033399563282728195,
0.2084009051322937,
0.04054407402873039,
0.08204559981822968,
-0.08909119665622711,
0.1032944843173027,
0.04322444275021553,
-0.09461832791566849,
0.042286697775125504,
0.09623463451862335,
-0.06382452696561813,
-0.010548252612352371,
0.10258254408836365,
0.10170164704322815,
0.057735685259103775,
-0.02964131161570549,
-0.12142529338598251,
-0.11903134733438492,
0.07741743326187134,
0.08133284747600555,
0.048238903284072876,
0.030001169070601463,
0.003767966292798519,
0.046240296214818954,
-0.09962435066699982,
0.1138671264052391,
0.06198098510503769,
0.08218325674533844,
-0.1661522090435028,
0.11113814264535904,
-0.01562582142651081,
0.012168782763183117,
-0.0018210430862382054,
0.04462393373250961,
-0.13966497778892517,
-0.00873722042888403,
-0.05793182551860809,
-0.03513393923640251,
-0.05889040231704712,
-0.004094038158655167,
0.02167282998561859,
-0.035759247839450836,
-0.05345314368605614,
0.013538538478314877,
-0.10183677077293396,
-0.057411011308431625,
-0.02610015496611595,
0.06846066564321518,
-0.13020527362823486,
-0.018902642652392387,
0.026021797209978104,
-0.10767560452222824,
0.08996472507715225,
0.03786960989236832,
0.060511406511068344,
0.014692779630422592,
-0.1212756335735321,
0.034312427043914795,
0.041325896978378296,
-0.01537121832370758,
0.0310725886374712,
-0.13751167058944702,
-0.01854345016181469,
-0.05661405250430107,
0.0015653494047001004,
0.004645737819373608,
0.052046652883291245,
-0.1320718377828598,
0.005218715872615576,
-0.04841621220111847,
-0.06811803579330444,
-0.049232397228479385,
0.021269964054226875,
0.05629614740610123,
-0.00987933948636055,
0.13094131648540497,
-0.0807734802365303,
0.05137203261256218,
-0.2289399355649948,
-0.027788136154413223,
-0.00042717831092886627,
-0.04625874385237694,
-0.08080346882343292,
-0.01789642497897148,
0.10076095163822174,
-0.04830801114439964,
0.0945471003651619,
-0.03858046233654022,
0.026806844398379326,
0.019548945128917694,
-0.09396002441644669,
0.04553243890404701,
0.06307999789714813,
0.16328884661197662,
0.031930241733789444,
-0.036070965230464935,
0.046330008655786514,
0.004269908647984266,
0.0775018185377121,
0.06775446236133575,
0.19813653826713562,
0.15895818173885345,
0.0014103909488767385,
0.07886894047260284,
0.06488977372646332,
-0.16356582939624786,
-0.11787289381027222,
0.11743690073490143,
-0.06106783077120781,
0.105865977704525,
-0.025558525696396828,
0.14208678901195526,
0.08769090473651886,
-0.2053682953119278,
0.0034048608504235744,
-0.035132233053445816,
-0.08460953831672668,
-0.11655542254447937,
-0.04618946835398674,
-0.09159526228904724,
-0.1816553920507431,
0.026730237528681755,
-0.10891935974359512,
0.03147882595658302,
0.07364437729120255,
0.04111860692501068,
0.03674197569489479,
0.17209500074386597,
0.05131680890917778,
0.05286400020122528,
0.0515277236700058,
0.04514102265238762,
-0.01867852546274662,
-0.009590929374098778,
-0.1078113541007042,
0.012604325078427792,
-0.07418999075889587,
0.05794648081064224,
-0.06819479912519455,
-0.08552712202072144,
0.08119174838066101,
0.021794594824314117,
-0.09628068655729294,
0.028312187641859055,
-0.02796344645321369,
0.03030269593000412,
0.07776190340518951,
0.029903197661042213,
-0.011571630835533142,
-0.03708312660455704,
0.20408138632774353,
-0.09045606851577759,
-0.017026187852025032,
-0.11548600345849991,
0.2570491433143616,
0.011047082021832466,
0.00319964368827641,
0.0278459545224905,
-0.08124830573797226,
-0.012564529664814472,
0.12569373846054077,
0.1713484823703766,
-0.05866606906056404,
-0.013780999928712845,
0.03273486718535423,
-0.01007018331438303,
-0.04507267475128174,
0.0875893384218216,
0.10213566571474075,
0.03847435489296913,
-0.0784708708524704,
-0.02675064653158188,
-0.025604205206036568,
-0.04951801151037216,
-0.06418116390705109,
0.02796514704823494,
0.04955873265862465,
-0.0009215192403644323,
-0.04428308084607124,
0.08535001426935196,
-0.050216857343912125,
-0.08427112549543381,
0.10983804613351822,
-0.20292308926582336,
-0.18422800302505493,
-0.03055390529334545,
0.06964852660894394,
0.005344185046851635,
0.06523432582616806,
-0.01809547282755375,
-0.04750296473503113,
0.09230157732963562,
-0.012461361475288868,
-0.059207312762737274,
-0.11310049146413803,
0.03895732760429382,
-0.06148505583405495,
0.21227845549583435,
-0.029824336990714073,
0.028237689286470413,
0.11228670924901962,
0.02408909983932972,
-0.09295295923948288,
0.03916475921869278,
0.09026499837636948,
-0.12229933589696884,
0.004019795451313257,
0.15213149785995483,
-0.04787876829504967,
0.10910625755786896,
0.05544360727071762,
-0.09600373357534409,
-0.0073335603810846806,
-0.07462455332279205,
-0.042196959257125854,
-0.05643899738788605,
-0.004773682449012995,
-0.036563772708177567,
0.1567368507385254,
0.21054469048976898,
-0.05476652830839157,
-0.002644661581143737,
-0.03141934424638748,
0.04891909658908844,
0.04511819779872894,
0.1286439448595047,
-0.010601267218589783,
-0.26238229870796204,
0.04247622564435005,
0.017151277512311935,
0.03521011769771576,
-0.18816295266151428,
-0.09667620807886124,
0.03332976996898651,
-0.04040217399597168,
-0.08677385002374649,
0.10731388628482819,
0.06013471260666847,
0.04684405028820038,
-0.057476386427879333,
-0.14427578449249268,
-0.04259679093956947,
0.164405956864357,
-0.15733639895915985,
-0.08643285930156708
] |
null | null | transformers | # SpecCoder 7bn v2
This model is a fine-tuned version of [DeepSeek Coder 7b Instruct](https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5) on a synthetic dataset of ~26k solidity smart contracts.
It achieves the following results on the evaluation set:
- Loss: 0.4504
## Model Description
The model was fine-tune through DeepSpeed ZeRO3 framework.
## Intended uses & limitations
To generate solidity smart contracts.
## Training and evaluation data
5% hold out validation data.
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 1
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.3868 | 1.0 | 1570 | 0.4504 |
### Framework versions
- DeepSpeed 0.13.2
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1 | {"language": ["en"], "license": "mit", "pipeline_tag": "text-generation"} | text-generation | asadmasad/ds-7-ds-finetuned | [
"transformers",
"pytorch",
"llama",
"text-generation",
"conversational",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:45:22+00:00 | [] | [
"en"
] | TAGS
#transformers #pytorch #llama #text-generation #conversational #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
| SpecCoder 7bn v2
================
This model is a fine-tuned version of DeepSeek Coder 7b Instruct on a synthetic dataset of ~26k solidity smart contracts.
It achieves the following results on the evaluation set:
* Loss: 0.4504
Model Description
-----------------
The model was fine-tune through DeepSpeed ZeRO3 framework.
Intended uses & limitations
---------------------------
To generate solidity smart contracts.
Training and evaluation data
----------------------------
5% hold out validation data.
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 5e-06
* train\_batch\_size: 8
* eval\_batch\_size: 4
* seed: 42
* gradient\_accumulation\_steps: 1
* total\_train\_batch\_size: 8
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: cosine
* lr\_scheduler\_warmup\_steps: 10
* num\_epochs: 1
### Training results
### Framework versions
* DeepSpeed 0.13.2
* Transformers 4.37.2
* Pytorch 2.2.0+cu121
* Datasets 2.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 1\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* DeepSpeed 0.13.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #pytorch #llama #text-generation #conversational #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 1\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1",
"### Training results",
"### Framework versions\n\n\n* DeepSpeed 0.13.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
57,
145,
4,
38
] | [
"passage: TAGS\n#transformers #pytorch #llama #text-generation #conversational #en #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 4\n* seed: 42\n* gradient\\_accumulation\\_steps: 1\n* total\\_train\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_steps: 10\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* DeepSpeed 0.13.2\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.16.1\n* Tokenizers 0.15.1"
] | [
-0.10569535195827484,
0.0520763099193573,
-0.002977935364469886,
0.08821334689855576,
0.1360601782798767,
0.03232305869460106,
0.14546999335289001,
0.11764749139547348,
-0.10909070074558258,
0.07869649678468704,
0.11116291582584381,
0.12195562571287155,
0.04383891820907593,
0.13639256358146667,
-0.03667823597788811,
-0.2979181408882141,
0.0026261089369654655,
0.006456342991441488,
-0.12979277968406677,
0.13530370593070984,
0.09004893153905869,
-0.1356736421585083,
0.06335468590259552,
-0.0029401665087789297,
-0.16261135041713715,
-0.024001477286219597,
-0.020595496520400047,
-0.06230759248137474,
0.13862676918506622,
0.017373016104102135,
0.11170295625925064,
0.040244489908218384,
0.097896508872509,
-0.15850527584552765,
0.011607787571847439,
0.055305056273937225,
0.022579841315746307,
0.1050468236207962,
0.073259137570858,
0.02272455021739006,
0.05829243361949921,
-0.10208983719348907,
0.07606788724660873,
0.012331679463386536,
-0.10602305829524994,
-0.22789207100868225,
-0.07829928398132324,
0.06390874832868576,
0.09248140454292297,
0.08194828033447266,
0.004244246985763311,
0.12873028218746185,
-0.10001353919506073,
0.08383674174547195,
0.27346572279930115,
-0.3107146620750427,
-0.07487478852272034,
-0.012216489762067795,
0.020086225122213364,
0.06955529004335403,
-0.11574605852365494,
-0.02605784498155117,
0.02906791865825653,
0.025967003777623177,
0.1190357580780983,
0.009486537426710129,
-0.02317632921040058,
0.007874003611505032,
-0.144734725356102,
-0.05237981677055359,
0.07271301001310349,
0.025758929550647736,
-0.024176742881536484,
-0.06686218082904816,
-0.0873202383518219,
-0.24405904114246368,
-0.05209783464670181,
-0.013665714301168919,
0.03703398257493973,
-0.06735843420028687,
-0.09499511122703552,
0.014891522005200386,
-0.0889018326997757,
-0.07851271331310272,
-0.01124822162091732,
0.19674880802631378,
0.06929730623960495,
0.003888969775289297,
-0.0024705161340534687,
0.1284109354019165,
0.06335507333278656,
-0.18888750672340393,
0.01493123173713684,
0.02658192254602909,
-0.03768455237150192,
-0.01568915694952011,
-0.04890521243214607,
0.009314147755503654,
0.008562223985791206,
0.15166227519512177,
-0.040122732520103455,
0.04484653100371361,
0.042567990720272064,
0.03375237435102463,
-0.08779419958591461,
0.19256262481212616,
-0.059893861413002014,
-0.036850180476903915,
0.022516028955578804,
0.10604827851057053,
0.06044810265302658,
-0.034672077745199203,
-0.10760314762592316,
0.013888766057789326,
0.12574344873428345,
0.0460013672709465,
-0.0253311675041914,
0.02888398990035057,
-0.04145367071032524,
-0.04394035041332245,
0.0458989255130291,
-0.10695631802082062,
0.027576038613915443,
0.037756141275167465,
-0.09398038685321808,
0.002622933592647314,
-0.005285535007715225,
0.0090763745829463,
-0.01660468988120556,
0.13554997742176056,
-0.07212869077920914,
-0.0031709277536720037,
-0.09796430915594101,
-0.10984943807125092,
0.01991315186023712,
-0.036848995834589005,
-0.008859514258801937,
-0.0843154639005661,
-0.14432480931282043,
-0.018844405189156532,
0.03564443066716194,
-0.060001030564308167,
-0.09497058391571045,
-0.03303874284029007,
-0.09440276026725769,
0.039821065962314606,
-0.023295551538467407,
0.14696741104125977,
-0.0549209900200367,
0.12470647692680359,
0.05299553647637367,
0.0669078379869461,
0.025137728080153465,
0.047578468918800354,
-0.07396087050437927,
0.019527865573763847,
-0.1815163493156433,
0.037634819746017456,
-0.05036529526114464,
0.04743054136633873,
-0.08320579677820206,
-0.14473752677440643,
0.0005058917449787259,
-0.021207576617598534,
0.09722869098186493,
0.12491670250892639,
-0.1417701095342636,
-0.10269276052713394,
0.11557882279157639,
-0.07759132981300354,
-0.11952117085456848,
0.13820728659629822,
-0.025242069736123085,
-0.025181051343679428,
0.027463404461741447,
0.10906516760587692,
0.09393800795078278,
-0.06926015019416809,
-0.006288368254899979,
-0.033007677644491196,
0.08679221570491791,
-0.026261594146490097,
0.11630615592002869,
0.029655899852514267,
0.0736924409866333,
0.0026013983879238367,
-0.04460521042346954,
0.05634889751672745,
-0.11832030862569809,
-0.0932450070977211,
-0.024377739056944847,
-0.06697286665439606,
0.07288362830877304,
0.05218683183193207,
0.07386061549186707,
-0.09236285090446472,
-0.10882894694805145,
0.04309441149234772,
0.09873954206705093,
-0.06264956295490265,
0.019677169620990753,
-0.06681226938962936,
0.08858099579811096,
-0.036081407219171524,
-0.010547282174229622,
-0.17917682230472565,
-0.07655578851699829,
0.036944419145584106,
-0.00993517879396677,
0.025134261697530746,
0.004628896713256836,
0.07404728978872299,
0.09214270859956741,
-0.04083642736077309,
-0.06165852025151253,
-0.08011406660079956,
-0.033728595823049545,
-0.10591045767068863,
-0.21901379525661469,
-0.09273402392864227,
-0.006193577777594328,
0.1374325156211853,
-0.15932144224643707,
0.02143443562090397,
-0.012016032822430134,
0.1201874166727066,
0.009725894778966904,
-0.010682088322937489,
-0.032656438648700714,
0.08172114193439484,
-0.023334354162216187,
-0.05249118059873581,
0.04872457683086395,
0.0021146226208657026,
-0.07178130000829697,
-0.023825082927942276,
-0.1280003786087036,
0.21426349878311157,
0.11548756062984467,
-0.06219460070133209,
-0.06713460385799408,
0.010554717853665352,
-0.07333064824342728,
-0.047180913388729095,
-0.02565886825323105,
0.027578236535191536,
0.1653970181941986,
0.02598874270915985,
0.13538536429405212,
-0.0822436586022377,
-0.05509765446186066,
0.022807655856013298,
0.00013663868594449013,
0.03218346834182739,
0.1196596771478653,
0.10638616234064102,
-0.0793532058596611,
0.12673552334308624,
0.14066515862941742,
-0.08379905670881271,
0.12917940318584442,
-0.05636380985379219,
-0.08975345641374588,
-0.029045570641756058,
-0.002568955300375819,
0.01812106929719448,
0.09605539590120316,
-0.08618847280740738,
-0.004431563895195723,
0.03637656942009926,
0.004637602716684341,
0.01731470227241516,
-0.2115316540002823,
-0.008513642475008965,
0.03601198270916939,
-0.04846349358558655,
0.014613378793001175,
-0.017930684611201286,
0.03754529356956482,
0.11104899644851685,
0.031763043254613876,
-0.07321041077375412,
0.005969714373350143,
-0.009810659103095531,
-0.06815272569656372,
0.20744794607162476,
-0.06197110936045647,
-0.1502619832754135,
-0.1269313544034958,
-0.03500235825777054,
-0.057102374732494354,
-0.01563882641494274,
0.038900770246982574,
-0.08405119180679321,
-0.028241785243153572,
-0.03474913537502289,
0.04442818835377693,
0.010756290517747402,
0.05340956896543503,
0.024091407656669617,
0.0009887400083243847,
0.030550630763173103,
-0.10668874531984329,
0.009588630869984627,
-0.04277314990758896,
-0.05460691452026367,
0.02848224900662899,
0.0878048837184906,
0.07492160052061081,
0.16203844547271729,
0.007999653927981853,
0.010266981087625027,
-0.02357410453259945,
0.18349620699882507,
-0.08561065047979355,
-0.0362359844148159,
0.16480566561222076,
-0.0006037476705387235,
0.059364818036556244,
0.12669767439365387,
0.06162792071700096,
-0.06778184324502945,
0.006071470212191343,
0.013276690617203712,
-0.0186016783118248,
-0.19514679908752441,
-0.0454958938062191,
-0.05710136890411377,
0.011600710451602936,
0.08872024714946747,
0.030387267470359802,
-0.009688181802630424,
0.033065661787986755,
-0.01433632057160139,
0.03988580033183098,
-0.028301289305090904,
0.06904566287994385,
0.11820948123931885,
0.055351827293634415,
0.13481268286705017,
-0.03560463339090347,
-0.06756927073001862,
0.031265534460544586,
-0.03826691210269928,
0.18227963149547577,
-0.04213642328977585,
0.16431264579296112,
0.01701960526406765,
0.19162625074386597,
0.03462688997387886,
0.10473205149173737,
0.018368028104305267,
-0.03215978667140007,
0.006689350586384535,
-0.058598991483449936,
-0.06963206827640533,
0.012215454131364822,
0.013563272543251514,
0.06310965865850449,
-0.11802732944488525,
0.031523447483778,
0.03077157959342003,
0.3036271333694458,
0.05364896357059479,
-0.3305758535861969,
-0.1144760325551033,
-0.011842054314911366,
-0.044605936855077744,
-0.021351367235183716,
0.0082174027338624,
0.09839201718568802,
-0.10545283555984497,
0.016019564121961594,
-0.08240412920713425,
0.07397008687257767,
-0.07000485062599182,
0.037963103502988815,
0.0977240726351738,
0.1116049662232399,
0.022861594334244728,
0.057129185646772385,
-0.24055039882659912,
0.24954620003700256,
-0.006130741443485022,
0.056429699063301086,
-0.07277446240186691,
0.010351563803851604,
0.02105342410504818,
-0.007006956730037928,
0.00858069397509098,
-0.029924117028713226,
0.008556638844311237,
-0.1764974296092987,
-0.14054632186889648,
0.024597380310297012,
0.14023111760616302,
-0.06542570143938065,
0.12876960635185242,
-0.03417506441473961,
-0.026854556053876877,
0.043461743742227554,
-0.024472981691360474,
-0.024394186213612556,
-0.07949234545230865,
0.04223772510886192,
-0.04030138626694679,
0.010614613071084023,
-0.08295436948537827,
-0.1520656943321228,
-0.08060120791196823,
0.20179396867752075,
-0.0623834989964962,
-0.04257789999246597,
-0.1274569034576416,
0.10091102868318558,
0.12889818847179413,
-0.09254524856805801,
0.05382781848311424,
0.0059875077567994595,
0.11628410965204239,
0.02780238911509514,
-0.06840693950653076,
0.11394383758306503,
-0.08288022130727768,
-0.2342408150434494,
-0.027968252077698708,
0.1559818685054779,
-0.008823273703455925,
0.07609807699918747,
-0.04128213971853256,
0.027042662724852562,
-0.028850501403212547,
-0.09373508393764496,
0.009712385013699532,
0.00021036353427916765,
0.03201962634921074,
0.02677636407315731,
-0.030492650344967842,
0.03818759322166443,
-0.0470614992082119,
-0.007579147815704346,
0.18978163599967957,
0.2886895537376404,
-0.08036934584379196,
0.03510688990354538,
0.04548432305455208,
-0.017525408416986465,
-0.18691955506801605,
-0.01255064457654953,
0.11369893699884415,
0.041993893682956696,
0.0018714310135692358,
-0.18420559167861938,
0.07231409102678299,
0.08562138676643372,
-0.026623612269759178,
0.07849381864070892,
-0.3456014096736908,
-0.14400562644004822,
0.08501353859901428,
0.10982392728328705,
0.07848504930734634,
-0.15280555188655853,
-0.046690933406353,
-0.014644091948866844,
-0.1312672197818756,
0.11313822120428085,
-0.03765743598341942,
0.13675731420516968,
-0.030552297830581665,
0.04272235929965973,
0.011068637482821941,
-0.061389513313770294,
0.11170531064271927,
-0.05038280040025711,
0.07369179278612137,
-0.03566383197903633,
-0.0014455965720117092,
0.03457102179527283,
-0.0507429838180542,
0.0038794241845607758,
-0.05136580765247345,
0.038859400898218155,
-0.08592504262924194,
-0.012589837424457073,
-0.09787698835134506,
0.018159236758947372,
-0.054742708802223206,
-0.051370155066251755,
-0.021242113783955574,
0.02364998497068882,
0.02811100333929062,
-0.01807394064962864,
0.1532212346792221,
0.041393671184778214,
0.1354437917470932,
0.10629197210073471,
0.08720844984054565,
-0.030532849952578545,
-0.07639191299676895,
-0.035554878413677216,
-0.013610607013106346,
0.05158168822526932,
-0.10741683095693588,
0.004258324392139912,
0.147458016872406,
0.044684309512376785,
0.09218163788318634,
0.08091939240694046,
-0.038754161447286606,
0.0026782939676195383,
0.07417652755975723,
-0.15407904982566833,
-0.10270862281322479,
-0.01596853695809841,
0.014809253625571728,
-0.1401911973953247,
0.04256109148263931,
0.1165643259882927,
-0.06961582601070404,
-0.02253468707203865,
0.016624722629785538,
0.00859612412750721,
-0.02408198080956936,
0.20802439749240875,
0.043862394988536835,
0.08974430710077286,
-0.11547679454088211,
0.07375886291265488,
0.0516621433198452,
-0.08943179994821548,
0.010183830745518208,
0.1405998319387436,
-0.07458741217851639,
-0.008696280419826508,
0.06840608268976212,
0.10397855192422867,
-0.04722720757126808,
-0.015736525878310204,
-0.17810550332069397,
-0.13912174105644226,
0.08168331533670425,
0.1405268758535385,
0.07696768641471863,
0.03606850653886795,
-0.04461786150932312,
0.04289768636226654,
-0.11376874893903732,
0.10482057929039001,
0.05686909332871437,
0.08003714680671692,
-0.14710791409015656,
0.17669257521629333,
-0.0013214554637670517,
0.05706510692834854,
-0.024573879316449165,
0.0163442213088274,
-0.10287399590015411,
0.006294303108006716,
-0.10582789778709412,
-0.05993825942277908,
-0.010486512444913387,
-0.015466424636542797,
-0.02036045491695404,
-0.04884728044271469,
-0.0651211217045784,
0.011162670329213142,
-0.10709002614021301,
-0.04368990659713745,
-0.01892726868391037,
0.022832263261079788,
-0.1374851018190384,
-0.0027390567120164633,
0.03961550444364548,
-0.11544087529182434,
0.11124220490455627,
0.068141870200634,
0.043088555335998535,
0.05156872794032097,
-0.06778682768344879,
-0.02362591028213501,
0.05056823790073395,
0.010261918418109417,
0.07271427661180496,
-0.11624371260404587,
-0.001533664995804429,
-0.03120327740907669,
0.0252243485301733,
0.013555532321333885,
0.071453757584095,
-0.1377611756324768,
0.030801326036453247,
-0.030389990657567978,
-0.04494353383779526,
-0.06400632113218307,
0.022797057405114174,
0.03859972208738327,
0.009654511697590351,
0.16326038539409637,
-0.07670050859451294,
0.06185882166028023,
-0.2317384034395218,
-0.011264482513070107,
-0.029557058587670326,
-0.09290645271539688,
-0.11294198781251907,
-0.0441555380821228,
0.09422037750482559,
-0.04880031943321228,
0.08055534213781357,
-0.03336641564965248,
0.04617605358362198,
0.039598025381565094,
-0.013842490501701832,
0.028170527890324593,
0.06261082738637924,
0.16589190065860748,
0.06964709609746933,
-0.02068282850086689,
0.06526114791631699,
0.03498487547039986,
0.09180644154548645,
0.069820836186409,
0.23240911960601807,
0.13965104520320892,
0.05351909250020981,
0.09930073469877243,
0.07491227984428406,
-0.09315379709005356,
-0.16553933918476105,
0.06103064492344856,
-0.05480699613690376,
0.11160682141780853,
-0.030109597370028496,
0.18119964003562927,
0.100012868642807,
-0.1633702963590622,
0.017780454829335213,
-0.04374097287654877,
-0.07208068668842316,
-0.10343312472105026,
0.008464468643069267,
-0.07973622530698776,
-0.1576474905014038,
0.0068399603478610516,
-0.11535965651273727,
0.02129393443465233,
0.09231860190629959,
0.04172926023602486,
0.0019103025551885366,
0.15683159232139587,
0.05698065087199211,
0.029443565756082535,
0.06664390116930008,
0.022989001125097275,
-0.00251263496465981,
-0.035510461777448654,
-0.10077602416276932,
-0.018993351608514786,
-0.0059880586341023445,
0.061738137155771255,
-0.050756439566612244,
-0.09071717411279678,
0.06178790330886841,
0.005851528607308865,
-0.12598995864391327,
0.03866138309240341,
-0.01613282412290573,
0.0796358734369278,
0.06959514319896698,
-0.010101965628564358,
0.014426118694245815,
-0.034034743905067444,
0.23601298034191132,
-0.10601724684238434,
-0.09057991206645966,
-0.09412768483161926,
0.23914796113967896,
0.020922500640153885,
-0.024560866877436638,
0.03866175562143326,
-0.06937271356582642,
-0.061947908252477646,
0.16601300239562988,
0.18228431046009064,
-0.09857378900051117,
-0.011969398707151413,
0.054832737892866135,
-0.010364515706896782,
-0.05417875945568085,
0.10899616032838821,
0.15267744660377502,
0.11543650180101395,
-0.10565643757581711,
-0.04803699627518654,
-0.038705579936504364,
-0.03786744177341461,
-0.05686024948954582,
0.05640721693634987,
0.02821802906692028,
0.00587626313790679,
-0.037067312747240067,
0.05214802175760269,
-0.06610564887523651,
-0.11102908104658127,
0.025560716167092323,
-0.25056222081184387,
-0.21086005866527557,
-0.023698417469859123,
0.10602488368749619,
0.008055535145103931,
0.07758087664842606,
0.011561697348952293,
-0.03152979910373688,
0.06054015830159187,
-0.010020727291703224,
-0.04414839297533035,
-0.07416480779647827,
0.10224137455224991,
-0.06967014819383621,
0.158369779586792,
-0.03810851648449898,
0.06818563491106033,
0.11998956650495529,
0.05409348011016846,
-0.09724178910255432,
0.01995922066271305,
0.07595871388912201,
-0.15653462707996368,
0.012385415844619274,
0.15526315569877625,
-0.023716209456324577,
0.06529701501131058,
0.041079651564359665,
-0.14150471985340118,
-0.00781312957406044,
-0.06842116266489029,
-0.01983308233320713,
-0.04106070101261139,
-0.046945396810770035,
-0.03167519345879555,
0.13549669086933136,
0.22663982212543488,
-0.04955647513270378,
-0.008794315159320831,
-0.05671162158250809,
0.009615225717425346,
0.06426180899143219,
0.08774136006832123,
-0.048422060906887054,
-0.2919157147407532,
0.021407663822174072,
0.020174123346805573,
0.006035118363797665,
-0.22023293375968933,
-0.09696338325738907,
0.043229758739471436,
-0.04751180112361908,
-0.11961477249860764,
0.09400849044322968,
0.04507048428058624,
0.04029228165745735,
-0.038593750447034836,
-0.07242204248905182,
-0.07991344481706619,
0.15170733630657196,
-0.19975882768630981,
-0.08571011573076248
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-ft-keyword-spotting
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0866
- Accuracy: 0.9816
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4888 | 1.0 | 384 | 0.3631 | 0.9701 |
| 0.2033 | 2.0 | 768 | 0.1407 | 0.9721 |
| 0.1843 | 3.0 | 1152 | 0.1012 | 0.9782 |
| 0.1435 | 4.0 | 1537 | 0.0895 | 0.9807 |
| 0.116 | 5.0 | 1920 | 0.0866 | 0.9816 |
### Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "base_model": "facebook/wav2vec2-base", "model-index": [{"name": "wav2vec2-base-ft-keyword-spotting", "results": [{"task": {"type": "audio-classification", "name": "Audio Classification"}, "dataset": {"name": "superb", "type": "superb", "config": "ks", "split": "validation", "args": "ks"}, "metrics": [{"type": "accuracy", "value": 0.9816122388937923, "name": "Accuracy"}]}]}]} | audio-classification | michaelung/wav2vec2-base-ft-keyword-spotting | [
"transformers",
"tensorboard",
"safetensors",
"wav2vec2",
"audio-classification",
"generated_from_trainer",
"dataset:superb",
"base_model:facebook/wav2vec2-base",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:46:01+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us
| wav2vec2-base-ft-keyword-spotting
=================================
This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset.
It achieves the following results on the evaluation set:
* Loss: 0.0866
* Accuracy: 0.9816
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 3e-05
* train\_batch\_size: 32
* eval\_batch\_size: 32
* seed: 0
* gradient\_accumulation\_steps: 4
* total\_train\_batch\_size: 128
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_ratio: 0.1
* num\_epochs: 5.0
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.38.0.dev0
* Pytorch 2.2.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
76,
159,
4,
38
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #wav2vec2 #audio-classification #generated_from_trainer #dataset-superb #base_model-facebook/wav2vec2-base #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 3e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 0\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 5.0\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.38.0.dev0\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.1221778616309166,
0.13162901997566223,
-0.003385575721040368,
0.05691228061914444,
0.11031493544578552,
0.019891388714313507,
0.09564608335494995,
0.14046749472618103,
-0.07764437049627304,
0.11737006157636642,
0.09803082048892975,
0.06050033122301102,
0.06959858536720276,
0.18256165087223053,
-0.03305140510201454,
-0.2656893730163574,
0.0327969454228878,
-0.014676256105303764,
-0.12626412510871887,
0.10430677235126495,
0.08098401874303818,
-0.10500431060791016,
0.05215877667069435,
0.00460894126445055,
-0.10944659262895584,
-0.002418162999674678,
-0.029912931844592094,
-0.05295664817094803,
0.08107256889343262,
0.04865627735853195,
0.07959231734275818,
0.05203710123896599,
0.08044750988483429,
-0.2452503889799118,
0.013948746025562286,
0.08797480911016464,
0.005542098544538021,
0.07994136959314346,
0.12316732853651047,
-0.008279526606202126,
0.07850951701402664,
-0.08908475935459137,
0.07275082916021347,
0.04053185135126114,
-0.10308837890625,
-0.30686354637145996,
-0.10854367166757584,
0.053276773542165756,
0.14427894353866577,
0.05377407744526863,
-0.02765081822872162,
0.0650152713060379,
-0.058876167982816696,
0.07778006047010422,
0.2383725792169571,
-0.2587030231952667,
-0.06325086206197739,
0.02252010814845562,
0.0680369883775711,
0.0502617247402668,
-0.10532590001821518,
-0.01931626722216606,
0.04188738763332367,
0.02160472795367241,
0.12648716568946838,
0.006145324558019638,
0.048950448632240295,
-0.007391713559627533,
-0.15118718147277832,
-0.034230589866638184,
0.10912981629371643,
0.09658094495534897,
-0.036757271736860275,
-0.09199085086584091,
-0.03025033138692379,
-0.2112751603126526,
-0.03652234748005867,
-0.008723600767552853,
0.038956910371780396,
-0.034733328968286514,
-0.08326618373394012,
0.03148655965924263,
-0.053238965570926666,
-0.08399339020252228,
0.027834294363856316,
0.13832537829875946,
0.04708509519696236,
-0.020255178213119507,
0.012681758962571621,
0.10817647725343704,
0.004428901243954897,
-0.15877938270568848,
-0.004645195789635181,
0.020550008863210678,
-0.11471740901470184,
-0.03893427923321724,
-0.016365621238946915,
-0.025284361094236374,
0.02514532208442688,
0.1763264387845993,
-0.06002828851342201,
0.0973459780216217,
0.023177174851298332,
0.030420398339629173,
-0.05567697808146477,
0.09806755185127258,
-0.05859793350100517,
-0.09653763473033905,
-0.03236792981624603,
0.11286723613739014,
0.016015229746699333,
-0.013312201015651226,
-0.07524251192808151,
0.029496435075998306,
0.09500272572040558,
0.033110424876213074,
-0.01012980006635189,
0.007813016884028912,
-0.08790719509124756,
-0.02959730289876461,
0.06445308029651642,
-0.09072476625442505,
0.061748191714286804,
0.03154968097805977,
-0.04117991775274277,
-0.024973589926958084,
0.0063411518931388855,
0.02604520320892334,
0.01452423445880413,
0.17117726802825928,
-0.06463228166103363,
-0.02496430091559887,
-0.07106975466012955,
-0.08348102122545242,
0.049455564469099045,
-0.05555546283721924,
0.00003134509825031273,
-0.06285090744495392,
-0.10627137124538422,
-0.0549936406314373,
0.06531307846307755,
-0.050566330552101135,
-0.07333355396986008,
-0.045565348118543625,
-0.06353069096803665,
0.0651923194527626,
-0.034131065011024475,
0.14700064063072205,
-0.0771222785115242,
0.096677765250206,
0.00317295640707016,
0.06239737197756767,
0.03569716587662697,
0.06247597560286522,
-0.038322076201438904,
0.06731925159692764,
-0.21021096408367157,
0.04380783811211586,
-0.0932169035077095,
0.027767429128289223,
-0.14514105021953583,
-0.09260459989309311,
-0.028086403384804726,
-0.003679250832647085,
0.08859974890947342,
0.10336732119321823,
-0.1683536171913147,
-0.10480433702468872,
0.15108846127986908,
-0.09535343199968338,
-0.10060068964958191,
0.13478335738182068,
-0.016404414549469948,
-0.051458608359098434,
0.029135720804333687,
0.1472221165895462,
0.11025752872228622,
-0.10435880720615387,
-0.029745405539870262,
-0.06001834198832512,
0.10069585591554642,
0.04445187374949455,
0.1088935136795044,
-0.03547842800617218,
0.02723911963403225,
-0.010834169574081898,
-0.01921279914677143,
0.05771160498261452,
-0.0769498273730278,
-0.06700986623764038,
-0.023269960656762123,
-0.0673820972442627,
0.03740345686674118,
0.039671462029218674,
0.006201233249157667,
-0.08828190714120865,
-0.12958896160125732,
0.0439818911254406,
0.11964796483516693,
-0.07023147493600845,
0.025978894904255867,
-0.06396109610795975,
0.08397567272186279,
-0.05755038931965828,
-0.023107200860977173,
-0.16596634685993195,
-0.008933973498642445,
0.028134437277913094,
-0.07632274925708771,
0.004093313589692116,
-0.03595113009214401,
0.06628207117319107,
0.06682723760604858,
-0.07422265410423279,
-0.08220220357179642,
-0.05724458768963814,
0.00947363581508398,
-0.07389902323484421,
-0.26599711179733276,
-0.07344849407672882,
-0.038898929953575134,
0.121989905834198,
-0.21376627683639526,
0.004236862063407898,
0.05080769583582878,
0.1674821525812149,
0.06723064184188843,
-0.05305236205458641,
0.0047792051918804646,
0.07419343292713165,
-0.017878791317343712,
-0.07712898403406143,
0.029309416189789772,
0.0067859976552426815,
-0.11551554501056671,
-0.01947922259569168,
-0.12481782585382462,
0.13018929958343506,
0.09494300186634064,
0.027288071811199188,
-0.10030455142259598,
-0.06584007292985916,
-0.06029495969414711,
-0.06250586360692978,
-0.05665186420083046,
0.008904200047254562,
0.14106740057468414,
0.03069879673421383,
0.11157185584306717,
-0.08029009401798248,
-0.04088420420885086,
0.04634220525622368,
0.014269889332354069,
-0.02047662064433098,
0.11318148672580719,
0.09411054849624634,
-0.1009267047047615,
0.12726300954818726,
0.15070290863513947,
-0.04742627963423729,
0.16991613805294037,
-0.06936093419790268,
-0.09799811244010925,
-0.03811892494559288,
0.027437303215265274,
0.021786818280816078,
0.1198585256934166,
-0.0904146283864975,
0.018790433183312416,
0.0138846505433321,
0.04366569221019745,
0.004891473334282637,
-0.17013929784297943,
0.0020656627602875233,
0.04750834405422211,
-0.05966249480843544,
-0.0027196859009563923,
-0.014597289264202118,
-0.005433833692222834,
0.082329161465168,
0.015221747569739819,
-0.04371066763997078,
0.006569143384695053,
-0.00838131457567215,
-0.08227516710758209,
0.16974088549613953,
-0.10872624069452286,
-0.1263875812292099,
-0.12699513137340546,
-0.01961439475417137,
-0.017413729801774025,
-0.020532360300421715,
0.05913746729493141,
-0.09007995575666428,
-0.04344569519162178,
-0.056954026222229004,
0.021789897233247757,
-0.028872065246105194,
0.041255392134189606,
0.0011701908661052585,
0.013605551794171333,
0.07982715219259262,
-0.08810046315193176,
0.025274459272623062,
0.009573315270245075,
-0.008093912154436111,
0.004671147093176842,
0.04459139704704285,
0.07299560308456421,
0.14641718566417694,
0.043070580810308456,
0.016581835225224495,
-0.04285232350230217,
0.176731139421463,
-0.1173856183886528,
0.007942169904708862,
0.107340969145298,
-0.02417658641934395,
0.05624106526374817,
0.1609283834695816,
0.04652958735823631,
-0.07925710082054138,
0.01613745093345642,
0.05157627537846565,
-0.01854507066309452,
-0.2273772656917572,
-0.02978563867509365,
-0.05540069192647934,
0.003312006127089262,
0.10600096732378006,
0.04438348487019539,
-0.01931801624596119,
0.04022824391722679,
-0.033730532974004745,
0.010000770911574364,
0.001649947720579803,
0.07142850756645203,
0.029299743473529816,
0.05713449418544769,
0.11681345105171204,
-0.02381124719977379,
0.00015825075388420373,
0.05759892240166664,
0.014606976881623268,
0.2224155068397522,
0.01176520437002182,
0.13662034273147583,
0.05068034678697586,
0.14232571423053741,
0.020331455394625664,
0.030505774542689323,
0.014561762101948261,
-0.019150517880916595,
0.003743149572983384,
-0.0584733821451664,
-0.0023046403657644987,
0.046722933650016785,
0.057865094393491745,
0.031216522678732872,
-0.12931784987449646,
0.0017401844961568713,
0.02057865634560585,
0.31522059440612793,
0.08108149468898773,
-0.29632705450057983,
-0.0771736279129982,
0.024385837838053703,
-0.05492555350065231,
-0.044781606644392014,
0.02073049359023571,
0.13136395812034607,
-0.07580903172492981,
0.11065035313367844,
-0.07428736984729767,
0.08673326671123505,
-0.05594758316874504,
-0.010868213139474392,
0.10121525079011917,
0.10283848643302917,
-0.02139568142592907,
0.039400238543748856,
-0.21515092253684998,
0.2634657323360443,
0.013942229561507702,
0.07024452835321426,
-0.01919664442539215,
0.04305494949221611,
0.03944053873419762,
0.022509664297103882,
0.0854136124253273,
-0.013657423667609692,
-0.17750781774520874,
-0.1677350550889969,
-0.10836848616600037,
0.0028426009230315685,
0.11629602313041687,
-0.06634154170751572,
0.10158251225948334,
-0.025663603097200394,
-0.03178229555487633,
0.047142334282398224,
-0.04503411799669266,
-0.11876987665891647,
-0.09492900222539902,
0.02018987573683262,
0.03054240718483925,
0.057768743485212326,
-0.09718062728643417,
-0.10474633425474167,
-0.08019467443227768,
0.1602768898010254,
-0.09998399764299393,
-0.02381153777241707,
-0.14262650907039642,
0.07188539952039719,
0.14327986538410187,
-0.06207412853837013,
0.06832514703273773,
0.014236806891858578,
0.12904290854930878,
0.015118894167244434,
-0.03224768117070198,
0.12702800333499908,
-0.0792699009180069,
-0.2310202270746231,
-0.08377682417631149,
0.16240455210208893,
0.04305895045399666,
0.053635865449905396,
-0.036566801369190216,
0.045733556151390076,
0.02333923988044262,
-0.07461769133806229,
0.07867026329040527,
0.025296874344348907,
0.04671172425150871,
0.060960251837968826,
-0.013933495618402958,
-0.03222757205367088,
-0.0172620490193367,
-0.0732128694653511,
0.09259744733572006,
0.3215866684913635,
-0.09123679995536804,
0.07434359192848206,
0.05973797291517258,
-0.05506995692849159,
-0.14552722871303558,
0.029182491824030876,
0.1284170150756836,
0.032581768929958344,
0.054597556591033936,
-0.20099382102489471,
0.049483779817819595,
0.09012831747531891,
-0.03058513253927231,
0.108259417116642,
-0.29308632016181946,
-0.13138267397880554,
0.07832794636487961,
0.08226362615823746,
-0.021325241774320602,
-0.164150670170784,
-0.06479071825742722,
-0.019170520827174187,
-0.12424174696207047,
0.07259509712457657,
-0.08073807507753372,
0.11599336564540863,
-0.0007588629378005862,
-0.0034330689813941717,
0.01567823626101017,
-0.03926509991288185,
0.14590565860271454,
-0.015747323632240295,
0.07320715487003326,
-0.014842651784420013,
0.04631446674466133,
-0.023985855281352997,
-0.07213413715362549,
-0.01428816094994545,
-0.10742826759815216,
0.01321321539580822,
-0.11677738279104233,
-0.02270342968404293,
-0.058913007378578186,
0.02018675021827221,
-0.049126122146844864,
-0.030229520052671432,
-0.04588078334927559,
0.05742988362908363,
0.06238792464137077,
-0.01771867461502552,
0.15490517020225525,
-0.024981694296002388,
0.15468159317970276,
0.14312611520290375,
0.08654502034187317,
-0.0038705577608197927,
-0.12644071877002716,
-0.005559055600315332,
-0.03923090547323227,
0.06139712035655975,
-0.13540244102478027,
0.04678014665842056,
0.12755072116851807,
0.029521102085709572,
0.13847403228282928,
0.05238022655248642,
-0.08432787656784058,
0.015899769961833954,
0.08514782786369324,
-0.10328123718500137,
-0.11094271391630173,
-0.007192772347480059,
0.026943225413560867,
-0.13073711097240448,
0.001191994408145547,
0.11695615947246552,
-0.03792811557650566,
-0.010696561075747013,
0.024326853454113007,
0.04666570946574211,
-0.03899845853447914,
0.21378596127033234,
0.018430544063448906,
0.07220197468996048,
-0.09161536395549774,
0.10553260892629623,
0.05590229853987694,
-0.16367502510547638,
0.038408149033784866,
0.07590153068304062,
-0.059060536324977875,
-0.007819384336471558,
0.06000242754817009,
0.1206512302160263,
0.026611732318997383,
-0.06593240797519684,
-0.10655894875526428,
-0.13310666382312775,
0.08068948984146118,
0.10645557940006256,
0.03490959852933884,
0.020366594195365906,
0.003585199359804392,
0.037436313927173615,
-0.08050541579723358,
0.11465224623680115,
0.08948357403278351,
0.08571723103523254,
-0.16953642666339874,
0.1079525500535965,
0.005442479159682989,
-0.02160928212106228,
-0.007783602457493544,
0.02754794992506504,
-0.1236829161643982,
-0.007018455769866705,
-0.11236654967069626,
-0.007616116665303707,
-0.056643180549144745,
-0.006233502179384232,
0.0028838140424340963,
-0.04545580968260765,
-0.05535730719566345,
0.014032659120857716,
-0.10434005409479141,
-0.04360116645693779,
-0.013670502230525017,
0.07464452087879181,
-0.10238475352525711,
-0.019808592274785042,
0.036370690912008286,
-0.10907570272684097,
0.08171523362398148,
0.014776315540075302,
0.04156945273280144,
-0.0030354654882103205,
-0.11732491105794907,
0.006088512018322945,
0.03898857906460762,
-0.027506113052368164,
0.02228916808962822,
-0.2000867873430252,
-0.013149289414286613,
-0.04899275675415993,
0.005975404288619757,
-0.006009858101606369,
0.04022865742444992,
-0.12376943975687027,
-0.028215903788805008,
-0.048792481422424316,
-0.04819519445300102,
-0.04194916412234306,
0.033452995121479034,
0.09743699431419373,
0.020735297352075577,
0.1712779849767685,
-0.08513811975717545,
0.0362996906042099,
-0.23233886063098907,
0.006770417094230652,
-0.017614910379052162,
-0.06947339326143265,
-0.07122260332107544,
-0.01074617262929678,
0.0778622180223465,
-0.056014105677604675,
0.08338633924722672,
-0.05494535714387894,
0.04531526938080788,
0.03959520906209946,
-0.11845485121011734,
0.016289182007312775,
0.05627954378724098,
0.1528446525335312,
0.028811119496822357,
-0.027852164581418037,
0.04307985305786133,
0.006908421870321035,
0.06924325227737427,
0.11009319126605988,
0.16746918857097626,
0.1473889946937561,
0.01990770921111107,
0.0830584168434143,
0.040969036519527435,
-0.13239000737667084,
-0.14719706773757935,
0.13265053927898407,
-0.043498650193214417,
0.14851628243923187,
0.0004132922913413495,
0.18202808499336243,
0.09215492010116577,
-0.20768694579601288,
0.05099925398826599,
-0.04172589257359505,
-0.06725721806287766,
-0.11074842512607574,
-0.06070411205291748,
-0.08628618717193604,
-0.20596714317798615,
0.0060144998133182526,
-0.10296682268381119,
0.055759966373443604,
0.031384509056806564,
0.025103162974119186,
0.04634188488125801,
0.10821963101625443,
0.016450608149170876,
0.011513074859976768,
0.09265771508216858,
0.029204772785305977,
-0.021604731678962708,
-0.024372423067688942,
-0.10099751502275467,
0.054452233016490936,
-0.048293519765138626,
0.042887333780527115,
-0.048225872218608856,
-0.07746496796607971,
0.08113958686590195,
0.04530710354447365,
-0.10360506176948547,
0.02934728004038334,
-0.007613304071128368,
0.058113858103752136,
0.10510637611150742,
0.0180214736610651,
0.016576042398810387,
-0.018617141991853714,
0.21361947059631348,
-0.08903251588344574,
0.0032931084278970957,
-0.14060553908348083,
0.1800452172756195,
-0.004566800314933062,
0.0005674613057635725,
0.028940843418240547,
-0.09134455770254135,
-0.005681280512362719,
0.10818574577569962,
0.11803009361028671,
-0.006615322083234787,
-0.013407857157289982,
0.012987934984266758,
-0.01711800880730152,
-0.03057066909968853,
0.07307577133178711,
0.0955796167254448,
0.057481903582811356,
-0.06006850674748421,
-0.03153052553534508,
-0.04145386442542076,
-0.044896602630615234,
-0.002740965923294425,
0.05903177708387375,
0.024172427132725716,
-0.008285223506391048,
-0.015048266388475895,
0.10640604048967361,
-0.033408258110284805,
-0.1502315253019333,
0.05664007365703583,
-0.18111388385295868,
-0.1858706772327423,
-0.041465695947408676,
0.08661994338035583,
0.02447449415922165,
0.04127546772360802,
-0.0027287097182124853,
-0.041137706488370895,
0.1051916554570198,
-0.01138294767588377,
-0.03517131134867668,
-0.13907893002033234,
0.060192786157131195,
-0.07298573106527328,
0.19886042177677155,
-0.03031507134437561,
0.0300566628575325,
0.11031638085842133,
0.053049661219120026,
-0.09213758260011673,
0.01331154815852642,
0.06649066507816315,
-0.11969653517007828,
0.029939329251646996,
0.1872771680355072,
-0.05046544224023819,
0.15459486842155457,
0.046253472566604614,
-0.09110740572214127,
0.01329130120575428,
-0.09162943810224533,
-0.07088527083396912,
-0.05219919607043266,
0.008766591548919678,
-0.05005556344985962,
0.14401227235794067,
0.18545369803905487,
-0.05915297195315361,
-0.018794110044836998,
-0.04275748133659363,
0.046127092093229294,
0.055847685784101486,
0.12820595502853394,
-0.007900021970272064,
-0.24902068078517914,
0.05076703056693077,
0.05577404424548149,
0.02229081094264984,
-0.22165270149707794,
-0.10443801432847977,
0.02265707217156887,
-0.046405937522649765,
-0.08794501423835754,
0.10717534273862839,
0.04467172548174858,
0.04940468817949295,
-0.07048707455396652,
-0.12427705526351929,
-0.03879809007048607,
0.15966829657554626,
-0.1655869036912918,
-0.06824185699224472
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text-classification | CCTD/LLM_Favrskov_2 | [
"transformers",
"safetensors",
"bert",
"text-classification",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:49:05+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
46,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #bert #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.06817419826984406,
0.1699906885623932,
-0.003845146857202053,
0.018365124240517616,
0.11478200554847717,
0.00763329304754734,
0.07986336201429367,
0.10738246887922287,
-0.0269484706223011,
0.1267213374376297,
0.03862300142645836,
0.1017010435461998,
0.11044707149267197,
0.18616852164268494,
0.002953584771603346,
-0.2117370218038559,
0.062315817922353745,
-0.11355884373188019,
0.01421935111284256,
0.12174045294523239,
0.14285145699977875,
-0.10472407191991806,
0.07340893894433975,
-0.03533155843615532,
-0.019184017553925514,
-0.029508300125598907,
-0.06138347089290619,
-0.062117863446474075,
0.06899366527795792,
0.06911981105804443,
0.06776530295610428,
0.02535320073366165,
0.07980640977621078,
-0.2927248775959015,
0.019224179908633232,
0.07704847306013107,
0.004596637096256018,
0.06310366839170456,
0.07900875061750412,
-0.06604467332363129,
0.12630145251750946,
-0.0469624362885952,
0.15577000379562378,
0.07483451068401337,
-0.09700790792703629,
-0.1833430528640747,
-0.07868417352437973,
0.08138132095336914,
0.1542958915233612,
0.0575118213891983,
-0.03566069155931473,
0.14360417425632477,
-0.0863327905535698,
0.015191552229225636,
0.06608161330223083,
-0.07603584229946136,
-0.05265629291534424,
0.04255614057183266,
0.07708034664392471,
0.09375373274087906,
-0.1291297972202301,
-0.010211804881691933,
0.04229271039366722,
0.01873886212706566,
0.10347303748130798,
0.02310175821185112,
0.11163661628961563,
0.026270611211657524,
-0.13941870629787445,
-0.06378244608640671,
0.1267201453447342,
0.02999917045235634,
-0.05697820335626602,
-0.23340454697608948,
-0.007031846325844526,
-0.028088124468922615,
-0.024382783100008965,
-0.03983099386096001,
0.03844287618994713,
-0.0294374767690897,
0.07875318825244904,
0.011917876079678535,
-0.07096433639526367,
-0.04893866181373596,
0.08819517493247986,
0.06123629957437515,
0.022971229627728462,
-0.02526908740401268,
0.02413375861942768,
0.11652170121669769,
0.09283795207738876,
-0.11929406225681305,
-0.06425759196281433,
-0.06432286649942398,
-0.08888134360313416,
-0.04847237840294838,
0.03574979677796364,
0.0754702165722847,
0.04938753694295883,
0.19765597581863403,
0.006366121117025614,
0.05646394565701485,
0.0260426327586174,
0.015338202007114887,
0.06355882436037064,
0.07606974244117737,
-0.0483609177172184,
-0.13532373309135437,
-0.041331104934215546,
0.11784996092319489,
0.007102925330400467,
-0.032494835555553436,
-0.03608081117272377,
0.06173410639166832,
0.05820438638329506,
0.1192656010389328,
0.06626396626234055,
0.019241811707615852,
-0.06749388575553894,
-0.03806937485933304,
0.1874811202287674,
-0.1540532261133194,
0.020778683945536613,
0.01720726117491722,
-0.05474008247256279,
-0.043989501893520355,
0.0171356238424778,
0.008756347931921482,
-0.02707439661026001,
0.10765543580055237,
-0.0681026354432106,
-0.03794260695576668,
-0.10775765031576157,
-0.057500679045915604,
0.032596319913864136,
-0.011795170605182648,
-0.030085675418376923,
-0.0443500280380249,
-0.1081358790397644,
-0.07622874528169632,
0.06656987965106964,
-0.06241556629538536,
-0.07165607810020447,
-0.03565853461623192,
-0.05456356331706047,
0.012712954543530941,
0.002376573858782649,
0.12743701040744781,
-0.02916865609586239,
0.04608776792883873,
-0.04567936435341835,
0.06814887374639511,
0.13260088860988617,
0.03273140639066696,
-0.07753180712461472,
0.0658058449625969,
-0.21566881239414215,
0.10687019675970078,
-0.09710393846035004,
0.030530039221048355,
-0.1602926403284073,
-0.027380328625440598,
0.025517668575048447,
0.035233598202466965,
-0.01142354216426611,
0.1405038684606552,
-0.18839864432811737,
-0.036833859980106354,
0.17594264447689056,
-0.13455410301685333,
-0.09238629788160324,
0.06278568506240845,
-0.057844966650009155,
0.12792403995990753,
0.05209182947874069,
-0.027332304045557976,
0.059202857315540314,
-0.13285812735557556,
-0.024411480873823166,
-0.0557100772857666,
-0.0024997375439852476,
0.1512058526277542,
0.06197551265358925,
-0.05537422001361847,
0.02062765136361122,
0.020016051828861237,
-0.024297641590237617,
-0.045233841985464096,
-0.034582652151584625,
-0.0977277010679245,
0.006374812684953213,
-0.07783913612365723,
0.015467152930796146,
-0.014978265389800072,
-0.08572793006896973,
-0.037934768944978714,
-0.15898989140987396,
-0.0011305080261081457,
0.09650373458862305,
0.007345336955040693,
-0.029424650594592094,
-0.09241348505020142,
0.005526319146156311,
0.014208783395588398,
-0.01407501008361578,
-0.15675009787082672,
-0.05031281337141991,
0.03119790367782116,
-0.16866113245487213,
0.033627450466156006,
-0.04903757572174072,
0.03549545630812645,
0.04459671676158905,
-0.04535774141550064,
-0.02160848118364811,
0.0152364457026124,
0.017460787668824196,
-0.02394135482609272,
-0.24046528339385986,
-0.016492176800966263,
-0.049182213842868805,
0.17930001020431519,
-0.24510087072849274,
0.04199686273932457,
0.062341514974832535,
0.12092601507902145,
0.005246761720627546,
-0.047405339777469635,
0.03611646965146065,
-0.04782456159591675,
-0.04614211246371269,
-0.06458985060453415,
-0.004041698761284351,
-0.03005247749388218,
-0.04619463160634041,
0.04105473682284355,
-0.19605930149555206,
-0.029964644461870193,
0.11028317362070084,
0.07146124541759491,
-0.1701718270778656,
-0.07740049809217453,
-0.03032514825463295,
-0.06061795726418495,
-0.09144899994134903,
-0.04754206910729408,
0.10501570999622345,
0.0424359068274498,
0.054926108568906784,
-0.07243066281080246,
-0.047703035175800323,
0.012159520760178566,
-0.008316845633089542,
-0.035265736281871796,
0.0910128578543663,
0.09147894382476807,
-0.1183665320277214,
0.1003284826874733,
0.06719938665628433,
0.061502620577812195,
0.10171586275100708,
0.005867301486432552,
-0.09559345990419388,
-0.012123096734285355,
0.023821083828806877,
0.014739413745701313,
0.13627171516418457,
-0.08041682839393616,
0.03041158802807331,
0.043761420994997025,
-0.03445654734969139,
0.011279189959168434,
-0.10341424494981766,
0.02347799763083458,
0.03186830133199692,
-0.007050554268062115,
0.025736309587955475,
-0.054652560502290726,
0.013161799870431423,
0.1042112186551094,
0.03211836516857147,
0.0227707140147686,
0.015011876821517944,
-0.03876445069909096,
-0.12403564900159836,
0.17888623476028442,
-0.09523385018110275,
-0.25718894600868225,
-0.12982366979122162,
0.0025806569028645754,
0.04723223298788071,
-0.01322246715426445,
0.01721704937517643,
-0.057064954191446304,
-0.10620168596506119,
-0.10562704503536224,
0.017637979239225388,
0.05363597348332405,
-0.08985256403684616,
-0.06360358744859695,
0.05353172495961189,
0.038684699684381485,
-0.12286891043186188,
0.023170825093984604,
0.04556644707918167,
-0.0685787945985794,
0.004107215907424688,
0.05788148567080498,
0.08483386784791946,
0.18220773339271545,
0.013182112947106361,
-0.017085859552025795,
0.012520790100097656,
0.22458304464817047,
-0.14599265158176422,
0.09336943179368973,
0.13670575618743896,
-0.0603153258562088,
0.08385994285345078,
0.20927630364894867,
0.031639765948057175,
-0.09247095137834549,
0.04077373072504997,
0.032938770949840546,
-0.040111273527145386,
-0.23512989282608032,
-0.07784179598093033,
0.0005755177116952837,
-0.07578593492507935,
0.10564399510622025,
0.09113350510597229,
0.11394096910953522,
0.05373004451394081,
-0.10628228634595871,
-0.06785868853330612,
0.04576247185468674,
0.11892180144786835,
-0.020387137308716774,
0.0034232554025948048,
0.09533460438251495,
-0.032669007778167725,
0.016892950981855392,
0.0903218612074852,
0.010076770558953285,
0.18146716058254242,
0.040793538093566895,
0.12895575165748596,
0.08216089755296707,
0.06404399126768112,
0.023877892643213272,
0.01690720207989216,
0.028041476383805275,
0.02853785827755928,
-0.021422842517495155,
-0.08959300816059113,
-0.01811058260500431,
0.14208537340164185,
0.03174193948507309,
0.030387144535779953,
0.009561240673065186,
-0.0344390794634819,
0.0656830444931984,
0.16341377794742584,
0.01373966783285141,
-0.23032663762569427,
-0.06265294551849365,
0.07538370788097382,
-0.07251506298780441,
-0.11472991853952408,
-0.007447437848895788,
0.029569825157523155,
-0.17949488759040833,
0.045079123228788376,
-0.02245110087096691,
0.1028464064002037,
-0.11004801839590073,
-0.024476202204823494,
0.04228143393993378,
0.06811302900314331,
-0.03619502857327461,
0.07936927676200867,
-0.21071307361125946,
0.14414268732070923,
0.0071875168941915035,
0.0627245381474495,
-0.10963346809148788,
0.08230046182870865,
0.02151823230087757,
0.009466269053518772,
0.16101586818695068,
-0.0074920570477843285,
-0.09318114817142487,
-0.07651645690202713,
-0.07556641101837158,
-0.011319656856358051,
0.09559466689825058,
-0.10184428840875626,
0.08486217260360718,
-0.008358954451978207,
-0.03313955292105675,
-0.00388424564152956,
-0.1140027567744255,
-0.13622364401817322,
-0.18601436913013458,
0.05523287504911423,
-0.11181046068668365,
0.03691478446125984,
-0.11166879534721375,
-0.06252610683441162,
-0.02911795862019062,
0.19807842373847961,
-0.1904531568288803,
-0.08140338957309723,
-0.14539870619773865,
-0.07204011082649231,
0.12212951481342316,
-0.04274967685341835,
0.07663191109895706,
0.00015701932716183364,
0.2071707546710968,
-0.004644640255719423,
0.0014644638868048787,
0.0856679305434227,
-0.09557735919952393,
-0.206184521317482,
-0.09439684450626373,
0.13821037113666534,
0.12497473508119583,
0.04596934840083122,
-0.0036321566440165043,
0.024304913356900215,
-0.0027867835015058517,
-0.10976199060678482,
0.02332260087132454,
0.1432444006204605,
0.08416087180376053,
0.03885705769062042,
-0.02675866149365902,
-0.14533737301826477,
-0.1054752767086029,
-0.05289754271507263,
0.019448768347501755,
0.17674845457077026,
-0.07222644239664078,
0.1607094258069992,
0.15837931632995605,
-0.06414622813463211,
-0.20734171569347382,
0.032782182097435,
0.03679283335804939,
-0.011663361452519894,
0.03244366869330406,
-0.20815548300743103,
0.07330463081598282,
0.016213007271289825,
-0.06075131520628929,
0.1363404095172882,
-0.1705039143562317,
-0.14891991019248962,
0.0919104814529419,
0.07189090549945831,
-0.2193969339132309,
-0.13394345343112946,
-0.09907522052526474,
-0.055755600333213806,
-0.10410746932029724,
0.08695419132709503,
0.014253350906074047,
0.004559517838060856,
0.040003977715969086,
0.024713784456253052,
0.021094202995300293,
-0.05303549766540527,
0.19554594159126282,
-0.004308625590056181,
0.041122131049633026,
-0.08143328875303268,
-0.08729361742734909,
0.030160382390022278,
-0.06146852299571037,
0.07429458200931549,
-0.02577015943825245,
0.004456855356693268,
-0.1102396696805954,
-0.06384536623954773,
-0.05289682373404503,
0.03639809414744377,
-0.08915901929140091,
-0.0958789587020874,
-0.05767008289694786,
0.10389325767755508,
0.08919540792703629,
-0.03324571251869202,
-0.058615610003471375,
-0.10058292001485825,
0.0726626068353653,
0.22699709236621857,
0.18807223439216614,
0.07284927368164062,
-0.07015843689441681,
0.0006279588560573757,
-0.022037893533706665,
0.05516184866428375,
-0.20622296631336212,
0.04608523100614548,
0.042553652077913284,
0.028887338936328888,
0.13527612388134003,
-0.02506665140390396,
-0.1602775603532791,
-0.04527048021554947,
0.06014934554696083,
-0.06545355916023254,
-0.1614707112312317,
-0.0005388054414652288,
0.09576781094074249,
-0.16179001331329346,
-0.06273222714662552,
0.024773813784122467,
-0.036137934774160385,
-0.025756290182471275,
0.0013679420808330178,
0.08270203322172165,
0.027825508266687393,
0.11478793621063232,
0.06896458566188812,
0.11150709539651871,
-0.10231363028287888,
0.08406093716621399,
0.09299708157777786,
-0.10971303284168243,
0.03247435390949249,
0.07298728823661804,
-0.0610542818903923,
-0.03390142321586609,
0.023122351616621017,
0.08364028483629227,
0.026266440749168396,
-0.0744837298989296,
-0.0008558011031709611,
-0.1099681630730629,
0.06663114577531815,
0.13796411454677582,
0.032853204756975174,
0.0030810926109552383,
0.04435998201370239,
0.025823330506682396,
-0.09881676733493805,
0.11186433583498001,
0.03916766867041588,
0.03720828518271446,
-0.04767070338129997,
0.004865953233093023,
0.041960928589105606,
-0.01269921287894249,
-0.016253290697932243,
-0.039693526923656464,
-0.06471271812915802,
-0.010708925314247608,
-0.15688052773475647,
0.031037067994475365,
-0.07176970690488815,
0.009115522727370262,
0.018755896016955376,
-0.033779606223106384,
0.0002807097043842077,
0.0073861307464540005,
-0.07919271290302277,
-0.03761441633105278,
-0.006646361667662859,
0.10705258697271347,
-0.15747743844985962,
0.008323745802044868,
0.08949586004018784,
-0.12556882202625275,
0.07766758650541306,
-0.007498627994209528,
-0.010838181711733341,
0.01879316382110119,
-0.14380721747875214,
0.06054820865392685,
-0.008177737705409527,
0.006405212916433811,
0.023949483409523964,
-0.20071232318878174,
0.005702852737158537,
-0.04664513096213341,
-0.053938448429107666,
-0.00976315326988697,
-0.04211960732936859,
-0.11404810100793839,
0.10492629557847977,
0.0196357611566782,
-0.0860515683889389,
-0.018402770161628723,
0.05309472978115082,
0.10592338442802429,
-0.057369641959667206,
0.1371336728334427,
-0.02283608354628086,
0.05825338885188103,
-0.17831756174564362,
-0.016339747235178947,
-0.017454219982028008,
0.012596609070897102,
-0.03102201037108898,
-0.008158523589372635,
0.05483707785606384,
-0.015072896145284176,
0.22714339196681976,
-0.021177595481276512,
0.030790245160460472,
0.06548503786325455,
0.0070373364724218845,
-0.013032838702201843,
0.08790382742881775,
0.04639120027422905,
0.021969040855765343,
0.017426103353500366,
0.016819516196846962,
-0.047575462609529495,
-0.019116412848234177,
-0.12834098935127258,
0.08396804332733154,
0.16439755260944366,
0.08264775574207306,
-0.005125291179865599,
0.053218428045511246,
-0.11920209228992462,
-0.08098750561475754,
0.10049403458833694,
-0.033211447298526764,
-0.001258186181075871,
-0.057700008153915405,
0.14298145473003387,
0.15607422590255737,
-0.1750815361738205,
0.06616412103176117,
-0.07047461718320847,
-0.05687202885746956,
-0.11070677638053894,
-0.17143365740776062,
-0.06694129854440689,
-0.03149404004216194,
-0.005430171266198158,
-0.06143372505903244,
0.06926561146974564,
0.10244123637676239,
0.008475886657834053,
0.002354414900764823,
0.08415096998214722,
-0.033749498426914215,
-0.0007962242234498262,
0.04344722256064415,
0.05283457785844803,
0.021373692899942398,
-0.06691429764032364,
0.0076249162666499615,
0.004598149098455906,
0.038937900215387344,
0.05476561188697815,
0.0317605659365654,
-0.014559607952833176,
0.011871086433529854,
-0.013089693151414394,
-0.09815122187137604,
0.03718226030468941,
-0.029980625957250595,
-0.0468674972653389,
0.14802806079387665,
0.01827765442430973,
0.0034919960889965296,
-0.021031659096479416,
0.23128560185432434,
-0.06903756409883499,
-0.0798255056142807,
-0.14009471237659454,
0.15071772038936615,
-0.04670744761824608,
0.05065378174185753,
0.04940982535481453,
-0.10087474435567856,
0.03407741338014603,
0.14691931009292603,
0.14527682960033417,
-0.02467990294098854,
0.007901503704488277,
0.011187983676791191,
0.0055741616524755955,
-0.025625228881835938,
0.05354921892285347,
0.04412171617150307,
0.12145667523145676,
-0.06669453531503677,
0.09297986328601837,
-0.007810541894286871,
-0.0844663754105568,
-0.02094031497836113,
0.1328510195016861,
0.0014671299140900373,
0.02338746376335621,
-0.0805477648973465,
0.11851188540458679,
-0.06559251248836517,
-0.25864502787590027,
0.061333827674388885,
-0.06666524708271027,
-0.15384668111801147,
-0.018917718902230263,
0.02399173192679882,
0.00401253392919898,
0.024401430040597916,
0.06268756836652756,
-0.06360985338687897,
0.14903949201107025,
0.03688151761889458,
-0.07834678888320923,
-0.07808853685855865,
0.07696148753166199,
-0.08397532254457474,
0.3018210828304291,
0.008228152059018612,
0.04951678216457367,
0.09650786966085434,
-0.03327273949980736,
-0.13361208140850067,
0.04569283500313759,
0.09728528559207916,
-0.06408768892288208,
0.06690182536840439,
0.19748380780220032,
-0.008177485316991806,
0.12026696652173996,
0.07469146698713303,
-0.08128973841667175,
0.057554539293050766,
-0.07613562047481537,
-0.09007242321968079,
-0.09192728251218796,
0.08888110518455505,
-0.060599785298109055,
0.15479759871959686,
0.13393908739089966,
-0.04440179467201233,
-0.001819826546125114,
-0.03071022778749466,
0.05197824910283089,
-0.002023093169555068,
0.1104598417878151,
0.022785736247897148,
-0.19388216733932495,
0.031831543892621994,
-0.014316190034151077,
0.0986877828836441,
-0.2479904145002365,
-0.07837841659784317,
0.0403057225048542,
-0.013808837160468102,
-0.05274871736764908,
0.12204353511333466,
0.052187733352184296,
0.04937480762600899,
-0.05449601635336876,
-0.057812657207250595,
-0.00025569170247763395,
0.16358551383018494,
-0.1094348207116127,
-0.00204258831217885
] |
null | null | transformers |
# whisper-small-ar-v1
This model is for Arabic automatic speech recognition (ASR). It is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Arabic portion of the `mozilla-foundation/common_voice_16_1` dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3354
- Wer: 158.1532
## Model description
Whisper model fine-tuned on Arabic data, following the [official tutorial](https://huggingface.co/blog/fine-tune-whisper).
## Intended uses & limitations
The model is not fully trained yet. Hence, it is not intended for professional use.
## Training and evaluation data
Training Data: CommonVoice (v16.1) Arabic train + validation splits
Validation Data: CommonVoice (v16.1) Arabic test split
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2742 | 0.82 | 1000 | 0.3790 | 275.2463 |
| 0.1625 | 1.65 | 2000 | 0.3353 | 228.5252 |
| 0.1002 | 2.47 | 3000 | 0.3311 | 238.8858 |
| 0.0751 | 3.3 | 4000 | 0.3354 | 158.1532 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.2 | {"language": ["ar"], "license": "apache-2.0", "library_name": "transformers", "tags": ["audio", "automatic-speech-recognition"], "datasets": ["mozilla-foundation/common_voice_16_1"], "metrics": ["wer"], "base_model": "openai/whisper-small", "widget": [{"example_title": "Sample 1", "src": "sample_ar.mp3"}], "pipeline_tag": "automatic-speech-recognition", "model-index": [{"name": "whisper-small-ar-v1", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "mozilla-foundation/common_voice_16_1", "type": "mozilla-foundation/common_voice_16_1", "config": "ar", "split": "test", "args": "ar"}, "metrics": [{"type": "wer", "value": 158.15321276282899, "name": "Wer"}]}]}]} | automatic-speech-recognition | ymoslem/whisper-small-ar-v1 | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"audio",
"ar",
"dataset:mozilla-foundation/common_voice_16_1",
"base_model:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:50:09+00:00 | [] | [
"ar"
] | TAGS
#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #audio #ar #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us
| whisper-small-ar-v1
===================
This model is for Arabic automatic speech recognition (ASR). It is a fine-tuned version of openai/whisper-small on the Arabic portion of the 'mozilla-foundation/common\_voice\_16\_1' dataset.
It achieves the following results on the evaluation set:
* Loss: 0.3354
* Wer: 158.1532
Model description
-----------------
Whisper model fine-tuned on Arabic data, following the official tutorial.
Intended uses & limitations
---------------------------
The model is not fully trained yet. Hence, it is not intended for professional use.
Training and evaluation data
----------------------------
Training Data: CommonVoice (v16.1) Arabic train + validation splits
Validation Data: CommonVoice (v16.1) Arabic test split
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 1e-05
* train\_batch\_size: 32
* eval\_batch\_size: 8
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* lr\_scheduler\_warmup\_steps: 500
* training\_steps: 4000
* mixed\_precision\_training: Native AMP
### Training results
### Framework versions
* Transformers 4.37.2
* Pytorch 2.2.0+cu121
* Datasets 2.17.0
* Tokenizers 0.15.2
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
"TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #audio #ar #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
89,
130,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #audio #ar #dataset-mozilla-foundation/common_voice_16_1 #base_model-openai/whisper-small #license-apache-2.0 #model-index #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_steps: 500\n* training\\_steps: 4000\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.37.2\n* Pytorch 2.2.0+cu121\n* Datasets 2.17.0\n* Tokenizers 0.15.2"
] | [
-0.1570432186126709,
0.07745779305696487,
-0.0016020385082811117,
0.03022743947803974,
0.11009801179170609,
-0.026872646063566208,
0.12721528112888336,
0.12772902846336365,
-0.053956929594278336,
0.09066266566514969,
0.07764222472906113,
0.08170159161090851,
0.06386321038007736,
0.13088004291057587,
-0.02833826281130314,
-0.2970491647720337,
0.033771831542253494,
0.018791763111948967,
-0.10732687264680862,
0.10421143472194672,
0.11894091218709946,
-0.10042520612478256,
0.014175385236740112,
0.047316763550043106,
-0.10920863598585129,
0.010658232495188713,
0.002179622184485197,
-0.0767616331577301,
0.10389653593301773,
0.029257874935865402,
0.07056967169046402,
0.030021829530596733,
0.07903958857059479,
-0.23738963901996613,
0.021802324801683426,
0.05393558368086815,
0.0594957061111927,
0.07377970218658447,
0.08596580475568771,
-0.01303863525390625,
0.06426826119422913,
-0.03728733956813812,
0.06702946871519089,
0.07125905156135559,
-0.08943676948547363,
-0.33922281861305237,
-0.07821064442396164,
0.04805032163858414,
0.11701801419258118,
0.08019706606864929,
-0.033335085958242416,
0.08545808494091034,
-0.025352301076054573,
0.0917661190032959,
0.21601009368896484,
-0.23188921809196472,
-0.08580204099416733,
-0.06206319481134415,
0.08716024458408356,
0.04887419193983078,
-0.11510038375854492,
-0.004571991041302681,
0.06731050461530685,
0.026376301422715187,
0.08549492806196213,
0.016680637374520302,
-0.006117273587733507,
-0.02166314795613289,
-0.13497455418109894,
-0.05851474404335022,
0.19028104841709137,
0.0932035967707634,
-0.06865838170051575,
-0.08937960118055344,
-0.00444592023268342,
-0.15615040063858032,
-0.06352607160806656,
0.015483954921364784,
0.022751685231924057,
-0.04017166420817375,
-0.11732573062181473,
-0.00938828382641077,
-0.09932611137628555,
-0.10663502663373947,
0.046405669301748276,
0.20042747259140015,
0.03515346720814705,
-0.02786339819431305,
-0.003734664060175419,
0.08073963969945908,
0.031402260065078735,
-0.15100809931755066,
-0.03059927374124527,
0.04535292088985443,
-0.06939432770013809,
-0.019521769136190414,
-0.0381452850997448,
-0.0458461157977581,
0.021403690800070763,
0.14306753873825073,
-0.004942414350807667,
0.08409435302019119,
-0.00003820207348326221,
0.04297476261854172,
-0.10062021762132645,
0.18079067766666412,
-0.04842508211731911,
0.001107005518861115,
-0.012700495310127735,
0.11882040649652481,
0.0007685679593123496,
-0.020050279796123505,
-0.04951119422912598,
0.04876258224248886,
0.10783487558364868,
0.04006265103816986,
-0.007778337690979242,
0.009785342961549759,
-0.06758930534124374,
-0.018598364666104317,
-0.030651746317744255,
-0.10449159890413284,
0.004316843580454588,
0.027664542198181152,
-0.06098762899637222,
-0.01603415235877037,
0.01179445069283247,
0.04700155183672905,
0.006937847472727299,
0.05653807520866394,
-0.0613020621240139,
-0.017336590215563774,
-0.08154316246509552,
-0.09130073338747025,
0.039737358689308167,
-0.004464320372790098,
0.011514455080032349,
-0.09220865368843079,
-0.11115919798612595,
-0.05016487091779709,
0.05917022377252579,
-0.011914330534636974,
-0.0900549665093422,
-0.0650998204946518,
-0.08292223513126373,
0.05541573092341423,
-0.028639357537031174,
0.13549286127090454,
-0.04858223721385002,
0.10961680114269257,
0.060270801186561584,
0.04361439868807793,
0.033467601984739304,
0.05614297091960907,
-0.04539920389652252,
0.05638355761766434,
-0.12286549806594849,
0.07121981680393219,
-0.11962787061929703,
0.08986788988113403,
-0.122525155544281,
-0.10471061617136002,
-0.03652876242995262,
0.01685737445950508,
0.09766043722629547,
0.09864957630634308,
-0.16115236282348633,
-0.1065792590379715,
0.17164303362369537,
-0.09401995688676834,
-0.14663203060626984,
0.13753527402877808,
-0.0035725387278944254,
0.05855627730488777,
0.052760522812604904,
0.20913511514663696,
0.11377453804016113,
-0.1164344772696495,
-0.003921572584658861,
-0.04712333157658577,
0.13092198967933655,
-0.0005911540356464684,
0.10942868143320084,
-0.051169246435165405,
-0.018559809774160385,
0.00396359758451581,
-0.04207850620150566,
0.06569579243659973,
-0.09201369434595108,
-0.08329657465219498,
-0.028420785441994667,
-0.11202745884656906,
0.003376184031367302,
0.060568030923604965,
0.03604813665151596,
-0.11533656716346741,
-0.11495129019021988,
0.040238235145807266,
0.12393990159034729,
-0.10722456127405167,
0.02216174267232418,
-0.10508695244789124,
0.05581355839967728,
-0.04915561527013779,
-0.020021580159664154,
-0.1461799442768097,
-0.016318902373313904,
0.03578140214085579,
-0.06756014376878738,
0.02180362306535244,
-0.057128969579935074,
0.08473888784646988,
0.03568346053361893,
-0.03645037114620209,
-0.09246253967285156,
-0.07094696909189224,
-0.004315885715186596,
-0.06885700672864914,
-0.20288512110710144,
-0.07519041001796722,
-0.03644070401787758,
0.1757945865392685,
-0.20855523645877838,
0.021296074613928795,
0.01985039934515953,
0.10823436081409454,
0.05111243948340416,
-0.05513575300574303,
0.004493567626923323,
0.04718295484781265,
-0.007356953341513872,
-0.06212702393531799,
0.017390167340636253,
0.0359722338616848,
-0.12351151555776596,
0.05614766106009483,
-0.14195206761360168,
0.1344781070947647,
0.08927204459905624,
-0.010588682256639004,
-0.056228894740343094,
-0.02554861269891262,
-0.07163533568382263,
-0.06195521354675293,
-0.017751118168234825,
-0.04561057686805725,
0.14395490288734436,
0.014789007604122162,
0.11453589797019958,
-0.10133861750364304,
-0.049596719443798065,
0.033481501042842865,
-0.03332219645380974,
-0.017784839496016502,
0.122318796813488,
-0.005155414808541536,
-0.04753134772181511,
0.08820146322250366,
0.05463503673672676,
-0.09015301614999771,
0.17567339539527893,
-0.0932946428656578,
-0.11716826260089874,
-0.005760588683187962,
0.04034862294793129,
0.05397612974047661,
0.1403137445449829,
-0.15049682557582855,
0.00001976783460122533,
0.026681924238801003,
0.014206210151314735,
0.033263321965932846,
-0.21147076785564423,
-0.004679552279412746,
0.037554580718278885,
-0.06859085708856583,
-0.06460034102201462,
0.007061715703457594,
-0.023389345034956932,
0.07426758110523224,
-0.010902242735028267,
-0.040990378707647324,
-0.005425674840807915,
-0.031142083927989006,
-0.10180958360433578,
0.18452639877796173,
-0.08128395676612854,
-0.15272177755832672,
-0.1631077080965042,
-0.013202094472944736,
0.014344695024192333,
-0.0010726958280429244,
0.05588935315608978,
-0.10646528750658035,
-0.03668132796883583,
-0.06772993505001068,
0.021379711106419563,
-0.03874989226460457,
0.023221947252750397,
0.04983881860971451,
0.021847564727067947,
0.12690883874893188,
-0.10282859951257706,
0.022087596356868744,
-0.014526346698403358,
-0.018676461651921272,
-0.004002832807600498,
0.007149946875870228,
0.09277863055467606,
0.166584774851799,
0.054978370666503906,
0.02360740303993225,
-0.02792402170598507,
0.1714724451303482,
-0.11632581800222397,
-0.03461762145161629,
0.143879696726799,
-0.005761872511357069,
0.03641589730978012,
0.11835770308971405,
0.048458658158779144,
-0.08551964163780212,
0.04366311803460121,
0.039816249161958694,
-0.02720475196838379,
-0.2467348277568817,
-0.010821592062711716,
-0.0670742318034172,
-0.012187286280095577,
0.0884932279586792,
0.036988355219364166,
0.024044595658779144,
0.04634319245815277,
-0.026162074878811836,
-0.023575136438012123,
0.021428139880299568,
0.06902089715003967,
0.07409736514091492,
0.024174686521291733,
0.1155213788151741,
-0.03171210363507271,
-0.03903826326131821,
0.008306214585900307,
0.018094966188073158,
0.23100769519805908,
0.0342106893658638,
0.19270475208759308,
0.06427917629480362,
0.13399283587932587,
0.015394585207104683,
0.07867651432752609,
0.01625693030655384,
-0.031063035130500793,
0.038735322654247284,
-0.06295821815729141,
-0.024809502065181732,
0.05062787979841232,
0.06348377466201782,
0.06441431492567062,
-0.12559492886066437,
0.001414000173099339,
0.001471959869377315,
0.367961585521698,
0.07653922587633133,
-0.3063655197620392,
-0.12777142226696014,
0.016459669917821884,
-0.10691434144973755,
-0.05531521514058113,
0.028430737555027008,
0.11713442206382751,
-0.0871814712882042,
0.04553280398249626,
-0.06784634292125702,
0.11028558760881424,
-0.047336284071207047,
-0.0016094713937491179,
0.061121247708797455,
0.07847467809915543,
-0.006422707810997963,
0.05946649983525276,
-0.24339163303375244,
0.3008444905281067,
-0.014737701043486595,
0.11158435791730881,
-0.015334454365074635,
0.03170773759484291,
0.045453108847141266,
-0.04179506376385689,
0.0743478536605835,
-0.011824911460280418,
-0.13419108092784882,
-0.1913740336894989,
-0.0906892791390419,
0.02893712930381298,
0.12663723528385162,
-0.04534256458282471,
0.11348562687635422,
-0.03637431189417839,
-0.01343978475779295,
0.062074270099401474,
-0.09214036166667938,
-0.14745356142520905,
-0.08429959416389465,
0.025168998166918755,
0.05813891440629959,
0.0994039848446846,
-0.14237643778324127,
-0.11543723195791245,
-0.053354933857917786,
0.12527507543563843,
-0.08531928062438965,
-0.016476355493068695,
-0.12496671825647354,
0.04530835896730423,
0.15638141334056854,
-0.0625254288315773,
0.062430862337350845,
0.021846281364560127,
0.162994384765625,
0.028252363204956055,
0.0016704206354916096,
0.09901971369981766,
-0.10654003918170929,
-0.18454903364181519,
-0.04319872707128525,
0.19400687515735626,
0.030281569808721542,
0.06103690341114998,
-0.004733712878078222,
0.016915511339902878,
-0.012410520575940609,
-0.060803741216659546,
0.06725896894931793,
-0.001270806766115129,
-0.04871608316898346,
0.03203587979078293,
-0.029065432026982307,
0.005900296848267317,
-0.08332604914903641,
-0.06858660280704498,
0.13796718418598175,
0.28856775164604187,
-0.05101340264081955,
-0.0012751012109220028,
0.052773576229810715,
-0.04725252091884613,
-0.15439164638519287,
0.04469588026404381,
0.1508416384458542,
0.04622185230255127,
-0.008446995168924332,
-0.21270091831684113,
0.06303644925355911,
0.04946354776620865,
-0.05229412019252777,
0.09337973594665527,
-0.27250993251800537,
-0.1413535475730896,
0.13815966248512268,
0.09172457456588745,
-0.005474508740007877,
-0.1402587741613388,
-0.08497389405965805,
-0.026712600141763687,
-0.09362059086561203,
0.05262228101491928,
-0.03609449416399002,
0.12562379240989685,
0.025563551113009453,
0.05786772817373276,
0.026265710592269897,
-0.05302268639206886,
0.14740359783172607,
-0.026782194152474403,
0.04859619960188866,
0.002369193360209465,
0.08661837130784988,
0.03288254514336586,
-0.055492863059043884,
0.027934491634368896,
-0.06440327316522598,
0.03007747046649456,
-0.1178165078163147,
-0.04332520440220833,
-0.08035361766815186,
0.038825877010822296,
-0.023729810491204262,
-0.02631855197250843,
0.004160539247095585,
0.0384538508951664,
0.03712859004735947,
0.02355119399726391,
0.13305622339248657,
-0.07098264992237091,
0.16440615057945251,
0.09219709038734436,
0.1431208699941635,
-0.028735434636473656,
-0.07198317348957062,
-0.009267273359000683,
-0.03500574082136154,
0.05870986729860306,
-0.11729853600263596,
0.04103468731045723,
0.11855114996433258,
0.05633259564638138,
0.13730908930301666,
0.052891071885824203,
-0.09979227185249329,
0.025721251964569092,
0.0850571021437645,
-0.05415334925055504,
-0.15214082598686218,
-0.039415691047906876,
0.11688677221536636,
-0.17063675820827484,
0.03629504144191742,
0.10280045121908188,
-0.06218741834163666,
-0.006795939523726702,
-0.0014080976834520698,
0.00494067557156086,
-0.063958540558815,
0.22800633311271667,
0.06212802231311798,
0.0895857959985733,
-0.07884031534194946,
0.08118266612291336,
0.02094913274049759,
-0.13040347397327423,
0.02391165867447853,
0.05481283366680145,
-0.022425435483455658,
-0.010748318396508694,
-0.009526501409709454,
0.05269847810268402,
0.019178349524736404,
-0.07629409432411194,
-0.13857969641685486,
-0.14380979537963867,
0.054551247507333755,
0.12115222215652466,
0.024668188765645027,
0.02825351059436798,
-0.02682994119822979,
0.06622646749019623,
-0.10513852536678314,
0.11113077402114868,
0.10912151634693146,
0.08880317956209183,
-0.16203244030475616,
0.1182665228843689,
0.005178128834813833,
0.011814512312412262,
0.00011011862807208672,
-0.017730770632624626,
-0.08444827795028687,
0.03790423646569252,
-0.11878614872694016,
-0.017534669488668442,
-0.04211762920022011,
-0.006564341019839048,
0.017363375052809715,
-0.06429830938577652,
-0.08162509649991989,
0.04297861456871033,
-0.12349420040845871,
-0.04075668379664421,
0.009730114601552486,
0.06665785610675812,
-0.08587834984064102,
-0.010126770474016666,
0.07909364998340607,
-0.1232994794845581,
0.08129575848579407,
0.05830947309732437,
0.013983367010951042,
0.04451899603009224,
-0.12251174449920654,
0.009696651250123978,
0.046093933284282684,
0.001061860821209848,
0.0030116152483969927,
-0.16192568838596344,
-0.012827383354306221,
-0.007173467427492142,
0.05025281012058258,
-0.01840129867196083,
0.026403212919831276,
-0.11844655126333237,
-0.06306764483451843,
-0.017892973497509956,
-0.032968614250421524,
-0.05535288527607918,
0.03453506901860237,
0.04778042808175087,
0.04530809074640274,
0.15305209159851074,
-0.09475045651197433,
0.02105371654033661,
-0.21902364492416382,
0.03612515702843666,
-0.028389981016516685,
-0.09434520453214645,
-0.0704297199845314,
-0.01630638912320137,
0.08153743296861649,
-0.06905394792556763,
0.06808009743690491,
-0.08160920441150665,
0.031961582601070404,
0.03543777018785477,
-0.09716235101222992,
0.08367133140563965,
0.04905589297413826,
0.2742665410041809,
0.04084043949842453,
-0.0073075490072369576,
0.07039953768253326,
-0.018941044807434082,
0.05241748318076134,
0.11188282817602158,
0.12292105704545975,
0.1861308366060257,
0.010663667693734169,
0.10481142997741699,
0.08595063537359238,
-0.06578671187162399,
-0.11965387314558029,
0.09981676936149597,
-0.023983532562851906,
0.1207570806145668,
0.0032996120862662792,
0.2303728312253952,
0.14716312289237976,
-0.17224906384944916,
0.04397684335708618,
-0.03581896796822548,
-0.0719507485628128,
-0.10787463933229446,
-0.07514932006597519,
-0.08233359456062317,
-0.1870085597038269,
0.01849827542901039,
-0.1207641214132309,
0.04217399284243584,
0.044188242405653,
0.021336754783988,
0.017189353704452515,
0.1658918261528015,
0.04080776870250702,
0.004832964390516281,
0.13231924176216125,
-0.030147934332489967,
-0.03582846373319626,
-0.04601141810417175,
-0.12638352811336517,
0.08185680955648422,
-0.01019112579524517,
0.04388859495520592,
-0.06094246357679367,
-0.11479424685239792,
0.06689462065696716,
0.01758766733109951,
-0.12121273577213287,
0.017048774287104607,
-0.00791863538324833,
0.07488255202770233,
0.03767789155244827,
0.03655330091714859,
0.00018666390678845346,
-0.005704969167709351,
0.2583351731300354,
-0.10735239833593369,
-0.05898517742753029,
-0.14823457598686218,
0.18894526362419128,
-0.02401702292263508,
-0.015890035778284073,
0.006468047853559256,
-0.08029372990131378,
-0.002883755136281252,
0.1728956550359726,
0.0965796634554863,
-0.002513397950679064,
-0.020807070657610893,
-0.018175417557358742,
-0.019707435742020607,
-0.09144645184278488,
0.07652319967746735,
0.11435668915510178,
0.044235967099666595,
-0.05762408301234245,
-0.05145544558763504,
-0.03609611093997955,
-0.05413413047790527,
-0.027617447078227997,
0.08502543717622757,
0.00591452419757843,
-0.01525288075208664,
-0.02681935392320156,
0.12686555087566376,
-0.07391180843114853,
-0.08761179447174072,
-0.0371738038957119,
-0.13104204833507538,
-0.17646092176437378,
-0.05319253355264664,
0.058575812727212906,
0.0413813553750515,
0.02901599369943142,
-0.021404296159744263,
-0.009156713262200356,
0.0832873061299324,
0.0030203170608729124,
-0.015937594696879387,
-0.12392085045576096,
0.07611909508705139,
-0.10830731689929962,
0.21091915667057037,
-0.04722472280263901,
0.027644088491797447,
0.1113274022936821,
0.0499931201338768,
-0.07837994396686554,
0.05167817324399948,
0.06528233736753464,
-0.15304094552993774,
0.0421479158103466,
0.23144391179084778,
-0.03264956176280975,
0.1682729572057724,
0.029695218428969383,
-0.14349129796028137,
0.007950929924845695,
-0.09249350428581238,
-0.046970468014478683,
-0.08708907663822174,
-0.018512696027755737,
-0.06930193305015564,
0.11568160355091095,
0.1729140430688858,
-0.09836497157812119,
-0.035006456077098846,
-0.054228611290454865,
0.024115540087223053,
0.07801242917776108,
0.09352003782987595,
-0.029691649600863457,
-0.31838709115982056,
0.010405009612441063,
-0.019050244241952896,
-0.013212515041232109,
-0.27143460512161255,
-0.08884158730506897,
0.010357138700783253,
-0.056509990245103836,
-0.02652609348297119,
0.09171051532030106,
0.12601986527442932,
0.03645971789956093,
-0.05675417557358742,
-0.0780344232916832,
-0.03654864802956581,
0.20142574608325958,
-0.16290481388568878,
-0.06172313913702965
] |
null | null | mlx |
# mlx-community/clip-vit-base-patch16
This model was converted to MLX format from [`clip-vit-base-patch16`](https://huggingface.co/openai/clip-vit-base-patch16).
Refer to the [original model card](https://huggingface.co/openai/clip-vit-base-patch16) for more details on the model.
## Use with mlx-examples
Download the repository 👇
```
pip install huggingface_hub hf_transfer
export HF_HUB_ENABLE_HF_TRANSFER=1
huggingface-cli download --local-dir <LOCAL FOLDER PATH> mlx-community/clip-vit-base-patch16
```
Install `mlx-examples`.
```bash
git clone [email protected]:ml-explore/mlx-examples.git
cd clip
pip install -r requirements.txt
```
Run the model.
```python
from PIL import Image
import clip
model, tokenizer, img_processor = clip.load("mlx_model")
inputs = {
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
"pixel_values": img_processor(
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
),
}
output = model(**inputs)
# Get text and image embeddings:
text_embeds = output.text_embeds
image_embeds = output.image_embeds
``` | {"license": "apache-2.0", "library_name": "mlx"} | null | mlx-community/clip-vit-base-patch16 | [
"mlx",
"clip",
"license:apache-2.0",
"region:us"
] | 2024-02-13T13:50:15+00:00 | [] | [] | TAGS
#mlx #clip #license-apache-2.0 #region-us
|
# mlx-community/clip-vit-base-patch16
This model was converted to MLX format from 'clip-vit-base-patch16'.
Refer to the original model card for more details on the model.
## Use with mlx-examples
Download the repository
Install 'mlx-examples'.
Run the model.
| [
"# mlx-community/clip-vit-base-patch16\nThis model was converted to MLX format from 'clip-vit-base-patch16'.\nRefer to the original model card for more details on the model.",
"## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
"TAGS\n#mlx #clip #license-apache-2.0 #region-us \n",
"# mlx-community/clip-vit-base-patch16\nThis model was converted to MLX format from 'clip-vit-base-patch16'.\nRefer to the original model card for more details on the model.",
"## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
19,
52,
28
] | [
"passage: TAGS\n#mlx #clip #license-apache-2.0 #region-us \n# mlx-community/clip-vit-base-patch16\nThis model was converted to MLX format from 'clip-vit-base-patch16'.\nRefer to the original model card for more details on the model.## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
-0.07552061975002289,
-0.033077891916036606,
-0.0016199513338506222,
0.03209355100989342,
0.09691515564918518,
0.07586917281150818,
0.11802924424409866,
0.09577180445194244,
0.022850649431347847,
-0.06942155957221985,
0.13517878949642181,
0.2531217932701111,
0.045118965208530426,
0.09540867805480957,
0.02982841059565544,
-0.15292476117610931,
-0.036360543221235275,
0.014388540759682655,
0.019654426723718643,
0.04570363461971283,
0.09364942461252213,
-0.03654305264353752,
0.16078226268291473,
0.03207114711403847,
-0.11028917133808136,
0.07203073799610138,
0.09275228530168533,
0.02334456704556942,
0.05157793313264847,
0.05010342597961426,
0.0016197473742067814,
-0.012700364924967289,
0.08575022965669632,
-0.11933007836341858,
0.017331531271338463,
0.014461572282016277,
-0.01448686234652996,
0.06546660512685776,
0.04076426848769188,
-0.01701430045068264,
0.11511564254760742,
-0.0062058414332568645,
-0.03701477870345116,
0.06960053741931915,
-0.052775800228118896,
-0.09932254254817963,
-0.15565504133701324,
-0.07197015732526779,
0.05520017445087433,
-0.0037407465279102325,
0.06068966165184975,
0.21216551959514618,
0.04850911349058151,
0.03815704584121704,
0.1619625985622406,
-0.22331783175468445,
0.004521473776549101,
0.3100123405456543,
0.1639406830072403,
0.019268464297056198,
0.05478060245513916,
0.19055546820163727,
0.07121875137090683,
0.036637112498283386,
0.0524410605430603,
-0.06203451380133629,
0.019375793635845184,
0.042966362088918686,
-0.06401465833187103,
0.009972657077014446,
0.22346393764019012,
-0.04753711074590683,
-0.024225516244769096,
-0.007529309019446373,
0.016779279336333275,
0.09810186922550201,
-0.07692576944828033,
0.06062369793653488,
0.07342538982629776,
0.04508982598781586,
0.1515653431415558,
-0.16015087068080902,
0.010049346834421158,
-0.14239948987960815,
-0.1253778636455536,
0.0967332124710083,
0.0004306031623855233,
0.12069161236286163,
-0.09700532257556915,
-0.035507265478372574,
-0.10322284698486328,
-0.008546030148863792,
0.004409585613757372,
-0.0778873860836029,
0.14663346111774445,
0.03688676655292511,
-0.03990655392408371,
-0.09227029979228973,
0.08349812030792236,
-0.025377575308084488,
0.1107129380106926,
0.005735111888498068,
0.017171841114759445,
0.09610842168331146,
-0.021833933889865875,
-0.027802208438515663,
-0.047076258808374405,
0.08421259373426437,
0.09085424989461899,
-0.08162697404623032,
0.04154370725154877,
-0.015491416677832603,
-0.1237088143825531,
0.07625336199998856,
-0.2547488212585449,
0.16514311730861664,
0.06357579678297043,
0.048256970942020416,
-0.008649044670164585,
-0.024983171373605728,
0.02905970625579357,
-0.07742509245872498,
0.0582604818046093,
-0.05519643798470497,
-0.030081285163760185,
0.1415097564458847,
0.004897044040262699,
-0.0015678472118452191,
-0.03586506098508835,
-0.051376067101955414,
-0.09873650968074799,
0.04420001059770584,
-0.12432118505239487,
-0.11613814532756805,
0.044804397970438004,
0.0003440770960878581,
0.03276562690734863,
-0.13315510749816895,
-0.21464793384075165,
0.01676301285624504,
0.07629226893186569,
0.0036225898656994104,
0.014110757037997246,
0.04368523880839348,
0.017507091164588928,
0.012901853770017624,
0.011249136179685593,
0.09352488070726395,
-0.035153068602085114,
-0.01417007576674223,
-0.10768529027700424,
0.06885451823472977,
-0.1301497519016266,
0.05453372001647949,
0.026497971266508102,
0.04591325297951698,
-0.030354665592312813,
-0.014578018337488174,
-0.0878075659275055,
0.05735904723405838,
-0.08590420335531235,
-0.04676736146211624,
0.07807831466197968,
0.04982767626643181,
0.003361843293532729,
0.08261588960886002,
-0.2353619486093521,
0.004888870753347874,
0.06467315554618835,
-0.1257026195526123,
-0.11275343596935272,
-0.04610711336135864,
0.05768124386668205,
-0.040741078555583954,
0.041715167462825775,
0.16714242100715637,
0.04322558268904686,
-0.24624723196029663,
0.0631321370601654,
0.09745314717292786,
-0.11368855088949203,
-0.19731710851192474,
0.11820413172245026,
-0.011634026654064655,
-0.2401764690876007,
0.05787518247961998,
-0.17243435978889465,
-0.0026949350722134113,
-0.053021710366010666,
-0.030871611088514328,
-0.06988571584224701,
-0.06876901537179947,
0.003797966055572033,
-0.08488202095031738,
-0.02533145807683468,
-0.049801748245954514,
0.08042684197425842,
0.19914625585079193,
0.13903777301311493,
0.011614794842898846,
-0.006012732163071632,
-0.11002226918935776,
0.07698177546262741,
-0.1017778217792511,
0.039976343512535095,
-0.04867713153362274,
-0.02192818932235241,
0.022468699142336845,
-0.1828395277261734,
0.011974154971539974,
0.060400791466236115,
0.001236473093740642,
-0.026957083493471146,
0.006772080902010202,
0.11006493121385574,
0.026278572157025337,
0.003089713864028454,
0.002911675488576293,
-0.12919402122497559,
-0.03225205838680267,
-0.028287164866924286,
-0.11315227299928665,
-0.04337088391184807,
-0.004191730637103319,
-0.038939401507377625,
0.004257636144757271,
-0.03321440517902374,
0.007901621982455254,
0.07810066640377045,
0.0026619848795235157,
0.0379413440823555,
-0.027304891496896744,
0.11322564631700516,
0.012385068461298943,
0.050905074924230576,
0.27446448802948,
-0.07316657900810242,
0.07926467061042786,
0.2213059812784195,
-0.012125222012400627,
0.07983057200908661,
0.015255882404744625,
0.018594037741422653,
0.02581034041941166,
-0.035511504858732224,
-0.0673014223575592,
0.09988237172365189,
-0.015442503616213799,
0.09175105392932892,
-0.09471064060926437,
-0.0388488806784153,
0.009474233724176884,
-0.040428511798381805,
-0.09924682974815369,
-0.018633075058460236,
0.30221885442733765,
-0.01996009424328804,
0.024936189875006676,
0.18704327940940857,
0.05927715450525284,
0.08107040822505951,
-0.035042598843574524,
0.011476034298539162,
-0.10615935921669006,
-0.1261632740497589,
0.012051950208842754,
0.10463558882474899,
0.05100080743432045,
-0.008719110861420631,
0.04622981324791908,
-0.01006929948925972,
0.08258310705423355,
-0.09351538866758347,
-0.055357925593853,
0.03629900887608528,
-0.05528714135289192,
-0.11899621039628983,
0.08699781447649002,
-0.06223837658762932,
0.05562019348144531,
-0.08335742354393005,
0.11623436957597733,
-0.009394495747983456,
0.01248433068394661,
-0.13124977052211761,
0.06978079676628113,
-0.26331260800361633,
-0.20203325152397156,
-0.15362673997879028,
-0.02337510511279106,
-0.08407493680715561,
-0.04253853112459183,
-0.014111136086285114,
-0.01608315482735634,
-0.047564342617988586,
-0.06483788043260574,
0.09091886132955551,
-0.08842839300632477,
-0.00952104665338993,
0.06074792891740799,
0.015346414409577847,
0.023872552439570427,
-0.19466784596443176,
-0.003971817437559366,
0.055405572056770325,
-0.014173771254718304,
-0.02624754048883915,
0.011464929208159447,
0.08214741200208664,
0.05601392313838005,
-0.05694657564163208,
0.03441967815160751,
0.013885810039937496,
0.18735796213150024,
0.037842705845832825,
-0.023621967062354088,
0.24849097430706024,
0.10164329409599304,
-0.005111549515277147,
-0.013462238945066929,
0.06792277842760086,
-0.08460116386413574,
-0.0608588382601738,
-0.021416177973151207,
-0.07641926407814026,
-0.253606379032135,
-0.10363788157701492,
-0.039533451199531555,
-0.021474797278642654,
0.04473452270030975,
0.050031643360853195,
-0.1250610053539276,
0.09169062972068787,
0.045134611427783966,
0.006399288307875395,
-0.11930807679891586,
-0.014465661719441414,
0.09334050118923187,
-0.09091544151306152,
-0.011511468328535557,
-0.11695694178342819,
0.09209024161100388,
0.15478381514549255,
0.036560483276844025,
0.12593410909175873,
0.15327435731887817,
-0.044577352702617645,
0.15852481126785278,
0.004297546576708555,
0.08282600343227386,
0.1484818458557129,
-0.05578189715743065,
-0.006423381622880697,
-0.014393199235200882,
-0.07474573701620102,
0.014293821528553963,
0.02155844308435917,
0.0603870190680027,
-0.04408539831638336,
0.0013721795985475183,
-0.07580992579460144,
0.08411778509616852,
-0.04148368164896965,
-0.00612495606765151,
-0.18015466630458832,
0.0643095076084137,
0.02317757159471512,
0.043302569538354874,
0.003554110648110509,
0.05848918855190277,
0.10643676668405533,
-0.034425027668476105,
0.12191838771104813,
-0.009009522385895252,
0.12325528264045715,
0.008311784826219082,
-0.026774339377880096,
0.06712239235639572,
0.14901535212993622,
0.027869315817952156,
0.0652027353644371,
-0.17710110545158386,
0.18872523307800293,
0.08070989698171616,
0.013813640922307968,
-0.026329396292567253,
0.006268031895160675,
0.12724509835243225,
0.15449489653110504,
0.06321395933628082,
0.09709595143795013,
-0.21835313737392426,
-0.05228706821799278,
-0.11081982403993607,
0.05234279856085777,
0.004664898384362459,
0.005703571252524853,
-0.035508666187524796,
-0.038821812719106674,
-0.011135022155940533,
-0.05395785719156265,
-0.03829115629196167,
-0.21110336482524872,
-0.07528359442949295,
0.04464954510331154,
0.1415630429983139,
-0.07097790390253067,
-0.05301060155034065,
-0.031464509665966034,
-0.03286268562078476,
0.03151979297399521,
0.11613958328962326,
-0.05414909869432449,
-0.13254278898239136,
-0.052636031061410904,
0.08482033759355545,
-0.01072439644485712,
0.1055503785610199,
0.014443384483456612,
0.12570907175540924,
-0.07579505443572998,
-0.1758834421634674,
-0.0206633098423481,
-0.11382916569709778,
0.05332262068986893,
-0.009577454067766666,
0.07326454669237137,
-0.10809452086687088,
0.03434409201145172,
0.0724785253405571,
0.015746941789984703,
0.026900460943579674,
-0.16739089787006378,
0.02062421664595604,
0.11584965139627457,
0.012711763381958008,
-0.018831737339496613,
-0.10705633461475372,
0.08965273201465607,
0.04224035516381264,
-0.09674735367298126,
0.1381273865699768,
0.11027875542640686,
-0.11308784782886505,
0.08093274384737015,
0.08127851039171219,
-0.17978647351264954,
-0.27245333790779114,
-0.05904722213745117,
-0.056805070489645004,
-0.03117276169359684,
0.13322491943836212,
-0.12329112738370895,
0.02143190987408161,
0.07553780823945999,
-0.00047529430594295263,
0.11963378638029099,
-0.2757602334022522,
-0.05789806693792343,
0.012194788083434105,
0.15562938153743744,
0.11714049428701401,
-0.11509475111961365,
-0.11095274984836578,
-0.06162117049098015,
-0.17204512655735016,
0.12280535697937012,
-0.07806263864040375,
0.06296168267726898,
-0.019766846671700478,
0.0518757626414299,
-0.04053986072540283,
-0.013678964227437973,
0.20848849415779114,
-0.053978756070137024,
0.06666849553585052,
-0.06577573716640472,
-0.04589790478348732,
0.04550204798579216,
-0.005173112265765667,
0.15975919365882874,
-0.19489048421382904,
0.07473540306091309,
-0.13373541831970215,
0.01788799650967121,
-0.002304562833160162,
0.07620486617088318,
-0.05269155651330948,
-0.010062496177852154,
-0.034073606133461,
-0.028127681463956833,
-0.023821234703063965,
-0.0577532984316349,
-0.1581059843301773,
-0.009753022342920303,
-0.059910424053668976,
0.03334936872124672,
-0.007447015028446913,
-0.10117863118648529,
-0.16019783914089203,
0.01029315497726202,
-0.041628167033195496,
0.07306075096130371,
-0.15752124786376953,
-0.024083439260721207,
0.07811692357063293,
0.010402938351035118,
0.03547961264848709,
-0.000122601879411377,
-0.007322609890252352,
-0.016819871962070465,
0.08244602382183075,
-0.06716097891330719,
-0.00046248474973253906,
-0.07531484961509705,
0.2056521326303482,
0.08171701431274414,
-0.01961246132850647,
0.10847096890211105,
-0.051630910485982895,
-0.03885427862405777,
-0.014318405650556087,
0.04497461020946503,
-0.08176902681589127,
0.09414339810609818,
0.0935293585062027,
0.020600060001015663,
-0.11777710169553757,
0.04447287693619728,
-0.06602714210748672,
-0.01799829490482807,
-0.02556322142481804,
0.050321485847234726,
-0.015859445556998253,
-0.13194388151168823,
0.0901796966791153,
0.12188559025526047,
-0.06339605897665024,
-0.07057797908782959,
-0.01897832751274109,
-0.1366199404001236,
0.04964826628565788,
0.04879805073142052,
0.05213334411382675,
0.0037031196989119053,
0.015164930373430252,
-0.12447668612003326,
-0.013509298674762249,
0.008529562503099442,
-0.10134218633174896,
-0.01761137694120407,
-0.11562894284725189,
0.02075619250535965,
0.051692016422748566,
0.06459711492061615,
-0.04044349491596222,
0.06666208058595657,
-0.06420839577913284,
-0.007659811992198229,
-0.015965329483151436,
0.04161211475729942,
-0.05089305341243744,
0.006471528671681881,
0.039248306304216385,
-0.010393978096544743,
-0.0969109982252121,
0.05985844507813454,
-0.13259632885456085,
-0.04760411009192467,
-0.01945536956191063,
0.09795845299959183,
0.020149340853095055,
-0.04255170002579689,
0.04274546727538109,
0.0449364148080349,
-0.02252880483865738,
0.0315818190574646,
-0.04117950052022934,
0.061395399272441864,
-0.10302892327308655,
-0.051284804940223694,
0.0028949961997568607,
0.12217772006988525,
-0.0002869545132853091,
-0.15376690030097961,
0.037353623658418655,
0.05034911260008812,
-0.008122345432639122,
-0.007579388562589884,
0.07083051651716232,
-0.13186337053775787,
-0.088494211435318,
-0.02578127011656761,
0.018293995410203934,
0.04739335551857948,
-0.07264847308397293,
0.17486532032489777,
0.06009179726243019,
0.07547566294670105,
0.007235618773847818,
0.055831849575042725,
-0.08539175987243652,
0.03683209791779518,
-0.05661362409591675,
-0.09611059725284576,
-0.03903379663825035,
-0.0021392698399722576,
-0.00014526386803481728,
-0.01420077495276928,
0.3533989191055298,
0.16690608859062195,
-0.1264844536781311,
0.019153377041220665,
0.16425466537475586,
-0.012628836557269096,
-0.03816981241106987,
0.19809292256832123,
-0.04649149626493454,
0.14369046688079834,
-0.03953731432557106,
0.053705692291259766,
0.03254828229546547,
-0.15357396006584167,
0.059361521154642105,
0.036696746945381165,
0.1368531435728073,
0.05236409232020378,
0.18518580496311188,
-0.03834743797779083,
0.026894232258200645,
-0.11112634092569351,
0.02048870548605919,
0.14370223879814148,
-0.04833168536424637,
-0.006284502800554037,
0.07169849425554276,
-0.08382372558116913,
0.11748142540454865,
0.006657426245510578,
-0.01442479994148016,
-0.1470816284418106,
-0.14885838329792023,
-0.058263979852199554,
-0.1570264995098114,
-0.04319346696138382,
-0.091800756752491,
0.03971653804183006,
0.0728127658367157,
-0.016159413382411003,
0.025016378611326218,
0.007509138900786638,
-0.2323688417673111,
-0.05510265380144119,
-0.04218364134430885,
-0.018457313999533653,
-0.07266602665185928,
-0.12801609933376312,
0.011299144476652145,
-0.00048268758109770715,
-0.05863529443740845,
-0.029443245381116867,
0.028420306742191315,
0.00033570482628419995,
0.05823976546525955,
-0.03175045922398567,
-0.01984230987727642,
-0.06277963519096375,
-0.08125972002744675,
0.02126171998679638,
0.10566531866788864,
0.016099952161312103,
-0.057343561202287674,
0.020238665863871574,
-0.004904720466583967,
0.039119284600019455,
-0.09989582747220993,
-0.05927695706486702,
0.011690402403473854,
-0.04455139860510826,
0.03983805328607559,
-0.03903917968273163,
0.06544622778892517,
-0.05930008366703987,
0.37345901131629944,
0.3065444529056549,
0.03286444768309593,
0.005322429351508617,
-0.03824174031615257,
0.019006801769137383,
0.03791540116071701,
0.15930697321891785,
0.05341946333646774,
-0.07779950648546219,
-0.015285328030586243,
-0.04766186699271202,
-0.14707355201244354,
0.03364495560526848,
-0.046838775277137756,
-0.00407479889690876,
0.008313436061143875,
-0.10002010315656662,
0.08826810866594315,
0.09129531681537628,
0.0391959547996521,
0.04704653471708298,
-0.017270850017666817,
-0.027419965714216232,
0.03316425904631615,
-0.07092940807342529,
0.05267047882080078,
0.02487989142537117,
0.009878309443593025,
-0.07073743641376495,
0.044611282646656036,
0.124588742852211,
-0.024938073009252548,
-0.293672114610672,
-0.2200453132390976,
0.0809345543384552,
-0.06926006823778152,
0.19625777006149292,
-0.009308247826993465,
0.003206107998266816,
0.03433195501565933,
-0.07808199524879456,
-0.147744283080101,
0.12149180471897125,
-0.028095487505197525,
-0.0644768625497818,
0.04093719273805618,
-0.040917955338954926,
-0.042348191142082214,
-0.016846196725964546,
-0.1029941588640213,
0.04714520648121834,
0.046664413064718246,
0.019275549799203873,
-0.06501119583845139,
0.06281518191099167,
0.06962401419878006,
-0.15687181055545807,
0.12140648812055588,
0.0558379627764225,
-0.005544283427298069,
-0.06529324501752853,
-0.040063340216875076,
0.06883232295513153,
0.004618490114808083,
-0.09463106095790863,
0.012003665789961815,
-0.07336807996034622,
-0.04942265897989273,
-0.12418453395366669,
0.019030509516596794,
-0.05635474622249603,
-0.04115450009703636,
-0.08234497159719467,
-0.08086144179105759,
-0.05190994590520859,
0.030218441039323807,
0.1742338240146637,
-0.010931545868515968,
-0.03910112380981445,
-0.1824086308479309,
0.06171401962637901,
0.026941685006022453,
-0.05009137839078903,
-0.07564587146043777
] |
null | null | mlx |
# mlx-community/clip-vit-base-patch32
This model was converted to MLX format from [`clip-vit-base-patch32`](https://huggingface.co/openai/clip-vit-base-patch32).
Refer to the [original model card](https://huggingface.co/openai/clip-vit-base-patch32) for more details on the model.
## Use with mlx-examples
Download the repository 👇
```
pip install huggingface_hub hf_transfer
export HF_HUB_ENABLE_HF_TRANSFER=1
huggingface-cli download --local-dir <LOCAL FOLDER PATH> mlx-community/clip-vit-base-patch32
```
Install `mlx-examples`.
```bash
git clone [email protected]:ml-explore/mlx-examples.git
cd clip
pip install -r requirements.txt
```
Run the model.
```python
from PIL import Image
import clip
model, tokenizer, img_processor = clip.load("mlx_model")
inputs = {
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
"pixel_values": img_processor(
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
),
}
output = model(**inputs)
# Get text and image embeddings:
text_embeds = output.text_embeds
image_embeds = output.image_embeds
``` | {"license": "apache-2.0", "library_name": "mlx"} | null | mlx-community/clip-vit-base-patch32 | [
"mlx",
"clip",
"license:apache-2.0",
"region:us"
] | 2024-02-13T13:51:28+00:00 | [] | [] | TAGS
#mlx #clip #license-apache-2.0 #region-us
|
# mlx-community/clip-vit-base-patch32
This model was converted to MLX format from 'clip-vit-base-patch32'.
Refer to the original model card for more details on the model.
## Use with mlx-examples
Download the repository
Install 'mlx-examples'.
Run the model.
| [
"# mlx-community/clip-vit-base-patch32\nThis model was converted to MLX format from 'clip-vit-base-patch32'.\nRefer to the original model card for more details on the model.",
"## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
"TAGS\n#mlx #clip #license-apache-2.0 #region-us \n",
"# mlx-community/clip-vit-base-patch32\nThis model was converted to MLX format from 'clip-vit-base-patch32'.\nRefer to the original model card for more details on the model.",
"## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
19,
52,
28
] | [
"passage: TAGS\n#mlx #clip #license-apache-2.0 #region-us \n# mlx-community/clip-vit-base-patch32\nThis model was converted to MLX format from 'clip-vit-base-patch32'.\nRefer to the original model card for more details on the model.## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
-0.06847034394741058,
-0.007266701199114323,
-0.0014148657210171223,
0.035379186272621155,
0.09018250554800034,
0.07441800087690353,
0.11754389107227325,
0.09523472189903259,
0.006224364973604679,
-0.06700637936592102,
0.13228009641170502,
0.24687932431697845,
0.049303729087114334,
0.07885373383760452,
0.02549988403916359,
-0.16051357984542847,
-0.03658761829137802,
0.010166735388338566,
0.01732124201953411,
0.04567369073629379,
0.09364940226078033,
-0.03139312565326691,
0.15686629712581635,
0.019604163244366646,
-0.10795719176530838,
0.08524660021066666,
0.09091309458017349,
0.02360631339251995,
0.048606473952531815,
0.05469880998134613,
0.007175961975008249,
-0.016256917268037796,
0.093058280646801,
-0.1288633495569229,
0.016408514231443405,
0.020913250744342804,
-0.01492911484092474,
0.055562835186719894,
0.031254008412361145,
-0.013384860008955002,
0.14771804213523865,
-0.012699401006102562,
-0.04072152078151703,
0.06284324079751968,
-0.03818800672888756,
-0.09384430199861526,
-0.15246859192848206,
-0.05323324352502823,
0.04713208228349686,
-0.004456507507711649,
0.06856676191091537,
0.22309578955173492,
0.055626872926950455,
0.04521811753511429,
0.1553652435541153,
-0.2311481386423111,
0.0038162292912602425,
0.3204255700111389,
0.17131257057189941,
0.03842206299304962,
0.05947289988398552,
0.18965259194374084,
0.06689557433128357,
0.04416455328464508,
0.044400863349437714,
-0.06360524147748947,
0.020133087411522865,
0.045228876173496246,
-0.06607366353273392,
0.008869865909218788,
0.2271159440279007,
-0.05151137337088585,
-0.020155426114797592,
-0.006639799103140831,
0.012647232040762901,
0.11400429159402847,
-0.0677759125828743,
0.06548421084880829,
0.06764411181211472,
0.05123478174209595,
0.14722587168216705,
-0.15393584966659546,
0.016138048842549324,
-0.1424838751554489,
-0.1140022724866867,
0.10762780159711838,
0.007186535280197859,
0.12626487016677856,
-0.09079542756080627,
-0.030594218522310257,
-0.08465208113193512,
-0.014422135427594185,
0.0034301397390663624,
-0.08459032326936722,
0.1670069694519043,
0.04039210453629494,
-0.04608176276087761,
-0.09598536789417267,
0.0859055146574974,
-0.0429992750287056,
0.10781574249267578,
0.012434973381459713,
0.016845829784870148,
0.08872184157371521,
-0.020399300381541252,
-0.0388009212911129,
-0.03923119977116585,
0.05755108222365379,
0.09349362552165985,
-0.0785427838563919,
0.05300559848546982,
-0.015561559237539768,
-0.1268085390329361,
0.07749472558498383,
-0.2601626515388489,
0.1654270738363266,
0.05782126635313034,
0.03731847554445267,
-0.009580899961292744,
-0.0206742063164711,
0.019617237150669098,
-0.07728082686662674,
0.06596030294895172,
-0.055618736892938614,
-0.03358198702335358,
0.14599594473838806,
0.012317802757024765,
-0.0079390499740839,
-0.04343802109360695,
-0.06958309561014175,
-0.08841811120510101,
0.04547654837369919,
-0.1299966424703598,
-0.12245799601078033,
0.047309741377830505,
0.011163393035531044,
0.028308911249041557,
-0.13587158918380737,
-0.20457598567008972,
0.016699908301234245,
0.08060241490602493,
0.003681108821183443,
0.017848294228315353,
0.04326137155294418,
0.016822606325149536,
0.01790621690452099,
0.011131586506962776,
0.07636874169111252,
-0.03589346259832382,
-0.010979563929140568,
-0.10955313593149185,
0.06703411787748337,
-0.14914359152317047,
0.05371461436152458,
0.030722644180059433,
0.04894549027085304,
0.00045941054122522473,
-0.00868249498307705,
-0.09520447254180908,
0.030344953760504723,
-0.0773654356598854,
-0.0528242252767086,
0.08987236768007278,
0.05023302882909775,
0.0007705582538619637,
0.07255922257900238,
-0.23782989382743835,
0.014790148474276066,
0.08815985172986984,
-0.12618595361709595,
-0.10573741793632507,
-0.06081119552254677,
0.05373368784785271,
-0.04753459244966507,
0.043152566999197006,
0.1362750381231308,
0.04926716908812523,
-0.2326686531305313,
0.05722146853804588,
0.10778192430734634,
-0.10237496346235275,
-0.19891704618930817,
0.11388050019741058,
-0.002988600404933095,
-0.2470831274986267,
0.051102571189403534,
-0.1807681769132614,
0.001127248746342957,
-0.0469013974070549,
-0.027507374063134193,
-0.0779193788766861,
-0.06935025006532669,
-0.015573889948427677,
-0.0807751715183258,
-0.03002132661640644,
-0.049670856446027756,
0.0748809427022934,
0.21651023626327515,
0.14141355454921722,
0.0013650587061420083,
-0.006008106283843517,
-0.10931288450956345,
0.06650286167860031,
-0.0979510173201561,
0.037879884243011475,
-0.05426524206995964,
-0.0366404764354229,
0.027524352073669434,
-0.1778305470943451,
0.012632416561245918,
0.05915894731879234,
-0.002715806243941188,
-0.010682894848287106,
0.0027246945537626743,
0.11084980517625809,
0.018247028812766075,
0.006978179328143597,
0.00553853390738368,
-0.13009977340698242,
-0.04174073785543442,
-0.029275180771946907,
-0.12800194323062897,
-0.03362586721777916,
-0.004523280076682568,
-0.028612632304430008,
0.01602940261363983,
-0.0349649041891098,
0.0013011264381930232,
0.07508855313062668,
0.017191480845212936,
0.028337161988019943,
-0.032414522022008896,
0.11016620695590973,
0.011350012384355068,
0.04514492303133011,
0.26046255230903625,
-0.07225656509399414,
0.07502926141023636,
0.216965451836586,
0.0022400026209652424,
0.08740746229887009,
0.014344887807965279,
0.022976670414209366,
0.02168438769876957,
-0.037801049649715424,
-0.06939969956874847,
0.0886169821023941,
-0.018463002517819405,
0.09067431092262268,
-0.0913960263133049,
-0.0308621134608984,
-0.004461107775568962,
-0.03912913426756859,
-0.09937512874603271,
-0.02643430419266224,
0.3142135441303253,
-0.03755767270922661,
0.03202613815665245,
0.1852874904870987,
0.04597364366054535,
0.0838061273097992,
-0.035540882498025894,
0.011310349218547344,
-0.10294265300035477,
-0.12189945578575134,
0.011247891932725906,
0.10589882731437683,
0.062036577612161636,
-0.008034806698560715,
0.03938787803053856,
-0.015335287898778915,
0.079781174659729,
-0.10111309587955475,
-0.04821779578924179,
0.037989865988492966,
-0.05509907379746437,
-0.10949434340000153,
0.08452674746513367,
-0.0646686926484108,
0.051999494433403015,
-0.08550553023815155,
0.10461991280317307,
-0.004942574538290501,
0.012207785621285439,
-0.12469173222780228,
0.06387706100940704,
-0.2693850100040436,
-0.20126973092556,
-0.16100400686264038,
-0.028119146823883057,
-0.09466001391410828,
-0.04355849325656891,
-0.016638141125440598,
-0.005964973010122776,
-0.051491670310497284,
-0.0760163888335228,
0.09109438210725784,
-0.07925654947757721,
-0.014079088345170021,
0.05375249683856964,
0.016843942925333977,
0.0204644612967968,
-0.19765517115592957,
-0.002763473428785801,
0.07207020372152328,
0.0005425203125923872,
-0.03127051144838333,
0.009653743356466293,
0.08240000158548355,
0.05159008130431175,
-0.05635662376880646,
0.03508912771940231,
0.018952108919620514,
0.16882635653018951,
0.0471484512090683,
-0.021754669025540352,
0.2456503063440323,
0.0928049087524414,
0.0011646563652902842,
-0.029543370008468628,
0.07084816694259644,
-0.08064521849155426,
-0.05957227200269699,
-0.025449415668845177,
-0.07976946234703064,
-0.23194558918476105,
-0.10314412415027618,
-0.037804633378982544,
-0.023079175502061844,
0.042139455676078796,
0.0521935373544693,
-0.13669659197330475,
0.09053874760866165,
0.04869263991713524,
0.012492413632571697,
-0.1190280169248581,
-0.011326366104185581,
0.07788409292697906,
-0.09709130972623825,
-0.013486240059137344,
-0.122196726500988,
0.09134151041507721,
0.15749619901180267,
0.04345421493053436,
0.1070677787065506,
0.14775198698043823,
-0.060510557144880295,
0.15132643282413483,
0.019662870094180107,
0.07847049832344055,
0.1475389152765274,
-0.0563860759139061,
0.004455131478607655,
-0.01155017502605915,
-0.07521757483482361,
0.008108933456242085,
0.03499619662761688,
0.06523634493350983,
-0.040874723345041275,
0.014145293273031712,
-0.0652758926153183,
0.07394235581159592,
-0.027874600142240524,
-0.014390973374247551,
-0.18206551671028137,
0.06678497046232224,
0.03771018609404564,
0.039973530918359756,
0.00018818367971107364,
0.06564735621213913,
0.12440374493598938,
-0.02619347907602787,
0.11757230758666992,
-0.006752230692654848,
0.12178657948970795,
0.008684765547513962,
-0.036896370351314545,
0.07610318064689636,
0.15160785615444183,
0.03813844174146652,
0.06053207814693451,
-0.15457823872566223,
0.15854111313819885,
0.07550646364688873,
0.00552912475541234,
-0.036683086305856705,
0.01714828982949257,
0.13498331606388092,
0.16140002012252808,
0.05261813849210739,
0.09221480786800385,
-0.21945324540138245,
-0.04236951097846031,
-0.11244253069162369,
0.05292527377605438,
0.01254621334373951,
0.007758496329188347,
-0.028471222147345543,
-0.04377412050962448,
-0.006616206839680672,
-0.05043784901499748,
-0.044161684811115265,
-0.20693452656269073,
-0.08199603855609894,
0.03870284929871559,
0.16116318106651306,
-0.06293746829032898,
-0.06289055943489075,
-0.031259700655937195,
-0.013257824815809727,
0.04469156637787819,
0.113350510597229,
-0.05717327818274498,
-0.12416061758995056,
-0.04267776012420654,
0.08002365380525589,
-0.0023949642200022936,
0.09464546293020248,
0.01563178189098835,
0.11965681612491608,
-0.06732102483510971,
-0.1767767071723938,
-0.022527245804667473,
-0.10897644609212875,
0.056904152035713196,
-0.006542431190609932,
0.0728914737701416,
-0.10733844339847565,
0.034258488565683365,
0.06751684099435806,
0.014776092022657394,
0.03450388088822365,
-0.16874545812606812,
0.0018052870873361826,
0.13111966848373413,
0.013305491767823696,
-0.0027499510906636715,
-0.11417559534311295,
0.08521092683076859,
0.06123443320393562,
-0.09127751737833023,
0.1430063247680664,
0.08841847628355026,
-0.11225152760744095,
0.0765213668346405,
0.05514523759484291,
-0.18335233628749847,
-0.27499863505363464,
-0.06468750536441803,
-0.05688948929309845,
-0.02470860257744789,
0.13061191141605377,
-0.12961345911026,
0.025643905624747276,
0.0676383301615715,
0.004139369353652,
0.12475642561912537,
-0.2891933023929596,
-0.045027170330286026,
0.01205659843981266,
0.17000311613082886,
0.10166879743337631,
-0.12553969025611877,
-0.11142998188734055,
-0.06494419276714325,
-0.1682427078485489,
0.12733760476112366,
-0.08430135995149612,
0.06775582581758499,
-0.02021211013197899,
0.04549453780055046,
-0.04182985797524452,
-0.014442716725170612,
0.21204179525375366,
-0.06918517500162125,
0.06656074523925781,
-0.07261800765991211,
-0.024086713790893555,
0.041316334158182144,
-0.0077441539615392685,
0.16064079105854034,
-0.2266875058412552,
0.07935650646686554,
-0.13244833052158356,
0.015806468203663826,
0.002028320450335741,
0.0686606615781784,
-0.05064142122864723,
-0.007459535263478756,
-0.02969549223780632,
-0.03352537378668785,
-0.01792350970208645,
-0.06048184633255005,
-0.14406076073646545,
-0.0076689282432198524,
-0.06466495990753174,
0.03713181987404823,
-0.00775160314515233,
-0.0766993835568428,
-0.15844498574733734,
0.005005926359444857,
-0.04183124005794525,
0.0787314847111702,
-0.15339960157871246,
-0.02565522864460945,
0.07608103007078171,
0.010186449624598026,
0.03547682613134384,
-0.0013035503216087818,
0.004431342706084251,
-0.015184413641691208,
0.08354082703590393,
-0.06744653731584549,
0.00783295463770628,
-0.07621031254529953,
0.21549852192401886,
0.08944705873727798,
-0.023638827726244926,
0.11708450317382812,
-0.051757633686065674,
-0.03106265515089035,
-0.014572348445653915,
0.045217275619506836,
-0.08983388543128967,
0.08165859431028366,
0.09110169857740402,
0.010210985317826271,
-0.10683052986860275,
0.04212762415409088,
-0.07241374254226685,
-0.014245148748159409,
-0.01904749497771263,
0.061456505209207535,
-0.015505373477935791,
-0.12837828695774078,
0.09598496556282043,
0.11555235832929611,
-0.0766976997256279,
-0.07985024899244308,
-0.016958387568593025,
-0.13404494524002075,
0.04246345907449722,
0.06226407736539841,
0.05023931711912155,
0.00977221317589283,
-0.00048699945909902453,
-0.12230634689331055,
-0.013784618116915226,
0.006466963328421116,
-0.10363972932100296,
-0.01188812218606472,
-0.11766783893108368,
0.020626455545425415,
0.05334410443902016,
0.04604717344045639,
-0.03822069242596626,
0.07223774492740631,
-0.05919881537556648,
-0.00966602936387062,
-0.06268970668315887,
0.03960845246911049,
-0.05077264830470085,
0.006565377116203308,
0.04146310314536095,
-0.00041725701885297894,
-0.08735338598489761,
0.07172862440347672,
-0.12639102339744568,
-0.05476507171988487,
-0.0301680751144886,
0.10020999610424042,
0.016293663531541824,
-0.04230145364999771,
0.037819717079401016,
0.0443863719701767,
-0.03008982539176941,
0.029905136674642563,
-0.04842996224761009,
0.057598013430833817,
-0.08184638619422913,
-0.04396430030465126,
0.010826981626451015,
0.12863825261592865,
-0.009078129194676876,
-0.14213548600673676,
0.04505454748868942,
0.052247922867536545,
-0.015326268039643764,
-0.007768354378640652,
0.09307727217674255,
-0.12416902929544449,
-0.0876990407705307,
-0.03470921516418457,
0.019494615495204926,
0.04978848248720169,
-0.07253456860780716,
0.19150449335575104,
0.0626286119222641,
0.07515918463468552,
0.005529328249394894,
0.05306309461593628,
-0.07137308269739151,
0.04052376002073288,
-0.05066624656319618,
-0.09032607078552246,
-0.05029308795928955,
-0.0035924725234508514,
0.0034281613770872355,
-0.013554230332374573,
0.3481527864933014,
0.15939094126224518,
-0.13671891391277313,
0.01579122059047222,
0.15288053452968597,
0.019386697560548782,
-0.038805920630693436,
0.20633918046951294,
-0.0486152321100235,
0.13846702873706818,
-0.034973595291376114,
0.05033969506621361,
0.03653919696807861,
-0.18068958818912506,
0.056807417422533035,
0.03663713485002518,
0.1379229873418808,
0.05759642273187637,
0.18549038469791412,
-0.036406468600034714,
0.022308997809886932,
-0.1315842717885971,
0.03608833625912666,
0.14318594336509705,
-0.05803493410348892,
0.0069181304425001144,
0.041888877749443054,
-0.08412753790616989,
0.10116415470838547,
0.008706123568117619,
-0.018121665343642235,
-0.14319299161434174,
-0.13664543628692627,
-0.06079461798071861,
-0.15215182304382324,
-0.044845130294561386,
-0.09051700681447983,
0.03679884970188141,
0.067391037940979,
-0.02084890753030777,
0.029213666915893555,
0.014126176945865154,
-0.2515852749347687,
-0.057368334382772446,
-0.044784802943468094,
-0.01246034074574709,
-0.07199802249670029,
-0.1218278557062149,
0.003288474166765809,
-0.010243725031614304,
-0.06789002567529678,
-0.032838769257068634,
0.03218455612659454,
0.004639305640012026,
0.055509261786937714,
-0.030029449611902237,
-0.011655094102025032,
-0.062138237059116364,
-0.07999730110168457,
0.02822927013039589,
0.12554675340652466,
0.019964993000030518,
-0.05981176719069481,
0.020784664899110794,
-0.02379479818046093,
0.028296349570155144,
-0.10242144018411636,
-0.05613939091563225,
0.019721223041415215,
-0.05027192085981369,
0.04021434113383293,
-0.03193718194961548,
0.06597821414470673,
-0.06667008250951767,
0.33543771505355835,
0.28634077310562134,
0.02127615548670292,
0.005988622084259987,
-0.03844214975833893,
0.01890835538506508,
0.030680526047945023,
0.1602635681629181,
0.06345076858997345,
-0.06426196545362473,
-0.013641703873872757,
-0.059573132544755936,
-0.15221688151359558,
0.03531278669834137,
-0.047019973397254944,
-0.01244437601417303,
0.0021807970479130745,
-0.10788334161043167,
0.08292463421821594,
0.08831635117530823,
0.037674106657505035,
0.05270657688379288,
0.006184811238199472,
-0.022473450750112534,
0.03201624006032944,
-0.06254343688488007,
0.0610753670334816,
0.013333688490092754,
-0.0027940534055233,
-0.06954021751880646,
0.05032502859830856,
0.1440342217683792,
-0.020758267492055893,
-0.30038946866989136,
-0.20769146084785461,
0.08197437971830368,
-0.0901767686009407,
0.18079310655593872,
-0.009246783331036568,
0.015900127589702606,
0.03819970041513443,
-0.07743466645479202,
-0.1396038681268692,
0.1305372714996338,
-0.02583019621670246,
-0.08060476183891296,
0.026374898850917816,
-0.046908095479011536,
-0.046229999512434006,
0.022827813401818275,
-0.10688299685716629,
0.061702925711870193,
0.03567356616258621,
0.0385851189494133,
-0.06912758201360703,
0.05703656002879143,
0.05743098258972168,
-0.1588965207338333,
0.12430323660373688,
0.059882186353206635,
0.0008727252134121954,
-0.06292350590229034,
-0.035528697073459625,
0.07764528691768646,
0.004793105181306601,
-0.09643815457820892,
0.01550268568098545,
-0.07116109877824783,
-0.05877256393432617,
-0.14016515016555786,
0.024102022871375084,
-0.051648832857608795,
-0.05066406726837158,
-0.07951712608337402,
-0.07365823537111282,
-0.05356818065047264,
0.027143117040395737,
0.169085294008255,
-0.01002394687384367,
-0.03827342018485069,
-0.19694693386554718,
0.058217164129018784,
0.02489401586353779,
-0.05424725264310837,
-0.07915648818016052
] |
null | null | mlx |
# mlx-community/clip-vit-large-patch14
This model was converted to MLX format from [`clip-vit-large-patch14`](https://huggingface.co/clip-vit-large-patch14).
Refer to the [original model card](https://huggingface.co/openai/clip-vit-large-patch14) for more details on the model.
## Use with mlx-examples
Download the repository 👇
```
pip install huggingface_hub hf_transfer
export HF_HUB_ENABLE_HF_TRANSFER=1
huggingface-cli download --local-dir <LOCAL FOLDER PATH> mlx-community/clip-vit-large-patch14
```
Install `mlx-examples`.
```bash
git clone [email protected]:ml-explore/mlx-examples.git
cd clip
pip install -r requirements.txt
```
Run the model.
```python
from PIL import Image
import clip
model, tokenizer, img_processor = clip.load("mlx_model")
inputs = {
"input_ids": tokenizer(["a photo of a cat", "a photo of a dog"]),
"pixel_values": img_processor(
[Image.open("assets/cat.jpeg"), Image.open("assets/dog.jpeg")]
),
}
output = model(**inputs)
# Get text and image embeddings:
text_embeds = output.text_embeds
image_embeds = output.image_embeds
``` | {"license": "apache-2.0", "library_name": "mlx"} | null | mlx-community/clip-vit-large-patch14 | [
"mlx",
"clip",
"license:apache-2.0",
"region:us"
] | 2024-02-13T13:52:31+00:00 | [] | [] | TAGS
#mlx #clip #license-apache-2.0 #region-us
|
# mlx-community/clip-vit-large-patch14
This model was converted to MLX format from 'clip-vit-large-patch14'.
Refer to the original model card for more details on the model.
## Use with mlx-examples
Download the repository
Install 'mlx-examples'.
Run the model.
| [
"# mlx-community/clip-vit-large-patch14\nThis model was converted to MLX format from 'clip-vit-large-patch14'.\nRefer to the original model card for more details on the model.",
"## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
"TAGS\n#mlx #clip #license-apache-2.0 #region-us \n",
"# mlx-community/clip-vit-large-patch14\nThis model was converted to MLX format from 'clip-vit-large-patch14'.\nRefer to the original model card for more details on the model.",
"## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
19,
54,
28
] | [
"passage: TAGS\n#mlx #clip #license-apache-2.0 #region-us \n# mlx-community/clip-vit-large-patch14\nThis model was converted to MLX format from 'clip-vit-large-patch14'.\nRefer to the original model card for more details on the model.## Use with mlx-examples\n\nDownload the repository \n\n\n\nInstall 'mlx-examples'.\n\n\n\nRun the model."
] | [
-0.06753381341695786,
-0.047301262617111206,
-0.0019742604345083237,
0.04678511619567871,
0.10323983430862427,
0.07157151401042938,
0.1100287139415741,
0.09007986634969711,
0.008848369121551514,
-0.05822643265128136,
0.14301832020282745,
0.2557584345340729,
0.035713937133550644,
0.09528878331184387,
0.03167976438999176,
-0.17395354807376862,
-0.05109797418117523,
0.0036973394453525543,
0.006928218062967062,
0.044498469680547714,
0.09963399171829224,
-0.040067169815301895,
0.16826939582824707,
0.035865504294633865,
-0.109534353017807,
0.05025464668869972,
0.09603255987167358,
0.010667391121387482,
0.047274164855480194,
0.04339826852083206,
-0.012328514829277992,
-0.026970788836479187,
0.07799537479877472,
-0.09689150750637054,
0.0141646983101964,
-0.002047346206381917,
0.0038905253168195486,
0.055414218455553055,
0.04635670408606529,
0.02454296126961708,
0.10604965686798096,
-0.041844308376312256,
-0.03372656926512718,
0.06465515494346619,
-0.03752703592181206,
-0.1607319861650467,
-0.15435458719730377,
-0.07251473516225815,
0.029423082247376442,
0.007822846062481403,
0.058030303567647934,
0.22061805427074432,
0.030059250071644783,
0.024931712076067924,
0.16226570308208466,
-0.2276928573846817,
0.008779649622738361,
0.29660359025001526,
0.17039932310581207,
0.028408754616975784,
0.04895046353340149,
0.1867186278104782,
0.07252547889947891,
0.04122753441333771,
0.06930957734584808,
-0.06470049917697906,
0.01980852335691452,
0.0368838831782341,
-0.06373540312051773,
0.00916050560772419,
0.2285526543855667,
-0.040002502501010895,
-0.01817837357521057,
-0.04502212628722191,
0.019088201224803925,
0.11448023468255997,
-0.07685292512178421,
0.053013525903224945,
0.08573487401008606,
0.027321292087435722,
0.14922063052654266,
-0.1530282199382782,
-0.002726870123296976,
-0.12186578661203384,
-0.15506649017333984,
0.08386896550655365,
-0.003855427261441946,
0.11131313443183899,
-0.13416673243045807,
-0.06727945804595947,
-0.08779864013195038,
0.0015301322564482689,
0.010545055381953716,
-0.08193691819906235,
0.14524944126605988,
0.03769189491868019,
-0.04633743315935135,
-0.05055985227227211,
0.09090913087129593,
-0.040438126772642136,
0.08068503439426422,
-0.00749317929148674,
0.051462698727846146,
0.09513118863105774,
-0.030624987557530403,
-0.02576577290892601,
-0.06129903718829155,
0.08384280651807785,
0.08189497888088226,
-0.08958184719085693,
0.05065246298909187,
-0.015183445066213608,
-0.1271786093711853,
0.05354512110352516,
-0.25963401794433594,
0.16479197144508362,
0.05102482810616493,
0.039343271404504776,
0.005422102753072977,
-0.01686939038336277,
0.016186702996492386,
-0.07827506959438324,
0.06708802282810211,
-0.04364366456866264,
-0.021849574521183968,
0.17387636005878448,
-0.031047409400343895,
-0.02443123608827591,
-0.021787751466035843,
-0.04411318153142929,
-0.09807760268449783,
0.04142611473798752,
-0.11145384609699249,
-0.11883752793073654,
0.05795380845665932,
0.027474764734506607,
0.03582925349473953,
-0.14212070405483246,
-0.1887364685535431,
0.019791284576058388,
0.05531368777155876,
0.011898385360836983,
0.0018560463795438409,
0.06331068277359009,
0.006372192408889532,
0.011354527436196804,
0.012780873104929924,
0.10742482542991638,
-0.030985087156295776,
-0.015346580184996128,
-0.11175905168056488,
0.08730033040046692,
-0.13558928668498993,
0.04188256710767746,
0.027081821113824844,
0.03294619545340538,
-0.006584028713405132,
-0.02820933237671852,
-0.05807054787874222,
0.06188689172267914,
-0.08204632997512817,
-0.06638556718826294,
0.06869033724069595,
0.056463394314050674,
-0.016467392444610596,
0.06460434198379517,
-0.24378222227096558,
-0.008525432087481022,
0.1044405922293663,
-0.11169809848070145,
-0.12910380959510803,
-0.01989756152033806,
0.0690474659204483,
-0.0274130180478096,
0.04875253140926361,
0.15885145962238312,
0.03884071856737137,
-0.23749224841594696,
0.04643481597304344,
0.1121821478009224,
-0.1259128451347351,
-0.20219485461711884,
0.14027339220046997,
-0.01809828169643879,
-0.2119150310754776,
0.054593782871961594,
-0.12702403962612152,
0.0012680283980444074,
-0.043790727853775024,
-0.032406922429800034,
-0.07029606401920319,
-0.06349609047174454,
-0.007625795900821686,
-0.08514564484357834,
-0.015858057886362076,
-0.05567554756999016,
0.09286577999591827,
0.19386301934719086,
0.1371108591556549,
0.02105734683573246,
-0.004472419153898954,
-0.11657769978046417,
0.08417857438325882,
-0.08964014798402786,
0.04519379884004593,
-0.0463990792632103,
-0.03227640688419342,
0.02283729985356331,
-0.2369813323020935,
-0.001689526136033237,
0.07765861600637436,
0.008889803662896156,
-0.03650498017668724,
0.005663646385073662,
0.1387014538049698,
0.03753792122006416,
-0.011915808543562889,
0.003038616618141532,
-0.1035248264670372,
-0.014755875803530216,
-0.016703391447663307,
-0.07299284636974335,
-0.06355410814285278,
-0.01172848604619503,
-0.02380647137761116,
-0.02428603544831276,
-0.033191978931427,
0.021128157153725624,
0.07327401638031006,
-0.008573130704462528,
0.03193409740924835,
-0.022553272545337677,
0.11557914316654205,
0.0035273293033242226,
0.0360935740172863,
0.2687685191631317,
-0.09076200425624847,
0.09463870525360107,
0.22166261076927185,
0.018954409286379814,
0.06999950855970383,
0.0016796153504401445,
0.016567852348089218,
0.031490258872509,
-0.04719090089201927,
-0.07086476683616638,
0.07249098271131516,
-0.023660454899072647,
0.0947108194231987,
-0.09912879765033722,
-0.03782467171549797,
0.02622566744685173,
-0.030987100675702095,
-0.08586917817592621,
-0.0034198653884232044,
0.29161158204078674,
-0.024608775973320007,
0.021135488525032997,
0.20282961428165436,
0.04008487984538078,
0.09772620350122452,
-0.03847441077232361,
0.002693816786631942,
-0.10186182707548141,
-0.13755132257938385,
0.018369168043136597,
0.08072800189256668,
0.08155111968517303,
0.004040169063955545,
0.06867474317550659,
-0.00448556849732995,
0.06560002267360687,
-0.0761205330491066,
-0.06292680650949478,
0.04381410405039787,
-0.04588111862540245,
-0.1437557190656662,
0.10605612397193909,
-0.045216597616672516,
0.06363308429718018,
-0.08028405904769897,
0.10611686110496521,
0.004254890140146017,
0.01576651632785797,
-0.12013932317495346,
0.07127954065799713,
-0.23675355315208435,
-0.22023044526576996,
-0.15825387835502625,
-0.009219449944794178,
-0.07362332195043564,
-0.05624306946992874,
-0.005466786213219166,
-0.02838515304028988,
-0.034500714391469955,
-0.06223875656723976,
0.0886969119310379,
-0.0829501748085022,
-0.00022827734937891364,
0.053006019443273544,
0.018985338509082794,
0.019593853503465652,
-0.18550728261470795,
-0.006798295304179192,
0.05356719344854355,
-0.008932259865105152,
-0.028887951746582985,
0.012322693131864071,
0.08323462307453156,
0.06131580099463463,
-0.055129069834947586,
0.03259884938597679,
0.013077221810817719,
0.1762402057647705,
0.019779475405812263,
-0.02745412476360798,
0.26826778054237366,
0.11656119674444199,
-0.006502293050289154,
-0.016944101080298424,
0.07682770490646362,
-0.08077847212553024,
-0.06347224861383438,
-0.031932324171066284,
-0.07845453172922134,
-0.25651079416275024,
-0.1089596152305603,
-0.044993139803409576,
-0.0006826019380241632,
0.042421117424964905,
0.04510657116770744,
-0.14888450503349304,
0.08387152850627899,
0.052159834653139114,
0.007541769649833441,
-0.11759550124406815,
-0.01917281374335289,
0.12214665859937668,
-0.07386874407529831,
-0.013445069082081318,
-0.12202595174312592,
0.0719602033495903,
0.16673380136489868,
-0.001726094982586801,
0.12249861657619476,
0.15327350795269012,
-0.022642558440566063,
0.14537639915943146,
-0.02762678824365139,
0.08234629780054092,
0.1498817652463913,
-0.05416883900761604,
-0.0136637631803751,
-0.021405091509222984,
-0.07677698135375977,
0.041586264967918396,
0.023484209552407265,
0.07788891345262527,
-0.04192858934402466,
-0.013694802299141884,
-0.05293629691004753,
0.08718222379684448,
-0.04985746741294861,
0.008248860016465187,
-0.20102867484092712,
0.054921966046094894,
0.012912951409816742,
0.043797727674245834,
0.010931350290775299,
0.06513334065675735,
0.13536615669727325,
-0.04225596413016319,
0.1296597719192505,
-0.00018976291175931692,
0.10738736391067505,
0.006992391310632229,
-0.008160894736647606,
0.06161903962492943,
0.1596078872680664,
0.039263710379600525,
0.07712137699127197,
-0.1641916036605835,
0.1752007007598877,
0.07630977779626846,
0.0015491569647565484,
-0.041584596037864685,
0.007349309045821428,
0.1373230516910553,
0.12778663635253906,
0.07531999796628952,
0.09363750368356705,
-0.19767579436302185,
-0.027058301493525505,
-0.11408112943172455,
0.05533267557621002,
0.0068637533113360405,
0.013435179367661476,
-0.042083948850631714,
-0.04947362840175629,
-0.011008895933628082,
-0.05484619736671448,
-0.028694389387965202,
-0.17124608159065247,
-0.07940014451742172,
0.037465982139110565,
0.1690087765455246,
-0.10655592381954193,
-0.042011260986328125,
-0.043990638107061386,
-0.06346424669027328,
0.014074131846427917,
0.13292790949344635,
-0.04678312689065933,
-0.11512614041566849,
-0.06013215333223343,
0.08790455758571625,
-0.021123487502336502,
0.09443143010139465,
0.015225564129650593,
0.1408959925174713,
-0.07554532587528229,
-0.1500340700149536,
-0.01515734102576971,
-0.10692426562309265,
0.045278001576662064,
-0.0038443461526185274,
0.06405927985906601,
-0.13911543786525726,
0.04134872555732727,
0.07025887817144394,
0.012853051535785198,
0.015642764046788216,
-0.1746242493391037,
0.013643328100442886,
0.13309252262115479,
0.024037111550569534,
-0.01703720912337303,
-0.11163131892681122,
0.09812609851360321,
0.06463652104139328,
-0.10659407079219818,
0.1701391041278839,
0.12848711013793945,
-0.1266443431377411,
0.07006442546844482,
0.0787147507071495,
-0.15405228734016418,
-0.28216874599456787,
-0.06550395488739014,
-0.06483093649148941,
-0.03497657924890518,
0.15915335714817047,
-0.10292574763298035,
0.03446584194898605,
0.10341998934745789,
0.005865514278411865,
0.10564236342906952,
-0.2902640998363495,
-0.05833154171705246,
-0.008696838282048702,
0.12583361566066742,
0.1120331808924675,
-0.10158959031105042,
-0.10155896097421646,
-0.0729384794831276,
-0.12968169152736664,
0.12699291110038757,
-0.09879730641841888,
0.06851750612258911,
-0.02697453647851944,
0.05772290751338005,
-0.04195191711187363,
-0.02193325385451317,
0.21760287880897522,
-0.06403734534978867,
0.052959591150283813,
-0.0671212375164032,
-0.048659276217222214,
0.053685981780290604,
-0.006289376877248287,
0.17135882377624512,
-0.20055417716503143,
0.06226682662963867,
-0.11804076284170151,
0.003941402304917574,
-0.018959401175379753,
0.07889501005411148,
-0.05244411155581474,
-0.004349738825112581,
-0.04748660698533058,
-0.024690786376595497,
-0.014155765995383263,
-0.06194368377327919,
-0.1735336035490036,
-0.002705888357013464,
-0.08045663684606552,
-0.0013587361900135875,
0.017787043005228043,
-0.09926866739988327,
-0.19516639411449432,
0.004815650638192892,
-0.04051394760608673,
0.07075667381286621,
-0.15307779610157013,
-0.01578497141599655,
0.0805824026465416,
0.01624346524477005,
0.021075574681162834,
0.0096726194024086,
0.012058998458087444,
-0.014719461090862751,
0.08525673300027847,
-0.04635882377624512,
-0.029506497085094452,
-0.06639762222766876,
0.20341967046260834,
0.06557826697826385,
-0.04334840551018715,
0.09468188136816025,
-0.041164644062519073,
-0.03261157125234604,
-0.008310053497552872,
0.04516610503196716,
-0.07000809907913208,
0.09998807311058044,
0.08151803910732269,
0.023258447647094727,
-0.12477323412895203,
0.026085376739501953,
-0.05669296905398369,
-0.05244355648756027,
-0.03399220108985901,
0.06509747356176376,
-0.014914360828697681,
-0.12389244884252548,
0.09980996698141098,
0.09092408418655396,
-0.06175079941749573,
-0.08354291319847107,
0.00046513552661053836,
-0.1428280919790268,
0.04888332635164261,
0.008944095112383366,
0.057204265147447586,
-0.0024326567072421312,
0.017795778810977936,
-0.1310684084892273,
-0.0287065077573061,
0.011757482774555683,
-0.11455432325601578,
-0.022752586752176285,
-0.12698526680469513,
0.02784019336104393,
0.03984789177775383,
0.0767386332154274,
-0.03622366115450859,
0.07860153168439865,
-0.06767159700393677,
-0.016567913815379143,
-0.027271272614598274,
0.04377024248242378,
-0.044404249638319016,
0.01113185565918684,
0.030805131420493126,
0.018484270200133324,
-0.09856346994638443,
0.043396372348070145,
-0.13485762476921082,
-0.05588014796376228,
-0.011585510335862637,
0.12222114950418472,
0.027295973151922226,
-0.04365457966923714,
0.03811987489461899,
0.04887567088007927,
-0.0072837877087295055,
0.02347356453537941,
-0.03867034614086151,
0.041402071714401245,
-0.05650230497121811,
-0.06671776622533798,
0.010828481987118721,
0.1310976892709732,
0.0173712857067585,
-0.16156499087810516,
0.04028783738613129,
0.054162971675395966,
-0.007870226167142391,
0.0029097367078065872,
0.046837612986564636,
-0.12586595118045807,
-0.05523443967103958,
-0.019983865320682526,
0.011369895190000534,
0.048690684139728546,
-0.09558185189962387,
0.13837388157844543,
0.045333534479141235,
0.08615238964557648,
0.012953974306583405,
0.05099686235189438,
-0.08761825412511826,
0.0388711616396904,
-0.07261761277914047,
-0.1036834642291069,
-0.017358537763357162,
0.014831512235105038,
0.016807056963443756,
-0.01018858328461647,
0.36358484625816345,
0.16314518451690674,
-0.1371123492717743,
0.022468211129307747,
0.1598954051733017,
-0.013990230858325958,
-0.05217478424310684,
0.18916979432106018,
-0.03357015550136566,
0.1343676894903183,
-0.017878975719213486,
0.05186626315116882,
0.048571471124887466,
-0.08069886267185211,
0.08808660507202148,
0.045847758650779724,
0.13310174643993378,
0.04629567265510559,
0.17806164920330048,
-0.0351838544011116,
0.00007715231186011806,
-0.10593460500240326,
0.01831045188009739,
0.15348730981349945,
-0.04952942579984665,
-0.03557524457573891,
0.0853879526257515,
-0.07234689593315125,
0.1084042340517044,
-0.016509724780917168,
-0.004010932054370642,
-0.15625467896461487,
-0.12182534486055374,
-0.07353619486093521,
-0.12499411404132843,
-0.046666406095027924,
-0.08609788864850998,
0.028123337775468826,
0.09200797975063324,
-0.006885483395308256,
0.02423044852912426,
0.01095165591686964,
-0.252918004989624,
-0.05539365112781525,
-0.044212885200977325,
-0.02235146425664425,
-0.07202412188053131,
-0.11297871172428131,
0.007541299797594547,
-0.017754973843693733,
-0.06968031823635101,
-0.026173343881964684,
0.02977353148162365,
-0.004494812805205584,
0.03742673620581627,
-0.04555906727910042,
-0.01088875625282526,
-0.0774468332529068,
-0.07469548285007477,
0.023633906617760658,
0.0635916069149971,
0.023613594472408295,
-0.06532679498195648,
0.012054373510181904,
-0.015388665720820427,
0.03127036616206169,
-0.10692012310028076,
-0.043016355484724045,
0.032939761877059937,
-0.05388912186026573,
0.03673470765352249,
-0.0428922213613987,
0.07035865634679794,
-0.07782468944787979,
0.3869844973087311,
0.31578654050827026,
0.016612503677606583,
0.005332060623914003,
-0.02553531527519226,
0.017411818727850914,
0.020510811358690262,
0.16971753537654877,
0.06000195071101189,
-0.028620461001992226,
-0.010644664987921715,
-0.0296672023832798,
-0.14059476554393768,
0.054204314947128296,
-0.06616920977830887,
0.02422088198363781,
0.0025742435827851295,
-0.08564979583024979,
0.09824413061141968,
0.0913318544626236,
0.040704965591430664,
0.05755706503987312,
-0.02826669067144394,
-0.03278256207704544,
0.019940083846449852,
-0.05270272493362427,
0.05799166113138199,
0.028195740655064583,
0.024983728304505348,
-0.07371284067630768,
0.03065861389040947,
0.07522857189178467,
-0.030038440600037575,
-0.29798197746276855,
-0.19980332255363464,
0.09447501599788666,
-0.05976198613643646,
0.20492897927761078,
-0.005261069163680077,
0.024545345455408096,
0.04680914804339409,
-0.08615469187498093,
-0.14674243330955505,
0.11045569181442261,
-0.018818361684679985,
-0.05247247591614723,
0.05223437026143074,
-0.03996310010552406,
-0.05513076111674309,
-0.044717736542224884,
-0.08763912320137024,
0.04443300515413284,
0.030242422595620155,
0.057605545967817307,
-0.050972748547792435,
0.054417211562395096,
0.06774264574050903,
-0.14880745112895966,
0.11933521181344986,
0.07500866800546646,
-0.003680908353999257,
-0.06495431810617447,
-0.030915869399905205,
0.0731796845793724,
0.014455622062087059,
-0.11626917123794556,
-0.006551805417984724,
-0.07227841764688492,
-0.050698596984148026,
-0.14142552018165588,
0.026809565722942352,
-0.054869234561920166,
-0.040568627417087555,
-0.0738210529088974,
-0.07940910756587982,
-0.05412560701370239,
0.012345708906650543,
0.17244067788124084,
-0.01804705336689949,
-0.03213319554924965,
-0.1631494015455246,
0.05087717995047569,
0.017426222562789917,
-0.06884300708770752,
-0.08012507110834122
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# model
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "google/flan-t5-base", "model-index": [{"name": "model", "results": []}]} | text2text-generation | ElDestructo/model | [
"transformers",
"tensorboard",
"safetensors",
"t5",
"text2text-generation",
"generated_from_trainer",
"base_model:google/flan-t5-base",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:53:54+00:00 | [] | [] | TAGS
#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# model
This model is a fine-tuned version of google/flan-t5-base on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.17.0
- Tokenizers 0.15.1
| [
"# model\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10",
"### Training results",
"### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# model\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.",
"## Model description\n\nMore information needed",
"## Intended uses & limitations\n\nMore information needed",
"## Training and evaluation data\n\nMore information needed",
"## Training procedure",
"### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10",
"### Training results",
"### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
80,
26,
6,
12,
8,
3,
89,
4,
33
] | [
"passage: TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# model\n\nThis model is a fine-tuned version of google/flan-t5-base on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 0.0005\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 10### Training results### Framework versions\n\n- Transformers 4.35.2\n- Pytorch 2.1.0+cu121\n- Datasets 2.17.0\n- Tokenizers 0.15.1"
] | [
-0.06895744055509567,
0.08092836290597916,
-0.0015038781566545367,
0.08775566518306732,
0.15725256502628326,
0.014258717186748981,
0.15255486965179443,
0.09000662714242935,
-0.11573408544063568,
0.04980330914258957,
0.06322556734085083,
0.05098182335495949,
0.03669099137187004,
0.14876708388328552,
-0.03427267447113991,
-0.2360975742340088,
0.004409847315400839,
-0.024527953937649727,
-0.062408532947301865,
0.11245093494653702,
0.08977726101875305,
-0.09275288879871368,
0.07600614428520203,
-0.012671761214733124,
-0.1415843963623047,
0.039342258125543594,
-0.0031535245943814516,
-0.05440200865268707,
0.11062846332788467,
0.030605176463723183,
0.10219553858041763,
0.01975366845726967,
0.1304491013288498,
-0.22821509838104248,
0.007366065867245197,
0.10875968635082245,
0.014962991699576378,
0.06024506315588951,
0.06699564307928085,
-0.005176515318453312,
0.12888775765895844,
-0.13353443145751953,
0.08675852417945862,
0.039362773299217224,
-0.07187547534704208,
-0.1203613132238388,
-0.06767962872982025,
0.07463923841714859,
0.09637311846017838,
0.11308404058218002,
-0.01146368682384491,
0.1398279219865799,
-0.09795655310153961,
0.09717373549938202,
0.17002494633197784,
-0.2772084176540375,
-0.07987210154533386,
0.07685528695583344,
0.05648829787969589,
0.08465557545423508,
-0.08915077149868011,
0.008909400552511215,
0.057457324117422104,
0.023324523121118546,
0.1109170988202095,
-0.00563573045656085,
-0.10922469198703766,
-0.0006295086932368577,
-0.13386765122413635,
0.0026672156527638435,
0.164552241563797,
0.060704998672008514,
-0.041908975690603256,
-0.07218682765960693,
-0.076349638402462,
-0.0836273804306984,
-0.012009169906377792,
-0.04451880231499672,
0.06216985732316971,
-0.02282794564962387,
-0.05482092872262001,
-0.07198171317577362,
-0.08740729093551636,
-0.06689010560512543,
-0.013193260878324509,
0.06871846318244934,
0.052852921187877655,
-0.0005551791982725263,
-0.05489758402109146,
0.11106067150831223,
0.007862270809710026,
-0.10389184206724167,
0.0039850990287959576,
0.007018941454589367,
-0.06728625297546387,
-0.07324476540088654,
-0.032035160809755325,
-0.060573920607566833,
0.019943606108427048,
0.1383105367422104,
-0.07860811054706573,
0.067305788397789,
-0.005456554237753153,
0.014976361766457558,
-0.05641511082649231,
0.12802691757678986,
-0.04850385710597038,
-0.05387129634618759,
0.03392140939831734,
0.09406619518995285,
0.04195462539792061,
0.0021743483375757933,
-0.08382289856672287,
0.0003220369981136173,
0.09754759818315506,
0.06634602695703506,
-0.04910007491707802,
0.061183713376522064,
-0.025240981951355934,
-0.006384840700775385,
-0.026737986132502556,
-0.12575966119766235,
0.041416410356760025,
0.005445519927889109,
-0.07234257459640503,
-0.026636604219675064,
0.05310853570699692,
0.011308669112622738,
-0.04536427557468414,
0.09004061669111252,
-0.08021331578493118,
0.006609306670725346,
-0.09982524067163467,
-0.07831303775310516,
0.021030612289905548,
-0.06281108409166336,
-0.02237003482878208,
-0.08844003826379776,
-0.23034486174583435,
-0.04955221340060234,
0.0508982352912426,
-0.033250175416469574,
-0.044844429939985275,
-0.06385999917984009,
-0.07915330678224564,
-0.013093620538711548,
-0.0079771364107728,
0.12040598690509796,
-0.05761980265378952,
0.07572903484106064,
0.002867040690034628,
0.02963886223733425,
0.01376624871045351,
0.02544593997299671,
-0.09270575642585754,
0.022018056362867355,
-0.13677623867988586,
0.07004376500844955,
-0.064699687063694,
0.06235034391283989,
-0.09570570290088654,
-0.08508722484111786,
-0.029948772862553596,
0.004441840574145317,
0.04615507274866104,
0.13021203875541687,
-0.18326038122177124,
-0.031432852149009705,
0.17699383199214935,
-0.08962532877922058,
-0.09504218399524689,
0.1157752275466919,
-0.03422902151942253,
0.045585259795188904,
0.08819857239723206,
0.15668296813964844,
0.07991333305835724,
-0.13273683190345764,
0.006237229332327843,
-0.017720086500048637,
0.037826135754585266,
0.009137062355875969,
0.03415307030081749,
-0.01839250698685646,
-0.0010406726505607367,
0.006832537706941366,
-0.05686154589056969,
0.025668350979685783,
-0.07929207384586334,
-0.0804724171757698,
-0.060274332761764526,
-0.10156849026679993,
0.013738654553890228,
0.03458409383893013,
0.05310763046145439,
-0.0858478918671608,
-0.11473245918750763,
0.09935624897480011,
0.09563469886779785,
-0.07480394840240479,
0.008351901546120644,
-0.06551156938076019,
0.03677814081311226,
-0.00228752288967371,
-0.005109602119773626,
-0.17162589728832245,
-0.1415986269712448,
0.021057767793536186,
-0.07808773219585419,
0.04902723804116249,
-0.005678518675267696,
0.0624973326921463,
0.08054781705141068,
-0.06607610732316971,
-0.012929587624967098,
-0.06089393422007561,
0.003877931972965598,
-0.0929592102766037,
-0.21299193799495697,
-0.010205447673797607,
-0.01327797956764698,
0.16997113823890686,
-0.2791844606399536,
0.04913802072405815,
-0.04060353338718414,
0.12522459030151367,
0.021344413980841637,
-0.03778601810336113,
-0.005179763305932283,
0.04983744025230408,
-0.023655392229557037,
-0.10017376393079758,
0.047648172825574875,
-0.005421219859272242,
-0.06582499295473099,
-0.0578715056180954,
-0.14687851071357727,
0.0949050635099411,
0.10593254864215851,
0.006265988107770681,
-0.10294167697429657,
0.014475098811089993,
-0.06303806602954865,
-0.047465503215789795,
-0.09194348007440567,
0.010057486593723297,
0.16268566250801086,
-0.01148565486073494,
0.1392027735710144,
-0.07046633213758469,
-0.05521277338266373,
-0.005531214643269777,
-0.0049596321769058704,
0.002737178700044751,
0.08110088109970093,
0.11228101700544357,
-0.1092829629778862,
0.10090725868940353,
0.08145734667778015,
-0.08970887959003448,
0.1594294160604477,
-0.05338842049241066,
-0.05983073264360428,
-0.002211380284279585,
0.029467854648828506,
-0.006835805252194405,
0.1102810949087143,
-0.12089402228593826,
0.004813341423869133,
-0.003371119499206543,
0.0008267632802017033,
0.051346760243177414,
-0.18886665999889374,
-0.008322017267346382,
0.014804327860474586,
-0.06655270606279373,
-0.020528990775346756,
-0.03228564187884331,
0.013701432384550571,
0.09536471217870712,
-0.004307517781853676,
-0.023909619078040123,
0.025972014293074608,
0.0039016869850456715,
-0.10879752039909363,
0.19299738109111786,
-0.09974817931652069,
-0.13765335083007812,
-0.11055619269609451,
0.080741286277771,
-0.06257712841033936,
-0.014244562946259975,
0.027598043903708458,
-0.09311529994010925,
-0.056210171431303024,
-0.12359871715307236,
-0.00799742341041565,
-0.008389913477003574,
-0.014169351197779179,
0.014449264854192734,
0.02941511757671833,
0.0893280953168869,
-0.12792089581489563,
0.008762291632592678,
-0.015169397927820683,
-0.11279354244470596,
-0.0019184484845027328,
0.030652930960059166,
0.10610922425985336,
0.13931605219841003,
-0.025996092706918716,
0.011735811829566956,
-0.038172248750925064,
0.18801377713680267,
-0.06718344986438751,
0.029636267572641373,
0.12415921688079834,
0.026854854077100754,
0.039323631674051285,
0.12568683922290802,
0.025843549519777298,
-0.10117178410291672,
0.05591602623462677,
0.08782168477773666,
-0.015241580083966255,
-0.25347861647605896,
-0.03418101370334625,
-0.02602783963084221,
-0.043963439762592316,
0.07427337765693665,
0.06044882535934448,
0.05111502856016159,
0.04110027849674225,
-0.012866588309407234,
0.06800596415996552,
0.021197490394115448,
0.07126843929290771,
0.11271993070840836,
0.038499511778354645,
0.10038252174854279,
-0.04701673984527588,
-0.03063204698264599,
0.06250113248825073,
-0.030469654127955437,
0.2615993916988373,
-0.010171948000788689,
0.06461121141910553,
0.04957177862524986,
0.12488877028226852,
-0.009863481856882572,
0.03971898928284645,
0.03624098375439644,
-0.003998815082013607,
0.015185460448265076,
-0.06987625360488892,
-0.00724215991795063,
0.028730494901537895,
-0.060731757432222366,
0.03615215793251991,
-0.07959046959877014,
0.0551316924393177,
0.04784705489873886,
0.2517513632774353,
0.02180349826812744,
-0.30517521500587463,
-0.07641248404979706,
0.013180755078792572,
-0.037062786519527435,
-0.04323514923453331,
0.03085153177380562,
0.14244258403778076,
-0.1066407784819603,
0.06853249669075012,
-0.05714525654911995,
0.09379054605960846,
-0.021219348534941673,
0.01105669979006052,
0.06878725439310074,
0.1406996101140976,
-0.015383449383080006,
0.08296936750411987,
-0.2573503255844116,
0.21277199685573578,
0.004784726072102785,
0.14177976548671722,
-0.0392388217151165,
0.02466823346912861,
0.03227536752820015,
0.11871415376663208,
0.08370576053857803,
-0.010696254670619965,
-0.019953586161136627,
-0.12993720173835754,
-0.07409865409135818,
0.055484142154455185,
0.10416582226753235,
-0.019939422607421875,
0.08439970016479492,
-0.054696884006261826,
-0.006786365993320942,
0.06526786834001541,
-0.06340356916189194,
-0.22723618149757385,
-0.10694199055433273,
-0.026232901960611343,
0.018024733290076256,
-0.013242963701486588,
-0.09644320607185364,
-0.10397271811962128,
-0.06803436577320099,
0.18523375689983368,
-0.013996843248605728,
-0.040445514023303986,
-0.12348371744155884,
0.07714036107063293,
0.0803198590874672,
-0.048276275396347046,
0.02124413475394249,
0.016287121921777725,
0.08985305577516556,
0.04363090172410011,
-0.08531724661588669,
0.0744827389717102,
-0.07948822528123856,
-0.1685352325439453,
-0.06565675139427185,
0.11572955548763275,
0.039114031940698624,
0.030326668173074722,
-0.0005145838367752731,
-0.002245980780571699,
0.01611325889825821,
-0.09524345397949219,
-0.011362917721271515,
0.08813408017158508,
0.07216615974903107,
0.05583854392170906,
-0.10884302109479904,
-0.04023737832903862,
-0.04108761250972748,
-0.04245947673916817,
0.09265328198671341,
0.1873706579208374,
-0.06734436750411987,
0.040890831500291824,
0.0746970996260643,
-0.08904324471950531,
-0.17613425850868225,
0.08374982327222824,
0.07602529972791672,
0.0098706791177392,
0.039303530007600784,
-0.17811539769172668,
0.1258501559495926,
0.11749191582202911,
-0.01643434166908264,
0.08200908452272415,
-0.3238711953163147,
-0.15668074786663055,
0.0725688487291336,
0.13764075934886932,
0.022540107369422913,
-0.16483554244041443,
-0.03654761239886284,
-0.038616061210632324,
-0.09837967157363892,
0.11845196038484573,
-0.175263449549675,
0.09885874390602112,
0.0158707182854414,
0.04568806290626526,
0.01169146690517664,
-0.0479559525847435,
0.11259569972753525,
0.006220270413905382,
0.10045330226421356,
-0.065862275660038,
0.02591986581683159,
0.09692822396755219,
-0.062082212418317795,
0.058235764503479004,
-0.07533103972673416,
0.07708768546581268,
-0.07114123553037643,
-0.03677878528833389,
-0.05963180959224701,
0.08002868294715881,
-0.059921834617853165,
-0.049612339586019516,
-0.05170561373233795,
0.041108302772045135,
0.058010634034872055,
-0.02694859355688095,
0.04829247668385506,
0.0038699328433722258,
0.12631681561470032,
0.08149436116218567,
0.11698909848928452,
-0.01670028269290924,
-0.0510876290500164,
-0.006900470703840256,
-0.02773662842810154,
0.05385788902640343,
-0.13448692858219147,
0.016610998660326004,
0.11512937396764755,
0.026010820642113686,
0.14680616557598114,
0.04896044731140137,
-0.04680789262056351,
-0.0055918339639902115,
0.05303911492228508,
-0.13182947039604187,
-0.1791858673095703,
-0.01985863223671913,
-0.12126901000738144,
-0.0996863916516304,
0.035980332642793655,
0.09899759292602539,
-0.0892057940363884,
0.015627063810825348,
-0.01566658541560173,
0.02268775925040245,
-0.022224850952625275,
0.17687158286571503,
0.03674997016787529,
0.049907054752111435,
-0.07376495003700256,
0.13196846842765808,
0.07356677204370499,
-0.07061047106981277,
0.04220208153128624,
0.09172184765338898,
-0.10271481424570084,
-0.03061865270137787,
0.08854146301746368,
0.19646087288856506,
-0.010792024433612823,
-0.0663883239030838,
-0.10794093459844589,
-0.11417622119188309,
0.03813068941235542,
0.15408016741275787,
0.03506765514612198,
-0.0031726770102977753,
-0.024952812120318413,
0.0381239652633667,
-0.1392897516489029,
0.1000295951962471,
0.05093405768275261,
0.07083500921726227,
-0.16722263395786285,
0.1516444832086563,
0.0314161479473114,
0.004660177044570446,
-0.02190963365137577,
0.04078180715441704,
-0.11208159476518631,
-0.023049212992191315,
-0.14260512590408325,
-0.015945902094244957,
-0.014220422133803368,
0.005547222215682268,
0.0028303407598286867,
-0.0370747372508049,
-0.060274187475442886,
0.05019138753414154,
-0.05698050931096077,
-0.05689976364374161,
0.02162901870906353,
0.058663785457611084,
-0.15228602290153503,
0.006624510046094656,
0.00970793329179287,
-0.08873821049928665,
0.07339548319578171,
0.04366321489214897,
0.009970312938094139,
0.04346677288413048,
-0.19486944377422333,
0.0120638282969594,
0.04162568226456642,
0.01952745020389557,
0.03624097630381584,
-0.06782717257738113,
-0.004336153157055378,
-0.009654699824750423,
0.05914369225502014,
0.022934511303901672,
0.05331080034375191,
-0.10915816575288773,
-0.0054741837084293365,
-0.044564053416252136,
-0.04792157933115959,
-0.04616774991154671,
0.033125557005405426,
0.08478746563196182,
0.0019716164097189903,
0.18529477715492249,
-0.1114998534321785,
0.01724063977599144,
-0.21191689372062683,
-0.01850523240864277,
0.007466454990208149,
-0.0332147479057312,
-0.08021306991577148,
-0.03067105822265148,
0.07461077719926834,
-0.06302884966135025,
0.1180836409330368,
0.02735641971230507,
0.0872209221124649,
0.038477104157209396,
-0.048777688294649124,
-0.013113797642290592,
0.025081424042582512,
0.18610879778862,
0.04182715713977814,
-0.011669606901705265,
0.047682832926511765,
-0.015153373591601849,
0.07779388874769211,
-0.015905121341347694,
0.21242061257362366,
0.13826726377010345,
-0.11819121986627579,
0.08240202069282532,
0.06573741137981415,
-0.10955759137868881,
-0.13378049433231354,
0.10247247666120529,
-0.05813020467758179,
0.1249735951423645,
-0.06487196683883667,
0.16036798059940338,
0.12226565182209015,
-0.151504784822464,
0.02798743173480034,
-0.05287746712565422,
-0.10172011703252792,
-0.12060258537530899,
-0.05297153443098068,
-0.08836694806814194,
-0.12829607725143433,
0.02383710816502571,
-0.11468178778886795,
0.02260763756930828,
0.06415733695030212,
0.021740825846791267,
-0.013147583231329918,
0.17807193100452423,
-0.013880222104489803,
0.003986713942140341,
0.06074292212724686,
0.009061787277460098,
-0.021251529455184937,
-0.068825364112854,
-0.07881713658571243,
0.0219111405313015,
-0.009378020651638508,
0.04853411391377449,
-0.03186434507369995,
-0.01586194522678852,
0.0509658083319664,
-0.010754391551017761,
-0.0469176210463047,
0.03547587990760803,
0.020113233476877213,
0.026696383953094482,
0.03169895336031914,
0.04720167815685272,
-0.03319407254457474,
-0.01556436624377966,
0.2870516777038574,
-0.07204389572143555,
-0.11780617386102676,
-0.12225759029388428,
0.2174987494945526,
0.024464614689350128,
-0.011811385862529278,
0.049895524978637695,
-0.12141415476799011,
0.010547366924583912,
0.21466492116451263,
0.17135845124721527,
-0.05894344300031662,
-0.015627654269337654,
-0.021927926689386368,
-0.02405906282365322,
-0.04473891481757164,
0.1301726996898651,
0.10606112331151962,
0.05577996373176575,
-0.02877412736415863,
-0.0016318990383297205,
0.010294178500771523,
-0.027175039052963257,
-0.09849284589290619,
0.08384566754102707,
0.021759122610092163,
0.002021043561398983,
-0.02571793831884861,
0.08920123428106308,
-0.02142428047955036,
-0.16087210178375244,
0.042687349021434784,
-0.1407865583896637,
-0.15391577780246735,
-0.03675691783428192,
0.10020686686038971,
-0.0345107838511467,
0.03694458678364754,
-0.011836136691272259,
-0.010662459768354893,
0.10634434968233109,
-0.02546064555644989,
-0.07439921051263809,
-0.07879216223955154,
0.04507681727409363,
-0.10135116428136826,
0.2493707686662674,
-0.013136820867657661,
0.04927795007824898,
0.11404584348201752,
0.004033202305436134,
-0.10536282509565353,
0.09174412488937378,
0.03906944766640663,
-0.06867732107639313,
0.0493585430085659,
0.10641148686408997,
-0.04500867426395416,
0.06906674802303314,
0.0369403213262558,
-0.08392501622438431,
0.005325276870280504,
-0.0272658858448267,
-0.04897366464138031,
-0.09108325839042664,
0.0036531274672597647,
-0.08324330300092697,
0.14043232798576355,
0.20229823887348175,
-0.029090624302625656,
0.04136943817138672,
-0.08392292261123657,
0.036307740956544876,
0.04066719487309456,
0.08725043386220932,
-0.0024557996075600386,
-0.21115563809871674,
0.026854882016777992,
-0.004291371442377567,
0.015280621126294136,
-0.26540815830230713,
-0.07114683091640472,
0.008421835489571095,
-0.04152461886405945,
-0.09239338338375092,
0.10356421768665314,
0.13597187399864197,
0.046968765556812286,
-0.03782392293214798,
-0.13244763016700745,
-0.04351602867245674,
0.1711791753768921,
-0.14943407475948334,
-0.06456823647022247
] |
null | null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2158
- Accuracy: 0.925
- F1: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.811 | 1.0 | 250 | 0.3080 | 0.909 | 0.9046 |
| 0.2447 | 2.0 | 500 | 0.2158 | 0.925 | 0.9252 |
### Framework versions
- Transformers 4.16.2
- Pytorch 2.1.0+cu121
- Datasets 1.16.1
- Tokenizers 0.15.1
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": []}]} | text-classification | jefryelb/distilbert-base-uncased-finetuned-emotion | [
"transformers",
"pytorch",
"tensorboard",
"distilbert",
"text-classification",
"generated_from_trainer",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | 2024-02-13T13:53:58+00:00 | [] | [] | TAGS
#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
| distilbert-base-uncased-finetuned-emotion
=========================================
This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset.
It achieves the following results on the evaluation set:
* Loss: 0.2158
* Accuracy: 0.925
* F1: 0.9252
Model description
-----------------
More information needed
Intended uses & limitations
---------------------------
More information needed
Training and evaluation data
----------------------------
More information needed
Training procedure
------------------
### Training hyperparameters
The following hyperparameters were used during training:
* learning\_rate: 2e-05
* train\_batch\_size: 64
* eval\_batch\_size: 64
* seed: 42
* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
* lr\_scheduler\_type: linear
* num\_epochs: 2
### Training results
### Framework versions
* Transformers 4.16.2
* Pytorch 2.1.0+cu121
* Datasets 1.16.1
* Tokenizers 0.15.1
| [
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
"TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n",
"### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2",
"### Training results",
"### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
57,
98,
4,
33
] | [
"passage: TAGS\n#transformers #pytorch #tensorboard #distilbert #text-classification #generated_from_trainer #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 64\n* eval\\_batch\\_size: 64\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 2### Training results### Framework versions\n\n\n* Transformers 4.16.2\n* Pytorch 2.1.0+cu121\n* Datasets 1.16.1\n* Tokenizers 0.15.1"
] | [
-0.09434865415096283,
0.08467388153076172,
-0.002278369851410389,
0.11989223212003708,
0.178255096077919,
0.02702012099325657,
0.12209464609622955,
0.12432769685983658,
-0.10789045691490173,
0.01131631899625063,
0.11646322160959244,
0.18290816247463226,
0.009834559634327888,
0.1009126678109169,
-0.05452822521328926,
-0.25957897305488586,
-0.016207793727517128,
0.05111593008041382,
-0.08464915305376053,
0.14207570254802704,
0.09654515981674194,
-0.12985233962535858,
0.0769834816455841,
0.0020417277701199055,
-0.22889597713947296,
0.009871004149317741,
0.014445475302636623,
-0.06252464652061462,
0.15139605104923248,
0.02105431631207466,
0.12846627831459045,
0.01146659068763256,
0.07917378842830658,
-0.18203650414943695,
0.010323869995772839,
0.04720050096511841,
0.0044197398237884045,
0.08919724822044373,
0.05461455509066582,
-0.006737236399203539,
0.11444054543972015,
-0.08051896095275879,
0.05260717123746872,
0.022663533687591553,
-0.12316133826971054,
-0.22575312852859497,
-0.08010152727365494,
0.020464777946472168,
0.06499498337507248,
0.10548382997512817,
0.00010400000610388815,
0.12725123763084412,
-0.09737907350063324,
0.09591136127710342,
0.20913466811180115,
-0.2753314673900604,
-0.06492313742637634,
0.027365561574697495,
0.005597751587629318,
0.078748419880867,
-0.11029897630214691,
-0.025027353316545486,
0.05184035003185272,
0.04925576597452164,
0.1334446519613266,
-0.029698096215724945,
-0.12689317762851715,
0.0135493203997612,
-0.14126020669937134,
-0.035614993423223495,
0.14067590236663818,
0.023399243131279945,
-0.02655024826526642,
-0.03935708850622177,
-0.06290493905544281,
-0.15122047066688538,
-0.03732099384069443,
-0.008290776051580906,
0.04434913024306297,
-0.03090624511241913,
-0.0570259653031826,
-0.0042253113351762295,
-0.11024530977010727,
-0.06959428638219833,
-0.07142423838376999,
0.1427973359823227,
0.04000028222799301,
0.012651689350605011,
-0.028179913759231567,
0.11441503465175629,
0.0294655654579401,
-0.1315561830997467,
0.032228775322437286,
0.02918221242725849,
0.004677135497331619,
-0.04336506873369217,
-0.06898317486047745,
-0.049234699457883835,
0.007592242211103439,
0.11187656968832016,
-0.06509601324796677,
0.050152212381362915,
0.02665434405207634,
0.04742349684238434,
-0.10145193338394165,
0.18912562727928162,
-0.023408614099025726,
0.0017862869426608086,
0.00883735716342926,
0.05079920217394829,
0.006106603890657425,
-0.009438683278858662,
-0.12141917645931244,
-0.00012448900088202208,
0.11656496673822403,
0.02031806856393814,
-0.06995610892772675,
0.07073522359132767,
-0.05867990478873253,
-0.026802770793437958,
0.017950473353266716,
-0.10040174424648285,
0.03259027749300003,
0.0024599807802587748,
-0.08408183604478836,
-0.020521624013781548,
0.03088524006307125,
0.01203716266900301,
-0.02882281504571438,
0.10923880338668823,
-0.07509167492389679,
0.04039720073342323,
-0.10161270946264267,
-0.10664782673120499,
0.015599243342876434,
-0.07547774910926819,
0.024115070700645447,
-0.10107725858688354,
-0.16251863539218903,
-0.015750586986541748,
0.05877044424414635,
-0.025329558178782463,
-0.060716431587934494,
-0.05058899521827698,
-0.07257082313299179,
0.013515472412109375,
-0.015860212966799736,
0.15035252273082733,
-0.05720135197043419,
0.11506542563438416,
0.038552042096853256,
0.06707575917243958,
-0.05036069452762604,
0.06473273038864136,
-0.09736503660678864,
-0.0005116218235343695,
-0.18182435631752014,
0.05212788283824921,
-0.0503075011074543,
0.06507472693920135,
-0.08819690346717834,
-0.11406096071004868,
0.01435542106628418,
-0.005758093204349279,
0.06620028614997864,
0.09309054911136627,
-0.16589541733264923,
-0.08089739829301834,
0.14987297356128693,
-0.07139582186937332,
-0.10672305524349213,
0.11546581983566284,
-0.0592714287340641,
0.05892590433359146,
0.07443462312221527,
0.16505233943462372,
0.08641966432332993,
-0.058563098311424255,
0.031044216826558113,
0.007745644077658653,
0.049426235258579254,
-0.07006584852933884,
0.05938245728611946,
0.005294827278703451,
-0.011280728504061699,
0.03686951473355293,
-0.03472703695297241,
0.06963962316513062,
-0.0948624461889267,
-0.09754226356744766,
-0.04023623839020729,
-0.09673238545656204,
0.06326528638601303,
0.08307429403066635,
0.09247423708438873,
-0.08815836161375046,
-0.06746498495340347,
0.07999278604984283,
0.07545473426580429,
-0.06226521357893944,
0.03208176791667938,
-0.04969768971204758,
0.05659019947052002,
-0.025172412395477295,
-0.017499377951025963,
-0.20175501704216003,
-0.0007352145621553063,
0.012105877511203289,
-0.0021437588147819042,
0.021289199590682983,
0.01803869940340519,
0.07044966518878937,
0.058894556015729904,
-0.0612790621817112,
-0.022729674354195595,
-0.02926313690841198,
-0.008502636104822159,
-0.13311482965946198,
-0.19126251339912415,
-0.021221576258540154,
-0.01723651960492134,
0.13762488961219788,
-0.19929055869579315,
0.041545070707798004,
-0.011026493273675442,
0.0629936009645462,
0.0003694153856486082,
-0.0017328535905107856,
-0.0464303120970726,
0.08997108042240143,
-0.03469017520546913,
-0.04421091452240944,
0.08258800953626633,
0.005595578346401453,
-0.08551342040300369,
-0.037629224359989166,
-0.08932347595691681,
0.17134200036525726,
0.14090530574321747,
-0.13012245297431946,
-0.07688618451356888,
-0.004854714032262564,
-0.05975572392344475,
-0.03409641981124878,
-0.036359138786792755,
0.03874611854553223,
0.18197445571422577,
-0.016057170927524567,
0.15847918391227722,
-0.06894781440496445,
-0.046540938317775726,
0.01798045076429844,
-0.0335877500474453,
0.034110669046640396,
0.12460163980722427,
0.11647914350032806,
-0.07739625871181488,
0.145255908370018,
0.15604430437088013,
-0.09847989678382874,
0.13385628163814545,
-0.04783906042575836,
-0.06221232935786247,
-0.005323904100805521,
-0.01651853695511818,
0.00006248753925319761,
0.07948511838912964,
-0.14165912568569183,
-0.002674582414329052,
0.020219646394252777,
0.01905924826860428,
0.02728613093495369,
-0.2332158088684082,
-0.035057518631219864,
0.025447122752666473,
-0.04307394102215767,
-0.004480578936636448,
-0.0201027262955904,
0.012005174532532692,
0.10878436267375946,
-0.0024336951319128275,
-0.08019430190324783,
0.046192336827516556,
0.004455422516912222,
-0.08105041086673737,
0.22106625139713287,
-0.09480050951242447,
-0.16711944341659546,
-0.12812192738056183,
-0.07208587229251862,
-0.036173753440380096,
0.011065220460295677,
0.06075816974043846,
-0.10429289937019348,
-0.020264988765120506,
-0.05020163208246231,
0.026940293610095978,
-0.006140547804534435,
0.03766791895031929,
0.003881834214553237,
0.011951982043683529,
0.07263298332691193,
-0.11265560239553452,
-0.005853806622326374,
-0.05287851393222809,
-0.06754671782255173,
0.05906098335981369,
0.030775239691138268,
0.10247699171304703,
0.16364459693431854,
-0.021580319851636887,
0.005106394644826651,
-0.028526484966278076,
0.2191275954246521,
-0.06622447818517685,
-0.02657075971364975,
0.13787640631198883,
-0.010277767665684223,
0.05675730109214783,
0.09872894734144211,
0.07290704548358917,
-0.08874259889125824,
0.015599642880260944,
0.021716918796300888,
-0.03531781584024429,
-0.23292768001556396,
-0.05322205275297165,
-0.057577237486839294,
-0.023640410974621773,
0.09740949422121048,
0.028740815818309784,
0.04568035528063774,
0.06535015255212784,
0.040694836527109146,
0.08287743479013443,
-0.03126036375761032,
0.0447915755212307,
0.12840327620506287,
0.04231128469109535,
0.12297451496124268,
-0.046949125826358795,
-0.06826726347208023,
0.03064855933189392,
-0.014016612432897091,
0.22044378519058228,
0.004139983560889959,
0.13165876269340515,
0.05749053508043289,
0.18074102699756622,
0.005982929840683937,
0.08738287538290024,
-0.0009364308207295835,
-0.03735630214214325,
-0.00909799337387085,
-0.03842991963028908,
-0.048420533537864685,
0.013549908064305782,
-0.06279898434877396,
0.051566313952207565,
-0.11880597472190857,
-0.018190529197454453,
0.05220794677734375,
0.2529744505882263,
0.021117020398378372,
-0.31864115595817566,
-0.08666068315505981,
0.0016469522379338741,
-0.030956881120800972,
-0.019518211483955383,
0.014866712503135204,
0.08798365294933319,
-0.09871160238981247,
0.024386713281273842,
-0.07045100629329681,
0.0955439880490303,
-0.0487825945019722,
0.044868919998407364,
0.06704225391149521,
0.07732249796390533,
0.01671641878783703,
0.08989465236663818,
-0.3204003870487213,
0.266642689704895,
0.0026548821479082108,
0.06640805304050446,
-0.0815410390496254,
0.0031502197962254286,
0.035696614533662796,
0.06369513273239136,
0.05105511099100113,
-0.012114460580050945,
-0.018881144002079964,
-0.19385631382465363,
-0.057349346578121185,
0.02579413540661335,
0.09225475043058395,
-0.031137514859437943,
0.0812862291932106,
-0.027427172288298607,
0.007778597995638847,
0.07692106813192368,
-0.04240773990750313,
-0.05221264809370041,
-0.10324502736330032,
-0.009543081745505333,
0.011202708818018436,
-0.036603040993213654,
-0.06275580823421478,
-0.11787731945514679,
-0.1160118356347084,
0.15219169855117798,
-0.031222287565469742,
-0.04115338996052742,
-0.11041299998760223,
0.08710181713104248,
0.0755433663725853,
-0.08569605648517609,
0.0497748926281929,
0.004764570388942957,
0.060867082327604294,
0.027847180142998695,
-0.07815305888652802,
0.10502079874277115,
-0.06268835067749023,
-0.1648712456226349,
-0.052217576652765274,
0.11087721586227417,
0.03754449263215065,
0.0643220990896225,
-0.012875434942543507,
0.009671371430158615,
-0.03891364485025406,
-0.09239698946475983,
0.02098691649734974,
-0.01279465202242136,
0.07785122841596603,
0.026596738025546074,
-0.07048755139112473,
0.0038119086530059576,
-0.06479867547750473,
-0.03481702879071236,
0.19709056615829468,
0.2190045863389969,
-0.09592782706022263,
0.028827203437685966,
0.0412093847990036,
-0.07324991375207901,
-0.20851103961467743,
0.042794037610292435,
0.0696818083524704,
0.0038530128076672554,
0.03163605555891991,
-0.1944665014743805,
0.12408526986837387,
0.0962025374174118,
-0.012949075549840927,
0.10838783532381058,
-0.33812883496284485,
-0.125144362449646,
0.11725681275129318,
0.14276117086410522,
0.12040640413761139,
-0.14267182350158691,
-0.023497942835092545,
-0.024487510323524475,
-0.10806913673877716,
0.10884404182434082,
-0.08084005117416382,
0.12271638214588165,
-0.036495134234428406,
0.07768774777650833,
0.0014963081339374185,
-0.05857633799314499,
0.11936022341251373,
0.019747797399759293,
0.09409269690513611,
-0.060341984033584595,
-0.028407340869307518,
0.04800968989729881,
-0.03307292237877846,
0.00797275546938181,
-0.08129556477069855,
0.03063882328569889,
-0.09901030361652374,
-0.019356420263648033,
-0.08485972881317139,
0.04547078162431717,
-0.03782019391655922,
-0.054739709943532944,
-0.030574960634112358,
0.020200980827212334,
0.044045861810445786,
-0.012680879794061184,
0.11878258734941483,
0.026582663878798485,
0.14599931240081787,
0.131633460521698,
0.07113786786794662,
-0.04749323055148125,
-0.057907894253730774,
-0.018773984163999557,
-0.015023535117506981,
0.05962982773780823,
-0.1458326280117035,
0.0291314534842968,
0.14257334172725677,
0.020793989300727844,
0.13213184475898743,
0.08746926486492157,
-0.01650235988199711,
0.006737763062119484,
0.06499029695987701,
-0.1641208976507187,
-0.0805554911494255,
-0.008019410073757172,
-0.05789026618003845,
-0.10132094472646713,
0.04522654414176941,
0.08350145816802979,
-0.06669468432664871,
-0.012203286401927471,
-0.00476935924962163,
0.004909546114504337,
-0.059766583144664764,
0.20633167028427124,
0.06300685554742813,
0.051081717014312744,
-0.10761713981628418,
0.07846672832965851,
0.05957043543457985,
-0.07523740828037262,
-0.0017461915267631412,
0.07757321745157242,
-0.08788806200027466,
-0.04997889697551727,
0.10541332513093948,
0.1630546897649765,
-0.05274341627955437,
-0.0440954826772213,
-0.1367531567811966,
-0.12511645257472992,
0.07730954140424728,
0.15150366723537445,
0.1221192330121994,
0.018264587968587875,
-0.06364735960960388,
0.010594923049211502,
-0.12151538580656052,
0.08118999749422073,
0.037957437336444855,
0.06654855608940125,
-0.129717618227005,
0.16261209547519684,
0.016919860616326332,
0.050647199153900146,
-0.024050068110227585,
0.02198261022567749,
-0.10020571947097778,
0.020343530923128128,
-0.11326639354228973,
-0.02600814588367939,
-0.010114242322742939,
0.005339488387107849,
-0.010070371441543102,
-0.055323436856269836,
-0.0470038503408432,
0.01679028943181038,
-0.1220618188381195,
-0.023689761757850647,
0.023835837841033936,
0.057160086929798126,
-0.11397761851549149,
-0.04519669711589813,
0.029262840747833252,
-0.063848577439785,
0.06654092669487,
0.05508613958954811,
0.01122970599681139,
0.06859306246042252,
-0.13196992874145508,
-0.0057662432081997395,
0.08145313709974289,
0.01793084107339382,
0.05862528085708618,
-0.08692119270563126,
-0.006597533822059631,
0.006114786025136709,
0.06566142290830612,
0.023267284035682678,
0.08933085948228836,
-0.1451181024312973,
0.00798836164176464,
-0.03858551010489464,
-0.08627807348966599,
-0.06809774041175842,
0.03393024206161499,
0.08366644382476807,
0.01484567578881979,
0.19556470215320587,
-0.07820306718349457,
0.040571391582489014,
-0.2105739563703537,
0.0016836179420351982,
-0.01839892566204071,
-0.11758489906787872,
-0.12829846143722534,
-0.06818818300962448,
0.06304533779621124,
-0.05042639374732971,
0.13317056000232697,
0.029715215787291527,
0.038267314434051514,
0.025174103677272797,
-0.01186751201748848,
0.0059179142117500305,
0.026389559730887413,
0.214702770113945,
0.03884920850396156,
-0.03280370309948921,
0.07373147457838058,
0.05350871756672859,
0.09430832415819168,
0.1138470321893692,
0.19154682755470276,
0.158256396651268,
-0.021241264417767525,
0.08810283988714218,
0.02637624181807041,
-0.047080036252737045,
-0.15510259568691254,
0.04748423397541046,
-0.05006524547934532,
0.09821878373622894,
-0.027813147753477097,
0.21618466079235077,
0.05370688810944557,
-0.16449187695980072,
0.051213402301073074,
-0.05122041329741478,
-0.09423599392175674,
-0.10349514335393906,
-0.02724548988044262,
-0.08276518434286118,
-0.141457661986351,
-0.0029128037858754396,
-0.10614034533500671,
0.011624651029706001,
0.1094387024641037,
0.0029065634589642286,
-0.028681600466370583,
0.15401014685630798,
0.04531065374612808,
0.013819622807204723,
0.06349528580904007,
-0.0016955824103206396,
-0.02874474599957466,
-0.10811968892812729,
-0.06799528747797012,
-0.016858482733368874,
-0.003133583813905716,
0.03658725693821907,
-0.05177505686879158,
-0.07202652096748352,
0.03505951538681984,
-0.03232857584953308,
-0.09836658090353012,
0.016135239973664284,
0.023442821577191353,
0.06450428068637848,
0.048337966203689575,
0.007200198248028755,
0.009477256797254086,
-0.009891385212540627,
0.22058463096618652,
-0.07574810832738876,
-0.08557499200105667,
-0.08635213971138,
0.2721922695636749,
0.04693186283111572,
-0.005773663055151701,
0.03690089285373688,
-0.060347992926836014,
-0.003916338086128235,
0.2510091960430145,
0.20080576837062836,
-0.08935964852571487,
-0.008422767743468285,
0.009265618398785591,
-0.008987867273390293,
-0.011019877158105373,
0.12828265130519867,
0.14713436365127563,
0.041426822543144226,
-0.10679063200950623,
-0.0439688116312027,
-0.05686644837260246,
-0.015786396339535713,
-0.04622247442603111,
0.06840349733829498,
0.0365595668554306,
-0.0010263697477057576,
-0.04103179648518562,
0.061429981142282486,
-0.06800851970911026,
-0.09355117380619049,
0.05916906148195267,
-0.20950491726398468,
-0.1638241708278656,
-0.014250506646931171,
0.11018764972686768,
-0.003967287018895149,
0.05827362835407257,
-0.02643745020031929,
0.00444800965487957,
0.06633400917053223,
-0.024191996082663536,
-0.09069070219993591,
-0.07172638177871704,
0.09315025061368942,
-0.12132900208234787,
0.17839229106903076,
-0.042340029031038284,
0.07436756789684296,
0.11830627173185349,
0.07126593589782715,
-0.06433915346860886,
0.06066358834505081,
0.03399050608277321,
-0.06997977197170258,
0.03706402704119682,
0.0878523513674736,
-0.029365692287683487,
0.04019802436232567,
0.03848041594028473,
-0.11916062980890274,
0.025936102494597435,
-0.07120086997747421,
-0.05635419487953186,
-0.04150819405913353,
-0.046250153332948685,
-0.056555092334747314,
0.11665674299001694,
0.2209848016500473,
-0.025691140443086624,
0.012491308152675629,
-0.07722533494234085,
0.0027995810378342867,
0.05020969361066818,
0.018868129700422287,
-0.07960382103919983,
-0.23175203800201416,
0.00173812301363796,
0.05928743630647659,
-0.01737271435558796,
-0.2266964614391327,
-0.08965737372636795,
-0.0034131966531276703,
-0.07334467023611069,
-0.10002723336219788,
0.08334432542324066,
0.06819260120391846,
0.048207126557826996,
-0.05047854036092758,
-0.08249980211257935,
-0.08244439214468002,
0.15666531026363373,
-0.15792527794837952,
-0.08750952780246735
] |
null | null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | text2text-generation | OmarHaroon01/t5_pretrain_final_final_final_kaggle_final_final | [
"transformers",
"safetensors",
"t5",
"text2text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | 2024-02-13T13:55:42+00:00 | [
"1910.09700"
] | [] | TAGS
#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
|
# Model Card for Model ID
## Model Details
### Model Description
This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by:
- Funded by [optional]:
- Shared by [optional]:
- Model type:
- Language(s) (NLP):
- License:
- Finetuned from model [optional]:
### Model Sources [optional]
- Repository:
- Paper [optional]:
- Demo [optional]:
## Uses
### Direct Use
### Downstream Use [optional]
### Out-of-Scope Use
## Bias, Risks, and Limitations
### Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
## Training Details
### Training Data
### Training Procedure
#### Preprocessing [optional]
#### Training Hyperparameters
- Training regime:
#### Speeds, Sizes, Times [optional]
## Evaluation
### Testing Data, Factors & Metrics
#### Testing Data
#### Factors
#### Metrics
### Results
#### Summary
## Model Examination [optional]
## Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type:
- Hours used:
- Cloud Provider:
- Compute Region:
- Carbon Emitted:
## Technical Specifications [optional]
### Model Architecture and Objective
### Compute Infrastructure
#### Hardware
#### Software
[optional]
BibTeX:
APA:
## Glossary [optional]
## More Information [optional]
## Model Card Authors [optional]
## Model Card Contact
| [
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
"TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n",
"# Model Card for Model ID",
"## Model Details",
"### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:",
"### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:",
"## Uses",
"### Direct Use",
"### Downstream Use [optional]",
"### Out-of-Scope Use",
"## Bias, Risks, and Limitations",
"### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.",
"## How to Get Started with the Model\n\nUse the code below to get started with the model.",
"## Training Details",
"### Training Data",
"### Training Procedure",
"#### Preprocessing [optional]",
"#### Training Hyperparameters\n\n- Training regime:",
"#### Speeds, Sizes, Times [optional]",
"## Evaluation",
"### Testing Data, Factors & Metrics",
"#### Testing Data",
"#### Factors",
"#### Metrics",
"### Results",
"#### Summary",
"## Model Examination [optional]",
"## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:",
"## Technical Specifications [optional]",
"### Model Architecture and Objective",
"### Compute Infrastructure",
"#### Hardware",
"#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:",
"## Glossary [optional]",
"## More Information [optional]",
"## Model Card Authors [optional]",
"## Model Card Contact"
] | [
58,
6,
3,
82,
28,
3,
4,
9,
9,
10,
42,
20,
3,
4,
5,
9,
11,
13,
3,
12,
5,
4,
5,
3,
4,
9,
53,
9,
8,
6,
3,
14,
8,
7,
9,
4
] | [
"passage: TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact"
] | [
-0.053328532725572586,
0.16120538115501404,
-0.005120371468365192,
0.022602224722504616,
0.09686747193336487,
0.013199392706155777,
0.07261143624782562,
0.11177206039428711,
-0.020693831145763397,
0.1128523200750351,
0.0323781855404377,
0.09778297692537308,
0.11381756514310837,
0.15530984103679657,
-0.0018252237932756543,
-0.23414164781570435,
0.051169246435165405,
-0.12603329122066498,
-0.039110470563173294,
0.11734651774168015,
0.14655858278274536,
-0.10434788465499878,
0.07780920714139938,
-0.029932111501693726,
-0.010786613449454308,
-0.030950399115681648,
-0.06109464541077614,
-0.04963193088769913,
0.05158040300011635,
0.07096312940120697,
0.06875279545783997,
0.009741154499351978,
0.09293358027935028,
-0.2676756680011749,
0.021060682833194733,
0.07436702400445938,
-0.0019205488497391343,
0.07644513249397278,
0.05394738167524338,
-0.07786445319652557,
0.08801496773958206,
-0.053122974932193756,
0.14802159368991852,
0.08166222274303436,
-0.09144649654626846,
-0.19256246089935303,
-0.08630277216434479,
0.10201671719551086,
0.17971307039260864,
0.050409309566020966,
-0.02338344417512417,
0.10295069962739944,
-0.08843041211366653,
0.012706292793154716,
0.059160783886909485,
-0.06515879184007645,
-0.05482804775238037,
0.0630323737859726,
0.08173035830259323,
0.0787791833281517,
-0.12468571215867996,
-0.018215585500001907,
0.011311499401926994,
0.00691694812849164,
0.08102929592132568,
0.022060219198465347,
0.14176861941814423,
0.03922285884618759,
-0.1292058527469635,
-0.047744158655405045,
0.10315844416618347,
0.04381343349814415,
-0.04969092458486557,
-0.24839195609092712,
-0.028692634776234627,
-0.03409173712134361,
-0.029329892247915268,
-0.041139665991067886,
0.04428756237030029,
-0.010770969092845917,
0.08322557806968689,
-0.008045176975429058,
-0.07979845255613327,
-0.03690612316131592,
0.06324487924575806,
0.05645342543721199,
0.024454401805996895,
-0.008984005078673363,
0.006743076257407665,
0.1175178587436676,
0.10636600106954575,
-0.12631633877754211,
-0.05289403349161148,
-0.06528059393167496,
-0.0853288322687149,
-0.04429693520069122,
0.03338160738348961,
0.04351643845438957,
0.04334709793329239,
0.24920088052749634,
0.011966975405812263,
0.05556565150618553,
0.03878911957144737,
0.011687099933624268,
0.06360286474227905,
0.11270952969789505,
-0.05845928564667702,
-0.09383665025234222,
-0.033332064747810364,
0.09301437437534332,
0.008503437042236328,
-0.0402098223567009,
-0.06047673895955086,
0.06078295037150383,
0.015703821554780006,
0.12211526930332184,
0.087046779692173,
0.002870776690542698,
-0.07195370644330978,
-0.06478150933980942,
0.19285908341407776,
-0.15949691832065582,
0.047871991991996765,
0.03357849270105362,
-0.040312062948942184,
-0.0005020854296162724,
0.01165273692458868,
0.023987481370568275,
-0.021567439660429955,
0.0924374982714653,
-0.05500924214720726,
-0.03761355206370354,
-0.10879732668399811,
-0.03591866046190262,
0.03197222575545311,
0.0022585385013371706,
-0.02967100404202938,
-0.033424828201532364,
-0.08920473605394363,
-0.0635172426700592,
0.09580977261066437,
-0.07413128018379211,
-0.05156254023313522,
-0.016345804557204247,
-0.0761859342455864,
0.026101797819137573,
0.01702207140624523,
0.08535456657409668,
-0.0213642455637455,
0.037230201065540314,
-0.05421315133571625,
0.06241346150636673,
0.10910454392433167,
0.0320611298084259,
-0.053984515368938446,
0.06094928830862045,
-0.2412392497062683,
0.10316064208745956,
-0.07156267017126083,
0.05108866095542908,
-0.15137021243572235,
-0.025331947952508926,
0.04665522649884224,
0.009590202011168003,
-0.011478574015200138,
0.14007656276226044,
-0.2198302298784256,
-0.029333066195249557,
0.1640782356262207,
-0.09730498492717743,
-0.08055570721626282,
0.059064920991659164,
-0.054139286279678345,
0.10999192297458649,
0.04003598168492317,
-0.023768696933984756,
0.06297750771045685,
-0.14250542223453522,
-0.0039275879971683025,
-0.041889119893312454,
-0.01720282807946205,
0.16010744869709015,
0.07506491243839264,
-0.06698185205459595,
0.077672079205513,
0.022212913259863853,
-0.023321649059653282,
-0.04393244534730911,
-0.022494852542877197,
-0.10826845467090607,
0.009565223939716816,
-0.06269361078739166,
0.02424052357673645,
-0.023944495245814323,
-0.0903024971485138,
-0.029575346037745476,
-0.1770460456609726,
-0.013402442447841167,
0.08679109811782837,
-0.010982494801282883,
-0.019886262714862823,
-0.11693590134382248,
0.012033592909574509,
0.032231178134679794,
0.0004325093177612871,
-0.13445010781288147,
-0.05658498778939247,
0.0273329745978117,
-0.16240260004997253,
0.031236927956342697,
-0.05114622414112091,
0.04928715154528618,
0.03406677767634392,
-0.03175085783004761,
-0.031348153948783875,
0.01572313904762268,
0.006510823033750057,
-0.013680041767656803,
-0.24737438559532166,
-0.02852414920926094,
-0.022412575781345367,
0.16979394853115082,
-0.2190135270357132,
0.04012007266283035,
0.07135825604200363,
0.15074580907821655,
0.006911954842507839,
-0.03669405356049538,
0.005606858059763908,
-0.0768459290266037,
-0.03284264728426933,
-0.0623927041888237,
-0.008401541970670223,
-0.03721899166703224,
-0.054593876004219055,
0.051287684589624405,
-0.16718235611915588,
-0.031153932213783264,
0.1028679683804512,
0.06780845671892166,
-0.13963541388511658,
-0.01705223321914673,
-0.04106766730546951,
-0.043112557381391525,
-0.05709490180015564,
-0.05539087578654289,
0.11148729920387268,
0.05757083371281624,
0.04828811436891556,
-0.06848311424255371,
-0.0756818875670433,
0.006132613401859999,
-0.0179264098405838,
-0.021222935989499092,
0.0928845927119255,
0.07583390921354294,
-0.12310270220041275,
0.09178637713193893,
0.10549022257328033,
0.0892157256603241,
0.10119049996137619,
-0.02137933485209942,
-0.08691582083702087,
-0.04892461374402046,
0.0229446180164814,
0.016364475712180138,
0.13983985781669617,
-0.016759416088461876,
0.05310053750872612,
0.04020100086927414,
-0.012910815887153149,
0.011883769184350967,
-0.09328193217515945,
0.02934250421822071,
0.03636814281344414,
-0.019501443952322006,
0.040251899510622025,
-0.03908125311136246,
0.020790016278624535,
0.08787564933300018,
0.04434992000460625,
0.03818633407354355,
0.013980780728161335,
-0.04370194673538208,
-0.11091572046279907,
0.17051653563976288,
-0.12536633014678955,
-0.239797443151474,
-0.14147889614105225,
0.001731917611323297,
0.041165996342897415,
-0.01159723661839962,
0.0031763319857418537,
-0.06770002096891403,
-0.11874829977750778,
-0.09346967190504074,
0.015001182444393635,
0.04228860139846802,
-0.080612413585186,
-0.05524664744734764,
0.05777253210544586,
0.040611669421195984,
-0.143319234251976,
0.020423002541065216,
0.04869217798113823,
-0.08989228308200836,
-0.00900039542466402,
0.08071441948413849,
0.06998268514871597,
0.17929090559482574,
0.009512054733932018,
-0.020932139828801155,
0.03292093798518181,
0.2157505750656128,
-0.13771237432956696,
0.11451084166765213,
0.14277678728103638,
-0.0911637470126152,
0.08293474465608597,
0.1991184800863266,
0.03884927183389664,
-0.10264625400304794,
0.03326369449496269,
0.022328944876790047,
-0.028676386922597885,
-0.2503291964530945,
-0.06918580830097198,
0.0007976540364325047,
-0.05238448083400726,
0.07527847588062286,
0.08888168632984161,
0.09494108706712723,
0.01729334332048893,
-0.09416709095239639,
-0.08025584369897842,
0.04901478812098503,
0.10409125685691833,
0.010409193113446236,
-0.01156378723680973,
0.09060908854007721,
-0.03323452174663544,
0.01843860000371933,
0.09313460439443588,
0.004041523206979036,
0.17060963809490204,
0.05550962686538696,
0.18336638808250427,
0.07643263041973114,
0.0721396952867508,
0.015671607106924057,
0.013079277239739895,
0.02304760180413723,
0.021578695625066757,
-0.0033059304114431143,
-0.0851421132683754,
-0.009511260315775871,
0.11862117052078247,
0.06801546365022659,
0.020754681900143623,
0.009507957845926285,
-0.033934496343135834,
0.08064714074134827,
0.17465052008628845,
-0.0009437129483558238,
-0.1870066076517105,
-0.06896740943193436,
0.08026526123285294,
-0.08972865343093872,
-0.10345284640789032,
-0.02900044620037079,
0.0354950949549675,
-0.17372116446495056,
0.02448408491909504,
-0.018045885488390923,
0.11108683049678802,
-0.1356782615184784,
-0.01890929788351059,
0.06319493800401688,
0.07008420675992966,
-0.0016097982879728079,
0.06208989396691322,
-0.16155508160591125,
0.10791012644767761,
0.01390943955630064,
0.06503470987081528,
-0.09786296635866165,
0.10111832618713379,
-0.006267238408327103,
-0.007413685787469149,
0.14043578505516052,
0.009255880489945412,
-0.07051325589418411,
-0.08343593031167984,
-0.0979004055261612,
-0.010649190284311771,
0.12877127528190613,
-0.14879846572875977,
0.08456916362047195,
-0.0322830006480217,
-0.04405250772833824,
0.005208021495491266,
-0.10768675804138184,
-0.12857580184936523,
-0.18887875974178314,
0.05537694692611694,
-0.13356289267539978,
0.033175256103277206,
-0.1055491715669632,
-0.0408647358417511,
-0.02885887771844864,
0.19630752503871918,
-0.22321896255016327,
-0.0670507624745369,
-0.15318840742111206,
-0.09096445143222809,
0.14798617362976074,
-0.049908362329006195,
0.08374498039484024,
-0.005065108183771372,
0.18742504715919495,
0.01894373446702957,
-0.024415504187345505,
0.1011786088347435,
-0.09638315439224243,
-0.19627197086811066,
-0.08534666895866394,
0.15457913279533386,
0.13537167012691498,
0.0351712740957737,
-0.004617651924490929,
0.03167666867375374,
-0.0189940445125103,
-0.12101218104362488,
0.022920187562704086,
0.17696480453014374,
0.07036592066287994,
0.024736741557717323,
-0.02639835514128208,
-0.11453131586313248,
-0.06600044667720795,
-0.032452553510665894,
0.02982977218925953,
0.18294402956962585,
-0.07586611062288284,
0.18679921329021454,
0.13732017576694489,
-0.05770440772175789,
-0.1956426501274109,
0.01923983357846737,
0.04058924317359924,
0.00837375782430172,
0.032165057957172394,
-0.20239581167697906,
0.08806682378053665,
0.0007347199134528637,
-0.05074144899845123,
0.13624143600463867,
-0.17552010715007782,
-0.15046143531799316,
0.06929060816764832,
0.03642011433839798,
-0.19279520213603973,
-0.12030941992998123,
-0.08865538984537125,
-0.05107492581009865,
-0.17776648700237274,
0.10758756101131439,
0.02193085290491581,
0.00676411809399724,
0.033654287457466125,
0.026140762493014336,
0.014790141955018044,
-0.0396585576236248,
0.19431912899017334,
-0.02348872646689415,
0.030807901173830032,
-0.08293910324573517,
-0.07001609355211258,
0.05941145867109299,
-0.05705835670232773,
0.0775861069560051,
-0.022215960547327995,
0.013414059765636921,
-0.10643109679222107,
-0.04425564035773277,
-0.03175993636250496,
0.015691282227635384,
-0.09722420573234558,
-0.08909335732460022,
-0.050057362765073776,
0.09262266010046005,
0.0974174216389656,
-0.035089656710624695,
-0.03564268350601196,
-0.07118509709835052,
0.039714183658361435,
0.18831974267959595,
0.17605267465114594,
0.046182651072740555,
-0.08030564337968826,
-0.004098092205822468,
-0.011694483458995819,
0.042484745383262634,
-0.21906526386737823,
0.062426332384347916,
0.05058585852384567,
0.014059843495488167,
0.1173645630478859,
-0.01779606007039547,
-0.15810294449329376,
-0.06761486083269119,
0.05993710458278656,
-0.06326820701360703,
-0.19225671887397766,
0.0032602818682789803,
0.055388111621141434,
-0.16711848974227905,
-0.04538320377469063,
0.0430813767015934,
-0.005750913172960281,
-0.039257556200027466,
0.01613711006939411,
0.08359149098396301,
0.0031580389477312565,
0.07040093839168549,
0.05520293489098549,
0.086640864610672,
-0.10250966250896454,
0.07937785238027573,
0.08386688679456711,
-0.08347215503454208,
0.028158824890851974,
0.09330378472805023,
-0.06144890934228897,
-0.029910072684288025,
0.032212331891059875,
0.08255140483379364,
0.012964491732418537,
-0.04401125758886337,
0.008184057660400867,
-0.10146338492631912,
0.0627170279622078,
0.09755739569664001,
0.03206513822078705,
0.011901181191205978,
0.03383762761950493,
0.04645882546901703,
-0.07481352984905243,
0.11842621862888336,
0.025973208248615265,
0.01822328381240368,
-0.04273592680692673,
-0.04516541585326195,
0.027133917436003685,
-0.02340707741677761,
-0.007566304877400398,
-0.03583317995071411,
-0.06988023966550827,
-0.01722576655447483,
-0.16493180394172668,
-0.01076561864465475,
-0.044063083827495575,
0.008020744659006596,
0.026847293600440025,
-0.0369400717318058,
0.008594665676355362,
0.009077225811779499,
-0.07577309012413025,
-0.06240518018603325,
-0.02245018258690834,
0.0914878100156784,
-0.16343435645103455,
0.023352261632680893,
0.08310231566429138,
-0.12098916620016098,
0.09322582185268402,
0.018653366714715958,
-0.0019369579385966063,
0.02680385299026966,
-0.15561461448669434,
0.0368269607424736,
-0.027320701628923416,
0.014671673998236656,
0.045705173164606094,
-0.21818207204341888,
-0.0014451020397245884,
-0.03558654710650444,
-0.059982262551784515,
-0.010693925432860851,
-0.037350837141275406,
-0.11245633661746979,
0.10088492184877396,
0.012412267737090588,
-0.08672942966222763,
-0.03157110512256622,
0.03652326017618179,
0.08053763210773468,
-0.02631879225373268,
0.15205731987953186,
-0.0010786735219880939,
0.07447176426649094,
-0.1738860309123993,
-0.0210786834359169,
-0.0090115275233984,
0.02177848480641842,
-0.016872623935341835,
-0.01564885675907135,
0.042430613189935684,
-0.026671668514609337,
0.18584245443344116,
-0.027355844154953957,
0.03733034059405327,
0.06316441297531128,
0.01770097203552723,
-0.021354418247938156,
0.10755398869514465,
0.06012963131070137,
0.02173144742846489,
0.019801700487732887,
0.0075409491546452045,
-0.041807159781455994,
-0.018543899059295654,
-0.19347810745239258,
0.07164526730775833,
0.14044208824634552,
0.08769161999225616,
-0.012164209969341755,
0.08067302405834198,
-0.10084949433803558,
-0.11743459850549698,
0.11121641099452972,
-0.059808436781167984,
-0.0022669173777103424,
-0.06652101874351501,
0.13155525922775269,
0.14582572877407074,
-0.19254228472709656,
0.07050827890634537,
-0.06511960923671722,
-0.05269601568579674,
-0.11906112730503082,
-0.1953776627779007,
-0.05703132599592209,
-0.054343048483133316,
-0.015079263597726822,
-0.05059242993593216,
0.07498416304588318,
0.05622640252113342,
0.010858895257115364,
0.0015552249969914556,
0.06971994787454605,
-0.019759170711040497,
0.001521410304121673,
0.032095473259687424,
0.06417544931173325,
0.014362066984176636,
-0.03133942559361458,
0.018592869862914085,
-0.008470231667160988,
0.03991629183292389,
0.0633486732840538,
0.04155107960104942,
-0.028110865503549576,
0.01659207232296467,
-0.0337030366063118,
-0.10854189842939377,
0.04278707876801491,
-0.028698457404971123,
-0.08063279837369919,
0.13984808325767517,
0.025403661653399467,
0.009562181308865547,
-0.022226108238101006,
0.241981640458107,
-0.07480388879776001,
-0.09265431761741638,
-0.14692139625549316,
0.1055137887597084,
-0.04348868504166603,
0.06415078788995743,
0.045384783297777176,
-0.10421041399240494,
0.012057800777256489,
0.12658540904521942,
0.1625804305076599,
-0.0438871793448925,
0.019560009241104126,
0.03037482313811779,
0.00398933095857501,
-0.03853052854537964,
0.05252939090132713,
0.06827457249164581,
0.14848913252353668,
-0.050116557627916336,
0.09223522990942001,
0.0050886585377156734,
-0.09908851981163025,
-0.034064266830682755,
0.11810369789600372,
-0.019035303965210915,
0.019260596483945847,
-0.05601469427347183,
0.11788773536682129,
-0.06368034332990646,
-0.233087420463562,
0.06406685709953308,
-0.07426205277442932,
-0.14131881296634674,
-0.024826664477586746,
0.07676053047180176,
-0.014309047721326351,
0.027850469574332237,
0.0722186341881752,
-0.07654546946287155,
0.19937579333782196,
0.03671684116125107,
-0.058611851185560226,
-0.05623113736510277,
0.07896319031715393,
-0.11419995129108429,
0.27488458156585693,
0.015893742442131042,
0.045155949890613556,
0.1038452610373497,
-0.013412448577582836,
-0.13435201346874237,
0.01833420805633068,
0.09638454020023346,
-0.08846497535705566,
0.04018587991595268,
0.20595665276050568,
-0.0028567397966980934,
0.11962885409593582,
0.07707620412111282,
-0.08087631314992905,
0.049051105976104736,
-0.09828304499387741,
-0.07230360060930252,
-0.08931835740804672,
0.09120666980743408,
-0.07232820242643356,
0.14308606088161469,
0.1311190128326416,
-0.05265164002776146,
0.00968363881111145,
-0.029376711696386337,
0.045510269701480865,
0.004632700700312853,
0.10403459519147873,
0.008749093860387802,
-0.1797543615102768,
0.02403045818209648,
0.01841445453464985,
0.10992073267698288,
-0.1701374351978302,
-0.09734909981489182,
0.043629229068756104,
-0.0012522460892796516,
-0.06121290475130081,
0.1290796846151352,
0.05957380682229996,
0.05011506378650665,
-0.043520737439394,
-0.0211784765124321,
-0.008504665456712246,
0.14072857797145844,
-0.10404830425977707,
-0.00016830587992444634
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.